]> git.proxmox.com Git - rustc.git/blob - src/tools/clippy/clippy_lints/src/use_self.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / src / tools / clippy / clippy_lints / src / use_self.rs
1 use clippy_utils::diagnostics::span_lint_and_sugg;
2 use clippy_utils::is_from_proc_macro;
3 use clippy_utils::msrvs::{self, Msrv};
4 use clippy_utils::ty::same_type_and_consts;
5 use if_chain::if_chain;
6 use rustc_data_structures::fx::FxHashSet;
7 use rustc_errors::Applicability;
8 use rustc_hir::{
9 self as hir,
10 def::{CtorOf, DefKind, Res},
11 def_id::LocalDefId,
12 intravisit::{walk_inf, walk_ty, Visitor},
13 Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Pat, PatKind, Path, QPath,
14 TyKind,
15 };
16 use rustc_hir_analysis::hir_ty_to_ty;
17 use rustc_lint::{LateContext, LateLintPass};
18 use rustc_session::{declare_tool_lint, impl_lint_pass};
19 use rustc_span::Span;
20
21 declare_clippy_lint! {
22 /// ### What it does
23 /// Checks for unnecessary repetition of structure name when a
24 /// replacement with `Self` is applicable.
25 ///
26 /// ### Why is this bad?
27 /// Unnecessary repetition. Mixed use of `Self` and struct
28 /// name
29 /// feels inconsistent.
30 ///
31 /// ### Known problems
32 /// - Unaddressed false negative in fn bodies of trait implementations
33 ///
34 /// ### Example
35 /// ```rust
36 /// struct Foo;
37 /// impl Foo {
38 /// fn new() -> Foo {
39 /// Foo {}
40 /// }
41 /// }
42 /// ```
43 /// could be
44 /// ```rust
45 /// struct Foo;
46 /// impl Foo {
47 /// fn new() -> Self {
48 /// Self {}
49 /// }
50 /// }
51 /// ```
52 #[clippy::version = "pre 1.29.0"]
53 pub USE_SELF,
54 nursery,
55 "unnecessary structure name repetition whereas `Self` is applicable"
56 }
57
58 #[derive(Default)]
59 pub struct UseSelf {
60 msrv: Msrv,
61 stack: Vec<StackItem>,
62 }
63
64 impl UseSelf {
65 #[must_use]
66 pub fn new(msrv: Msrv) -> Self {
67 Self {
68 msrv,
69 ..Self::default()
70 }
71 }
72 }
73
74 #[derive(Debug)]
75 enum StackItem {
76 Check {
77 impl_id: LocalDefId,
78 in_body: u32,
79 types_to_skip: FxHashSet<HirId>,
80 },
81 NoCheck,
82 }
83
84 impl_lint_pass!(UseSelf => [USE_SELF]);
85
86 const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
87
88 impl<'tcx> LateLintPass<'tcx> for UseSelf {
89 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &Item<'tcx>) {
90 if matches!(item.kind, ItemKind::OpaqueTy(_)) {
91 // skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>`
92 return;
93 }
94 // We push the self types of `impl`s on a stack here. Only the top type on the stack is
95 // relevant for linting, since this is the self type of the `impl` we're currently in. To
96 // avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
97 // we're in an `impl` or nested item, that we don't want to lint
98 let stack_item = if_chain! {
99 if let ItemKind::Impl(Impl { self_ty, .. }) = item.kind;
100 if let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind;
101 let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
102 if parameters.as_ref().map_or(true, |params| {
103 !params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
104 });
105 if !item.span.from_expansion();
106 if !is_from_proc_macro(cx, item); // expensive, should be last check
107 then {
108 StackItem::Check {
109 impl_id: item.owner_id.def_id,
110 in_body: 0,
111 types_to_skip: std::iter::once(self_ty.hir_id).collect(),
112 }
113 } else {
114 StackItem::NoCheck
115 }
116 };
117 self.stack.push(stack_item);
118 }
119
120 fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
121 if !matches!(item.kind, ItemKind::OpaqueTy(_)) {
122 self.stack.pop();
123 }
124 }
125
126 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
127 // We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
128 // declaration. The collection of those types is all this method implementation does.
129 if_chain! {
130 if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind;
131 if let Some(&mut StackItem::Check {
132 impl_id,
133 ref mut types_to_skip,
134 ..
135 }) = self.stack.last_mut();
136 if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id);
137 then {
138 // `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
139 // `Self`.
140 let self_ty = impl_trait_ref.subst_identity().self_ty();
141
142 // `trait_method_sig` is the signature of the function, how it is declared in the
143 // trait, not in the impl of the trait.
144 let trait_method = cx
145 .tcx
146 .associated_item(impl_item.owner_id)
147 .trait_item_def_id
148 .expect("impl method matches a trait method");
149 let trait_method_sig = cx.tcx.fn_sig(trait_method);
150 let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig);
151
152 // `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
153 // implementation of the trait.
