]> git.proxmox.com Git - rustc.git/blob - src/llvm/utils/TableGen/X86DisassemblerTables.cpp
Imported Upstream version 1.0.0+dfsg1
[rustc.git] / src / llvm / utils / TableGen / X86DisassemblerTables.cpp
1 //===- X86DisassemblerTables.cpp - Disassembler tables ----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler Emitter.
11 // It contains the implementation of the disassembler tables.
12 // Documentation for the disassembler emitter in general can be found in
13 // X86DisasemblerEmitter.h.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "X86DisassemblerTables.h"
18 #include "X86DisassemblerShared.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/Format.h"
22 #include <map>
23
24 using namespace llvm;
25 using namespace X86Disassembler;
26
27 /// stringForContext - Returns a string containing the name of a particular
28 /// InstructionContext, usually for diagnostic purposes.
29 ///
30 /// @param insnContext - The instruction class to transform to a string.
31 /// @return - A statically-allocated string constant that contains the
32 /// name of the instruction class.
33 static inline const char* stringForContext(InstructionContext insnContext) {
34 switch (insnContext) {
35 default:
36 llvm_unreachable("Unhandled instruction class");
37 #define ENUM_ENTRY(n, r, d) case n: return #n; break;
38 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) ENUM_ENTRY(n##_K_B, r, d)\
39 ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)\
40 ENUM_ENTRY(n##_KZ_B, r, d)
41 INSTRUCTION_CONTEXTS
42 #undef ENUM_ENTRY
43 #undef ENUM_ENTRY_K_B
44 }
45 }
46
47 /// stringForOperandType - Like stringForContext, but for OperandTypes.
48 static inline const char* stringForOperandType(OperandType type) {
49 switch (type) {
50 default:
51 llvm_unreachable("Unhandled type");
52 #define ENUM_ENTRY(i, d) case i: return #i;
53 TYPES
54 #undef ENUM_ENTRY
55 }
56 }
57
58 /// stringForOperandEncoding - like stringForContext, but for
59 /// OperandEncodings.
60 static inline const char* stringForOperandEncoding(OperandEncoding encoding) {
61 switch (encoding) {
62 default:
63 llvm_unreachable("Unhandled encoding");
64 #define ENUM_ENTRY(i, d) case i: return #i;
65 ENCODINGS
66 #undef ENUM_ENTRY
67 }
68 }
69
70 /// inheritsFrom - Indicates whether all instructions in one class also belong
71 /// to another class.
72 ///
73 /// @param child - The class that may be the subset
74 /// @param parent - The class that may be the superset
75 /// @return - True if child is a subset of parent, false otherwise.
76 static inline bool inheritsFrom(InstructionContext child,
77 InstructionContext parent,
78 bool VEX_LIG = false, bool AdSize64 = false) {
79 if (child == parent)
80 return true;
81
82 switch (parent) {
83 case IC:
84 return(inheritsFrom(child, IC_64BIT, AdSize64) ||
85 inheritsFrom(child, IC_OPSIZE) ||
86 inheritsFrom(child, IC_ADSIZE) ||
87 inheritsFrom(child, IC_XD) ||
88 inheritsFrom(child, IC_XS));
89 case IC_64BIT:
90 return(inheritsFrom(child, IC_64BIT_REXW) ||
91 inheritsFrom(child, IC_64BIT_OPSIZE) ||
92 (!AdSize64 && inheritsFrom(child, IC_64BIT_ADSIZE)) ||
93 inheritsFrom(child, IC_64BIT_XD) ||
94 inheritsFrom(child, IC_64BIT_XS));
95 case IC_OPSIZE:
96 return inheritsFrom(child, IC_64BIT_OPSIZE) ||
97 inheritsFrom(child, IC_OPSIZE_ADSIZE);
98 case IC_ADSIZE:
99 return inheritsFrom(child, IC_OPSIZE_ADSIZE);
100 case IC_OPSIZE_ADSIZE:
101 return false;
102 case IC_64BIT_ADSIZE:
103 return inheritsFrom(child, IC_64BIT_OPSIZE_ADSIZE);
