]> git.proxmox.com Git - rustc.git/blob - src/tools/clippy/clippy_lints/src/non_copy_const.rs
New upstream version 1.61.0+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / non_copy_const.rs
1 //! Checks for uses of const which the type is not `Freeze` (`Cell`-free).
2 //!
3 //! This lint is **warn** by default.
4
5 use std::ptr;
6
7 use clippy_utils::diagnostics::span_lint_and_then;
8 use clippy_utils::in_constant;
9 use if_chain::if_chain;
10 use rustc_hir::def::{DefKind, Res};
11 use rustc_hir::def_id::DefId;
12 use rustc_hir::{
13 BodyId, Expr, ExprKind, HirId, Impl, ImplItem, ImplItemKind, Item, ItemKind, Node, TraitItem, TraitItemKind, UnOp,
14 };
15 use rustc_lint::{LateContext, LateLintPass, Lint};
16 use rustc_middle::mir::interpret::{ConstValue, ErrorHandled};
17 use rustc_middle::ty::adjustment::Adjust;
18 use rustc_middle::ty::{self, Const, Ty};
19 use rustc_session::{declare_lint_pass, declare_tool_lint};
20 use rustc_span::{InnerSpan, Span, DUMMY_SP};
21 use rustc_typeck::hir_ty_to_ty;
22
23 // FIXME: this is a correctness problem but there's no suitable
24 // warn-by-default category.
25 declare_clippy_lint! {
26 /// ### What it does
27 /// Checks for declaration of `const` items which is interior
28 /// mutable (e.g., contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.).
29 ///
30 /// ### Why is this bad?
31 /// Consts are copied everywhere they are referenced, i.e.,
32 /// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
33 /// or `AtomicXxxx` will be created, which defeats the whole purpose of using
34 /// these types in the first place.
35 ///
36 /// The `const` should better be replaced by a `static` item if a global
37 /// variable is wanted, or replaced by a `const fn` if a constructor is wanted.
38 ///
39 /// ### Known problems
40 /// A "non-constant" const item is a legacy way to supply an
41 /// initialized value to downstream `static` items (e.g., the
42 /// `std::sync::ONCE_INIT` constant). In this case the use of `const` is legit,
43 /// and this lint should be suppressed.
44 ///
45 /// Even though the lint avoids triggering on a constant whose type has enums that have variants
46 /// with interior mutability, and its value uses non interior mutable variants (see
47 /// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962) and
48 /// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825) for examples);
49 /// it complains about associated constants without default values only based on its types;
50 /// which might not be preferable.
51 /// There're other enums plus associated constants cases that the lint cannot handle.
52 ///
53 /// Types that have underlying or potential interior mutability trigger the lint whether
54 /// the interior mutable field is used or not. See issues
55 /// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and
56 ///
57 /// ### Example
58 /// ```rust
59 /// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
60 ///
61 /// // Bad.
62 /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
63 /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
64 /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
65 ///
66 /// // Good.
67 /// static STATIC_ATOM: AtomicUsize = AtomicUsize::new(15);
68 /// STATIC_ATOM.store(9, SeqCst);
69 /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
70 /// ```
71 #[clippy::version = "pre 1.29.0"]
72 pub DECLARE_INTERIOR_MUTABLE_CONST,
73 style,
74 "declaring `const` with interior mutability"
75 }
76
77 // FIXME: this is a correctness problem but there's no suitable
78 // warn-by-default category.
79 declare_clippy_lint! {
80 /// ### What it does
81 /// Checks if `const` items which is interior mutable (e.g.,
82 /// contains a `Cell`, `Mutex`, `AtomicXxxx`, etc.) has been borrowed directly.
83 ///
84 /// ### Why is this bad?
85 /// Consts are copied everywhere they are referenced, i.e.,
86 /// every time you refer to the const a fresh instance of the `Cell` or `Mutex`
87 /// or `AtomicXxxx` will be created, which defeats the whole purpose of using
88 /// these types in the first place.
