]> git.proxmox.com Git - mirror_qemu.git/blob - system/memory.c
Merge tag 'python-pull-request' of https://gitlab.com/jsnow/qemu into staging
[mirror_qemu.git] / system / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36 #include "exec/address-spaces.h"
37
38 //#define DEBUG_UNASSIGNED
39
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static GHashTable *flat_views;
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
58 */
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
62 };
63
64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66 return (AddrRange) { start, size };
67 }
68
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73
74 static Int128 addrrange_end(AddrRange r)
75 {
76 return int128_add(r.start, r.size);
77 }
78
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81 int128_addto(&range.start, delta);
82 return range;
83 }
84
85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
89 }
90
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
95 }
96
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
102 }
103
104 enum ListenerDirection { Forward, Reverse };
105
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
109 \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
115 } \
116 } \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
122 } \
123 } \
124 break; \
125 default: \
126 abort(); \
127 } \
128 } while (0)
129
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
133 \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
139 } \
140 } \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
161
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
172 };
173
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
176 {
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
194 }
195 }
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
200 }
201 return false;
202 }
203
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
206 {
207 if (int128_eq(a->addr.start, b->addr.start) &&
208 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209 (int128_eq(a->addr.size, b->addr.size) &&
210 (a->match_data == b->match_data) &&
211 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212 (a->e == b->e))))
213 return true;
214
215 return false;
216 }
217
218 /* Range of memory in the global map. Addresses are absolute. */
219 struct FlatRange {
220 MemoryRegion *mr;
221 hwaddr offset_in_region;
222 AddrRange addr;
223 uint8_t dirty_log_mask;
224 bool romd_mode;
225 bool readonly;
226 bool nonvolatile;
227 bool unmergeable;
228 };
229
230 #define FOR_EACH_FLAT_RANGE(var, view) \
231 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static inline MemoryRegionSection
234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236 return (MemoryRegionSection) {
237 .mr = fr->mr,
238 .fv = fv,
239 .offset_within_region = fr->offset_in_region,
240 .size = fr->addr.size,
241 .offset_within_address_space = int128_get64(fr->addr.start),
242 .readonly = fr->readonly,
243 .nonvolatile = fr->nonvolatile,
244 .unmergeable = fr->unmergeable,
245 };
246 }
247
248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250 return a->mr == b->mr
251 && addrrange_equal(a->addr, b->addr)
252 && a->offset_in_region == b->offset_in_region
253 && a->romd_mode == b->romd_mode
254 && a->readonly == b->readonly
255 && a->nonvolatile == b->nonvolatile
256 && a->unmergeable == b->unmergeable;
257 }
258
259 static FlatView *flatview_new(MemoryRegion *mr_root)
260 {
261 FlatView *view;
262
263 view = g_new0(FlatView, 1);
264 view->ref = 1;
265 view->root = mr_root;
266 memory_region_ref(mr_root);
267 trace_flatview_new(view, mr_root);
268
269 return view;
270 }
271
272 /* Insert a range into a given position. Caller is responsible for maintaining
273 * sorting order.
274 */
275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 {
277 if (view->nr == view->nr_allocated) {
278 view->nr_allocated = MAX(2 * view->nr, 10);
279 view->ranges = g_realloc(view->ranges,
280 view->nr_allocated * sizeof(*view->ranges));
281 }
282 memmove(view->ranges + pos + 1, view->ranges + pos,
283 (view->nr - pos) * sizeof(FlatRange));
284 view->ranges[pos] = *range;
285 memory_region_ref(range->mr);
286 ++view->nr;
287 }
288
289 static void flatview_destroy(FlatView *view)
290 {
291 int i;
292
293 trace_flatview_destroy(view, view->root);
294 if (view->dispatch) {
295 address_space_dispatch_free(view->dispatch);
296 }
297 for (i = 0; i < view->nr; i++) {
298 memory_region_unref(view->ranges[i].mr);
299 }
300 g_free(view->ranges);
301 memory_region_unref(view->root);
302 g_free(view);
303 }
304
305 static bool flatview_ref(FlatView *view)
306 {
307 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 }
309
310 void flatview_unref(FlatView *view)
311 {
312 if (qatomic_fetch_dec(&view->ref) == 1) {
313 trace_flatview_destroy_rcu(view, view->root);
314 assert(view->root);
315 call_rcu(view, flatview_destroy, rcu);
316 }
317 }
318
319 static bool can_merge(FlatRange *r1, FlatRange *r2)
320 {
321 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322 && r1->mr == r2->mr
323 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324 r1->addr.size),
325 int128_make64(r2->offset_in_region))
326 && r1->dirty_log_mask == r2->dirty_log_mask
327 && r1->romd_mode == r2->romd_mode
328 && r1->readonly == r2->readonly
329 && r1->nonvolatile == r2->nonvolatile
330 && !r1->unmergeable && !r2->unmergeable;
331 }
332
333 /* Attempt to simplify a view by merging adjacent ranges */
334 static void flatview_simplify(FlatView *view)
335 {
336 unsigned i, j, k;
337
338 i = 0;
339 while (i < view->nr) {
340 j = i + 1;
341 while (j < view->nr
342 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344 ++j;
345 }
346 ++i;
347 for (k = i; k < j; k++) {
348 memory_region_unref(view->ranges[k].mr);
349 }
350 memmove(&view->ranges[i], &view->ranges[j],
351 (view->nr - j) * sizeof(view->ranges[j]));
352 view->nr -= j - i;
353 }
354 }
355
356 static bool memory_region_big_endian(MemoryRegion *mr)
357 {
358 #if TARGET_BIG_ENDIAN
359 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
360 #else
361 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
362 #endif
363 }
364
365 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
366 {
367 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
368 switch (op & MO_SIZE) {
369 case MO_8:
370 break;
371 case MO_16:
372 *data = bswap16(*data);
373 break;
374 case MO_32:
375 *data = bswap32(*data);
376 break;
377 case MO_64:
378 *data = bswap64(*data);
379 break;
380 default:
381 g_assert_not_reached();
382 }
383 }
384 }
385
386 static inline void memory_region_shift_read_access(uint64_t *value,
387 signed shift,
388 uint64_t mask,
389 uint64_t tmp)
390 {
391 if (shift >= 0) {
392 *value |= (tmp & mask) << shift;
393 } else {
394 *value |= (tmp & mask) >> -shift;
395 }
396 }
397
398 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
399 signed shift,
400 uint64_t mask)
401 {
402 uint64_t tmp;
403
404 if (shift >= 0) {
405 tmp = (*value >> shift) & mask;
406 } else {
407 tmp = (*value << -shift) & mask;
408 }
409
410 return tmp;
411 }
412
413 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414 {
415 MemoryRegion *root;
416 hwaddr abs_addr = offset;
417
418 abs_addr += mr->addr;
419 for (root = mr; root->container; ) {
420 root = root->container;
421 abs_addr += root->addr;
422 }
423
424 return abs_addr;
425 }
426
427 static int get_cpu_index(void)
428 {
429 if (current_cpu) {
430 return current_cpu->cpu_index;
431 }
432 return -1;
433 }
434
435 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
436 hwaddr addr,
437 uint64_t *value,
438 unsigned size,
439 signed shift,
440 uint64_t mask,
441 MemTxAttrs attrs)
442 {
443 uint64_t tmp;
444
445 tmp = mr->ops->read(mr->opaque, addr, size);
446 if (mr->subpage) {
447 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
448 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
449 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
451 memory_region_name(mr));
452 }
453 memory_region_shift_read_access(value, shift, mask, tmp);
454 return MEMTX_OK;
455 }
456
457 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
458 hwaddr addr,
459 uint64_t *value,
460 unsigned size,
461 signed shift,
462 uint64_t mask,
463 MemTxAttrs attrs)
464 {
465 uint64_t tmp = 0;
466 MemTxResult r;
467
468 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
469 if (mr->subpage) {
470 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
471 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
472 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
474 memory_region_name(mr));
475 }
476 memory_region_shift_read_access(value, shift, mask, tmp);
477 return r;
478 }
479
480 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
481 hwaddr addr,
482 uint64_t *value,
483 unsigned size,
484 signed shift,
485 uint64_t mask,
486 MemTxAttrs attrs)
487 {
488 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
489
490 if (mr->subpage) {
491 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
493 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
494 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
495 memory_region_name(mr));
496 }
497 mr->ops->write(mr->opaque, addr, tmp, size);
498 return MEMTX_OK;
499 }
500
501 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
502 hwaddr addr,
503 uint64_t *value,
504 unsigned size,
505 signed shift,
506 uint64_t mask,
507 MemTxAttrs attrs)
508 {
509 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
510
511 if (mr->subpage) {
512 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
513 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
514 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
515 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
516 memory_region_name(mr));
517 }
518 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
519 }
520
521 static MemTxResult access_with_adjusted_size(hwaddr addr,
522 uint64_t *value,
523 unsigned size,
524 unsigned access_size_min,
525 unsigned access_size_max,
526 MemTxResult (*access_fn)
527 (MemoryRegion *mr,
528 hwaddr addr,
529 uint64_t *value,
530 unsigned size,
531 signed shift,
532 uint64_t mask,
533 MemTxAttrs attrs),
534 MemoryRegion *mr,
535 MemTxAttrs attrs)
536 {
537 uint64_t access_mask;
538 unsigned access_size;
539 unsigned i;
540 MemTxResult r = MEMTX_OK;
541 bool reentrancy_guard_applied = false;
542
543 if (!access_size_min) {
544 access_size_min = 1;
545 }
546 if (!access_size_max) {
547 access_size_max = 4;
548 }
549
550 /* Do not allow more than one simultaneous access to a device's IO Regions */
551 if (mr->dev && !mr->disable_reentrancy_guard &&
552 !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
553 if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
554 warn_report_once("Blocked re-entrant IO on MemoryRegion: "
555 "%s at addr: 0x%" HWADDR_PRIX,
556 memory_region_name(mr), addr);
557 return MEMTX_ACCESS_ERROR;
558 }
559 mr->dev->mem_reentrancy_guard.engaged_in_io = true;
560 reentrancy_guard_applied = true;
561 }
562
563 /* FIXME: support unaligned access? */
564 access_size = MAX(MIN(size, access_size_max), access_size_min);
565 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
566 if (memory_region_big_endian(mr)) {
567 for (i = 0; i < size; i += access_size) {
568 r |= access_fn(mr, addr + i, value, access_size,
569 (size - access_size - i) * 8, access_mask, attrs);
570 }
571 } else {
572 for (i = 0; i < size; i += access_size) {
573 r |= access_fn(mr, addr + i, value, access_size, i * 8,
574 access_mask, attrs);
575 }
576 }
577 if (mr->dev && reentrancy_guard_applied) {
578 mr->dev->mem_reentrancy_guard.engaged_in_io = false;
579 }
580 return r;
581 }
582
583 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
584 {
585 AddressSpace *as;
586
587 while (mr->container) {
588 mr = mr->container;
589 }
590 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
591 if (mr == as->root) {
592 return as;
593 }
594 }
595 return NULL;
596 }
597
598 /* Render a memory region into the global view. Ranges in @view obscure
599 * ranges in @mr.
