]> git.proxmox.com Git - rustc.git/blob - src/llvm/utils/TableGen/FastISelEmitter.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / utils / TableGen / FastISelEmitter.cpp
1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits code for use by the "fast" instruction
11 // selection algorithm. See the comments at the top of
12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
13 //
14 // This file scans through the target's tablegen instruction-info files
15 // and extracts instructions with obvious-looking patterns, and it emits
16 // code to look up these instructions by type and operator.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "CodeGenDAGPatterns.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringSwitch.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include "llvm/TableGen/TableGenBackend.h"
28 using namespace llvm;
29
30
31 /// InstructionMemo - This class holds additional information about an
32 /// instruction needed to emit code for it.
33 ///
34 namespace {
35 struct InstructionMemo {
36 std::string Name;
37 const CodeGenRegisterClass *RC;
38 std::string SubRegNo;
39 std::vector<std::string>* PhysRegs;
40 std::string PredicateCheck;
41 };
42 } // End anonymous namespace
43
44 /// ImmPredicateSet - This uniques predicates (represented as a string) and
45 /// gives them unique (small) integer ID's that start at 0.
46 namespace {
47 class ImmPredicateSet {
48 DenseMap<TreePattern *, unsigned> ImmIDs;
49 std::vector<TreePredicateFn> PredsByName;
50 public:
51
52 unsigned getIDFor(TreePredicateFn Pred) {
53 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
54 if (Entry == 0) {
55 PredsByName.push_back(Pred);
56 Entry = PredsByName.size();
57 }
58 return Entry-1;
59 }
60
61 const TreePredicateFn &getPredicate(unsigned i) {
62 assert(i < PredsByName.size());
63 return PredsByName[i];
64 }
65
66 typedef std::vector<TreePredicateFn>::const_iterator iterator;
67 iterator begin() const { return PredsByName.begin(); }
68 iterator end() const { return PredsByName.end(); }
69
70 };
71 } // End anonymous namespace
72
73 /// OperandsSignature - This class holds a description of a list of operand
74 /// types. It has utility methods for emitting text based on the operands.
75 ///
76 namespace {
77 struct OperandsSignature {
78 class OpKind {
79 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
80 char Repr;
81 public:
82
83 OpKind() : Repr(OK_Invalid) {}
84
85 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
86 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
87
88 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
89 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
90 static OpKind getImm(unsigned V) {
91 assert((unsigned)OK_Imm+V < 128 &&
92 "Too many integer predicates for the 'Repr' char");
93 OpKind K; K.Repr = OK_Imm+V; return K;
94 }
95
96 bool isReg() const { return Repr == OK_Reg; }
97 bool isFP() const { return Repr == OK_FP; }
98 bool isImm() const { return Repr >= OK_Imm; }
99
100 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
101
102 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
103 bool StripImmCodes) const {
104 if (isReg())
105 OS << 'r';
106 else if (isFP())
107 OS << 'f';
108 else {
109 OS << 'i';
110 if (!StripImmCodes)
111 if (unsigned Code = getImmCode())
112 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
113 }
114 }
115 };
116
117
118 SmallVector<OpKind, 3> Operands;
119
120 bool operator<(const OperandsSignature &O) const {
121 return Operands < O.Operands;
122 }
123 bool operator==(const OperandsSignature &O) const {
124 return Operands == O.Operands;
125 }
126
127 bool empty() const { return Operands.empty(); }
128
129 bool hasAnyImmediateCodes() const {
130 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
131 if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
132 return true;
133 return false;
134 }
135
136 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
137 /// to zero.
138 OperandsSignature getWithoutImmCodes() const {
139 OperandsSignature Result;
140 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
141 if (!Operands[i].isImm())
142 Result.Operands.push_back(Operands[i]);
143 else
144 Result.Operands.push_back(OpKind::getImm(0));
145 return Result;
146 }
147
148 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
149 bool EmittedAnything = false;
150 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
151 if (!Operands[i].isImm()) continue;
152
153 unsigned Code = Operands[i].getImmCode();
154 if (Code == 0) continue;
155
156 if (EmittedAnything)
157 OS << " &&\n ";
158
159 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
160
161 // Emit the type check.
