]> git.proxmox.com Git - rustc.git/blob - src/tools/clippy/clippy_lints/src/misc.rs
New upstream version 1.52.1+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / misc.rs
1 use if_chain::if_chain;
2 use rustc_ast::ast::LitKind;
3 use rustc_errors::Applicability;
4 use rustc_hir::intravisit::FnKind;
5 use rustc_hir::{
6 self as hir, def, BinOpKind, BindingAnnotation, Body, Expr, ExprKind, FnDecl, HirId, Mutability, PatKind, Stmt,
7 StmtKind, TyKind, UnOp,
8 };
9 use rustc_lint::{LateContext, LateLintPass};
10 use rustc_middle::lint::in_external_macro;
11 use rustc_middle::ty::{self, Ty};
12 use rustc_session::{declare_lint_pass, declare_tool_lint};
13 use rustc_span::hygiene::DesugaringKind;
14 use rustc_span::source_map::{ExpnKind, Span};
15 use rustc_span::symbol::sym;
16
17 use crate::consts::{constant, Constant};
18 use crate::utils::sugg::Sugg;
19 use crate::utils::{
20 get_item_name, get_parent_expr, higher, implements_trait, in_constant, is_diagnostic_assoc_item, is_integer_const,
21 iter_input_pats, last_path_segment, match_qpath, snippet, snippet_opt, span_lint, span_lint_and_sugg,
22 span_lint_and_then, span_lint_hir_and_then, unsext, SpanlessEq,
23 };
24
25 declare_clippy_lint! {
26 /// **What it does:** Checks for function arguments and let bindings denoted as
27 /// `ref`.
28 ///
29 /// **Why is this bad?** The `ref` declaration makes the function take an owned
30 /// value, but turns the argument into a reference (which means that the value
31 /// is destroyed when exiting the function). This adds not much value: either
32 /// take a reference type, or take an owned value and create references in the
33 /// body.
34 ///
35 /// For let bindings, `let x = &foo;` is preferred over `let ref x = foo`. The
36 /// type of `x` is more obvious with the former.
37 ///
38 /// **Known problems:** If the argument is dereferenced within the function,
39 /// removing the `ref` will lead to errors. This can be fixed by removing the
40 /// dereferences, e.g., changing `*x` to `x` within the function.
41 ///
42 /// **Example:**
43 /// ```rust,ignore
44 /// // Bad
45 /// fn foo(ref x: u8) -> bool {
46 /// true
47 /// }
48 ///
49 /// // Good
50 /// fn foo(x: &u8) -> bool {
51 /// true
52 /// }
53 /// ```
54 pub TOPLEVEL_REF_ARG,
55 style,
56 "an entire binding declared as `ref`, in a function argument or a `let` statement"
57 }
58
59 declare_clippy_lint! {
60 /// **What it does:** Checks for comparisons to NaN.
61 ///
62 /// **Why is this bad?** NaN does not compare meaningfully to anything – not
63 /// even itself – so those comparisons are simply wrong.
64 ///
65 /// **Known problems:** None.
66 ///
67 /// **Example:**
68 /// ```rust
69 /// # let x = 1.0;
70 ///
71 /// // Bad
72 /// if x == f32::NAN { }
73 ///
74 /// // Good
75 /// if x.is_nan() { }
76 /// ```
77 pub CMP_NAN,
78 correctness,
79 "comparisons to `NAN`, which will always return false, probably not intended"
80 }
81
82 declare_clippy_lint! {
83 /// **What it does:** Checks for (in-)equality comparisons on floating-point
84 /// values (apart from zero), except in functions called `*eq*` (which probably
85 /// implement equality for a type involving floats).
86 ///
87 /// **Why is this bad?** Floating point calculations are usually imprecise, so
88 /// asking if two values are *exactly* equal is asking for trouble. For a good
89 /// guide on what to do, see [the floating point
90 /// guide](http://www.floating-point-gui.de/errors/comparison).
91 ///
92 /// **Known problems:** None.
