]> git.proxmox.com Git - mirror_qemu.git/blob - system/memory.c
45ce6fd6c16d5c29636d0f021ffd15420852d702
[mirror_qemu.git] / system / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "exec/address-spaces.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 if (int128_eq(a->addr.start, b->addr.start) &&
208 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209 (int128_eq(a->addr.size, b->addr.size) &&
210 (a->match_data == b->match_data) &&
211 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212 (a->e == b->e))))
213 return true;
214
215 return false;
216 }
217
218 /* Range of memory in the global map. Addresses are absolute. */
219 struct FlatRange {
220 MemoryRegion *mr;
221 hwaddr offset_in_region;
222 AddrRange addr;
223 uint8_t dirty_log_mask;
224 bool romd_mode;
225 bool readonly;
226 bool nonvolatile;
227 bool unmergeable;
228 };
229
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236 return (MemoryRegionSection) {
237 .mr = fr->mr,
238 .fv = fv,
239 .offset_within_region = fr->offset_in_region,
240 .size = fr->addr.size,
241 .offset_within_address_space = int128_get64(fr->addr.start),
242 .readonly = fr->readonly,
243 .nonvolatile = fr->nonvolatile,
244 .unmergeable = fr->unmergeable,
245 };
246 }
247
248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250 return a->mr == b->mr
251 && addrrange_equal(a->addr, b->addr)
252 && a->offset_in_region == b->offset_in_region
253 && a->romd_mode == b->romd_mode
254 && a->readonly == b->readonly
255 && a->nonvolatile == b->nonvolatile
256 && a->unmergeable == b->unmergeable;
257 }
258
259 static FlatView *flatview_new(MemoryRegion *mr_root)
260 {
261 FlatView *view;
262
263 view = g_new0(FlatView, 1);
264 view->ref = 1;
265 view->root = mr_root;
266 memory_region_ref(mr_root);
267 trace_flatview_new(view, mr_root);
268
269 return view;
270 }
271
272 /* Insert a range into a given position. Caller is responsible for maintaining
273 * sorting order.
274 */
275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 {
277 if (view->nr == view->nr_allocated) {
278 view->nr_allocated = MAX(2 * view->nr, 10);
279 view->ranges = g_realloc(view->ranges,
280 view->nr_allocated * sizeof(*view->ranges));
281 }
282 memmove(view->ranges + pos + 1, view->ranges + pos,
283 (view->nr - pos) * sizeof(FlatRange));
284 view->ranges[pos] = *range;
285 memory_region_ref(range->mr);
286 ++view->nr;
287 }
288
289 static void flatview_destroy(FlatView *view)
290 {
291 int i;
292
293 trace_flatview_destroy(view, view->root);
294 if (view->dispatch) {
295 address_space_dispatch_free(view->dispatch);
296 }
297 for (i = 0; i < view->nr; i++) {
298 memory_region_unref(view->ranges[i].mr);
299 }
300 g_free(view->ranges);
301 memory_region_unref(view->root);
302 g_free(view);
303 }
304
305 static bool flatview_ref(FlatView *view)
306 {
307 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 }
309
310 void flatview_unref(FlatView *view)
311 {
312 if (qatomic_fetch_dec(&view->ref) == 1) {
313 trace_flatview_destroy_rcu(view, view->root);
314 assert(view->root);
315 call_rcu(view, flatview_destroy, rcu);
316 }
317 }
318
319 static bool can_merge(FlatRange *r1, FlatRange *r2)
320 {
321 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322 && r1->mr == r2->mr
323 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324 r1->addr.size),
325 int128_make64(r2->offset_in_region))
326 && r1->dirty_log_mask == r2->dirty_log_mask
327 && r1->romd_mode == r2->romd_mode
328 && r1->readonly == r2->readonly
329 && r1->nonvolatile == r2->nonvolatile
330 && !r1->unmergeable && !r2->unmergeable;
331 }
332
333 /* Attempt to simplify a view by merging adjacent ranges */
334 static void flatview_simplify(FlatView *view)
335 {
336 unsigned i, j, k;
337
338 i = 0;
339 while (i < view->nr) {
340 j = i + 1;
341 while (j < view->nr
342 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344 ++j;
345 }
346 ++i;
347 for (k = i; k < j; k++) {
348 memory_region_unref(view->ranges[k].mr);
349 }
350 memmove(&view->ranges[i], &view->ranges[j],
351 (view->nr - j) * sizeof(view->ranges[j]));
352 view->nr -= j - i;
353 }
354 }
355
356 static bool memory_region_big_endian(MemoryRegion *mr)
357 {
358 #if TARGET_BIG_ENDIAN
359 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
360 #else
361 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
362 #endif
363 }
364
365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
366 {
367 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
368 switch (op & MO_SIZE) {
369 case MO_8:
370 break;
371 case MO_16:
372 *data = bswap16(*data);
373 break;
374 case MO_32:
375 *data = bswap32(*data);
376 break;
377 case MO_64:
378 *data = bswap64(*data);
379 break;
380 default:
381 g_assert_not_reached();
382 }
383 }
384 }
385
386 static inline void memory_region_shift_read_access(uint64_t *value,
387 signed shift,
388 uint64_t mask,
389 uint64_t tmp)
390 {
391 if (shift >= 0) {
392 *value |= (tmp & mask) << shift;
393 } else {
394 *value |= (tmp & mask) >> -shift;
395 }
396 }
397
398 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
399 signed shift,
400 uint64_t mask)
401 {
402 uint64_t tmp;
403
404 if (shift >= 0) {
405 tmp = (*value >> shift) & mask;
406 } else {
407 tmp = (*value << -shift) & mask;
408 }
409
410 return tmp;
411 }
412
413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414 {
415 MemoryRegion *root;
416 hwaddr abs_addr = offset;
417
418 abs_addr += mr->addr;
419 for (root = mr; root->container; ) {
420 root = root->container;
421 abs_addr += root->addr;
422 }
423
424 return abs_addr;
425 }
426
427 static int get_cpu_index(void)
428 {
429 if (current_cpu) {
430 return current_cpu->cpu_index;
431 }
432 return -1;
433 }
434
435 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
436 hwaddr addr,
437 uint64_t *value,
438 unsigned size,
439 signed shift,
440 uint64_t mask,
441 MemTxAttrs attrs)
442 {
443 uint64_t tmp;
444
445 tmp = mr->ops->read(mr->opaque, addr, size);
446 if (mr->subpage) {
447 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
448 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
449 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
451 memory_region_name(mr));
452 }
453 memory_region_shift_read_access(value, shift, mask, tmp);
454 return MEMTX_OK;
455 }
456
457 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
458 hwaddr addr,
459 uint64_t *value,
460 unsigned size,
461 signed shift,
462 uint64_t mask,
463 MemTxAttrs attrs)
464 {
465 uint64_t tmp = 0;
466 MemTxResult r;
467
468 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
469 if (mr->subpage) {
470 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
471 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
474 memory_region_name(mr));
475 }
476 memory_region_shift_read_access(value, shift, mask, tmp);
477 return r;
478 }
479
480 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
481 hwaddr addr,
482 uint64_t *value,
483 unsigned size,
484 signed shift,
485 uint64_t mask,
486 MemTxAttrs attrs)
487 {
488 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
489
490 if (mr->subpage) {
491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
493 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
494 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
495 memory_region_name(mr));
496 }
497 mr->ops->write(mr->opaque, addr, tmp, size);
498 return MEMTX_OK;
499 }
500
501 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
502 hwaddr addr,
503 uint64_t *value,
504 unsigned size,
505 signed shift,
506 uint64_t mask,
507 MemTxAttrs attrs)
508 {
509 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
510
511 if (mr->subpage) {
512 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
513 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
514 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
515 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
516 memory_region_name(mr));
517 }
518 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
519 }
520
521 static MemTxResult access_with_adjusted_size(hwaddr addr,
522 uint64_t *value,
523 unsigned size,
524 unsigned access_size_min,
525 unsigned access_size_max,
526 MemTxResult (*access_fn)
527 (MemoryRegion *mr,
528 hwaddr addr,
529 uint64_t *value,
530 unsigned size,
531 signed shift,
532 uint64_t mask,
533 MemTxAttrs attrs),
534 MemoryRegion *mr,
535 MemTxAttrs attrs)
536 {
537 uint64_t access_mask;
538 unsigned access_size;
539 unsigned i;
540 MemTxResult r = MEMTX_OK;
541 bool reentrancy_guard_applied = false;
542
543 if (!access_size_min) {
544 access_size_min = 1;
545 }
546 if (!access_size_max) {
547 access_size_max = 4;
548 }
549
550 /* Do not allow more than one simultaneous access to a device's IO Regions */
551 if (mr->dev && !mr->disable_reentrancy_guard &&
552 !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
553 if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
554 warn_report_once("Blocked re-entrant IO on MemoryRegion: "
555 "%s at addr: 0x%" HWADDR_PRIX,
556 memory_region_name(mr), addr);
557 return MEMTX_ACCESS_ERROR;
558 }
559 mr->dev->mem_reentrancy_guard.engaged_in_io = true;
560 reentrancy_guard_applied = true;
561 }
562
563 /* FIXME: support unaligned access? */
564 access_size = MAX(MIN(size, access_size_max), access_size_min);
565 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
566 if (memory_region_big_endian(mr)) {
567 for (i = 0; i < size; i += access_size) {
568 r |= access_fn(mr, addr + i, value, access_size,
569 (size - access_size - i) * 8, access_mask, attrs);
570 }
571 } else {
572 for (i = 0; i < size; i += access_size) {
573 r |= access_fn(mr, addr + i, value, access_size, i * 8,
574 access_mask, attrs);
575 }
576 }
577 if (mr->dev && reentrancy_guard_applied) {
578 mr->dev->mem_reentrancy_guard.engaged_in_io = false;
579 }
580 return r;
581 }
582
583 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
584 {
585 AddressSpace *as;
586
587 while (mr->container) {
588 mr = mr->container;
589 }
590 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
591 if (mr == as->root) {
592 return as;
593 }
594 }
595 return NULL;
596 }
597
598 /* Render a memory region into the global view. Ranges in @view obscure
599 * ranges in @mr.
600 */
601 static void render_memory_region(FlatView *view,
602 MemoryRegion *mr,
603 Int128 base,
604 AddrRange clip,
605 bool readonly,
606 bool nonvolatile,
607 bool unmergeable)
608 {
609 MemoryRegion *subregion;
610 unsigned i;
611 hwaddr offset_in_region;
612 Int128 remain;
613 Int128 now;
614 FlatRange fr;
615 AddrRange tmp;
616
617 if (!mr->enabled) {
618 return;
619 }
620
621 int128_addto(&base, int128_make64(mr->addr));
622 readonly |= mr->readonly;
623 nonvolatile |= mr->nonvolatile;
624 unmergeable |= mr->unmergeable;
625
626 tmp = addrrange_make(base, mr->size);
627
628 if (!addrrange_intersects(tmp, clip)) {
629 return;
630 }
631
632 clip = addrrange_intersection(tmp, clip);
633
634 if (mr->alias) {
635 int128_subfrom(&base, int128_make64(mr->alias->addr));
636 int128_subfrom(&base, int128_make64(mr->alias_offset));
637 render_memory_region(view, mr->alias, base, clip,
638 readonly, nonvolatile, unmergeable);
639 return;
640 }
641
642 /* Render subregions in priority order. */
643 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
644 render_memory_region(view, subregion, base, clip,
645 readonly, nonvolatile, unmergeable);
646 }
647
648 if (!mr->terminates) {
649 return;
650 }
651
652 offset_in_region = int128_get64(int128_sub(clip.start, base));
653 base = clip.start;
654 remain = clip.size;
655
656 fr.mr = mr;
657 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
658 fr.romd_mode = mr->romd_mode;
659 fr.readonly = readonly;
660 fr.nonvolatile = nonvolatile;
661 fr.unmergeable = unmergeable;
662
663 /* Render the region itself into any gaps left by the current view. */
664 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
665 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
666 continue;
667 }
668 if (int128_lt(base, view->ranges[i].addr.start)) {
669 now = int128_min(remain,
670 int128_sub(view->ranges[i].addr.start, base));
671 fr.offset_in_region = offset_in_region;
672 fr.addr = addrrange_make(base, now);
673 flatview_insert(view, i, &fr);
674 ++i;
675 int128_addto(&base, now);
676 offset_in_region += int128_get64(now);
677 int128_subfrom(&remain, now);
678 }
679 now = int128_sub(int128_min(int128_add(base, remain),
680 addrrange_end(view->ranges[i].addr)),
681 base);
682 int128_addto(&base, now);
683 offset_in_region += int128_get64(now);
684 int128_subfrom(&remain, now);
685 }
686 if (int128_nz(remain)) {
687 fr.offset_in_region = offset_in_region;
688 fr.addr = addrrange_make(base, remain);
689 flatview_insert(view, i, &fr);
690 }
691 }
692
693 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
694 {
695 FlatRange *fr;
696
697 assert(fv);
698 assert(cb);
699
700 FOR_EACH_FLAT_RANGE(fr, fv) {
701 if (cb(fr->addr.start, fr->addr.size, fr->mr,
702 fr->offset_in_region, opaque)) {
703 break;
704 }
705 }
706 }
707
708 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
709 {
710 while (mr->enabled) {
711 if (mr->alias) {
712 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
713 /* The alias is included in its entirety. Use it as
714 * the "real" root, so that we can share more FlatViews.
