]> git.proxmox.com Git - rustc.git/blob - src/tools/clippy/clippy_lints/src/methods.rs
New upstream version 1.25.0+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / methods.rs
1 use rustc::hir;
2 use rustc::lint::*;
3 use rustc::middle::const_val::ConstVal;
4 use rustc::ty::{self, Ty};
5 use rustc::hir::def::Def;
6 use rustc::ty::subst::Substs;
7 use rustc_const_eval::ConstContext;
8 use std::borrow::Cow;
9 use std::fmt;
10 use std::iter;
11 use syntax::ast;
12 use syntax::codemap::{Span, BytePos};
13 use utils::{get_arg_name, get_trait_def_id, implements_trait, in_external_macro, in_macro, is_copy, is_self, is_self_ty,
14 iter_input_pats, last_path_segment, match_def_path, match_path, match_qpath, match_trait_method,
15 match_type, method_chain_args, match_var, return_ty, remove_blocks, same_tys, single_segment_path, snippet,
16 span_lint, span_lint_and_sugg, span_lint_and_then, span_note_and_lint, walk_ptrs_ty, walk_ptrs_ty_depth};
17 use utils::paths;
18 use utils::sugg;
19 use utils::const_to_u64;
20
21 #[derive(Clone)]
22 pub struct Pass;
23
24 /// **What it does:** Checks for `.unwrap()` calls on `Option`s.
25 ///
26 /// **Why is this bad?** Usually it is better to handle the `None` case, or to
27 /// at least call `.expect(_)` with a more helpful message. Still, for a lot of
28 /// quick-and-dirty code, `unwrap` is a good choice, which is why this lint is
29 /// `Allow` by default.
30 ///
31 /// **Known problems:** None.
32 ///
33 /// **Example:**
34 /// ```rust
35 /// x.unwrap()
36 /// ```
37 declare_lint! {
38 pub OPTION_UNWRAP_USED,
39 Allow,
40 "using `Option.unwrap()`, which should at least get a better message using `expect()`"
41 }
42
43 /// **What it does:** Checks for `.unwrap()` calls on `Result`s.
44 ///
45 /// **Why is this bad?** `result.unwrap()` will let the thread panic on `Err`
46 /// values. Normally, you want to implement more sophisticated error handling,
47 /// and propagate errors upwards with `try!`.
48 ///
49 /// Even if you want to panic on errors, not all `Error`s implement good
50 /// messages on display. Therefore it may be beneficial to look at the places
51 /// where they may get displayed. Activate this lint to do just that.
52 ///
53 /// **Known problems:** None.
54 ///
55 /// **Example:**
56 /// ```rust
57 /// x.unwrap()
58 /// ```
59 declare_lint! {
60 pub RESULT_UNWRAP_USED,
61 Allow,
62 "using `Result.unwrap()`, which might be better handled"
63 }
64
65 /// **What it does:** Checks for methods that should live in a trait
66 /// implementation of a `std` trait (see [llogiq's blog
67 /// post](http://llogiq.github.io/2015/07/30/traits.html) for further
68 /// information) instead of an inherent implementation.
69 ///
70 /// **Why is this bad?** Implementing the traits improve ergonomics for users of
71 /// the code, often with very little cost. Also people seeing a `mul(...)`
72 /// method
73 /// may expect `*` to work equally, so you should have good reason to disappoint
74 /// them.
75 ///
76 /// **Known problems:** None.
77 ///
78 /// **Example:**
79 /// ```rust
80 /// struct X;
81 /// impl X {
82 /// fn add(&self, other: &X) -> X { .. }
83 /// }
84 /// ```
85 declare_lint! {
86 pub SHOULD_IMPLEMENT_TRAIT,
87 Warn,
88 "defining a method that should be implementing a std trait"
89 }
90
91 /// **What it does:** Checks for methods with certain name prefixes and which
92 /// doesn't match how self is taken. The actual rules are:
93 ///
94 /// |Prefix |`self` taken |
95 /// |-------|----------------------|
96 /// |`as_` |`&self` or `&mut self`|
97 /// |`from_`| none |
98 /// |`into_`|`self` |
99 /// |`is_` |`&self` or none |
100 /// |`to_` |`&self` |
101 ///
102 /// **Why is this bad?** Consistency breeds readability. If you follow the
103 /// conventions, your users won't be surprised that they, e.g., need to supply a
104 /// mutable reference to a `as_..` function.
105 ///
106 /// **Known problems:** None.
107 ///
108 /// **Example:**
109 /// ```rust
110 /// impl X {
111 /// fn as_str(self) -> &str { .. }
112 /// }
113 /// ```
114 declare_lint! {
115 pub WRONG_SELF_CONVENTION,
116 Warn,
117 "defining a method named with an established prefix (like \"into_\") that takes \
118 `self` with the wrong convention"
119 }
120
121 /// **What it does:** This is the same as
122 /// [`wrong_self_convention`](#wrong_self_convention), but for public items.
123 ///
124 /// **Why is this bad?** See [`wrong_self_convention`](#wrong_self_convention).
125 ///
126 /// **Known problems:** Actually *renaming* the function may break clients if
127 /// the function is part of the public interface. In that case, be mindful of
128 /// the stability guarantees you've given your users.
129 ///
130 /// **Example:**
131 /// ```rust
132 /// impl X {
133 /// pub fn as_str(self) -> &str { .. }
134 /// }
135 /// ```
136 declare_lint! {
137 pub WRONG_PUB_SELF_CONVENTION,
138 Allow,
139 "defining a public method named with an established prefix (like \"into_\") that takes \
140 `self` with the wrong convention"
141 }
142
143 /// **What it does:** Checks for usage of `ok().expect(..)`.
144 ///
145 /// **Why is this bad?** Because you usually call `expect()` on the `Result`
146 /// directly to get a better error message.
147 ///
148 /// **Known problems:** None.
149 ///
150 /// **Example:**
151 /// ```rust
152 /// x.ok().expect("why did I do this again?")
153 /// ```
154 declare_lint! {
155 pub OK_EXPECT,
156 Warn,
157 "using `ok().expect()`, which gives worse error messages than \
158 calling `expect` directly on the Result"
159 }
160
161 /// **What it does:** Checks for usage of `_.map(_).unwrap_or(_)`.
162 ///
163 /// **Why is this bad?** Readability, this can be written more concisely as
164 /// `_.map_or(_, _)`.
165 ///
166 /// **Known problems:** None.
167 ///
168 /// **Example:**
169 /// ```rust
170 /// x.map(|a| a + 1).unwrap_or(0)
171 /// ```
172 declare_lint! {
173 pub OPTION_MAP_UNWRAP_OR,
174 Allow,
175 "using `Option.map(f).unwrap_or(a)`, which is more succinctly expressed as \
176 `map_or(a, f)`"
177 }
178
179 /// **What it does:** Checks for usage of `_.map(_).unwrap_or_else(_)`.
180 ///
181 /// **Why is this bad?** Readability, this can be written more concisely as
182 /// `_.map_or_else(_, _)`.
183 ///
184 /// **Known problems:** None.
185 ///
186 /// **Example:**
187 /// ```rust
188 /// x.map(|a| a + 1).unwrap_or_else(some_function)
189 /// ```
190 declare_lint! {
191 pub OPTION_MAP_UNWRAP_OR_ELSE,
192 Allow,
193 "using `Option.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \
194 `map_or_else(g, f)`"
195 }
196
197 /// **What it does:** Checks for usage of `result.map(_).unwrap_or_else(_)`.
198 ///
199 /// **Why is this bad?** Readability, this can be written more concisely as
200 /// `result.ok().map_or_else(_, _)`.
201 ///
202 /// **Known problems:** None.
203 ///
204 /// **Example:**
205 /// ```rust
206 /// x.map(|a| a + 1).unwrap_or_else(some_function)
207 /// ```
208 declare_lint! {
209 pub RESULT_MAP_UNWRAP_OR_ELSE,
210 Allow,
211 "using `Result.map(f).unwrap_or_else(g)`, which is more succinctly expressed as \
212 `.ok().map_or_else(g, f)`"
213 }
214
215 /// **What it does:** Checks for usage of `_.map_or(None, _)`.
216 ///
217 /// **Why is this bad?** Readability, this can be written more concisely as
218 /// `_.and_then(_)`.
219 ///
220 /// **Known problems:** None.
221 ///
222 /// **Example:**
223 /// ```rust
224 /// opt.map_or(None, |a| a + 1)
225 /// ```
226 declare_lint! {
227 pub OPTION_MAP_OR_NONE,
228 Warn,
229 "using `Option.map_or(None, f)`, which is more succinctly expressed as \
230 `and_then(f)`"
231 }
232
233 /// **What it does:** Checks for usage of `_.filter(_).next()`.
234 ///
235 /// **Why is this bad?** Readability, this can be written more concisely as
236 /// `_.find(_)`.
237 ///
238 /// **Known problems:** None.
239 ///
240 /// **Example:**
241 /// ```rust
242 /// iter.filter(|x| x == 0).next()
243 /// ```
244 declare_lint! {
245 pub FILTER_NEXT,
246 Warn,
247 "using `filter(p).next()`, which is more succinctly expressed as `.find(p)`"
248 }
249
250 /// **What it does:** Checks for usage of `_.filter(_).map(_)`,
251 /// `_.filter(_).flat_map(_)`, `_.filter_map(_).flat_map(_)` and similar.
252 ///
253 /// **Why is this bad?** Readability, this can be written more concisely as a
254 /// single method call.
255 ///
256 /// **Known problems:** Often requires a condition + Option/Iterator creation
257 /// inside the closure.
258 ///
259 /// **Example:**
260 /// ```rust
261 /// iter.filter(|x| x == 0).map(|x| x * 2)
262 /// ```
263 declare_lint! {
264 pub FILTER_MAP,
265 Allow,
266 "using combinations of `filter`, `map`, `filter_map` and `flat_map` which can \
267 usually be written as a single method call"
268 }
269
270 /// **What it does:** Checks for an iterator search (such as `find()`,
271 /// `position()`, or `rposition()`) followed by a call to `is_some()`.
272 ///
273 /// **Why is this bad?** Readability, this can be written more concisely as
274 /// `_.any(_)`.
275 ///
276 /// **Known problems:** None.
277 ///
278 /// **Example:**
279 /// ```rust
280 /// iter.find(|x| x == 0).is_some()
281 /// ```
282 declare_lint! {
283 pub SEARCH_IS_SOME,
284 Warn,
285 "using an iterator search followed by `is_some()`, which is more succinctly \
286 expressed as a call to `any()`"
287 }
288
289 /// **What it does:** Checks for usage of `.chars().next()` on a `str` to check
290 /// if it starts with a given char.
