]> git.proxmox.com Git - rustc.git/blob - src/llvm/utils/TableGen/CodeGenRegisters.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / utils / TableGen / CodeGenRegisters.cpp
1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/IntEqClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/TableGen/Error.h"
24
25 using namespace llvm;
26
27 #define DEBUG_TYPE "regalloc-emitter"
28
29 //===----------------------------------------------------------------------===//
30 // CodeGenSubRegIndex
31 //===----------------------------------------------------------------------===//
32
33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35 Name = R->getName();
36 if (R->getValue("Namespace"))
37 Namespace = R->getValueAsString("Namespace");
38 Size = R->getValueAsInt("Size");
39 Offset = R->getValueAsInt("Offset");
40 }
41
42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43 unsigned Enum)
44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46 }
47
48 std::string CodeGenSubRegIndex::getQualifiedName() const {
49 std::string N = getNamespace();
50 if (!N.empty())
51 N += "::";
52 N += getName();
53 return N;
54 }
55
56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57 if (!TheDef)
58 return;
59
60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61 if (!Comps.empty()) {
62 if (Comps.size() != 2)
63 PrintFatalError(TheDef->getLoc(),
64 "ComposedOf must have exactly two entries");
65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67 CodeGenSubRegIndex *X = A->addComposite(B, this);
68 if (X)
69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70 }
71
72 std::vector<Record*> Parts =
73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74 if (!Parts.empty()) {
75 if (Parts.size() < 2)
76 PrintFatalError(TheDef->getLoc(),
77 "CoveredBySubRegs must have two or more entries");
78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79 for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81 RegBank.addConcatSubRegIndex(IdxParts, this);
82 }
83 }
84
85 unsigned CodeGenSubRegIndex::computeLaneMask() const {
86 // Already computed?
87 if (LaneMask)
88 return LaneMask;
89
90 // Recursion guard, shouldn't be required.
91 LaneMask = ~0u;
92
93 // The lane mask is simply the union of all sub-indices.
94 unsigned M = 0;
95 for (const auto &C : Composed)
96 M |= C.second->computeLaneMask();
97 assert(M && "Missing lane mask, sub-register cycle?");
98 LaneMask = M;
99 return LaneMask;
100 }
101
102 //===----------------------------------------------------------------------===//
103 // CodeGenRegister
104 //===----------------------------------------------------------------------===//
105
106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107 : TheDef(R),
108 EnumValue(Enum),
109 CostPerUse(R->getValueAsInt("CostPerUse")),
110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111 NumNativeRegUnits(0),
112 SubRegsComplete(false),
113 SuperRegsComplete(false),
114 TopoSig(~0u)
115 {}
116
117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120
121 if (SRIs.size() != SRs.size())
122 PrintFatalError(TheDef->getLoc(),
123 "SubRegs and SubRegIndices must have the same size");
124
125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128 }
129
130 // Also compute leading super-registers. Each register has a list of
131 // covered-by-subregs super-registers where it appears as the first explicit
132 // sub-register.
133 //
134 // This is used by computeSecondarySubRegs() to find candidates.
135 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137
138 // Add ad hoc alias links. This is a symmetric relationship between two
139 // registers, so build a symmetric graph by adding links in both ends.
140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143 ExplicitAliases.push_back(Reg);
144 Reg->ExplicitAliases.push_back(this);
145 }
146 }
147
148 const std::string &CodeGenRegister::getName() const {
149 assert(TheDef && "no def");
150 return TheDef->getName();
151 }
152
153 namespace {
154 // Iterate over all register units in a set of registers.
155 class RegUnitIterator {
156 CodeGenRegister::Set::const_iterator RegI, RegE;
157 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
158
159 public:
160 RegUnitIterator(const CodeGenRegister::Set &Regs):
161 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
162
163 if (RegI != RegE) {
164 UnitI = (*RegI)->getRegUnits().begin();
165 UnitE = (*RegI)->getRegUnits().end();
166 advance();
167 }
168 }
169
170 bool isValid() const { return UnitI != UnitE; }
171
172 unsigned operator* () const { assert(isValid()); return *UnitI; }
173
174 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
175
176 /// Preincrement. Move to the next unit.
177 void operator++() {
178 assert(isValid() && "Cannot advance beyond the last operand");
179 ++UnitI;
180 advance();
181 }
182
183 protected:
184 void advance() {
185 while (UnitI == UnitE) {
186 if (++RegI == RegE)
187 break;
188 UnitI = (*RegI)->getRegUnits().begin();
189 UnitE = (*RegI)->getRegUnits().end();
190 }
191 }
192 };
193 } // namespace
194
195 // Merge two RegUnitLists maintaining the order and removing duplicates.
196 // Overwrites MergedRU in the process.
197 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
198 const CodeGenRegister::RegUnitList &RRU) {
199 CodeGenRegister::RegUnitList LRU = MergedRU;
200 MergedRU.clear();
201 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
202 std::back_inserter(MergedRU));
203 }
204
205 // Return true of this unit appears in RegUnits.
206 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
207 return std::count(RegUnits.begin(), RegUnits.end(), Unit);
208 }
209
210 // Inherit register units from subregisters.
211 // Return true if the RegUnits changed.
212 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
213 unsigned OldNumUnits = RegUnits.size();
214 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
215 I != E; ++I) {
216 CodeGenRegister *SR = I->second;
217 // Merge the subregister's units into this register's RegUnits.
218 mergeRegUnits(RegUnits, SR->RegUnits);
219 }
220 return OldNumUnits != RegUnits.size();
221 }
222
223 const CodeGenRegister::SubRegMap &
224 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
225 // Only compute this map once.
226 if (SubRegsComplete)
227 return SubRegs;
228 SubRegsComplete = true;
229
230 // First insert the explicit subregs and make sure they are fully indexed.
231 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
232 CodeGenRegister *SR = ExplicitSubRegs[i];
233 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
234 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
235 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
236 " appears twice in Register " + getName());
237 // Map explicit sub-registers first, so the names take precedence.
238 // The inherited sub-registers are mapped below.
239 SubReg2Idx.insert(std::make_pair(SR, Idx));
240 }
241
242 // Keep track of inherited subregs and how they can be reached.
243 SmallPtrSet<CodeGenRegister*, 8> Orphans;
244
245 // Clone inherited subregs and place duplicate entries in Orphans.
246 // Here the order is important - earlier subregs take precedence.
247 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
248 CodeGenRegister *SR = ExplicitSubRegs[i];
249 const SubRegMap &Map = SR->computeSubRegs(RegBank);
250
251 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
252 ++SI) {
253 if (!SubRegs.insert(*SI).second)
254 Orphans.insert(SI->second);
255 }
256 }
257
258 // Expand any composed subreg indices.
259 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
260 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
261 // expanded subreg indices recursively.
262 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
263 for (unsigned i = 0; i != Indices.size(); ++i) {
264 CodeGenSubRegIndex *Idx = Indices[i];
265 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
266 CodeGenRegister *SR = SubRegs[Idx];
267 const SubRegMap &Map = SR->computeSubRegs(RegBank);
268
269 // Look at the possible compositions of Idx.
270 // They may not all be supported by SR.
271 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
272 E = Comps.end(); I != E; ++I) {
273 SubRegMap::const_iterator SRI = Map.find(I->first);
274 if (SRI == Map.end())
275 continue; // Idx + I->first doesn't exist in SR.
276 // Add I->second as a name for the subreg SRI->second, assuming it is
277 // orphaned, and the name isn't already used for something else.
278 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
279 continue;
280 // We found a new name for the orphaned sub-register.
281 SubRegs.insert(std::make_pair(I->second, SRI->second));
282 Indices.push_back(I->second);
283 }
284 }
285
286 // Now Orphans contains the inherited subregisters without a direct index.
287 // Create inferred indexes for all missing entries.
288 // Work backwards in the Indices vector in order to compose subregs bottom-up.
289 // Consider this subreg sequence:
290 //
291 // qsub_1 -> dsub_0 -> ssub_0
292 //
293 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
294 // can be reached in two different ways:
295 //
296 // qsub_1 -> ssub_0
297 // dsub_2 -> ssub_0
298 //
299 // We pick the latter composition because another register may have [dsub_0,
300 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
301 // dsub_2 -> ssub_0 composition can be shared.
302 while (!Indices.empty() && !Orphans.empty()) {
303 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
304 CodeGenRegister *SR = SubRegs[Idx];
305 const SubRegMap &Map = SR->computeSubRegs(RegBank);
306 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
307 ++SI)
308 if (Orphans.erase(SI->second))
309 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
310 }
311
312 // Compute the inverse SubReg -> Idx map.
313 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
314 SI != SE; ++SI) {
315 if (SI->second == this) {
316 ArrayRef<SMLoc> Loc;
317 if (TheDef)
318 Loc = TheDef->getLoc();
319 PrintFatalError(Loc, "Register " + getName() +
320 " has itself as a sub-register");
321 }
322
323 // Compute AllSuperRegsCovered.