162 OS << "VT == "
163 << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
164 << " && ";
165
166
167 OS << PredFn.getFnName() << "(imm" << i <<')';
168 EmittedAnything = true;
169 }
170 }
171
172 /// initialize - Examine the given pattern and initialize the contents
173 /// of the Operands array accordingly. Return true if all the operands
174 /// are supported, false otherwise.
175 ///
176 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
177 MVT::SimpleValueType VT,
178 ImmPredicateSet &ImmediatePredicates,
179 const CodeGenRegisterClass *OrigDstRC) {
180 if (InstPatNode->isLeaf())
181 return false;
182
183 if (InstPatNode->getOperator()->getName() == "imm") {
184 Operands.push_back(OpKind::getImm(0));
185 return true;
186 }
187
188 if (InstPatNode->getOperator()->getName() == "fpimm") {
189 Operands.push_back(OpKind::getFP());
190 return true;
191 }
192
193 const CodeGenRegisterClass *DstRC = nullptr;
194
195 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
196 TreePatternNode *Op = InstPatNode->getChild(i);
197
198 // Handle imm operands specially.
199 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
200 unsigned PredNo = 0;
201 if (!Op->getPredicateFns().empty()) {
202 TreePredicateFn PredFn = Op->getPredicateFns()[0];
203 // If there is more than one predicate weighing in on this operand
204 // then we don't handle it. This doesn't typically happen for
205 // immediates anyway.
206 if (Op->getPredicateFns().size() > 1 ||
207 !PredFn.isImmediatePattern())
208 return false;
209 // Ignore any instruction with 'FastIselShouldIgnore', these are
210 // not needed and just bloat the fast instruction selector. For
211 // example, X86 doesn't need to generate code to match ADD16ri8 since
212 // ADD16ri will do just fine.
213 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
214 if (Rec->getValueAsBit("FastIselShouldIgnore"))
215 return false;
216
217 PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
218 }
219
220 // Handle unmatched immediate sizes here.
221 //if (Op->getType(0) != VT)
222 // return false;
223
224 Operands.push_back(OpKind::getImm(PredNo));
225 continue;
226 }
227
228
229 // For now, filter out any operand with a predicate.
230 // For now, filter out any operand with multiple values.
231 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
232 return false;
233
234 if (!Op->isLeaf()) {
235 if (Op->getOperator()->getName() == "fpimm") {
236 Operands.push_back(OpKind::getFP());
237 continue;
238 }
239 // For now, ignore other non-leaf nodes.
240 return false;
241 }
242
243 assert(Op->hasTypeSet(0) && "Type infererence not done?");
244
245 // For now, all the operands must have the same type (if they aren't
246 // immediates). Note that this causes us to reject variable sized shifts
247 // on X86.
248 if (Op->getType(0) != VT)
249 return false;
250
251 DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
252 if (!OpDI)
253 return false;
254 Record *OpLeafRec = OpDI->getDef();
255
256 // For now, the only other thing we accept is register operands.
257 const CodeGenRegisterClass *RC = nullptr;
258 if (OpLeafRec->isSubClassOf("RegisterOperand"))
259 OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
260 if (OpLeafRec->isSubClassOf("RegisterClass"))
261 RC = &Target.getRegisterClass(OpLeafRec);
262 else if (OpLeafRec->isSubClassOf("Register"))
263 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
264 else if (OpLeafRec->isSubClassOf("ValueType")) {
265 RC = OrigDstRC;
266 } else
267 return false;
268
269 // For now, this needs to be a register class of some sort.
270 if (!RC)
271 return false;
272
273 // For now, all the operands must have the same register class or be
274 // a strict subclass of the destination.