291 ///
292 /// **Why is this bad?** Readability, this can be written more concisely as
293 /// `_.starts_with(_)`.
294 ///
295 /// **Known problems:** None.
296 ///
297 /// **Example:**
298 /// ```rust
299 /// name.chars().next() == Some('_')
300 /// ```
301 declare_lint! {
302 pub CHARS_NEXT_CMP,
303 Warn,
304 "using `.chars().next()` to check if a string starts with a char"
305 }
306
307 /// **What it does:** Checks for calls to `.or(foo(..))`, `.unwrap_or(foo(..))`,
308 /// etc., and suggests to use `or_else`, `unwrap_or_else`, etc., or
309 /// `unwrap_or_default` instead.
310 ///
311 /// **Why is this bad?** The function will always be called and potentially
312 /// allocate an object acting as the default.
313 ///
314 /// **Known problems:** If the function has side-effects, not calling it will
315 /// change the semantic of the program, but you shouldn't rely on that anyway.
316 ///
317 /// **Example:**
318 /// ```rust
319 /// foo.unwrap_or(String::new())
320 /// ```
321 /// this can instead be written:
322 /// ```rust
323 /// foo.unwrap_or_else(String::new)
324 /// ```
325 /// or
326 /// ```rust
327 /// foo.unwrap_or_default()
328 /// ```
329 declare_lint! {
330 pub OR_FUN_CALL,
331 Warn,
332 "using any `*or` method with a function call, which suggests `*or_else`"
333 }
334
335 /// **What it does:** Checks for usage of `.clone()` on a `Copy` type.
336 ///
337 /// **Why is this bad?** The only reason `Copy` types implement `Clone` is for
338 /// generics, not for using the `clone` method on a concrete type.
339 ///
340 /// **Known problems:** None.
341 ///
342 /// **Example:**
343 /// ```rust
344 /// 42u64.clone()
345 /// ```
346 declare_lint! {
347 pub CLONE_ON_COPY,
348 Warn,
349 "using `clone` on a `Copy` type"
350 }
351
352 /// **What it does:** Checks for usage of `.clone()` on a ref-counted pointer,
353 /// (Rc, Arc, rc::Weak, or sync::Weak), and suggests calling Clone on
354 /// the corresponding trait instead.
355 ///
356 /// **Why is this bad?**: Calling '.clone()' on an Rc, Arc, or Weak
357 /// can obscure the fact that only the pointer is being cloned, not the underlying
358 /// data.
359 ///
360 /// **Example:**
361 /// ```rust
362 /// x.clone()
363 /// ```
364 declare_restriction_lint! {
365 pub CLONE_ON_REF_PTR,
366 "using 'clone' on a ref-counted pointer"
367 }
368
369 /// **What it does:** Checks for usage of `.clone()` on an `&&T`.
370 ///
371 /// **Why is this bad?** Cloning an `&&T` copies the inner `&T`, instead of
372 /// cloning the underlying `T`.
373 ///
374 /// **Known problems:** None.
375 ///
376 /// **Example:**
377 /// ```rust
378 /// fn main() {
379 /// let x = vec![1];
380 /// let y = &&x;
381 /// let z = y.clone();
382 /// println!("{:p} {:p}",*y, z); // prints out the same pointer
383 /// }
384 /// ```
385 declare_lint! {
386 pub CLONE_DOUBLE_REF,
387 Warn,
388 "using `clone` on `&&T`"
389 }
390
391 /// **What it does:** Checks for `new` not returning `Self`.
392 ///
393 /// **Why is this bad?** As a convention, `new` methods are used to make a new
394 /// instance of a type.
395 ///
396 /// **Known problems:** None.
397 ///
398 /// **Example:**
399 /// ```rust
400 /// impl Foo {
401 /// fn new(..) -> NotAFoo {
402 /// }
403 /// }
404 /// ```
405 declare_lint! {
406 pub NEW_RET_NO_SELF,
407 Warn,
408 "not returning `Self` in a `new` method"
409 }
410
411 /// **What it does:** Checks for string methods that receive a single-character
412 /// `str` as an argument, e.g. `_.split("x")`.
413 ///
414 /// **Why is this bad?** Performing these methods using a `char` is faster than
415 /// using a `str`.
416 ///
417 /// **Known problems:** Does not catch multi-byte unicode characters.
418 ///
419 /// **Example:**
420 /// `_.split("x")` could be `_.split('x')
421 declare_lint! {
422 pub SINGLE_CHAR_PATTERN,
423 Warn,
424 "using a single-character str where a char could be used, e.g. \
425 `_.split(\"x\")`"
426 }
427
428 /// **What it does:** Checks for getting the inner pointer of a temporary
429 /// `CString`.
430 ///
431 /// **Why is this bad?** The inner pointer of a `CString` is only valid as long
432 /// as the `CString` is alive.
433 ///
434 /// **Known problems:** None.
435 ///
436 /// **Example:**
437 /// ```rust,ignore
438 /// let c_str = CString::new("foo").unwrap().as_ptr();
439 /// unsafe {
440 /// call_some_ffi_func(c_str);
441 /// }
442 /// ```
443 /// Here `c_str` point to a freed address. The correct use would be:
444 /// ```rust,ignore
445 /// let c_str = CString::new("foo").unwrap();
446 /// unsafe {
447 /// call_some_ffi_func(c_str.as_ptr());
448 /// }
449 /// ```
450 declare_lint! {
451 pub TEMPORARY_CSTRING_AS_PTR,
452 Warn,
453 "getting the inner pointer of a temporary `CString`"
454 }
455
456 /// **What it does:** Checks for use of `.iter().nth()` (and the related
457 /// `.iter_mut().nth()`) on standard library types with O(1) element access.
458 ///
459 /// **Why is this bad?** `.get()` and `.get_mut()` are more efficient and more
460 /// readable.
461 ///
462 /// **Known problems:** None.
463 ///
464 /// **Example:**
465 /// ```rust
466 /// let some_vec = vec![0, 1, 2, 3];
467 /// let bad_vec = some_vec.iter().nth(3);
468 /// let bad_slice = &some_vec[..].iter().nth(3);
469 /// ```
470 /// The correct use would be:
471 /// ```rust
472 /// let some_vec = vec![0, 1, 2, 3];
473 /// let bad_vec = some_vec.get(3);
474 /// let bad_slice = &some_vec[..].get(3);
475 /// ```
476 declare_lint! {
477 pub ITER_NTH,
478 Warn,
479 "using `.iter().nth()` on a standard library type with O(1) element access"
480 }
481
482 /// **What it does:** Checks for use of `.skip(x).next()` on iterators.
483 ///
484 /// **Why is this bad?** `.nth(x)` is cleaner
485 ///
486 /// **Known problems:** None.
487 ///
488 /// **Example:**
489 /// ```rust
490 /// let some_vec = vec![0, 1, 2, 3];
491 /// let bad_vec = some_vec.iter().skip(3).next();
492 /// let bad_slice = &some_vec[..].iter().skip(3).next();
493 /// ```
494 /// The correct use would be:
495 /// ```rust
496 /// let some_vec = vec![0, 1, 2, 3];
497 /// let bad_vec = some_vec.iter().nth(3);
498 /// let bad_slice = &some_vec[..].iter().nth(3);
499 /// ```
500 declare_lint! {
501 pub ITER_SKIP_NEXT,
502 Warn,
503 "using `.skip(x).next()` on an iterator"
504 }
505
506 /// **What it does:** Checks for use of `.get().unwrap()` (or
507 /// `.get_mut().unwrap`) on a standard library type which implements `Index`
508 ///
509 /// **Why is this bad?** Using the Index trait (`[]`) is more clear and more
510 /// concise.
511 ///
512 /// **Known problems:** None.
513 ///
514 /// **Example:**
515 /// ```rust
516 /// let some_vec = vec![0, 1, 2, 3];
517 /// let last = some_vec.get(3).unwrap();
518 /// *some_vec.get_mut(0).unwrap() = 1;
519 /// ```
520 /// The correct use would be:
521 /// ```rust
522 /// let some_vec = vec![0, 1, 2, 3];
523 /// let last = some_vec[3];
524 /// some_vec[0] = 1;
525 /// ```
526 declare_lint! {
527 pub GET_UNWRAP,
528 Warn,
529 "using `.get().unwrap()` or `.get_mut().unwrap()` when using `[]` would work instead"
530 }
531
532 /// **What it does:** Checks for the use of `.extend(s.chars())` where s is a
533 /// `&str` or `String`.
534 ///
535 /// **Why is this bad?** `.push_str(s)` is clearer
536 ///
537 /// **Known problems:** None.
538 ///
539 /// **Example:**
540 /// ```rust
541 /// let abc = "abc";
542 /// let def = String::from("def");
543 /// let mut s = String::new();
544 /// s.extend(abc.chars());
545 /// s.extend(def.chars());
546 /// ```
547 /// The correct use would be:
548 /// ```rust
549 /// let abc = "abc";
550 /// let def = String::from("def");
551 /// let mut s = String::new();
552 /// s.push_str(abc);
553 /// s.push_str(&def));
554 /// ```
555 declare_lint! {
556 pub STRING_EXTEND_CHARS,
557 Warn,
558 "using `x.extend(s.chars())` where s is a `&str` or `String`"
559 }
560
561 /// **What it does:** Checks for the use of `.cloned().collect()` on slice to
562 /// create a `Vec`.
563 ///
564 /// **Why is this bad?** `.to_vec()` is clearer
565 ///
566 /// **Known problems:** None.
567 ///
568 /// **Example:**
569 /// ```rust
570 /// let s = [1,2,3,4,5];
571 /// let s2 : Vec<isize> = s[..].iter().cloned().collect();
572 /// ```
573 /// The better use would be:
574 /// ```rust
575 /// let s = [1,2,3,4,5];
576 /// let s2 : Vec<isize> = s.to_vec();
577 /// ```
578 declare_lint! {
579 pub ITER_CLONED_COLLECT,
580 Warn,
581 "using `.cloned().collect()` on slice to create a `Vec`"
582 }
583
584 /// **What it does:** Checks for usage of `.chars().last()` or
585 /// `.chars().next_back()` on a `str` to check if it ends with a given char.
586 ///
587 /// **Why is this bad?** Readability, this can be written more concisely as
588 /// `_.ends_with(_)`.
589 ///
590 /// **Known problems:** None.