104 case IC_64BIT_OPSIZE_ADSIZE:
105 return false;
106 case IC_XD:
107 return inheritsFrom(child, IC_64BIT_XD);
108 case IC_XS:
109 return inheritsFrom(child, IC_64BIT_XS);
110 case IC_XD_OPSIZE:
111 return inheritsFrom(child, IC_64BIT_XD_OPSIZE);
112 case IC_XS_OPSIZE:
113 return inheritsFrom(child, IC_64BIT_XS_OPSIZE);
114 case IC_64BIT_REXW:
115 return(inheritsFrom(child, IC_64BIT_REXW_XS) ||
116 inheritsFrom(child, IC_64BIT_REXW_XD) ||
117 inheritsFrom(child, IC_64BIT_REXW_OPSIZE) ||
118 (!AdSize64 && inheritsFrom(child, IC_64BIT_REXW_ADSIZE)));
119 case IC_64BIT_OPSIZE:
120 return inheritsFrom(child, IC_64BIT_REXW_OPSIZE) ||
121 (!AdSize64 && inheritsFrom(child, IC_64BIT_OPSIZE_ADSIZE)) ||
122 (!AdSize64 && inheritsFrom(child, IC_64BIT_REXW_ADSIZE));
123 case IC_64BIT_XD:
124 return(inheritsFrom(child, IC_64BIT_REXW_XD));
125 case IC_64BIT_XS:
126 return(inheritsFrom(child, IC_64BIT_REXW_XS));
127 case IC_64BIT_XD_OPSIZE:
128 case IC_64BIT_XS_OPSIZE:
129 return false;
130 case IC_64BIT_REXW_XD:
131 case IC_64BIT_REXW_XS:
132 case IC_64BIT_REXW_OPSIZE:
133 case IC_64BIT_REXW_ADSIZE:
134 return false;
135 case IC_VEX:
136 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W)) ||
137 inheritsFrom(child, IC_VEX_W) ||
138 (VEX_LIG && inheritsFrom(child, IC_VEX_L));
139 case IC_VEX_XS:
140 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS)) ||
141 inheritsFrom(child, IC_VEX_W_XS) ||
142 (VEX_LIG && inheritsFrom(child, IC_VEX_L_XS));
143 case IC_VEX_XD:
144 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD)) ||
145 inheritsFrom(child, IC_VEX_W_XD) ||
146 (VEX_LIG && inheritsFrom(child, IC_VEX_L_XD));
147 case IC_VEX_OPSIZE:
148 return (VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE)) ||
149 inheritsFrom(child, IC_VEX_W_OPSIZE) ||
150 (VEX_LIG && inheritsFrom(child, IC_VEX_L_OPSIZE));
151 case IC_VEX_W:
152 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W);
153 case IC_VEX_W_XS:
154 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XS);
155 case IC_VEX_W_XD:
156 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_XD);
157 case IC_VEX_W_OPSIZE:
158 return VEX_LIG && inheritsFrom(child, IC_VEX_L_W_OPSIZE);
159 case IC_VEX_L:
160 return inheritsFrom(child, IC_VEX_L_W);
161 case IC_VEX_L_XS:
162 return inheritsFrom(child, IC_VEX_L_W_XS);
163 case IC_VEX_L_XD:
164 return inheritsFrom(child, IC_VEX_L_W_XD);
165 case IC_VEX_L_OPSIZE:
166 return inheritsFrom(child, IC_VEX_L_W_OPSIZE);
167 case IC_VEX_L_W:
168 case IC_VEX_L_W_XS:
169 case IC_VEX_L_W_XD:
170 case IC_VEX_L_W_OPSIZE:
171 return false;
172 case IC_EVEX:
173 return inheritsFrom(child, IC_EVEX_W) ||
174 inheritsFrom(child, IC_EVEX_L_W);
175 case IC_EVEX_XS:
176 return inheritsFrom(child, IC_EVEX_W_XS) ||
177 inheritsFrom(child, IC_EVEX_L_W_XS);
178 case IC_EVEX_XD:
179 return inheritsFrom(child, IC_EVEX_W_XD) ||
180 inheritsFrom(child, IC_EVEX_L_W_XD);
181 case IC_EVEX_OPSIZE:
182 return inheritsFrom(child, IC_EVEX_W_OPSIZE) ||
183 inheritsFrom(child, IC_EVEX_L_W_OPSIZE);
184 case IC_EVEX_B:
185 return false;
186 case IC_EVEX_W:
187 case IC_EVEX_W_XS:
188 case IC_EVEX_W_XD:
189 case IC_EVEX_W_OPSIZE:
190 return false;
191 case IC_EVEX_L:
192 case IC_EVEX_L_K_B:
193 case IC_EVEX_L_KZ_B:
194 case IC_EVEX_L_B:
195 case IC_EVEX_L_XS:
196 case IC_EVEX_L_XD:
197 case IC_EVEX_L_OPSIZE:
198 return false;
199 case IC_EVEX_L_W:
200 case IC_EVEX_L_W_XS:
201 case IC_EVEX_L_W_XD:
202 case IC_EVEX_L_W_OPSIZE:
203 return false;
204 case IC_EVEX_L2:
205 case IC_EVEX_L2_XS:
