]> git.proxmox.com Git - mirror_qemu.git/blob - target/alpha/cpu.h
Merge remote-tracking branch 'remotes/xtensa/tags/20190520-xtensa' into staging
[mirror_qemu.git] / target / alpha / cpu.h
1 /*
2 * Alpha emulation cpu definitions for qemu.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ALPHA_CPU_H
21 #define ALPHA_CPU_H
22
23 #include "qemu-common.h"
24 #include "cpu-qom.h"
25
26 #define TARGET_LONG_BITS 64
27 #define ALIGNED_ONLY
28
29 #define CPUArchState struct CPUAlphaState
30
31 /* Alpha processors have a weak memory model */
32 #define TCG_GUEST_DEFAULT_MO (0)
33
34 #include "exec/cpu-defs.h"
35
36 #define ICACHE_LINE_SIZE 32
37 #define DCACHE_LINE_SIZE 32
38
39 #define TARGET_PAGE_BITS 13
40
41 #ifdef CONFIG_USER_ONLY
42 /* ??? The kernel likes to give addresses in high memory. If the host has
43 more virtual address space than the guest, this can lead to impossible
44 allocations. Honor the long-standing assumption that only kernel addrs
45 are negative, but otherwise allow allocations anywhere. This could lead
46 to tricky emulation problems for programs doing tagged addressing, but
47 that's far fewer than encounter the impossible allocation problem. */
48 #define TARGET_PHYS_ADDR_SPACE_BITS 63
49 #define TARGET_VIRT_ADDR_SPACE_BITS 63
50 #else
51 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */
52 #define TARGET_PHYS_ADDR_SPACE_BITS 44
53 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS)
54 #endif
55
56 /* Alpha major type */
57 enum {
58 ALPHA_EV3 = 1,
59 ALPHA_EV4 = 2,
60 ALPHA_SIM = 3,
61 ALPHA_LCA = 4,
62 ALPHA_EV5 = 5, /* 21164 */
63 ALPHA_EV45 = 6, /* 21064A */
64 ALPHA_EV56 = 7, /* 21164A */
65 };
66
67 /* EV4 minor type */
68 enum {
69 ALPHA_EV4_2 = 0,
70 ALPHA_EV4_3 = 1,
71 };
72
73 /* LCA minor type */
74 enum {
75 ALPHA_LCA_1 = 1, /* 21066 */
76 ALPHA_LCA_2 = 2, /* 20166 */
77 ALPHA_LCA_3 = 3, /* 21068 */
78 ALPHA_LCA_4 = 4, /* 21068 */
79 ALPHA_LCA_5 = 5, /* 21066A */
80 ALPHA_LCA_6 = 6, /* 21068A */
81 };
82
83 /* EV5 minor type */
84 enum {
85 ALPHA_EV5_1 = 1, /* Rev BA, CA */
86 ALPHA_EV5_2 = 2, /* Rev DA, EA */
87 ALPHA_EV5_3 = 3, /* Pass 3 */
88 ALPHA_EV5_4 = 4, /* Pass 3.2 */
89 ALPHA_EV5_5 = 5, /* Pass 4 */
90 };
91
92 /* EV45 minor type */
93 enum {
94 ALPHA_EV45_1 = 1, /* Pass 1 */
95 ALPHA_EV45_2 = 2, /* Pass 1.1 */
96 ALPHA_EV45_3 = 3, /* Pass 2 */
97 };
98
99 /* EV56 minor type */
100 enum {
101 ALPHA_EV56_1 = 1, /* Pass 1 */
102 ALPHA_EV56_2 = 2, /* Pass 2 */
103 };
104
105 enum {
106 IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
107 IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
108 IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
109 IMPLVER_21364 = 3, /* EV7 & EV79 */
110 };
111
112 enum {
113 AMASK_BWX = 0x00000001,
114 AMASK_FIX = 0x00000002,
115 AMASK_CIX = 0x00000004,
116 AMASK_MVI = 0x00000100,
117 AMASK_TRAP = 0x00000200,
118 AMASK_PREFETCH = 0x00001000,
119 };
120
121 enum {