591 ///
592 /// **Example:**
593 /// ```rust
594 /// name.chars().last() == Some('_') || name.chars().next_back() == Some('-')
595 /// ```
596 declare_lint! {
597 pub CHARS_LAST_CMP,
598 Warn,
599 "using `.chars().last()` or `.chars().next_back()` to check if a string ends with a char"
600 }
601
602 /// **What it does:** Checks for usage of `.as_ref()` or `.as_mut()` where the
603 /// types before and after the call are the same.
604 ///
605 /// **Why is this bad?** The call is unnecessary.
606 ///
607 /// **Known problems:** None.
608 ///
609 /// **Example:**
610 /// ```rust
611 /// let x: &[i32] = &[1,2,3,4,5];
612 /// do_stuff(x.as_ref());
613 /// ```
614 /// The correct use would be:
615 /// ```rust
616 /// let x: &[i32] = &[1,2,3,4,5];
617 /// do_stuff(x);
618 /// ```
619 declare_lint! {
620 pub USELESS_ASREF,
621 Warn,
622 "using `as_ref` where the types before and after the call are the same"
623 }
624
625
626 /// **What it does:** Checks for using `fold` when a more succinct alternative exists.
627 /// Specifically, this checks for `fold`s which could be replaced by `any`, `all`,
628 /// `sum` or `product`.
629 ///
630 /// **Why is this bad?** Readability.
631 ///
632 /// **Known problems:** None.
633 ///
634 /// **Example:**
635 /// ```rust
636 /// let _ = (0..3).fold(false, |acc, x| acc || x > 2);
637 /// ```
638 /// This could be written as:
639 /// ```rust
640 /// let _ = (0..3).any(|x| x > 2);
641 /// ```
642 declare_lint! {
643 pub UNNECESSARY_FOLD,
644 Warn,
645 "using `fold` when a more succinct alternative exists"
646 }
647
648 impl LintPass for Pass {
649 fn get_lints(&self) -> LintArray {
650 lint_array!(
651 OPTION_UNWRAP_USED,
652 RESULT_UNWRAP_USED,
653 SHOULD_IMPLEMENT_TRAIT,
654 WRONG_SELF_CONVENTION,
655 WRONG_PUB_SELF_CONVENTION,
656 OK_EXPECT,
657 OPTION_MAP_UNWRAP_OR,
658 OPTION_MAP_UNWRAP_OR_ELSE,
659 RESULT_MAP_UNWRAP_OR_ELSE,
660 OPTION_MAP_OR_NONE,
661 OR_FUN_CALL,
662 CHARS_NEXT_CMP,
663 CHARS_LAST_CMP,
664 CLONE_ON_COPY,
665 CLONE_ON_REF_PTR,
666 CLONE_DOUBLE_REF,
667 NEW_RET_NO_SELF,
668 SINGLE_CHAR_PATTERN,
669 SEARCH_IS_SOME,
670 TEMPORARY_CSTRING_AS_PTR,
671 FILTER_NEXT,
672 FILTER_MAP,
673 ITER_NTH,
674 ITER_SKIP_NEXT,
675 GET_UNWRAP,
676 STRING_EXTEND_CHARS,
677 ITER_CLONED_COLLECT,
678 USELESS_ASREF,
679 UNNECESSARY_FOLD
680 )
681 }
682 }
683
684 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
685 #[allow(unused_attributes)]
686 // ^ required because `cyclomatic_complexity` attribute shows up as unused
687 #[cyclomatic_complexity = "30"]
688 fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr) {
689 if in_macro(expr.span) {
690 return;
691 }
692
693 match expr.node {
694 hir::ExprMethodCall(ref method_call, _, ref args) => {
695 // Chain calls
696 // GET_UNWRAP needs to be checked before general `UNWRAP` lints
697 if let Some(arglists) = method_chain_args(expr, &["get", "unwrap"]) {
698 lint_get_unwrap(cx, expr, arglists[0], false);
699 } else if let Some(arglists) = method_chain_args(expr, &["get_mut", "unwrap"]) {
700 lint_get_unwrap(cx, expr, arglists[0], true);
701 } else if let Some(arglists) = method_chain_args(expr, &["unwrap"]) {
702 lint_unwrap(cx, expr, arglists[0]);
703 } else if let Some(arglists) = method_chain_args(expr, &["ok", "expect"]) {
704 lint_ok_expect(cx, expr, arglists[0]);
705 } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or"]) {
706 lint_map_unwrap_or(cx, expr, arglists[0], arglists[1]);
707 } else if let Some(arglists) = method_chain_args(expr, &["map", "unwrap_or_else"]) {
708 lint_map_unwrap_or_else(cx, expr, arglists[0], arglists[1]);
709 } else if let Some(arglists) = method_chain_args(expr, &["map_or"]) {
710 lint_map_or_none(cx, expr, arglists[0]);
711 } else if let Some(arglists) = method_chain_args(expr, &["filter", "next"]) {
712 lint_filter_next(cx, expr, arglists[0]);
713 } else if let Some(arglists) = method_chain_args(expr, &["filter", "map"]) {
714 lint_filter_map(cx, expr, arglists[0], arglists[1]);
715 } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "map"]) {
716 lint_filter_map_map(cx, expr, arglists[0], arglists[1]);
717 } else if let Some(arglists) = method_chain_args(expr, &["filter", "flat_map"]) {
718 lint_filter_flat_map(cx, expr, arglists[0], arglists[1]);
719 } else if let Some(arglists) = method_chain_args(expr, &["filter_map", "flat_map"]) {
720 lint_filter_map_flat_map(cx, expr, arglists[0], arglists[1]);
721 } else if let Some(arglists) = method_chain_args(expr, &["find", "is_some"]) {
722 lint_search_is_some(cx, expr, "find", arglists[0], arglists[1]);
723 } else if let Some(arglists) = method_chain_args(expr, &["position", "is_some"]) {
724 lint_search_is_some(cx, expr, "position", arglists[0], arglists[1]);
725 } else if let Some(arglists) = method_chain_args(expr, &["rposition", "is_some"]) {
726 lint_search_is_some(cx, expr, "rposition", arglists[0], arglists[1]);
727 } else if let Some(arglists) = method_chain_args(expr, &["extend"]) {
728 lint_extend(cx, expr, arglists[0]);
729 } else if let Some(arglists) = method_chain_args(expr, &["unwrap", "as_ptr"]) {
730 lint_cstring_as_ptr(cx, expr, &arglists[0][0], &arglists[1][0]);
731 } else if let Some(arglists) = method_chain_args(expr, &["iter", "nth"]) {
732 lint_iter_nth(cx, expr, arglists[0], false);
733 } else if let Some(arglists) = method_chain_args(expr, &["iter_mut", "nth"]) {
734 lint_iter_nth(cx, expr, arglists[0], true);
735 } else if method_chain_args(expr, &["skip", "next"]).is_some() {
736 lint_iter_skip_next(cx, expr);
737 } else if let Some(arglists) = method_chain_args(expr, &["cloned", "collect"]) {
738 lint_iter_cloned_collect(cx, expr, arglists[0]);
739 } else if let Some(arglists) = method_chain_args(expr, &["as_ref"]) {
740 lint_asref(cx, expr, "as_ref", arglists[0]);
741 } else if let Some(arglists) = method_chain_args(expr, &["as_mut"]) {
742 lint_asref(cx, expr, "as_mut", arglists[0]);
743 } else if let Some(arglists) = method_chain_args(expr, &["fold"]) {
744 lint_unnecessary_fold(cx, expr, arglists[0]);
745 }
746
747 lint_or_fun_call(cx, expr, &method_call.name.as_str(), args);
748
749 let self_ty = cx.tables.expr_ty_adjusted(&args[0]);
750 if args.len() == 1 && method_call.name == "clone" {
751 lint_clone_on_copy(cx, expr, &args[0], self_ty);
752 lint_clone_on_ref_ptr(cx, expr, &args[0]);
753 }
754
755 match self_ty.sty {
756 ty::TyRef(_, ty) if ty.ty.sty == ty::TyStr => for &(method, pos) in &PATTERN_METHODS {
757 if method_call.name == method && args.len() > pos {
758 lint_single_char_pattern(cx, expr, &args[pos]);
759 }
760 },
761 _ => (),
762 }
763 },
764 hir::ExprBinary(op, ref lhs, ref rhs) if op.node == hir::BiEq || op.node == hir::BiNe => {
765 let mut info = BinaryExprInfo {
766 expr: expr,
767 chain: lhs,
768 other: rhs,
769 eq: op.node == hir::BiEq,
770 };
771 lint_binary_expr_with_method_call(cx, &mut info);
772 },
773 _ => (),
774 }
775 }
776
777 fn check_impl_item(&mut self, cx: &LateContext<'a, 'tcx>, implitem: &'tcx hir::ImplItem) {
778 if in_external_macro(cx, implitem.span) {
779 return;
780 }
781 let name = implitem.name;
782 let parent = cx.tcx.hir.get_parent(implitem.id);
783 let item = cx.tcx.hir.expect_item(parent);
784 if_chain! {
785 if let hir::ImplItemKind::Method(ref sig, id) = implitem.node;
786 if let Some(first_arg_ty) = sig.decl.inputs.get(0);
787 if let Some(first_arg) = iter_input_pats(&sig.decl, cx.tcx.hir.body(id)).next();
788 if let hir::ItemImpl(_, _, _, _, None, ref self_ty, _) = item.node;
789 then {
790 if cx.access_levels.is_exported(implitem.id) {
791 // check missing trait implementations
792 for &(method_name, n_args, self_kind, out_type, trait_name) in &TRAIT_METHODS {
793 if name == method_name &&
794 sig.decl.inputs.len() == n_args &&
795 out_type.matches(&sig.decl.output) &&
796 self_kind.matches(first_arg_ty, first_arg, self_ty, false, &implitem.generics) {
797 span_lint(cx, SHOULD_IMPLEMENT_TRAIT, implitem.span, &format!(
798 "defining a method called `{}` on this type; consider implementing \
799 the `{}` trait or choosing a less ambiguous name", name, trait_name));
800 }
801 }
802 }
803
804 // check conventions w.r.t. conversion method names and predicates
805 let def_id = cx.tcx.hir.local_def_id(item.id);
806 let ty = cx.tcx.type_of(def_id);
807 let is_copy = is_copy(cx, ty);
808 for &(ref conv, self_kinds) in &CONVENTIONS {
809 if_chain! {
810 if conv.check(&name.as_str());
811 if !self_kinds
812 .iter()
813 .any(|k| k.matches(first_arg_ty, first_arg, self_ty, is_copy, &implitem.generics));
814 then {
815 let lint = if item.vis == hir::Visibility::Public {
816 WRONG_PUB_SELF_CONVENTION
817 } else {
818 WRONG_SELF_CONVENTION
819 };
820 span_lint(cx,
821 lint,
822 first_arg.pat.span,
823 &format!("methods called `{}` usually take {}; consider choosing a less \
824 ambiguous name",
825 conv,
826 &self_kinds.iter()
827 .map(|k| k.description())
828 .collect::<Vec<_>>()
829 .join(" or ")));
830 }
831 }
832 }
833
834 let ret_ty = return_ty(cx, implitem.id);
835 if name == "new" &&
836 !ret_ty.walk().any(|t| same_tys(cx, t, ty)) {
837 span_lint(cx,
838 NEW_RET_NO_SELF,
839 implitem.span,
840 "methods called `new` usually return `Self`");
841 }
842 }
843 }
844 }
845 }
846
847 /// Checks for the `OR_FUN_CALL` lint.