206 case IC_EVEX_L2_XD:
207 case IC_EVEX_L2_OPSIZE:
208 return false;
209 case IC_EVEX_L2_W:
210 case IC_EVEX_L2_W_XS:
211 case IC_EVEX_L2_W_XD:
212 case IC_EVEX_L2_W_OPSIZE:
213 return false;
214 case IC_EVEX_K:
215 return inheritsFrom(child, IC_EVEX_W_K) ||
216 inheritsFrom(child, IC_EVEX_L_W_K);
217 case IC_EVEX_XS_K:
218 return inheritsFrom(child, IC_EVEX_W_XS_K) ||
219 inheritsFrom(child, IC_EVEX_L_W_XS_K);
220 case IC_EVEX_XD_K:
221 return inheritsFrom(child, IC_EVEX_W_XD_K) ||
222 inheritsFrom(child, IC_EVEX_L_W_XD_K);
223 case IC_EVEX_K_B:
224 case IC_EVEX_KZ:
225 return false;
226 case IC_EVEX_XS_KZ:
227 return inheritsFrom(child, IC_EVEX_W_XS_KZ) ||
228 inheritsFrom(child, IC_EVEX_L_W_XS_KZ);
229 case IC_EVEX_XD_KZ:
230 return inheritsFrom(child, IC_EVEX_W_XD_KZ) ||
231 inheritsFrom(child, IC_EVEX_L_W_XD_KZ);
232 case IC_EVEX_KZ_B:
233 case IC_EVEX_OPSIZE_K:
234 case IC_EVEX_OPSIZE_B:
235 case IC_EVEX_OPSIZE_K_B:
236 case IC_EVEX_OPSIZE_KZ:
237 case IC_EVEX_OPSIZE_KZ_B:
238 return false;
239 case IC_EVEX_W_K:
240 case IC_EVEX_W_XS_K:
241 case IC_EVEX_W_XD_K:
242 case IC_EVEX_W_OPSIZE_K:
243 case IC_EVEX_W_OPSIZE_B:
244 case IC_EVEX_W_OPSIZE_K_B:
245 return false;
246 case IC_EVEX_L_K:
247 case IC_EVEX_L_XS_K:
248 case IC_EVEX_L_XD_K:
249 case IC_EVEX_L_OPSIZE_K:
250 case IC_EVEX_L_OPSIZE_B:
251 case IC_EVEX_L_OPSIZE_K_B:
252 return false;
253 case IC_EVEX_W_KZ:
254 case IC_EVEX_W_XS_KZ:
255 case IC_EVEX_W_XD_KZ:
256 case IC_EVEX_W_OPSIZE_KZ:
257 case IC_EVEX_W_OPSIZE_KZ_B:
258 return false;
259 case IC_EVEX_L_KZ:
260 case IC_EVEX_L_XS_KZ:
261 case IC_EVEX_L_XD_KZ:
262 case IC_EVEX_L_OPSIZE_KZ:
263 case IC_EVEX_L_OPSIZE_KZ_B:
264 return false;
265 case IC_EVEX_L_W_K:
266 case IC_EVEX_L_W_XS_K:
267 case IC_EVEX_L_W_XD_K:
268 case IC_EVEX_L_W_OPSIZE_K:
269 case IC_EVEX_L_W_OPSIZE_B:
270 case IC_EVEX_L_W_OPSIZE_K_B:
271 case IC_EVEX_L_W_KZ:
272 case IC_EVEX_L_W_XS_KZ:
273 case IC_EVEX_L_W_XD_KZ:
274 case IC_EVEX_L_W_OPSIZE_KZ:
275 case IC_EVEX_L_W_OPSIZE_KZ_B:
276 return false;
277 case IC_EVEX_L2_K:
278 case IC_EVEX_L2_B:
279 case IC_EVEX_L2_K_B:
280 case IC_EVEX_L2_KZ_B:
281 case IC_EVEX_L2_XS_K:
282 case IC_EVEX_L2_XS_B:
283 case IC_EVEX_L2_XD_B:
284 case IC_EVEX_L2_XD_K:
285 case IC_EVEX_L2_OPSIZE_K:
286 case IC_EVEX_L2_OPSIZE_B:
287 case IC_EVEX_L2_OPSIZE_K_B:
288 case IC_EVEX_L2_KZ:
289 case IC_EVEX_L2_XS_KZ:
290 case IC_EVEX_L2_XD_KZ:
291 case IC_EVEX_L2_OPSIZE_KZ:
292 case IC_EVEX_L2_OPSIZE_KZ_B:
293 return false;
294 case IC_EVEX_L2_W_K:
295 case IC_EVEX_L2_W_B:
296 case IC_EVEX_L2_W_XS_K:
297 case IC_EVEX_L2_W_XD_K:
298 case IC_EVEX_L2_W_XD_B:
299 case IC_EVEX_L2_W_OPSIZE_K:
300 case IC_EVEX_L2_W_OPSIZE_B:
301 case IC_EVEX_L2_W_OPSIZE_K_B:
302 case IC_EVEX_L2_W_KZ:
303 case IC_EVEX_L2_W_XS_KZ:
304 case IC_EVEX_L2_W_XD_KZ:
305 case IC_EVEX_L2_W_OPSIZE_KZ:
306 case IC_EVEX_L2_W_OPSIZE_KZ_B:
307 return false;
308 default:
309 errs() << "Unknown instruction class: " <<
310 stringForContext((InstructionContext)parent) << "\n";
311 llvm_unreachable("Unknown instruction class");
312 }
313 }
314
315 /// outranks - Indicates whether, if an instruction has two different applicable
316 /// classes, which class should be preferred when performing decode. This
317 /// imposes a total ordering (ties are resolved toward "lower")
318 ///
319 /// @param upper - The class that may be preferable
320 /// @param lower - The class that may be less preferable
321 /// @return - True if upper is to be preferred, false otherwise.