275 if (DstRC) {
276 if (DstRC != RC && !DstRC->hasSubClass(RC))
277 return false;
278 } else
279 DstRC = RC;
280 Operands.push_back(OpKind::getReg());
281 }
282 return true;
283 }
284
285 void PrintParameters(raw_ostream &OS) const {
286 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
287 if (Operands[i].isReg()) {
288 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
289 } else if (Operands[i].isImm()) {
290 OS << "uint64_t imm" << i;
291 } else if (Operands[i].isFP()) {
292 OS << "const ConstantFP *f" << i;
293 } else {
294 llvm_unreachable("Unknown operand kind!");
295 }
296 if (i + 1 != e)
297 OS << ", ";
298 }
299 }
300
301 void PrintArguments(raw_ostream &OS,
302 const std::vector<std::string> &PR) const {
303 assert(PR.size() == Operands.size());
304 bool PrintedArg = false;
305 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
306 if (PR[i] != "")
307 // Implicit physical register operand.
308 continue;
309
310 if (PrintedArg)
311 OS << ", ";
312 if (Operands[i].isReg()) {
313 OS << "Op" << i << ", Op" << i << "IsKill";
314 PrintedArg = true;
315 } else if (Operands[i].isImm()) {
316 OS << "imm" << i;
317 PrintedArg = true;
318 } else if (Operands[i].isFP()) {
319 OS << "f" << i;
320 PrintedArg = true;
321 } else {
322 llvm_unreachable("Unknown operand kind!");
323 }
324 }
325 }
326
327 void PrintArguments(raw_ostream &OS) const {
328 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
329 if (Operands[i].isReg()) {
330 OS << "Op" << i << ", Op" << i << "IsKill";
331 } else if (Operands[i].isImm()) {
332 OS << "imm" << i;
333 } else if (Operands[i].isFP()) {
334 OS << "f" << i;
335 } else {
336 llvm_unreachable("Unknown operand kind!");
337 }
338 if (i + 1 != e)
339 OS << ", ";
340 }
341 }
342
343
344 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
345 ImmPredicateSet &ImmPredicates,
346 bool StripImmCodes = false) const {
347 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
348 if (PR[i] != "")
349 // Implicit physical register operand. e.g. Instruction::Mul expect to
350 // select to a binary op. On x86, mul may take a single operand with
351 // the other operand being implicit. We must emit something that looks
352 // like a binary instruction except for the very inner fastEmitInst_*
353 // call.
354 continue;
355 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
356 }
357 }
358
359 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
360 bool StripImmCodes = false) const {
361 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
362 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
363 }
364 };
365 } // End anonymous namespace
366
367 namespace {
368 class FastISelMap {
369 // A multimap is needed instead of a "plain" map because the key is
370 // the instruction's complexity (an int) and they are not unique.
371 typedef std::multimap<int, InstructionMemo> PredMap;
372 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
373 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
374 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
375 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
376 OperandsOpcodeTypeRetPredMap;
377
378 OperandsOpcodeTypeRetPredMap SimplePatterns;
379
380 // This is used to check that there are no duplicate predicates
381 typedef std::multimap<std::string, bool> PredCheckMap;
382 typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
383 typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
384 typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
385 typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
386 OperandsOpcodeTypeRetPredCheckMap;
387
388 OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;
389
390 std::map<OperandsSignature, std::vector<OperandsSignature> >
391 SignaturesWithConstantForms;
392
393 std::string InstNS;
394 ImmPredicateSet ImmediatePredicates;
395 public:
396 explicit FastISelMap(std::string InstNS);
397
398 void collectPatterns(CodeGenDAGPatterns &CGP);
399 void printImmediatePredicates(raw_ostream &OS);
400 void printFunctionDefinitions(raw_ostream &OS);
401 private:
402 void emitInstructionCode(raw_ostream &OS,
403 const OperandsSignature &Operands,
404 const PredMap &PM,
405 const std::string &RetVTName);
406 };
407 } // End anonymous namespace
408
409 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
410 return CGP.getSDNodeInfo(Op).getEnumName();
411 }
412
413 static std::string getLegalCName(std::string OpName) {
414 std::string::size_type pos = OpName.find("::");
415 if (pos != std::string::npos)
416 OpName.replace(pos, 2, "_");
417 return OpName;
418 }
419
420 FastISelMap::FastISelMap(std::string instns)
421 : InstNS(instns) {
422 }
423
424 static std::string PhyRegForNode(TreePatternNode *Op,
425 const CodeGenTarget &Target) {
426 std::string PhysReg;
427
428 if (!Op->isLeaf())
429 return PhysReg;
430
431 Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
432 if (!OpLeafRec->isSubClassOf("Register"))
433 return PhysReg;
434
435 PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
436 ->getValue();
437 PhysReg += "::";
438 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
439 return PhysReg;
440 }
441
442 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
443 const CodeGenTarget &Target = CGP.getTargetInfo();
444
445 // Determine the target's namespace name.