600 */
601 static void render_memory_region(FlatView *view,
602 MemoryRegion *mr,
603 Int128 base,
604 AddrRange clip,
605 bool readonly,
606 bool nonvolatile,
607 bool unmergeable)
608 {
609 MemoryRegion *subregion;
610 unsigned i;
611 hwaddr offset_in_region;
612 Int128 remain;
613 Int128 now;
614 FlatRange fr;
615 AddrRange tmp;
616
617 if (!mr->enabled) {
618 return;
619 }
620
621 int128_addto(&base, int128_make64(mr->addr));
622 readonly |= mr->readonly;
623 nonvolatile |= mr->nonvolatile;
624 unmergeable |= mr->unmergeable;
625
626 tmp = addrrange_make(base, mr->size);
627
628 if (!addrrange_intersects(tmp, clip)) {
629 return;
630 }
631
632 clip = addrrange_intersection(tmp, clip);
633
634 if (mr->alias) {
635 int128_subfrom(&base, int128_make64(mr->alias->addr));
636 int128_subfrom(&base, int128_make64(mr->alias_offset));
637 render_memory_region(view, mr->alias, base, clip,
638 readonly, nonvolatile, unmergeable);
639 return;
640 }
641
642 /* Render subregions in priority order. */
643 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
644 render_memory_region(view, subregion, base, clip,
645 readonly, nonvolatile, unmergeable);
646 }
647
648 if (!mr->terminates) {
649 return;
650 }
651
652 offset_in_region = int128_get64(int128_sub(clip.start, base));
653 base = clip.start;
654 remain = clip.size;
655
656 fr.mr = mr;
657 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
658 fr.romd_mode = mr->romd_mode;
659 fr.readonly = readonly;
660 fr.nonvolatile = nonvolatile;
661 fr.unmergeable = unmergeable;
662
663 /* Render the region itself into any gaps left by the current view. */
664 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
665 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
666 continue;
667 }
668 if (int128_lt(base, view->ranges[i].addr.start)) {
669 now = int128_min(remain,
670 int128_sub(view->ranges[i].addr.start, base));
671 fr.offset_in_region = offset_in_region;
672 fr.addr = addrrange_make(base, now);
673 flatview_insert(view, i, &fr);
674 ++i;
675 int128_addto(&base, now);
676 offset_in_region += int128_get64(now);
677 int128_subfrom(&remain, now);
678 }
679 now = int128_sub(int128_min(int128_add(base, remain),
680 addrrange_end(view->ranges[i].addr)),
681 base);
682 int128_addto(&base, now);
683 offset_in_region += int128_get64(now);
684 int128_subfrom(&remain, now);
685 }
686 if (int128_nz(remain)) {
687 fr.offset_in_region = offset_in_region;
688 fr.addr = addrrange_make(base, remain);
689 flatview_insert(view, i, &fr);
690 }
691 }
692
693 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
694 {
695 FlatRange *fr;
696
697 assert(fv);
698 assert(cb);
699
700 FOR_EACH_FLAT_RANGE(fr, fv) {
701 if (cb(fr->addr.start, fr->addr.size, fr->mr,
702 fr->offset_in_region, opaque)) {
703 break;
704 }
705 }
706 }
707
708 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
709 {
710 while (mr->enabled) {
711 if (mr->alias) {
712 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
713 /* The alias is included in its entirety. Use it as
714 * the "real" root, so that we can share more FlatViews.
715 */
716 mr = mr->alias;
717 continue;
718 }
719 } else if (!mr->terminates) {
720 unsigned int found = 0;
721 MemoryRegion *child, *next = NULL;
722 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
723 if (child->enabled) {
724 if (++found > 1) {
725 next = NULL;
726 break;
727 }
728 if (!child->addr && int128_ge(mr->size, child->size)) {
729 /* A child is included in its entirety. If it's the only
730 * enabled one, use it in the hope of finding an alias down the
731 * way. This will also let us share FlatViews.
732 */
733 next = child;
734 }
735 }
736 }
737 if (found == 0) {
738 return NULL;
739 }
740 if (next) {
741 mr = next;
742 continue;
743 }
744 }
745
746 return mr;
747 }
748
749 return NULL;
750 }
751
752 /* Render a memory topology into a list of disjoint absolute ranges. */
753 static FlatView *generate_memory_topology(MemoryRegion *mr)
754 {
755 int i;
756 FlatView *view;
757
758 view = flatview_new(mr);
759
760 if (mr) {
761 render_memory_region(view, mr, int128_zero(),
762 addrrange_make(int128_zero(), int128_2_64()),
763 false, false, false);
764 }
765 flatview_simplify(view);
766
767 view->dispatch = address_space_dispatch_new(view);
768 for (i = 0; i < view->nr; i++) {
769 MemoryRegionSection mrs =
770 section_from_flat_range(&view->ranges[i], view);
771 flatview_add_to_dispatch(view, &mrs);
772 }
773 address_space_dispatch_compact(view->dispatch);
774 g_hash_table_replace(flat_views, mr, view);
775
776 return view;
777 }
778
779 static void address_space_add_del_ioeventfds(AddressSpace *as,
780 MemoryRegionIoeventfd *fds_new,
781 unsigned fds_new_nb,
782 MemoryRegionIoeventfd *fds_old,
783 unsigned fds_old_nb)
784 {
785 unsigned iold, inew;
786 MemoryRegionIoeventfd *fd;
787 MemoryRegionSection section;
788
789 /* Generate a symmetric difference of the old and new fd sets, adding
790 * and deleting as necessary.
791 */
792
793 iold = inew = 0;
794 while (iold < fds_old_nb || inew < fds_new_nb) {
795 if (iold < fds_old_nb
796 && (inew == fds_new_nb
797 || memory_region_ioeventfd_before(&fds_old[iold],
798 &fds_new[inew]))) {
799 fd = &fds_old[iold];
800 section = (MemoryRegionSection) {
801 .fv = address_space_to_flatview(as),
802 .offset_within_address_space = int128_get64(fd->addr.start),
803 .size = fd->addr.size,
804 };
805 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
806 fd->match_data, fd->data, fd->e);
807 ++iold;
808 } else if (inew < fds_new_nb
809 && (iold == fds_old_nb
810 || memory_region_ioeventfd_before(&fds_new[inew],
811 &fds_old[iold]))) {
812 fd = &fds_new[inew];
813 section = (MemoryRegionSection) {
814 .fv = address_space_to_flatview(as),
815 .offset_within_address_space = int128_get64(fd->addr.start),
816 .size = fd->addr.size,
817 };
818 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
819 fd->match_data, fd->data, fd->e);
820 ++inew;
821 } else {
822 ++iold;
823 ++inew;
824 }
825 }
826 }
827
828 FlatView *address_space_get_flatview(AddressSpace *as)
829 {
830 FlatView *view;
831
832 RCU_READ_LOCK_GUARD();
833 do {
834 view = address_space_to_flatview(as);
835 /* If somebody has replaced as->current_map concurrently,
836 * flatview_ref returns false.
837 */
838 } while (!flatview_ref(view));
839 return view;
840 }
841
842 static void address_space_update_ioeventfds(AddressSpace *as)
843 {
844 FlatView *view;
845 FlatRange *fr;
846 unsigned ioeventfd_nb = 0;
847 unsigned ioeventfd_max;
848 MemoryRegionIoeventfd *ioeventfds;
849 AddrRange tmp;
850 unsigned i;
851
852 if (!as->ioeventfd_notifiers) {
853 return;
854 }
855
856 /*
857 * It is likely that the number of ioeventfds hasn't changed much, so use
858 * the previous size as the starting value, with some headroom to avoid
859 * gratuitous reallocations.
860 */
861 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
862 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
863
864 view = address_space_get_flatview(as);
865 FOR_EACH_FLAT_RANGE(fr, view) {
866 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
867 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
868 int128_sub(fr->addr.start,
869 int128_make64(fr->offset_in_region)));
870 if (addrrange_intersects(fr->addr, tmp)) {
871 ++ioeventfd_nb;
872 if (ioeventfd_nb > ioeventfd_max) {
873 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
874 ioeventfds = g_realloc(ioeventfds,
875 ioeventfd_max * sizeof(*ioeventfds));
876 }
877 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
878 ioeventfds[ioeventfd_nb-1].addr = tmp;
879 }
880 }
881 }
882
883 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
884 as->ioeventfds, as->ioeventfd_nb);
885
886 g_free(as->ioeventfds);
887 as->ioeventfds = ioeventfds;
888 as->ioeventfd_nb = ioeventfd_nb;
889 flatview_unref(view);
890 }
891
892 /*
893 * Notify the memory listeners about the coalesced IO change events of
894 * range `cmr'. Only the part that has intersection of the specified
895 * FlatRange will be sent.
896 */
897 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
898 CoalescedMemoryRange *cmr, bool add)
899 {
900 AddrRange tmp;
901
902 tmp = addrrange_shift(cmr->addr,
903 int128_sub(fr->addr.start,
904 int128_make64(fr->offset_in_region)));
905 if (!addrrange_intersects(tmp, fr->addr)) {
906 return;
907 }
908 tmp = addrrange_intersection(tmp, fr->addr);
909
910 if (add) {
911 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
912 int128_get64(tmp.start),
913 int128_get64(tmp.size));
914 } else {
915 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
916 int128_get64(tmp.start),
917 int128_get64(tmp.size));
918 }
919 }
920
921 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
922 {
923 CoalescedMemoryRange *cmr;
924
925 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
926 flat_range_coalesced_io_notify(fr, as, cmr, false);
927 }
928 }
929
930 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
931 {
932 MemoryRegion *mr = fr->mr;
933 CoalescedMemoryRange *cmr;
934
935 if (QTAILQ_EMPTY(&mr->coalesced)) {
936 return;
937 }
938
939 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
940 flat_range_coalesced_io_notify(fr, as, cmr, true);
941 }
942 }
943
944 static void address_space_update_topology_pass(AddressSpace *as,
945 const FlatView *old_view,
946 const FlatView *new_view,
947 bool adding)
948 {
949 unsigned iold, inew;
950 FlatRange *frold, *frnew;
951
952 /* Generate a symmetric difference of the old and new memory maps.
953 * Kill ranges in the old map, and instantiate ranges in the new map.
954 */
955 iold = inew = 0;
956 while (iold < old_view->nr || inew < new_view->nr) {
957 if (iold < old_view->nr) {
958 frold = &old_view->ranges[iold];
959 } else {
960 frold = NULL;
961 }
962 if (inew < new_view->nr) {
963 frnew = &new_view->ranges[inew];
964 } else {
965 frnew = NULL;
966 }
967
968 if (frold
969 && (!frnew
970 || int128_lt(frold->addr.start, frnew->addr.start)
971 || (int128_eq(frold->addr.start, frnew->addr.start)
972 && !flatrange_equal(frold, frnew)))) {
973 /* In old but not in new, or in both but attributes changed. */
974
975 if (!adding) {
976 flat_range_coalesced_io_del(frold, as);
977 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
978 }
979
980 ++iold;
981 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
982 /* In both and unchanged (except logging may have changed) */
983
984 if (adding) {
985 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
986 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
987 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
988 frold->dirty_log_mask,
989 frnew->dirty_log_mask);
990 }
991 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
992 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
993 frold->dirty_log_mask,
994 frnew->dirty_log_mask);
995 }
996 }
997
998 ++iold;
999 ++inew;
1000 } else {
1001 /* In new */
1002
1003 if (adding) {
1004 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1005 flat_range_coalesced_io_add(frnew, as);
1006 }
1007
1008 ++inew;
1009 }
1010 }
1011 }
1012
1013 static void flatviews_init(void)
1014 {
1015 static FlatView *empty_view;
1016
1017 if (flat_views) {
1018 return;
1019 }
1020
1021 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1022 (GDestroyNotify) flatview_unref);
1023 if (!empty_view) {
1024 empty_view = generate_memory_topology(NULL);
1025 /* We keep it alive forever in the global variable. */
1026 flatview_ref(empty_view);
1027 } else {
1028 g_hash_table_replace(flat_views, NULL, empty_view);
1029 flatview_ref(empty_view);
1030 }
1031 }
1032
1033 static void flatviews_reset(void)
1034 {
1035 AddressSpace *as;
1036
1037 if (flat_views) {
1038 g_hash_table_unref(flat_views);
1039 flat_views = NULL;
1040 }
1041 flatviews_init();
1042
1043 /* Render unique FVs */
1044 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1045 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1046
1047 if (g_hash_table_lookup(flat_views, physmr)) {
1048 continue;
1049 }
1050
1051 generate_memory_topology(physmr);
1052 }
1053 }
1054
1055 static void address_space_set_flatview(AddressSpace *as)
1056 {
1057 FlatView *old_view = address_space_to_flatview(as);
1058 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1059 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1060
1061 assert(new_view);
1062
1063 if (old_view == new_view) {
1064 return;
1065 }
1066
1067 if (old_view) {
1068 flatview_ref(old_view);
1069 }
1070
1071 flatview_ref(new_view);
1072
1073 if (!QTAILQ_EMPTY(&as->listeners)) {
1074 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1075
1076 if (!old_view2) {
1077 old_view2 = &tmpview;
1078 }
1079 address_space_update_topology_pass(as, old_view2, new_view, false);
1080 address_space_update_topology_pass(as, old_view2, new_view, true);
1081 }
1082
1083 /* Writes are protected by the BQL. */
1084 qatomic_rcu_set(&as->current_map, new_view);
1085 if (old_view) {
1086 flatview_unref(old_view);
1087 }
1088
1089 /* Note that all the old MemoryRegions are still alive up to this
1090 * point. This relieves most MemoryListeners from the need to
1091 * ref/unref the MemoryRegions they get---unless they use them
1092 * outside the iothread mutex, in which case precise reference
1093 * counting is necessary.