324 if (!CoveredBySubRegs)
325 SI->first->AllSuperRegsCovered = false;
326
327 // Ensure that every sub-register has a unique name.
328 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
329 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
330 if (Ins->second == SI->first)
331 continue;
332 // Trouble: Two different names for SI->second.
333 ArrayRef<SMLoc> Loc;
334 if (TheDef)
335 Loc = TheDef->getLoc();
336 PrintFatalError(Loc, "Sub-register can't have two names: " +
337 SI->second->getName() + " available as " +
338 SI->first->getName() + " and " + Ins->second->getName());
339 }
340
341 // Derive possible names for sub-register concatenations from any explicit
342 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
343 // that getConcatSubRegIndex() won't invent any concatenated indices that the
344 // user already specified.
345 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
346 CodeGenRegister *SR = ExplicitSubRegs[i];
347 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
348 continue;
349
350 // SR is composed of multiple sub-regs. Find their names in this register.
351 SmallVector<CodeGenSubRegIndex*, 8> Parts;
352 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
353 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
354
355 // Offer this as an existing spelling for the concatenation of Parts.
356 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
357 }
358
359 // Initialize RegUnitList. Because getSubRegs is called recursively, this
360 // processes the register hierarchy in postorder.
361 //
362 // Inherit all sub-register units. It is good enough to look at the explicit
363 // sub-registers, the other registers won't contribute any more units.
364 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
365 CodeGenRegister *SR = ExplicitSubRegs[i];
366 // Explicit sub-registers are usually disjoint, so this is a good way of
367 // computing the union. We may pick up a few duplicates that will be
368 // eliminated below.
369 unsigned N = RegUnits.size();
370 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
371 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
372 }
373 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
374
375 // Absent any ad hoc aliasing, we create one register unit per leaf register.
376 // These units correspond to the maximal cliques in the register overlap
377 // graph which is optimal.
378 //
379 // When there is ad hoc aliasing, we simply create one unit per edge in the
380 // undirected ad hoc aliasing graph. Technically, we could do better by
381 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
382 // are extremely rare anyway (I've never seen one), so we don't bother with
383 // the added complexity.
384 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
385 CodeGenRegister *AR = ExplicitAliases[i];
386 // Only visit each edge once.
387 if (AR->SubRegsComplete)
388 continue;
389 // Create a RegUnit representing this alias edge, and add it to both
390 // registers.
391 unsigned Unit = RegBank.newRegUnit(this, AR);
392 RegUnits.push_back(Unit);
393 AR->RegUnits.push_back(Unit);
394 }
395
396 // Finally, create units for leaf registers without ad hoc aliases. Note that
397 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
398 // necessary. This means the aliasing leaf registers can share a single unit.
399 if (RegUnits.empty())
400 RegUnits.push_back(RegBank.newRegUnit(this));
401
402 // We have now computed the native register units. More may be adopted later
403 // for balancing purposes.
404 NumNativeRegUnits = RegUnits.size();
405
406 return SubRegs;
407 }
408
409 // In a register that is covered by its sub-registers, try to find redundant
410 // sub-registers. For example:
411 //
412 // QQ0 = {Q0, Q1}
413 // Q0 = {D0, D1}
414 // Q1 = {D2, D3}
415 //
416 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
417 // the register definition.
418 //
419 // The explicitly specified registers form a tree. This function discovers
420 // sub-register relationships that would force a DAG.
421 //
422 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
423 // Collect new sub-registers first, add them later.
424 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
425
426 // Look at the leading super-registers of each sub-register. Those are the
427 // candidates for new sub-registers, assuming they are fully contained in
428 // this register.
429 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
430 const CodeGenRegister *SubReg = I->second;
431 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
432 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
433 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
434 // Already got this sub-register?
435 if (Cand == this || getSubRegIndex(Cand))
436 continue;
437 // Check if each component of Cand is already a sub-register.
438 // We know that the first component is I->second, and is present with the
439 // name I->first.
440 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
441 assert(!Cand->ExplicitSubRegs.empty() &&
442 "Super-register has no sub-registers");
443 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
444 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
445 Parts.push_back(Idx);
446 else {
447 // Sub-register doesn't exist.
448 Parts.clear();
449 break;
450 }
451 }
452 // If some Cand sub-register is not part of this register, or if Cand only
453 // has one sub-register, there is nothing to do.
454 if (Parts.size() <= 1)
455 continue;
456
457 // Each part of Cand is a sub-register of this. Make the full Cand also
458 // a sub-register with a concatenated sub-register index.
459 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
460 NewSubRegs.push_back(std::make_pair(Concat, Cand));
461 }
462 }
463
464 // Now add all the new sub-registers.
465 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
466 // Don't add Cand if another sub-register is already using the index.
467 if (!SubRegs.insert(NewSubRegs[i]).second)
468 continue;
469
470 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
471 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
472 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
473 }
474
475 // Create sub-register index composition maps for the synthesized indices.
476 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
477 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
478 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
479 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
480 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
481 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
482 if (!SubIdx)
483 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
484 SI->second->getName() + " in " + getName());
485 NewIdx->addComposite(SI->first, SubIdx);
486 }
487 }
488 }
489
490 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
491 // Only visit each register once.
492 if (SuperRegsComplete)
493 return;
494 SuperRegsComplete = true;
495
496 // Make sure all sub-registers have been visited first, so the super-reg
497 // lists will be topologically ordered.
498 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
499 I != E; ++I)
500 I->second->computeSuperRegs(RegBank);
501
502 // Now add this as a super-register on all sub-registers.
503 // Also compute the TopoSigId in post-order.
504 TopoSigId Id;
505 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
506 I != E; ++I) {
507 // Topological signature computed from SubIdx, TopoId(SubReg).
508 // Loops and idempotent indices have TopoSig = ~0u.
509 Id.push_back(I->first->EnumValue);
510 Id.push_back(I->second->TopoSig);
511
512 // Don't add duplicate entries.
513 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
514 continue;
515 I->second->SuperRegs.push_back(this);
516 }
517 TopoSig = RegBank.getTopoSig(Id);
518 }
519
520 void
521 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
522 CodeGenRegBank &RegBank) const {
523 assert(SubRegsComplete && "Must precompute sub-registers");
524 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
525 CodeGenRegister *SR = ExplicitSubRegs[i];
526 if (OSet.insert(SR))
527 SR->addSubRegsPreOrder(OSet, RegBank);
528 }
529 // Add any secondary sub-registers that weren't part of the explicit tree.
530 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
531 I != E; ++I)
532 OSet.insert(I->second);
533 }
534
535 // Get the sum of this register's unit weights.
536 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
537 unsigned Weight = 0;
538 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
539 I != E; ++I) {
540 Weight += RegBank.getRegUnit(*I).Weight;
541 }
542 return Weight;
543 }
544
545 //===----------------------------------------------------------------------===//
546 // RegisterTuples
547 //===----------------------------------------------------------------------===//
548
549 // A RegisterTuples def is used to generate pseudo-registers from lists of
550 // sub-registers. We provide a SetTheory expander class that returns the new
551 // registers.
552 namespace {
553 struct TupleExpander : SetTheory::Expander {
554 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
555 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
556 unsigned Dim = Indices.size();
557 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
558 if (Dim != SubRegs->getSize())
559 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
560 if (Dim < 2)
561 PrintFatalError(Def->getLoc(),
562 "Tuples must have at least 2 sub-registers");
563
564 // Evaluate the sub-register lists to be zipped.
565 unsigned Length = ~0u;
566 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
567 for (unsigned i = 0; i != Dim; ++i) {
568 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
569 Length = std::min(Length, unsigned(Lists[i].size()));
570 }
571
572 if (Length == 0)
573 return;
574
575 // Precompute some types.
576 Record *RegisterCl = Def->getRecords().getClass("Register");
577 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
578 StringInit *BlankName = StringInit::get("");
579
580 // Zip them up.
581 for (unsigned n = 0; n != Length; ++n) {
582 std::string Name;
583 Record *Proto = Lists[0][n];
584 std::vector<Init*> Tuple;
585 unsigned CostPerUse = 0;
586 for (unsigned i = 0; i != Dim; ++i) {
587 Record *Reg = Lists[i][n];
588 if (i) Name += '_';
589 Name += Reg->getName();
590 Tuple.push_back(DefInit::get(Reg));
591 CostPerUse = std::max(CostPerUse,
592 unsigned(Reg->getValueAsInt("CostPerUse")));
593 }
594
595 // Create a new Record representing the synthesized register. This record
596 // is only for consumption by CodeGenRegister, it is not added to the
597 // RecordKeeper.
598 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
599 Elts.insert(NewReg);
600
601 // Copy Proto super-classes.
602 ArrayRef<Record *> Supers = Proto->getSuperClasses();
603 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
604 for (unsigned i = 0, e = Supers.size(); i != e; ++i)
605 NewReg->addSuperClass(Supers[i], Ranges[i]);
606
607 // Copy Proto fields.