848 fn lint_or_fun_call(cx: &LateContext, expr: &hir::Expr, name: &str, args: &[hir::Expr]) {
849 /// Check for `unwrap_or(T::new())` or `unwrap_or(T::default())`.
850 fn check_unwrap_or_default(
851 cx: &LateContext,
852 name: &str,
853 fun: &hir::Expr,
854 self_expr: &hir::Expr,
855 arg: &hir::Expr,
856 or_has_args: bool,
857 span: Span,
858 ) -> bool {
859 if or_has_args {
860 return false;
861 }
862
863 if name == "unwrap_or" {
864 if let hir::ExprPath(ref qpath) = fun.node {
865 let path = &*last_path_segment(qpath).name.as_str();
866
867 if ["default", "new"].contains(&path) {
868 let arg_ty = cx.tables.expr_ty(arg);
869 let default_trait_id = if let Some(default_trait_id) = get_trait_def_id(cx, &paths::DEFAULT_TRAIT) {
870 default_trait_id
871 } else {
872 return false;
873 };
874
875 if implements_trait(cx, arg_ty, default_trait_id, &[]) {
876 span_lint_and_sugg(
877 cx,
878 OR_FUN_CALL,
879 span,
880 &format!("use of `{}` followed by a call to `{}`", name, path),
881 "try this",
882 format!("{}.unwrap_or_default()", snippet(cx, self_expr.span, "_")),
883 );
884 return true;
885 }
886 }
887 }
888 }
889
890 false
891 }
892
893 /// Check for `*or(foo())`.
894 fn check_general_case(
895 cx: &LateContext,
896 name: &str,
897 fun_span: Span,
898 self_expr: &hir::Expr,
899 arg: &hir::Expr,
900 or_has_args: bool,
901 span: Span,
902 ) {
903 // (path, fn_has_argument, methods, suffix)
904 let know_types: &[(&[_], _, &[_], _)] = &[
905 (&paths::BTREEMAP_ENTRY, false, &["or_insert"], "with"),
906 (&paths::HASHMAP_ENTRY, false, &["or_insert"], "with"),
907 (&paths::OPTION, false, &["map_or", "ok_or", "or", "unwrap_or"], "else"),
908 (&paths::RESULT, true, &["or", "unwrap_or"], "else"),
909 ];
910
911 // early check if the name is one we care about
912 if know_types.iter().all(|k| !k.2.contains(&name)) {
913 return;
914 }
915
916 // don't lint for constant values
917 let owner_def = cx.tcx.hir.get_parent_did(arg.id);
918 let promotable = cx.tcx.rvalue_promotable_map(owner_def).contains(&arg.hir_id.local_id);
919 if promotable {
920 return;
921 }
922
923 let self_ty = cx.tables.expr_ty(self_expr);
924
925 let (fn_has_arguments, poss, suffix) = if let Some(&(_, fn_has_arguments, poss, suffix)) =
926 know_types.iter().find(|&&i| match_type(cx, self_ty, i.0))
927 {
928 (fn_has_arguments, poss, suffix)
929 } else {
930 return;
931 };
932
933 if !poss.contains(&name) {
934 return;
935 }
936
937 let sugg: Cow<_> = match (fn_has_arguments, !or_has_args) {
938 (true, _) => format!("|_| {}", snippet(cx, arg.span, "..")).into(),
939 (false, false) => format!("|| {}", snippet(cx, arg.span, "..")).into(),
940 (false, true) => snippet(cx, fun_span, ".."),
941 };
942
943 span_lint_and_sugg(
944 cx,
945 OR_FUN_CALL,
946 span,
947 &format!("use of `{}` followed by a function call", name),
948 "try this",
949 format!("{}.{}_{}({})", snippet(cx, self_expr.span, "_"), name, suffix, sugg),
950 );
951 }
952
953 if args.len() == 2 {
954 match args[1].node {
955 hir::ExprCall(ref fun, ref or_args) => {
956 let or_has_args = !or_args.is_empty();
957 if !check_unwrap_or_default(cx, name, fun, &args[0], &args[1], or_has_args, expr.span) {
958 check_general_case(cx, name, fun.span, &args[0], &args[1], or_has_args, expr.span);
959 }
960 },
961 hir::ExprMethodCall(_, span, ref or_args) => {
962 check_general_case(cx, name, span, &args[0], &args[1], !or_args.is_empty(), expr.span)
963 },
964 _ => {},
965 }
966 }
967 }
968
969 /// Checks for the `CLONE_ON_COPY` lint.
970 fn lint_clone_on_copy(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr, arg_ty: Ty) {
971 let ty = cx.tables.expr_ty(expr);
972 if let ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) = arg_ty.sty {
973 if let ty::TyRef(_, ty::TypeAndMut { ty: innermost, .. }) = inner.sty {
974 span_lint_and_then(
975 cx,
976 CLONE_DOUBLE_REF,
977 expr.span,
978 "using `clone` on a double-reference; \
979 this will copy the reference instead of cloning the inner type",
980 |db| if let Some(snip) = sugg::Sugg::hir_opt(cx, arg) {
981 let mut ty = innermost;
982 let mut n = 0;
983 while let ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) = ty.sty {
984 ty = inner;
985 n += 1;
986 }
987 let refs: String = iter::repeat('&').take(n + 1).collect();
988 let derefs: String = iter::repeat('*').take(n).collect();
989 let explicit = format!("{}{}::clone({})", refs, ty, snip);
990 db.span_suggestion(expr.span, "try dereferencing it", format!("{}({}{}).clone()", refs, derefs, snip.deref()));
991 db.span_suggestion(expr.span, "or try being explicit about what type to clone", explicit);
992 },
993 );
994 return; // don't report clone_on_copy
995 }
996 }
997
998 if is_copy(cx, ty) {
999 let snip;
1000 if let Some(snippet) = sugg::Sugg::hir_opt(cx, arg) {
1001 if let ty::TyRef(..) = cx.tables.expr_ty(arg).sty {
1002 let parent = cx.tcx.hir.get_parent_node(expr.id);
1003 match cx.tcx.hir.get(parent) {
1004 hir::map::NodeExpr(parent) => match parent.node {
1005 // &*x is a nop, &x.clone() is not
1006 hir::ExprAddrOf(..) |
1007 // (*x).func() is useless, x.clone().func() can work in case func borrows mutably
1008 hir::ExprMethodCall(..) => return,
1009 _ => {},
1010 }
1011 hir::map::NodeStmt(stmt) => {
1012 if let hir::StmtDecl(ref decl, _) = stmt.node {
1013 if let hir::DeclLocal(ref loc) = decl.node {
1014 if let hir::PatKind::Ref(..) = loc.pat.node {
1015 // let ref y = *x borrows x, let ref y = x.clone() does not
1016 return;
1017 }
1018 }
1019 }
1020 },
1021 _ => {},
1022 }
1023 snip = Some(("try dereferencing it", format!("{}", snippet.deref())));
1024 } else {
1025 snip = Some(("try removing the `clone` call", format!("{}", snippet)));
1026 }
1027 } else {
1028 snip = None;
1029 }
1030 span_lint_and_then(cx, CLONE_ON_COPY, expr.span, "using `clone` on a `Copy` type", |db| {
1031 if let Some((text, snip)) = snip {
1032 db.span_suggestion(expr.span, text, snip);
1033 }
1034 });
1035 }
1036 }
1037
1038 fn lint_clone_on_ref_ptr(cx: &LateContext, expr: &hir::Expr, arg: &hir::Expr) {
1039 let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(arg));
1040
1041 if let ty::TyAdt(_, subst) = obj_ty.sty {
1042 let caller_type = if match_type(cx, obj_ty, &paths::RC) {
1043 "Rc"
1044 } else if match_type(cx, obj_ty, &paths::ARC) {
1045 "Arc"
1046 } else if match_type(cx, obj_ty, &paths::WEAK_RC) || match_type(cx, obj_ty, &paths::WEAK_ARC) {
1047 "Weak"
1048 } else {
1049 return;
1050 };
1051
1052 span_lint_and_sugg(
1053 cx,
1054 CLONE_ON_REF_PTR,
1055 expr.span,
1056 "using '.clone()' on a ref-counted pointer",
1057 "try this",
1058 format!("{}::<{}>::clone(&{})", caller_type, subst.type_at(0), snippet(cx, arg.span, "_")),
1059 );
1060 }
1061 }
1062
1063
1064 fn lint_string_extend(cx: &LateContext, expr: &hir::Expr, args: &[hir::Expr]) {
1065 let arg = &args[1];
1066 if let Some(arglists) = method_chain_args(arg, &["chars"]) {
1067 let target = &arglists[0][0];
1068 let (self_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(target));
1069 let ref_str = if self_ty.sty == ty::TyStr {
1070 ""
1071 } else if match_type(cx, self_ty, &paths::STRING) {
1072 "&"
1073 } else {
1074 return;
1075 };
1076
1077 span_lint_and_sugg(
1078 cx,
1079 STRING_EXTEND_CHARS,
1080 expr.span,
1081 "calling `.extend(_.chars())`",
1082 "try this",
1083 format!(
1084 "{}.push_str({}{})",
1085 snippet(cx, args[0].span, "_"),
1086 ref_str,
1087 snippet(cx, target.span, "_")
1088 ),
1089 );
1090 }
1091 }
1092
1093 fn lint_extend(cx: &LateContext, expr: &hir::Expr, args: &[hir::Expr]) {
1094 let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(&args[0]));
1095 if match_type(cx, obj_ty, &paths::STRING) {
1096 lint_string_extend(cx, expr, args);
1097 }
1098 }
1099
1100 fn lint_cstring_as_ptr(cx: &LateContext, expr: &hir::Expr, new: &hir::Expr, unwrap: &hir::Expr) {
1101 if_chain! {
1102 if let hir::ExprCall(ref fun, ref args) = new.node;
1103 if args.len() == 1;
1104 if let hir::ExprPath(ref path) = fun.node;
1105 if let Def::Method(did) = cx.tables.qpath_def(path, fun.hir_id);
1106 if match_def_path(cx.tcx, did, &paths::CSTRING_NEW);
1107 then {
1108 span_lint_and_then(
1109 cx,
1110 TEMPORARY_CSTRING_AS_PTR,
1111 expr.span,
1112 "you are getting the inner pointer of a temporary `CString`",
1113 |db| {
1114 db.note("that pointer will be invalid outside this expression");
1115 db.span_help(unwrap.span, "assign the `CString` to a variable to extend its lifetime");
1116 });
1117 }
1118 }
1119 }
1120
1121 fn lint_iter_cloned_collect(cx: &LateContext, expr: &hir::Expr, iter_args: &[hir::Expr]) {
1122 if match_type(cx, cx.tables.expr_ty(expr), &paths::VEC)
1123 && derefs_to_slice(cx, &iter_args[0], cx.tables.expr_ty(&iter_args[0])).is_some()
1124 {
1125 span_lint(