1094 */
1095 if (old_view) {
1096 flatview_unref(old_view);
1097 }
1098 }
1099
1100 static void address_space_update_topology(AddressSpace *as)
1101 {
1102 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1103
1104 flatviews_init();
1105 if (!g_hash_table_lookup(flat_views, physmr)) {
1106 generate_memory_topology(physmr);
1107 }
1108 address_space_set_flatview(as);
1109 }
1110
1111 void memory_region_transaction_begin(void)
1112 {
1113 qemu_flush_coalesced_mmio_buffer();
1114 ++memory_region_transaction_depth;
1115 }
1116
1117 void memory_region_transaction_commit(void)
1118 {
1119 AddressSpace *as;
1120
1121 assert(memory_region_transaction_depth);
1122 assert(qemu_mutex_iothread_locked());
1123
1124 --memory_region_transaction_depth;
1125 if (!memory_region_transaction_depth) {
1126 if (memory_region_update_pending) {
1127 flatviews_reset();
1128
1129 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1130
1131 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1132 address_space_set_flatview(as);
1133 address_space_update_ioeventfds(as);
1134 }
1135 memory_region_update_pending = false;
1136 ioeventfd_update_pending = false;
1137 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1138 } else if (ioeventfd_update_pending) {
1139 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1140 address_space_update_ioeventfds(as);
1141 }
1142 ioeventfd_update_pending = false;
1143 }
1144 }
1145 }
1146
1147 static void memory_region_destructor_none(MemoryRegion *mr)
1148 {
1149 }
1150
1151 static void memory_region_destructor_ram(MemoryRegion *mr)
1152 {
1153 qemu_ram_free(mr->ram_block);
1154 }
1155
1156 static bool memory_region_need_escape(char c)
1157 {
1158 return c == '/' || c == '[' || c == '\\' || c == ']';
1159 }
1160
1161 static char *memory_region_escape_name(const char *name)
1162 {
1163 const char *p;
1164 char *escaped, *q;
1165 uint8_t c;
1166 size_t bytes = 0;
1167
1168 for (p = name; *p; p++) {
1169 bytes += memory_region_need_escape(*p) ? 4 : 1;
1170 }
1171 if (bytes == p - name) {
1172 return g_memdup(name, bytes + 1);
1173 }
1174
1175 escaped = g_malloc(bytes + 1);
1176 for (p = name, q = escaped; *p; p++) {
1177 c = *p;
1178 if (unlikely(memory_region_need_escape(c))) {
1179 *q++ = '\\';
1180 *q++ = 'x';
1181 *q++ = "0123456789abcdef"[c >> 4];
1182 c = "0123456789abcdef"[c & 15];
1183 }
1184 *q++ = c;
1185 }
1186 *q = 0;
1187 return escaped;
1188 }
1189
1190 static void memory_region_do_init(MemoryRegion *mr,
1191 Object *owner,
1192 const char *name,
1193 uint64_t size)
1194 {
1195 mr->size = int128_make64(size);
1196 if (size == UINT64_MAX) {
1197 mr->size = int128_2_64();
1198 }
1199 mr->name = g_strdup(name);
1200 mr->owner = owner;
1201 mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1202 mr->ram_block = NULL;
1203
1204 if (name) {
1205 char *escaped_name = memory_region_escape_name(name);
1206 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1207
1208 if (!owner) {
1209 owner = container_get(qdev_get_machine(), "/unattached");
1210 }
1211
1212 object_property_add_child(owner, name_array, OBJECT(mr));
1213 object_unref(OBJECT(mr));
1214 g_free(name_array);
1215 g_free(escaped_name);
1216 }
1217 }
1218
1219 void memory_region_init(MemoryRegion *mr,
1220 Object *owner,
1221 const char *name,
1222 uint64_t size)
1223 {
1224 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1225 memory_region_do_init(mr, owner, name, size);
1226 }
1227
1228 static void memory_region_get_container(Object *obj, Visitor *v,
1229 const char *name, void *opaque,
1230 Error **errp)
1231 {
1232 MemoryRegion *mr = MEMORY_REGION(obj);
1233 char *path = (char *)"";
1234
1235 if (mr->container) {
1236 path = object_get_canonical_path(OBJECT(mr->container));
1237 }
1238 visit_type_str(v, name, &path, errp);
1239 if (mr->container) {
1240 g_free(path);
1241 }
1242 }
1243
1244 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1245 const char *part)
1246 {
1247 MemoryRegion *mr = MEMORY_REGION(obj);
1248
1249 return OBJECT(mr->container);
1250 }
1251
1252 static void memory_region_get_priority(Object *obj, Visitor *v,
1253 const char *name, void *opaque,
1254 Error **errp)
1255 {
1256 MemoryRegion *mr = MEMORY_REGION(obj);
1257 int32_t value = mr->priority;
1258
1259 visit_type_int32(v, name, &value, errp);
1260 }
1261
1262 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1263 void *opaque, Error **errp)
1264 {
1265 MemoryRegion *mr = MEMORY_REGION(obj);
1266 uint64_t value = memory_region_size(mr);
1267
1268 visit_type_uint64(v, name, &value, errp);
1269 }
1270
1271 static void memory_region_initfn(Object *obj)
1272 {
1273 MemoryRegion *mr = MEMORY_REGION(obj);
1274 ObjectProperty *op;
1275
1276 mr->ops = &unassigned_mem_ops;
1277 mr->enabled = true;
1278 mr->romd_mode = true;
1279 mr->destructor = memory_region_destructor_none;
1280 QTAILQ_INIT(&mr->subregions);
1281 QTAILQ_INIT(&mr->coalesced);
1282
1283 op = object_property_add(OBJECT(mr), "container",
1284 "link<" TYPE_MEMORY_REGION ">",
1285 memory_region_get_container,
1286 NULL, /* memory_region_set_container */
1287 NULL, NULL);
1288 op->resolve = memory_region_resolve_container;
1289
1290 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1291 &mr->addr, OBJ_PROP_FLAG_READ);
1292 object_property_add(OBJECT(mr), "priority", "uint32",
1293 memory_region_get_priority,
1294 NULL, /* memory_region_set_priority */
1295 NULL, NULL);
1296 object_property_add(OBJECT(mr), "size", "uint64",
1297 memory_region_get_size,
1298 NULL, /* memory_region_set_size, */
1299 NULL, NULL);
1300 }
1301
1302 static void iommu_memory_region_initfn(Object *obj)
1303 {
1304 MemoryRegion *mr = MEMORY_REGION(obj);
1305
1306 mr->is_iommu = true;
1307 }
1308
1309 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1310 unsigned size)
1311 {
1312 #ifdef DEBUG_UNASSIGNED
1313 printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1314 #endif
1315 return 0;
1316 }
1317
1318 static void unassigned_mem_write(void *opaque, hwaddr addr,
1319 uint64_t val, unsigned size)
1320 {
1321 #ifdef DEBUG_UNASSIGNED
1322 printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1323 #endif
1324 }
1325
1326 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1327 unsigned size, bool is_write,
1328 MemTxAttrs attrs)
1329 {
1330 return false;
1331 }
1332
1333 const MemoryRegionOps unassigned_mem_ops = {
1334 .valid.accepts = unassigned_mem_accepts,
1335 .endianness = DEVICE_NATIVE_ENDIAN,
1336 };
1337
1338 static uint64_t memory_region_ram_device_read(void *opaque,
1339 hwaddr addr, unsigned size)
1340 {
1341 MemoryRegion *mr = opaque;
1342 uint64_t data = (uint64_t)~0;
1343
1344 switch (size) {
1345 case 1:
1346 data = *(uint8_t *)(mr->ram_block->host + addr);
1347 break;
1348 case 2:
1349 data = *(uint16_t *)(mr->ram_block->host + addr);
1350 break;
1351 case 4:
1352 data = *(uint32_t *)(mr->ram_block->host + addr);
1353 break;
1354 case 8:
1355 data = *(uint64_t *)(mr->ram_block->host + addr);
1356 break;
1357 }
1358
1359 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1360
1361 return data;
1362 }
1363
1364 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1365 uint64_t data, unsigned size)
1366 {
1367 MemoryRegion *mr = opaque;
1368
1369 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1370
1371 switch (size) {
1372 case 1:
1373 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1374 break;
1375 case 2:
1376 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1377 break;
1378 case 4:
1379 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1380 break;
1381 case 8:
1382 *(uint64_t *)(mr->ram_block->host + addr) = data;
1383 break;
1384 }
1385 }
1386
1387 static const MemoryRegionOps ram_device_mem_ops = {
1388 .read = memory_region_ram_device_read,
1389 .write = memory_region_ram_device_write,
1390 .endianness = DEVICE_HOST_ENDIAN,
1391 .valid = {
1392 .min_access_size = 1,
1393 .max_access_size = 8,
1394 .unaligned = true,
1395 },
1396 .impl = {
1397 .min_access_size = 1,
1398 .max_access_size = 8,
1399 .unaligned = true,
1400 },
1401 };
1402
1403 bool memory_region_access_valid(MemoryRegion *mr,
1404 hwaddr addr,
1405 unsigned size,
1406 bool is_write,
1407 MemTxAttrs attrs)
1408 {
1409 if (mr->ops->valid.accepts
1410 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1411 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1412 ", size %u, region '%s', reason: rejected\n",
1413 is_write ? "write" : "read",
1414 addr, size, memory_region_name(mr));
1415 return false;
1416 }
1417
1418 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1419 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1420 ", size %u, region '%s', reason: unaligned\n",
1421 is_write ? "write" : "read",
1422 addr, size, memory_region_name(mr));
1423 return false;
1424 }
1425
1426 /* Treat zero as compatibility all valid */
1427 if (!mr->ops->valid.max_access_size) {
1428 return true;
1429 }
1430
1431 if (size > mr->ops->valid.max_access_size
1432 || size < mr->ops->valid.min_access_size) {
1433 qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
1434 ", size %u, region '%s', reason: invalid size "
1435 "(min:%u max:%u)\n",
1436 is_write ? "write" : "read",
1437 addr, size, memory_region_name(mr),
1438 mr->ops->valid.min_access_size,
1439 mr->ops->valid.max_access_size);
1440 return false;
1441 }
1442 return true;
1443 }
1444
1445 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1446 hwaddr addr,
1447 uint64_t *pval,
1448 unsigned size,
1449 MemTxAttrs attrs)
1450 {
1451 *pval = 0;
1452
1453 if (mr->ops->read) {
1454 return access_with_adjusted_size(addr, pval, size,
1455 mr->ops->impl.min_access_size,
1456 mr->ops->impl.max_access_size,
1457 memory_region_read_accessor,
1458 mr, attrs);
1459 } else {
1460 return access_with_adjusted_size(addr, pval, size,
1461 mr->ops->impl.min_access_size,
1462 mr->ops->impl.max_access_size,
1463 memory_region_read_with_attrs_accessor,
1464 mr, attrs);
1465 }
1466 }
1467
1468 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1469 hwaddr addr,
1470 uint64_t *pval,
1471 MemOp op,
1472 MemTxAttrs attrs)
1473 {
1474 unsigned size = memop_size(op);
1475 MemTxResult r;
1476
1477 if (mr->alias) {
1478 return memory_region_dispatch_read(mr->alias,
1479 mr->alias_offset + addr,
1480 pval, op, attrs);
1481 }
1482 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1483 *pval = unassigned_mem_read(mr, addr, size);
1484 return MEMTX_DECODE_ERROR;
1485 }
1486
1487 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1488 adjust_endianness(mr, pval, op);
1489 return r;
1490 }
1491
1492 /* Return true if an eventfd was signalled */
1493 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1494 hwaddr addr,
1495 uint64_t data,
1496 unsigned size,
1497 MemTxAttrs attrs)
1498 {
1499 MemoryRegionIoeventfd ioeventfd = {
1500 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1501 .data = data,
1502 };
1503 unsigned i;
1504
1505 for (i = 0; i < mr->ioeventfd_nb; i++) {
1506 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1507 ioeventfd.e = mr->ioeventfds[i].e;
1508
1509 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1510 event_notifier_set(ioeventfd.e);
1511 return true;
1512 }
1513 }
1514
1515 return false;
1516 }
1517
1518 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1519 hwaddr addr,
1520 uint64_t data,
1521 MemOp op,
1522 MemTxAttrs attrs)
1523 {
1524 unsigned size = memop_size(op);
1525
1526 if (mr->alias) {
1527 return memory_region_dispatch_write(mr->alias,
1528 mr->alias_offset + addr,
1529 data, op, attrs);
1530 }
1531 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1532 unassigned_mem_write(mr, addr, data, size);
1533 return MEMTX_DECODE_ERROR;
1534 }
1535
1536 adjust_endianness(mr, &data, op);
1537
1538 if ((!kvm_eventfds_enabled()) &&
1539 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1540 return MEMTX_OK;
1541 }
1542
1543 if (mr->ops->write) {
1544 return access_with_adjusted_size(addr, &data, size,
1545 mr->ops->impl.min_access_size,
1546 mr->ops->impl.max_access_size,
1547 memory_region_write_accessor, mr,
1548 attrs);
1549 } else {
1550 return
1551 access_with_adjusted_size(addr, &data, size,
1552 mr->ops->impl.min_access_size,
1553 mr->ops->impl.max_access_size,
1554 memory_region_write_with_attrs_accessor,
1555 mr, attrs);
1556 }
1557 }
1558
1559 void memory_region_init_io(MemoryRegion *mr,
1560 Object *owner,
1561 const MemoryRegionOps *ops,