715 */
716 mr = mr->alias;
717 continue;
718 }
719 } else if (!mr->terminates) {
720 unsigned int found = 0;
721 MemoryRegion *child, *next = NULL;
722 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
723 if (child->enabled) {
724 if (++found > 1) {
725 next = NULL;
726 break;
727 }
728 if (!child->addr && int128_ge(mr->size, child->size)) {
729 /* A child is included in its entirety. If it's the only
730 * enabled one, use it in the hope of finding an alias down the
731 * way. This will also let us share FlatViews.
732 */
733 next = child;
734 }
735 }
736 }
737 if (found == 0) {
738 return NULL;
739 }
740 if (next) {
741 mr = next;
742 continue;
743 }
744 }
745
746 return mr;
747 }
748
749 return NULL;
750 }
751
752 /* Render a memory topology into a list of disjoint absolute ranges. */
753 static FlatView *generate_memory_topology(MemoryRegion *mr)
754 {
755 int i;
756 FlatView *view;
757
758 view = flatview_new(mr);
759
760 if (mr) {
761 render_memory_region(view, mr, int128_zero(),
762 addrrange_make(int128_zero(), int128_2_64()),
763 false, false, false);
764 }
765 flatview_simplify(view);
766
767 view->dispatch = address_space_dispatch_new(view);
768 for (i = 0; i < view->nr; i++) {
769 MemoryRegionSection mrs =
770 section_from_flat_range(&view->ranges[i], view);
771 flatview_add_to_dispatch(view, &mrs);
772 }
773 address_space_dispatch_compact(view->dispatch);
774 g_hash_table_replace(flat_views, mr, view);
775
776 return view;
777 }
778
779 static void address_space_add_del_ioeventfds(AddressSpace *as,
780 MemoryRegionIoeventfd *fds_new,
781 unsigned fds_new_nb,
782 MemoryRegionIoeventfd *fds_old,
783 unsigned fds_old_nb)
784 {
785 unsigned iold, inew;
786 MemoryRegionIoeventfd *fd;
787 MemoryRegionSection section;
788
789 /* Generate a symmetric difference of the old and new fd sets, adding
790 * and deleting as necessary.
791 */
792
793 iold = inew = 0;
794 while (iold < fds_old_nb || inew < fds_new_nb) {
795 if (iold < fds_old_nb
796 && (inew == fds_new_nb
797 || memory_region_ioeventfd_before(&fds_old[iold],
798 &fds_new[inew]))) {
799 fd = &fds_old[iold];
800 section = (MemoryRegionSection) {
801 .fv = address_space_to_flatview(as),
802 .offset_within_address_space = int128_get64(fd->addr.start),
803 .size = fd->addr.size,
804 };
805 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
806 fd->match_data, fd->data, fd->e);
807 ++iold;
808 } else if (inew < fds_new_nb
809 && (iold == fds_old_nb
810 || memory_region_ioeventfd_before(&fds_new[inew],
811 &fds_old[iold]))) {
812 fd = &fds_new[inew];
813 section = (MemoryRegionSection) {
814 .fv = address_space_to_flatview(as),
815 .offset_within_address_space = int128_get64(fd->addr.start),
816 .size = fd->addr.size,
817 };
818 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
819 fd->match_data, fd->data, fd->e);
820 ++inew;
821 } else {
822 ++iold;
823 ++inew;
824 }
825 }
826 }
827
828 FlatView *address_space_get_flatview(AddressSpace *as)
829 {
830 FlatView *view;
831
832 RCU_READ_LOCK_GUARD();
833 do {
834 view = address_space_to_flatview(as);
835 /* If somebody has replaced as->current_map concurrently,
836 * flatview_ref returns false.
837 */
838 } while (!flatview_ref(view));
839 return view;
840 }
841
842 static void address_space_update_ioeventfds(AddressSpace *as)
843 {
844 FlatView *view;
845 FlatRange *fr;
846 unsigned ioeventfd_nb = 0;
847 unsigned ioeventfd_max;
848 MemoryRegionIoeventfd *ioeventfds;
849 AddrRange tmp;
850 unsigned i;
851
852 if (!as->ioeventfd_notifiers) {
853 return;
854 }
855
856 /*
857 * It is likely that the number of ioeventfds hasn't changed much, so use
858 * the previous size as the starting value, with some headroom to avoid
859 * gratuitous reallocations.
860 */
861 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
862 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
863
864 view = address_space_get_flatview(as);
865 FOR_EACH_FLAT_RANGE(fr, view) {
866 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
867 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
868 int128_sub(fr->addr.start,
869 int128_make64(fr->offset_in_region)));
870 if (addrrange_intersects(fr->addr, tmp)) {
871 ++ioeventfd_nb;
872 if (ioeventfd_nb > ioeventfd_max) {
873 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
874 ioeventfds = g_realloc(ioeventfds,
875 ioeventfd_max * sizeof(*ioeventfds));
876 }
877 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
878 ioeventfds[ioeventfd_nb-1].addr = tmp;
879 }
880 }
881 }
882
883 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
884 as->ioeventfds, as->ioeventfd_nb);
885
886 g_free(as->ioeventfds);
887 as->ioeventfds = ioeventfds;
888 as->ioeventfd_nb = ioeventfd_nb;
889 flatview_unref(view);
890 }
891
892 /*
893 * Notify the memory listeners about the coalesced IO change events of
894 * range `cmr'. Only the part that has intersection of the specified
895 * FlatRange will be sent.
896 */
897 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
898 CoalescedMemoryRange *cmr, bool add)
899 {
900 AddrRange tmp;
901
902 tmp = addrrange_shift(cmr->addr,
903 int128_sub(fr->addr.start,
904 int128_make64(fr->offset_in_region)));
905 if (!addrrange_intersects(tmp, fr->addr)) {
906 return;
907 }
908 tmp = addrrange_intersection(tmp, fr->addr);
909
910 if (add) {
911 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
912 int128_get64(tmp.start),
913 int128_get64(tmp.size));
914 } else {
915 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
916 int128_get64(tmp.start),
917 int128_get64(tmp.size));
918 }
919 }
920
921 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
922 {
923 CoalescedMemoryRange *cmr;
924
925 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
926 flat_range_coalesced_io_notify(fr, as, cmr, false);
927 }
928 }
929
930 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
931 {
932 MemoryRegion *mr = fr->mr;
933 CoalescedMemoryRange *cmr;
934
935 if (QTAILQ_EMPTY(&mr->coalesced)) {
936 return;
937 }
938
939 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
940 flat_range_coalesced_io_notify(fr, as, cmr, true);
941 }
942 }
943
944 static void address_space_update_topology_pass(AddressSpace *as,
945 const FlatView *old_view,
946 const FlatView *new_view,
947 bool adding)
948 {
949 unsigned iold, inew;
950 FlatRange *frold, *frnew;
951
952 /* Generate a symmetric difference of the old and new memory maps.
953 * Kill ranges in the old map, and instantiate ranges in the new map.
954 */
955 iold = inew = 0;
956 while (iold < old_view->nr || inew < new_view->nr) {
957 if (iold < old_view->nr) {
958 frold = &old_view->ranges[iold];
959 } else {
960 frold = NULL;
961 }
962 if (inew < new_view->nr) {
963 frnew = &new_view->ranges[inew];
964 } else {
965 frnew = NULL;
966 }
967
968 if (frold
969 && (!frnew
970 || int128_lt(frold->addr.start, frnew->addr.start)
971 || (int128_eq(frold->addr.start, frnew->addr.start)
972 && !flatrange_equal(frold, frnew)))) {
973 /* In old but not in new, or in both but attributes changed. */
974
975 if (!adding) {
976 flat_range_coalesced_io_del(frold, as);
977 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
978 }
979
980 ++iold;
981 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
982 /* In both and unchanged (except logging may have changed) */
983
984 if (adding) {
985 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
986 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
987 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
988 frold->dirty_log_mask,
989 frnew->dirty_log_mask);
990 }
991 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
992 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
993 frold->dirty_log_mask,
994 frnew->dirty_log_mask);
995 }
996 }
997
998 ++iold;
999 ++inew;
1000 } else {
1001 /* In new */
1002
1003 if (adding) {
1004 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1005 flat_range_coalesced_io_add(frnew, as);
1006 }
1007
1008 ++inew;
1009 }
1010 }
1011 }
1012
1013 static void flatviews_init(void)
1014 {
1015 static FlatView *empty_view;
1016
1017 if (flat_views) {
1018 return;
1019 }
1020
1021 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1022 (GDestroyNotify) flatview_unref);
1023 if (!empty_view) {
1024 empty_view = generate_memory_topology(NULL);
1025 /* We keep it alive forever in the global variable. */
1026 flatview_ref(empty_view);
1027 } else {
1028 g_hash_table_replace(flat_views, NULL, empty_view);
1029 flatview_ref(empty_view);
1030 }
1031 }
1032
1033 static void flatviews_reset(void)
1034 {
1035 AddressSpace *as;
1036
1037 if (flat_views) {
1038 g_hash_table_unref(flat_views);
1039 flat_views = NULL;
1040 }
1041 flatviews_init();
1042
1043 /* Render unique FVs */
1044 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1045 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1046
1047 if (g_hash_table_lookup(flat_views, physmr)) {
1048 continue;
1049 }
1050
1051 generate_memory_topology(physmr);
1052 }
1053 }
1054
1055 static void address_space_set_flatview(AddressSpace *as)
1056 {
1057 FlatView *old_view = address_space_to_flatview(as);
1058 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1059 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1060
1061 assert(new_view);
1062
1063 if (old_view == new_view) {
1064 return;
1065 }
1066
1067 if (old_view) {
1068 flatview_ref(old_view);
1069 }
1070
1071 flatview_ref(new_view);
1072
1073 if (!QTAILQ_EMPTY(&as->listeners)) {
1074 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1075
1076 if (!old_view2) {
1077 old_view2 = &tmpview;
1078 }
1079 address_space_update_topology_pass(as, old_view2, new_view, false);
1080 address_space_update_topology_pass(as, old_view2, new_view, true);
1081 }
1082
1083 /* Writes are protected by the BQL. */
1084 qatomic_rcu_set(&as->current_map, new_view);
1085 if (old_view) {
1086 flatview_unref(old_view);
1087 }
1088
1089 /* Note that all the old MemoryRegions are still alive up to this
1090 * point. This relieves most MemoryListeners from the need to
1091 * ref/unref the MemoryRegions they get---unless they use them
1092 * outside the iothread mutex, in which case precise reference
1093 * counting is necessary.
