]> git.proxmox.com Git - rustc.git/blob - src/tools/clippy/clippy_lints/src/eta_reduction.rs
New upstream version 1.52.1+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / eta_reduction.rs
1 use if_chain::if_chain;
2 use rustc_errors::Applicability;
3 use rustc_hir::{def_id, Expr, ExprKind, Param, PatKind, QPath};
4 use rustc_lint::{LateContext, LateLintPass, LintContext};
5 use rustc_middle::lint::in_external_macro;
6 use rustc_middle::ty::{self, Ty};
7 use rustc_session::{declare_lint_pass, declare_tool_lint};
8
9 use crate::utils::{
10 implements_trait, is_adjusted, iter_input_pats, snippet_opt, span_lint_and_sugg, span_lint_and_then,
11 type_is_unsafe_function,
12 };
13 use clippy_utils::higher;
14 use clippy_utils::higher::VecArgs;
15
16 declare_clippy_lint! {
17 /// **What it does:** Checks for closures which just call another function where
18 /// the function can be called directly. `unsafe` functions or calls where types
19 /// get adjusted are ignored.
20 ///
21 /// **Why is this bad?** Needlessly creating a closure adds code for no benefit
22 /// and gives the optimizer more work.
23 ///
24 /// **Known problems:** If creating the closure inside the closure has a side-
25 /// effect then moving the closure creation out will change when that side-
26 /// effect runs.
27 /// See [#1439](https://github.com/rust-lang/rust-clippy/issues/1439) for more details.
28 ///
29 /// **Example:**
30 /// ```rust,ignore
31 /// // Bad
32 /// xs.map(|x| foo(x))
33 ///
34 /// // Good
35 /// xs.map(foo)
36 /// ```
37 /// where `foo(_)` is a plain function that takes the exact argument type of
38 /// `x`.
39 pub REDUNDANT_CLOSURE,
40 style,
41 "redundant closures, i.e., `|a| foo(a)` (which can be written as just `foo`)"
42 }
43
44 declare_clippy_lint! {
45 /// **What it does:** Checks for closures which only invoke a method on the closure
46 /// argument and can be replaced by referencing the method directly.
47 ///
48 /// **Why is this bad?** It's unnecessary to create the closure.
49 ///
50 /// **Known problems:** [#3071](https://github.com/rust-lang/rust-clippy/issues/3071),
51 /// [#3942](https://github.com/rust-lang/rust-clippy/issues/3942),
52 /// [#4002](https://github.com/rust-lang/rust-clippy/issues/4002)
53 ///
54 ///
55 /// **Example:**
56 /// ```rust,ignore
57 /// Some('a').map(|s| s.to_uppercase());
58 /// ```
59 /// may be rewritten as
60 /// ```rust,ignore
61 /// Some('a').map(char::to_uppercase);
62 /// ```
63 pub REDUNDANT_CLOSURE_FOR_METHOD_CALLS,
64 pedantic,
65 "redundant closures for method calls"
66 }
67
68 declare_lint_pass!(EtaReduction => [REDUNDANT_CLOSURE, REDUNDANT_CLOSURE_FOR_METHOD_CALLS]);
69
70 impl<'tcx> LateLintPass<'tcx> for EtaReduction {
71 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
72 if in_external_macro(cx.sess(), expr.span) {
73 return;
74 }
75
76 match expr.kind {
77 ExprKind::Call(_, args) | ExprKind::MethodCall(_, _, args, _) => {
78 for arg in args {
79 // skip `foo(macro!())`
80 if arg.span.ctxt() == expr.span.ctxt() {
81 check_closure(cx, arg)
82 }
83 }
84 },
85 _ => (),
86 }
87 }
88 }
89
90 fn check_closure(cx: &LateContext<'_>, expr: &Expr<'_>) {
91 if let ExprKind::Closure(_, ref decl, eid, _, _) = expr.kind {
92 let body = cx.tcx.hir().body(eid);
93 let ex = &body.value;
94
95 if ex.span.ctxt() != expr.span.ctxt() {
96 if let Some(VecArgs::Vec(&[])) = higher::vec_macro(cx, ex) {
97 // replace `|| vec![]` with `Vec::new`
98 span_lint_and_sugg(
99 cx,
100 REDUNDANT_CLOSURE,
101 expr.span,
102 "redundant closure",
103 "replace the closure with `Vec::new`",
104 "std::vec::Vec::new".into(),
105 Applicability::MachineApplicable,
106 );
107 }
108 // skip `foo(|| macro!())`
109 return;
110 }
111
112 if_chain!(
113 if let ExprKind::Call(ref caller, ref args) = ex.kind;
114
115 if let ExprKind::Path(_) = caller.kind;
116
117 // Not the same number of arguments, there is no way the closure is the same as the function return;
118 if args.len() == decl.inputs.len();
119
120 // Are the expression or the arguments type-adjusted? Then we need the closure
121 if !(is_adjusted(cx, ex) || args.iter().any(|arg| is_adjusted(cx, arg)));
122
123 let fn_ty = cx.typeck_results().expr_ty(caller);
124
125 if matches!(fn_ty.kind(), ty::FnDef(_, _) | ty::FnPtr(_) | ty::Closure(_, _));