1562 void *opaque,
1563 const char *name,
1564 uint64_t size)
1565 {
1566 memory_region_init(mr, owner, name, size);
1567 mr->ops = ops ? ops : &unassigned_mem_ops;
1568 mr->opaque = opaque;
1569 mr->terminates = true;
1570 }
1571
1572 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1573 Object *owner,
1574 const char *name,
1575 uint64_t size,
1576 Error **errp)
1577 {
1578 memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1579 }
1580
1581 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1582 Object *owner,
1583 const char *name,
1584 uint64_t size,
1585 uint32_t ram_flags,
1586 Error **errp)
1587 {
1588 Error *err = NULL;
1589 memory_region_init(mr, owner, name, size);
1590 mr->ram = true;
1591 mr->terminates = true;
1592 mr->destructor = memory_region_destructor_ram;
1593 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1594 if (err) {
1595 mr->size = int128_zero();
1596 object_unparent(OBJECT(mr));
1597 error_propagate(errp, err);
1598 }
1599 }
1600
1601 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1602 Object *owner,
1603 const char *name,
1604 uint64_t size,
1605 uint64_t max_size,
1606 void (*resized)(const char*,
1607 uint64_t length,
1608 void *host),
1609 Error **errp)
1610 {
1611 Error *err = NULL;
1612 memory_region_init(mr, owner, name, size);
1613 mr->ram = true;
1614 mr->terminates = true;
1615 mr->destructor = memory_region_destructor_ram;
1616 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1617 mr, &err);
1618 if (err) {
1619 mr->size = int128_zero();
1620 object_unparent(OBJECT(mr));
1621 error_propagate(errp, err);
1622 }
1623 }
1624
1625 #ifdef CONFIG_POSIX
1626 void memory_region_init_ram_from_file(MemoryRegion *mr,
1627 Object *owner,
1628 const char *name,
1629 uint64_t size,
1630 uint64_t align,
1631 uint32_t ram_flags,
1632 const char *path,
1633 ram_addr_t offset,
1634 Error **errp)
1635 {
1636 Error *err = NULL;
1637 memory_region_init(mr, owner, name, size);
1638 mr->ram = true;
1639 mr->readonly = !!(ram_flags & RAM_READONLY);
1640 mr->terminates = true;
1641 mr->destructor = memory_region_destructor_ram;
1642 mr->align = align;
1643 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1644 offset, &err);
1645 if (err) {
1646 mr->size = int128_zero();
1647 object_unparent(OBJECT(mr));
1648 error_propagate(errp, err);
1649 }
1650 }
1651
1652 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1653 Object *owner,
1654 const char *name,
1655 uint64_t size,
1656 uint32_t ram_flags,
1657 int fd,
1658 ram_addr_t offset,
1659 Error **errp)
1660 {
1661 Error *err = NULL;
1662 memory_region_init(mr, owner, name, size);
1663 mr->ram = true;
1664 mr->readonly = !!(ram_flags & RAM_READONLY);
1665 mr->terminates = true;
1666 mr->destructor = memory_region_destructor_ram;
1667 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1668 &err);
1669 if (err) {
1670 mr->size = int128_zero();
1671 object_unparent(OBJECT(mr));
1672 error_propagate(errp, err);
1673 }
1674 }
1675 #endif
1676
1677 void memory_region_init_ram_ptr(MemoryRegion *mr,
1678 Object *owner,
1679 const char *name,
1680 uint64_t size,
1681 void *ptr)
1682 {
1683 memory_region_init(mr, owner, name, size);
1684 mr->ram = true;
1685 mr->terminates = true;
1686 mr->destructor = memory_region_destructor_ram;
1687
1688 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1689 assert(ptr != NULL);
1690 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1691 }
1692
1693 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1694 Object *owner,
1695 const char *name,
1696 uint64_t size,
1697 void *ptr)
1698 {
1699 memory_region_init(mr, owner, name, size);
1700 mr->ram = true;
1701 mr->terminates = true;
1702 mr->ram_device = true;
1703 mr->ops = &ram_device_mem_ops;
1704 mr->opaque = mr;
1705 mr->destructor = memory_region_destructor_ram;
1706
1707 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1708 assert(ptr != NULL);
1709 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1710 }
1711
1712 void memory_region_init_alias(MemoryRegion *mr,
1713 Object *owner,
1714 const char *name,
1715 MemoryRegion *orig,
1716 hwaddr offset,
1717 uint64_t size)
1718 {
1719 memory_region_init(mr, owner, name, size);
1720 mr->alias = orig;
1721 mr->alias_offset = offset;
1722 }
1723
1724 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1725 Object *owner,
1726 const char *name,
1727 uint64_t size,
1728 Error **errp)
1729 {
1730 memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1731 mr->readonly = true;
1732 }
1733
1734 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1735 Object *owner,
1736 const MemoryRegionOps *ops,
1737 void *opaque,
1738 const char *name,
1739 uint64_t size,
1740 Error **errp)
1741 {
1742 Error *err = NULL;
1743 assert(ops);
1744 memory_region_init(mr, owner, name, size);
1745 mr->ops = ops;
1746 mr->opaque = opaque;
1747 mr->terminates = true;
1748 mr->rom_device = true;
1749 mr->destructor = memory_region_destructor_ram;
1750 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1751 if (err) {
1752 mr->size = int128_zero();
1753 object_unparent(OBJECT(mr));
1754 error_propagate(errp, err);
1755 }
1756 }
1757
1758 void memory_region_init_iommu(void *_iommu_mr,
1759 size_t instance_size,
1760 const char *mrtypename,
1761 Object *owner,
1762 const char *name,
1763 uint64_t size)
1764 {
1765 struct IOMMUMemoryRegion *iommu_mr;
1766 struct MemoryRegion *mr;
1767
1768 object_initialize(_iommu_mr, instance_size, mrtypename);
1769 mr = MEMORY_REGION(_iommu_mr);
1770 memory_region_do_init(mr, owner, name, size);
1771 iommu_mr = IOMMU_MEMORY_REGION(mr);
1772 mr->terminates = true; /* then re-forwards */
1773 QLIST_INIT(&iommu_mr->iommu_notify);
1774 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1775 }
1776
1777 static void memory_region_finalize(Object *obj)
1778 {
1779 MemoryRegion *mr = MEMORY_REGION(obj);
1780
1781 assert(!mr->container);
1782
1783 /* We know the region is not visible in any address space (it
1784 * does not have a container and cannot be a root either because
1785 * it has no references, so we can blindly clear mr->enabled.
1786 * memory_region_set_enabled instead could trigger a transaction
1787 * and cause an infinite loop.
1788 */
1789 mr->enabled = false;
1790 memory_region_transaction_begin();
1791 while (!QTAILQ_EMPTY(&mr->subregions)) {
1792 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1793 memory_region_del_subregion(mr, subregion);
1794 }
1795 memory_region_transaction_commit();
1796
1797 mr->destructor(mr);
1798 memory_region_clear_coalescing(mr);
1799 g_free((char *)mr->name);
1800 g_free(mr->ioeventfds);
1801 }
1802
1803 Object *memory_region_owner(MemoryRegion *mr)
1804 {
1805 Object *obj = OBJECT(mr);
1806 return obj->parent;
1807 }
1808
1809 void memory_region_ref(MemoryRegion *mr)
1810 {
1811 /* MMIO callbacks most likely will access data that belongs
1812 * to the owner, hence the need to ref/unref the owner whenever
1813 * the memory region is in use.
1814 *
1815 * The memory region is a child of its owner. As long as the
1816 * owner doesn't call unparent itself on the memory region,
1817 * ref-ing the owner will also keep the memory region alive.
1818 * Memory regions without an owner are supposed to never go away;
1819 * we do not ref/unref them because it slows down DMA sensibly.
1820 */
1821 if (mr && mr->owner) {
1822 object_ref(mr->owner);
1823 }
1824 }
1825
1826 void memory_region_unref(MemoryRegion *mr)
1827 {
1828 if (mr && mr->owner) {
1829 object_unref(mr->owner);
1830 }
1831 }
1832
1833 uint64_t memory_region_size(MemoryRegion *mr)
1834 {
1835 if (int128_eq(mr->size, int128_2_64())) {
1836 return UINT64_MAX;
1837 }
1838 return int128_get64(mr->size);
1839 }
1840
1841 const char *memory_region_name(const MemoryRegion *mr)
1842 {
1843 if (!mr->name) {
1844 ((MemoryRegion *)mr)->name =
1845 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1846 }
1847 return mr->name;
1848 }
1849
1850 bool memory_region_is_ram_device(MemoryRegion *mr)
1851 {
1852 return mr->ram_device;
1853 }
1854
1855 bool memory_region_is_protected(MemoryRegion *mr)
1856 {
1857 return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1858 }
1859
1860 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1861 {
1862 uint8_t mask = mr->dirty_log_mask;
1863 RAMBlock *rb = mr->ram_block;
1864
1865 if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1866 memory_region_is_iommu(mr))) {
1867 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1868 }
1869
1870 if (tcg_enabled() && rb) {
1871 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1872 mask |= (1 << DIRTY_MEMORY_CODE);
1873 }
1874 return mask;
1875 }
1876
1877 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1878 {
1879 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1880 }
1881
1882 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1883 Error **errp)
1884 {
1885 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1886 IOMMUNotifier *iommu_notifier;
1887 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1888 int ret = 0;
1889
1890 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1891 flags |= iommu_notifier->notifier_flags;
1892 }
1893
1894 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1895 ret = imrc->notify_flag_changed(iommu_mr,
1896 iommu_mr->iommu_notify_flags,
1897 flags, errp);
1898 }
1899
1900 if (!ret) {
1901 iommu_mr->iommu_notify_flags = flags;
1902 }
1903 return ret;
1904 }
1905
1906 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1907 uint64_t page_size_mask,
1908 Error **errp)
1909 {
1910 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1911 int ret = 0;
1912
1913 if (imrc->iommu_set_page_size_mask) {
1914 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1915 }
1916 return ret;
1917 }
1918
1919 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1920 IOMMUNotifier *n, Error **errp)
1921 {
1922 IOMMUMemoryRegion *iommu_mr;
1923 int ret;
1924
1925 if (mr->alias) {
1926 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1927 }
1928
1929 /* We need to register for at least one bitfield */
1930 iommu_mr = IOMMU_MEMORY_REGION(mr);
1931 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1932 assert(n->start <= n->end);
1933 assert(n->iommu_idx >= 0 &&
1934 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1935
1936 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1937 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1938 if (ret) {
1939 QLIST_REMOVE(n, node);
1940 }
1941 return ret;
1942 }
1943
1944 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1945 {
1946 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1947
1948 if (imrc->get_min_page_size) {
1949 return imrc->get_min_page_size(iommu_mr);
1950 }
1951 return TARGET_PAGE_SIZE;
1952 }
1953
1954 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1955 {
1956 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1957 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1958 hwaddr addr, granularity;
1959 IOMMUTLBEntry iotlb;
1960
1961 /* If the IOMMU has its own replay callback, override */
1962 if (imrc->replay) {
1963 imrc->replay(iommu_mr, n);
1964 return;
1965 }
1966
1967 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1968
1969 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1970 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1971 if (iotlb.perm != IOMMU_NONE) {
1972 n->notify(n, &iotlb);
1973 }
1974
1975 /* if (2^64 - MR size) < granularity, it's possible to get an
1976 * infinite loop here. This should catch such a wraparound */
1977 if ((addr + granularity) < addr) {
1978 break;
1979 }
1980 }
1981 }
1982
1983 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1984 IOMMUNotifier *n)
1985 {
1986 IOMMUMemoryRegion *iommu_mr;
1987
1988 if (mr->alias) {
1989 memory_region_unregister_iommu_notifier(mr->alias, n);
1990 return;
1991 }
1992 QLIST_REMOVE(n, node);
1993 iommu_mr = IOMMU_MEMORY_REGION(mr);
1994 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1995 }
1996
1997 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1998 IOMMUTLBEvent *event)
1999 {
2000 IOMMUTLBEntry *entry = &event->entry;
2001 hwaddr entry_end = entry->iova + entry->addr_mask;
2002 IOMMUTLBEntry tmp = *entry;
2003
2004 if (event->type == IOMMU_NOTIFIER_UNMAP) {
2005 assert(entry->perm == IOMMU_NONE);
2006 }
2007
2008 /*
2009 * Skip the notification if the notification does not overlap
2010 * with registered range.