446 InstNS = Target.getInstNamespace() + "::";
447 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
448
449 // Scan through all the patterns and record the simple ones.
450 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
451 E = CGP.ptm_end(); I != E; ++I) {
452 const PatternToMatch &Pattern = *I;
453
454 // For now, just look at Instructions, so that we don't have to worry
455 // about emitting multiple instructions for a pattern.
456 TreePatternNode *Dst = Pattern.getDstPattern();
457 if (Dst->isLeaf()) continue;
458 Record *Op = Dst->getOperator();
459 if (!Op->isSubClassOf("Instruction"))
460 continue;
461 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
462 if (II.Operands.empty())
463 continue;
464
465 // For now, ignore multi-instruction patterns.
466 bool MultiInsts = false;
467 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
468 TreePatternNode *ChildOp = Dst->getChild(i);
469 if (ChildOp->isLeaf())
470 continue;
471 if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
472 MultiInsts = true;
473 break;
474 }
475 }
476 if (MultiInsts)
477 continue;
478
479 // For now, ignore instructions where the first operand is not an
480 // output register.
481 const CodeGenRegisterClass *DstRC = nullptr;
482 std::string SubRegNo;
483 if (Op->getName() != "EXTRACT_SUBREG") {
484 Record *Op0Rec = II.Operands[0].Rec;
485 if (Op0Rec->isSubClassOf("RegisterOperand"))
486 Op0Rec = Op0Rec->getValueAsDef("RegClass");
487 if (!Op0Rec->isSubClassOf("RegisterClass"))
488 continue;
489 DstRC = &Target.getRegisterClass(Op0Rec);
490 if (!DstRC)
491 continue;
492 } else {
493 // If this isn't a leaf, then continue since the register classes are
494 // a bit too complicated for now.
495 if (!Dst->getChild(1)->isLeaf()) continue;
496
497 DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
498 if (SR)
499 SubRegNo = getQualifiedName(SR->getDef());
500 else
501 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
502 }
503
504 // Inspect the pattern.
505 TreePatternNode *InstPatNode = Pattern.getSrcPattern();
506 if (!InstPatNode) continue;
507 if (InstPatNode->isLeaf()) continue;
508
509 // Ignore multiple result nodes for now.
510 if (InstPatNode->getNumTypes() > 1) continue;
511
512 Record *InstPatOp = InstPatNode->getOperator();
513 std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
514 MVT::SimpleValueType RetVT = MVT::isVoid;
515 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
516 MVT::SimpleValueType VT = RetVT;
517 if (InstPatNode->getNumChildren()) {
518 assert(InstPatNode->getChild(0)->getNumTypes() == 1);
519 VT = InstPatNode->getChild(0)->getType(0);
520 }
521
522 // For now, filter out any instructions with predicates.
523 if (!InstPatNode->getPredicateFns().empty())
524 continue;
525
526 // Check all the operands.