93 ///
94 /// **Example:**
95 /// ```rust
96 /// let x = 1.2331f64;
97 /// let y = 1.2332f64;
98 ///
99 /// // Bad
100 /// if y == 1.23f64 { }
101 /// if y != x {} // where both are floats
102 ///
103 /// // Good
104 /// let error_margin = f64::EPSILON; // Use an epsilon for comparison
105 /// // Or, if Rust <= 1.42, use `std::f64::EPSILON` constant instead.
106 /// // let error_margin = std::f64::EPSILON;
107 /// if (y - 1.23f64).abs() < error_margin { }
108 /// if (y - x).abs() > error_margin { }
109 /// ```
110 pub FLOAT_CMP,
111 correctness,
112 "using `==` or `!=` on float values instead of comparing difference with an epsilon"
113 }
114
115 declare_clippy_lint! {
116 /// **What it does:** Checks for conversions to owned values just for the sake
117 /// of a comparison.
118 ///
119 /// **Why is this bad?** The comparison can operate on a reference, so creating
120 /// an owned value effectively throws it away directly afterwards, which is
121 /// needlessly consuming code and heap space.
122 ///
123 /// **Known problems:** None.
124 ///
125 /// **Example:**
126 /// ```rust
127 /// # let x = "foo";
128 /// # let y = String::from("foo");
129 /// if x.to_owned() == y {}
130 /// ```
131 /// Could be written as
132 /// ```rust
133 /// # let x = "foo";
134 /// # let y = String::from("foo");
135 /// if x == y {}
136 /// ```
137 pub CMP_OWNED,
138 perf,
139 "creating owned instances for comparing with others, e.g., `x == \"foo\".to_string()`"
140 }
141
142 declare_clippy_lint! {
143 /// **What it does:** Checks for getting the remainder of a division by one or minus
144 /// one.
145 ///
146 /// **Why is this bad?** The result for a divisor of one can only ever be zero; for
147 /// minus one it can cause panic/overflow (if the left operand is the minimal value of
148 /// the respective integer type) or results in zero. No one will write such code
149 /// deliberately, unless trying to win an Underhanded Rust Contest. Even for that
150 /// contest, it's probably a bad idea. Use something more underhanded.
151 ///
152 /// **Known problems:** None.
153 ///
154 /// **Example:**
155 /// ```rust
156 /// # let x = 1;
157 /// let a = x % 1;
158 /// let a = x % -1;
159 /// ```
160 pub MODULO_ONE,
161 correctness,
162 "taking a number modulo +/-1, which can either panic/overflow or always returns 0"
163 }
164
165 declare_clippy_lint! {
166 /// **What it does:** Checks for the use of bindings with a single leading
167 /// underscore.
168 ///
169 /// **Why is this bad?** A single leading underscore is usually used to indicate
170 /// that a binding will not be used. Using such a binding breaks this
171 /// expectation.
172 ///
173 /// **Known problems:** The lint does not work properly with desugaring and
174 /// macro, it has been allowed in the mean time.
175 ///
176 /// **Example:**
177 /// ```rust
178 /// let _x = 0;
179 /// let y = _x + 1; // Here we are using `_x`, even though it has a leading
180 /// // underscore. We should rename `_x` to `x`
181 /// ```
182 pub USED_UNDERSCORE_BINDING,
183 pedantic,
184 "using a binding which is prefixed with an underscore"
185 }
186
187 declare_clippy_lint! {
188 /// **What it does:** Checks for the use of short circuit boolean conditions as
189 /// a
190 /// statement.
191 ///
192 /// **Why is this bad?** Using a short circuit boolean condition as a statement
193 /// may hide the fact that the second part is executed or not depending on the
194 /// outcome of the first part.
195 ///
196 /// **Known problems:** None.
197 ///
198 /// **Example:**
199 /// ```rust,ignore
200 /// f() && g(); // We should write `if f() { g(); }`.
201 /// ```
202 pub SHORT_CIRCUIT_STATEMENT,
203 complexity,
204 "using a short circuit boolean condition as a statement"
205 }
206
207 declare_clippy_lint! {
208 /// **What it does:** Catch casts from `0` to some pointer type
209 ///
210 /// **Why is this bad?** This generally means `null` and is better expressed as
211 /// {`std`, `core`}`::ptr::`{`null`, `null_mut`}.
