]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
virtio-rng: process pending requests on DRIVER_OK
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42 ARMCPU *cpu = ARM_CPU(cs);
43
44 cpu->env.regs[15] = value;
45 }
46
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49 ARMCPU *cpu = ARM_CPU(cs);
50
51 return (cpu->power_state != PSCI_OFF)
52 && cs->interrupt_request &
53 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB);
56 }
57
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59 void *opaque)
60 {
61 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62
63 entry->hook = hook;
64 entry->opaque = opaque;
65
66 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70 void *opaque)
71 {
72 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73
74 entry->hook = hook;
75 entry->opaque = opaque;
76
77 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo *ri = value;
84 ARMCPU *cpu = opaque;
85
86 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87 return;
88 }
89
90 if (ri->resetfn) {
91 ri->resetfn(&cpu->env, ri);
92 return;
93 }
94
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
99 */
100 if (!ri->fieldoffset) {
101 return;
102 }
103
104 if (cpreg_field_is_64bit(ri)) {
105 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106 } else {
107 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108 }
109 }
110
111 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
112 {
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
117 */
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
120 uint64_t oldvalue, newvalue;
121
122 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123 return;
124 }
125
126 oldvalue = read_raw_cp_reg(&cpu->env, ri);
127 cp_reg_reset(key, value, opaque);
128 newvalue = read_raw_cp_reg(&cpu->env, ri);
129 assert(oldvalue == newvalue);
130 }
131
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135 ARMCPU *cpu = ARM_CPU(s);
136 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137 CPUARMState *env = &cpu->env;
138
139 acc->parent_reset(s);
140
141 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142
143 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145
146 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
148 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
149 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
150
151 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152 s->halted = cpu->start_powered_off;
153
154 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156 }
157
158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159 /* 64 bit CPUs always start in 64 bit mode */
160 env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162 env->pstate = PSTATE_MODE_EL0t;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165 /* and to the FP/Neon instructions */
166 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167 #else
168 /* Reset into the highest available EL */
169 if (arm_feature(env, ARM_FEATURE_EL3)) {
170 env->pstate = PSTATE_MODE_EL3h;
171 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
172 env->pstate = PSTATE_MODE_EL2h;
173 } else {
174 env->pstate = PSTATE_MODE_EL1h;
175 }
176 env->pc = cpu->rvbar;
177 #endif
178 } else {
179 #if defined(CONFIG_USER_ONLY)
180 /* Userspace expects access to cp10 and cp11 for FP/Neon */
181 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
182 #endif
183 }
184
185 #if defined(CONFIG_USER_ONLY)
186 env->uncached_cpsr = ARM_CPU_MODE_USR;
187 /* For user mode we must enable access to coprocessors */
188 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
189 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
190 env->cp15.c15_cpar = 3;
191 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
192 env->cp15.c15_cpar = 1;
193 }
194 #else
195 /* SVC mode with interrupts disabled. */
196 env->uncached_cpsr = ARM_CPU_MODE_SVC;
197 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
198
199 if (arm_feature(env, ARM_FEATURE_M)) {
200 uint32_t initial_msp; /* Loaded from 0x0 */
201 uint32_t initial_pc; /* Loaded from 0x4 */
202 uint8_t *rom;
203 uint32_t vecbase;
204
205 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
206 env->v7m.secure = true;
207 } else {
208 /* This bit resets to 0 if security is supported, but 1 if
209 * it is not. The bit is not present in v7M, but we set it
210 * here so we can avoid having to make checks on it conditional
211 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
212 */
213 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
214 }
215
216 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
217 * that it resets to 1, so QEMU always does that rather than making
218 * it dependent on CPU model. In v8M it is RES1.
219 */
220 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
221 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
222 if (arm_feature(env, ARM_FEATURE_V8)) {
223 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
224 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
225 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
226 }
227
228 /* Unlike A/R profile, M profile defines the reset LR value */
229 env->regs[14] = 0xffffffff;
230
231 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
232
233 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
234 vecbase = env->v7m.vecbase[env->v7m.secure];
235 rom = rom_ptr(vecbase);
236 if (rom) {
237 /* Address zero is covered by ROM which hasn't yet been
238 * copied into physical memory.