1094 */
1095 if (old_view) {
1096 flatview_unref(old_view);
1097 }
1098 }
1099
1100 static void address_space_update_topology(AddressSpace *as)
1101 {
1102 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1103
1104 flatviews_init();
1105 if (!g_hash_table_lookup(flat_views, physmr)) {
1106 generate_memory_topology(physmr);
1107 }
1108 address_space_set_flatview(as);
1109 }
1110
1111 void memory_region_transaction_begin(void)
1112 {
1113 qemu_flush_coalesced_mmio_buffer();
1114 ++memory_region_transaction_depth;
1115 }
1116
1117 void memory_region_transaction_commit(void)
1118 {
1119 AddressSpace *as;
1120
1121 assert(memory_region_transaction_depth);
1122 assert(qemu_mutex_iothread_locked());
1123
1124 --memory_region_transaction_depth;
1125 if (!memory_region_transaction_depth) {
1126 if (memory_region_update_pending) {
1127 flatviews_reset();
1128
1129 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1130
1131 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1132 address_space_set_flatview(as);
1133 address_space_update_ioeventfds(as);
1134 }
1135 memory_region_update_pending = false;
1136 ioeventfd_update_pending = false;
1137 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1138 } else if (ioeventfd_update_pending) {
1139 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1140 address_space_update_ioeventfds(as);
1141 }
1142 ioeventfd_update_pending = false;
1143 }
1144 }
1145 }
1146
1147 static void memory_region_destructor_none(MemoryRegion *mr)
1148 {
1149 }
1150
1151 static void memory_region_destructor_ram(MemoryRegion *mr)
1152 {
1153 qemu_ram_free(mr->ram_block);
1154 }
1155
1156 static bool memory_region_need_escape(char c)
1157 {
1158 return c == '/' || c == '[' || c == '\\' || c == ']';
1159 }
1160
1161 static char *memory_region_escape_name(const char *name)
1162 {
1163 const char *p;
1164 char *escaped, *q;
1165 uint8_t c;
1166 size_t bytes = 0;
1167
1168 for (p = name; *p; p++) {
1169 bytes += memory_region_need_escape(*p) ? 4 : 1;
1170 }
1171 if (bytes == p - name) {
1172 return g_memdup(name, bytes + 1);
1173 }
1174
1175 escaped = g_malloc(bytes + 1);
1176 for (p = name, q = escaped; *p; p++) {
1177 c = *p;
1178 if (unlikely(memory_region_need_escape(c))) {
1179 *q++ = '\\';
1180 *q++ = 'x';
1181 *q++ = "0123456789abcdef"[c >> 4];
1182 c = "0123456789abcdef"[c & 15];
1183 }
1184 *q++ = c;
1185 }
1186 *q = 0;
1187 return escaped;
1188 }
1189
1190 static void memory_region_do_init(MemoryRegion *mr,
1191 Object *owner,
1192 const char *name,
1193 uint64_t size)
1194 {
1195 mr->size = int128_make64(size);
1196 if (size == UINT64_MAX) {
1197 mr->size = int128_2_64();
1198 }
1199 mr->name = g_strdup(name);
1200 mr->owner = owner;
1201 mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1202 mr->ram_block = NULL;
1203
1204 if (name) {
1205 char *escaped_name = memory_region_escape_name(name);
1206 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1207
1208 if (!owner) {
1209 owner = container_get(qdev_get_machine(), "/unattached");
1210 }
1211
1212 object_property_add_child(owner, name_array, OBJECT(mr));
1213 object_unref(OBJECT(mr));
1214 g_free(name_array);
1215 g_free(escaped_name);
1216 }
1217 }
1218
1219 void memory_region_init(MemoryRegion *mr,
1220 Object *owner,
1221 const char *name,
1222 uint64_t size)
1223 {
1224 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1225 memory_region_do_init(mr, owner, name, size);
1226 }
1227
1228 static void memory_region_get_container(Object *obj, Visitor *v,
1229 const char *name, void *opaque,
1230 Error **errp)
1231 {
1232 MemoryRegion *mr = MEMORY_REGION(obj);
1233 char *path = (char *)"";
1234
1235 if (mr->container) {
1236 path = object_get_canonical_path(OBJECT(mr->container));
1237 }
1238 visit_type_str(v, name, &path, errp);
1239 if (mr->container) {
1240 g_free(path);
1241 }
1242 }
1243
1244 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1245 const char *part)
1246 {
1247 MemoryRegion *mr = MEMORY_REGION(obj);
1248
1249 return OBJECT(mr->container);
1250 }
1251
1252 static void memory_region_get_priority(Object *obj, Visitor *v,
1253 const char *name, void *opaque,
1254 Error **errp)
1255 {
1256 MemoryRegion *mr = MEMORY_REGION(obj);
1257 int32_t value = mr->priority;
1258
1259 visit_type_int32(v, name, &value, errp);
1260 }
1261
1262 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1263 void *opaque, Error **errp)
1264 {
1265 MemoryRegion *mr = MEMORY_REGION(obj);
1266 uint64_t value = memory_region_size(mr);
1267
1268 visit_type_uint64(v, name, &value, errp);
1269 }
1270
1271 static void memory_region_initfn(Object *obj)
1272 {
1273 MemoryRegion *mr = MEMORY_REGION(obj);
1274 ObjectProperty *op;
1275
1276 mr->ops = &unassigned_mem_ops;
1277 mr->enabled = true;
1278 mr->romd_mode = true;
1279 mr->destructor = memory_region_destructor_none;
1280 QTAILQ_INIT(&mr->subregions);
1281 QTAILQ_INIT(&mr->coalesced);
1282
1283 op = object_property_add(OBJECT(mr), "container",
1284 "link<" TYPE_MEMORY_REGION ">",
1285 memory_region_get_container,
1286 NULL, /* memory_region_set_container */
1287 NULL, NULL);
1288 op->resolve = memory_region_resolve_container;
1289
1290 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1291 &mr->addr, OBJ_PROP_FLAG_READ);
1292 object_property_add(OBJECT(mr), "priority", "uint32",
1293 memory_region_get_priority,
1294 NULL, /* memory_region_set_priority */
1295 NULL, NULL);
1296 object_property_add(OBJECT(mr), "size", "uint64",
1297 memory_region_get_size,
1298 NULL, /* memory_region_set_size, */
1299 NULL, NULL);
1300 }
1301
1302 static void iommu_memory_region_initfn(Object *obj)
1303 {
1304 MemoryRegion *mr = MEMORY_REGION(obj);
1305
1306 mr->is_iommu = true;
1307 }
1308
1309 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1310 unsigned size)
1311 {
1312 #ifdef DEBUG_UNASSIGNED
1313 printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1314 #endif
1315 return 0;
1316 }
1317
1318 static void unassigned_mem_write(void *opaque, hwaddr addr,
1319 uint64_t val, unsigned size)
1320 {
1321 #ifdef DEBUG_UNASSIGNED
1322 printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1323 #endif
1324 }
1325
1326 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1327 unsigned size, bool is_write,
1328 MemTxAttrs attrs)
1329 {
1330 return false;
1331 }
1332
1333 const MemoryRegionOps unassigned_mem_ops = {
1334 .valid.accepts = unassigned_mem_accepts,
1335 .endianness = DEVICE_NATIVE_ENDIAN,
1336 };
1337
1338 static uint64_t memory_region_ram_device_read(void *opaque,
1339 hwaddr addr, unsigned size)
1340 {
1341 MemoryRegion *mr = opaque;
1342 uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1343
1344 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1345
1346 return data;
1347 }
1348
1349 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1350 uint64_t data, unsigned size)
1351 {
1352 MemoryRegion *mr = opaque;
1353
1354 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1355
1356 stn_he_p(mr->ram_block->host + addr, size, data);
1357 }
1358
1359 static const MemoryRegionOps ram_device_mem_ops = {
1360 .read = memory_region_ram_device_read,
1361 .write = memory_region_ram_device_write,
1362 .endianness = DEVICE_HOST_ENDIAN,
1363 .valid = {
1364 .min_access_size = 1,
1365 .max_access_size = 8,
1366 .unaligned = true,
1367 },
1368 .impl = {
1369 .min_access_size = 1,
1370 .max_access_size = 8,
1371 .unaligned = true,
1372 },
1373 };
1374
1375 bool memory_region_access_valid(MemoryRegion *mr,
1376 hwaddr addr,
1377 unsigned size,
1378 bool is_write,
1379 MemTxAttrs attrs)
1380 {
1381 if (mr->ops->valid.accepts
1382 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1383 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1384 ", size %u, region '%s', reason: rejected\n",
1385 is_write ? "write" : "read",
1386 addr, size, memory_region_name(mr));
1387 return false;
1388 }
1389
1390 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1391 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1392 ", size %u, region '%s', reason: unaligned\n",
1393 is_write ? "write" : "read",
1394 addr, size, memory_region_name(mr));
1395 return false;
1396 }
1397
1398 /* Treat zero as compatibility all valid */
1399 if (!mr->ops->valid.max_access_size) {
1400 return true;
1401 }
1402
1403 if (size > mr->ops->valid.max_access_size
1404 || size < mr->ops->valid.min_access_size) {
1405 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1406 ", size %u, region '%s', reason: invalid size "
1407 "(min:%u max:%u)\n",
1408 is_write ? "write" : "read",
1409 addr, size, memory_region_name(mr),
1410 mr->ops->valid.min_access_size,
1411 mr->ops->valid.max_access_size);
1412 return false;
1413 }
1414 return true;
1415 }
1416
1417 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1418 hwaddr addr,
1419 uint64_t *pval,
1420 unsigned size,
1421 MemTxAttrs attrs)
1422 {
1423 *pval = 0;
1424
1425 if (mr->ops->read) {
1426 return access_with_adjusted_size(addr, pval, size,
1427 mr->ops->impl.min_access_size,
1428 mr->ops->impl.max_access_size,
1429 memory_region_read_accessor,
1430 mr, attrs);
1431 } else {
1432 return access_with_adjusted_size(addr, pval, size,
1433 mr->ops->impl.min_access_size,
1434 mr->ops->impl.max_access_size,
1435 memory_region_read_with_attrs_accessor,
1436 mr, attrs);
1437 }
1438 }
1439
1440 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1441 hwaddr addr,
1442 uint64_t *pval,
1443 MemOp op,
1444 MemTxAttrs attrs)
1445 {
1446 unsigned size = memop_size(op);
1447 MemTxResult r;
1448
1449 if (mr->alias) {
1450 return memory_region_dispatch_read(mr->alias,
1451 mr->alias_offset + addr,
1452 pval, op, attrs);
1453 }
1454 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1455 *pval = unassigned_mem_read(mr, addr, size);
1456 return MEMTX_DECODE_ERROR;
1457 }
1458
1459 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1460 adjust_endianness(mr, pval, op);
1461 return r;
1462 }
1463
1464 /* Return true if an eventfd was signalled */
1465 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1466 hwaddr addr,
1467 uint64_t data,
1468 unsigned size,
1469 MemTxAttrs attrs)
1470 {
1471 MemoryRegionIoeventfd ioeventfd = {
1472 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1473 .data = data,
1474 };
1475 unsigned i;
1476
1477 for (i = 0; i < mr->ioeventfd_nb; i++) {
1478 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1479 ioeventfd.e = mr->ioeventfds[i].e;
1480
1481 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1482 event_notifier_set(ioeventfd.e);
1483 return true;
1484 }
1485 }
1486
1487 return false;
1488 }
1489
1490 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1491 hwaddr addr,
1492 uint64_t data,
1493 MemOp op,
1494 MemTxAttrs attrs)
1495 {
1496 unsigned size = memop_size(op);
1497
1498 if (mr->alias) {
1499 return memory_region_dispatch_write(mr->alias,
1500 mr->alias_offset + addr,
1501 data, op, attrs);
1502 }
1503 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1504 unassigned_mem_write(mr, addr, data, size);
1505 return MEMTX_DECODE_ERROR;
1506 }
1507
1508 adjust_endianness(mr, &data, op);
1509
1510 /*
1511 * FIXME: it's not clear why under KVM the write would be processed
1512 * directly, instead of going through eventfd. This probably should
1513 * test "tcg_enabled() || qtest_enabled()", or should just go away.