212 ///
213 /// **Known problems:** None.
214 ///
215 /// **Example:**
216 ///
217 /// ```rust
218 /// // Bad
219 /// let a = 0 as *const u32;
220 ///
221 /// // Good
222 /// let a = std::ptr::null::<u32>();
223 /// ```
224 pub ZERO_PTR,
225 style,
226 "using `0 as *{const, mut} T`"
227 }
228
229 declare_clippy_lint! {
230 /// **What it does:** Checks for (in-)equality comparisons on floating-point
231 /// value and constant, except in functions called `*eq*` (which probably
232 /// implement equality for a type involving floats).
233 ///
234 /// **Why is this bad?** Floating point calculations are usually imprecise, so
235 /// asking if two values are *exactly* equal is asking for trouble. For a good
236 /// guide on what to do, see [the floating point
237 /// guide](http://www.floating-point-gui.de/errors/comparison).
238 ///
239 /// **Known problems:** None.
240 ///
241 /// **Example:**
242 /// ```rust
243 /// let x: f64 = 1.0;
244 /// const ONE: f64 = 1.00;
245 ///
246 /// // Bad
247 /// if x == ONE { } // where both are floats
248 ///
249 /// // Good
250 /// let error_margin = f64::EPSILON; // Use an epsilon for comparison
251 /// // Or, if Rust <= 1.42, use `std::f64::EPSILON` constant instead.
252 /// // let error_margin = std::f64::EPSILON;
253 /// if (x - ONE).abs() < error_margin { }
254 /// ```
255 pub FLOAT_CMP_CONST,
256 restriction,
257 "using `==` or `!=` on float constants instead of comparing difference with an epsilon"
258 }
259
260 declare_lint_pass!(MiscLints => [
261 TOPLEVEL_REF_ARG,
262 CMP_NAN,
263 FLOAT_CMP,
264 CMP_OWNED,
265 MODULO_ONE,
266 USED_UNDERSCORE_BINDING,
267 SHORT_CIRCUIT_STATEMENT,
268 ZERO_PTR,
269 FLOAT_CMP_CONST
270 ]);
271
272 impl<'tcx> LateLintPass<'tcx> for MiscLints {
273 fn check_fn(
274 &mut self,
275 cx: &LateContext<'tcx>,
276 k: FnKind<'tcx>,
277 decl: &'tcx FnDecl<'_>,
278 body: &'tcx Body<'_>,
279 span: Span,
280 _: HirId,
281 ) {
282 if let FnKind::Closure = k {
283 // Does not apply to closures
284 return;
285 }
286 if in_external_macro(cx.tcx.sess, span) {
287 return;
288 }
289 for arg in iter_input_pats(decl, body) {
290 if let PatKind::Binding(BindingAnnotation::Ref | BindingAnnotation::RefMut, ..) = arg.pat.kind {
291 span_lint(
292 cx,
293 TOPLEVEL_REF_ARG,
294 arg.pat.span,
295 "`ref` directly on a function argument is ignored. \
296 Consider using a reference type instead",
297 );
298 }
299 }
300 }
301
302 fn check_stmt(&mut self, cx: &LateContext<'tcx>, stmt: &'tcx Stmt<'_>) {
303 if_chain! {
304 if !in_external_macro(cx.tcx.sess, stmt.span);
305 if let StmtKind::Local(ref local) = stmt.kind;
306 if let PatKind::Binding(an, .., name, None) = local.pat.kind;
307 if let Some(ref init) = local.init;
308 if !higher::is_from_for_desugar(local);
309 then {
310 if an == BindingAnnotation::Ref || an == BindingAnnotation::RefMut {
311 // use the macro callsite when the init span (but not the whole local span)
312 // comes from an expansion like `vec![1, 2, 3]` in `let ref _ = vec![1, 2, 3];`
313 let sugg_init = if init.span.from_expansion() && !local.span.from_expansion() {
314 Sugg::hir_with_macro_callsite(cx, init, "..")
315 } else {
316 Sugg::hir(cx, init, "..")
317 };
318 let (mutopt, initref) = if an == BindingAnnotation::RefMut {
319 ("mut ", sugg_init.mut_addr())
320 } else {
321 ("", sugg_init.addr())
322 };
323 let tyopt = if let Some(ref ty) = local.ty {
324 format!(": &{mutopt}{ty}", mutopt=mutopt, ty=snippet(cx, ty.span, ".."))