239 */
240 initial_msp = ldl_p(rom);
241 initial_pc = ldl_p(rom + 4);
242 } else {
243 /* Address zero not covered by a ROM blob, or the ROM blob
244 * is in non-modifiable memory and this is a second reset after
245 * it got copied into memory. In the latter case, rom_ptr
246 * will return a NULL pointer and we should use ldl_phys instead.
247 */
248 initial_msp = ldl_phys(s->as, vecbase);
249 initial_pc = ldl_phys(s->as, vecbase + 4);
250 }
251
252 env->regs[13] = initial_msp & 0xFFFFFFFC;
253 env->regs[15] = initial_pc & ~1;
254 env->thumb = initial_pc & 1;
255 }
256
257 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
258 * executing as AArch32 then check if highvecs are enabled and
259 * adjust the PC accordingly.
260 */
261 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
262 env->regs[15] = 0xFFFF0000;
263 }
264
265 /* M profile requires that reset clears the exclusive monitor;
266 * A profile does not, but clearing it makes more sense than having it
267 * set with an exclusive access on address zero.
268 */
269 arm_clear_exclusive(env);
270
271 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
272 #endif
273
274 if (arm_feature(env, ARM_FEATURE_PMSA)) {
275 if (cpu->pmsav7_dregion > 0) {
276 if (arm_feature(env, ARM_FEATURE_V8)) {
277 memset(env->pmsav8.rbar[M_REG_NS], 0,
278 sizeof(*env->pmsav8.rbar[M_REG_NS])
279 * cpu->pmsav7_dregion);
280 memset(env->pmsav8.rlar[M_REG_NS], 0,
281 sizeof(*env->pmsav8.rlar[M_REG_NS])
282 * cpu->pmsav7_dregion);
283 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
284 memset(env->pmsav8.rbar[M_REG_S], 0,
285 sizeof(*env->pmsav8.rbar[M_REG_S])
286 * cpu->pmsav7_dregion);
287 memset(env->pmsav8.rlar[M_REG_S], 0,
288 sizeof(*env->pmsav8.rlar[M_REG_S])
289 * cpu->pmsav7_dregion);
290 }
291 } else if (arm_feature(env, ARM_FEATURE_V7)) {
292 memset(env->pmsav7.drbar, 0,
293 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
294 memset(env->pmsav7.drsr, 0,
295 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
296 memset(env->pmsav7.dracr, 0,
297 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
298 }
299 }
300 env->pmsav7.rnr[M_REG_NS] = 0;
301 env->pmsav7.rnr[M_REG_S] = 0;
302 env->pmsav8.mair0[M_REG_NS] = 0;
303 env->pmsav8.mair0[M_REG_S] = 0;
304 env->pmsav8.mair1[M_REG_NS] = 0;
305 env->pmsav8.mair1[M_REG_S] = 0;
306 }
307
308 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
309 if (cpu->sau_sregion > 0) {
310 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
311 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
312 }
313 env->sau.rnr = 0;
314 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
315 * the Cortex-M33 does.