1514 */
1515 if (!kvm_enabled() &&
1516 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1517 return MEMTX_OK;
1518 }
1519
1520 if (mr->ops->write) {
1521 return access_with_adjusted_size(addr, &data, size,
1522 mr->ops->impl.min_access_size,
1523 mr->ops->impl.max_access_size,
1524 memory_region_write_accessor, mr,
1525 attrs);
1526 } else {
1527 return
1528 access_with_adjusted_size(addr, &data, size,
1529 mr->ops->impl.min_access_size,
1530 mr->ops->impl.max_access_size,
1531 memory_region_write_with_attrs_accessor,
1532 mr, attrs);
1533 }
1534 }
1535
1536 void memory_region_init_io(MemoryRegion *mr,
1537 Object *owner,
1538 const MemoryRegionOps *ops,
1539 void *opaque,
1540 const char *name,
1541 uint64_t size)
1542 {
1543 memory_region_init(mr, owner, name, size);
1544 mr->ops = ops ? ops : &unassigned_mem_ops;
1545 mr->opaque = opaque;
1546 mr->terminates = true;
1547 }
1548
1549 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1550 Object *owner,
1551 const char *name,
1552 uint64_t size,
1553 Error **errp)
1554 {
1555 return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1556 size, 0, errp);
1557 }
1558
1559 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1560 Object *owner,
1561 const char *name,
1562 uint64_t size,
1563 uint32_t ram_flags,
1564 Error **errp)
1565 {
1566 Error *err = NULL;
1567 memory_region_init(mr, owner, name, size);
1568 mr->ram = true;
1569 mr->terminates = true;
1570 mr->destructor = memory_region_destructor_ram;
1571 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1572 if (err) {
1573 mr->size = int128_zero();
1574 object_unparent(OBJECT(mr));
1575 error_propagate(errp, err);
1576 return false;
1577 }
1578 return true;
1579 }
1580
1581 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1582 Object *owner,
1583 const char *name,
1584 uint64_t size,
1585 uint64_t max_size,
1586 void (*resized)(const char*,
1587 uint64_t length,
1588 void *host),
1589 Error **errp)
1590 {
1591 Error *err = NULL;
1592 memory_region_init(mr, owner, name, size);
1593 mr->ram = true;
1594 mr->terminates = true;
1595 mr->destructor = memory_region_destructor_ram;
1596 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1597 mr, &err);
1598 if (err) {
1599 mr->size = int128_zero();
1600 object_unparent(OBJECT(mr));
1601 error_propagate(errp, err);
1602 }
1603 }
1604
1605 #ifdef CONFIG_POSIX
1606 void memory_region_init_ram_from_file(MemoryRegion *mr,
1607 Object *owner,
1608 const char *name,
1609 uint64_t size,
1610 uint64_t align,
1611 uint32_t ram_flags,
1612 const char *path,
1613 ram_addr_t offset,
1614 Error **errp)
1615 {
1616 Error *err = NULL;
1617 memory_region_init(mr, owner, name, size);
1618 mr->ram = true;
1619 mr->readonly = !!(ram_flags & RAM_READONLY);
1620 mr->terminates = true;
1621 mr->destructor = memory_region_destructor_ram;
1622 mr->align = align;
1623 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1624 offset, &err);
1625 if (err) {
1626 mr->size = int128_zero();
1627 object_unparent(OBJECT(mr));
1628 error_propagate(errp, err);
1629 }
1630 }
1631
1632 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1633 Object *owner,
1634 const char *name,
1635 uint64_t size,
1636 uint32_t ram_flags,
1637 int fd,
1638 ram_addr_t offset,
1639 Error **errp)
1640 {
1641 Error *err = NULL;
1642 memory_region_init(mr, owner, name, size);
1643 mr->ram = true;
1644 mr->readonly = !!(ram_flags & RAM_READONLY);
1645 mr->terminates = true;
1646 mr->destructor = memory_region_destructor_ram;
1647 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1648 &err);
1649 if (err) {
1650 mr->size = int128_zero();
1651 object_unparent(OBJECT(mr));
1652 error_propagate(errp, err);
1653 }
1654 }
1655 #endif
1656
1657 void memory_region_init_ram_ptr(MemoryRegion *mr,
1658 Object *owner,
1659 const char *name,
1660 uint64_t size,
1661 void *ptr)
1662 {
1663 memory_region_init(mr, owner, name, size);
1664 mr->ram = true;
1665 mr->terminates = true;
1666 mr->destructor = memory_region_destructor_ram;
1667
1668 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1669 assert(ptr != NULL);
1670 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1671 }
1672
1673 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1674 Object *owner,
1675 const char *name,
1676 uint64_t size,
1677 void *ptr)
1678 {
1679 memory_region_init(mr, owner, name, size);
1680 mr->ram = true;
1681 mr->terminates = true;
1682 mr->ram_device = true;
1683 mr->ops = &ram_device_mem_ops;
1684 mr->opaque = mr;
1685 mr->destructor = memory_region_destructor_ram;
1686
1687 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1688 assert(ptr != NULL);
1689 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1690 }
1691
1692 void memory_region_init_alias(MemoryRegion *mr,
1693 Object *owner,
1694 const char *name,
1695 MemoryRegion *orig,
1696 hwaddr offset,
1697 uint64_t size)
1698 {
1699 memory_region_init(mr, owner, name, size);
1700 mr->alias = orig;
1701 mr->alias_offset = offset;
1702 }
1703
1704 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1705 Object *owner,
1706 const char *name,
1707 uint64_t size,
1708 Error **errp)
1709 {
1710 if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1711 size, 0, errp)) {
1712 return false;
1713 }
1714 mr->readonly = true;
1715
1716 return true;
1717 }
1718
1719 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1720 Object *owner,
1721 const MemoryRegionOps *ops,
1722 void *opaque,
1723 const char *name,
1724 uint64_t size,
1725 Error **errp)
1726 {
1727 Error *err = NULL;
1728 assert(ops);
1729 memory_region_init(mr, owner, name, size);
1730 mr->ops = ops;
1731 mr->opaque = opaque;
1732 mr->terminates = true;
1733 mr->rom_device = true;
1734 mr->destructor = memory_region_destructor_ram;
1735 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1736 if (err) {
1737 mr->size = int128_zero();
1738 object_unparent(OBJECT(mr));
1739 error_propagate(errp, err);
1740 }
1741 }
1742
1743 void memory_region_init_iommu(void *_iommu_mr,
1744 size_t instance_size,
1745 const char *mrtypename,
1746 Object *owner,
1747 const char *name,
1748 uint64_t size)
1749 {
1750 struct IOMMUMemoryRegion *iommu_mr;
1751 struct MemoryRegion *mr;
1752
1753 object_initialize(_iommu_mr, instance_size, mrtypename);
1754 mr = MEMORY_REGION(_iommu_mr);
1755 memory_region_do_init(mr, owner, name, size);
1756 iommu_mr = IOMMU_MEMORY_REGION(mr);
1757 mr->terminates = true; /* then re-forwards */
1758 QLIST_INIT(&iommu_mr->iommu_notify);
1759 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1760 }
1761
1762 static void memory_region_finalize(Object *obj)
1763 {
1764 MemoryRegion *mr = MEMORY_REGION(obj);
1765
1766 assert(!mr->container);
1767
1768 /* We know the region is not visible in any address space (it
1769 * does not have a container and cannot be a root either because
1770 * it has no references, so we can blindly clear mr->enabled.
1771 * memory_region_set_enabled instead could trigger a transaction
1772 * and cause an infinite loop.
1773 */
1774 mr->enabled = false;
1775 memory_region_transaction_begin();
1776 while (!QTAILQ_EMPTY(&mr->subregions)) {
1777 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1778 memory_region_del_subregion(mr, subregion);
1779 }
1780 memory_region_transaction_commit();
1781
1782 mr->destructor(mr);
1783 memory_region_clear_coalescing(mr);
1784 g_free((char *)mr->name);
1785 g_free(mr->ioeventfds);
1786 }
1787
1788 Object *memory_region_owner(MemoryRegion *mr)
1789 {
1790 Object *obj = OBJECT(mr);
1791 return obj->parent;
1792 }
1793
1794 void memory_region_ref(MemoryRegion *mr)
1795 {
1796 /* MMIO callbacks most likely will access data that belongs
1797 * to the owner, hence the need to ref/unref the owner whenever
1798 * the memory region is in use.
1799 *
1800 * The memory region is a child of its owner. As long as the
1801 * owner doesn't call unparent itself on the memory region,
1802 * ref-ing the owner will also keep the memory region alive.
1803 * Memory regions without an owner are supposed to never go away;
1804 * we do not ref/unref them because it slows down DMA sensibly.
1805 */
1806 if (mr && mr->owner) {
1807 object_ref(mr->owner);
1808 }
1809 }
1810
1811 void memory_region_unref(MemoryRegion *mr)
1812 {
1813 if (mr && mr->owner) {
1814 object_unref(mr->owner);
1815 }
1816 }
1817
1818 uint64_t memory_region_size(MemoryRegion *mr)
1819 {
1820 if (int128_eq(mr->size, int128_2_64())) {
1821 return UINT64_MAX;
1822 }
1823 return int128_get64(mr->size);
1824 }
1825
1826 const char *memory_region_name(const MemoryRegion *mr)
1827 {
1828 if (!mr->name) {
1829 ((MemoryRegion *)mr)->name =
1830 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1831 }
1832 return mr->name;
1833 }
1834
1835 bool memory_region_is_ram_device(MemoryRegion *mr)
1836 {
1837 return mr->ram_device;
1838 }
1839
1840 bool memory_region_is_protected(MemoryRegion *mr)
1841 {
1842 return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1843 }
1844
1845 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1846 {
1847 uint8_t mask = mr->dirty_log_mask;
1848 RAMBlock *rb = mr->ram_block;
1849
1850 if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1851 memory_region_is_iommu(mr))) {
1852 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1853 }
1854
1855 if (tcg_enabled() && rb) {
1856 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1857 mask |= (1 << DIRTY_MEMORY_CODE);
1858 }
1859 return mask;
1860 }
1861
1862 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1863 {
1864 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1865 }
1866
1867 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1868 Error **errp)
1869 {
1870 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1871 IOMMUNotifier *iommu_notifier;
1872 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1873 int ret = 0;
1874
1875 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1876 flags |= iommu_notifier->notifier_flags;
1877 }
1878
1879 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1880 ret = imrc->notify_flag_changed(iommu_mr,
1881 iommu_mr->iommu_notify_flags,
1882 flags, errp);
1883 }
1884
1885 if (!ret) {
1886 iommu_mr->iommu_notify_flags = flags;
1887 }
1888 return ret;
1889 }
1890
1891 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1892 uint64_t page_size_mask,
1893 Error **errp)
1894 {
1895 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1896 int ret = 0;
1897
1898 if (imrc->iommu_set_page_size_mask) {
1899 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1900 }
1901 return ret;
1902 }
1903
1904 int memory_region_iommu_set_iova_ranges(IOMMUMemoryRegion *iommu_mr,
1905 GList *iova_ranges,
1906 Error **errp)
1907 {
1908 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1909 int ret = 0;
1910
1911 if (imrc->iommu_set_iova_ranges) {
1912 ret = imrc->iommu_set_iova_ranges(iommu_mr, iova_ranges, errp);
1913 }
1914 return ret;
1915 }
1916
1917 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1918 IOMMUNotifier *n, Error **errp)
1919 {
1920 IOMMUMemoryRegion *iommu_mr;
1921 int ret;
1922
1923 if (mr->alias) {
1924 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1925 }
1926
1927 /* We need to register for at least one bitfield */
1928 iommu_mr = IOMMU_MEMORY_REGION(mr);
1929 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1930 assert(n->start <= n->end);
1931 assert(n->iommu_idx >= 0 &&
1932 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1933
1934 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1935 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1936 if (ret) {
1937 QLIST_REMOVE(n, node);
1938 }
1939 return ret;
1940 }
1941
1942 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1943 {
1944 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1945
1946 if (imrc->get_min_page_size) {
1947 return imrc->get_min_page_size(iommu_mr);
1948 }
1949 return TARGET_PAGE_SIZE;
1950 }
1951
1952 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1953 {
1954 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1955 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1956 hwaddr addr, granularity;
1957 IOMMUTLBEntry iotlb;
1958
1959 /* If the IOMMU has its own replay callback, override */
1960 if (imrc->replay) {
1961 imrc->replay(iommu_mr, n);
1962 return;
1963 }
1964
1965 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1966
1967 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1968 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1969 if (iotlb.perm != IOMMU_NONE) {
1970 n->notify(n, &iotlb);
1971 }
1972
1973 /* if (2^64 - MR size) < granularity, it's possible to get an
1974 * infinite loop here. This should catch such a wraparound */
1975 if ((addr + granularity) < addr) {
1976 break;
1977 }
1978 }
1979 }
1980
1981 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1982 IOMMUNotifier *n)
1983 {
1984 IOMMUMemoryRegion *iommu_mr;
1985
1986 if (mr->alias) {
1987 memory_region_unregister_iommu_notifier(mr->alias, n);
1988 return;
1989 }
1990 QLIST_REMOVE(n, node);
1991 iommu_mr = IOMMU_MEMORY_REGION(mr);
1992 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1993 }
1994
1995 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1996 IOMMUTLBEvent *event)
1997 {
1998 IOMMUTLBEntry *entry = &event->entry;
1999 hwaddr entry_end = entry->iova + entry->addr_mask;
2000 IOMMUTLBEntry tmp = *entry;
2001
2002 if (event->type == IOMMU_NOTIFIER_UNMAP) {
2003 assert(entry->perm == IOMMU_NONE);
2004 }
2005
2006 /*
2007 * Skip the notification if the notification does not overlap
2008 * with registered range.