89 ///
90 /// The `const` value should be stored inside a `static` item.
91 ///
92 /// ### Known problems
93 /// When an enum has variants with interior mutability, use of its non
94 /// interior mutable variants can generate false positives. See issue
95 /// [#3962](https://github.com/rust-lang/rust-clippy/issues/3962)
96 ///
97 /// Types that have underlying or potential interior mutability trigger the lint whether
98 /// the interior mutable field is used or not. See issues
99 /// [#5812](https://github.com/rust-lang/rust-clippy/issues/5812) and
100 /// [#3825](https://github.com/rust-lang/rust-clippy/issues/3825)
101 ///
102 /// ### Example
103 /// ```rust
104 /// use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
105 /// const CONST_ATOM: AtomicUsize = AtomicUsize::new(12);
106 ///
107 /// // Bad.
108 /// CONST_ATOM.store(6, SeqCst); // the content of the atomic is unchanged
109 /// assert_eq!(CONST_ATOM.load(SeqCst), 12); // because the CONST_ATOM in these lines are distinct
110 ///
111 /// // Good.
112 /// static STATIC_ATOM: AtomicUsize = CONST_ATOM;
113 /// STATIC_ATOM.store(9, SeqCst);
114 /// assert_eq!(STATIC_ATOM.load(SeqCst), 9); // use a `static` item to refer to the same instance
115 /// ```
116 #[clippy::version = "pre 1.29.0"]
117 pub BORROW_INTERIOR_MUTABLE_CONST,
118 style,
119 "referencing `const` with interior mutability"
120 }
121
122 fn is_unfrozen<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
123 // Ignore types whose layout is unknown since `is_freeze` reports every generic types as `!Freeze`,
124 // making it indistinguishable from `UnsafeCell`. i.e. it isn't a tool to prove a type is
125 // 'unfrozen'. However, this code causes a false negative in which
126 // a type contains a layout-unknown type, but also an unsafe cell like `const CELL: Cell<T>`.
127 // Yet, it's better than `ty.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_PROJECTION)`
128 // since it works when a pointer indirection involves (`Cell<*const T>`).
129 // Making up a `ParamEnv` where every generic params and assoc types are `Freeze`is another option;
130 // but I'm not sure whether it's a decent way, if possible.
131 cx.tcx.layout_of(cx.param_env.and(ty)).is_ok() && !ty.is_freeze(cx.tcx.at(DUMMY_SP), cx.param_env)
132 }
133
134 fn is_value_unfrozen_raw<'tcx>(
135 cx: &LateContext<'tcx>,
136 result: Result<ConstValue<'tcx>, ErrorHandled>,
137 ty: Ty<'tcx>,
138 ) -> bool {
139 fn inner<'tcx>(cx: &LateContext<'tcx>, val: Const<'tcx>) -> bool {
140 match val.ty().kind() {
141 // the fact that we have to dig into every structs to search enums
142 // leads us to the point checking `UnsafeCell` directly is the only option.
143 ty::Adt(ty_def, ..) if Some(ty_def.did()) == cx.tcx.lang_items().unsafe_cell_type() => true,
144 ty::Array(..) | ty::Adt(..) | ty::Tuple(..) => {
145 let val = cx.tcx.destructure_const(cx.param_env.and(val));
146 val.fields.iter().any(|field| inner(cx, *field))
147 },
148 _ => false,
149 }
150 }
151
152 result.map_or_else(
153 |err| {
154 // Consider `TooGeneric` cases as being unfrozen.
155 // This causes a false positive where an assoc const whose type is unfrozen
156 // have a value that is a frozen variant with a generic param (an example is
157 // `declare_interior_mutable_const::enums::BothOfCellAndGeneric::GENERIC_VARIANT`).