122 VAX_ROUND_NORMAL = 0,
123 VAX_ROUND_CHOPPED,
124 };
125
126 enum {
127 IEEE_ROUND_NORMAL = 0,
128 IEEE_ROUND_DYNAMIC,
129 IEEE_ROUND_PLUS,
130 IEEE_ROUND_MINUS,
131 IEEE_ROUND_CHOPPED,
132 };
133
134 /* IEEE floating-point operations encoding */
135 /* Trap mode */
136 enum {
137 FP_TRAP_I = 0x0,
138 FP_TRAP_U = 0x1,
139 FP_TRAP_S = 0x4,
140 FP_TRAP_SU = 0x5,
141 FP_TRAP_SUI = 0x7,
142 };
143
144 /* Rounding mode */
145 enum {
146 FP_ROUND_CHOPPED = 0x0,
147 FP_ROUND_MINUS = 0x1,
148 FP_ROUND_NORMAL = 0x2,
149 FP_ROUND_DYNAMIC = 0x3,
150 };
151
152 /* FPCR bits -- right-shifted 32 so we can use a uint32_t. */
153 #define FPCR_SUM (1U << (63 - 32))
154 #define FPCR_INED (1U << (62 - 32))
155 #define FPCR_UNFD (1U << (61 - 32))
156 #define FPCR_UNDZ (1U << (60 - 32))
157 #define FPCR_DYN_SHIFT (58 - 32)
158 #define FPCR_DYN_CHOPPED (0U << FPCR_DYN_SHIFT)
159 #define FPCR_DYN_MINUS (1U << FPCR_DYN_SHIFT)
160 #define FPCR_DYN_NORMAL (2U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_PLUS (3U << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_MASK (3U << FPCR_DYN_SHIFT)
163 #define FPCR_IOV (1U << (57 - 32))
164 #define FPCR_INE (1U << (56 - 32))
165 #define FPCR_UNF (1U << (55 - 32))
166 #define FPCR_OVF (1U << (54 - 32))
167 #define FPCR_DZE (1U << (53 - 32))
168 #define FPCR_INV (1U << (52 - 32))
169 #define FPCR_OVFD (1U << (51 - 32))
170 #define FPCR_DZED (1U << (50 - 32))
171 #define FPCR_INVD (1U << (49 - 32))
172 #define FPCR_DNZ (1U << (48 - 32))
173 #define FPCR_DNOD (1U << (47 - 32))
174 #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \
175 | FPCR_OVF | FPCR_DZE | FPCR_INV)
176
177 /* The silly software trap enables implemented by the kernel emulation.
178 These are more or less architecturally required, since the real hardware
179 has read-as-zero bits in the FPCR when the features aren't implemented.
180 For the purposes of QEMU, we pretend the FPCR can hold everything. */
181 #define SWCR_TRAP_ENABLE_INV (1U << 1)
182 #define SWCR_TRAP_ENABLE_DZE (1U << 2)
183 #define SWCR_TRAP_ENABLE_OVF (1U << 3)
184 #define SWCR_TRAP_ENABLE_UNF (1U << 4)
185 #define SWCR_TRAP_ENABLE_INE (1U << 5)
186 #define SWCR_TRAP_ENABLE_DNO (1U << 6)
187 #define SWCR_TRAP_ENABLE_MASK ((1U << 7) - (1U << 1))
188
189 #define SWCR_MAP_DMZ (1U << 12)
190 #define SWCR_MAP_UMZ (1U << 13)
191 #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
192
193 #define SWCR_STATUS_INV (1U << 17)
194 #define SWCR_STATUS_DZE (1U << 18)
195 #define SWCR_STATUS_OVF (1U << 19)
196 #define SWCR_STATUS_UNF (1U << 20)
197 #define SWCR_STATUS_INE (1U << 21)
198 #define SWCR_STATUS_DNO (1U << 22)
199 #define SWCR_STATUS_MASK ((1U << 23) - (1U << 17))
200
201 #define SWCR_STATUS_TO_EXCSUM_SHIFT 16
202
203 #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
204
205 /* MMU modes definitions */
206
207 /* Alpha has 5 MMU modes: PALcode, Kernel, Executive, Supervisor, and User.