322 static inline bool outranks(InstructionContext upper,
323 InstructionContext lower) {
324 assert(upper < IC_max);
325 assert(lower < IC_max);
326
327 #define ENUM_ENTRY(n, r, d) r,
328 #define ENUM_ENTRY_K_B(n, r, d) ENUM_ENTRY(n, r, d) \
329 ENUM_ENTRY(n##_K_B, r, d) ENUM_ENTRY(n##_KZ_B, r, d) \
330 ENUM_ENTRY(n##_KZ, r, d) ENUM_ENTRY(n##_K, r, d) ENUM_ENTRY(n##_B, r, d)
331 static int ranks[IC_max] = {
332 INSTRUCTION_CONTEXTS
333 };
334 #undef ENUM_ENTRY
335 #undef ENUM_ENTRY_K_B
336
337 return (ranks[upper] > ranks[lower]);
338 }
339
340 /// getDecisionType - Determines whether a ModRM decision with 255 entries can
341 /// be compacted by eliminating redundant information.
342 ///
343 /// @param decision - The decision to be compacted.
344 /// @return - The compactest available representation for the decision.
345 static ModRMDecisionType getDecisionType(ModRMDecision &decision) {
346 bool satisfiesOneEntry = true;
347 bool satisfiesSplitRM = true;
348 bool satisfiesSplitReg = true;
349 bool satisfiesSplitMisc = true;
350
351 for (unsigned index = 0; index < 256; ++index) {
352 if (decision.instructionIDs[index] != decision.instructionIDs[0])
353 satisfiesOneEntry = false;
354
355 if (((index & 0xc0) == 0xc0) &&
356 (decision.instructionIDs[index] != decision.instructionIDs[0xc0]))
357 satisfiesSplitRM = false;
358
359 if (((index & 0xc0) != 0xc0) &&
360 (decision.instructionIDs[index] != decision.instructionIDs[0x00]))
361 satisfiesSplitRM = false;
362
363 if (((index & 0xc0) == 0xc0) &&
364 (decision.instructionIDs[index] != decision.instructionIDs[index&0xf8]))
365 satisfiesSplitReg = false;
366
367 if (((index & 0xc0) != 0xc0) &&
368 (decision.instructionIDs[index] != decision.instructionIDs[index&0x38]))
369 satisfiesSplitMisc = false;
370 }
371
372 if (satisfiesOneEntry)
373 return MODRM_ONEENTRY;
374
375 if (satisfiesSplitRM)
376 return MODRM_SPLITRM;
377
378 if (satisfiesSplitReg && satisfiesSplitMisc)
379 return MODRM_SPLITREG;
380
381 if (satisfiesSplitMisc)
382 return MODRM_SPLITMISC;
383
384 return MODRM_FULL;
385 }
386
387 /// stringForDecisionType - Returns a statically-allocated string corresponding
388 /// to a particular decision type.
389 ///
390 /// @param dt - The decision type.
391 /// @return - A pointer to the statically-allocated string (e.g.,
392 /// "MODRM_ONEENTRY" for MODRM_ONEENTRY).