325 } else {
326 String::new()
327 };
328 span_lint_hir_and_then(
329 cx,
330 TOPLEVEL_REF_ARG,
331 init.hir_id,
332 local.pat.span,
333 "`ref` on an entire `let` pattern is discouraged, take a reference with `&` instead",
334 |diag| {
335 diag.span_suggestion(
336 stmt.span,
337 "try",
338 format!(
339 "let {name}{tyopt} = {initref};",
340 name=snippet(cx, name.span, ".."),
341 tyopt=tyopt,
342 initref=initref,
343 ),
344 Applicability::MachineApplicable,
345 );
346 }
347 );
348 }
349 }
350 };
351 if_chain! {
352 if let StmtKind::Semi(ref expr) = stmt.kind;
353 if let ExprKind::Binary(ref binop, ref a, ref b) = expr.kind;
354 if binop.node == BinOpKind::And || binop.node == BinOpKind::Or;
355 if let Some(sugg) = Sugg::hir_opt(cx, a);
356 then {
357 span_lint_and_then(cx,
358 SHORT_CIRCUIT_STATEMENT,
359 stmt.span,
360 "boolean short circuit operator in statement may be clearer using an explicit test",
361 |diag| {
362 let sugg = if binop.node == BinOpKind::Or { !sugg } else { sugg };
363 diag.span_suggestion(
364 stmt.span,
365 "replace it with",
366 format!(
367 "if {} {{ {}; }}",
368 sugg,
369 &snippet(cx, b.span, ".."),
370 ),
371 Applicability::MachineApplicable, // snippet
372 );
373 });
374 }
375 };
376 }
377
378 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
379 match expr.kind {
380 ExprKind::Cast(ref e, ref ty) => {
381 check_cast(cx, expr.span, e, ty);
382 return;
383 },
384 ExprKind::Binary(ref cmp, ref left, ref right) => {
385 check_binary(cx, expr, cmp, left, right);
386 return;
387 },
388 _ => {},
389 }
390 if in_attributes_expansion(expr) || expr.span.is_desugaring(DesugaringKind::Await) {
391 // Don't lint things expanded by #[derive(...)], etc or `await` desugaring
392 return;
393 }
394 let binding = match expr.kind {
395 ExprKind::Path(ref qpath) if !matches!(qpath, hir::QPath::LangItem(..)) => {
396 let binding = last_path_segment(qpath).ident.as_str();
397 if binding.starts_with('_') &&
398 !binding.starts_with("__") &&
399 binding != "_result" && // FIXME: #944
400 is_used(cx, expr) &&
401 // don't lint if the declaration is in a macro
402 non_macro_local(cx, cx.qpath_res(qpath, expr.hir_id))
403 {
404 Some(binding)
405 } else {
406 None
407 }
408 },
409 ExprKind::Field(_, ident) => {
410 let name = ident.as_str();
411 if name.starts_with('_') && !name.starts_with("__") {
412 Some(name)
413 } else {
414 None
415 }
416 },
417 _ => None,
418 };
419 if let Some(binding) = binding {
420 span_lint(
421 cx,
422 USED_UNDERSCORE_BINDING,
423 expr.span,
424 &format!(
425 "used binding `{}` which is prefixed with an underscore. A leading \
426 underscore signals that a binding will not be used",
427 binding
428 ),
429 );
430 }
431 }
432 }
433
434 fn get_lint_and_message(
435 is_comparing_constants: bool,
436 is_comparing_arrays: bool,
437 ) -> (&'static rustc_lint::Lint, &'static str) {
438 if is_comparing_constants {
439 (
440 FLOAT_CMP_CONST,
441 if is_comparing_arrays {
442 "strict comparison of `f32` or `f64` constant arrays"
443 } else {
444 "strict comparison of `f32` or `f64` constant"
445 },
446 )
447 } else {
448 (
449 FLOAT_CMP,
450 if is_comparing_arrays {
451 "strict comparison of `f32` or `f64` arrays"
452 } else {
453 "strict comparison of `f32` or `f64`"
454 },
455 )
456 }
457 }
458
459 fn check_nan(cx: &LateContext<'_>, expr: &Expr<'_>, cmp_expr: &Expr<'_>) {