2011 */
2012 if (notifier->start > entry_end || notifier->end < entry->iova) {
2013 return;
2014 }
2015
2016 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2017 /* Crop (iova, addr_mask) to range */
2018 tmp.iova = MAX(tmp.iova, notifier->start);
2019 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2020 } else {
2021 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2022 }
2023
2024 if (event->type & notifier->notifier_flags) {
2025 notifier->notify(notifier, &tmp);
2026 }
2027 }
2028
2029 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2030 {
2031 IOMMUTLBEvent event;
2032
2033 event.type = IOMMU_NOTIFIER_UNMAP;
2034 event.entry.target_as = &address_space_memory;
2035 event.entry.iova = notifier->start;
2036 event.entry.perm = IOMMU_NONE;
2037 event.entry.addr_mask = notifier->end - notifier->start;
2038
2039 memory_region_notify_iommu_one(notifier, &event);
2040 }
2041
2042 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2043 int iommu_idx,
2044 IOMMUTLBEvent event)
2045 {
2046 IOMMUNotifier *iommu_notifier;
2047
2048 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2049
2050 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2051 if (iommu_notifier->iommu_idx == iommu_idx) {
2052 memory_region_notify_iommu_one(iommu_notifier, &event);
2053 }
2054 }
2055 }
2056
2057 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2058 enum IOMMUMemoryRegionAttr attr,
2059 void *data)
2060 {
2061 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2062
2063 if (!imrc->get_attr) {
2064 return -EINVAL;
2065 }
2066
2067 return imrc->get_attr(iommu_mr, attr, data);
2068 }
2069
2070 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2071 MemTxAttrs attrs)
2072 {
2073 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2074
2075 if (!imrc->attrs_to_index) {
2076 return 0;
2077 }
2078
2079 return imrc->attrs_to_index(iommu_mr, attrs);
2080 }
2081
2082 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2083 {
2084 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2085
2086 if (!imrc->num_indexes) {
2087 return 1;
2088 }
2089
2090 return imrc->num_indexes(iommu_mr);
2091 }
2092
2093 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2094 {
2095 if (!memory_region_is_ram(mr)) {
2096 return NULL;
2097 }
2098 return mr->rdm;
2099 }
2100
2101 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2102 RamDiscardManager *rdm)
2103 {
2104 g_assert(memory_region_is_ram(mr));
2105 g_assert(!rdm || !mr->rdm);
2106 mr->rdm = rdm;
2107 }
2108
2109 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2110 const MemoryRegion *mr)
2111 {
2112 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2113
2114 g_assert(rdmc->get_min_granularity);
2115 return rdmc->get_min_granularity(rdm, mr);
2116 }
2117
2118 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2119 const MemoryRegionSection *section)
2120 {
2121 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2122
2123 g_assert(rdmc->is_populated);
2124 return rdmc->is_populated(rdm, section);
2125 }
2126
2127 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2128 MemoryRegionSection *section,
2129 ReplayRamPopulate replay_fn,
2130 void *opaque)
2131 {
2132 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2133
2134 g_assert(rdmc->replay_populated);
2135 return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2136 }
2137
2138 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2139 MemoryRegionSection *section,
2140 ReplayRamDiscard replay_fn,
2141 void *opaque)
2142 {
2143 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2144
2145 g_assert(rdmc->replay_discarded);
2146 rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2147 }
2148
2149 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2150 RamDiscardListener *rdl,
2151 MemoryRegionSection *section)
2152 {
2153 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2154
2155 g_assert(rdmc->register_listener);
2156 rdmc->register_listener(rdm, rdl, section);
2157 }
2158
2159 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2160 RamDiscardListener *rdl)
2161 {
2162 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2163
2164 g_assert(rdmc->unregister_listener);
2165 rdmc->unregister_listener(rdm, rdl);
2166 }
2167
2168 /* Called with rcu_read_lock held. */
2169 bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2170 ram_addr_t *ram_addr, bool *read_only,
2171 bool *mr_has_discard_manager)
2172 {
2173 MemoryRegion *mr;
2174 hwaddr xlat;
2175 hwaddr len = iotlb->addr_mask + 1;
2176 bool writable = iotlb->perm & IOMMU_WO;
2177
2178 if (mr_has_discard_manager) {
2179 *mr_has_discard_manager = false;
2180 }
2181 /*
2182 * The IOMMU TLB entry we have just covers translation through
2183 * this IOMMU to its immediate target. We need to translate
2184 * it the rest of the way through to memory.
2185 */
2186 mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2187 &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2188 if (!memory_region_is_ram(mr)) {
2189 error_report("iommu map to non memory area %" HWADDR_PRIx "", xlat);
2190 return false;
2191 } else if (memory_region_has_ram_discard_manager(mr)) {
2192 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2193 MemoryRegionSection tmp = {
2194 .mr = mr,
2195 .offset_within_region = xlat,
2196 .size = int128_make64(len),
2197 };
2198 if (mr_has_discard_manager) {
2199 *mr_has_discard_manager = true;
2200 }
2201 /*
2202 * Malicious VMs can map memory into the IOMMU, which is expected
2203 * to remain discarded. vfio will pin all pages, populating memory.
2204 * Disallow that. vmstate priorities make sure any RamDiscardManager
2205 * were already restored before IOMMUs are restored.
2206 */
2207 if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2208 error_report("iommu map to discarded memory (e.g., unplugged via"
2209 " virtio-mem): %" HWADDR_PRIx "",
2210 iotlb->translated_addr);
2211 return false;
2212 }
2213 }
2214
2215 /*
2216 * Translation truncates length to the IOMMU page size,
2217 * check that it did not truncate too much.
2218 */
2219 if (len & iotlb->addr_mask) {
2220 error_report("iommu has granularity incompatible with target AS");
2221 return false;
2222 }
2223
2224 if (vaddr) {
2225 *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2226 }
2227
2228 if (ram_addr) {
2229 *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2230 }
2231
2232 if (read_only) {
2233 *read_only = !writable || mr->readonly;
2234 }
2235
2236 return true;
2237 }
2238
2239 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2240 {
2241 uint8_t mask = 1 << client;
2242 uint8_t old_logging;
2243
2244 assert(client == DIRTY_MEMORY_VGA);
2245 old_logging = mr->vga_logging_count;
2246 mr->vga_logging_count += log ? 1 : -1;
2247 if (!!old_logging == !!mr->vga_logging_count) {
2248 return;
2249 }
2250
2251 memory_region_transaction_begin();
2252 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2253 memory_region_update_pending |= mr->enabled;
2254 memory_region_transaction_commit();
2255 }
2256
2257 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2258 hwaddr size)
2259 {
2260 assert(mr->ram_block);
2261 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2262 size,
2263 memory_region_get_dirty_log_mask(mr));
2264 }
2265
2266 /*
2267 * If memory region `mr' is NULL, do global sync. Otherwise, sync
2268 * dirty bitmap for the specified memory region.
2269 */
2270 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2271 {
2272 MemoryListener *listener;
2273 AddressSpace *as;
2274 FlatView *view;
2275 FlatRange *fr;
2276
2277 /* If the same address space has multiple log_sync listeners, we
2278 * visit that address space's FlatView multiple times. But because
2279 * log_sync listeners are rare, it's still cheaper than walking each
2280 * address space once.
2281 */
2282 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2283 if (listener->log_sync) {
2284 as = listener->address_space;
2285 view = address_space_get_flatview(as);
2286 FOR_EACH_FLAT_RANGE(fr, view) {
2287 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2288 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2289 listener->log_sync(listener, &mrs);
2290 }
2291 }
2292 flatview_unref(view);
2293 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2294 } else if (listener->log_sync_global) {
2295 /*
2296 * No matter whether MR is specified, what we can do here
2297 * is to do a global sync, because we are not capable to
2298 * sync in a finer granularity.
2299 */
2300 listener->log_sync_global(listener, last_stage);
2301 trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2302 }
2303 }
2304 }
2305
2306 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2307 hwaddr len)
2308 {
2309 MemoryRegionSection mrs;
2310 MemoryListener *listener;
2311 AddressSpace *as;
2312 FlatView *view;
2313 FlatRange *fr;
2314 hwaddr sec_start, sec_end, sec_size;
2315
2316 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2317 if (!listener->log_clear) {
2318 continue;
2319 }
2320 as = listener->address_space;
2321 view = address_space_get_flatview(as);
2322 FOR_EACH_FLAT_RANGE(fr, view) {
2323 if (!fr->dirty_log_mask || fr->mr != mr) {
2324 /*
2325 * Clear dirty bitmap operation only applies to those
2326 * regions whose dirty logging is at least enabled
2327 */
2328 continue;
2329 }
2330
2331 mrs = section_from_flat_range(fr, view);
2332
2333 sec_start = MAX(mrs.offset_within_region, start);
2334 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2335 sec_end = MIN(sec_end, start + len);
2336
2337 if (sec_start >= sec_end) {
2338 /*
2339 * If this memory region section has no intersection
2340 * with the requested range, skip.
2341 */
2342 continue;
2343 }
2344
2345 /* Valid case; shrink the section if needed */
2346 mrs.offset_within_address_space +=
2347 sec_start - mrs.offset_within_region;
2348 mrs.offset_within_region = sec_start;
2349 sec_size = sec_end - sec_start;
2350 mrs.size = int128_make64(sec_size);
2351 listener->log_clear(listener, &mrs);
2352 }
2353 flatview_unref(view);
2354 }
2355 }
2356
2357 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2358 hwaddr addr,
2359 hwaddr size,
2360 unsigned client)
2361 {
2362 DirtyBitmapSnapshot *snapshot;
2363 assert(mr->ram_block);
2364 memory_region_sync_dirty_bitmap(mr, false);
2365 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2366 memory_global_after_dirty_log_sync();
2367 return snapshot;
2368 }
2369
2370 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2371 hwaddr addr, hwaddr size)
2372 {
2373 assert(mr->ram_block);
2374 return cpu_physical_memory_snapshot_get_dirty(snap,
2375 memory_region_get_ram_addr(mr) + addr, size);
2376 }
2377
2378 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2379 {
2380 if (mr->readonly != readonly) {
2381 memory_region_transaction_begin();
2382 mr->readonly = readonly;
2383 memory_region_update_pending |= mr->enabled;
2384 memory_region_transaction_commit();
2385 }
2386 }
2387
2388 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2389 {
2390 if (mr->nonvolatile != nonvolatile) {
2391 memory_region_transaction_begin();
2392 mr->nonvolatile = nonvolatile;
2393 memory_region_update_pending |= mr->enabled;
2394 memory_region_transaction_commit();
2395 }
2396 }
2397
2398 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2399 {
2400 if (mr->romd_mode != romd_mode) {
2401 memory_region_transaction_begin();
2402 mr->romd_mode = romd_mode;
2403 memory_region_update_pending |= mr->enabled;
2404 memory_region_transaction_commit();
2405 }
2406 }
2407
2408 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2409 hwaddr size, unsigned client)
2410 {
2411 assert(mr->ram_block);
2412 cpu_physical_memory_test_and_clear_dirty(
2413 memory_region_get_ram_addr(mr) + addr, size, client);
2414 }
2415
2416 int memory_region_get_fd(MemoryRegion *mr)
2417 {
2418 RCU_READ_LOCK_GUARD();
2419 while (mr->alias) {
2420 mr = mr->alias;
2421 }
2422 return mr->ram_block->fd;
2423 }
2424
2425 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2426 {
2427 uint64_t offset = 0;
2428
2429 RCU_READ_LOCK_GUARD();
2430 while (mr->alias) {
2431 offset += mr->alias_offset;
2432 mr = mr->alias;
2433 }
2434 assert(mr->ram_block);
2435 return qemu_map_ram_ptr(mr->ram_block, offset);
2436 }
2437
2438 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2439 {
2440 RAMBlock *block;
2441
2442 block = qemu_ram_block_from_host(ptr, false, offset);
2443 if (!block) {
2444 return NULL;
2445 }
2446
2447 return block->mr;
2448 }
2449
2450 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2451 {
2452 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2453 }
2454
2455 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2456 {
2457 assert(mr->ram_block);
2458
2459 qemu_ram_resize(mr->ram_block, newsize, errp);
2460 }
2461
2462 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2463 {
2464 if (mr->ram_block) {
2465 qemu_ram_msync(mr->ram_block, addr, size);
2466 }
2467 }
2468
2469 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2470 {
2471 /*
2472 * Might be extended case needed to cover
2473 * different types of memory regions
2474 */
2475 if (mr->dirty_log_mask) {
2476 memory_region_msync(mr, addr, size);
2477 }
2478 }
2479
2480 /*
2481 * Call proper memory listeners about the change on the newly
2482 * added/removed CoalescedMemoryRange.