158 // However, it prevents a number of false negatives that is, I think, important:
159 // 1. assoc consts in trait defs referring to consts of themselves
160 // (an example is `declare_interior_mutable_const::traits::ConcreteTypes::ANOTHER_ATOMIC`).
161 // 2. a path expr referring to assoc consts whose type is doesn't have
162 // any frozen variants in trait defs (i.e. without substitute for `Self`).
163 // (e.g. borrowing `borrow_interior_mutable_const::trait::ConcreteTypes::ATOMIC`)
164 // 3. similar to the false positive above;
165 // but the value is an unfrozen variant, or the type has no enums. (An example is
166 // `declare_interior_mutable_const::enums::BothOfCellAndGeneric::UNFROZEN_VARIANT`
167 // and `declare_interior_mutable_const::enums::BothOfCellAndGeneric::NO_ENUM`).
168 // One might be able to prevent these FNs correctly, and replace this with `false`;
169 // e.g. implementing `has_frozen_variant` described above, and not running this function
170 // when the type doesn't have any frozen variants would be the 'correct' way for the 2nd
171 // case (that actually removes another suboptimal behavior (I won't say 'false positive') where,
172 // similar to 2., but with the a frozen variant) (e.g. borrowing
173 // `borrow_interior_mutable_const::enums::AssocConsts::TO_BE_FROZEN_VARIANT`).
174 // I chose this way because unfrozen enums as assoc consts are rare (or, hopefully, none).
175 err == ErrorHandled::TooGeneric
176 },
177 |val| inner(cx, Const::from_value(cx.tcx, val, ty)),
178 )
179 }
180
181 fn is_value_unfrozen_poly<'tcx>(cx: &LateContext<'tcx>, body_id: BodyId, ty: Ty<'tcx>) -> bool {
182 let result = cx.tcx.const_eval_poly(body_id.hir_id.owner.to_def_id());
183 is_value_unfrozen_raw(cx, result, ty)
184 }
185
186 fn is_value_unfrozen_expr<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId, def_id: DefId, ty: Ty<'tcx>) -> bool {
187 let substs = cx.typeck_results().node_substs(hir_id);
188
189 let result = cx.tcx.const_eval_resolve(
190 cx.param_env,
191 ty::Unevaluated::new(ty::WithOptConstParam::unknown(def_id), substs),
192 None,
193 );
194 is_value_unfrozen_raw(cx, result, ty)
195 }
196
197 #[derive(Copy, Clone)]
198 enum Source {
199 Item { item: Span },
200 Assoc { item: Span },
201 Expr { expr: Span },
202 }
203
204 impl Source {
205 #[must_use]
206 fn lint(&self) -> (&'static Lint, &'static str, Span) {
207 match self {
208 Self::Item { item } | Self::Assoc { item, .. } => (
209 DECLARE_INTERIOR_MUTABLE_CONST,
210 "a `const` item should never be interior mutable",
211 *item,
212 ),
213 Self::Expr { expr } => (
214 BORROW_INTERIOR_MUTABLE_CONST,
215 "a `const` item with interior mutability should not be borrowed",
216 *expr,
217 ),
218 }
219 }
220 }
221
222 fn lint(cx: &LateContext<'_>, source: Source) {
223 let (lint, msg, span) = source.lint();
224 span_lint_and_then(cx, lint, span, msg, |diag| {
225 if span.from_expansion() {
226 return; // Don't give suggestions into macros.