2009 */
2010 if (notifier->start > entry_end || notifier->end < entry->iova) {
2011 return;
2012 }
2013
2014 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2015 /* Crop (iova, addr_mask) to range */
2016 tmp.iova = MAX(tmp.iova, notifier->start);
2017 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2018 } else {
2019 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2020 }
2021
2022 if (event->type & notifier->notifier_flags) {
2023 notifier->notify(notifier, &tmp);
2024 }
2025 }
2026
2027 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2028 {
2029 IOMMUTLBEvent event;
2030
2031 event.type = IOMMU_NOTIFIER_UNMAP;
2032 event.entry.target_as = &address_space_memory;
2033 event.entry.iova = notifier->start;
2034 event.entry.perm = IOMMU_NONE;
2035 event.entry.addr_mask = notifier->end - notifier->start;
2036
2037 memory_region_notify_iommu_one(notifier, &event);
2038 }
2039
2040 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2041 int iommu_idx,
2042 IOMMUTLBEvent event)
2043 {
2044 IOMMUNotifier *iommu_notifier;
2045
2046 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2047
2048 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2049 if (iommu_notifier->iommu_idx == iommu_idx) {
2050 memory_region_notify_iommu_one(iommu_notifier, &event);
2051 }
2052 }
2053 }
2054
2055 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2056 enum IOMMUMemoryRegionAttr attr,
2057 void *data)
2058 {
2059 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2060
2061 if (!imrc->get_attr) {
2062 return -EINVAL;
2063 }
2064
2065 return imrc->get_attr(iommu_mr, attr, data);
2066 }
2067
2068 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2069 MemTxAttrs attrs)
2070 {
2071 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2072
2073 if (!imrc->attrs_to_index) {
2074 return 0;
2075 }
2076
2077 return imrc->attrs_to_index(iommu_mr, attrs);
2078 }
2079
2080 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2081 {
2082 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2083
2084 if (!imrc->num_indexes) {
2085 return 1;
2086 }
2087
2088 return imrc->num_indexes(iommu_mr);
2089 }
2090
2091 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2092 {
2093 if (!memory_region_is_ram(mr)) {
2094 return NULL;
2095 }
2096 return mr->rdm;
2097 }
2098
2099 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2100 RamDiscardManager *rdm)
2101 {
2102 g_assert(memory_region_is_ram(mr));
2103 g_assert(!rdm || !mr->rdm);
2104 mr->rdm = rdm;
2105 }
2106
2107 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2108 const MemoryRegion *mr)
2109 {
2110 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2111
2112 g_assert(rdmc->get_min_granularity);
2113 return rdmc->get_min_granularity(rdm, mr);
2114 }
2115
2116 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2117 const MemoryRegionSection *section)
2118 {
2119 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2120
2121 g_assert(rdmc->is_populated);
2122 return rdmc->is_populated(rdm, section);
2123 }
2124
2125 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2126 MemoryRegionSection *section,
2127 ReplayRamPopulate replay_fn,
2128 void *opaque)
2129 {
2130 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2131
2132 g_assert(rdmc->replay_populated);
2133 return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2134 }
2135
2136 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2137 MemoryRegionSection *section,
2138 ReplayRamDiscard replay_fn,
2139 void *opaque)
2140 {
2141 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2142
2143 g_assert(rdmc->replay_discarded);
2144 rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2145 }
2146
2147 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2148 RamDiscardListener *rdl,
2149 MemoryRegionSection *section)
2150 {
2151 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2152
2153 g_assert(rdmc->register_listener);
2154 rdmc->register_listener(rdm, rdl, section);
2155 }
2156
2157 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2158 RamDiscardListener *rdl)
2159 {
2160 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2161
2162 g_assert(rdmc->unregister_listener);
2163 rdmc->unregister_listener(rdm, rdl);
2164 }
2165
2166 /* Called with rcu_read_lock held. */
2167 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2168 ram_addr_t *ram_addr, bool *read_only,
2169 bool *mr_has_discard_manager)
2170 {
2171 MemoryRegion *mr;
2172 hwaddr xlat;
2173 hwaddr len = iotlb->addr_mask + 1;
2174 bool writable = iotlb->perm & IOMMU_WO;
2175
2176 if (mr_has_discard_manager) {
2177 *mr_has_discard_manager = false;
2178 }
2179 /*
2180 * The IOMMU TLB entry we have just covers translation through
2181 * this IOMMU to its immediate target. We need to translate
2182 * it the rest of the way through to memory.
2183 */
2184 mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2185 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2186 if (!memory_region_is_ram(mr)) {
2187 error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat);
2188 return false;
2189 } else if (memory_region_has_ram_discard_manager(mr)) {
2190 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2191 MemoryRegionSection tmp = {
2192 .mr = mr,
2193 .offset_within_region = xlat,
2194 .size = int128_make64(len),
2195 };
2196 if (mr_has_discard_manager) {
2197 *mr_has_discard_manager = true;
2198 }
2199 /*
2200 * Malicious VMs can map memory into the IOMMU, which is expected
2201 * to remain discarded. vfio will pin all pages, populating memory.
2202 * Disallow that. vmstate priorities make sure any RamDiscardManager
2203 * were already restored before IOMMUs are restored.
2204 */
2205 if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2206 error_report("iommu map to discarded memory (e.g., unplugged via"
2207 " virtio-mem): %" HWADDR_PRIx "",
2208 iotlb->translated_addr);
2209 return false;
2210 }
2211 }
2212
2213 /*
2214 * Translation truncates length to the IOMMU page size,
2215 * check that it did not truncate too much.
2216 */
2217 if (len & iotlb->addr_mask) {
2218 error_report("iommu has granularity incompatible with target AS");
2219 return false;
2220 }
2221
2222 if (vaddr) {
2223 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2224 }
2225
2226 if (ram_addr) {
2227 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2228 }
2229
2230 if (read_only) {
2231 *read_only = !writable || mr->readonly;
2232 }
2233
2234 return true;
2235 }
2236
2237 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2238 {
2239 uint8_t mask = 1 << client;
2240 uint8_t old_logging;
2241
2242 assert(client == DIRTY_MEMORY_VGA);
2243 old_logging = mr->vga_logging_count;
2244 mr->vga_logging_count += log ? 1 : -1;
2245 if (!!old_logging == !!mr->vga_logging_count) {
2246 return;
2247 }
2248
2249 memory_region_transaction_begin();
2250 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2251 memory_region_update_pending |= mr->enabled;
2252 memory_region_transaction_commit();
2253 }
2254
2255 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2256 hwaddr size)
2257 {
2258 assert(mr->ram_block);
2259 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2260 size,
2261 memory_region_get_dirty_log_mask(mr));
2262 }
2263
2264 /*
2265 * If memory region `mr' is NULL, do global sync. Otherwise, sync
2266 * dirty bitmap for the specified memory region.
2267 */
2268 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2269 {
2270 MemoryListener *listener;
2271 AddressSpace *as;
2272 FlatView *view;
2273 FlatRange *fr;
2274
2275 /* If the same address space has multiple log_sync listeners, we
2276 * visit that address space's FlatView multiple times. But because
2277 * log_sync listeners are rare, it's still cheaper than walking each
2278 * address space once.
2279 */
2280 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2281 if (listener->log_sync) {
2282 as = listener->address_space;
2283 view = address_space_get_flatview(as);
2284 FOR_EACH_FLAT_RANGE(fr, view) {
2285 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2286 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2287 listener->log_sync(listener, &mrs);
2288 }
2289 }
2290 flatview_unref(view);
2291 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2292 } else if (listener->log_sync_global) {
2293 /*
2294 * No matter whether MR is specified, what we can do here
2295 * is to do a global sync, because we are not capable to
2296 * sync in a finer granularity.
2297 */
2298 listener->log_sync_global(listener, last_stage);
2299 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2300 }
2301 }
2302 }
2303
2304 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2305 hwaddr len)
2306 {
2307 MemoryRegionSection mrs;
2308 MemoryListener *listener;
2309 AddressSpace *as;
2310 FlatView *view;
2311 FlatRange *fr;
2312 hwaddr sec_start, sec_end, sec_size;
2313
2314 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2315 if (!listener->log_clear) {
2316 continue;
2317 }
2318 as = listener->address_space;
2319 view = address_space_get_flatview(as);
2320 FOR_EACH_FLAT_RANGE(fr, view) {
2321 if (!fr->dirty_log_mask || fr->mr != mr) {
2322 /*
2323 * Clear dirty bitmap operation only applies to those
2324 * regions whose dirty logging is at least enabled
2325 */
2326 continue;
2327 }
2328
2329 mrs = section_from_flat_range(fr, view);
2330
2331 sec_start = MAX(mrs.offset_within_region, start);
2332 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2333 sec_end = MIN(sec_end, start + len);
2334
2335 if (sec_start >= sec_end) {
2336 /*
2337 * If this memory region section has no intersection
2338 * with the requested range, skip.
2339 */
2340 continue;
2341 }
2342
2343 /* Valid case; shrink the section if needed */
2344 mrs.offset_within_address_space +=
2345 sec_start - mrs.offset_within_region;
2346 mrs.offset_within_region = sec_start;
2347 sec_size = sec_end - sec_start;
2348 mrs.size = int128_make64(sec_size);
2349 listener->log_clear(listener, &mrs);
2350 }
2351 flatview_unref(view);
2352 }
2353 }
2354
2355 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2356 hwaddr addr,
2357 hwaddr size,
2358 unsigned client)
2359 {
2360 DirtyBitmapSnapshot *snapshot;
2361 assert(mr->ram_block);
2362 memory_region_sync_dirty_bitmap(mr, false);
2363 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2364 memory_global_after_dirty_log_sync();
2365 return snapshot;
2366 }
2367
2368 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2369 hwaddr addr, hwaddr size)
2370 {
2371 assert(mr->ram_block);
2372 return cpu_physical_memory_snapshot_get_dirty(snap,
2373 memory_region_get_ram_addr(mr) + addr, size);
2374 }
2375
2376 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2377 {
2378 if (mr->readonly != readonly) {
2379 memory_region_transaction_begin();
2380 mr->readonly = readonly;
2381 memory_region_update_pending |= mr->enabled;
2382 memory_region_transaction_commit();
2383 }
2384 }
2385
2386 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2387 {
2388 if (mr->nonvolatile != nonvolatile) {
2389 memory_region_transaction_begin();
2390 mr->nonvolatile = nonvolatile;
2391 memory_region_update_pending |= mr->enabled;
2392 memory_region_transaction_commit();
2393 }
2394 }
2395
2396 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2397 {
2398 if (mr->romd_mode != romd_mode) {
2399 memory_region_transaction_begin();
2400 mr->romd_mode = romd_mode;
2401 memory_region_update_pending |= mr->enabled;
2402 memory_region_transaction_commit();
2403 }
2404 }
2405
2406 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2407 hwaddr size, unsigned client)
2408 {
2409 assert(mr->ram_block);
2410 cpu_physical_memory_test_and_clear_dirty(
2411 memory_region_get_ram_addr(mr) + addr, size, client);
2412 }
2413
2414 int memory_region_get_fd(MemoryRegion *mr)
2415 {
2416 RCU_READ_LOCK_GUARD();
2417 while (mr->alias) {
2418 mr = mr->alias;
2419 }
2420 return mr->ram_block->fd;
2421 }
2422
2423 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2424 {
2425 uint64_t offset = 0;
2426
2427 RCU_READ_LOCK_GUARD();
2428 while (mr->alias) {
2429 offset += mr->alias_offset;
2430 mr = mr->alias;
2431 }
2432 assert(mr->ram_block);
2433 return qemu_map_ram_ptr(mr->ram_block, offset);
2434 }
2435
2436 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2437 {
2438 RAMBlock *block;
2439
2440 block = qemu_ram_block_from_host(ptr, false, offset);
2441 if (!block) {
2442 return NULL;
2443 }
2444
2445 return block->mr;
2446 }
2447
2448 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2449 {
2450 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2451 }
2452
2453 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2454 {
2455 assert(mr->ram_block);
2456
2457 qemu_ram_resize(mr->ram_block, newsize, errp);
2458 }
2459
2460 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2461 {
2462 if (mr->ram_block) {
2463 qemu_ram_msync(mr->ram_block, addr, size);
2464 }
2465 }
2466
2467 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2468 {
2469 /*
2470 * Might be extended case needed to cover
2471 * different types of memory regions
2472 */
2473 if (mr->dirty_log_mask) {
2474 memory_region_msync(mr, addr, size);
2475 }
2476 }
2477
2478 /*
2479 * Call proper memory listeners about the change on the newly
2480 * added/removed CoalescedMemoryRange.