608 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
609 RecordVal RV = Proto->getValues()[i];
610
611 // Skip existing fields, like NAME.
612 if (NewReg->getValue(RV.getNameInit()))
613 continue;
614
615 StringRef Field = RV.getName();
616
617 // Replace the sub-register list with Tuple.
618 if (Field == "SubRegs")
619 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
620
621 // Provide a blank AsmName. MC hacks are required anyway.
622 if (Field == "AsmName")
623 RV.setValue(BlankName);
624
625 // CostPerUse is aggregated from all Tuple members.
626 if (Field == "CostPerUse")
627 RV.setValue(IntInit::get(CostPerUse));
628
629 // Composite registers are always covered by sub-registers.
630 if (Field == "CoveredBySubRegs")
631 RV.setValue(BitInit::get(true));
632
633 // Copy fields from the RegisterTuples def.
634 if (Field == "SubRegIndices" ||
635 Field == "CompositeIndices") {
636 NewReg->addValue(*Def->getValue(Field));
637 continue;
638 }
639
640 // Some fields get their default uninitialized value.
641 if (Field == "DwarfNumbers" ||
642 Field == "DwarfAlias" ||
643 Field == "Aliases") {
644 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
645 NewReg->addValue(*DefRV);
646 continue;
647 }
648
649 // Everything else is copied from Proto.
650 NewReg->addValue(RV);
651 }
652 }
653 }
654 };
655 }
656
657 //===----------------------------------------------------------------------===//
658 // CodeGenRegisterClass
659 //===----------------------------------------------------------------------===//
660
661 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
662 : TheDef(R),
663 Name(R->getName()),
664 TopoSigs(RegBank.getNumTopoSigs()),
665 EnumValue(-1),
666 LaneMask(0) {
667 // Rename anonymous register classes.
668 if (R->getName().size() > 9 && R->getName()[9] == '.') {
669 static unsigned AnonCounter = 0;
670 R->setName("AnonRegClass_" + utostr(AnonCounter));
671 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
672 ++AnonCounter;
673 }
674
675 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
676 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
677 Record *Type = TypeList[i];
678 if (!Type->isSubClassOf("ValueType"))
679 PrintFatalError("RegTypes list member '" + Type->getName() +
680 "' does not derive from the ValueType class!");
681 VTs.push_back(getValueType(Type));
682 }
683 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
684
685 // Allocation order 0 is the full set. AltOrders provides others.
686 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
687 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
688 Orders.resize(1 + AltOrders->size());
689
690 // Default allocation order always contains all registers.
691 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
692 Orders[0].push_back((*Elements)[i]);
693 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
694 Members.insert(Reg);
695 TopoSigs.set(Reg->getTopoSig());
696 }
697
698 // Alternative allocation orders may be subsets.
699 SetTheory::RecSet Order;
700 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
701 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
702 Orders[1 + i].append(Order.begin(), Order.end());
703 // Verify that all altorder members are regclass members.
704 while (!Order.empty()) {
705 CodeGenRegister *Reg = RegBank.getReg(Order.back());
706 Order.pop_back();
707 if (!contains(Reg))
708 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
709 " is not a class member");
710 }
711 }
712
713 // Allow targets to override the size in bits of the RegisterClass.
714 unsigned Size = R->getValueAsInt("Size");
715
716 Namespace = R->getValueAsString("Namespace");
717 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
718 SpillAlignment = R->getValueAsInt("Alignment");
719 CopyCost = R->getValueAsInt("CopyCost");
720 Allocatable = R->getValueAsBit("isAllocatable");
721 AltOrderSelect = R->getValueAsString("AltOrderSelect");
722 }
723
724 // Create an inferred register class that was missing from the .td files.
725 // Most properties will be inherited from the closest super-class after the
726 // class structure has been computed.
727 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
728 StringRef Name, Key Props)
729 : Members(*Props.Members),
730 TheDef(nullptr),
731 Name(Name),
732 TopoSigs(RegBank.getNumTopoSigs()),
733 EnumValue(-1),
734 SpillSize(Props.SpillSize),
735 SpillAlignment(Props.SpillAlignment),
736 CopyCost(0),
737 Allocatable(true) {
738 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
739 I != E; ++I)
740 TopoSigs.set((*I)->getTopoSig());
741 }
742
743 // Compute inherited propertied for a synthesized register class.
744 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
745 assert(!getDef() && "Only synthesized classes can inherit properties");
746 assert(!SuperClasses.empty() && "Synthesized class without super class");
747
748 // The last super-class is the smallest one.
749 CodeGenRegisterClass &Super = *SuperClasses.back();
750
751 // Most properties are copied directly.
752 // Exceptions are members, size, and alignment
753 Namespace = Super.Namespace;
754 VTs = Super.VTs;
755 CopyCost = Super.CopyCost;
756 Allocatable = Super.Allocatable;
757 AltOrderSelect = Super.AltOrderSelect;
758
759 // Copy all allocation orders, filter out foreign registers from the larger
760 // super-class.
761 Orders.resize(Super.Orders.size());
762 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
763 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
764 if (contains(RegBank.getReg(Super.Orders[i][j])))
765 Orders[i].push_back(Super.Orders[i][j]);
766 }
767
768 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
769 return Members.count(Reg);
770 }
771
772 namespace llvm {
773 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
774 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
775 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
776 E = K.Members->end(); I != E; ++I)
777 OS << ", " << (*I)->getName();
778 return OS << " }";
779 }
780 }
781
782 // This is a simple lexicographical order that can be used to search for sets.
783 // It is not the same as the topological order provided by TopoOrderRC.
784 bool CodeGenRegisterClass::Key::
785 operator<(const CodeGenRegisterClass::Key &B) const {
786 assert(Members && B.Members);
787 return std::tie(*Members, SpillSize, SpillAlignment) <
788 std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
789 }
790
791 // Returns true if RC is a strict subclass.
792 // RC is a sub-class of this class if it is a valid replacement for any
793 // instruction operand where a register of this classis required. It must
794 // satisfy these conditions:
795 //
796 // 1. All RC registers are also in this.
797 // 2. The RC spill size must not be smaller than our spill size.
798 // 3. RC spill alignment must be compatible with ours.
799 //
800 static bool testSubClass(const CodeGenRegisterClass *A,
801 const CodeGenRegisterClass *B) {
802 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
803 A->SpillSize <= B->SpillSize &&
804 std::includes(A->getMembers().begin(), A->getMembers().end(),
805 B->getMembers().begin(), B->getMembers().end(),
806 CodeGenRegister::Less());
807 }
808
809 /// Sorting predicate for register classes. This provides a topological
810 /// ordering that arranges all register classes before their sub-classes.
811 ///
812 /// Register classes with the same registers, spill size, and alignment form a
813 /// clique. They will be ordered alphabetically.
814 ///
815 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
816 const CodeGenRegisterClass &PB) {
817 auto *A = &PA;
818 auto *B = &PB;
819 if (A == B)
820 return 0;
821
822 // Order by ascending spill size.
823 if (A->SpillSize < B->SpillSize)
824 return true;
825 if (A->SpillSize > B->SpillSize)
826 return false;
827
828 // Order by ascending spill alignment.
829 if (A->SpillAlignment < B->SpillAlignment)
830 return true;
831 if (A->SpillAlignment > B->SpillAlignment)
832 return false;
833
834 // Order by descending set size. Note that the classes' allocation order may
835 // not have been computed yet. The Members set is always vaild.
836 if (A->getMembers().size() > B->getMembers().size())
837 return true;
838 if (A->getMembers().size() < B->getMembers().size())
839 return false;
840
841 // Finally order by name as a tie breaker.
842 return StringRef(A->getName()) < B->getName();
843 }
844
845 std::string CodeGenRegisterClass::getQualifiedName() const {
846 if (Namespace.empty())
847 return getName();
848 else
849 return Namespace + "::" + getName();
850 }
851
852 // Compute sub-classes of all register classes.
853 // Assume the classes are ordered topologically.
854 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
855 auto &RegClasses = RegBank.getRegClasses();
856
857 // Visit backwards so sub-classes are seen first.
858 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
859 CodeGenRegisterClass &RC = *I;
860 RC.SubClasses.resize(RegClasses.size());
861 RC.SubClasses.set(RC.EnumValue);
862
863 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
864 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
865 CodeGenRegisterClass &SubRC = *I2;
866 if (RC.SubClasses.test(SubRC.EnumValue))
867 continue;
868 if (!testSubClass(&RC, &SubRC))
869 continue;
870 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
871 // check them again.
872 RC.SubClasses |= SubRC.SubClasses;
873 }
874
875 // Sweep up missed clique members. They will be immediately preceding RC.
876 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
877 RC.SubClasses.set(I2->EnumValue);
878 }
879
880 // Compute the SuperClasses lists from the SubClasses vectors.