208 The Unix PALcode only exposes the kernel and user modes; presumably
209 executive and supervisor are used by VMS.
210
211 PALcode itself uses physical mode for code and kernel mode for data;
212 there are PALmode instructions that can access data via physical mode
213 or via an os-installed "alternate mode", which is one of the 4 above.
214
215 That said, we're only emulating Unix PALcode, and not attempting VMS,
216 so we don't need to implement Executive and Supervisor. QEMU's own
217 PALcode cheats and usees the KSEG mapping for its code+data rather than
218 physical addresses. */
219
220 #define NB_MMU_MODES 3
221
222 #define MMU_MODE0_SUFFIX _kernel
223 #define MMU_MODE1_SUFFIX _user
224 #define MMU_KERNEL_IDX 0
225 #define MMU_USER_IDX 1
226 #define MMU_PHYS_IDX 2
227
228 typedef struct CPUAlphaState CPUAlphaState;
229
230 struct CPUAlphaState {
231 uint64_t ir[31];
232 float64 fir[31];
233 uint64_t pc;
234 uint64_t unique;
235 uint64_t lock_addr;
236 uint64_t lock_value;
237
238 /* The FPCR, and disassembled portions thereof. */
239 uint32_t fpcr;
240 #ifdef CONFIG_USER_ONLY
241 uint32_t swcr;
242 #endif
243 uint32_t fpcr_exc_enable;
244 float_status fp_status;
245 uint8_t fpcr_dyn_round;
246 uint8_t fpcr_flush_to_zero;
247
248 /* Mask of PALmode, Processor State et al. Most of this gets copied
249 into the TranslatorBlock flags and controls code generation. */
250 uint32_t flags;
251
252 /* The high 32-bits of the processor cycle counter. */
253 uint32_t pcc_ofs;
254
255 /* These pass data from the exception logic in the translator and
256 helpers to the OS entry point. This is used for both system
257 emulation and user-mode. */
258 uint64_t trap_arg0;
259 uint64_t trap_arg1;
260 uint64_t trap_arg2;
261
262 #if !defined(CONFIG_USER_ONLY)
263 /* The internal data required by our emulation of the Unix PALcode. */
264 uint64_t exc_addr;
265 uint64_t palbr;
266 uint64_t ptbr;
267 uint64_t vptptr;
268 uint64_t sysval;
269 uint64_t usp;
270 uint64_t shadow[8];
271 uint64_t scratch[24];
272 #endif
273
274 /* This alarm doesn't exist in real hardware; we wish it did. */
275 uint64_t alarm_expire;
276
277 /* Those resources are used only in QEMU core */
278 CPU_COMMON
279
280 int error_code;
281
282 uint32_t features;
283 uint32_t amask;
284 int implver;
285 };
286
287 /**
288 * AlphaCPU:
289 * @env: #CPUAlphaState
290 *
291 * An Alpha CPU.