393 static const char* stringForDecisionType(ModRMDecisionType dt) {
394 #define ENUM_ENTRY(n) case n: return #n;
395 switch (dt) {
396 default:
397 llvm_unreachable("Unknown decision type");
398 MODRMTYPES
399 };
400 #undef ENUM_ENTRY
401 }
402
403 DisassemblerTables::DisassemblerTables() {
404 unsigned i;
405
406 for (i = 0; i < array_lengthof(Tables); i++) {
407 Tables[i] = new ContextDecision;
408 memset(Tables[i], 0, sizeof(ContextDecision));
409 }
410
411 HasConflicts = false;
412 }
413
414 DisassemblerTables::~DisassemblerTables() {
415 unsigned i;
416
417 for (i = 0; i < array_lengthof(Tables); i++)
418 delete Tables[i];
419 }
420
421 void DisassemblerTables::emitModRMDecision(raw_ostream &o1, raw_ostream &o2,
422 unsigned &i1, unsigned &i2,
423 unsigned &ModRMTableNum,
424 ModRMDecision &decision) const {
425 static uint32_t sTableNumber = 0;
426 static uint32_t sEntryNumber = 1;
427 ModRMDecisionType dt = getDecisionType(decision);
428
429 if (dt == MODRM_ONEENTRY && decision.instructionIDs[0] == 0)
430 {
431 o2.indent(i2) << "{ /* ModRMDecision */" << "\n";
432 i2++;
433
434 o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
435 o2.indent(i2) << 0 << " /* EmptyTable */\n";
436
437 i2--;
438 o2.indent(i2) << "}";
439 return;
440 }
441
442 std::vector<unsigned> ModRMDecision;
443
444 switch (dt) {
445 default:
446 llvm_unreachable("Unknown decision type");
447 case MODRM_ONEENTRY:
448 ModRMDecision.push_back(decision.instructionIDs[0]);
449 break;
450 case MODRM_SPLITRM:
451 ModRMDecision.push_back(decision.instructionIDs[0x00]);
452 ModRMDecision.push_back(decision.instructionIDs[0xc0]);
453 break;
454 case MODRM_SPLITREG:
455 for (unsigned index = 0; index < 64; index += 8)
456 ModRMDecision.push_back(decision.instructionIDs[index]);
457 for (unsigned index = 0xc0; index < 256; index += 8)
458 ModRMDecision.push_back(decision.instructionIDs[index]);
459 break;
460 case MODRM_SPLITMISC:
461 for (unsigned index = 0; index < 64; index += 8)
462 ModRMDecision.push_back(decision.instructionIDs[index]);
463 for (unsigned index = 0xc0; index < 256; ++index)
464 ModRMDecision.push_back(decision.instructionIDs[index]);
465 break;
466 case MODRM_FULL:
467 for (unsigned index = 0; index < 256; ++index)
468 ModRMDecision.push_back(decision.instructionIDs[index]);
469 break;
470 }
471
472 unsigned &EntryNumber = ModRMTable[ModRMDecision];
473 if (EntryNumber == 0) {
474 EntryNumber = ModRMTableNum;
475
476 ModRMTableNum += ModRMDecision.size();
477 o1 << "/* Table" << EntryNumber << " */\n";
478 i1++;
479 for (std::vector<unsigned>::const_iterator I = ModRMDecision.begin(),
480 E = ModRMDecision.end(); I != E; ++I) {
481 o1.indent(i1 * 2) << format("0x%hx", *I) << ", /* "
482 << InstructionSpecifiers[*I].name << " */\n";
483 }
484 i1--;
485 }
486
487 o2.indent(i2) << "{ /* struct ModRMDecision */" << "\n";
488 i2++;
489
490 o2.indent(i2) << stringForDecisionType(dt) << "," << "\n";
491 o2.indent(i2) << EntryNumber << " /* Table" << EntryNumber << " */\n";
492
493 i2--;
494 o2.indent(i2) << "}";
495
496 switch (dt) {
497 default:
498 llvm_unreachable("Unknown decision type");
499 case MODRM_ONEENTRY:
500 sEntryNumber += 1;
501 break;
502 case MODRM_SPLITRM:
503 sEntryNumber += 2;
504 break;
505 case MODRM_SPLITREG:
506 sEntryNumber += 16;
507 break;
508 case MODRM_SPLITMISC:
509 sEntryNumber += 8 + 64;
510 break;
511 case MODRM_FULL:
512 sEntryNumber += 256;
513 break;
514 }
515
516 // We assume that the index can fit into uint16_t.