2481 */
2482 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2483 CoalescedMemoryRange *cmr,
2484 bool add)
2485 {
2486 AddressSpace *as;
2487 FlatView *view;
2488 FlatRange *fr;
2489
2490 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2491 view = address_space_get_flatview(as);
2492 FOR_EACH_FLAT_RANGE(fr, view) {
2493 if (fr->mr == mr) {
2494 flat_range_coalesced_io_notify(fr, as, cmr, add);
2495 }
2496 }
2497 flatview_unref(view);
2498 }
2499 }
2500
2501 void memory_region_set_coalescing(MemoryRegion *mr)
2502 {
2503 memory_region_clear_coalescing(mr);
2504 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2505 }
2506
2507 void memory_region_add_coalescing(MemoryRegion *mr,
2508 hwaddr offset,
2509 uint64_t size)
2510 {
2511 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2512
2513 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2514 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2515 memory_region_update_coalesced_range(mr, cmr, true);
2516 memory_region_set_flush_coalesced(mr);
2517 }
2518
2519 void memory_region_clear_coalescing(MemoryRegion *mr)
2520 {
2521 CoalescedMemoryRange *cmr;
2522
2523 if (QTAILQ_EMPTY(&mr->coalesced)) {
2524 return;
2525 }
2526
2527 qemu_flush_coalesced_mmio_buffer();
2528 mr->flush_coalesced_mmio = false;
2529
2530 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2531 cmr = QTAILQ_FIRST(&mr->coalesced);
2532 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2533 memory_region_update_coalesced_range(mr, cmr, false);
2534 g_free(cmr);
2535 }
2536 }
2537
2538 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2539 {
2540 mr->flush_coalesced_mmio = true;
2541 }
2542
2543 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2544 {
2545 qemu_flush_coalesced_mmio_buffer();
2546 if (QTAILQ_EMPTY(&mr->coalesced)) {
2547 mr->flush_coalesced_mmio = false;
2548 }
2549 }
2550
2551 void memory_region_add_eventfd(MemoryRegion *mr,
2552 hwaddr addr,
2553 unsigned size,
2554 bool match_data,
2555 uint64_t data,
2556 EventNotifier *e)
2557 {
2558 MemoryRegionIoeventfd mrfd = {
2559 .addr.start = int128_make64(addr),
2560 .addr.size = int128_make64(size),
2561 .match_data = match_data,
2562 .data = data,
2563 .e = e,
2564 };
2565 unsigned i;
2566
2567 if (size) {
2568 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2569 }
2570 memory_region_transaction_begin();
2571 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2572 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2573 break;
2574 }
2575 }
2576 ++mr->ioeventfd_nb;
2577 mr->ioeventfds = g_realloc(mr->ioeventfds,
2578 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2579 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2580 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2581 mr->ioeventfds[i] = mrfd;
2582 ioeventfd_update_pending |= mr->enabled;
2583 memory_region_transaction_commit();
2584 }
2585
2586 void memory_region_del_eventfd(MemoryRegion *mr,
2587 hwaddr addr,
2588 unsigned size,
2589 bool match_data,
2590 uint64_t data,
2591 EventNotifier *e)
2592 {
2593 MemoryRegionIoeventfd mrfd = {
2594 .addr.start = int128_make64(addr),
2595 .addr.size = int128_make64(size),
2596 .match_data = match_data,
2597 .data = data,
2598 .e = e,
2599 };
2600 unsigned i;
2601
2602 if (size) {
2603 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2604 }
2605 memory_region_transaction_begin();
2606 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2607 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2608 break;
2609 }
2610 }
2611 assert(i != mr->ioeventfd_nb);
2612 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2613 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2614 --mr->ioeventfd_nb;
2615 mr->ioeventfds = g_realloc(mr->ioeventfds,
2616 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2617 ioeventfd_update_pending |= mr->enabled;
2618 memory_region_transaction_commit();
2619 }
2620
2621 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2622 {
2623 MemoryRegion *mr = subregion->container;
2624 MemoryRegion *other;
2625
2626 memory_region_transaction_begin();
2627
2628 memory_region_ref(subregion);
2629 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2630 if (subregion->priority >= other->priority) {
2631 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2632 goto done;
2633 }
2634 }
2635 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2636 done:
2637 memory_region_update_pending |= mr->enabled && subregion->enabled;
2638 memory_region_transaction_commit();
2639 }
2640
2641 static void memory_region_add_subregion_common(MemoryRegion *mr,
2642 hwaddr offset,
2643 MemoryRegion *subregion)
2644 {
2645 MemoryRegion *alias;
2646
2647 assert(!subregion->container);
2648 subregion->container = mr;
2649 for (alias = subregion->alias; alias; alias = alias->alias) {
2650 alias->mapped_via_alias++;
2651 }
2652 subregion->addr = offset;
2653 memory_region_update_container_subregions(subregion);
2654 }
2655
2656 void memory_region_add_subregion(MemoryRegion *mr,
2657 hwaddr offset,
2658 MemoryRegion *subregion)
2659 {
2660 subregion->priority = 0;
2661 memory_region_add_subregion_common(mr, offset, subregion);
2662 }
2663
2664 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2665 hwaddr offset,
2666 MemoryRegion *subregion,
2667 int priority)
2668 {
2669 subregion->priority = priority;
2670 memory_region_add_subregion_common(mr, offset, subregion);
2671 }
2672
2673 void memory_region_del_subregion(MemoryRegion *mr,
2674 MemoryRegion *subregion)
2675 {
2676 MemoryRegion *alias;
2677
2678 memory_region_transaction_begin();
2679 assert(subregion->container == mr);
2680 subregion->container = NULL;
2681 for (alias = subregion->alias; alias; alias = alias->alias) {
2682 alias->mapped_via_alias--;
2683 assert(alias->mapped_via_alias >= 0);
2684 }
2685 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2686 memory_region_unref(subregion);
2687 memory_region_update_pending |= mr->enabled && subregion->enabled;
2688 memory_region_transaction_commit();
2689 }
2690
2691 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2692 {
2693 if (enabled == mr->enabled) {
2694 return;
2695 }
2696 memory_region_transaction_begin();
2697 mr->enabled = enabled;
2698 memory_region_update_pending = true;
2699 memory_region_transaction_commit();
2700 }
2701
2702 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2703 {
2704 Int128 s = int128_make64(size);
2705
2706 if (size == UINT64_MAX) {
2707 s = int128_2_64();
2708 }
2709 if (int128_eq(s, mr->size)) {
2710 return;
2711 }
2712 memory_region_transaction_begin();
2713 mr->size = s;
2714 memory_region_update_pending = true;
2715 memory_region_transaction_commit();
2716 }
2717
2718 static void memory_region_readd_subregion(MemoryRegion *mr)
2719 {
2720 MemoryRegion *container = mr->container;
2721
2722 if (container) {
2723 memory_region_transaction_begin();
2724 memory_region_ref(mr);
2725 memory_region_del_subregion(container, mr);
2726 memory_region_add_subregion_common(container, mr->addr, mr);
2727 memory_region_unref(mr);
2728 memory_region_transaction_commit();
2729 }
2730 }
2731
2732 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2733 {
2734 if (addr != mr->addr) {
2735 mr->addr = addr;
2736 memory_region_readd_subregion(mr);
2737 }
2738 }
2739
2740 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2741 {
2742 assert(mr->alias);
2743
2744 if (offset == mr->alias_offset) {
2745 return;
2746 }
2747
2748 memory_region_transaction_begin();
2749 mr->alias_offset = offset;
2750 memory_region_update_pending |= mr->enabled;
2751 memory_region_transaction_commit();
2752 }
2753
2754 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2755 {
2756 if (unmergeable == mr->unmergeable) {
2757 return;
2758 }
2759
2760 memory_region_transaction_begin();
2761 mr->unmergeable = unmergeable;
2762 memory_region_update_pending |= mr->enabled;
2763 memory_region_transaction_commit();
2764 }
2765
2766 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2767 {
2768 return mr->align;
2769 }
2770
2771 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2772 {
2773 const AddrRange *addr = addr_;
2774 const FlatRange *fr = fr_;
2775
2776 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2777 return -1;
2778 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2779 return 1;
2780 }
2781 return 0;
2782 }
2783
2784 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2785 {
2786 return bsearch(&addr, view->ranges, view->nr,
2787 sizeof(FlatRange), cmp_flatrange_addr);
2788 }
2789
2790 bool memory_region_is_mapped(MemoryRegion *mr)
2791 {
2792 return !!mr->container || mr->mapped_via_alias;
2793 }
2794
2795 /* Same as memory_region_find, but it does not add a reference to the
2796 * returned region. It must be called from an RCU critical section.
2797 */
2798 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2799 hwaddr addr, uint64_t size)
2800 {
2801 MemoryRegionSection ret = { .mr = NULL };
2802 MemoryRegion *root;
2803 AddressSpace *as;
2804 AddrRange range;
2805 FlatView *view;
2806 FlatRange *fr;
2807
2808 addr += mr->addr;
2809 for (root = mr; root->container; ) {
2810 root = root->container;
2811 addr += root->addr;
2812 }
2813
2814 as = memory_region_to_address_space(root);
2815 if (!as) {
2816 return ret;
2817 }
2818 range = addrrange_make(int128_make64(addr), int128_make64(size));
2819
2820 view = address_space_to_flatview(as);
2821 fr = flatview_lookup(view, range);
2822 if (!fr) {
2823 return ret;
2824 }
2825
2826 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2827 --fr;
2828 }
2829
2830 ret.mr = fr->mr;
2831 ret.fv = view;
2832 range = addrrange_intersection(range, fr->addr);
2833 ret.offset_within_region = fr->offset_in_region;
2834 ret.offset_within_region += int128_get64(int128_sub(range.start,
2835 fr->addr.start));
2836 ret.size = range.size;
2837 ret.offset_within_address_space = int128_get64(range.start);
2838 ret.readonly = fr->readonly;
2839 ret.nonvolatile = fr->nonvolatile;
2840 return ret;
2841 }
2842
2843 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2844 hwaddr addr, uint64_t size)
2845 {
2846 MemoryRegionSection ret;
2847 RCU_READ_LOCK_GUARD();
2848 ret = memory_region_find_rcu(mr, addr, size);
2849 if (ret.mr) {
2850 memory_region_ref(ret.mr);
2851 }
2852 return ret;
2853 }
2854
2855 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2856 {
2857 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2858
2859 *tmp = *s;
2860 if (tmp->mr) {
2861 memory_region_ref(tmp->mr);
2862 }
2863 if (tmp->fv) {
2864 bool ret = flatview_ref(tmp->fv);
2865
2866 g_assert(ret);
2867 }
2868 return tmp;
2869 }
2870
2871 void memory_region_section_free_copy(MemoryRegionSection *s)
2872 {
2873 if (s->fv) {
2874 flatview_unref(s->fv);
2875 }
2876 if (s->mr) {
2877 memory_region_unref(s->mr);
2878 }
2879 g_free(s);
2880 }
2881
2882 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2883 {
2884 MemoryRegion *mr;
2885
2886 RCU_READ_LOCK_GUARD();
2887 mr = memory_region_find_rcu(container, addr, 1).mr;
2888 return mr && mr != container;
2889 }
2890
2891 void memory_global_dirty_log_sync(bool last_stage)
2892 {
2893 memory_region_sync_dirty_bitmap(NULL, last_stage);
2894 }
2895
2896 void memory_global_after_dirty_log_sync(void)
2897 {
2898 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2899 }
2900
2901 /*
2902 * Dirty track stop flags that are postponed due to VM being stopped. Should
2903 * only be used within vmstate_change hook.