527 OperandsSignature Operands;
528 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
529 DstRC))
530 continue;
531
532 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
533 if (InstPatNode->getOperator()->getName() == "imm" ||
534 InstPatNode->getOperator()->getName() == "fpimm")
535 PhysRegInputs->push_back("");
536 else {
537 // Compute the PhysRegs used by the given pattern, and check that
538 // the mapping from the src to dst patterns is simple.
539 bool FoundNonSimplePattern = false;
540 unsigned DstIndex = 0;
541 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
542 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
543 if (PhysReg.empty()) {
544 if (DstIndex >= Dst->getNumChildren() ||
545 Dst->getChild(DstIndex)->getName() !=
546 InstPatNode->getChild(i)->getName()) {
547 FoundNonSimplePattern = true;
548 break;
549 }
550 ++DstIndex;
551 }
552
553 PhysRegInputs->push_back(PhysReg);
554 }
555
556 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
557 FoundNonSimplePattern = true;
558
559 if (FoundNonSimplePattern)
560 continue;
561 }
562
563 // Check if the operands match one of the patterns handled by FastISel.
564 std::string ManglingSuffix;
565 raw_string_ostream SuffixOS(ManglingSuffix);
566 Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
567 SuffixOS.flush();
568 if (!StringSwitch<bool>(ManglingSuffix)
569 .Cases("", "r", "rr", "ri", "rf", true)
570 .Cases("rri", "i", "f", true)
571 .Default(false))
572 continue;
573
574 // Get the predicate that guards this pattern.
575 std::string PredicateCheck = Pattern.getPredicateCheck();
576
577 // Ok, we found a pattern that we can handle. Remember it.
578 InstructionMemo Memo = {
579 Pattern.getDstPattern()->getOperator()->getName(),
580 DstRC,
581 SubRegNo,
582 PhysRegInputs,
583 PredicateCheck
584 };
585
586 int complexity = Pattern.getPatternComplexity(CGP);
587
588 if (SimplePatternsCheck[Operands][OpcodeName][VT]
589 [RetVT].count(PredicateCheck)) {
590 PrintFatalError(Pattern.getSrcRecord()->getLoc(),
591 "Duplicate predicate in FastISel table!");
592 }
593 SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
594 std::make_pair(PredicateCheck, true));
595
596 // Note: Instructions with the same complexity will appear in the order
597 // that they are encountered.
598 SimplePatterns[Operands][OpcodeName][VT][RetVT].insert(
599 std::make_pair(complexity, Memo));
600
601 // If any of the operands were immediates with predicates on them, strip
602 // them down to a signature that doesn't have predicates so that we can
603 // associate them with the stripped predicate version.
604 if (Operands.hasAnyImmediateCodes()) {
605 SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
606 .push_back(Operands);
607 }
608 }
609 }
610
611 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
612 if (ImmediatePredicates.begin() == ImmediatePredicates.end())
613 return;
614
615 OS << "\n// FastEmit Immediate Predicate functions.\n";
616 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
617 E = ImmediatePredicates.end(); I != E; ++I) {
618 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
619 OS << I->getImmediatePredicateCode() << "\n}\n";
620 }
621
622 OS << "\n\n";
623 }
624
625 void FastISelMap::emitInstructionCode(raw_ostream &OS,
626 const OperandsSignature &Operands,
627 const PredMap &PM,
628 const std::string &RetVTName) {
629 // Emit code for each possible instruction. There may be
630 // multiple if there are subtarget concerns. A reverse iterator
631 // is used to produce the ones with highest complexity first.
632
633 bool OneHadNoPredicate = false;
634 for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
635 PI != PE; ++PI) {
636 const InstructionMemo &Memo = PI->second;
637 std::string PredicateCheck = Memo.PredicateCheck;
638
639 if (PredicateCheck.empty()) {
640 assert(!OneHadNoPredicate &&
641 "Multiple instructions match and more than one had "
642 "no predicate!");
643 OneHadNoPredicate = true;
644 } else {
645 if (OneHadNoPredicate) {
646 // FIXME: This should be a PrintError once the x86 target
647 // fixes PR21575.