881 for (auto &RC : RegClasses) {
882 const BitVector &SC = RC.getSubClasses();
883 auto I = RegClasses.begin();
884 for (int s = 0, next_s = SC.find_first(); next_s != -1;
885 next_s = SC.find_next(s)) {
886 std::advance(I, next_s - s);
887 s = next_s;
888 if (&*I == &RC)
889 continue;
890 I->SuperClasses.push_back(&RC);
891 }
892 }
893
894 // With the class hierarchy in place, let synthesized register classes inherit
895 // properties from their closest super-class. The iteration order here can
896 // propagate properties down multiple levels.
897 for (auto &RC : RegClasses)
898 if (!RC.getDef())
899 RC.inheritProperties(RegBank);
900 }
901
902 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
903 BitVector &Out) const {
904 auto FindI = SuperRegClasses.find(SubIdx);
905 if (FindI == SuperRegClasses.end())
906 return;
907 for (CodeGenRegisterClass *RC : FindI->second)
908 Out.set(RC->EnumValue);
909 }
910
911 // Populate a unique sorted list of units from a register set.
912 void CodeGenRegisterClass::buildRegUnitSet(
913 std::vector<unsigned> &RegUnits) const {
914 std::vector<unsigned> TmpUnits;
915 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
916 TmpUnits.push_back(*UnitI);
917 std::sort(TmpUnits.begin(), TmpUnits.end());
918 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
919 std::back_inserter(RegUnits));
920 }
921
922 //===----------------------------------------------------------------------===//
923 // CodeGenRegBank
924 //===----------------------------------------------------------------------===//
925
926 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
927 // Configure register Sets to understand register classes and tuples.
928 Sets.addFieldExpander("RegisterClass", "MemberList");
929 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
930 Sets.addExpander("RegisterTuples", new TupleExpander());
931
932 // Read in the user-defined (named) sub-register indices.
933 // More indices will be synthesized later.
934 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
935 std::sort(SRIs.begin(), SRIs.end(), LessRecord());
936 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
937 getSubRegIdx(SRIs[i]);
938 // Build composite maps from ComposedOf fields.
939 for (auto &Idx : SubRegIndices)
940 Idx.updateComponents(*this);
941
942 // Read in the register definitions.
943 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
944 std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
945 // Assign the enumeration values.
946 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
947 getReg(Regs[i]);
948
949 // Expand tuples and number the new registers.
950 std::vector<Record*> Tups =
951 Records.getAllDerivedDefinitions("RegisterTuples");
952
953 for (Record *R : Tups) {
954 std::vector<Record *> TupRegs = *Sets.expand(R);
955 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
956 for (Record *RC : TupRegs)
957 getReg(RC);
958 }
959
960 // Now all the registers are known. Build the object graph of explicit
961 // register-register references.
962 for (auto &Reg : Registers)
963 Reg.buildObjectGraph(*this);
964
965 // Compute register name map.
966 for (auto &Reg : Registers)
967 // FIXME: This could just be RegistersByName[name] = register, except that
968 // causes some failures in MIPS - perhaps they have duplicate register name
969 // entries? (or maybe there's a reason for it - I don't know much about this
970 // code, just drive-by refactoring)
971 RegistersByName.insert(
972 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
973
974 // Precompute all sub-register maps.
975 // This will create Composite entries for all inferred sub-register indices.
976 for (auto &Reg : Registers)
977 Reg.computeSubRegs(*this);
978
979 // Infer even more sub-registers by combining leading super-registers.
980 for (auto &Reg : Registers)
981 if (Reg.CoveredBySubRegs)
982 Reg.computeSecondarySubRegs(*this);
983
984 // After the sub-register graph is complete, compute the topologically
985 // ordered SuperRegs list.
986 for (auto &Reg : Registers)
987 Reg.computeSuperRegs(*this);
988
989 // Native register units are associated with a leaf register. They've all been
990 // discovered now.
991 NumNativeRegUnits = RegUnits.size();
992
993 // Read in register class definitions.
994 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
995 if (RCs.empty())
996 PrintFatalError("No 'RegisterClass' subclasses defined!");
997
998 // Allocate user-defined register classes.
999 for (auto *RC : RCs) {
1000 RegClasses.push_back(CodeGenRegisterClass(*this, RC));
1001 addToMaps(&RegClasses.back());
1002 }
1003
1004 // Infer missing classes to create a full algebra.
1005 computeInferredRegisterClasses();
1006
1007 // Order register classes topologically and assign enum values.
1008 RegClasses.sort(TopoOrderRC);
1009 unsigned i = 0;
1010 for (auto &RC : RegClasses)
1011 RC.EnumValue = i++;
1012 CodeGenRegisterClass::computeSubClasses(*this);
1013 }
1014
1015 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1016 CodeGenSubRegIndex*
1017 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1018 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1019 return &SubRegIndices.back();
1020 }
1021
1022 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1023 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1024 if (Idx)
1025 return Idx;
1026 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1027 Idx = &SubRegIndices.back();
1028 return Idx;
1029 }
1030
1031 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1032 CodeGenRegister *&Reg = Def2Reg[Def];
1033 if (Reg)
1034 return Reg;
1035 Registers.emplace_back(Def, Registers.size() + 1);
1036 Reg = &Registers.back();
1037 return Reg;
1038 }
1039
1040 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1041 if (Record *Def = RC->getDef())
1042 Def2RC.insert(std::make_pair(Def, RC));
1043
1044 // Duplicate classes are rejected by insert().
1045 // That's OK, we only care about the properties handled by CGRC::Key.
1046 CodeGenRegisterClass::Key K(*RC);
1047 Key2RC.insert(std::make_pair(K, RC));
1048 }
1049
1050 // Create a synthetic sub-class if it is missing.
1051 CodeGenRegisterClass*
1052 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1053 const CodeGenRegister::Set *Members,
1054 StringRef Name) {
1055 // Synthetic sub-class has the same size and alignment as RC.
1056 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1057 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1058 if (FoundI != Key2RC.end())
1059 return FoundI->second;
1060
1061 // Sub-class doesn't exist, create a new one.
1062 RegClasses.push_back(CodeGenRegisterClass(*this, Name, K));
1063 addToMaps(&RegClasses.back());
1064 return &RegClasses.back();
1065 }
1066
1067 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1068 if (CodeGenRegisterClass *RC = Def2RC[Def])
1069 return RC;
1070
1071 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1072 }
1073
1074 CodeGenSubRegIndex*
1075 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1076 CodeGenSubRegIndex *B) {
1077 // Look for an existing entry.
1078 CodeGenSubRegIndex *Comp = A->compose(B);
1079 if (Comp)
1080 return Comp;
1081
1082 // None exists, synthesize one.
1083 std::string Name = A->getName() + "_then_" + B->getName();
1084 Comp = createSubRegIndex(Name, A->getNamespace());
1085 A->addComposite(B, Comp);
1086 return Comp;
1087 }
1088
1089 CodeGenSubRegIndex *CodeGenRegBank::
1090 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1091 assert(Parts.size() > 1 && "Need two parts to concatenate");
1092
1093 // Look for an existing entry.
1094 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1095 if (Idx)
1096 return Idx;
1097
1098 // None exists, synthesize one.
1099 std::string Name = Parts.front()->getName();
1100 // Determine whether all parts are contiguous.
1101 bool isContinuous = true;
1102 unsigned Size = Parts.front()->Size;
1103 unsigned LastOffset = Parts.front()->Offset;
1104 unsigned LastSize = Parts.front()->Size;
1105 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1106 Name += '_';
1107 Name += Parts[i]->getName();
1108 Size += Parts[i]->Size;
1109 if (Parts[i]->Offset != (LastOffset + LastSize))
1110 isContinuous = false;
1111 LastOffset = Parts[i]->Offset;
1112 LastSize = Parts[i]->Size;
1113 }
1114 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1115 Idx->Size = Size;
1116 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1117 return Idx;
1118 }
1119
1120 void CodeGenRegBank::computeComposites() {
1121 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1122 // and many registers will share TopoSigs on regular architectures.
1123 BitVector TopoSigs(getNumTopoSigs());
1124
1125 for (const auto &Reg1 : Registers) {
1126 // Skip identical subreg structures already processed.
1127 if (TopoSigs.test(Reg1.getTopoSig()))
1128 continue;
1129 TopoSigs.set(Reg1.getTopoSig());
1130
1131 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1132 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1133 e1 = SRM1.end(); i1 != e1; ++i1) {
1134 CodeGenSubRegIndex *Idx1 = i1->first;
1135 CodeGenRegister *Reg2 = i1->second;
1136 // Ignore identity compositions.
1137 if (&Reg1 == Reg2)
1138 continue;
1139 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1140 // Try composing Idx1 with another SubRegIndex.
