]> git.proxmox.com Git - rustc.git/blob - src/test/run-pass/saturating-float-casts.rs
New upstream version 1.23.0+dfsg1
[rustc.git] / src / test / run-pass / saturating-float-casts.rs
1 // Copyright 2017 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Tests saturating float->int casts. See u128-as-f32.rs for the opposite direction.
12 // compile-flags: -Z saturating-float-casts
13
14 #![feature(test, i128, i128_type, stmt_expr_attributes)]
15 #![deny(overflowing_literals)]
16 extern crate test;
17
18 use std::{f32, f64};
19 use std::{u8, i8, u16, i16, u32, i32, u64, i64};
20 #[cfg(not(target_os="emscripten"))]
21 use std::{u128, i128};
22 use test::black_box;
23
24 macro_rules! test {
25 ($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => (
26 // black_box disables constant evaluation to test run-time conversions:
27 assert_eq!(black_box::<$src_ty>($val) as $dest_ty, $expected,
28 "run-time {} -> {}", stringify!($src_ty), stringify!($dest_ty));
29 );
30
31 ($fval:expr, f* -> $ity:ident, $ival:expr) => (
32 test!($fval, f32 -> $ity, $ival);
33 test!($fval, f64 -> $ity, $ival);
34 )
35 }
36
37 // This macro tests const eval in addition to run-time evaluation.
38 // If and when saturating casts are adopted, this macro should be merged with test!() to ensure
39 // that run-time and const eval agree on inputs that currently trigger a const eval error.
40 macro_rules! test_c {
41 ($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => ({
42 test!($val, $src_ty -> $dest_ty, $expected);
43 {
44 const X: $src_ty = $val;
45 const Y: $dest_ty = X as $dest_ty;
46 assert_eq!(Y, $expected,
47 "const eval {} -> {}", stringify!($src_ty), stringify!($dest_ty));
48 }
49 });
50
51 ($fval:expr, f* -> $ity:ident, $ival:expr) => (
52 test_c!($fval, f32 -> $ity, $ival);
53 test_c!($fval, f64 -> $ity, $ival);
54 )
55 }
56
57 macro_rules! common_fptoi_tests {
58 ($fty:ident -> $($ity:ident)+) => ({ $(
59 test!($fty::NAN, $fty -> $ity, 0);
60 test!($fty::INFINITY, $fty -> $ity, $ity::MAX);
61 test!($fty::NEG_INFINITY, $fty -> $ity, $ity::MIN);
62 // These two tests are not solely float->int tests, in particular the latter relies on
63 // `u128::MAX as f32` not being UB. But that's okay, since this file tests int->float
64 // as well, the test is just slightly misplaced.
65 test!($ity::MIN as $fty, $fty -> $ity, $ity::MIN);
66 test!($ity::MAX as $fty, $fty -> $ity, $ity::MAX);
67 test_c!(0., $fty -> $ity, 0);
68 test_c!($fty::MIN_POSITIVE, $fty -> $ity, 0);
69 test!(-0.9, $fty -> $ity, 0);
70 test_c!(1., $fty -> $ity, 1);
71 test_c!(42., $fty -> $ity, 42);
72 )+ });
73
74 (f* -> $($ity:ident)+) => ({
75 common_fptoi_tests!(f32 -> $($ity)+);
76 common_fptoi_tests!(f64 -> $($ity)+);
77 })
78 }
79
80 macro_rules! fptoui_tests {
81 ($fty: ident -> $($ity: ident)+) => ({ $(
82 test!(-0., $fty -> $ity, 0);
83 test!(-$fty::MIN_POSITIVE, $fty -> $ity, 0);
84 test!(-0.99999994, $fty -> $ity, 0);
85 test!(-1., $fty -> $ity, 0);
86 test!(-100., $fty -> $ity, 0);
87 test!(#[allow(overflowing_literals)] -1e50, $fty -> $ity, 0);
88 test!(#[allow(overflowing_literals)] -1e130, $fty -> $ity, 0);
89 )+ });
90
91 (f* -> $($ity:ident)+) => ({
92 fptoui_tests!(f32 -> $($ity)+);
93 fptoui_tests!(f64 -> $($ity)+);
94 })
95 }
96
97 pub fn main() {
98 common_fptoi_tests!(f* -> i8 i16 i32 i64 u8 u16 u32 u64);
99 fptoui_tests!(f* -> u8 u16 u32 u64);
100 // FIXME emscripten does not support i128
101 #[cfg(not(target_os="emscripten"))] {
102 common_fptoi_tests!(f* -> i128 u128);
103 fptoui_tests!(f* -> u128);
104 }
105
106 // The following tests cover edge cases for some integer types.
107
108 // # u8
109 test_c!(254., f* -> u8, 254);
110 test!(256., f* -> u8, 255);
111
112 // # i8
113 test_c!(-127., f* -> i8, -127);
114 test!(-129., f* -> i8, -128);
115 test_c!(126., f* -> i8, 126);
116 test!(128., f* -> i8, 127);
117
118 // # i32
119 // -2147483648. is i32::MIN (exactly)
120 test_c!(-2147483648., f* -> i32, i32::MIN);
121 // 2147483648. is i32::MAX rounded up
122 test!(2147483648., f32 -> i32, 2147483647);
123 // With 24 significand bits, floats with magnitude in [2^30 + 1, 2^31] are rounded to
124 // multiples of 2^7. Therefore, nextDown(round(i32::MAX)) is 2^31 - 128:
125 test_c!(2147483520., f32 -> i32, 2147483520);
126 // Similarly, nextUp(i32::MIN) is i32::MIN + 2^8 and nextDown(i32::MIN) is i32::MIN - 2^7
127 test!(-2147483904., f* -> i32, i32::MIN);
128 test_c!(-2147483520., f* -> i32, -2147483520);
129
130 // # u32
131 // round(MAX) and nextUp(round(MAX))
132 test_c!(4294967040., f* -> u32, 4294967040);
133 test!(4294967296., f* -> u32, 4294967295);
134
135 // # u128
136 #[cfg(not(target_os="emscripten"))]
137 {
138 // float->int:
139 test_c!(f32::MAX, f32 -> u128, 0xffffff00000000000000000000000000);
140 // nextDown(f32::MAX) = 2^128 - 2 * 2^104
141 const SECOND_LARGEST_F32: f32 = 340282326356119256160033759537265639424.;
142 test_c!(SECOND_LARGEST_F32, f32 -> u128, 0xfffffe00000000000000000000000000);
143 }
144 }