460 if_chain! {
461 if !in_constant(cx, cmp_expr.hir_id);
462 if let Some((value, _)) = constant(cx, cx.typeck_results(), expr);
463 then {
464 let needs_lint = match value {
465 Constant::F32(num) => num.is_nan(),
466 Constant::F64(num) => num.is_nan(),
467 _ => false,
468 };
469
470 if needs_lint {
471 span_lint(
472 cx,
473 CMP_NAN,
474 cmp_expr.span,
475 "doomed comparison with `NAN`, use `{f32,f64}::is_nan()` instead",
476 );
477 }
478 }
479 }
480 }
481
482 fn is_named_constant<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool {
483 if let Some((_, res)) = constant(cx, cx.typeck_results(), expr) {
484 res
485 } else {
486 false
487 }
488 }
489
490 fn is_allowed<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool {
491 match constant(cx, cx.typeck_results(), expr) {
492 Some((Constant::F32(f), _)) => f == 0.0 || f.is_infinite(),
493 Some((Constant::F64(f), _)) => f == 0.0 || f.is_infinite(),
494 Some((Constant::Vec(vec), _)) => vec.iter().all(|f| match f {
495 Constant::F32(f) => *f == 0.0 || (*f).is_infinite(),
496 Constant::F64(f) => *f == 0.0 || (*f).is_infinite(),
497 _ => false,
498 }),
499 _ => false,
500 }
501 }
502
503 // Return true if `expr` is the result of `signum()` invoked on a float value.
504 fn is_signum(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
505 // The negation of a signum is still a signum
506 if let ExprKind::Unary(UnOp::Neg, ref child_expr) = expr.kind {
507 return is_signum(cx, &child_expr);
508 }
509
510 if_chain! {
511 if let ExprKind::MethodCall(ref method_name, _, ref expressions, _) = expr.kind;
512 if sym!(signum) == method_name.ident.name;
513 // Check that the receiver of the signum() is a float (expressions[0] is the receiver of
514 // the method call)
515 then {
516 return is_float(cx, &expressions[0]);
517 }
518 }
519 false
520 }
521
522 fn is_float(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
523 let value = &cx.typeck_results().expr_ty(expr).peel_refs().kind();
524
525 if let ty::Array(arr_ty, _) = value {
526 return matches!(arr_ty.kind(), ty::Float(_));
527 };
528
529 matches!(value, ty::Float(_))
530 }
531
532 fn is_array(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
533 matches!(&cx.typeck_results().expr_ty(expr).peel_refs().kind(), ty::Array(_, _))
534 }
535
536 fn check_to_owned(cx: &LateContext<'_>, expr: &Expr<'_>, other: &Expr<'_>, left: bool) {
537 #[derive(Default)]
538 struct EqImpl {
539 ty_eq_other: bool,
540 other_eq_ty: bool,
541 }
542
543 impl EqImpl {
544 fn is_implemented(&self) -> bool {
545 self.ty_eq_other || self.other_eq_ty
546 }
547 }
548
549 fn symmetric_partial_eq<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, other: Ty<'tcx>) -> Option<EqImpl> {
550 cx.tcx.lang_items().eq_trait().map(|def_id| EqImpl {
551 ty_eq_other: implements_trait(cx, ty, def_id, &[other.into()]),
552 other_eq_ty: implements_trait(cx, other, def_id, &[ty.into()]),
553 })
554 }
555
556 let (arg_ty, snip) = match expr.kind {
557 ExprKind::MethodCall(.., ref args, _) if args.len() == 1 => {
558 if_chain!(
559 if let Some(expr_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id);
560 if is_diagnostic_assoc_item(cx, expr_def_id, sym::ToString)
561 || is_diagnostic_assoc_item(cx, expr_def_id, sym::ToOwned);
562 then {
563 (cx.typeck_results().expr_ty(&args[0]), snippet(cx, args[0].span, ".."))