126
127 if !type_is_unsafe_function(cx, fn_ty);
128
129 if compare_inputs(&mut iter_input_pats(decl, body), &mut args.iter());
130
131 then {
132 span_lint_and_then(cx, REDUNDANT_CLOSURE, expr.span, "redundant closure", |diag| {
133 if let Some(snippet) = snippet_opt(cx, caller.span) {
134 diag.span_suggestion(
135 expr.span,
136 "replace the closure with the function itself",
137 snippet,
138 Applicability::MachineApplicable,
139 );
140 }
141 });
142 }
143 );
144
145 if_chain!(
146 if let ExprKind::MethodCall(ref path, _, ref args, _) = ex.kind;
147
148 // Not the same number of arguments, there is no way the closure is the same as the function return;
149 if args.len() == decl.inputs.len();
150
151 // Are the expression or the arguments type-adjusted? Then we need the closure
152 if !(is_adjusted(cx, ex) || args.iter().skip(1).any(|arg| is_adjusted(cx, arg)));
153
154 let method_def_id = cx.typeck_results().type_dependent_def_id(ex.hir_id).unwrap();
155 if !type_is_unsafe_function(cx, cx.tcx.type_of(method_def_id));
156
157 if compare_inputs(&mut iter_input_pats(decl, body), &mut args.iter());
158
159 if let Some(name) = get_ufcs_type_name(cx, method_def_id, &args[0]);
160
161 then {
162 span_lint_and_sugg(
163 cx,
164 REDUNDANT_CLOSURE_FOR_METHOD_CALLS,
165 expr.span,
166 "redundant closure",
167 "replace the closure with the method itself",
168 format!("{}::{}", name, path.ident.name),
169 Applicability::MachineApplicable,
170 );
171 }
172 );
173 }
174 }
175
176 /// Tries to determine the type for universal function call to be used instead of the closure
177 fn get_ufcs_type_name(cx: &LateContext<'_>, method_def_id: def_id::DefId, self_arg: &Expr<'_>) -> Option<String> {
178 let expected_type_of_self = &cx.tcx.fn_sig(method_def_id).inputs_and_output().skip_binder()[0];
179 let actual_type_of_self = &cx.typeck_results().node_type(self_arg.hir_id);
180
181 if let Some(trait_id) = cx.tcx.trait_of_item(method_def_id) {
182 if match_borrow_depth(expected_type_of_self, &actual_type_of_self)
183 && implements_trait(cx, actual_type_of_self, trait_id, &[])
184 {
185 return Some(cx.tcx.def_path_str(trait_id));
186 }
187 }
188
189 cx.tcx.impl_of_method(method_def_id).and_then(|_| {
190 //a type may implicitly implement other type's methods (e.g. Deref)
191 if match_types(expected_type_of_self, &actual_type_of_self) {
192 return Some(get_type_name(cx, &actual_type_of_self));
193 }
194 None
195 })
196 }
197
198 fn match_borrow_depth(lhs: Ty<'_>, rhs: Ty<'_>) -> bool {
199 match (&lhs.kind(), &rhs.kind()) {
200 (ty::Ref(_, t1, mut1), ty::Ref(_, t2, mut2)) => mut1 == mut2 && match_borrow_depth(&t1, &t2),
201 (l, r) => !matches!((l, r), (ty::Ref(_, _, _), _) | (_, ty::Ref(_, _, _))),
202 }
203 }
204
205 fn match_types(lhs: Ty<'_>, rhs: Ty<'_>) -> bool {
206 match (&lhs.kind(), &rhs.kind()) {
207 (ty::Bool, ty::Bool)
208 | (ty::Char, ty::Char)
209 | (ty::Int(_), ty::Int(_))
210 | (ty::Uint(_), ty::Uint(_))
211 | (ty::Str, ty::Str) => true,
212 (ty::Ref(_, t1, mut1), ty::Ref(_, t2, mut2)) => mut1 == mut2 && match_types(t1, t2),
213 (ty::Array(t1, _), ty::Array(t2, _)) | (ty::Slice(t1), ty::Slice(t2)) => match_types(t1, t2),
214 (ty::Adt(def1, _), ty::Adt(def2, _)) => def1 == def2,
215 (_, _) => false,
216 }
217 }
218
219 fn get_type_name(cx: &LateContext<'_>, ty: Ty<'_>) -> String {
220 match ty.kind() {
221 ty::Adt(t, _) => cx.tcx.def_path_str(t.did),
222 ty::Ref(_, r, _) => get_type_name(cx, &r),
223 _ => ty.to_string(),
224 }
225 }
226
227 fn compare_inputs(
228 closure_inputs: &mut dyn Iterator<Item = &Param<'_>>,
229 call_args: &mut dyn Iterator<Item = &Expr<'_>>,
230 ) -> bool {
231 for (closure_input, function_arg) in closure_inputs.zip(call_args) {
232 if let PatKind::Binding(_, _, ident, _) = closure_input.pat.kind {
233 // XXXManishearth Should I be checking the binding mode here?
234 if let ExprKind::Path(QPath::Resolved(None, ref p)) = function_arg.kind {
235 if p.segments.len() != 1 {
236 // If it's a proper path, it can't be a local variable
237 return false;
238 }
239 if p.segments[0].ident.name != ident.name {
240 // The two idents should be the same
241 return false;
242 }
243 } else {
244 return false;
245 }
246 } else {
247 return false;
248 }
249 }
250 true
251 }