517 assert(sEntryNumber < 65536U &&
518 "Index into ModRMDecision is too large for uint16_t!");
519
520 ++sTableNumber;
521 }
522
523 void DisassemblerTables::emitOpcodeDecision(raw_ostream &o1, raw_ostream &o2,
524 unsigned &i1, unsigned &i2,
525 unsigned &ModRMTableNum,
526 OpcodeDecision &decision) const {
527 o2.indent(i2) << "{ /* struct OpcodeDecision */" << "\n";
528 i2++;
529 o2.indent(i2) << "{" << "\n";
530 i2++;
531
532 for (unsigned index = 0; index < 256; ++index) {
533 o2.indent(i2);
534
535 o2 << "/* 0x" << format("%02hhx", index) << " */" << "\n";
536
537 emitModRMDecision(o1, o2, i1, i2, ModRMTableNum,
538 decision.modRMDecisions[index]);
539
540 if (index < 255)
541 o2 << ",";
542
543 o2 << "\n";
544 }
545
546 i2--;
547 o2.indent(i2) << "}" << "\n";
548 i2--;
549 o2.indent(i2) << "}" << "\n";
550 }
551
552 void DisassemblerTables::emitContextDecision(raw_ostream &o1, raw_ostream &o2,
553 unsigned &i1, unsigned &i2,
554 unsigned &ModRMTableNum,
555 ContextDecision &decision,
556 const char* name) const {
557 o2.indent(i2) << "static const struct ContextDecision " << name << " = {\n";
558 i2++;
559 o2.indent(i2) << "{ /* opcodeDecisions */" << "\n";
560 i2++;
561
562 for (unsigned index = 0; index < IC_max; ++index) {
563 o2.indent(i2) << "/* ";
564 o2 << stringForContext((InstructionContext)index);
565 o2 << " */";
566 o2 << "\n";
567
568 emitOpcodeDecision(o1, o2, i1, i2, ModRMTableNum,
569 decision.opcodeDecisions[index]);
570
571 if (index + 1 < IC_max)
572 o2 << ", ";
573 }
574
575 i2--;
576 o2.indent(i2) << "}" << "\n";
577 i2--;
578 o2.indent(i2) << "};" << "\n";
579 }
580
581 void DisassemblerTables::emitInstructionInfo(raw_ostream &o,
582 unsigned &i) const {
583 unsigned NumInstructions = InstructionSpecifiers.size();
584
585 o << "static const struct OperandSpecifier x86OperandSets[]["
586 << X86_MAX_OPERANDS << "] = {\n";
587
588 typedef std::vector<std::pair<const char *, const char *> > OperandListTy;
589 std::map<OperandListTy, unsigned> OperandSets;
590
591 unsigned OperandSetNum = 0;
592 for (unsigned Index = 0; Index < NumInstructions; ++Index) {
593 OperandListTy OperandList;
594
595 for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
596 ++OperandIndex) {
597 const char *Encoding =
598 stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[Index]
599 .operands[OperandIndex].encoding);
600 const char *Type =
601 stringForOperandType((OperandType)InstructionSpecifiers[Index]
602 .operands[OperandIndex].type);
603 OperandList.push_back(std::make_pair(Encoding, Type));
604 }
605 unsigned &N = OperandSets[OperandList];
606 if (N != 0) continue;
607
608 N = ++OperandSetNum;
609
610 o << " { /* " << (OperandSetNum - 1) << " */\n";
611 for (unsigned i = 0, e = OperandList.size(); i != e; ++i) {
612 o << " { " << OperandList[i].first << ", "
613 << OperandList[i].second << " },\n";
614 }
615 o << " },\n";
616 }
617 o << "};" << "\n\n";
618
619 o.indent(i * 2) << "static const struct InstructionSpecifier ";
620 o << INSTRUCTIONS_STR "[" << InstructionSpecifiers.size() << "] = {\n";
621
622 i++;
623
624 for (unsigned index = 0; index < NumInstructions; ++index) {
625 o.indent(i * 2) << "{ /* " << index << " */" << "\n";
626 i++;
627
628 OperandListTy OperandList;
629 for (unsigned OperandIndex = 0; OperandIndex < X86_MAX_OPERANDS;
630 ++OperandIndex) {
631 const char *Encoding =
632 stringForOperandEncoding((OperandEncoding)InstructionSpecifiers[index]
633 .operands[OperandIndex].encoding);
634 const char *Type =
635 stringForOperandType((OperandType)InstructionSpecifiers[index]
636 .operands[OperandIndex].type);
637 OperandList.push_back(std::make_pair(Encoding, Type));
638 }
639 o.indent(i * 2) << (OperandSets[OperandList] - 1) << ",\n";
640
641 o.indent(i * 2) << "/* " << InstructionSpecifiers[index].name << " */";
642 o << "\n";
643
644 i--;
645 o.indent(i * 2) << "}";