1141 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1142 e2 = SRM2.end(); i2 != e2; ++i2) {
1143 CodeGenSubRegIndex *Idx2 = i2->first;
1144 CodeGenRegister *Reg3 = i2->second;
1145 // Ignore identity compositions.
1146 if (Reg2 == Reg3)
1147 continue;
1148 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1149 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1150 assert(Idx3 && "Sub-register doesn't have an index");
1151
1152 // Conflicting composition? Emit a warning but allow it.
1153 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1154 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1155 " and " + Idx2->getQualifiedName() +
1156 " compose ambiguously as " + Prev->getQualifiedName() +
1157 " or " + Idx3->getQualifiedName());
1158 }
1159 }
1160 }
1161 }
1162
1163 // Compute lane masks. This is similar to register units, but at the
1164 // sub-register index level. Each bit in the lane mask is like a register unit
1165 // class, and two lane masks will have a bit in common if two sub-register
1166 // indices overlap in some register.
1167 //
1168 // Conservatively share a lane mask bit if two sub-register indices overlap in
1169 // some registers, but not in others. That shouldn't happen a lot.
1170 void CodeGenRegBank::computeSubRegLaneMasks() {
1171 // First assign individual bits to all the leaf indices.
1172 unsigned Bit = 0;
1173 // Determine mask of lanes that cover their registers.
1174 CoveringLanes = ~0u;
1175 for (auto &Idx : SubRegIndices) {
1176 if (Idx.getComposites().empty()) {
1177 Idx.LaneMask = 1u << Bit;
1178 // Share bit 31 in the unlikely case there are more than 32 leafs.
1179 //
1180 // Sharing bits is harmless; it allows graceful degradation in targets
1181 // with more than 32 vector lanes. They simply get a limited resolution
1182 // view of lanes beyond the 32nd.
1183 //
1184 // See also the comment for getSubRegIndexLaneMask().
1185 if (Bit < 31)
1186 ++Bit;
1187 else
1188 // Once bit 31 is shared among multiple leafs, the 'lane' it represents
1189 // is no longer covering its registers.
1190 CoveringLanes &= ~(1u << Bit);
1191 } else {
1192 Idx.LaneMask = 0;
1193 }
1194 }
1195
1196 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1197 // here is that for each possible target subregister we look at the leafs
1198 // in the subregister graph that compose for this target and create
1199 // transformation sequences for the lanemasks. Each step in the sequence
1200 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1201 // are usually the same for many subregisters we can easily combine the steps
1202 // by combining the masks.
1203 for (const auto &Idx : SubRegIndices) {
1204 const auto &Composites = Idx.getComposites();
1205 auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1206 // Go through all leaf subregisters and find the ones that compose with Idx.
1207 // These make out all possible valid bits in the lane mask we want to
1208 // transform. Looking only at the leafs ensure that only a single bit in
1209 // the mask is set.
1210 unsigned NextBit = 0;
1211 for (auto &Idx2 : SubRegIndices) {
1212 // Skip non-leaf subregisters.
1213 if (!Idx2.getComposites().empty())
1214 continue;
1215 // Replicate the behaviour from the lane mask generation loop above.
1216 unsigned SrcBit = NextBit;
1217 unsigned SrcMask = 1u << SrcBit;
1218 if (NextBit < 31)
1219 ++NextBit;
1220 assert(Idx2.LaneMask == SrcMask);
1221
1222 // Get the composed subregister if there is any.
1223 auto C = Composites.find(&Idx2);
1224 if (C == Composites.end())
1225 continue;
1226 const CodeGenSubRegIndex *Composite = C->second;
1227 // The Composed subreg should be a leaf subreg too
1228 assert(Composite->getComposites().empty());
1229
1230 // Create Mask+Rotate operation and merge with existing ops if possible.
1231 unsigned DstBit = Log2_32(Composite->LaneMask);
1232 int Shift = DstBit - SrcBit;
1233 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1234 for (auto &I : LaneTransforms) {
1235 if (I.RotateLeft == RotateLeft) {
1236 I.Mask |= SrcMask;
1237 SrcMask = 0;
1238 }
1239 }
1240 if (SrcMask != 0) {
1241 MaskRolPair MaskRol = { SrcMask, RotateLeft };
1242 LaneTransforms.push_back(MaskRol);
1243 }
1244 }
1245 // Optimize if the transformation consists of one step only: Set mask to
1246 // 0xffffffff (including some irrelevant invalid bits) so that it should
1247 // merge with more entries later while compressing the table.
1248 if (LaneTransforms.size() == 1)
1249 LaneTransforms[0].Mask = ~0u;
1250
1251 // Further compression optimization: For invalid compositions resulting
1252 // in a sequence with 0 entries we can just pick any other. Choose
1253 // Mask 0xffffffff with Rotation 0.
1254 if (LaneTransforms.size() == 0) {
1255 MaskRolPair P = { ~0u, 0 };
1256 LaneTransforms.push_back(P);
1257 }
1258 }
1259
1260 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1261 // by the sub-register graph? This doesn't occur in any known targets.
1262
1263 // Inherit lanes from composites.
1264 for (const auto &Idx : SubRegIndices) {
1265 unsigned Mask = Idx.computeLaneMask();
1266 // If some super-registers without CoveredBySubRegs use this index, we can
1267 // no longer assume that the lanes are covering their registers.
1268 if (!Idx.AllSuperRegsCovered)
1269 CoveringLanes &= ~Mask;
1270 }
1271
1272 // Compute lane mask combinations for register classes.
1273 for (auto &RegClass : RegClasses) {
1274 unsigned LaneMask = 0;
1275 for (const auto &SubRegIndex : SubRegIndices) {
1276 if (RegClass.getSubClassWithSubReg(&SubRegIndex) != &RegClass)
1277 continue;
1278 LaneMask |= SubRegIndex.LaneMask;
1279 }
1280 RegClass.LaneMask = LaneMask;
1281 }
1282 }
1283
1284 namespace {
1285 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1286 // the transitive closure of the union of overlapping register
1287 // classes. Together, the UberRegSets form a partition of the registers. If we
1288 // consider overlapping register classes to be connected, then each UberRegSet
1289 // is a set of connected components.
1290 //
1291 // An UberRegSet will likely be a horizontal slice of register names of
1292 // the same width. Nontrivial subregisters should then be in a separate
1293 // UberRegSet. But this property isn't required for valid computation of
1294 // register unit weights.
1295 //
1296 // A Weight field caches the max per-register unit weight in each UberRegSet.
1297 //
1298 // A set of SingularDeterminants flags single units of some register in this set
1299 // for which the unit weight equals the set weight. These units should not have
1300 // their weight increased.
1301 struct UberRegSet {
1302 CodeGenRegister::Set Regs;
1303 unsigned Weight;
1304 CodeGenRegister::RegUnitList SingularDeterminants;
1305
1306 UberRegSet(): Weight(0) {}
1307 };
1308 } // namespace
1309
1310 // Partition registers into UberRegSets, where each set is the transitive
1311 // closure of the union of overlapping register classes.
1312 //
1313 // UberRegSets[0] is a special non-allocatable set.
1314 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1315 std::vector<UberRegSet*> &RegSets,
1316 CodeGenRegBank &RegBank) {
1317
1318 const auto &Registers = RegBank.getRegisters();
1319
1320 // The Register EnumValue is one greater than its index into Registers.
1321 assert(Registers.size() == Registers.back().EnumValue &&
1322 "register enum value mismatch");
1323
1324 // For simplicitly make the SetID the same as EnumValue.
1325 IntEqClasses UberSetIDs(Registers.size()+1);
1326 std::set<unsigned> AllocatableRegs;
1327 for (auto &RegClass : RegBank.getRegClasses()) {
1328 if (!RegClass.Allocatable)
1329 continue;
1330
1331 const CodeGenRegister::Set &Regs = RegClass.getMembers();
1332 if (Regs.empty())
1333 continue;
1334
1335 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1336 assert(USetID && "register number 0 is invalid");
1337
1338 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1339 for (CodeGenRegister::Set::const_iterator I = std::next(Regs.begin()),
1340 E = Regs.end(); I != E; ++I) {
1341 AllocatableRegs.insert((*I)->EnumValue);
1342 UberSetIDs.join(USetID, (*I)->EnumValue);
1343 }
1344 }
1345 // Combine non-allocatable regs.
1346 for (const auto &Reg : Registers) {
1347 unsigned RegNum = Reg.EnumValue;
1348 if (AllocatableRegs.count(RegNum))
1349 continue;
1350
1351 UberSetIDs.join(0, RegNum);
1352 }
1353 UberSetIDs.compress();
1354
1355 // Make the first UberSet a special unallocatable set.
1356 unsigned ZeroID = UberSetIDs[0];
1357
1358 // Insert Registers into the UberSets formed by union-find.
1359 // Do not resize after this.