316 */
317 env->sau.ctrl = 0;
318 }
319
320 set_flush_to_zero(1, &env->vfp.standard_fp_status);
321 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
322 set_default_nan_mode(1, &env->vfp.standard_fp_status);
323 set_float_detect_tininess(float_tininess_before_rounding,
324 &env->vfp.fp_status);
325 set_float_detect_tininess(float_tininess_before_rounding,
326 &env->vfp.standard_fp_status);
327 set_float_detect_tininess(float_tininess_before_rounding,
328 &env->vfp.fp_status_f16);
329 #ifndef CONFIG_USER_ONLY
330 if (kvm_enabled()) {
331 kvm_arm_reset_vcpu(cpu);
332 }
333 #endif
334
335 hw_breakpoint_update_all(cpu);
336 hw_watchpoint_update_all(cpu);
337 }
338
339 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
340 {
341 CPUClass *cc = CPU_GET_CLASS(cs);
342 CPUARMState *env = cs->env_ptr;
343 uint32_t cur_el = arm_current_el(env);
344 bool secure = arm_is_secure(env);
345 uint32_t target_el;
346 uint32_t excp_idx;
347 bool ret = false;
348
349 if (interrupt_request & CPU_INTERRUPT_FIQ) {
350 excp_idx = EXCP_FIQ;
351 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
352 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
353 cs->exception_index = excp_idx;
354 env->exception.target_el = target_el;
355 cc->do_interrupt(cs);
356 ret = true;
357 }
358 }
359 if (interrupt_request & CPU_INTERRUPT_HARD) {
360 excp_idx = EXCP_IRQ;
361 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
362 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
363 cs->exception_index = excp_idx;
364 env->exception.target_el = target_el;
365 cc->do_interrupt(cs);
366 ret = true;
367 }
368 }
369 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
370 excp_idx = EXCP_VIRQ;
371 target_el = 1;
372 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
373 cs->exception_index = excp_idx;
374 env->exception.target_el = target_el;
375 cc->do_interrupt(cs);
376 ret = true;
377 }
378 }
379 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
380 excp_idx = EXCP_VFIQ;
381 target_el = 1;
382 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
383 cs->exception_index = excp_idx;
384 env->exception.target_el = target_el;
385 cc->do_interrupt(cs);
386 ret = true;
387 }
388 }
389
390 return ret;
391 }
392
393 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
394 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
395 {
396 CPUClass *cc = CPU_GET_CLASS(cs);
397 ARMCPU *cpu = ARM_CPU(cs);
398 CPUARMState *env = &cpu->env;
399 bool ret = false;
400
401 /* ARMv7-M interrupt masking works differently than -A or -R.
402 * There is no FIQ/IRQ distinction. Instead of I and F bits
403 * masking FIQ and IRQ interrupts, an exception is taken only
404 * if it is higher priority than the current execution priority
405 * (which depends on state like BASEPRI, FAULTMASK and the
406 * currently active exception).
407 */
408 if (interrupt_request & CPU_INTERRUPT_HARD
409 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
410 cs->exception_index = EXCP_IRQ;
411 cc->do_interrupt(cs);
412 ret = true;
413 }
414 return ret;
415 }
416 #endif
417
418 #ifndef CONFIG_USER_ONLY
419 static void arm_cpu_set_irq(void *opaque, int irq, int level)
420 {
421 ARMCPU *cpu = opaque;
422 CPUARMState *env = &cpu->env;
423 CPUState *cs = CPU(cpu);
424 static const int mask[] = {
425 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
426 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
427 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
428 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
429 };
430
431 switch (irq) {
432 case ARM_CPU_VIRQ:
433 case ARM_CPU_VFIQ:
434 assert(arm_feature(env, ARM_FEATURE_EL2));
435 /* fall through */
436 case ARM_CPU_IRQ:
437 case ARM_CPU_FIQ:
438 if (level) {
439 cpu_interrupt(cs, mask[irq]);
440 } else {
441 cpu_reset_interrupt(cs, mask[irq]);
442 }
443 break;
444 default:
445 g_assert_not_reached();
446 }
447 }
448
449 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
450 {
451 #ifdef CONFIG_KVM
452 ARMCPU *cpu = opaque;
453 CPUState *cs = CPU(cpu);
454 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
455
456 switch (irq) {
457 case ARM_CPU_IRQ:
458 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
459 break;
460 case ARM_CPU_FIQ:
461 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
462 break;
463 default:
464 g_assert_not_reached();
465 }
466 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
467 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
468 #endif
469 }
470
471 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
472 {
473 ARMCPU *cpu = ARM_CPU(cs);
474 CPUARMState *env = &cpu->env;
475
476 cpu_synchronize_state(cs);
477 return arm_cpu_data_is_big_endian(env);
478 }
479
480 #endif
481
482 static inline void set_feature(CPUARMState *env, int feature)
483 {
484 env->features |= 1ULL << feature;
485 }
486
487 static inline void unset_feature(CPUARMState *env, int feature)
488 {
489 env->features &= ~(1ULL << feature);
490 }
491
492 static int
493 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
494 {
495 return print_insn_arm(pc | 1, info);
496 }
497
498 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
499 {
500 ARMCPU *ac = ARM_CPU(cpu);
501 CPUARMState *env = &ac->env;
502 bool sctlr_b;
503
504 if (is_a64(env)) {
505 /* We might not be compiled with the A64 disassembler
506 * because it needs a C++ compiler. Leave print_insn
507 * unset in this case to use the caller default behaviour.