2483 */
2484 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2485 CoalescedMemoryRange *cmr,
2486 bool add)
2487 {
2488 AddressSpace *as;
2489 FlatView *view;
2490 FlatRange *fr;
2491
2492 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2493 view = address_space_get_flatview(as);
2494 FOR_EACH_FLAT_RANGE(fr, view) {
2495 if (fr->mr == mr) {
2496 flat_range_coalesced_io_notify(fr, as, cmr, add);
2497 }
2498 }
2499 flatview_unref(view);
2500 }
2501 }
2502
2503 void memory_region_set_coalescing(MemoryRegion *mr)
2504 {
2505 memory_region_clear_coalescing(mr);
2506 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2507 }
2508
2509 void memory_region_add_coalescing(MemoryRegion *mr,
2510 hwaddr offset,
2511 uint64_t size)
2512 {
2513 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2514
2515 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2516 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2517 memory_region_update_coalesced_range(mr, cmr, true);
2518 memory_region_set_flush_coalesced(mr);
2519 }
2520
2521 void memory_region_clear_coalescing(MemoryRegion *mr)
2522 {
2523 CoalescedMemoryRange *cmr;
2524
2525 if (QTAILQ_EMPTY(&mr->coalesced)) {
2526 return;
2527 }
2528
2529 qemu_flush_coalesced_mmio_buffer();
2530 mr->flush_coalesced_mmio = false;
2531
2532 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2533 cmr = QTAILQ_FIRST(&mr->coalesced);
2534 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2535 memory_region_update_coalesced_range(mr, cmr, false);
2536 g_free(cmr);
2537 }
2538 }
2539
2540 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2541 {
2542 mr->flush_coalesced_mmio = true;
2543 }
2544
2545 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2546 {
2547 qemu_flush_coalesced_mmio_buffer();
2548 if (QTAILQ_EMPTY(&mr->coalesced)) {
2549 mr->flush_coalesced_mmio = false;
2550 }
2551 }
2552
2553 static bool userspace_eventfd_warning;
2554
2555 void memory_region_add_eventfd(MemoryRegion *mr,
2556 hwaddr addr,
2557 unsigned size,
2558 bool match_data,
2559 uint64_t data,
2560 EventNotifier *e)
2561 {
2562 MemoryRegionIoeventfd mrfd = {
2563 .addr.start = int128_make64(addr),
2564 .addr.size = int128_make64(size),
2565 .match_data = match_data,
2566 .data = data,
2567 .e = e,
2568 };
2569 unsigned i;
2570
2571 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2572 userspace_eventfd_warning))) {
2573 userspace_eventfd_warning = true;
2574 error_report("Using eventfd without MMIO binding in KVM. "
2575 "Suboptimal performance expected");
2576 }
2577
2578 if (size) {
2579 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2580 }
2581 memory_region_transaction_begin();
2582 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2583 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2584 break;
2585 }
2586 }
2587 ++mr->ioeventfd_nb;
2588 mr->ioeventfds = g_realloc(mr->ioeventfds,
2589 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2590 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2591 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2592 mr->ioeventfds[i] = mrfd;
2593 ioeventfd_update_pending |= mr->enabled;
2594 memory_region_transaction_commit();
2595 }
2596
2597 void memory_region_del_eventfd(MemoryRegion *mr,
2598 hwaddr addr,
2599 unsigned size,
2600 bool match_data,
2601 uint64_t data,
2602 EventNotifier *e)
2603 {
2604 MemoryRegionIoeventfd mrfd = {
2605 .addr.start = int128_make64(addr),
2606 .addr.size = int128_make64(size),
2607 .match_data = match_data,
2608 .data = data,
2609 .e = e,
2610 };
2611 unsigned i;
2612
2613 if (size) {
2614 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2615 }
2616 memory_region_transaction_begin();
2617 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2618 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2619 break;
2620 }
2621 }
2622 assert(i != mr->ioeventfd_nb);
2623 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2624 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2625 --mr->ioeventfd_nb;
2626 mr->ioeventfds = g_realloc(mr->ioeventfds,
2627 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2628 ioeventfd_update_pending |= mr->enabled;
2629 memory_region_transaction_commit();
2630 }
2631
2632 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2633 {
2634 MemoryRegion *mr = subregion->container;
2635 MemoryRegion *other;
2636
2637 memory_region_transaction_begin();
2638
2639 memory_region_ref(subregion);
2640 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2641 if (subregion->priority >= other->priority) {
2642 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2643 goto done;
2644 }
2645 }
2646 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2647 done:
2648 memory_region_update_pending |= mr->enabled && subregion->enabled;
2649 memory_region_transaction_commit();
2650 }
2651
2652 static void memory_region_add_subregion_common(MemoryRegion *mr,
2653 hwaddr offset,
2654 MemoryRegion *subregion)
2655 {
2656 MemoryRegion *alias;
2657
2658 assert(!subregion->container);
2659 subregion->container = mr;
2660 for (alias = subregion->alias; alias; alias = alias->alias) {
2661 alias->mapped_via_alias++;
2662 }
2663 subregion->addr = offset;
2664 memory_region_update_container_subregions(subregion);
2665 }
2666
2667 void memory_region_add_subregion(MemoryRegion *mr,
2668 hwaddr offset,
2669 MemoryRegion *subregion)
2670 {
2671 subregion->priority = 0;
2672 memory_region_add_subregion_common(mr, offset, subregion);
2673 }
2674
2675 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2676 hwaddr offset,
2677 MemoryRegion *subregion,
2678 int priority)
2679 {
2680 subregion->priority = priority;
2681 memory_region_add_subregion_common(mr, offset, subregion);
2682 }
2683
2684 void memory_region_del_subregion(MemoryRegion *mr,
2685 MemoryRegion *subregion)
2686 {
2687 MemoryRegion *alias;
2688
2689 memory_region_transaction_begin();
2690 assert(subregion->container == mr);
2691 subregion->container = NULL;
2692 for (alias = subregion->alias; alias; alias = alias->alias) {
2693 alias->mapped_via_alias--;
2694 assert(alias->mapped_via_alias >= 0);
2695 }
2696 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2697 memory_region_unref(subregion);
2698 memory_region_update_pending |= mr->enabled && subregion->enabled;
2699 memory_region_transaction_commit();
2700 }
2701
2702 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2703 {
2704 if (enabled == mr->enabled) {
2705 return;
2706 }
2707 memory_region_transaction_begin();
2708 mr->enabled = enabled;
2709 memory_region_update_pending = true;
2710 memory_region_transaction_commit();
2711 }
2712
2713 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2714 {
2715 Int128 s = int128_make64(size);
2716
2717 if (size == UINT64_MAX) {
2718 s = int128_2_64();
2719 }
2720 if (int128_eq(s, mr->size)) {
2721 return;
2722 }
2723 memory_region_transaction_begin();
2724 mr->size = s;
2725 memory_region_update_pending = true;
2726 memory_region_transaction_commit();
2727 }
2728
2729 static void memory_region_readd_subregion(MemoryRegion *mr)
2730 {
2731 MemoryRegion *container = mr->container;
2732
2733 if (container) {
2734 memory_region_transaction_begin();
2735 memory_region_ref(mr);
2736 memory_region_del_subregion(container, mr);
2737 memory_region_add_subregion_common(container, mr->addr, mr);
2738 memory_region_unref(mr);
2739 memory_region_transaction_commit();
2740 }
2741 }
2742
2743 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2744 {
2745 if (addr != mr->addr) {
2746 mr->addr = addr;
2747 memory_region_readd_subregion(mr);
2748 }
2749 }
2750
2751 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2752 {
2753 assert(mr->alias);
2754
2755 if (offset == mr->alias_offset) {
2756 return;
2757 }
2758
2759 memory_region_transaction_begin();
2760 mr->alias_offset = offset;
2761 memory_region_update_pending |= mr->enabled;
2762 memory_region_transaction_commit();
2763 }
2764
2765 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2766 {
2767 if (unmergeable == mr->unmergeable) {
2768 return;
2769 }
2770
2771 memory_region_transaction_begin();
2772 mr->unmergeable = unmergeable;
2773 memory_region_update_pending |= mr->enabled;
2774 memory_region_transaction_commit();
2775 }
2776
2777 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2778 {
2779 return mr->align;
2780 }
2781
2782 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2783 {
2784 const AddrRange *addr = addr_;
2785 const FlatRange *fr = fr_;
2786
2787 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2788 return -1;
2789 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2790 return 1;
2791 }
2792 return 0;
2793 }
2794
2795 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2796 {
2797 return bsearch(&addr, view->ranges, view->nr,
2798 sizeof(FlatRange), cmp_flatrange_addr);
2799 }
2800
2801 bool memory_region_is_mapped(MemoryRegion *mr)
2802 {
2803 return !!mr->container || mr->mapped_via_alias;
2804 }
2805
2806 /* Same as memory_region_find, but it does not add a reference to the
2807 * returned region. It must be called from an RCU critical section.
2808 */
2809 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2810 hwaddr addr, uint64_t size)
2811 {
2812 MemoryRegionSection ret = { .mr = NULL };
2813 MemoryRegion *root;
2814 AddressSpace *as;
2815 AddrRange range;
2816 FlatView *view;
2817 FlatRange *fr;
2818
2819 addr += mr->addr;
2820 for (root = mr; root->container; ) {
2821 root = root->container;
2822 addr += root->addr;
2823 }
2824
2825 as = memory_region_to_address_space(root);
2826 if (!as) {
2827 return ret;
2828 }
2829 range = addrrange_make(int128_make64(addr), int128_make64(size));
2830
2831 view = address_space_to_flatview(as);
2832 fr = flatview_lookup(view, range);
2833 if (!fr) {
2834 return ret;
2835 }
2836
2837 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2838 --fr;
2839 }
2840
2841 ret.mr = fr->mr;
2842 ret.fv = view;
2843 range = addrrange_intersection(range, fr->addr);
2844 ret.offset_within_region = fr->offset_in_region;
2845 ret.offset_within_region += int128_get64(int128_sub(range.start,
2846 fr->addr.start));
2847 ret.size = range.size;
2848 ret.offset_within_address_space = int128_get64(range.start);
2849 ret.readonly = fr->readonly;
2850 ret.nonvolatile = fr->nonvolatile;
2851 return ret;
2852 }
2853
2854 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2855 hwaddr addr, uint64_t size)
2856 {
2857 MemoryRegionSection ret;
2858 RCU_READ_LOCK_GUARD();
2859 ret = memory_region_find_rcu(mr, addr, size);
2860 if (ret.mr) {
2861 memory_region_ref(ret.mr);
2862 }
2863 return ret;
2864 }
2865
2866 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2867 {
2868 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2869
2870 *tmp = *s;
2871 if (tmp->mr) {
2872 memory_region_ref(tmp->mr);
2873 }
2874 if (tmp->fv) {
2875 bool ret = flatview_ref(tmp->fv);
2876
2877 g_assert(ret);
2878 }
2879 return tmp;
2880 }
2881
2882 void memory_region_section_free_copy(MemoryRegionSection *s)
2883 {
2884 if (s->fv) {
2885 flatview_unref(s->fv);
2886 }
2887 if (s->mr) {
2888 memory_region_unref(s->mr);
2889 }
2890 g_free(s);
2891 }
2892
2893 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2894 {
2895 MemoryRegion *mr;
2896
2897 RCU_READ_LOCK_GUARD();
2898 mr = memory_region_find_rcu(container, addr, 1).mr;
2899 return mr && mr != container;
2900 }
2901
2902 void memory_global_dirty_log_sync(bool last_stage)
2903 {
2904 memory_region_sync_dirty_bitmap(NULL, last_stage);
2905 }
2906
2907 void memory_global_after_dirty_log_sync(void)
2908 {
2909 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2910 }
2911
2912 /*
2913 * Dirty track stop flags that are postponed due to VM being stopped. Should
2914 * only be used within vmstate_change hook.