1126 cx,
1127 ITER_CLONED_COLLECT,
1128 expr.span,
1129 "called `cloned().collect()` on a slice to create a `Vec`. Calling `to_vec()` is both faster and \
1130 more readable",
1131 );
1132 }
1133 }
1134
1135 fn lint_unnecessary_fold(cx: &LateContext, expr: &hir::Expr, fold_args: &[hir::Expr]) {
1136 // Check that this is a call to Iterator::fold rather than just some function called fold
1137 if !match_trait_method(cx, expr, &paths::ITERATOR) {
1138 return;
1139 }
1140
1141 assert!(fold_args.len() == 3,
1142 "Expected fold_args to have three entries - the receiver, the initial value and the closure");
1143
1144 fn check_fold_with_op(
1145 cx: &LateContext,
1146 fold_args: &[hir::Expr],
1147 op: hir::BinOp_,
1148 replacement_method_name: &str,
1149 replacement_has_args: bool) {
1150
1151 if_chain! {
1152 // Extract the body of the closure passed to fold
1153 if let hir::ExprClosure(_, _, body_id, _, _) = fold_args[2].node;
1154 let closure_body = cx.tcx.hir.body(body_id);
1155 let closure_expr = remove_blocks(&closure_body.value);
1156
1157 // Check if the closure body is of the form `acc <op> some_expr(x)`
1158 if let hir::ExprBinary(ref bin_op, ref left_expr, ref right_expr) = closure_expr.node;
1159 if bin_op.node == op;
1160
1161 // Extract the names of the two arguments to the closure
1162 if let Some(first_arg_ident) = get_arg_name(&closure_body.arguments[0].pat);
1163 if let Some(second_arg_ident) = get_arg_name(&closure_body.arguments[1].pat);
1164
1165 if match_var(&*left_expr, first_arg_ident);
1166 if replacement_has_args || match_var(&*right_expr, second_arg_ident);
1167
1168 then {
1169 // Span containing `.fold(...)`
1170 let next_point = cx.sess().codemap().next_point(fold_args[0].span);
1171 let fold_span = next_point.with_hi(fold_args[2].span.hi() + BytePos(1));
1172
1173 let sugg = if replacement_has_args {
1174 format!(
1175 ".{replacement}(|{s}| {r})",
1176 replacement = replacement_method_name,
1177 s = second_arg_ident,
1178 r = snippet(cx, right_expr.span, "EXPR"),
1179 )
1180 } else {
1181 format!(
1182 ".{replacement}()",
1183 replacement = replacement_method_name,
1184 )
1185 };
1186
1187 span_lint_and_sugg(
1188 cx,
1189 UNNECESSARY_FOLD,
1190 fold_span,
1191 // TODO #2371 don't suggest e.g. .any(|x| f(x)) if we can suggest .any(f)
1192 "this `.fold` can be written more succinctly using another method",
1193 "try",
1194 sugg,
1195 );
1196 }
1197 }
1198 }
1199
1200 // Check if the first argument to .fold is a suitable literal
1201 match fold_args[1].node {
1202 hir::ExprLit(ref lit) => {
1203 match lit.node {
1204 ast::LitKind::Bool(false) => check_fold_with_op(
1205 cx, fold_args, hir::BinOp_::BiOr, "any", true
1206 ),
1207 ast::LitKind::Bool(true) => check_fold_with_op(
1208 cx, fold_args, hir::BinOp_::BiAnd, "all", true
1209 ),
1210 ast::LitKind::Int(0, _) => check_fold_with_op(
1211 cx, fold_args, hir::BinOp_::BiAdd, "sum", false
1212 ),
1213 ast::LitKind::Int(1, _) => check_fold_with_op(
1214 cx, fold_args, hir::BinOp_::BiMul, "product", false
1215 ),
1216 _ => return
1217 }
1218 }
1219 _ => return
1220 };
1221 }
1222
1223 fn lint_iter_nth(cx: &LateContext, expr: &hir::Expr, iter_args: &[hir::Expr], is_mut: bool) {
1224 let mut_str = if is_mut { "_mut" } else { "" };
1225 let caller_type = if derefs_to_slice(cx, &iter_args[0], cx.tables.expr_ty(&iter_args[0])).is_some() {
1226 "slice"
1227 } else if match_type(cx, cx.tables.expr_ty(&iter_args[0]), &paths::VEC) {
1228 "Vec"
1229 } else if match_type(cx, cx.tables.expr_ty(&iter_args[0]), &paths::VEC_DEQUE) {
1230 "VecDeque"
1231 } else {
1232 return; // caller is not a type that we want to lint
1233 };
1234
1235 span_lint(
1236 cx,
1237 ITER_NTH,
1238 expr.span,
1239 &format!(
1240 "called `.iter{0}().nth()` on a {1}. Calling `.get{0}()` is both faster and more readable",
1241 mut_str,
1242 caller_type
1243 ),
1244 );
1245 }
1246
1247 fn lint_get_unwrap(cx: &LateContext, expr: &hir::Expr, get_args: &[hir::Expr], is_mut: bool) {
1248 // Note: we don't want to lint `get_mut().unwrap` for HashMap or BTreeMap,
1249 // because they do not implement `IndexMut`
1250 let expr_ty = cx.tables.expr_ty(&get_args[0]);
1251 let caller_type = if derefs_to_slice(cx, &get_args[0], expr_ty).is_some() {
1252 "slice"
1253 } else if match_type(cx, expr_ty, &paths::VEC) {
1254 "Vec"
1255 } else if match_type(cx, expr_ty, &paths::VEC_DEQUE) {
1256 "VecDeque"
1257 } else if !is_mut && match_type(cx, expr_ty, &paths::HASHMAP) {
1258 "HashMap"
1259 } else if !is_mut && match_type(cx, expr_ty, &paths::BTREEMAP) {
1260 "BTreeMap"
1261 } else {
1262 return; // caller is not a type that we want to lint
1263 };
1264
1265 let mut_str = if is_mut { "_mut" } else { "" };
1266 let borrow_str = if is_mut { "&mut " } else { "&" };
1267 span_lint_and_sugg(
1268 cx,
1269 GET_UNWRAP,
1270 expr.span,
1271 &format!(
1272 "called `.get{0}().unwrap()` on a {1}. Using `[]` is more clear and more concise",
1273 mut_str,
1274 caller_type
1275 ),
1276 "try this",
1277 format!(
1278 "{}{}[{}]",
1279 borrow_str,
1280 snippet(cx, get_args[0].span, "_"),
1281 snippet(cx, get_args[1].span, "_")
1282 ),
1283 );
1284 }
1285
1286 fn lint_iter_skip_next(cx: &LateContext, expr: &hir::Expr) {
1287 // lint if caller of skip is an Iterator
1288 if match_trait_method(cx, expr, &paths::ITERATOR) {
1289 span_lint(
1290 cx,
1291 ITER_SKIP_NEXT,
1292 expr.span,
1293 "called `skip(x).next()` on an iterator. This is more succinctly expressed by calling `nth(x)`",
1294 );
1295 }
1296 }
1297
1298 fn derefs_to_slice(cx: &LateContext, expr: &hir::Expr, ty: Ty) -> Option<sugg::Sugg<'static>> {
1299 fn may_slice(cx: &LateContext, ty: Ty) -> bool {
1300 match ty.sty {
1301 ty::TySlice(_) => true,
1302 ty::TyAdt(def, _) if def.is_box() => may_slice(cx, ty.boxed_ty()),
1303 ty::TyAdt(..) => match_type(cx, ty, &paths::VEC),
1304 ty::TyArray(_, size) => const_to_u64(size) < 32,
1305 ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) => may_slice(cx, inner),
1306 _ => false,
1307 }
1308 }
1309
1310 if let hir::ExprMethodCall(ref path, _, ref args) = expr.node {
1311 if path.name == "iter" && may_slice(cx, cx.tables.expr_ty(&args[0])) {
1312 sugg::Sugg::hir_opt(cx, &args[0]).map(|sugg| sugg.addr())
1313 } else {
1314 None
1315 }
1316 } else {
1317 match ty.sty {
1318 ty::TySlice(_) => sugg::Sugg::hir_opt(cx, expr),
1319 ty::TyAdt(def, _) if def.is_box() && may_slice(cx, ty.boxed_ty()) => sugg::Sugg::hir_opt(cx, expr),
1320 ty::TyRef(_, ty::TypeAndMut { ty: inner, .. }) => if may_slice(cx, inner) {
1321 sugg::Sugg::hir_opt(cx, expr)
1322 } else {
1323 None
1324 },
1325 _ => None,
1326 }
1327 }
1328 }
1329
1330 /// lint use of `unwrap()` for `Option`s and `Result`s
1331 fn lint_unwrap(cx: &LateContext, expr: &hir::Expr, unwrap_args: &[hir::Expr]) {
1332 let (obj_ty, _) = walk_ptrs_ty_depth(cx.tables.expr_ty(&unwrap_args[0]));
1333
1334 let mess = if match_type(cx, obj_ty, &paths::OPTION) {
1335 Some((OPTION_UNWRAP_USED, "an Option", "None"))
1336 } else if match_type(cx, obj_ty, &paths::RESULT) {
1337 Some((RESULT_UNWRAP_USED, "a Result", "Err"))
1338 } else {
1339 None
1340 };
1341
1342 if let Some((lint, kind, none_value)) = mess {
1343 span_lint(
1344 cx,
1345 lint,
1346 expr.span,
1347 &format!(
1348 "used unwrap() on {} value. If you don't want to handle the {} case gracefully, consider \
1349 using expect() to provide a better panic \
1350 message",
1351 kind,
1352 none_value
1353 ),
1354 );
1355 }
1356 }
1357
1358 /// lint use of `ok().expect()` for `Result`s
1359 fn lint_ok_expect(cx: &LateContext, expr: &hir::Expr, ok_args: &[hir::Expr]) {
1360 // lint if the caller of `ok()` is a `Result`
1361 if match_type(cx, cx.tables.expr_ty(&ok_args[0]), &paths::RESULT) {
1362 let result_type = cx.tables.expr_ty(&ok_args[0]);
1363 if let Some(error_type) = get_error_type(cx, result_type) {
1364 if has_debug_impl(error_type, cx) {
1365 span_lint(
1366 cx,
1367 OK_EXPECT,
1368 expr.span,
1369 "called `ok().expect()` on a Result value. You can call `expect` directly on the `Result`",
1370 );
1371 }
1372 }
1373 }
1374 }
1375
1376 /// lint use of `map().unwrap_or()` for `Option`s
1377 fn lint_map_unwrap_or(cx: &LateContext, expr: &hir::Expr, map_args: &[hir::Expr], unwrap_args: &[hir::Expr]) {
1378 // lint if the caller of `map()` is an `Option`
1379 if match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::OPTION) {
1380 // get snippets for args to map() and unwrap_or()
1381 let map_snippet = snippet(cx, map_args[1].span, "..");
1382 let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
1383 // lint message
1384 // comparing the snippet from source to raw text ("None") below is safe
1385 // because we already have checked the type.