508 */
509 #if defined(CONFIG_ARM_A64_DIS)
510 info->print_insn = print_insn_arm_a64;
511 #endif
512 info->cap_arch = CS_ARCH_ARM64;
513 info->cap_insn_unit = 4;
514 info->cap_insn_split = 4;
515 } else {
516 int cap_mode;
517 if (env->thumb) {
518 info->print_insn = print_insn_thumb1;
519 info->cap_insn_unit = 2;
520 info->cap_insn_split = 4;
521 cap_mode = CS_MODE_THUMB;
522 } else {
523 info->print_insn = print_insn_arm;
524 info->cap_insn_unit = 4;
525 info->cap_insn_split = 4;
526 cap_mode = CS_MODE_ARM;
527 }
528 if (arm_feature(env, ARM_FEATURE_V8)) {
529 cap_mode |= CS_MODE_V8;
530 }
531 if (arm_feature(env, ARM_FEATURE_M)) {
532 cap_mode |= CS_MODE_MCLASS;
533 }
534 info->cap_arch = CS_ARCH_ARM;
535 info->cap_mode = cap_mode;
536 }
537
538 sctlr_b = arm_sctlr_b(env);
539 if (bswap_code(sctlr_b)) {
540 #ifdef TARGET_WORDS_BIGENDIAN
541 info->endian = BFD_ENDIAN_LITTLE;
542 #else
543 info->endian = BFD_ENDIAN_BIG;
544 #endif
545 }
546 info->flags &= ~INSN_ARM_BE32;
547 #ifndef CONFIG_USER_ONLY
548 if (sctlr_b) {
549 info->flags |= INSN_ARM_BE32;
550 }
551 #endif
552 }
553
554 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
555 {
556 uint32_t Aff1 = idx / clustersz;
557 uint32_t Aff0 = idx % clustersz;
558 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
559 }
560
561 static void arm_cpu_initfn(Object *obj)
562 {
563 CPUState *cs = CPU(obj);
564 ARMCPU *cpu = ARM_CPU(obj);
565
566 cs->env_ptr = &cpu->env;
567 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
568 g_free, g_free);
569
570 QLIST_INIT(&cpu->pre_el_change_hooks);
571 QLIST_INIT(&cpu->el_change_hooks);
572
573 #ifndef CONFIG_USER_ONLY
574 /* Our inbound IRQ and FIQ lines */
575 if (kvm_enabled()) {
576 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
577 * the same interface as non-KVM CPUs.
578 */
579 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
580 } else {
581 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
582 }
583
584 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
585 arm_gt_ptimer_cb, cpu);
586 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
587 arm_gt_vtimer_cb, cpu);
588 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
589 arm_gt_htimer_cb, cpu);
590 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
591 arm_gt_stimer_cb, cpu);
592 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
593 ARRAY_SIZE(cpu->gt_timer_outputs));
594
595 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
596 "gicv3-maintenance-interrupt", 1);
597 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
598 "pmu-interrupt", 1);
599 #endif
600
601 /* DTB consumers generally don't in fact care what the 'compatible'
602 * string is, so always provide some string and trust that a hypothetical
603 * picky DTB consumer will also provide a helpful error message.