2915 */
2916 static unsigned int postponed_stop_flags;
2917 static VMChangeStateEntry *vmstate_change;
2918 static void memory_global_dirty_log_stop_postponed_run(void);
2919
2920 void memory_global_dirty_log_start(unsigned int flags)
2921 {
2922 unsigned int old_flags;
2923
2924 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2925
2926 if (vmstate_change) {
2927 /* If there is postponed stop(), operate on it first */
2928 postponed_stop_flags &= ~flags;
2929 memory_global_dirty_log_stop_postponed_run();
2930 }
2931
2932 flags &= ~global_dirty_tracking;
2933 if (!flags) {
2934 return;
2935 }
2936
2937 old_flags = global_dirty_tracking;
2938 global_dirty_tracking |= flags;
2939 trace_global_dirty_changed(global_dirty_tracking);
2940
2941 if (!old_flags) {
2942 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2943 memory_region_transaction_begin();
2944 memory_region_update_pending = true;
2945 memory_region_transaction_commit();
2946 }
2947 }
2948
2949 static void memory_global_dirty_log_do_stop(unsigned int flags)
2950 {
2951 assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2952 assert((global_dirty_tracking & flags) == flags);
2953 global_dirty_tracking &= ~flags;
2954
2955 trace_global_dirty_changed(global_dirty_tracking);
2956
2957 if (!global_dirty_tracking) {
2958 memory_region_transaction_begin();
2959 memory_region_update_pending = true;
2960 memory_region_transaction_commit();
2961 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2962 }
2963 }
2964
2965 /*
2966 * Execute the postponed dirty log stop operations if there is, then reset
2967 * everything (including the flags and the vmstate change hook).
2968 */
2969 static void memory_global_dirty_log_stop_postponed_run(void)
2970 {
2971 /* This must be called with the vmstate handler registered */
2972 assert(vmstate_change);
2973
2974 /* Note: postponed_stop_flags can be cleared in log start routine */
2975 if (postponed_stop_flags) {
2976 memory_global_dirty_log_do_stop(postponed_stop_flags);
2977 postponed_stop_flags = 0;
2978 }
2979
2980 qemu_del_vm_change_state_handler(vmstate_change);
2981 vmstate_change = NULL;
2982 }
2983
2984 static void memory_vm_change_state_handler(void *opaque, bool running,
2985 RunState state)
2986 {
2987 if (running) {
2988 memory_global_dirty_log_stop_postponed_run();
2989 }
2990 }
2991
2992 void memory_global_dirty_log_stop(unsigned int flags)
2993 {
2994 if (!runstate_is_running()) {
2995 /* Postpone the dirty log stop, e.g., to when VM starts again */
2996 if (vmstate_change) {
2997 /* Batch with previous postponed flags */
2998 postponed_stop_flags |= flags;
2999 } else {
3000 postponed_stop_flags = flags;
3001 vmstate_change = qemu_add_vm_change_state_handler(
3002 memory_vm_change_state_handler, NULL);
3003 }
3004 return;
3005 }
3006
3007 memory_global_dirty_log_do_stop(flags);
3008 }
3009
3010 static void listener_add_address_space(MemoryListener *listener,
3011 AddressSpace *as)
3012 {
3013 FlatView *view;
3014 FlatRange *fr;
3015
3016 if (listener->begin) {
3017 listener->begin(listener);
3018 }
3019 if (global_dirty_tracking) {
3020 if (listener->log_global_start) {
3021 listener->log_global_start(listener);
3022 }
3023 }
3024
3025 view = address_space_get_flatview(as);
3026 FOR_EACH_FLAT_RANGE(fr, view) {
3027 MemoryRegionSection section = section_from_flat_range(fr, view);
3028
3029 if (listener->region_add) {
3030 listener->region_add(listener, &section);
3031 }
3032 if (fr->dirty_log_mask && listener->log_start) {
3033 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3034 }
3035 }
3036 if (listener->commit) {
3037 listener->commit(listener);
3038 }
3039 flatview_unref(view);
3040 }
3041
3042 static void listener_del_address_space(MemoryListener *listener,
3043 AddressSpace *as)
3044 {
3045 FlatView *view;
3046 FlatRange *fr;
3047
3048 if (listener->begin) {
3049 listener->begin(listener);
3050 }
3051 view = address_space_get_flatview(as);
3052 FOR_EACH_FLAT_RANGE(fr, view) {
3053 MemoryRegionSection section = section_from_flat_range(fr, view);
3054
3055 if (fr->dirty_log_mask && listener->log_stop) {
3056 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3057 }
3058 if (listener->region_del) {
3059 listener->region_del(listener, &section);
3060 }
3061 }
3062 if (listener->commit) {
3063 listener->commit(listener);
3064 }
3065 flatview_unref(view);
3066 }
3067
3068 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3069 {
3070 MemoryListener *other = NULL;
3071
3072 /* Only one of them can be defined for a listener */
3073 assert(!(listener->log_sync && listener->log_sync_global));
3074
3075 listener->address_space = as;
3076 if (QTAILQ_EMPTY(&memory_listeners)
3077 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3078 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3079 } else {
3080 QTAILQ_FOREACH(other, &memory_listeners, link) {
3081 if (listener->priority < other->priority) {
3082 break;
3083 }
3084 }
3085 QTAILQ_INSERT_BEFORE(other, listener, link);
3086 }
3087
3088 if (QTAILQ_EMPTY(&as->listeners)
3089 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3090 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3091 } else {
3092 QTAILQ_FOREACH(other, &as->listeners, link_as) {
3093 if (listener->priority < other->priority) {
3094 break;
3095 }
3096 }
3097 QTAILQ_INSERT_BEFORE(other, listener, link_as);
3098 }
3099
3100 listener_add_address_space(listener, as);
3101
3102 if (listener->eventfd_add || listener->eventfd_del) {
3103 as->ioeventfd_notifiers++;
3104 }
3105 }
3106
3107 void memory_listener_unregister(MemoryListener *listener)
3108 {
3109 if (!listener->address_space) {
3110 return;
3111 }
3112
3113 if (listener->eventfd_add || listener->eventfd_del) {
3114 listener->address_space->ioeventfd_notifiers--;
3115 }
3116
3117 listener_del_address_space(listener, listener->address_space);
3118 QTAILQ_REMOVE(&memory_listeners, listener, link);
3119 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3120 listener->address_space = NULL;
3121 }
3122
3123 void address_space_remove_listeners(AddressSpace *as)
3124 {
3125 while (!QTAILQ_EMPTY(&as->listeners)) {
3126 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3127 }
3128 }
3129
3130 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3131 {
3132 memory_region_ref(root);
3133 as->root = root;
3134 as->current_map = NULL;
3135 as->ioeventfd_nb = 0;
3136 as->ioeventfds = NULL;
3137 QTAILQ_INIT(&as->listeners);
3138 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3139 as->name = g_strdup(name ? name : "anonymous");
3140 address_space_update_topology(as);
3141 address_space_update_ioeventfds(as);
3142 }
3143
3144 static void do_address_space_destroy(AddressSpace *as)
3145 {
3146 assert(QTAILQ_EMPTY(&as->listeners));
3147
3148 flatview_unref(as->current_map);
3149 g_free(as->name);
3150 g_free(as->ioeventfds);
3151 memory_region_unref(as->root);
3152 }
3153
3154 void address_space_destroy(AddressSpace *as)
3155 {
3156 MemoryRegion *root = as->root;
3157
3158 /* Flush out anything from MemoryListeners listening in on this */
3159 memory_region_transaction_begin();
3160 as->root = NULL;
3161 memory_region_transaction_commit();
3162 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3163
3164 /* At this point, as->dispatch and as->current_map are dummy
3165 * entries that the guest should never use. Wait for the old
3166 * values to expire before freeing the data.
3167 */
3168 as->root = root;
3169 call_rcu(as, do_address_space_destroy, rcu);
3170 }
3171
3172 static const char *memory_region_type(MemoryRegion *mr)
3173 {
3174 if (mr->alias) {
3175 return memory_region_type(mr->alias);
3176 }
3177 if (memory_region_is_ram_device(mr)) {
3178 return "ramd";
3179 } else if (memory_region_is_romd(mr)) {
3180 return "romd";
3181 } else if (memory_region_is_rom(mr)) {
3182 return "rom";
3183 } else if (memory_region_is_ram(mr)) {
3184 return "ram";
3185 } else {
3186 return "i/o";
3187 }
3188 }
3189
3190 typedef struct MemoryRegionList MemoryRegionList;
3191
3192 struct MemoryRegionList {
3193 const MemoryRegion *mr;
3194 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3195 };
3196
3197 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3198
3199 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3200 int128_sub((size), int128_one())) : 0)
3201 #define MTREE_INDENT " "
3202
3203 static void mtree_expand_owner(const char *label, Object *obj)
3204 {
3205 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3206
3207 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3208 if (dev && dev->id) {
3209 qemu_printf(" id=%s", dev->id);
3210 } else {
3211 char *canonical_path = object_get_canonical_path(obj);
3212 if (canonical_path) {
3213 qemu_printf(" path=%s", canonical_path);
3214 g_free(canonical_path);
3215 } else {
3216 qemu_printf(" type=%s", object_get_typename(obj));
3217 }
3218 }
3219 qemu_printf("}");
3220 }
3221
3222 static void mtree_print_mr_owner(const MemoryRegion *mr)
3223 {
3224 Object *owner = mr->owner;
3225 Object *parent = memory_region_owner((MemoryRegion *)mr);
3226
3227 if (!owner && !parent) {
3228 qemu_printf(" orphan");
3229 return;
3230 }
3231 if (owner) {
3232 mtree_expand_owner("owner", owner);
3233 }
3234 if (parent && parent != owner) {
3235 mtree_expand_owner("parent", parent);
3236 }
3237 }
3238
3239 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3240 hwaddr base,
3241 MemoryRegionListHead *alias_print_queue,
3242 bool owner, bool display_disabled)
3243 {
3244 MemoryRegionList *new_ml, *ml, *next_ml;
3245 MemoryRegionListHead submr_print_queue;
3246 const MemoryRegion *submr;
3247 unsigned int i;
3248 hwaddr cur_start, cur_end;
3249
3250 if (!mr) {
3251 return;
3252 }
3253
3254 cur_start = base + mr->addr;
3255 cur_end = cur_start + MR_SIZE(mr->size);
3256
3257 /*
3258 * Try to detect overflow of memory region. This should never
3259 * happen normally. When it happens, we dump something to warn the
3260 * user who is observing this.