564 } else {
565 return;
566 }
567 )
568 },
569 ExprKind::Call(ref path, ref v) if v.len() == 1 => {
570 if let ExprKind::Path(ref path) = path.kind {
571 if match_qpath(path, &["String", "from_str"]) || match_qpath(path, &["String", "from"]) {
572 (cx.typeck_results().expr_ty(&v[0]), snippet(cx, v[0].span, ".."))
573 } else {
574 return;
575 }
576 } else {
577 return;
578 }
579 },
580 _ => return,
581 };
582
583 let other_ty = cx.typeck_results().expr_ty(other);
584
585 let without_deref = symmetric_partial_eq(cx, arg_ty, other_ty).unwrap_or_default();
586 let with_deref = arg_ty
587 .builtin_deref(true)
588 .and_then(|tam| symmetric_partial_eq(cx, tam.ty, other_ty))
589 .unwrap_or_default();
590
591 if !with_deref.is_implemented() && !without_deref.is_implemented() {
592 return;
593 }
594
595 let other_gets_derefed = matches!(other.kind, ExprKind::Unary(UnOp::Deref, _));
596
597 let lint_span = if other_gets_derefed {
598 expr.span.to(other.span)
599 } else {
600 expr.span
601 };
602
603 span_lint_and_then(
604 cx,
605 CMP_OWNED,
606 lint_span,
607 "this creates an owned instance just for comparison",
608 |diag| {
609 // This also catches `PartialEq` implementations that call `to_owned`.
610 if other_gets_derefed {
611 diag.span_label(lint_span, "try implementing the comparison without allocating");
612 return;
613 }
614
615 let expr_snip;
616 let eq_impl;
617 if with_deref.is_implemented() {
618 expr_snip = format!("*{}", snip);
619 eq_impl = with_deref;
620 } else {
621 expr_snip = snip.to_string();
622 eq_impl = without_deref;
623 };
624
625 let span;
626 let hint;
627 if (eq_impl.ty_eq_other && left) || (eq_impl.other_eq_ty && !left) {
628 span = expr.span;
629 hint = expr_snip;
630 } else {
631 span = expr.span.to(other.span);
632 if eq_impl.ty_eq_other {
633 hint = format!("{} == {}", expr_snip, snippet(cx, other.span, ".."));
634 } else {
635 hint = format!("{} == {}", snippet(cx, other.span, ".."), expr_snip);
636 }
637 }
638
639 diag.span_suggestion(
640 span,
641 "try",
642 hint,
643 Applicability::MachineApplicable, // snippet
644 );
645 },
646 );
647 }
648
649 /// Heuristic to see if an expression is used. Should be compatible with
650 /// `unused_variables`'s idea
651 /// of what it means for an expression to be "used".
652 fn is_used(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
653 get_parent_expr(cx, expr).map_or(true, |parent| match parent.kind {
654 ExprKind::Assign(_, ref rhs, _) | ExprKind::AssignOp(_, _, ref rhs) => SpanlessEq::new(cx).eq_expr(rhs, expr),
655 _ => is_used(cx, parent),
656 })
657 }
658
659 /// Tests whether an expression is in a macro expansion (e.g., something
660 /// generated by `#[derive(...)]` or the like).
661 fn in_attributes_expansion(expr: &Expr<'_>) -> bool {
662 use rustc_span::hygiene::MacroKind;
663 if expr.span.from_expansion() {
664 let data = expr.span.ctxt().outer_expn_data();
665 matches!(data.kind, ExpnKind::Macro(MacroKind::Attr, _))
666 } else {
667 false
668 }
669 }
670
671 /// Tests whether `res` is a variable defined outside a macro.