292 */
293 struct AlphaCPU {
294 /*< private >*/
295 CPUState parent_obj;
296 /*< public >*/
297
298 CPUAlphaState env;
299
300 /* This alarm doesn't exist in real hardware; we wish it did. */
301 QEMUTimer *alarm_timer;
302 };
303
304 static inline AlphaCPU *alpha_env_get_cpu(CPUAlphaState *env)
305 {
306 return container_of(env, AlphaCPU, env);
307 }
308
309 #define ENV_GET_CPU(e) CPU(alpha_env_get_cpu(e))
310
311 #define ENV_OFFSET offsetof(AlphaCPU, env)
312
313 #ifndef CONFIG_USER_ONLY
314 extern const struct VMStateDescription vmstate_alpha_cpu;
315 #endif
316
317 void alpha_cpu_do_interrupt(CPUState *cpu);
318 bool alpha_cpu_exec_interrupt(CPUState *cpu, int int_req);
319 void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags);
320 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
321 int alpha_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
322 int alpha_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
323 void alpha_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
324 MMUAccessType access_type,
325 int mmu_idx, uintptr_t retaddr);
326
327 #define cpu_list alpha_cpu_list
328 #define cpu_signal_handler cpu_alpha_signal_handler
329
330 #include "exec/cpu-all.h"
331
332 enum {
333 FEATURE_ASN = 0x00000001,
334 FEATURE_SPS = 0x00000002,
335 FEATURE_VIRBND = 0x00000004,
336 FEATURE_TBCHK = 0x00000008,
337 };
338
339 enum {
340 EXCP_RESET,
341 EXCP_MCHK,
342 EXCP_SMP_INTERRUPT,
343 EXCP_CLK_INTERRUPT,
344 EXCP_DEV_INTERRUPT,
345 EXCP_MMFAULT,
346 EXCP_UNALIGN,
347 EXCP_OPCDEC,
348 EXCP_ARITH,
349 EXCP_FEN,
350 EXCP_CALL_PAL,
351 };
352
353 /* Alpha-specific interrupt pending bits. */
354 #define CPU_INTERRUPT_TIMER CPU_INTERRUPT_TGT_EXT_0
355 #define CPU_INTERRUPT_SMP CPU_INTERRUPT_TGT_EXT_1
356 #define CPU_INTERRUPT_MCHK CPU_INTERRUPT_TGT_EXT_2
357
358 /* OSF/1 Page table bits. */
359 enum {
360 PTE_VALID = 0x0001,
361 PTE_FOR = 0x0002, /* used for page protection (fault on read) */
362 PTE_FOW = 0x0004, /* used for page protection (fault on write) */
363 PTE_FOE = 0x0008, /* used for page protection (fault on exec) */
364 PTE_ASM = 0x0010,
365 PTE_KRE = 0x0100,
366 PTE_URE = 0x0200,
367 PTE_KWE = 0x1000,
368 PTE_UWE = 0x2000
369 };
370
371 /* Hardware interrupt (entInt) constants. */
372 enum {
373 INT_K_IP,
374 INT_K_CLK,
375 INT_K_MCHK,
376 INT_K_DEV,
377 INT_K_PERF,
378 };
379
380 /* Memory management (entMM) constants. */
381 enum {
382 MM_K_TNV,
383 MM_K_ACV,
384 MM_K_FOR,
385 MM_K_FOE,
386 MM_K_FOW
387 };
388
389 /* Arithmetic exception (entArith) constants. */
390 enum {
391 EXC_M_SWC = 1, /* Software completion */
392 EXC_M_INV = 2, /* Invalid operation */
393 EXC_M_DZE = 4, /* Division by zero */
394 EXC_M_FOV = 8, /* Overflow */
395 EXC_M_UNF = 16, /* Underflow */
396 EXC_M_INE = 32, /* Inexact result */
397 EXC_M_IOV = 64 /* Integer Overflow */
398 };
399
400 /* Processor status constants. */
401 /* Low 3 bits are interrupt mask level. */
402 #define PS_INT_MASK 7u
403
404 /* Bits 4 and 5 are the mmu mode. The VMS PALcode uses all 4 modes;
405 The Unix PALcode only uses bit 4. */
406 #define PS_USER_MODE 8u
407
408 /* CPUAlphaState->flags constants. These are layed out so that we
409 can set or reset the pieces individually by assigning to the byte,
410 or manipulated as a whole. */
411
412 #define ENV_FLAG_PAL_SHIFT 0
413 #define ENV_FLAG_PS_SHIFT 8
414 #define ENV_FLAG_RX_SHIFT 16
415 #define ENV_FLAG_FEN_SHIFT 24
416
417 #define ENV_FLAG_PAL_MODE (1u << ENV_FLAG_PAL_SHIFT)
418 #define ENV_FLAG_PS_USER (PS_USER_MODE << ENV_FLAG_PS_SHIFT)
419 #define ENV_FLAG_RX_FLAG (1u << ENV_FLAG_RX_SHIFT)
420 #define ENV_FLAG_FEN (1u << ENV_FLAG_FEN_SHIFT)
421
422 #define ENV_FLAG_TB_MASK \