227 }
228 match source {
229 Source::Item { .. } => {
230 let const_kw_span = span.from_inner(InnerSpan::new(0, 5));
231 diag.span_label(const_kw_span, "make this a static item (maybe with lazy_static)");
232 },
233 Source::Assoc { .. } => (),
234 Source::Expr { .. } => {
235 diag.help("assign this const to a local or static variable, and use the variable here");
236 },
237 }
238 });
239 }
240
241 declare_lint_pass!(NonCopyConst => [DECLARE_INTERIOR_MUTABLE_CONST, BORROW_INTERIOR_MUTABLE_CONST]);
242
243 impl<'tcx> LateLintPass<'tcx> for NonCopyConst {
244 fn check_item(&mut self, cx: &LateContext<'tcx>, it: &'tcx Item<'_>) {
245 if let ItemKind::Const(hir_ty, body_id) = it.kind {
246 let ty = hir_ty_to_ty(cx.tcx, hir_ty);
247
248 if is_unfrozen(cx, ty) && is_value_unfrozen_poly(cx, body_id, ty) {
249 lint(cx, Source::Item { item: it.span });
250 }
251 }
252 }
253
254 fn check_trait_item(&mut self, cx: &LateContext<'tcx>, trait_item: &'tcx TraitItem<'_>) {
255 if let TraitItemKind::Const(hir_ty, body_id_opt) = &trait_item.kind {
256 let ty = hir_ty_to_ty(cx.tcx, hir_ty);
257
258 // Normalize assoc types because ones originated from generic params
259 // bounded other traits could have their bound.
260 let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
261 if is_unfrozen(cx, normalized)
262 // When there's no default value, lint it only according to its type;
263 // in other words, lint consts whose value *could* be unfrozen, not definitely is.
264 // This feels inconsistent with how the lint treats generic types,
265 // which avoids linting types which potentially become unfrozen.
266 // One could check whether an unfrozen type have a *frozen variant*
267 // (like `body_id_opt.map_or_else(|| !has_frozen_variant(...), ...)`),
268 // and do the same as the case of generic types at impl items.
269 // Note that it isn't sufficient to check if it has an enum
270 // since all of that enum's variants can be unfrozen:
271 // i.e. having an enum doesn't necessary mean a type has a frozen variant.
272 // And, implementing it isn't a trivial task; it'll probably end up
273 // re-implementing the trait predicate evaluation specific to `Freeze`.
274 && body_id_opt.map_or(true, |body_id| is_value_unfrozen_poly(cx, body_id, normalized))
275 {
276 lint(cx, Source::Assoc { item: trait_item.span });
277 }
278 }
279 }
280
281 fn check_impl_item(&mut self, cx: &LateContext<'tcx>, impl_item: &'tcx ImplItem<'_>) {
282 if let ImplItemKind::Const(hir_ty, body_id) = &impl_item.kind {
283 let item_def_id = cx.tcx.hir().get_parent_item(impl_item.hir_id());
284 let item = cx.tcx.hir().expect_item(item_def_id);
285
286 match &item.kind {
287 ItemKind::Impl(Impl {
288 of_trait: Some(of_trait_ref),
289 ..
290 }) => {
291 if_chain! {
292 // Lint a trait impl item only when the definition is a generic type,
293 // assuming an assoc const is not meant to be an interior mutable type.
294 if let Some(of_trait_def_id) = of_trait_ref.trait_def_id();
295 if let Some(of_assoc_item) = cx
296 .tcx
297 .associated_item(impl_item.def_id)
298 .trait_item_def_id;
299 if cx
300 .tcx
301 .layout_of(cx.tcx.param_env(of_trait_def_id).and(
302 // Normalize assoc types because ones originated from generic params
303 // bounded other traits could have their bound at the trait defs;
304 // and, in that case, the definition is *not* generic.
305 cx.tcx.normalize_erasing_regions(
306 cx.tcx.param_env(of_trait_def_id),
307 cx.tcx.type_of(of_assoc_item),
308 ),
309 ))
310 .is_err();
311 // If there were a function like `has_frozen_variant` described above,
312 // we should use here as a frozen variant is a potential to be frozen
313 // similar to unknown layouts.