2904 */
2905 static unsigned int postponed_stop_flags;
2906 static VMChangeStateEntry *vmstate_change;
2907 static void memory_global_dirty_log_stop_postponed_run(void);
2908
2909 void memory_global_dirty_log_start(unsigned int flags)
2910 {
2911 unsigned int old_flags;
2912
2913 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2914
2915 if (vmstate_change) {
2916 /* If there is postponed stop(), operate on it first */
2917 postponed_stop_flags &= ~flags;
2918 memory_global_dirty_log_stop_postponed_run();
2919 }
2920
2921 flags &= ~global_dirty_tracking;
2922 if (!flags) {
2923 return;
2924 }
2925
2926 old_flags = global_dirty_tracking;
2927 global_dirty_tracking |= flags;
2928 trace_global_dirty_changed(global_dirty_tracking);
2929
2930 if (!old_flags) {
2931 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2932 memory_region_transaction_begin();
2933 memory_region_update_pending = true;
2934 memory_region_transaction_commit();
2935 }
2936 }
2937
2938 static void memory_global_dirty_log_do_stop(unsigned int flags)
2939 {
2940 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2941 assert((global_dirty_tracking & flags) == flags);
2942 global_dirty_tracking &= ~flags;
2943
2944 trace_global_dirty_changed(global_dirty_tracking);
2945
2946 if (!global_dirty_tracking) {
2947 memory_region_transaction_begin();
2948 memory_region_update_pending = true;
2949 memory_region_transaction_commit();
2950 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2951 }
2952 }
2953
2954 /*
2955 * Execute the postponed dirty log stop operations if there is, then reset
2956 * everything (including the flags and the vmstate change hook).
2957 */
2958 static void memory_global_dirty_log_stop_postponed_run(void)
2959 {
2960 /* This must be called with the vmstate handler registered */
2961 assert(vmstate_change);
2962
2963 /* Note: postponed_stop_flags can be cleared in log start routine */
2964 if (postponed_stop_flags) {
2965 memory_global_dirty_log_do_stop(postponed_stop_flags);
2966 postponed_stop_flags = 0;
2967 }
2968
2969 qemu_del_vm_change_state_handler(vmstate_change);
2970 vmstate_change = NULL;
2971 }
2972
2973 static void memory_vm_change_state_handler(void *opaque, bool running,
2974 RunState state)
2975 {
2976 if (running) {
2977 memory_global_dirty_log_stop_postponed_run();
2978 }
2979 }
2980
2981 void memory_global_dirty_log_stop(unsigned int flags)
2982 {
2983 if (!runstate_is_running()) {
2984 /* Postpone the dirty log stop, e.g., to when VM starts again */
2985 if (vmstate_change) {
2986 /* Batch with previous postponed flags */
2987 postponed_stop_flags |= flags;
2988 } else {
2989 postponed_stop_flags = flags;
2990 vmstate_change = qemu_add_vm_change_state_handler(
2991 memory_vm_change_state_handler, NULL);
2992 }
2993 return;
2994 }
2995
2996 memory_global_dirty_log_do_stop(flags);
2997 }
2998
2999 static void listener_add_address_space(MemoryListener *listener,
3000 AddressSpace *as)
3001 {
3002 FlatView *view;
3003 FlatRange *fr;
3004
3005 if (listener->begin) {
3006 listener->begin(listener);
3007 }
3008 if (global_dirty_tracking) {
3009 if (listener->log_global_start) {
3010 listener->log_global_start(listener);
3011 }
3012 }
3013
3014 view = address_space_get_flatview(as);
3015 FOR_EACH_FLAT_RANGE(fr, view) {
3016 MemoryRegionSection section = section_from_flat_range(fr, view);
3017
3018 if (listener->region_add) {
3019 listener->region_add(listener, &section);
3020 }
3021 if (fr->dirty_log_mask && listener->log_start) {
3022 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3023 }
3024 }
3025 if (listener->commit) {
3026 listener->commit(listener);
3027 }
3028 flatview_unref(view);
3029 }
3030
3031 static void listener_del_address_space(MemoryListener *listener,
3032 AddressSpace *as)
3033 {
3034 FlatView *view;
3035 FlatRange *fr;
3036
3037 if (listener->begin) {
3038 listener->begin(listener);
3039 }
3040 view = address_space_get_flatview(as);
3041 FOR_EACH_FLAT_RANGE(fr, view) {
3042 MemoryRegionSection section = section_from_flat_range(fr, view);
3043
3044 if (fr->dirty_log_mask && listener->log_stop) {
3045 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3046 }
3047 if (listener->region_del) {
3048 listener->region_del(listener, &section);
3049 }
3050 }
3051 if (listener->commit) {
3052 listener->commit(listener);
3053 }
3054 flatview_unref(view);
3055 }
3056
3057 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3058 {
3059 MemoryListener *other = NULL;
3060
3061 /* Only one of them can be defined for a listener */
3062 assert(!(listener->log_sync && listener->log_sync_global));
3063
3064 listener->address_space = as;
3065 if (QTAILQ_EMPTY(&memory_listeners)
3066 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3067 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3068 } else {
3069 QTAILQ_FOREACH(other, &memory_listeners, link) {
3070 if (listener->priority < other->priority) {
3071 break;
3072 }
3073 }
3074 QTAILQ_INSERT_BEFORE(other, listener, link);
3075 }
3076
3077 if (QTAILQ_EMPTY(&as->listeners)
3078 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3079 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3080 } else {
3081 QTAILQ_FOREACH(other, &as->listeners, link_as) {
3082 if (listener->priority < other->priority) {
3083 break;
3084 }
3085 }
3086 QTAILQ_INSERT_BEFORE(other, listener, link_as);
3087 }
3088
3089 listener_add_address_space(listener, as);
3090
3091 if (listener->eventfd_add || listener->eventfd_del) {
3092 as->ioeventfd_notifiers++;
3093 }
3094 }
3095
3096 void memory_listener_unregister(MemoryListener *listener)
3097 {
3098 if (!listener->address_space) {
3099 return;
3100 }
3101
3102 if (listener->eventfd_add || listener->eventfd_del) {
3103 listener->address_space->ioeventfd_notifiers--;
3104 }
3105
3106 listener_del_address_space(listener, listener->address_space);
3107 QTAILQ_REMOVE(&memory_listeners, listener, link);
3108 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3109 listener->address_space = NULL;
3110 }
3111
3112 void address_space_remove_listeners(AddressSpace *as)
3113 {
3114 while (!QTAILQ_EMPTY(&as->listeners)) {
3115 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3116 }
3117 }
3118
3119 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3120 {
3121 memory_region_ref(root);
3122 as->root = root;
3123 as->current_map = NULL;
3124 as->ioeventfd_nb = 0;
3125 as->ioeventfds = NULL;
3126 QTAILQ_INIT(&as->listeners);
3127 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3128 as->name = g_strdup(name ? name : "anonymous");
3129 address_space_update_topology(as);
3130 address_space_update_ioeventfds(as);
3131 }
3132
3133 static void do_address_space_destroy(AddressSpace *as)
3134 {
3135 assert(QTAILQ_EMPTY(&as->listeners));
3136
3137 flatview_unref(as->current_map);
3138 g_free(as->name);
3139 g_free(as->ioeventfds);
3140 memory_region_unref(as->root);
3141 }
3142
3143 void address_space_destroy(AddressSpace *as)
3144 {
3145 MemoryRegion *root = as->root;
3146
3147 /* Flush out anything from MemoryListeners listening in on this */
3148 memory_region_transaction_begin();
3149 as->root = NULL;
3150 memory_region_transaction_commit();
3151 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3152
3153 /* At this point, as->dispatch and as->current_map are dummy
3154 * entries that the guest should never use. Wait for the old
3155 * values to expire before freeing the data.
3156 */
3157 as->root = root;
3158 call_rcu(as, do_address_space_destroy, rcu);
3159 }
3160
3161 static const char *memory_region_type(MemoryRegion *mr)
3162 {
3163 if (mr->alias) {
3164 return memory_region_type(mr->alias);
3165 }
3166 if (memory_region_is_ram_device(mr)) {
3167 return "ramd";
3168 } else if (memory_region_is_romd(mr)) {
3169 return "romd";
3170 } else if (memory_region_is_rom(mr)) {
3171 return "rom";
3172 } else if (memory_region_is_ram(mr)) {
3173 return "ram";
3174 } else {
3175 return "i/o";
3176 }
3177 }
3178
3179 typedef struct MemoryRegionList MemoryRegionList;
3180
3181 struct MemoryRegionList {
3182 const MemoryRegion *mr;
3183 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3184 };
3185
3186 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3187
3188 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3189 int128_sub((size), int128_one())) : 0)
3190 #define MTREE_INDENT " "
3191
3192 static void mtree_expand_owner(const char *label, Object *obj)
3193 {
3194 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3195
3196 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3197 if (dev && dev->id) {
3198 qemu_printf(" id=%s", dev->id);
3199 } else {
3200 char *canonical_path = object_get_canonical_path(obj);
3201 if (canonical_path) {
3202 qemu_printf(" path=%s", canonical_path);
3203 g_free(canonical_path);
3204 } else {
3205 qemu_printf(" type=%s", object_get_typename(obj));
3206 }
3207 }
3208 qemu_printf("}");
3209 }
3210
3211 static void mtree_print_mr_owner(const MemoryRegion *mr)
3212 {
3213 Object *owner = mr->owner;
3214 Object *parent = memory_region_owner((MemoryRegion *)mr);
3215
3216 if (!owner && !parent) {
3217 qemu_printf(" orphan");
3218 return;
3219 }
3220 if (owner) {
3221 mtree_expand_owner("owner", owner);
3222 }
3223 if (parent && parent != owner) {
3224 mtree_expand_owner("parent", parent);
3225 }
3226 }
3227
3228 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3229 hwaddr base,
3230 MemoryRegionListHead *alias_print_queue,
3231 bool owner, bool display_disabled)
3232 {
3233 MemoryRegionList *new_ml, *ml, *next_ml;
3234 MemoryRegionListHead submr_print_queue;
3235 const MemoryRegion *submr;
3236 unsigned int i;
3237 hwaddr cur_start, cur_end;
3238
3239 if (!mr) {
3240 return;
3241 }
3242
3243 cur_start = base + mr->addr;
3244 cur_end = cur_start + MR_SIZE(mr->size);
3245
3246 /*
3247 * Try to detect overflow of memory region. This should never
3248 * happen normally. When it happens, we dump something to warn the
3249 * user who is observing this.