646
647 if (index + 1 < NumInstructions)
648 o << ",";
649
650 o << "\n";
651 }
652
653 i--;
654 o.indent(i * 2) << "};" << "\n";
655 }
656
657 void DisassemblerTables::emitContextTable(raw_ostream &o, unsigned &i) const {
658 const unsigned int tableSize = 16384;
659 o.indent(i * 2) << "static const uint8_t " CONTEXTS_STR
660 "[" << tableSize << "] = {\n";
661 i++;
662
663 for (unsigned index = 0; index < tableSize; ++index) {
664 o.indent(i * 2);
665
666 if (index & ATTR_EVEX) {
667 o << "IC_EVEX";
668 if (index & ATTR_EVEXL2)
669 o << "_L2";
670 else if (index & ATTR_EVEXL)
671 o << "_L";
672 if (index & ATTR_REXW)
673 o << "_W";
674 if (index & ATTR_OPSIZE)
675 o << "_OPSIZE";
676 else if (index & ATTR_XD)
677 o << "_XD";
678 else if (index & ATTR_XS)
679 o << "_XS";
680 if (index & ATTR_EVEXKZ)
681 o << "_KZ";
682 else if (index & ATTR_EVEXK)
683 o << "_K";
684 if (index & ATTR_EVEXB)
685 o << "_B";
686 }
687 else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
688 o << "IC_VEX_L_W_OPSIZE";
689 else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XD))
690 o << "IC_VEX_L_W_XD";
691 else if ((index & ATTR_VEXL) && (index & ATTR_REXW) && (index & ATTR_XS))
692 o << "IC_VEX_L_W_XS";
693 else if ((index & ATTR_VEXL) && (index & ATTR_REXW))
694 o << "IC_VEX_L_W";
695 else if ((index & ATTR_VEXL) && (index & ATTR_OPSIZE))
696 o << "IC_VEX_L_OPSIZE";
697 else if ((index & ATTR_VEXL) && (index & ATTR_XD))
698 o << "IC_VEX_L_XD";
699 else if ((index & ATTR_VEXL) && (index & ATTR_XS))
700 o << "IC_VEX_L_XS";
701 else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_OPSIZE))
702 o << "IC_VEX_W_OPSIZE";
703 else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XD))
704 o << "IC_VEX_W_XD";
705 else if ((index & ATTR_VEX) && (index & ATTR_REXW) && (index & ATTR_XS))
706 o << "IC_VEX_W_XS";
707 else if (index & ATTR_VEXL)
708 o << "IC_VEX_L";
709 else if ((index & ATTR_VEX) && (index & ATTR_REXW))
710 o << "IC_VEX_W";
711 else if ((index & ATTR_VEX) && (index & ATTR_OPSIZE))
712 o << "IC_VEX_OPSIZE";
713 else if ((index & ATTR_VEX) && (index & ATTR_XD))
714 o << "IC_VEX_XD";
715 else if ((index & ATTR_VEX) && (index & ATTR_XS))
716 o << "IC_VEX_XS";
717 else if (index & ATTR_VEX)
718 o << "IC_VEX";
719 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XS))
720 o << "IC_64BIT_REXW_XS";
721 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) && (index & ATTR_XD))
722 o << "IC_64BIT_REXW_XD";
723 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
724 (index & ATTR_OPSIZE))
725 o << "IC_64BIT_REXW_OPSIZE";
726 else if ((index & ATTR_64BIT) && (index & ATTR_REXW) &&
727 (index & ATTR_ADSIZE))
728 o << "IC_64BIT_REXW_ADSIZE";
729 else if ((index & ATTR_64BIT) && (index & ATTR_XD) && (index & ATTR_OPSIZE))
730 o << "IC_64BIT_XD_OPSIZE";
731 else if ((index & ATTR_64BIT) && (index & ATTR_XS) && (index & ATTR_OPSIZE))
732 o << "IC_64BIT_XS_OPSIZE";
733 else if ((index & ATTR_64BIT) && (index & ATTR_XS))
734 o << "IC_64BIT_XS";
735 else if ((index & ATTR_64BIT) && (index & ATTR_XD))
736 o << "IC_64BIT_XD";
737 else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE) &&
738 (index & ATTR_ADSIZE))
739 o << "IC_64BIT_OPSIZE_ADSIZE";
740 else if ((index & ATTR_64BIT) && (index & ATTR_OPSIZE))
741 o << "IC_64BIT_OPSIZE";
742 else if ((index & ATTR_64BIT) && (index & ATTR_ADSIZE))
743 o << "IC_64BIT_ADSIZE";
744 else if ((index & ATTR_64BIT) && (index & ATTR_REXW))
745 o << "IC_64BIT_REXW";
746 else if ((index & ATTR_64BIT))
747 o << "IC_64BIT";
748 else if ((index & ATTR_XS) && (index & ATTR_OPSIZE))
749 o << "IC_XS_OPSIZE";
750 else if ((index & ATTR_XD) && (index & ATTR_OPSIZE))
751 o << "IC_XD_OPSIZE";
752 else if (index & ATTR_XS)
753 o << "IC_XS";
754 else if (index & ATTR_XD)
755 o << "IC_XD";
756 else if ((index & ATTR_OPSIZE) && (index & ATTR_ADSIZE))
757 o << "IC_OPSIZE_ADSIZE";