1386 let arg = if unwrap_snippet == "None" {
1387 "None"
1388 } else {
1389 "a"
1390 };
1391 let suggest = if unwrap_snippet == "None" {
1392 "and_then(f)"
1393 } else {
1394 "map_or(a, f)"
1395 };
1396 let msg = &format!(
1397 "called `map(f).unwrap_or({})` on an Option value. \
1398 This can be done more directly by calling `{}` instead",
1399 arg,
1400 suggest
1401 );
1402 // lint, with note if neither arg is > 1 line and both map() and
1403 // unwrap_or() have the same span
1404 let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
1405 let same_span = map_args[1].span.ctxt() == unwrap_args[1].span.ctxt();
1406 if same_span && !multiline {
1407 let suggest = if unwrap_snippet == "None" {
1408 format!("and_then({})", map_snippet)
1409 } else {
1410 format!("map_or({}, {})", unwrap_snippet, map_snippet)
1411 };
1412 let note = format!(
1413 "replace `map({}).unwrap_or({})` with `{}`",
1414 map_snippet,
1415 unwrap_snippet,
1416 suggest
1417 );
1418 span_note_and_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg, expr.span, &note);
1419 } else if same_span && multiline {
1420 span_lint(cx, OPTION_MAP_UNWRAP_OR, expr.span, msg);
1421 };
1422 }
1423 }
1424
1425 /// lint use of `map().unwrap_or_else()` for `Option`s and `Result`s
1426 fn lint_map_unwrap_or_else<'a, 'tcx>(
1427 cx: &LateContext<'a, 'tcx>,
1428 expr: &'tcx hir::Expr,
1429 map_args: &'tcx [hir::Expr],
1430 unwrap_args: &'tcx [hir::Expr],
1431 ) {
1432 // lint if the caller of `map()` is an `Option`
1433 let is_option = match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::OPTION);
1434 let is_result = match_type(cx, cx.tables.expr_ty(&map_args[0]), &paths::RESULT);
1435 if is_option || is_result {
1436 // lint message
1437 let msg = if is_option {
1438 "called `map(f).unwrap_or_else(g)` on an Option value. This can be done more directly by calling \
1439 `map_or_else(g, f)` instead"
1440 } else {
1441 "called `map(f).unwrap_or_else(g)` on a Result value. This can be done more directly by calling \
1442 `ok().map_or_else(g, f)` instead"
1443 };
1444 // get snippets for args to map() and unwrap_or_else()
1445 let map_snippet = snippet(cx, map_args[1].span, "..");
1446 let unwrap_snippet = snippet(cx, unwrap_args[1].span, "..");
1447 // lint, with note if neither arg is > 1 line and both map() and
1448 // unwrap_or_else() have the same span
1449 let multiline = map_snippet.lines().count() > 1 || unwrap_snippet.lines().count() > 1;
1450 let same_span = map_args[1].span.ctxt() == unwrap_args[1].span.ctxt();
1451 if same_span && !multiline {
1452 span_note_and_lint(
1453 cx,
1454 if is_option {
1455 OPTION_MAP_UNWRAP_OR_ELSE
1456 } else {
1457 RESULT_MAP_UNWRAP_OR_ELSE
1458 },
1459 expr.span,
1460 msg,
1461 expr.span,
1462 &format!(
1463 "replace `map({0}).unwrap_or_else({1})` with `{2}map_or_else({1}, {0})`",
1464 map_snippet,
1465 unwrap_snippet,
1466 if is_result { "ok()." } else { "" }
1467 ),
1468 );
1469 } else if same_span && multiline {
1470 span_lint(
1471 cx,
1472 if is_option {
1473 OPTION_MAP_UNWRAP_OR_ELSE
1474 } else {
1475 RESULT_MAP_UNWRAP_OR_ELSE
1476 },
1477 expr.span,
1478 msg,
1479 );
1480 };
1481 }
1482 }
1483
1484 /// lint use of `_.map_or(None, _)` for `Option`s
1485 fn lint_map_or_none<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr, map_or_args: &'tcx [hir::Expr]) {
1486 if match_type(cx, cx.tables.expr_ty(&map_or_args[0]), &paths::OPTION) {
1487 // check if the first non-self argument to map_or() is None
1488 let map_or_arg_is_none = if let hir::Expr_::ExprPath(ref qpath) = map_or_args[1].node {
1489 match_qpath(qpath, &paths::OPTION_NONE)
1490 } else {
1491 false
1492 };
1493
1494 if map_or_arg_is_none {
1495 // lint message
1496 let msg = "called `map_or(None, f)` on an Option value. This can be done more directly by calling \
1497 `and_then(f)` instead";
1498 let map_or_self_snippet = snippet(cx, map_or_args[0].span, "..");
1499 let map_or_func_snippet = snippet(cx, map_or_args[2].span, "..");
1500 let hint = format!("{0}.and_then({1})", map_or_self_snippet, map_or_func_snippet);
1501 span_lint_and_then(cx, OPTION_MAP_OR_NONE, expr.span, msg, |db| {
1502 db.span_suggestion(expr.span, "try using and_then instead", hint);
1503 });
1504 }
1505 }
1506 }
1507
1508 /// lint use of `filter().next()` for `Iterators`
1509 fn lint_filter_next<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr, filter_args: &'tcx [hir::Expr]) {
1510 // lint if caller of `.filter().next()` is an Iterator
1511 if match_trait_method(cx, expr, &paths::ITERATOR) {
1512 let msg = "called `filter(p).next()` on an `Iterator`. This is more succinctly expressed by calling \
1513 `.find(p)` instead.";
1514 let filter_snippet = snippet(cx, filter_args[1].span, "..");
1515 if filter_snippet.lines().count() <= 1 {
1516 // add note if not multi-line
1517 span_note_and_lint(
1518 cx,
1519 FILTER_NEXT,
1520 expr.span,
1521 msg,
1522 expr.span,
1523 &format!("replace `filter({0}).next()` with `find({0})`", filter_snippet),
1524 );
1525 } else {
1526 span_lint(cx, FILTER_NEXT, expr.span, msg);
1527 }
1528 }
1529 }
1530
1531 /// lint use of `filter().map()` for `Iterators`
1532 fn lint_filter_map<'a, 'tcx>(
1533 cx: &LateContext<'a, 'tcx>,
1534 expr: &'tcx hir::Expr,
1535 _filter_args: &'tcx [hir::Expr],
1536 _map_args: &'tcx [hir::Expr],
1537 ) {
1538 // lint if caller of `.filter().map()` is an Iterator
1539 if match_trait_method(cx, expr, &paths::ITERATOR) {
1540 let msg = "called `filter(p).map(q)` on an `Iterator`. \
1541 This is more succinctly expressed by calling `.filter_map(..)` instead.";
1542 span_lint(cx, FILTER_MAP, expr.span, msg);
1543 }
1544 }
1545
1546 /// lint use of `filter().map()` for `Iterators`
1547 fn lint_filter_map_map<'a, 'tcx>(
1548 cx: &LateContext<'a, 'tcx>,
1549 expr: &'tcx hir::Expr,
1550 _filter_args: &'tcx [hir::Expr],
1551 _map_args: &'tcx [hir::Expr],
1552 ) {
1553 // lint if caller of `.filter().map()` is an Iterator
1554 if match_trait_method(cx, expr, &paths::ITERATOR) {
1555 let msg = "called `filter_map(p).map(q)` on an `Iterator`. \
1556 This is more succinctly expressed by only calling `.filter_map(..)` instead.";
1557 span_lint(cx, FILTER_MAP, expr.span, msg);
1558 }
1559 }
1560
1561 /// lint use of `filter().flat_map()` for `Iterators`
1562 fn lint_filter_flat_map<'a, 'tcx>(
1563 cx: &LateContext<'a, 'tcx>,
1564 expr: &'tcx hir::Expr,
1565 _filter_args: &'tcx [hir::Expr],
1566 _map_args: &'tcx [hir::Expr],
1567 ) {
1568 // lint if caller of `.filter().flat_map()` is an Iterator
1569 if match_trait_method(cx, expr, &paths::ITERATOR) {
1570 let msg = "called `filter(p).flat_map(q)` on an `Iterator`. \
1571 This is more succinctly expressed by calling `.flat_map(..)` \
1572 and filtering by returning an empty Iterator.";
1573 span_lint(cx, FILTER_MAP, expr.span, msg);
1574 }
1575 }
1576
1577 /// lint use of `filter_map().flat_map()` for `Iterators`
1578 fn lint_filter_map_flat_map<'a, 'tcx>(
1579 cx: &LateContext<'a, 'tcx>,
1580 expr: &'tcx hir::Expr,
1581 _filter_args: &'tcx [hir::Expr],
1582 _map_args: &'tcx [hir::Expr],
1583 ) {
1584 // lint if caller of `.filter_map().flat_map()` is an Iterator
1585 if match_trait_method(cx, expr, &paths::ITERATOR) {
1586 let msg = "called `filter_map(p).flat_map(q)` on an `Iterator`. \
1587 This is more succinctly expressed by calling `.flat_map(..)` \
1588 and filtering by returning an empty Iterator.";
1589 span_lint(cx, FILTER_MAP, expr.span, msg);
1590 }
1591 }
1592
1593 /// lint searching an Iterator followed by `is_some()`
1594 fn lint_search_is_some<'a, 'tcx>(
1595 cx: &LateContext<'a, 'tcx>,
1596 expr: &'tcx hir::Expr,
1597 search_method: &str,
1598 search_args: &'tcx [hir::Expr],
1599 is_some_args: &'tcx [hir::Expr],
1600 ) {
1601 // lint if caller of search is an Iterator
1602 if match_trait_method(cx, &is_some_args[0], &paths::ITERATOR) {
1603 let msg = format!(
1604 "called `is_some()` after searching an `Iterator` with {}. This is more succinctly \
1605 expressed by calling `any()`.",
1606 search_method
1607 );
1608 let search_snippet = snippet(cx, search_args[1].span, "..");
1609 if search_snippet.lines().count() <= 1 {
1610 // add note if not multi-line
1611 span_note_and_lint(
1612 cx,
1613 SEARCH_IS_SOME,
1614 expr.span,
1615 &msg,
1616 expr.span,
1617 &format!("replace `{0}({1}).is_some()` with `any({1})`", search_method, search_snippet),
1618 );
1619 } else {
1620 span_lint(cx, SEARCH_IS_SOME, expr.span, &msg);
1621 }
1622 }
1623 }
1624
1625 /// Used for `lint_binary_expr_with_method_call`.