648 PrintWarning("Multiple instructions match and one with no "
649 "predicate came before one with a predicate! "
650 "name:" + Memo.Name + " predicate: " +
651 PredicateCheck);
652 }
653 OS << " if (" + PredicateCheck + ") {\n";
654 OS << " ";
655 }
656
657 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
658 if ((*Memo.PhysRegs)[i] != "")
659 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
660 << "TII.get(TargetOpcode::COPY), "
661 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
662 }
663
664 OS << " return fastEmitInst_";
665 if (Memo.SubRegNo.empty()) {
666 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
667 ImmediatePredicates, true);
668 OS << "(" << InstNS << Memo.Name << ", ";
669 OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
670 if (!Operands.empty())
671 OS << ", ";
672 Operands.PrintArguments(OS, *Memo.PhysRegs);
673 OS << ");\n";
674 } else {
675 OS << "extractsubreg(" << RetVTName
676 << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
677 }
678
679 if (!PredicateCheck.empty()) {
680 OS << " }\n";
681 }
682 }
683 // Return 0 if all of the possibilities had predicates but none
684 // were satisfied.
685 if (!OneHadNoPredicate)
686 OS << " return 0;\n";
687 OS << "}\n";
688 OS << "\n";
689 }
690
691
692 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
693 // Now emit code for all the patterns that we collected.
694 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
695 OE = SimplePatterns.end(); OI != OE; ++OI) {
696 const OperandsSignature &Operands = OI->first;
697 const OpcodeTypeRetPredMap &OTM = OI->second;
698
699 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
700 I != E; ++I) {
701 const std::string &Opcode = I->first;
702 const TypeRetPredMap &TM = I->second;
703
704 OS << "// FastEmit functions for " << Opcode << ".\n";
705 OS << "\n";
706
707 // Emit one function for each opcode,type pair.
708 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
709 TI != TE; ++TI) {
710 MVT::SimpleValueType VT = TI->first;
711 const RetPredMap &RM = TI->second;
712 if (RM.size() != 1) {
713 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
714 RI != RE; ++RI) {
715 MVT::SimpleValueType RetVT = RI->first;
716 const PredMap &PM = RI->second;
717
718 OS << "unsigned fastEmit_"
719 << getLegalCName(Opcode)
720 << "_" << getLegalCName(getName(VT))
721 << "_" << getLegalCName(getName(RetVT)) << "_";
722 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
723 OS << "(";
724 Operands.PrintParameters(OS);
725 OS << ") {\n";
726
727 emitInstructionCode(OS, Operands, PM, getName(RetVT));
728 }
729
730 // Emit one function for the type that demultiplexes on return type.
731 OS << "unsigned fastEmit_"
732 << getLegalCName(Opcode) << "_"
733 << getLegalCName(getName(VT)) << "_";
734 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
735 OS << "(MVT RetVT";
736 if (!Operands.empty())
737 OS << ", ";
738 Operands.PrintParameters(OS);
739 OS << ") {\nswitch (RetVT.SimpleTy) {\n";
740 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
741 RI != RE; ++RI) {
742 MVT::SimpleValueType RetVT = RI->first;
743 OS << " case " << getName(RetVT) << ": return fastEmit_"
744 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
745 << "_" << getLegalCName(getName(RetVT)) << "_";
746 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
747 OS << "(";
748 Operands.PrintArguments(OS);
749 OS << ");\n";
750 }
751 OS << " default: return 0;\n}\n}\n\n";
752
753 } else {
754 // Non-variadic return type.
755 OS << "unsigned fastEmit_"
756 << getLegalCName(Opcode) << "_"
757 << getLegalCName(getName(VT)) << "_";
758 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
759 OS << "(MVT RetVT";
760 if (!Operands.empty())
761 OS << ", ";
762 Operands.PrintParameters(OS);
763 OS << ") {\n";
764
765 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
766 << ")\n return 0;\n";
767
768 const PredMap &PM = RM.begin()->second;
769
770 emitInstructionCode(OS, Operands, PM, "RetVT");
771 }
772 }
773
774 // Emit one function for the opcode that demultiplexes based on the type.