154 let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
155 Some(&**ty)
156 } else {
157 None
158 };
159 let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
160
161 // `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
162 //
163 // `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
164 // trait declaration. This is used to check if `Self` was used in the trait
165 // declaration.
166 //
167 // If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
168 // to `Self`), we want to skip linting that type and all subtypes of it. This
169 // avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
170 // for u8`, when the trait always uses `Vec<u8>`.
171 //
172 // See also https://github.com/rust-lang/rust-clippy/issues/2894.
173 for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
174 if trait_sem_ty.walk().any(|inner| inner == self_ty.into()) {
175 let mut visitor = SkipTyCollector::default();
176 visitor.visit_ty(impl_hir_ty);
177 types_to_skip.extend(visitor.types_to_skip);
178 }
179 }
180 }
181 }
182 }
183
184 fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
185 // `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
186 // we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
187 // However the `node_type()` method can *only* be called in bodies.
188 if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
189 *in_body = in_body.saturating_add(1);
190 }
191 }
192
193 fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
194 if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
195 *in_body = in_body.saturating_sub(1);
196 }
197 }
198
199 fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) {
200 if_chain! {
201 if !hir_ty.span.from_expansion();
202 if self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS);
203 if let Some(&StackItem::Check {
204 impl_id,
205 in_body,
206 ref types_to_skip,
207 }) = self.stack.last();
208 if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind;
209 if !matches!(
210 path.res,
211 Res::SelfTyParam { .. }
212 | Res::SelfTyAlias { .. }
213 | Res::Def(DefKind::TyParam, _)
214 );
215 if !types_to_skip.contains(&hir_ty.hir_id);
216 let ty = if in_body > 0 {
217 cx.typeck_results().node_type(hir_ty.hir_id)
218 } else {
219 hir_ty_to_ty(cx.tcx, hir_ty)
220 };
221 if same_type_and_consts(ty, cx.tcx.type_of(impl_id));
222 then {
223 span_lint(cx, hir_ty.span);
224 }
225 }
226 }
227
228 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
229 if_chain! {
230 if !expr.span.from_expansion();
231 if self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS);
232 if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
233 if cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id);
234 then {} else { return; }
235 }
236 match expr.kind {
237 ExprKind::Struct(QPath::Resolved(_, path), ..) => check_path(cx, path),
238 ExprKind::Call(fun, _) => {
239 if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind {
240 check_path(cx, path);
241 }
242 },
243 ExprKind::Path(QPath::Resolved(_, path)) => check_path(cx, path),
244 _ => (),
245 }
246 }
247
248 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &Pat<'_>) {
249 if_chain! {
250 if !pat.span.from_expansion();
251 if self.msrv.meets(msrvs::TYPE_ALIAS_ENUM_VARIANTS);
252 if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
253 // get the path from the pattern
254 if let PatKind::Path(QPath::Resolved(_, path))
255 | PatKind::TupleStruct(QPath::Resolved(_, path), _, _)
256 | PatKind::Struct(QPath::Resolved(_, path), _, _) = pat.kind;
257 if cx.typeck_results().pat_ty(pat) == cx.tcx.type_of(impl_id);
258 then {
259 check_path(cx, path);
260 }
261 }
262 }
263
264 extract_msrv_attr!(LateContext);
265 }
266
267 #[derive(Default)]
268 struct SkipTyCollector {
269 types_to_skip: Vec<HirId>,
270 }
271
272 impl<'tcx> Visitor<'tcx> for SkipTyCollector {
273 fn visit_infer(&mut self, inf: &hir::InferArg) {
274 self.types_to_skip.push(inf.hir_id);
275
276 walk_inf(self, inf);
277 }
278 fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) {
279 self.types_to_skip.push(hir_ty.hir_id);
280
281 walk_ty(self, hir_ty);
282 }
283 }
284
285 fn span_lint(cx: &LateContext<'_>, span: Span) {
286 span_lint_and_sugg(
287 cx,
288 USE_SELF,
289 span,
290 "unnecessary structure name repetition",
291 "use the applicable keyword",
292 "Self".to_owned(),
293 Applicability::MachineApplicable,
294 );
295 }
296
297 fn check_path(cx: &LateContext<'_>, path: &Path<'_>) {
298 match path.res {
299 Res::Def(DefKind::Ctor(CtorOf::Variant, _) | DefKind::Variant, ..) => {
300 lint_path_to_variant(cx, path);
301 },
302 Res::Def(DefKind::Ctor(CtorOf::Struct, _) | DefKind::Struct, ..) => span_lint(cx, path.span),
303 _ => (),
304 }
305 }
306
307 fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) {
308 if let [.., self_seg, _variant] = path.segments {
309 let span = path
310 .span
311 .with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi());
312 span_lint(cx, span);
313 }
314 }