1626 #[derive(Copy, Clone)]
1627 struct BinaryExprInfo<'a> {
1628 expr: &'a hir::Expr,
1629 chain: &'a hir::Expr,
1630 other: &'a hir::Expr,
1631 eq: bool,
1632 }
1633
1634 /// Checks for the `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints.
1635 fn lint_binary_expr_with_method_call<'a, 'tcx: 'a>(cx: &LateContext<'a, 'tcx>, info: &mut BinaryExprInfo) {
1636 macro_rules! lint_with_both_lhs_and_rhs {
1637 ($func:ident, $cx:expr, $info:ident) => {
1638 if !$func($cx, $info) {
1639 ::std::mem::swap(&mut $info.chain, &mut $info.other);
1640 if $func($cx, $info) {
1641 return;
1642 }
1643 }
1644 }
1645 }
1646
1647 lint_with_both_lhs_and_rhs!(lint_chars_next_cmp, cx, info);
1648 lint_with_both_lhs_and_rhs!(lint_chars_last_cmp, cx, info);
1649 lint_with_both_lhs_and_rhs!(lint_chars_next_cmp_with_unwrap, cx, info);
1650 lint_with_both_lhs_and_rhs!(lint_chars_last_cmp_with_unwrap, cx, info);
1651 }
1652
1653 /// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_NEXT_CMP` lints.
1654 fn lint_chars_cmp<'a, 'tcx>(
1655 cx: &LateContext<'a, 'tcx>,
1656 info: &BinaryExprInfo,
1657 chain_methods: &[&str],
1658 lint: &'static Lint,
1659 suggest: &str,
1660 ) -> bool {
1661 if_chain! {
1662 if let Some(args) = method_chain_args(info.chain, chain_methods);
1663 if let hir::ExprCall(ref fun, ref arg_char) = info.other.node;
1664 if arg_char.len() == 1;
1665 if let hir::ExprPath(ref qpath) = fun.node;
1666 if let Some(segment) = single_segment_path(qpath);
1667 if segment.name == "Some";
1668 then {
1669 let self_ty = walk_ptrs_ty(cx.tables.expr_ty_adjusted(&args[0][0]));
1670
1671 if self_ty.sty != ty::TyStr {
1672 return false;
1673 }
1674
1675 span_lint_and_sugg(cx,
1676 lint,
1677 info.expr.span,
1678 &format!("you should use the `{}` method", suggest),
1679 "like this",
1680 format!("{}{}.{}({})",
1681 if info.eq { "" } else { "!" },
1682 snippet(cx, args[0][0].span, "_"),
1683 suggest,
1684 snippet(cx, arg_char[0].span, "_")));
1685
1686 return true;
1687 }
1688 }
1689
1690 false
1691 }
1692
1693 /// Checks for the `CHARS_NEXT_CMP` lint.
1694 fn lint_chars_next_cmp<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool {
1695 lint_chars_cmp(cx, info, &["chars", "next"], CHARS_NEXT_CMP, "starts_with")
1696 }
1697
1698 /// Checks for the `CHARS_LAST_CMP` lint.
1699 fn lint_chars_last_cmp<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool {
1700 if lint_chars_cmp(cx, info, &["chars", "last"], CHARS_NEXT_CMP, "ends_with") {
1701 true
1702 } else {
1703 lint_chars_cmp(cx, info, &["chars", "next_back"], CHARS_NEXT_CMP, "ends_with")
1704 }
1705 }
1706
1707 /// Wrapper fn for `CHARS_NEXT_CMP` and `CHARS_LAST_CMP` lints with `unwrap()`.
1708 fn lint_chars_cmp_with_unwrap<'a, 'tcx>(
1709 cx: &LateContext<'a, 'tcx>,
1710 info: &BinaryExprInfo,
1711 chain_methods: &[&str],
1712 lint: &'static Lint,
1713 suggest: &str,
1714 ) -> bool {
1715 if_chain! {
1716 if let Some(args) = method_chain_args(info.chain, chain_methods);
1717 if let hir::ExprLit(ref lit) = info.other.node;
1718 if let ast::LitKind::Char(c) = lit.node;
1719 then {
1720 span_lint_and_sugg(
1721 cx,
1722 lint,
1723 info.expr.span,
1724 &format!("you should use the `{}` method", suggest),
1725 "like this",
1726 format!("{}{}.{}('{}')",
1727 if info.eq { "" } else { "!" },
1728 snippet(cx, args[0][0].span, "_"),
1729 suggest,
1730 c)
1731 );
1732
1733 return true;
1734 }
1735 }
1736
1737 false
1738 }
1739
1740 /// Checks for the `CHARS_NEXT_CMP` lint with `unwrap()`.
1741 fn lint_chars_next_cmp_with_unwrap<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool {
1742 lint_chars_cmp_with_unwrap(cx, info, &["chars", "next", "unwrap"], CHARS_NEXT_CMP, "starts_with")
1743 }
1744
1745 /// Checks for the `CHARS_LAST_CMP` lint with `unwrap()`.
1746 fn lint_chars_last_cmp_with_unwrap<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, info: &BinaryExprInfo) -> bool {
1747 if lint_chars_cmp_with_unwrap(cx, info, &["chars", "last", "unwrap"], CHARS_LAST_CMP, "ends_with") {
1748 true
1749 } else {
1750 lint_chars_cmp_with_unwrap(cx, info, &["chars", "next_back", "unwrap"], CHARS_LAST_CMP, "ends_with")
1751 }
1752 }
1753
1754 /// lint for length-1 `str`s for methods in `PATTERN_METHODS`
1755 fn lint_single_char_pattern<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &'tcx hir::Expr, arg: &'tcx hir::Expr) {
1756 let parent_item = cx.tcx.hir.get_parent(arg.id);
1757 let parent_def_id = cx.tcx.hir.local_def_id(parent_item);
1758 let substs = Substs::identity_for_item(cx.tcx, parent_def_id);
1759 if let Ok(&ty::Const {
1760 val: ConstVal::Str(r),
1761 ..
1762 }) = ConstContext::new(cx.tcx, cx.param_env.and(substs), cx.tables).eval(arg)
1763 {
1764 if r.len() == 1 {
1765 let hint = snippet(cx, expr.span, "..").replace(&format!("\"{}\"", r), &format!("'{}'", r));
1766 span_lint_and_then(
1767 cx,
1768 SINGLE_CHAR_PATTERN,
1769 arg.span,
1770 "single-character string constant used as pattern",
1771 |db| {
1772 db.span_suggestion(expr.span, "try using a char instead", hint);
1773 },
1774 );
1775 }
1776 }
1777 }
1778
1779 /// Checks for the `USELESS_ASREF` lint.
1780 fn lint_asref(cx: &LateContext, expr: &hir::Expr, call_name: &str, as_ref_args: &[hir::Expr]) {
1781 // when we get here, we've already checked that the call name is "as_ref" or "as_mut"
1782 // check if the call is to the actual `AsRef` or `AsMut` trait
1783 if match_trait_method(cx, expr, &paths::ASREF_TRAIT) || match_trait_method(cx, expr, &paths::ASMUT_TRAIT) {
1784 // check if the type after `as_ref` or `as_mut` is the same as before
1785 let recvr = &as_ref_args[0];
1786 let rcv_ty = cx.tables.expr_ty(recvr);
1787 let res_ty = cx.tables.expr_ty(expr);
1788 let (base_res_ty, res_depth) = walk_ptrs_ty_depth(res_ty);
1789 let (base_rcv_ty, rcv_depth) = walk_ptrs_ty_depth(rcv_ty);
1790 if base_rcv_ty == base_res_ty && rcv_depth >= res_depth {
1791 span_lint_and_sugg(
1792 cx,
1793 USELESS_ASREF,
1794 expr.span,
1795 &format!("this call to `{}` does nothing", call_name),
1796 "try this",
1797 snippet(cx, recvr.span, "_").into_owned(),
1798 );
1799 }
1800 }
1801 }
1802
1803 /// Given a `Result<T, E>` type, return its error type (`E`).
1804 fn get_error_type<'a>(cx: &LateContext, ty: Ty<'a>) -> Option<Ty<'a>> {
1805 if let ty::TyAdt(_, substs) = ty.sty {
1806 if match_type(cx, ty, &paths::RESULT) {
1807 substs.types().nth(1)
1808 } else {
1809 None
1810 }
1811 } else {
1812 None
1813 }
1814 }
1815
1816 /// This checks whether a given type is known to implement Debug.