604 */
605 cpu->dtb_compatible = "qemu,unknown";
606 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
607 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
608
609 if (tcg_enabled()) {
610 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
611 }
612 }
613
614 static Property arm_cpu_reset_cbar_property =
615 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
616
617 static Property arm_cpu_reset_hivecs_property =
618 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
619
620 static Property arm_cpu_rvbar_property =
621 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
622
623 static Property arm_cpu_has_el2_property =
624 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
625
626 static Property arm_cpu_has_el3_property =
627 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
628
629 static Property arm_cpu_cfgend_property =
630 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
631
632 /* use property name "pmu" to match other archs and virt tools */
633 static Property arm_cpu_has_pmu_property =
634 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
635
636 static Property arm_cpu_has_mpu_property =
637 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
638
639 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
640 * because the CPU initfn will have already set cpu->pmsav7_dregion to
641 * the right value for that particular CPU type, and we don't want
642 * to override that with an incorrect constant value.
643 */
644 static Property arm_cpu_pmsav7_dregion_property =
645 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
646 pmsav7_dregion,
647 qdev_prop_uint32, uint32_t);
648
649 /* M profile: initial value of the Secure VTOR */
650 static Property arm_cpu_initsvtor_property =
651 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
652
653 static void arm_cpu_post_init(Object *obj)
654 {
655 ARMCPU *cpu = ARM_CPU(obj);
656
657 /* M profile implies PMSA. We have to do this here rather than
658 * in realize with the other feature-implication checks because
659 * we look at the PMSA bit to see if we should add some properties.
660 */
661 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
662 set_feature(&cpu->env, ARM_FEATURE_PMSA);
663 }
664
665 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
666 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
667 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
668 &error_abort);
669 }
670
671 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
672 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
673 &error_abort);
674 }
675
676 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
677 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
678 &error_abort);
679 }
680
681 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
682 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
683 * prevent "has_el3" from existing on CPUs which cannot support EL3.
684 */
685 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
686 &error_abort);
687
688 #ifndef CONFIG_USER_ONLY
689 object_property_add_link(obj, "secure-memory",
690 TYPE_MEMORY_REGION,
691 (Object **)&cpu->secure_memory,
692 qdev_prop_allow_set_link_before_realize,
693 OBJ_PROP_LINK_STRONG,
694 &error_abort);
695 #endif
696 }
697
698 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
699 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
700 &error_abort);
701 }
702
703 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
704 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
705 &error_abort);
706 }
707
708 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
709 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
710 &error_abort);
711 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
712 qdev_property_add_static(DEVICE(obj),
713 &arm_cpu_pmsav7_dregion_property,
714 &error_abort);
715 }
716 }
717
718 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
719 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
720 qdev_prop_allow_set_link_before_realize,
721 OBJ_PROP_LINK_STRONG,
722 &error_abort);
723 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
724 &error_abort);
725 }
726
727 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
728 &error_abort);
729 }
730
731 static void arm_cpu_finalizefn(Object *obj)
732 {
733 ARMCPU *cpu = ARM_CPU(obj);
734 ARMELChangeHook *hook, *next;
735
736 g_hash_table_destroy(cpu->cp_regs);
737
738 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
739 QLIST_REMOVE(hook, node);
740 g_free(hook);
741 }
742 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
743 QLIST_REMOVE(hook, node);
744 g_free(hook);
745 }
746 }
747
748 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
749 {
750 CPUState *cs = CPU(dev);
751 ARMCPU *cpu = ARM_CPU(dev);
752 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
753 CPUARMState *env = &cpu->env;
754 int pagebits;
755 Error *local_err = NULL;
756
757 /* If we needed to query the host kernel for the CPU features
758 * then it's possible that might have failed in the initfn, but
759 * this is the first point where we can report it.
760 */
761 if (cpu->host_cpu_probe_failed) {
762 if (!kvm_enabled()) {
763 error_setg(errp, "The 'host' CPU type can only be used with KVM");
764 } else {
765 error_setg(errp, "Failed to retrieve host CPU features");
766 }
767 return;
768 }
769
770 #ifndef CONFIG_USER_ONLY
771 /* The NVIC and M-profile CPU are two halves of a single piece of
772 * hardware; trying to use one without the other is a command line
773 * error and will result in segfaults if not caught here.