758 else if (index & ATTR_OPSIZE)
759 o << "IC_OPSIZE";
760 else if (index & ATTR_ADSIZE)
761 o << "IC_ADSIZE";
762 else
763 o << "IC";
764
765 if (index < tableSize - 1)
766 o << ",";
767 else
768 o << " ";
769
770 o << " /* " << index << " */";
771
772 o << "\n";
773 }
774
775 i--;
776 o.indent(i * 2) << "};" << "\n";
777 }
778
779 void DisassemblerTables::emitContextDecisions(raw_ostream &o1, raw_ostream &o2,
780 unsigned &i1, unsigned &i2,
781 unsigned &ModRMTableNum) const {
782 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[0], ONEBYTE_STR);
783 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[1], TWOBYTE_STR);
784 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[2], THREEBYTE38_STR);
785 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[3], THREEBYTE3A_STR);
786 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[4], XOP8_MAP_STR);
787 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[5], XOP9_MAP_STR);
788 emitContextDecision(o1, o2, i1, i2, ModRMTableNum, *Tables[6], XOPA_MAP_STR);
789 }
790
791 void DisassemblerTables::emit(raw_ostream &o) const {
792 unsigned i1 = 0;
793 unsigned i2 = 0;
794
795 std::string s1;
796 std::string s2;
797
798 raw_string_ostream o1(s1);
799 raw_string_ostream o2(s2);
800
801 emitInstructionInfo(o, i2);
802 o << "\n";
803
804 emitContextTable(o, i2);
805 o << "\n";
806
807 unsigned ModRMTableNum = 0;
808
809 o << "static const InstrUID modRMTable[] = {\n";
810 i1++;
811 std::vector<unsigned> EmptyTable(1, 0);
812 ModRMTable[EmptyTable] = ModRMTableNum;
813 ModRMTableNum += EmptyTable.size();
814 o1 << "/* EmptyTable */\n";
815 o1.indent(i1 * 2) << "0x0,\n";
816 i1--;
817 emitContextDecisions(o1, o2, i1, i2, ModRMTableNum);
818
819 o << o1.str();
820 o << " 0x0\n";
821 o << "};\n";
822 o << "\n";
823 o << o2.str();
824 o << "\n";
825 o << "\n";
826 }
827
828 void DisassemblerTables::setTableFields(ModRMDecision &decision,
829 const ModRMFilter &filter,
830 InstrUID uid,
831 uint8_t opcode) {
832 for (unsigned index = 0; index < 256; ++index) {
833 if (filter.accepts(index)) {
834 if (decision.instructionIDs[index] == uid)
835 continue;
836
837 if (decision.instructionIDs[index] != 0) {
838 InstructionSpecifier &newInfo =
839 InstructionSpecifiers[uid];
840 InstructionSpecifier &previousInfo =
841 InstructionSpecifiers[decision.instructionIDs[index]];
842
843 if(previousInfo.name == "NOOP" && (newInfo.name == "XCHG16ar" ||
844 newInfo.name == "XCHG32ar" ||
845 newInfo.name == "XCHG32ar64" ||
846 newInfo.name == "XCHG64ar"))
847 continue; // special case for XCHG*ar and NOOP
848
849 if (outranks(previousInfo.insnContext, newInfo.insnContext))
850 continue;
851
852 if (previousInfo.insnContext == newInfo.insnContext) {
853 errs() << "Error: Primary decode conflict: ";
854 errs() << newInfo.name << " would overwrite " << previousInfo.name;
855 errs() << "\n";
856 errs() << "ModRM " << index << "\n";
857 errs() << "Opcode " << (uint16_t)opcode << "\n";
858 errs() << "Context " << stringForContext(newInfo.insnContext) << "\n";
859 HasConflicts = true;
860 }
861 }
862
863 decision.instructionIDs[index] = uid;
864 }
865 }
866 }
867
868 void DisassemblerTables::setTableFields(OpcodeType type,
869 InstructionContext insnContext,
870 uint8_t opcode,
871 const ModRMFilter &filter,
872 InstrUID uid,
873 bool is32bit,
874 bool ignoresVEX_L,
875 unsigned addressSize) {
876 ContextDecision &decision = *Tables[type];
877
878 for (unsigned index = 0; index < IC_max; ++index) {
879 if ((is32bit || addressSize == 16) &&
880 inheritsFrom((InstructionContext)index, IC_64BIT))
881 continue;
882
883 bool adSize64 = addressSize == 64;
884 if (inheritsFrom((InstructionContext)index,
885 InstructionSpecifiers[uid].insnContext, ignoresVEX_L,
886 adSize64))
887 setTableFields(decision.opcodeDecisions[index].modRMDecisions[opcode],
888 filter,
889 uid,
890 opcode);
891 }
892 }