1360 UberSets.resize(UberSetIDs.getNumClasses());
1361 unsigned i = 0;
1362 for (const CodeGenRegister &Reg : Registers) {
1363 unsigned USetID = UberSetIDs[Reg.EnumValue];
1364 if (!USetID)
1365 USetID = ZeroID;
1366 else if (USetID == ZeroID)
1367 USetID = 0;
1368
1369 UberRegSet *USet = &UberSets[USetID];
1370 USet->Regs.insert(&Reg);
1371 RegSets[i++] = USet;
1372 }
1373 }
1374
1375 // Recompute each UberSet weight after changing unit weights.
1376 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1377 CodeGenRegBank &RegBank) {
1378 // Skip the first unallocatable set.
1379 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1380 E = UberSets.end(); I != E; ++I) {
1381
1382 // Initialize all unit weights in this set, and remember the max units/reg.
1383 const CodeGenRegister *Reg = nullptr;
1384 unsigned MaxWeight = 0, Weight = 0;
1385 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1386 if (Reg != UnitI.getReg()) {
1387 if (Weight > MaxWeight)
1388 MaxWeight = Weight;
1389 Reg = UnitI.getReg();
1390 Weight = 0;
1391 }
1392 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1393 if (!UWeight) {
1394 UWeight = 1;
1395 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1396 }
1397 Weight += UWeight;
1398 }
1399 if (Weight > MaxWeight)
1400 MaxWeight = Weight;
1401 if (I->Weight != MaxWeight) {
1402 DEBUG(
1403 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1404 for (auto &Unit : I->Regs)
1405 dbgs() << " " << Unit->getName();
1406 dbgs() << "\n");
1407 // Update the set weight.
1408 I->Weight = MaxWeight;
1409 }
1410
1411 // Find singular determinants.
1412 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
1413 RegE = I->Regs.end(); RegI != RegE; ++RegI) {
1414 if ((*RegI)->getRegUnits().size() == 1
1415 && (*RegI)->getWeight(RegBank) == I->Weight)
1416 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
1417 }
1418 }
1419 }
1420
1421 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1422 // a register and its subregisters so that they have the same weight as their
1423 // UberSet. Self-recursion processes the subregister tree in postorder so
1424 // subregisters are normalized first.
1425 //
1426 // Side effects:
1427 // - creates new adopted register units
1428 // - causes superregisters to inherit adopted units
1429 // - increases the weight of "singular" units
1430 // - induces recomputation of UberWeights.
1431 static bool normalizeWeight(CodeGenRegister *Reg,
1432 std::vector<UberRegSet> &UberSets,
1433 std::vector<UberRegSet*> &RegSets,
1434 std::set<unsigned> &NormalRegs,
1435 CodeGenRegister::RegUnitList &NormalUnits,
1436 CodeGenRegBank &RegBank) {
1437 bool Changed = false;
1438 if (!NormalRegs.insert(Reg->EnumValue).second)
1439 return Changed;
1440
1441 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1442 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1443 SRE = SRM.end(); SRI != SRE; ++SRI) {
1444 if (SRI->second == Reg)
1445 continue; // self-cycles happen
1446
1447 Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1448 NormalRegs, NormalUnits, RegBank);
1449 }
1450 // Postorder register normalization.
1451
1452 // Inherit register units newly adopted by subregisters.
1453 if (Reg->inheritRegUnits(RegBank))
1454 computeUberWeights(UberSets, RegBank);
1455
1456 // Check if this register is too skinny for its UberRegSet.
1457 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1458
1459 unsigned RegWeight = Reg->getWeight(RegBank);
1460 if (UberSet->Weight > RegWeight) {
1461 // A register unit's weight can be adjusted only if it is the singular unit
1462 // for this register, has not been used to normalize a subregister's set,
1463 // and has not already been used to singularly determine this UberRegSet.
1464 unsigned AdjustUnit = Reg->getRegUnits().front();
1465 if (Reg->getRegUnits().size() != 1
1466 || hasRegUnit(NormalUnits, AdjustUnit)
1467 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1468 // We don't have an adjustable unit, so adopt a new one.
1469 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1470 Reg->adoptRegUnit(AdjustUnit);
1471 // Adopting a unit does not immediately require recomputing set weights.
1472 }
1473 else {
1474 // Adjust the existing single unit.
1475 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1476 // The unit may be shared among sets and registers within this set.
1477 computeUberWeights(UberSets, RegBank);
1478 }
1479 Changed = true;
1480 }
1481
1482 // Mark these units normalized so superregisters can't change their weights.
1483 mergeRegUnits(NormalUnits, Reg->getRegUnits());
1484
1485 return Changed;
1486 }
1487
1488 // Compute a weight for each register unit created during getSubRegs.
1489 //
1490 // The goal is that two registers in the same class will have the same weight,
1491 // where each register's weight is defined as sum of its units' weights.
1492 void CodeGenRegBank::computeRegUnitWeights() {
1493 std::vector<UberRegSet> UberSets;
1494 std::vector<UberRegSet*> RegSets(Registers.size());
1495 computeUberSets(UberSets, RegSets, *this);
1496 // UberSets and RegSets are now immutable.
1497
1498 computeUberWeights(UberSets, *this);
1499
1500 // Iterate over each Register, normalizing the unit weights until reaching
1501 // a fix point.
1502 unsigned NumIters = 0;
1503 for (bool Changed = true; Changed; ++NumIters) {
1504 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1505 Changed = false;
1506 for (auto &Reg : Registers) {
1507 CodeGenRegister::RegUnitList NormalUnits;
1508 std::set<unsigned> NormalRegs;
1509 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1510 NormalUnits, *this);
1511 }
1512 }
1513 }
1514
1515 // Find a set in UniqueSets with the same elements as Set.
1516 // Return an iterator into UniqueSets.
1517 static std::vector<RegUnitSet>::const_iterator
1518 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1519 const RegUnitSet &Set) {
1520 std::vector<RegUnitSet>::const_iterator
1521 I = UniqueSets.begin(), E = UniqueSets.end();
1522 for(;I != E; ++I) {
1523 if (I->Units == Set.Units)
1524 break;
1525 }
1526 return I;
1527 }
1528
1529 // Return true if the RUSubSet is a subset of RUSuperSet.
1530 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1531 const std::vector<unsigned> &RUSuperSet) {
1532 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1533 RUSubSet.begin(), RUSubSet.end());
1534 }
1535
1536 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1537 /// but with one or two registers removed. We occasionally have registers like
1538 /// APSR and PC thrown in with the general registers. We also see many
1539 /// special-purpose register subsets, such as tail-call and Thumb
1540 /// encodings. Generating all possible overlapping sets is combinatorial and
1541 /// overkill for modeling pressure. Ideally we could fix this statically in
1542 /// tablegen by (1) having the target define register classes that only include
1543 /// the allocatable registers and marking other classes as non-allocatable and
1544 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1545 /// the purpose of pressure. However, we make an attempt to handle targets that
1546 /// are not nicely defined by merging nearly identical register unit sets
1547 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1548 /// set limit by filtering the reserved registers.
1549 ///
1550 /// Merge sets only if the units have the same weight. For example, on ARM,
1551 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1552 /// should not expand the S set to include D regs.
1553 void CodeGenRegBank::pruneUnitSets() {
1554 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1555
1556 // Form an equivalence class of UnitSets with no significant difference.
1557 std::vector<unsigned> SuperSetIDs;
1558 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1559 SubIdx != EndIdx; ++SubIdx) {
1560 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1561 unsigned SuperIdx = 0;
1562 for (; SuperIdx != EndIdx; ++SuperIdx) {
1563 if (SuperIdx == SubIdx)
1564 continue;
1565
1566 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1567 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1568 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1569 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1570 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1571 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1572 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1573 << "\n");
1574 break;
1575 }
1576 }
1577 if (SuperIdx == EndIdx)
1578 SuperSetIDs.push_back(SubIdx);
1579 }
1580 // Populate PrunedUnitSets with each equivalence class's superset.
1581 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1582 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1583 unsigned SuperIdx = SuperSetIDs[i];
1584 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1585 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1586 }
1587 RegUnitSets.swap(PrunedUnitSets);
1588 }
1589
1590 // Create a RegUnitSet for each RegClass that contains all units in the class
1591 // including adopted units that are necessary to model register pressure. Then
1592 // iteratively compute RegUnitSets such that the union of any two overlapping
1593 // RegUnitSets is repreresented.
1594 //
1595 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1596 // RegUnitSet that is a superset of that RegUnitClass.
1597 void CodeGenRegBank::computeRegUnitSets() {
1598 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1599
1600 // Compute a unique RegUnitSet for each RegClass.
1601 auto &RegClasses = getRegClasses();
1602 for (auto &RC : RegClasses) {
1603 if (!RC.Allocatable)
1604 continue;
1605
1606 // Speculatively grow the RegUnitSets to hold the new set.
1607 RegUnitSets.resize(RegUnitSets.size() + 1);
1608 RegUnitSets.back().Name = RC.getName();
1609
1610 // Compute a sorted list of units in this class.