672 fn non_macro_local(cx: &LateContext<'_>, res: def::Res) -> bool {
673 if let def::Res::Local(id) = res {
674 !cx.tcx.hir().span(id).from_expansion()
675 } else {
676 false
677 }
678 }
679
680 fn check_cast(cx: &LateContext<'_>, span: Span, e: &Expr<'_>, ty: &hir::Ty<'_>) {
681 if_chain! {
682 if let TyKind::Ptr(ref mut_ty) = ty.kind;
683 if let ExprKind::Lit(ref lit) = e.kind;
684 if let LitKind::Int(0, _) = lit.node;
685 if !in_constant(cx, e.hir_id);
686 then {
687 let (msg, sugg_fn) = match mut_ty.mutbl {
688 Mutability::Mut => ("`0 as *mut _` detected", "std::ptr::null_mut"),
689 Mutability::Not => ("`0 as *const _` detected", "std::ptr::null"),
690 };
691
692 let (sugg, appl) = if let TyKind::Infer = mut_ty.ty.kind {
693 (format!("{}()", sugg_fn), Applicability::MachineApplicable)
694 } else if let Some(mut_ty_snip) = snippet_opt(cx, mut_ty.ty.span) {
695 (format!("{}::<{}>()", sugg_fn, mut_ty_snip), Applicability::MachineApplicable)
696 } else {
697 // `MaybeIncorrect` as type inference may not work with the suggested code
698 (format!("{}()", sugg_fn), Applicability::MaybeIncorrect)
699 };
700 span_lint_and_sugg(cx, ZERO_PTR, span, msg, "try", sugg, appl);
701 }
702 }
703 }
704
705 fn check_binary(
706 cx: &LateContext<'a>,
707 expr: &Expr<'_>,
708 cmp: &rustc_span::source_map::Spanned<rustc_hir::BinOpKind>,
709 left: &'a Expr<'_>,
710 right: &'a Expr<'_>,
711 ) {
712 let op = cmp.node;
713 if op.is_comparison() {
714 check_nan(cx, left, expr);
715 check_nan(cx, right, expr);
716 check_to_owned(cx, left, right, true);
717 check_to_owned(cx, right, left, false);
718 }
719 if (op == BinOpKind::Eq || op == BinOpKind::Ne) && (is_float(cx, left) || is_float(cx, right)) {
720 if is_allowed(cx, left) || is_allowed(cx, right) {
721 return;
722 }
723
724 // Allow comparing the results of signum()
725 if is_signum(cx, left) && is_signum(cx, right) {
726 return;
727 }
728
729 if let Some(name) = get_item_name(cx, expr) {
730 let name = name.as_str();
731 if name == "eq" || name == "ne" || name == "is_nan" || name.starts_with("eq_") || name.ends_with("_eq") {
732 return;
733 }
734 }
735 let is_comparing_arrays = is_array(cx, left) || is_array(cx, right);
736 let (lint, msg) = get_lint_and_message(
737 is_named_constant(cx, left) || is_named_constant(cx, right),
738 is_comparing_arrays,
739 );
740 span_lint_and_then(cx, lint, expr.span, msg, |diag| {
741 let lhs = Sugg::hir(cx, left, "..");
742 let rhs = Sugg::hir(cx, right, "..");
743
744 if !is_comparing_arrays {
745 diag.span_suggestion(
746 expr.span,
747 "consider comparing them within some margin of error",
748 format!(
749 "({}).abs() {} error_margin",
750 lhs - rhs,
751 if op == BinOpKind::Eq { '<' } else { '>' }
752 ),
753 Applicability::HasPlaceholders, // snippet
754 );
755 }
756 diag.note("`f32::EPSILON` and `f64::EPSILON` are available for the `error_margin`");
757 });
758 } else if op == BinOpKind::Rem {
759 if is_integer_const(cx, right, 1) {
760 span_lint(cx, MODULO_ONE, expr.span, "any number modulo 1 will be 0");
761 }
762
763 if let ty::Int(ity) = cx.typeck_results().expr_ty(right).kind() {
764 if is_integer_const(cx, right, unsext(cx.tcx, -1, *ity)) {
765 span_lint(
766 cx,
767 MODULO_ONE,
768 expr.span,
769 "any number modulo -1 will panic/overflow or result in 0",
770 );
771 }
772 };
773 }
774 }