314 // e.g. `layout_of(...).is_err() || has_frozen_variant(...);`
315 let ty = hir_ty_to_ty(cx.tcx, hir_ty);
316 let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
317 if is_unfrozen(cx, normalized);
318 if is_value_unfrozen_poly(cx, *body_id, normalized);
319 then {
320 lint(
321 cx,
322 Source::Assoc {
323 item: impl_item.span,
324 },
325 );
326 }
327 }
328 },
329 ItemKind::Impl(Impl { of_trait: None, .. }) => {
330 let ty = hir_ty_to_ty(cx.tcx, hir_ty);
331 // Normalize assoc types originated from generic params.
332 let normalized = cx.tcx.normalize_erasing_regions(cx.param_env, ty);
333
334 if is_unfrozen(cx, ty) && is_value_unfrozen_poly(cx, *body_id, normalized) {
335 lint(cx, Source::Assoc { item: impl_item.span });
336 }
337 },
338 _ => (),
339 }
340 }
341 }
342
343 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) {
344 if let ExprKind::Path(qpath) = &expr.kind {
345 // Only lint if we use the const item inside a function.
346 if in_constant(cx, expr.hir_id) {
347 return;
348 }
349
350 // Make sure it is a const item.
351 let item_def_id = match cx.qpath_res(qpath, expr.hir_id) {
352 Res::Def(DefKind::Const | DefKind::AssocConst, did) => did,
353 _ => return,
354 };
355
356 // Climb up to resolve any field access and explicit referencing.
357 let mut cur_expr = expr;
358 let mut dereferenced_expr = expr;
359 let mut needs_check_adjustment = true;
360 loop {
361 let parent_id = cx.tcx.hir().get_parent_node(cur_expr.hir_id);
362 if parent_id == cur_expr.hir_id {
363 break;
364 }
365 if let Some(Node::Expr(parent_expr)) = cx.tcx.hir().find(parent_id) {
366 match &parent_expr.kind {
367 ExprKind::AddrOf(..) => {
368 // `&e` => `e` must be referenced.
369 needs_check_adjustment = false;
370 },
371 ExprKind::Field(..) => {
372 needs_check_adjustment = true;
373
374 // Check whether implicit dereferences happened;
375 // if so, no need to go further up
376 // because of the same reason as the `ExprKind::Unary` case.
377 if cx
378 .typeck_results()
379 .expr_adjustments(dereferenced_expr)
380 .iter()
381 .any(|adj| matches!(adj.kind, Adjust::Deref(_)))
382 {
383 break;
384 }
385
386 dereferenced_expr = parent_expr;
387 },
388 ExprKind::Index(e, _) if ptr::eq(&**e, cur_expr) => {
389 // `e[i]` => desugared to `*Index::index(&e, i)`,
390 // meaning `e` must be referenced.
391 // no need to go further up since a method call is involved now.
392 needs_check_adjustment = false;
393 break;
394 },
395 ExprKind::Unary(UnOp::Deref, _) => {
396 // `*e` => desugared to `*Deref::deref(&e)`,
397 // meaning `e` must be referenced.
398 // no need to go further up since a method call is involved now.
399 needs_check_adjustment = false;
400 break;
401 },
402 _ => break,
403 }
404 cur_expr = parent_expr;
405 } else {
406 break;
407 }
408 }
409
410 let ty = if needs_check_adjustment {
411 let adjustments = cx.typeck_results().expr_adjustments(dereferenced_expr);
412 if let Some(i) = adjustments
413 .iter()
414 .position(|adj| matches!(adj.kind, Adjust::Borrow(_) | Adjust::Deref(_)))
415 {
416 if i == 0 {
417 cx.typeck_results().expr_ty(dereferenced_expr)
418 } else {
419 adjustments[i - 1].target
420 }
421 } else {
422 // No borrow adjustments means the entire const is moved.
423 return;
424 }
425 } else {
426 cx.typeck_results().expr_ty(dereferenced_expr)
427 };
428
429 if is_unfrozen(cx, ty) && is_value_unfrozen_expr(cx, expr.hir_id, item_def_id, ty) {
430 lint(cx, Source::Expr { expr: expr.span });
431 }
432 }
433 }
434 }