1611 RC.buildRegUnitSet(RegUnitSets.back().Units);
1612
1613 // Find an existing RegUnitSet.
1614 std::vector<RegUnitSet>::const_iterator SetI =
1615 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1616 if (SetI != std::prev(RegUnitSets.end()))
1617 RegUnitSets.pop_back();
1618 }
1619
1620 DEBUG(dbgs() << "\nBefore pruning:\n";
1621 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1622 USIdx < USEnd; ++USIdx) {
1623 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1624 << ":";
1625 for (auto &U : RegUnitSets[USIdx].Units)
1626 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1627 dbgs() << "\n";
1628 });
1629
1630 // Iteratively prune unit sets.
1631 pruneUnitSets();
1632
1633 DEBUG(dbgs() << "\nBefore union:\n";
1634 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1635 USIdx < USEnd; ++USIdx) {
1636 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1637 << ":";
1638 for (auto &U : RegUnitSets[USIdx].Units)
1639 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1640 dbgs() << "\n";
1641 }
1642 dbgs() << "\nUnion sets:\n");
1643
1644 // Iterate over all unit sets, including new ones added by this loop.
1645 unsigned NumRegUnitSubSets = RegUnitSets.size();
1646 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1647 // In theory, this is combinatorial. In practice, it needs to be bounded
1648 // by a small number of sets for regpressure to be efficient.
1649 // If the assert is hit, we need to implement pruning.
1650 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1651
1652 // Compare new sets with all original classes.
1653 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1654 SearchIdx != EndIdx; ++SearchIdx) {
1655 std::set<unsigned> Intersection;
1656 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1657 RegUnitSets[Idx].Units.end(),
1658 RegUnitSets[SearchIdx].Units.begin(),
1659 RegUnitSets[SearchIdx].Units.end(),
1660 std::inserter(Intersection, Intersection.begin()));
1661 if (Intersection.empty())
1662 continue;
1663
1664 // Speculatively grow the RegUnitSets to hold the new set.
1665 RegUnitSets.resize(RegUnitSets.size() + 1);
1666 RegUnitSets.back().Name =
1667 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1668
1669 std::set_union(RegUnitSets[Idx].Units.begin(),
1670 RegUnitSets[Idx].Units.end(),
1671 RegUnitSets[SearchIdx].Units.begin(),
1672 RegUnitSets[SearchIdx].Units.end(),
1673 std::inserter(RegUnitSets.back().Units,
1674 RegUnitSets.back().Units.begin()));
1675
1676 // Find an existing RegUnitSet, or add the union to the unique sets.
1677 std::vector<RegUnitSet>::const_iterator SetI =
1678 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1679 if (SetI != std::prev(RegUnitSets.end()))
1680 RegUnitSets.pop_back();
1681 else {
1682 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1683 << " " << RegUnitSets.back().Name << ":";
1684 for (auto &U : RegUnitSets.back().Units)
1685 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1686 dbgs() << "\n";);
1687 }
1688 }
1689 }
1690
1691 // Iteratively prune unit sets after inferring supersets.
1692 pruneUnitSets();
1693
1694 DEBUG(dbgs() << "\n";
1695 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1696 USIdx < USEnd; ++USIdx) {
1697 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1698 << ":";
1699 for (auto &U : RegUnitSets[USIdx].Units)
1700 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1701 dbgs() << "\n";
1702 });
1703
1704 // For each register class, list the UnitSets that are supersets.
1705 RegClassUnitSets.resize(RegClasses.size());
1706 int RCIdx = -1;
1707 for (auto &RC : RegClasses) {
1708 ++RCIdx;
1709 if (!RC.Allocatable)
1710 continue;
1711
1712 // Recompute the sorted list of units in this class.
1713 std::vector<unsigned> RCRegUnits;
1714 RC.buildRegUnitSet(RCRegUnits);
1715
1716 // Don't increase pressure for unallocatable regclasses.
1717 if (RCRegUnits.empty())
1718 continue;
1719
1720 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1721 for (auto &U : RCRegUnits)
1722 dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1723 dbgs() << "\n UnitSetIDs:");
1724
1725 // Find all supersets.
1726 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1727 USIdx != USEnd; ++USIdx) {
1728 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1729 DEBUG(dbgs() << " " << USIdx);
1730 RegClassUnitSets[RCIdx].push_back(USIdx);
1731 }
1732 }
1733 DEBUG(dbgs() << "\n");
1734 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1735 }
1736
1737 // For each register unit, ensure that we have the list of UnitSets that
1738 // contain the unit. Normally, this matches an existing list of UnitSets for a
1739 // register class. If not, we create a new entry in RegClassUnitSets as a
1740 // "fake" register class.
1741 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1742 UnitIdx < UnitEnd; ++UnitIdx) {
1743 std::vector<unsigned> RUSets;
1744 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1745 RegUnitSet &RUSet = RegUnitSets[i];
1746 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1747 == RUSet.Units.end())
1748 continue;
1749 RUSets.push_back(i);
1750 }
1751 unsigned RCUnitSetsIdx = 0;
1752 for (unsigned e = RegClassUnitSets.size();
1753 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1754 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1755 break;
1756 }
1757 }
1758 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1759 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1760 // Create a new list of UnitSets as a "fake" register class.
1761 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1762 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1763 }
1764 }
1765 }
1766
1767 void CodeGenRegBank::computeRegUnitLaneMasks() {
1768 for (auto &Register : Registers) {
1769 // Create an initial lane mask for all register units.
1770 const auto &RegUnits = Register.getRegUnits();
1771 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.size(), 0);
1772 // Iterate through SubRegisters.
1773 typedef CodeGenRegister::SubRegMap SubRegMap;
1774 const SubRegMap &SubRegs = Register.getSubRegs();
1775 for (SubRegMap::const_iterator S = SubRegs.begin(),
1776 SE = SubRegs.end(); S != SE; ++S) {
1777 CodeGenRegister *SubReg = S->second;
1778 // Ignore non-leaf subregisters, their lane masks are fully covered by
1779 // the leaf subregisters anyway.
1780 if (SubReg->getSubRegs().size() != 0)
1781 continue;
1782 CodeGenSubRegIndex *SubRegIndex = S->first;
1783 const CodeGenRegister *SubRegister = S->second;
1784 unsigned LaneMask = SubRegIndex->LaneMask;
1785 // Distribute LaneMask to Register Units touched.
1786 for (const auto &SUI : SubRegister->getRegUnits()) {
1787 bool Found = false;
1788 for (size_t u = 0, ue = RegUnits.size(); u < ue; ++u) {
1789 if (SUI == RegUnits[u]) {
1790 RegUnitLaneMasks[u] |= LaneMask;
1791 assert(!Found);
1792 Found = true;
1793 }
1794 }
1795 assert(Found);
1796 }
1797 }
1798 Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1799 }
1800 }
1801
1802 void CodeGenRegBank::computeDerivedInfo() {
1803 computeComposites();
1804 computeSubRegLaneMasks();
1805
1806 // Compute a weight for each register unit created during getSubRegs.
1807 // This may create adopted register units (with unit # >= NumNativeRegUnits).
1808 computeRegUnitWeights();
1809
1810 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1811 // supersets for the union of overlapping sets.
1812 computeRegUnitSets();
1813
1814 computeRegUnitLaneMasks();
1815
1816 // Get the weight of each set.
1817 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1818 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1819
1820 // Find the order of each set.
1821 RegUnitSetOrder.reserve(RegUnitSets.size());
1822 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1823 RegUnitSetOrder.push_back(Idx);
1824
1825 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1826 [this](unsigned ID1, unsigned ID2) {
1827 return getRegPressureSet(ID1).Units.size() <
1828 getRegPressureSet(ID2).Units.size();
1829 });
1830 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1831 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1832 }
1833 }
1834
1835 //
1836 // Synthesize missing register class intersections.
1837 //
1838 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1839 // returns a maximal register class for all X.
1840 //
1841 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1842 assert(!RegClasses.empty());
1843 // Stash the iterator to the last element so that this loop doesn't visit
1844 // elements added by the getOrCreateSubClass call within it.
1845 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1846 I != std::next(E); ++I) {
1847 CodeGenRegisterClass *RC1 = RC;
1848 CodeGenRegisterClass *RC2 = &*I;
1849 if (RC1 == RC2)
1850 continue;
1851
1852 // Compute the set intersection of RC1 and RC2.
1853 const CodeGenRegister::Set &Memb1 = RC1->getMembers();
1854 const CodeGenRegister::Set &Memb2 = RC2->getMembers();
1855 CodeGenRegister::Set Intersection;
1856 std::set_intersection(Memb1.begin(), Memb1.end(),
1857 Memb2.begin(), Memb2.end(),
1858 std::inserter(Intersection, Intersection.begin()),
1859 CodeGenRegister::Less());
1860
1861 // Skip disjoint class pairs.