1817 fn has_debug_impl<'a, 'b>(ty: Ty<'a>, cx: &LateContext<'b, 'a>) -> bool {
1818 match cx.tcx.lang_items().debug_trait() {
1819 Some(debug) => implements_trait(cx, ty, debug, &[]),
1820 None => false,
1821 }
1822 }
1823
1824 enum Convention {
1825 Eq(&'static str),
1826 StartsWith(&'static str),
1827 }
1828
1829 #[cfg_attr(rustfmt, rustfmt_skip)]
1830 const CONVENTIONS: [(Convention, &[SelfKind]); 6] = [
1831 (Convention::Eq("new"), &[SelfKind::No]),
1832 (Convention::StartsWith("as_"), &[SelfKind::Ref, SelfKind::RefMut]),
1833 (Convention::StartsWith("from_"), &[SelfKind::No]),
1834 (Convention::StartsWith("into_"), &[SelfKind::Value]),
1835 (Convention::StartsWith("is_"), &[SelfKind::Ref, SelfKind::No]),
1836 (Convention::StartsWith("to_"), &[SelfKind::Ref]),
1837 ];
1838
1839 #[cfg_attr(rustfmt, rustfmt_skip)]
1840 const TRAIT_METHODS: [(&str, usize, SelfKind, OutType, &str); 30] = [
1841 ("add", 2, SelfKind::Value, OutType::Any, "std::ops::Add"),
1842 ("as_mut", 1, SelfKind::RefMut, OutType::Ref, "std::convert::AsMut"),
1843 ("as_ref", 1, SelfKind::Ref, OutType::Ref, "std::convert::AsRef"),
1844 ("bitand", 2, SelfKind::Value, OutType::Any, "std::ops::BitAnd"),
1845 ("bitor", 2, SelfKind::Value, OutType::Any, "std::ops::BitOr"),
1846 ("bitxor", 2, SelfKind::Value, OutType::Any, "std::ops::BitXor"),
1847 ("borrow", 1, SelfKind::Ref, OutType::Ref, "std::borrow::Borrow"),
1848 ("borrow_mut", 1, SelfKind::RefMut, OutType::Ref, "std::borrow::BorrowMut"),
1849 ("clone", 1, SelfKind::Ref, OutType::Any, "std::clone::Clone"),
1850 ("cmp", 2, SelfKind::Ref, OutType::Any, "std::cmp::Ord"),
1851 ("default", 0, SelfKind::No, OutType::Any, "std::default::Default"),
1852 ("deref", 1, SelfKind::Ref, OutType::Ref, "std::ops::Deref"),
1853 ("deref_mut", 1, SelfKind::RefMut, OutType::Ref, "std::ops::DerefMut"),
1854 ("div", 2, SelfKind::Value, OutType::Any, "std::ops::Div"),
1855 ("drop", 1, SelfKind::RefMut, OutType::Unit, "std::ops::Drop"),
1856 ("eq", 2, SelfKind::Ref, OutType::Bool, "std::cmp::PartialEq"),
1857 ("from_iter", 1, SelfKind::No, OutType::Any, "std::iter::FromIterator"),
1858 ("from_str", 1, SelfKind::No, OutType::Any, "std::str::FromStr"),
1859 ("hash", 2, SelfKind::Ref, OutType::Unit, "std::hash::Hash"),
1860 ("index", 2, SelfKind::Ref, OutType::Ref, "std::ops::Index"),
1861 ("index_mut", 2, SelfKind::RefMut, OutType::Ref, "std::ops::IndexMut"),
1862 ("into_iter", 1, SelfKind::Value, OutType::Any, "std::iter::IntoIterator"),
1863 ("mul", 2, SelfKind::Value, OutType::Any, "std::ops::Mul"),
1864 ("neg", 1, SelfKind::Value, OutType::Any, "std::ops::Neg"),
1865 ("next", 1, SelfKind::RefMut, OutType::Any, "std::iter::Iterator"),
1866 ("not", 1, SelfKind::Value, OutType::Any, "std::ops::Not"),
1867 ("rem", 2, SelfKind::Value, OutType::Any, "std::ops::Rem"),
1868 ("shl", 2, SelfKind::Value, OutType::Any, "std::ops::Shl"),
1869 ("shr", 2, SelfKind::Value, OutType::Any, "std::ops::Shr"),
1870 ("sub", 2, SelfKind::Value, OutType::Any, "std::ops::Sub"),
1871 ];
1872
1873 #[cfg_attr(rustfmt, rustfmt_skip)]
1874 const PATTERN_METHODS: [(&str, usize); 17] = [
1875 ("contains", 1),
1876 ("starts_with", 1),
1877 ("ends_with", 1),
1878 ("find", 1),
1879 ("rfind", 1),
1880 ("split", 1),
1881 ("rsplit", 1),
1882 ("split_terminator", 1),
1883 ("rsplit_terminator", 1),
1884 ("splitn", 2),
1885 ("rsplitn", 2),
1886 ("matches", 1),
1887 ("rmatches", 1),
1888 ("match_indices", 1),
1889 ("rmatch_indices", 1),
1890 ("trim_left_matches", 1),
1891 ("trim_right_matches", 1),
1892 ];
1893
1894
1895 #[derive(Clone, Copy, PartialEq, Debug)]
1896 enum SelfKind {
1897 Value,
1898 Ref,
1899 RefMut,
1900 No,
1901 }
1902
1903 impl SelfKind {
1904 fn matches(
1905 self,
1906 ty: &hir::Ty,
1907 arg: &hir::Arg,
1908 self_ty: &hir::Ty,
1909 allow_value_for_ref: bool,
1910 generics: &hir::Generics,
1911 ) -> bool {
1912 // Self types in the HIR are desugared to explicit self types. So it will
1913 // always be `self:
1914 // SomeType`,
1915 // where SomeType can be `Self` or an explicit impl self type (e.g. `Foo` if
1916 // the impl is on `Foo`)
1917 // Thus, we only need to test equality against the impl self type or if it is
1918 // an explicit
1919 // `Self`. Furthermore, the only possible types for `self: ` are `&Self`,
1920 // `Self`, `&mut Self`,
1921 // and `Box<Self>`, including the equivalent types with `Foo`.
1922
1923 let is_actually_self = |ty| is_self_ty(ty) || ty == self_ty;
1924 if is_self(arg) {
1925 match self {
1926 SelfKind::Value => is_actually_self(ty),
1927 SelfKind::Ref | SelfKind::RefMut => {
1928 if allow_value_for_ref && is_actually_self(ty) {
1929 return true;
1930 }
1931 match ty.node {
1932 hir::TyRptr(_, ref mt_ty) => {
1933 let mutability_match = if self == SelfKind::Ref {
1934 mt_ty.mutbl == hir::MutImmutable
1935 } else {
1936 mt_ty.mutbl == hir::MutMutable
1937 };
1938 is_actually_self(&mt_ty.ty) && mutability_match
1939 },
1940 _ => false,
1941 }
1942 },
1943 _ => false,
1944 }
1945 } else {
1946 match self {
1947 SelfKind::Value => false,
1948 SelfKind::Ref => is_as_ref_or_mut_trait(ty, self_ty, generics, &paths::ASREF_TRAIT),
1949 SelfKind::RefMut => is_as_ref_or_mut_trait(ty, self_ty, generics, &paths::ASMUT_TRAIT),
1950 SelfKind::No => true,
1951 }
1952 }
1953 }
1954
1955 fn description(&self) -> &'static str {
1956 match *self {
1957 SelfKind::Value => "self by value",
1958 SelfKind::Ref => "self by reference",
1959 SelfKind::RefMut => "self by mutable reference",
1960 SelfKind::No => "no self",
1961 }
1962 }
1963 }
1964
1965 fn is_as_ref_or_mut_trait(ty: &hir::Ty, self_ty: &hir::Ty, generics: &hir::Generics, name: &[&str]) -> bool {
1966 single_segment_ty(ty).map_or(false, |seg| {
1967 generics.ty_params().any(|param| {
1968 param.name == seg.name && param.bounds.iter().any(|bound| {
1969 if let hir::TyParamBound::TraitTyParamBound(ref ptr, ..) = *bound {
1970 let path = &ptr.trait_ref.path;
1971 match_path(path, name) && path.segments.last().map_or(false, |s| {
1972 if let Some(ref params) = s.parameters {
1973 if params.parenthesized {
1974 false
1975 } else {
1976 params.types.len() == 1
1977 && (is_self_ty(&params.types[0]) || is_ty(&*params.types[0], self_ty))
1978 }
1979 } else {
1980 false
1981 }
1982 })
1983 } else {
1984 false
1985 }
1986 })
1987 })
1988 })
1989 }
1990
1991 fn is_ty(ty: &hir::Ty, self_ty: &hir::Ty) -> bool {
1992 match (&ty.node, &self_ty.node) {
1993 (
1994 &hir::TyPath(hir::QPath::Resolved(_, ref ty_path)),
1995 &hir::TyPath(hir::QPath::Resolved(_, ref self_ty_path)),
1996 ) => ty_path
1997 .segments
1998 .iter()
1999 .map(|seg| seg.name)
2000 .eq(self_ty_path.segments.iter().map(|seg| seg.name)),
2001 _ => false,
2002 }
2003 }
2004
2005 fn single_segment_ty(ty: &hir::Ty) -> Option<&hir::PathSegment> {
2006 if let hir::TyPath(ref path) = ty.node {
2007 single_segment_path(path)
2008 } else {
2009 None
2010 }
2011 }
2012
2013 impl Convention {
2014 fn check(&self, other: &str) -> bool {
2015 match *self {
2016 Convention::Eq(this) => this == other,
2017 Convention::StartsWith(this) => other.starts_with(this) && this != other,
2018 }
2019 }
2020 }
2021
2022 impl fmt::Display for Convention {
2023 fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
2024 match *self {
2025 Convention::Eq(this) => this.fmt(f),
2026 Convention::StartsWith(this) => this.fmt(f).and_then(|_| '*'.fmt(f)),
2027 }
2028 }
2029 }
2030
2031 #[derive(Clone, Copy)]
2032 enum OutType {
2033 Unit,
2034 Bool,
2035 Any,
2036 Ref,
2037 }
2038
2039 impl OutType {
2040 fn matches(&self, ty: &hir::FunctionRetTy) -> bool {
2041 match (self, ty) {
2042 (&OutType::Unit, &hir::DefaultReturn(_)) => true,
2043 (&OutType::Unit, &hir::Return(ref ty)) if ty.node == hir::TyTup(vec![].into()) => true,
2044 (&OutType::Bool, &hir::Return(ref ty)) if is_bool(ty) => true,
2045 (&OutType::Any, &hir::Return(ref ty)) if ty.node != hir::TyTup(vec![].into()) => true,
2046 (&OutType::Ref, &hir::Return(ref ty)) => matches!(ty.node, hir::TyRptr(_, _)),
2047 _ => false,
2048 }
2049 }
2050 }
2051
2052 fn is_bool(ty: &hir::Ty) -> bool {
2053 if let hir::TyPath(ref p) = ty.node {
2054 match_qpath(p, &["bool"])
2055 } else {
2056 false
2057 }
2058 }