423 (ENV_FLAG_PAL_MODE | ENV_FLAG_PS_USER | ENV_FLAG_FEN)
424
425 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
426 {
427 int ret = env->flags & ENV_FLAG_PS_USER ? MMU_USER_IDX : MMU_KERNEL_IDX;
428 if (env->flags & ENV_FLAG_PAL_MODE) {
429 ret = MMU_KERNEL_IDX;
430 }
431 return ret;
432 }
433
434 enum {
435 IR_V0 = 0,
436 IR_T0 = 1,
437 IR_T1 = 2,
438 IR_T2 = 3,
439 IR_T3 = 4,
440 IR_T4 = 5,
441 IR_T5 = 6,
442 IR_T6 = 7,
443 IR_T7 = 8,
444 IR_S0 = 9,
445 IR_S1 = 10,
446 IR_S2 = 11,
447 IR_S3 = 12,
448 IR_S4 = 13,
449 IR_S5 = 14,
450 IR_S6 = 15,
451 IR_FP = IR_S6,
452 IR_A0 = 16,
453 IR_A1 = 17,
454 IR_A2 = 18,
455 IR_A3 = 19,
456 IR_A4 = 20,
457 IR_A5 = 21,
458 IR_T8 = 22,
459 IR_T9 = 23,
460 IR_T10 = 24,
461 IR_T11 = 25,
462 IR_RA = 26,
463 IR_T12 = 27,
464 IR_PV = IR_T12,
465 IR_AT = 28,
466 IR_GP = 29,
467 IR_SP = 30,
468 IR_ZERO = 31,
469 };
470
471 void alpha_translate_init(void);
472
473 #define ALPHA_CPU_TYPE_SUFFIX "-" TYPE_ALPHA_CPU
474 #define ALPHA_CPU_TYPE_NAME(model) model ALPHA_CPU_TYPE_SUFFIX
475 #define CPU_RESOLVING_TYPE TYPE_ALPHA_CPU
476
477 void alpha_cpu_list(void);
478 /* you can call this signal handler from your SIGBUS and SIGSEGV
479 signal handlers to inform the virtual CPU of exceptions. non zero
480 is returned if the signal was handled by the virtual CPU. */
481 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
482 void *puc);
483 bool alpha_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
484 MMUAccessType access_type, int mmu_idx,
485 bool probe, uintptr_t retaddr);
486 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
487 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
488
489 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
490 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
491 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
492 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
493 #ifndef CONFIG_USER_ONLY
494 void alpha_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
495 vaddr addr, unsigned size,
496 MMUAccessType access_type,
497 int mmu_idx, MemTxAttrs attrs,
498 MemTxResult response, uintptr_t retaddr);
499 #endif
500
501 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
502 target_ulong *cs_base, uint32_t *pflags)
503 {
504 *pc = env->pc;
505 *cs_base = 0;
506 *pflags = env->flags & ENV_FLAG_TB_MASK;
507 }
508
509 #ifdef CONFIG_USER_ONLY
510 /* Copied from linux ieee_swcr_to_fpcr. */
511 static inline uint64_t alpha_ieee_swcr_to_fpcr(uint64_t swcr)
512 {
513 uint64_t fpcr = 0;
514
515 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
516 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
517 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
518 | SWCR_TRAP_ENABLE_DZE
519 | SWCR_TRAP_ENABLE_OVF)) << 48;
520 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
521 | SWCR_TRAP_ENABLE_INE)) << 57;
522 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
523 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
524
525 return fpcr;
526 }
527
528 /* Copied from linux ieee_fpcr_to_swcr. */
529 static inline uint64_t alpha_ieee_fpcr_to_swcr(uint64_t fpcr)
530 {
531 uint64_t swcr = 0;
532
533 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
534 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
535 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
536 | SWCR_TRAP_ENABLE_DZE
537 | SWCR_TRAP_ENABLE_OVF);
538 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF | SWCR_TRAP_ENABLE_INE);
539 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
540 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
541
542 return swcr;
543 }
544 #endif /* CONFIG_USER_ONLY */
545
546 #endif /* ALPHA_CPU_H */