3250 */
3251 if (cur_start < base || cur_end < cur_start) {
3252 qemu_printf("[DETECTED OVERFLOW!] ");
3253 }
3254
3255 if (mr->alias) {
3256 bool found = false;
3257
3258 /* check if the alias is already in the queue */
3259 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3260 if (ml->mr == mr->alias) {
3261 found = true;
3262 }
3263 }
3264
3265 if (!found) {
3266 ml = g_new(MemoryRegionList, 1);
3267 ml->mr = mr->alias;
3268 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3269 }
3270 if (mr->enabled || display_disabled) {
3271 for (i = 0; i < level; i++) {
3272 qemu_printf(MTREE_INDENT);
3273 }
3274 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3275 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3276 "-" HWADDR_FMT_plx "%s",
3277 cur_start, cur_end,
3278 mr->priority,
3279 mr->nonvolatile ? "nv-" : "",
3280 memory_region_type((MemoryRegion *)mr),
3281 memory_region_name(mr),
3282 memory_region_name(mr->alias),
3283 mr->alias_offset,
3284 mr->alias_offset + MR_SIZE(mr->size),
3285 mr->enabled ? "" : " [disabled]");
3286 if (owner) {
3287 mtree_print_mr_owner(mr);
3288 }
3289 qemu_printf("\n");
3290 }
3291 } else {
3292 if (mr->enabled || display_disabled) {
3293 for (i = 0; i < level; i++) {
3294 qemu_printf(MTREE_INDENT);
3295 }
3296 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3297 " (prio %d, %s%s): %s%s",
3298 cur_start, cur_end,
3299 mr->priority,
3300 mr->nonvolatile ? "nv-" : "",
3301 memory_region_type((MemoryRegion *)mr),
3302 memory_region_name(mr),
3303 mr->enabled ? "" : " [disabled]");
3304 if (owner) {
3305 mtree_print_mr_owner(mr);
3306 }
3307 qemu_printf("\n");
3308 }
3309 }
3310
3311 QTAILQ_INIT(&submr_print_queue);
3312
3313 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3314 new_ml = g_new(MemoryRegionList, 1);
3315 new_ml->mr = submr;
3316 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3317 if (new_ml->mr->addr < ml->mr->addr ||
3318 (new_ml->mr->addr == ml->mr->addr &&
3319 new_ml->mr->priority > ml->mr->priority)) {
3320 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3321 new_ml = NULL;
3322 break;
3323 }
3324 }
3325 if (new_ml) {
3326 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3327 }
3328 }
3329
3330 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3331 mtree_print_mr(ml->mr, level + 1, cur_start,
3332 alias_print_queue, owner, display_disabled);
3333 }
3334
3335 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3336 g_free(ml);
3337 }
3338 }
3339
3340 struct FlatViewInfo {
3341 int counter;
3342 bool dispatch_tree;
3343 bool owner;
3344 AccelClass *ac;
3345 };
3346
3347 static void mtree_print_flatview(gpointer key, gpointer value,
3348 gpointer user_data)
3349 {
3350 FlatView *view = key;
3351 GArray *fv_address_spaces = value;
3352 struct FlatViewInfo *fvi = user_data;
3353 FlatRange *range = &view->ranges[0];
3354 MemoryRegion *mr;
3355 int n = view->nr;
3356 int i;
3357 AddressSpace *as;
3358
3359 qemu_printf("FlatView #%d\n", fvi->counter);
3360 ++fvi->counter;
3361
3362 for (i = 0; i < fv_address_spaces->len; ++i) {
3363 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3364 qemu_printf(" AS \"%s\", root: %s",
3365 as->name, memory_region_name(as->root));
3366 if (as->root->alias) {
3367 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3368 }
3369 qemu_printf("\n");
3370 }
3371
3372 qemu_printf(" Root memory region: %s\n",
3373 view->root ? memory_region_name(view->root) : "(none)");
3374
3375 if (n <= 0) {
3376 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3377 return;
3378 }
3379
3380 while (n--) {
3381 mr = range->mr;
3382 if (range->offset_in_region) {
3383 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3384 " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3385 int128_get64(range->addr.start),
3386 int128_get64(range->addr.start)
3387 + MR_SIZE(range->addr.size),
3388 mr->priority,
3389 range->nonvolatile ? "nv-" : "",
3390 range->readonly ? "rom" : memory_region_type(mr),
3391 memory_region_name(mr),
3392 range->offset_in_region);
3393 } else {
3394 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3395 " (prio %d, %s%s): %s",
3396 int128_get64(range->addr.start),
3397 int128_get64(range->addr.start)
3398 + MR_SIZE(range->addr.size),
3399 mr->priority,
3400 range->nonvolatile ? "nv-" : "",
3401 range->readonly ? "rom" : memory_region_type(mr),
3402 memory_region_name(mr));
3403 }
3404 if (fvi->owner) {
3405 mtree_print_mr_owner(mr);
3406 }
3407
3408 if (fvi->ac) {
3409 for (i = 0; i < fv_address_spaces->len; ++i) {
3410 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3411 if (fvi->ac->has_memory(current_machine, as,
3412 int128_get64(range->addr.start),
3413 MR_SIZE(range->addr.size) + 1)) {
3414 qemu_printf(" %s", fvi->ac->name);
3415 }
3416 }
3417 }
3418 qemu_printf("\n");
3419 range++;
3420 }
3421
3422 #if !defined(CONFIG_USER_ONLY)
3423 if (fvi->dispatch_tree && view->root) {
3424 mtree_print_dispatch(view->dispatch, view->root);
3425 }
3426 #endif
3427
3428 qemu_printf("\n");
3429 }
3430
3431 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3432 gpointer user_data)
3433 {
3434 FlatView *view = key;
3435 GArray *fv_address_spaces = value;
3436
3437 g_array_unref(fv_address_spaces);
3438 flatview_unref(view);
3439
3440 return true;
3441 }
3442
3443 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3444 {
3445 struct FlatViewInfo fvi = {
3446 .counter = 0,
3447 .dispatch_tree = dispatch_tree,
3448 .owner = owner,
3449 };
3450 AddressSpace *as;
3451 FlatView *view;
3452 GArray *fv_address_spaces;
3453 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3454 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3455
3456 if (ac->has_memory) {
3457 fvi.ac = ac;
3458 }
3459
3460 /* Gather all FVs in one table */
3461 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3462 view = address_space_get_flatview(as);
3463
3464 fv_address_spaces = g_hash_table_lookup(views, view);
3465 if (!fv_address_spaces) {
3466 fv_address_spaces = g_array_new(false, false, sizeof(as));
3467 g_hash_table_insert(views, view, fv_address_spaces);
3468 }
3469
3470 g_array_append_val(fv_address_spaces, as);
3471 }
3472
3473 /* Print */
3474 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3475
3476 /* Free */
3477 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3478 g_hash_table_unref(views);
3479 }
3480
3481 struct AddressSpaceInfo {
3482 MemoryRegionListHead *ml_head;
3483 bool owner;
3484 bool disabled;
3485 };
3486
3487 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3488 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3489 {
3490 const AddressSpace *as_a = a;
3491 const AddressSpace *as_b = b;
3492
3493 return g_strcmp0(as_a->name, as_b->name);
3494 }
3495
3496 static void mtree_print_as_name(gpointer data, gpointer user_data)
3497 {
3498 AddressSpace *as = data;
3499
3500 qemu_printf("address-space: %s\n", as->name);
3501 }
3502
3503 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3504 {
3505 MemoryRegion *mr = key;
3506 GSList *as_same_root_mr_list = value;
3507 struct AddressSpaceInfo *asi = user_data;
3508
3509 g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3510 mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3511 qemu_printf("\n");
3512 }
3513
3514 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3515 gpointer user_data)
3516 {
3517 GSList *as_same_root_mr_list = value;
3518
3519 g_slist_free(as_same_root_mr_list);
3520
3521 return true;
3522 }
3523
3524 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3525 {
3526 MemoryRegionListHead ml_head;
3527 MemoryRegionList *ml, *ml2;
3528 AddressSpace *as;
3529 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3530 GSList *as_same_root_mr_list;
3531 struct AddressSpaceInfo asi = {
3532 .ml_head = &ml_head,
3533 .owner = owner,
3534 .disabled = disabled,
3535 };
3536
3537 QTAILQ_INIT(&ml_head);
3538
3539 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3540 /* Create hashtable, key=AS root MR, value = list of AS */
3541 as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3542 as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3543 address_space_compare_name);
3544 g_hash_table_insert(views, as->root, as_same_root_mr_list);
3545 }
3546
3547 /* print address spaces */
3548 g_hash_table_foreach(views, mtree_print_as, &asi);
3549 g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3550 g_hash_table_unref(views);
3551
3552 /* print aliased regions */
3553 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3554 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3555 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3556 qemu_printf("\n");
3557 }
3558
3559 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3560 g_free(ml);
3561 }
3562 }
3563
3564 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3565 {
3566 if (flatview) {
3567 mtree_info_flatview(dispatch_tree, owner);
3568 } else {
3569 mtree_info_as(dispatch_tree, owner, disabled);
3570 }
3571 }
3572
3573 bool memory_region_init_ram(MemoryRegion *mr,
3574 Object *owner,
3575 const char *name,
3576 uint64_t size,
3577 Error **errp)
3578 {
3579 DeviceState *owner_dev;
3580
3581 if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3582 return false;
3583 }
3584 /* This will assert if owner is neither NULL nor a DeviceState.
3585 * We only want the owner here for the purposes of defining a
3586 * unique name for migration. TODO: Ideally we should implement
3587 * a naming scheme for Objects which are not DeviceStates, in
3588 * which case we can relax this restriction.
3589 */
3590 owner_dev = DEVICE(owner);
3591 vmstate_register_ram(mr, owner_dev);
3592
3593 return true;
3594 }
3595
3596 void memory_region_init_rom(MemoryRegion *mr,
3597 Object *owner,
3598 const char *name,
3599 uint64_t size,
3600 Error **errp)
3601 {
3602 DeviceState *owner_dev;
3603
3604 if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3605 return;
3606 }
3607 /* This will assert if owner is neither NULL nor a DeviceState.
3608 * We only want the owner here for the purposes of defining a
3609 * unique name for migration. TODO: Ideally we should implement
3610 * a naming scheme for Objects which are not DeviceStates, in
3611 * which case we can relax this restriction.
3612 */
3613 owner_dev = DEVICE(owner);
3614 vmstate_register_ram(mr, owner_dev);
3615 }
3616
3617 void memory_region_init_rom_device(MemoryRegion *mr,
3618 Object *owner,
3619 const MemoryRegionOps *ops,
3620 void *opaque,
3621 const char *name,
3622 uint64_t size,
3623 Error **errp)
3624 {
3625 DeviceState *owner_dev;
3626 Error *err = NULL;
3627
3628 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3629 name, size, &err);
3630 if (err) {
3631 error_propagate(errp, err);
3632 return;
3633 }
3634 /* This will assert if owner is neither NULL nor a DeviceState.
3635 * We only want the owner here for the purposes of defining a
3636 * unique name for migration. TODO: Ideally we should implement
3637 * a naming scheme for Objects which are not DeviceStates, in
3638 * which case we can relax this restriction.
3639 */
3640 owner_dev = DEVICE(owner);
3641 vmstate_register_ram(mr, owner_dev);
3642 }
3643
3644 /*
3645 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3646 * the fuzz_dma_read_cb callback
3647 */
3648 #ifdef CONFIG_FUZZ
3649 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3650 size_t len,
3651 MemoryRegion *mr)
3652 {
3653 }
3654 #endif
3655
3656 static const TypeInfo memory_region_info = {
3657 .parent = TYPE_OBJECT,
3658 .name = TYPE_MEMORY_REGION,
3659 .class_size = sizeof(MemoryRegionClass),
3660 .instance_size = sizeof(MemoryRegion),
3661 .instance_init = memory_region_initfn,
3662 .instance_finalize = memory_region_finalize,
3663 };
3664
3665 static const TypeInfo iommu_memory_region_info = {
3666 .parent = TYPE_MEMORY_REGION,
3667 .name = TYPE_IOMMU_MEMORY_REGION,
3668 .class_size = sizeof(IOMMUMemoryRegionClass),
3669 .instance_size = sizeof(IOMMUMemoryRegion),
3670 .instance_init = iommu_memory_region_initfn,
3671 .abstract = true,
3672 };
3673
3674 static const TypeInfo ram_discard_manager_info = {
3675 .parent = TYPE_INTERFACE,
3676 .name = TYPE_RAM_DISCARD_MANAGER,
3677 .class_size = sizeof(RamDiscardManagerClass),
3678 };
3679
3680 static void memory_register_types(void)
3681 {
3682 type_register_static(&memory_region_info);
3683 type_register_static(&iommu_memory_region_info);
3684 type_register_static(&ram_discard_manager_info);
3685 }
3686
3687 type_init(memory_register_types)