775 OS << "unsigned fastEmit_"
776 << getLegalCName(Opcode) << "_";
777 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
778 OS << "(MVT VT, MVT RetVT";
779 if (!Operands.empty())
780 OS << ", ";
781 Operands.PrintParameters(OS);
782 OS << ") {\n";
783 OS << " switch (VT.SimpleTy) {\n";
784 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
785 TI != TE; ++TI) {
786 MVT::SimpleValueType VT = TI->first;
787 std::string TypeName = getName(VT);
788 OS << " case " << TypeName << ": return fastEmit_"
789 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
790 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
791 OS << "(RetVT";
792 if (!Operands.empty())
793 OS << ", ";
794 Operands.PrintArguments(OS);
795 OS << ");\n";
796 }
797 OS << " default: return 0;\n";
798 OS << " }\n";
799 OS << "}\n";
800 OS << "\n";
801 }
802
803 OS << "// Top-level FastEmit function.\n";
804 OS << "\n";
805
806 // Emit one function for the operand signature that demultiplexes based
807 // on opcode and type.
808 OS << "unsigned fastEmit_";
809 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
810 OS << "(MVT VT, MVT RetVT, unsigned Opcode";
811 if (!Operands.empty())
812 OS << ", ";
813 Operands.PrintParameters(OS);
814 OS << ") ";
815 if (!Operands.hasAnyImmediateCodes())
816 OS << "override ";
817 OS << "{\n";
818
819 // If there are any forms of this signature available that operate on
820 // constrained forms of the immediate (e.g., 32-bit sext immediate in a
821 // 64-bit operand), check them first.
822
823 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
824 = SignaturesWithConstantForms.find(Operands);
825 if (MI != SignaturesWithConstantForms.end()) {
826 // Unique any duplicates out of the list.
827 std::sort(MI->second.begin(), MI->second.end());
828 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
829 MI->second.end());
830
831 // Check each in order it was seen. It would be nice to have a good
832 // relative ordering between them, but we're not going for optimality
833 // here.
834 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
835 OS << " if (";
836 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
837 OS << ")\n if (unsigned Reg = fastEmit_";
838 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
839 OS << "(VT, RetVT, Opcode";
840 if (!MI->second[i].empty())
841 OS << ", ";
842 MI->second[i].PrintArguments(OS);
843 OS << "))\n return Reg;\n\n";
844 }
845
846 // Done with this, remove it.
847 SignaturesWithConstantForms.erase(MI);
848 }
849
850 OS << " switch (Opcode) {\n";
851 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
852 I != E; ++I) {
853 const std::string &Opcode = I->first;
854
855 OS << " case " << Opcode << ": return fastEmit_"
856 << getLegalCName(Opcode) << "_";
857 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
858 OS << "(VT, RetVT";
859 if (!Operands.empty())
860 OS << ", ";
861 Operands.PrintArguments(OS);
862 OS << ");\n";
863 }
864 OS << " default: return 0;\n";
865 OS << " }\n";
866 OS << "}\n";
867 OS << "\n";
868 }
869
870 // TODO: SignaturesWithConstantForms should be empty here.
871 }
872
873 namespace llvm {
874
875 void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
876 CodeGenDAGPatterns CGP(RK);
877 const CodeGenTarget &Target = CGP.getTargetInfo();
878 emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
879 Target.getName() + " target", OS);
880
881 // Determine the target's namespace name.
882 std::string InstNS = Target.getInstNamespace() + "::";
883 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
884
885 FastISelMap F(InstNS);
886 F.collectPatterns(CGP);
887 F.printImmediatePredicates(OS);
888 F.printFunctionDefinitions(OS);
889 }
890
891 } // End llvm namespace