1862 if (Intersection.empty())
1863 continue;
1864
1865 // If RC1 and RC2 have different spill sizes or alignments, use the
1866 // larger size for sub-classing. If they are equal, prefer RC1.
1867 if (RC2->SpillSize > RC1->SpillSize ||
1868 (RC2->SpillSize == RC1->SpillSize &&
1869 RC2->SpillAlignment > RC1->SpillAlignment))
1870 std::swap(RC1, RC2);
1871
1872 getOrCreateSubClass(RC1, &Intersection,
1873 RC1->getName() + "_and_" + RC2->getName());
1874 }
1875 }
1876
1877 //
1878 // Synthesize missing sub-classes for getSubClassWithSubReg().
1879 //
1880 // Make sure that the set of registers in RC with a given SubIdx sub-register
1881 // form a register class. Update RC->SubClassWithSubReg.
1882 //
1883 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1884 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1885 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Set,
1886 CodeGenSubRegIndex::Less> SubReg2SetMap;
1887
1888 // Compute the set of registers supporting each SubRegIndex.
1889 SubReg2SetMap SRSets;
1890 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1891 RE = RC->getMembers().end(); RI != RE; ++RI) {
1892 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
1893 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1894 E = SRM.end(); I != E; ++I)
1895 SRSets[I->first].insert(*RI);
1896 }
1897
1898 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
1899 // numerical order to visit synthetic indices last.
1900 for (const auto &SubIdx : SubRegIndices) {
1901 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1902 // Unsupported SubRegIndex. Skip it.
1903 if (I == SRSets.end())
1904 continue;
1905 // In most cases, all RC registers support the SubRegIndex.
1906 if (I->second.size() == RC->getMembers().size()) {
1907 RC->setSubClassWithSubReg(&SubIdx, RC);
1908 continue;
1909 }
1910 // This is a real subset. See if we have a matching class.
1911 CodeGenRegisterClass *SubRC =
1912 getOrCreateSubClass(RC, &I->second,
1913 RC->getName() + "_with_" + I->first->getName());
1914 RC->setSubClassWithSubReg(&SubIdx, SubRC);
1915 }
1916 }
1917
1918 //
1919 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1920 //
1921 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1922 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1923 //
1924
1925 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1926 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1927 SmallVector<std::pair<const CodeGenRegister*,
1928 const CodeGenRegister*>, 16> SSPairs;
1929 BitVector TopoSigs(getNumTopoSigs());
1930
1931 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1932 for (auto &SubIdx : SubRegIndices) {
1933 // Skip indexes that aren't fully supported by RC's registers. This was
1934 // computed by inferSubClassWithSubReg() above which should have been
1935 // called first.
1936 if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1937 continue;
1938
1939 // Build list of (Super, Sub) pairs for this SubIdx.
1940 SSPairs.clear();
1941 TopoSigs.reset();
1942 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
1943 RE = RC->getMembers().end(); RI != RE; ++RI) {
1944 const CodeGenRegister *Super = *RI;
1945 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1946 assert(Sub && "Missing sub-register");
1947 SSPairs.push_back(std::make_pair(Super, Sub));
1948 TopoSigs.set(Sub->getTopoSig());
1949 }
1950
1951 // Iterate over sub-register class candidates. Ignore classes created by
1952 // this loop. They will never be useful.
1953 // Store an iterator to the last element (not end) so that this loop doesn't
1954 // visit newly inserted elements.
1955 assert(!RegClasses.empty());
1956 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
1957 I != std::next(E); ++I) {
1958 CodeGenRegisterClass &SubRC = *I;
1959 // Topological shortcut: SubRC members have the wrong shape.
1960 if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
1961 continue;
1962 // Compute the subset of RC that maps into SubRC.
1963 CodeGenRegister::Set SubSet;
1964 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1965 if (SubRC.contains(SSPairs[i].second))
1966 SubSet.insert(SSPairs[i].first);
1967 if (SubSet.empty())
1968 continue;
1969 // RC injects completely into SubRC.
1970 if (SubSet.size() == SSPairs.size()) {
1971 SubRC.addSuperRegClass(&SubIdx, RC);
1972 continue;
1973 }
1974 // Only a subset of RC maps into SubRC. Make sure it is represented by a
1975 // class.
1976 getOrCreateSubClass(RC, &SubSet, RC->getName() + "_with_" +
1977 SubIdx.getName() + "_in_" +
1978 SubRC.getName());
1979 }
1980 }
1981 }
1982
1983
1984 //
1985 // Infer missing register classes.
1986 //
1987 void CodeGenRegBank::computeInferredRegisterClasses() {
1988 assert(!RegClasses.empty());
1989 // When this function is called, the register classes have not been sorted
1990 // and assigned EnumValues yet. That means getSubClasses(),
1991 // getSuperClasses(), and hasSubClass() functions are defunct.
1992
1993 // Use one-before-the-end so it doesn't move forward when new elements are
1994 // added.
1995 auto FirstNewRC = std::prev(RegClasses.end());
1996
1997 // Visit all register classes, including the ones being added by the loop.
1998 // Watch out for iterator invalidation here.
1999 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2000 CodeGenRegisterClass *RC = &*I;
2001
2002 // Synthesize answers for getSubClassWithSubReg().
2003 inferSubClassWithSubReg(RC);
2004
2005 // Synthesize answers for getCommonSubClass().
2006 inferCommonSubClass(RC);
2007
2008 // Synthesize answers for getMatchingSuperRegClass().
2009 inferMatchingSuperRegClass(RC);
2010
2011 // New register classes are created while this loop is running, and we need
2012 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2013 // to match old super-register classes with sub-register classes created
2014 // after inferMatchingSuperRegClass was called. At this point,
2015 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2016 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2017 if (I == FirstNewRC) {
2018 auto NextNewRC = std::prev(RegClasses.end());
2019 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2020 ++I2)
2021 inferMatchingSuperRegClass(&*I2, E2);
2022 FirstNewRC = NextNewRC;
2023 }
2024 }
2025 }
2026
2027 /// getRegisterClassForRegister - Find the register class that contains the
2028 /// specified physical register. If the register is not in a register class,
2029 /// return null. If the register is in multiple classes, and the classes have a
2030 /// superset-subset relationship and the same set of types, return the
2031 /// superclass. Otherwise return null.
2032 const CodeGenRegisterClass*
2033 CodeGenRegBank::getRegClassForRegister(Record *R) {
2034 const CodeGenRegister *Reg = getReg(R);
2035 const CodeGenRegisterClass *FoundRC = nullptr;
2036 for (const auto &RC : getRegClasses()) {
2037 if (!RC.contains(Reg))
2038 continue;
2039
2040 // If this is the first class that contains the register,
2041 // make a note of it and go on to the next class.
2042 if (!FoundRC) {
2043 FoundRC = &RC;
2044 continue;
2045 }
2046
2047 // If a register's classes have different types, return null.
2048 if (RC.getValueTypes() != FoundRC->getValueTypes())
2049 return nullptr;
2050
2051 // Check to see if the previously found class that contains
2052 // the register is a subclass of the current class. If so,
2053 // prefer the superclass.
2054 if (RC.hasSubClass(FoundRC)) {
2055 FoundRC = &RC;
2056 continue;
2057 }
2058
2059 // Check to see if the previously found class that contains
2060 // the register is a superclass of the current class. If so,
2061 // prefer the superclass.
2062 if (FoundRC->hasSubClass(&RC))
2063 continue;
2064
2065 // Multiple classes, and neither is a superclass of the other.
2066 // Return null.
2067 return nullptr;
2068 }
2069 return FoundRC;
2070 }
2071
2072 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2073 SetVector<const CodeGenRegister*> Set;
2074
2075 // First add Regs with all sub-registers.
2076 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2077 CodeGenRegister *Reg = getReg(Regs[i]);
2078 if (Set.insert(Reg))
2079 // Reg is new, add all sub-registers.
2080 // The pre-ordering is not important here.
2081 Reg->addSubRegsPreOrder(Set, *this);
2082 }
2083
2084 // Second, find all super-registers that are completely covered by the set.
2085 for (unsigned i = 0; i != Set.size(); ++i) {
2086 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2087 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2088 const CodeGenRegister *Super = SR[j];
2089 if (!Super->CoveredBySubRegs || Set.count(Super))
2090 continue;
2091 // This new super-register is covered by its sub-registers.
2092 bool AllSubsInSet = true;
2093 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2094 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2095 E = SRM.end(); I != E; ++I)
2096 if (!Set.count(I->second)) {
2097 AllSubsInSet = false;
2098 break;
2099 }
2100 // All sub-registers in Set, add Super as well.
2101 // We will visit Super later to recheck its super-registers.
2102 if (AllSubsInSet)
2103 Set.insert(Super);
2104 }
2105 }
2106
2107 // Convert to BitVector.
2108 BitVector BV(Registers.size() + 1);
2109 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2110 BV.set(Set[i]->EnumValue);
2111 return BV;
2112 }