3261 */
3262 if (cur_start < base || cur_end < cur_start) {
3263 qemu_printf("[DETECTED OVERFLOW!] ");
3264 }
3265
3266 if (mr->alias) {
3267 bool found = false;
3268
3269 /* check if the alias is already in the queue */
3270 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3271 if (ml->mr == mr->alias) {
3272 found = true;
3273 }
3274 }
3275
3276 if (!found) {
3277 ml = g_new(MemoryRegionList, 1);
3278 ml->mr = mr->alias;
3279 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3280 }
3281 if (mr->enabled || display_disabled) {
3282 for (i = 0; i < level; i++) {
3283 qemu_printf(MTREE_INDENT);
3284 }
3285 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3286 " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3287 "-" HWADDR_FMT_plx "%s",
3288 cur_start, cur_end,
3289 mr->priority,
3290 mr->nonvolatile ? "nv-" : "",
3291 memory_region_type((MemoryRegion *)mr),
3292 memory_region_name(mr),
3293 memory_region_name(mr->alias),
3294 mr->alias_offset,
3295 mr->alias_offset + MR_SIZE(mr->size),
3296 mr->enabled ? "" : " [disabled]");
3297 if (owner) {
3298 mtree_print_mr_owner(mr);
3299 }
3300 qemu_printf("\n");
3301 }
3302 } else {
3303 if (mr->enabled || display_disabled) {
3304 for (i = 0; i < level; i++) {
3305 qemu_printf(MTREE_INDENT);
3306 }
3307 qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3308 " (prio %d, %s%s): %s%s",
3309 cur_start, cur_end,
3310 mr->priority,
3311 mr->nonvolatile ? "nv-" : "",
3312 memory_region_type((MemoryRegion *)mr),
3313 memory_region_name(mr),
3314 mr->enabled ? "" : " [disabled]");
3315 if (owner) {
3316 mtree_print_mr_owner(mr);
3317 }
3318 qemu_printf("\n");
3319 }
3320 }
3321
3322 QTAILQ_INIT(&submr_print_queue);
3323
3324 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3325 new_ml = g_new(MemoryRegionList, 1);
3326 new_ml->mr = submr;
3327 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3328 if (new_ml->mr->addr < ml->mr->addr ||
3329 (new_ml->mr->addr == ml->mr->addr &&
3330 new_ml->mr->priority > ml->mr->priority)) {
3331 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3332 new_ml = NULL;
3333 break;
3334 }
3335 }
3336 if (new_ml) {
3337 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3338 }
3339 }
3340
3341 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3342 mtree_print_mr(ml->mr, level + 1, cur_start,
3343 alias_print_queue, owner, display_disabled);
3344 }
3345
3346 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3347 g_free(ml);
3348 }
3349 }
3350
3351 struct FlatViewInfo {
3352 int counter;
3353 bool dispatch_tree;
3354 bool owner;
3355 AccelClass *ac;
3356 };
3357
3358 static void mtree_print_flatview(gpointer key, gpointer value,
3359 gpointer user_data)
3360 {
3361 FlatView *view = key;
3362 GArray *fv_address_spaces = value;
3363 struct FlatViewInfo *fvi = user_data;
3364 FlatRange *range = &view->ranges[0];
3365 MemoryRegion *mr;
3366 int n = view->nr;
3367 int i;
3368 AddressSpace *as;
3369
3370 qemu_printf("FlatView #%d\n", fvi->counter);
3371 ++fvi->counter;
3372
3373 for (i = 0; i < fv_address_spaces->len; ++i) {
3374 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3375 qemu_printf(" AS \"%s\", root: %s",
3376 as->name, memory_region_name(as->root));
3377 if (as->root->alias) {
3378 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3379 }
3380 qemu_printf("\n");
3381 }
3382
3383 qemu_printf(" Root memory region: %s\n",
3384 view->root ? memory_region_name(view->root) : "(none)");
3385
3386 if (n <= 0) {
3387 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3388 return;
3389 }
3390
3391 while (n--) {
3392 mr = range->mr;
3393 if (range->offset_in_region) {
3394 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3395 " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3396 int128_get64(range->addr.start),
3397 int128_get64(range->addr.start)
3398 + MR_SIZE(range->addr.size),
3399 mr->priority,
3400 range->nonvolatile ? "nv-" : "",
3401 range->readonly ? "rom" : memory_region_type(mr),
3402 memory_region_name(mr),
3403 range->offset_in_region);
3404 } else {
3405 qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3406 " (prio %d, %s%s): %s",
3407 int128_get64(range->addr.start),
3408 int128_get64(range->addr.start)
3409 + MR_SIZE(range->addr.size),
3410 mr->priority,
3411 range->nonvolatile ? "nv-" : "",
3412 range->readonly ? "rom" : memory_region_type(mr),
3413 memory_region_name(mr));
3414 }
3415 if (fvi->owner) {
3416 mtree_print_mr_owner(mr);
3417 }
3418
3419 if (fvi->ac) {
3420 for (i = 0; i < fv_address_spaces->len; ++i) {
3421 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3422 if (fvi->ac->has_memory(current_machine, as,
3423 int128_get64(range->addr.start),
3424 MR_SIZE(range->addr.size) + 1)) {
3425 qemu_printf(" %s", fvi->ac->name);
3426 }
3427 }
3428 }
3429 qemu_printf("\n");
3430 range++;
3431 }
3432
3433 #if !defined(CONFIG_USER_ONLY)
3434 if (fvi->dispatch_tree && view->root) {
3435 mtree_print_dispatch(view->dispatch, view->root);
3436 }
3437 #endif
3438
3439 qemu_printf("\n");
3440 }
3441
3442 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3443 gpointer user_data)
3444 {
3445 FlatView *view = key;
3446 GArray *fv_address_spaces = value;
3447
3448 g_array_unref(fv_address_spaces);
3449 flatview_unref(view);
3450
3451 return true;
3452 }
3453
3454 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3455 {
3456 struct FlatViewInfo fvi = {
3457 .counter = 0,
3458 .dispatch_tree = dispatch_tree,
3459 .owner = owner,
3460 };
3461 AddressSpace *as;
3462 FlatView *view;
3463 GArray *fv_address_spaces;
3464 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3465 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3466
3467 if (ac->has_memory) {
3468 fvi.ac = ac;
3469 }
3470
3471 /* Gather all FVs in one table */
3472 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3473 view = address_space_get_flatview(as);
3474
3475 fv_address_spaces = g_hash_table_lookup(views, view);
3476 if (!fv_address_spaces) {
3477 fv_address_spaces = g_array_new(false, false, sizeof(as));
3478 g_hash_table_insert(views, view, fv_address_spaces);
3479 }
3480
3481 g_array_append_val(fv_address_spaces, as);
3482 }
3483
3484 /* Print */
3485 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3486
3487 /* Free */
3488 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3489 g_hash_table_unref(views);
3490 }
3491
3492 struct AddressSpaceInfo {
3493 MemoryRegionListHead *ml_head;
3494 bool owner;
3495 bool disabled;
3496 };
3497
3498 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3499 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3500 {
3501 const AddressSpace *as_a = a;
3502 const AddressSpace *as_b = b;
3503
3504 return g_strcmp0(as_a->name, as_b->name);
3505 }
3506
3507 static void mtree_print_as_name(gpointer data, gpointer user_data)
3508 {
3509 AddressSpace *as = data;
3510
3511 qemu_printf("address-space: %s\n", as->name);
3512 }
3513
3514 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3515 {
3516 MemoryRegion *mr = key;
3517 GSList *as_same_root_mr_list = value;
3518 struct AddressSpaceInfo *asi = user_data;
3519
3520 g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3521 mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3522 qemu_printf("\n");
3523 }
3524
3525 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3526 gpointer user_data)
3527 {
3528 GSList *as_same_root_mr_list = value;
3529
3530 g_slist_free(as_same_root_mr_list);
3531
3532 return true;
3533 }
3534
3535 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3536 {
3537 MemoryRegionListHead ml_head;
3538 MemoryRegionList *ml, *ml2;
3539 AddressSpace *as;
3540 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3541 GSList *as_same_root_mr_list;
3542 struct AddressSpaceInfo asi = {
3543 .ml_head = &ml_head,
3544 .owner = owner,
3545 .disabled = disabled,
3546 };
3547
3548 QTAILQ_INIT(&ml_head);
3549
3550 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3551 /* Create hashtable, key=AS root MR, value = list of AS */
3552 as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3553 as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3554 address_space_compare_name);
3555 g_hash_table_insert(views, as->root, as_same_root_mr_list);
3556 }
3557
3558 /* print address spaces */
3559 g_hash_table_foreach(views, mtree_print_as, &asi);
3560 g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3561 g_hash_table_unref(views);
3562
3563 /* print aliased regions */
3564 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3565 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3566 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3567 qemu_printf("\n");
3568 }
3569
3570 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3571 g_free(ml);
3572 }
3573 }
3574
3575 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3576 {
3577 if (flatview) {
3578 mtree_info_flatview(dispatch_tree, owner);
3579 } else {
3580 mtree_info_as(dispatch_tree, owner, disabled);
3581 }
3582 }
3583
3584 void memory_region_init_ram(MemoryRegion *mr,
3585 Object *owner,
3586 const char *name,
3587 uint64_t size,
3588 Error **errp)
3589 {
3590 DeviceState *owner_dev;
3591 Error *err = NULL;
3592
3593 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3594 if (err) {
3595 error_propagate(errp, err);
3596 return;
3597 }
3598 /* This will assert if owner is neither NULL nor a DeviceState.
3599 * We only want the owner here for the purposes of defining a
3600 * unique name for migration. TODO: Ideally we should implement
3601 * a naming scheme for Objects which are not DeviceStates, in
3602 * which case we can relax this restriction.
3603 */
3604 owner_dev = DEVICE(owner);
3605 vmstate_register_ram(mr, owner_dev);
3606 }
3607
3608 void memory_region_init_rom(MemoryRegion *mr,
3609 Object *owner,
3610 const char *name,
3611 uint64_t size,
3612 Error **errp)
3613 {
3614 DeviceState *owner_dev;
3615 Error *err = NULL;
3616
3617 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3618 if (err) {
3619 error_propagate(errp, err);
3620 return;
3621 }
3622 /* This will assert if owner is neither NULL nor a DeviceState.
3623 * We only want the owner here for the purposes of defining a
3624 * unique name for migration. TODO: Ideally we should implement
3625 * a naming scheme for Objects which are not DeviceStates, in
3626 * which case we can relax this restriction.
3627 */
3628 owner_dev = DEVICE(owner);
3629 vmstate_register_ram(mr, owner_dev);
3630 }
3631
3632 void memory_region_init_rom_device(MemoryRegion *mr,
3633 Object *owner,
3634 const MemoryRegionOps *ops,
3635 void *opaque,
3636 const char *name,
3637 uint64_t size,
3638 Error **errp)
3639 {
3640 DeviceState *owner_dev;
3641 Error *err = NULL;
3642
3643 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3644 name, size, &err);
3645 if (err) {
3646 error_propagate(errp, err);
3647 return;
3648 }
3649 /* This will assert if owner is neither NULL nor a DeviceState.
3650 * We only want the owner here for the purposes of defining a
3651 * unique name for migration. TODO: Ideally we should implement
3652 * a naming scheme for Objects which are not DeviceStates, in
3653 * which case we can relax this restriction.
3654 */
3655 owner_dev = DEVICE(owner);
3656 vmstate_register_ram(mr, owner_dev);
3657 }
3658
3659 /*
3660 * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3661 * the fuzz_dma_read_cb callback
3662 */
3663 #ifdef CONFIG_FUZZ
3664 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3665 size_t len,
3666 MemoryRegion *mr)
3667 {
3668 }
3669 #endif
3670
3671 static const TypeInfo memory_region_info = {
3672 .parent = TYPE_OBJECT,
3673 .name = TYPE_MEMORY_REGION,
3674 .class_size = sizeof(MemoryRegionClass),
3675 .instance_size = sizeof(MemoryRegion),
3676 .instance_init = memory_region_initfn,
3677 .instance_finalize = memory_region_finalize,
3678 };
3679
3680 static const TypeInfo iommu_memory_region_info = {
3681 .parent = TYPE_MEMORY_REGION,
3682 .name = TYPE_IOMMU_MEMORY_REGION,
3683 .class_size = sizeof(IOMMUMemoryRegionClass),
3684 .instance_size = sizeof(IOMMUMemoryRegion),
3685 .instance_init = iommu_memory_region_initfn,
3686 .abstract = true,
3687 };
3688
3689 static const TypeInfo ram_discard_manager_info = {
3690 .parent = TYPE_INTERFACE,
3691 .name = TYPE_RAM_DISCARD_MANAGER,
3692 .class_size = sizeof(RamDiscardManagerClass),
3693 };
3694
3695 static void memory_register_types(void)
3696 {
3697 type_register_static(&memory_region_info);
3698 type_register_static(&iommu_memory_region_info);
3699 type_register_static(&ram_discard_manager_info);
3700 }
3701
3702 type_init(memory_register_types)