774 */
775 if (arm_feature(env, ARM_FEATURE_M)) {
776 if (!env->nvic) {
777 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
778 return;
779 }
780 } else {
781 if (env->nvic) {
782 error_setg(errp, "This board can only be used with Cortex-M CPUs");
783 return;
784 }
785 }
786 #endif
787
788 cpu_exec_realizefn(cs, &local_err);
789 if (local_err != NULL) {
790 error_propagate(errp, local_err);
791 return;
792 }
793
794 /* Some features automatically imply others: */
795 if (arm_feature(env, ARM_FEATURE_V8)) {
796 set_feature(env, ARM_FEATURE_V7);
797 set_feature(env, ARM_FEATURE_ARM_DIV);
798 set_feature(env, ARM_FEATURE_LPAE);
799 }
800 if (arm_feature(env, ARM_FEATURE_V7)) {
801 set_feature(env, ARM_FEATURE_VAPA);
802 set_feature(env, ARM_FEATURE_THUMB2);
803 set_feature(env, ARM_FEATURE_MPIDR);
804 if (!arm_feature(env, ARM_FEATURE_M)) {
805 set_feature(env, ARM_FEATURE_V6K);
806 } else {
807 set_feature(env, ARM_FEATURE_V6);
808 }
809
810 /* Always define VBAR for V7 CPUs even if it doesn't exist in
811 * non-EL3 configs. This is needed by some legacy boards.
812 */
813 set_feature(env, ARM_FEATURE_VBAR);
814 }
815 if (arm_feature(env, ARM_FEATURE_V6K)) {
816 set_feature(env, ARM_FEATURE_V6);
817 set_feature(env, ARM_FEATURE_MVFR);
818 }
819 if (arm_feature(env, ARM_FEATURE_V6)) {
820 set_feature(env, ARM_FEATURE_V5);
821 set_feature(env, ARM_FEATURE_JAZELLE);
822 if (!arm_feature(env, ARM_FEATURE_M)) {
823 set_feature(env, ARM_FEATURE_AUXCR);
824 }
825 }
826 if (arm_feature(env, ARM_FEATURE_V5)) {
827 set_feature(env, ARM_FEATURE_V4T);
828 }
829 if (arm_feature(env, ARM_FEATURE_M)) {
830 set_feature(env, ARM_FEATURE_THUMB_DIV);
831 }
832 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
833 set_feature(env, ARM_FEATURE_THUMB_DIV);
834 }
835 if (arm_feature(env, ARM_FEATURE_VFP4)) {
836 set_feature(env, ARM_FEATURE_VFP3);
837 set_feature(env, ARM_FEATURE_VFP_FP16);
838 }
839 if (arm_feature(env, ARM_FEATURE_VFP3)) {
840 set_feature(env, ARM_FEATURE_VFP);
841 }
842 if (arm_feature(env, ARM_FEATURE_LPAE)) {
843 set_feature(env, ARM_FEATURE_V7MP);
844 set_feature(env, ARM_FEATURE_PXN);
845 }
846 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
847 set_feature(env, ARM_FEATURE_CBAR);
848 }
849 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
850 !arm_feature(env, ARM_FEATURE_M)) {
851 set_feature(env, ARM_FEATURE_THUMB_DSP);
852 }
853
854 if (arm_feature(env, ARM_FEATURE_V7) &&
855 !arm_feature(env, ARM_FEATURE_M) &&
856 !arm_feature(env, ARM_FEATURE_PMSA)) {
857 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
858 * can use 4K pages.
859 */
860 pagebits = 12;
861 } else {
862 /* For CPUs which might have tiny 1K pages, or which have an
863 * MPU and might have small region sizes, stick with 1K pages.
864 */
865 pagebits = 10;
866 }
867 if (!set_preferred_target_page_bits(pagebits)) {
868 /* This can only ever happen for hotplugging a CPU, or if
869 * the board code incorrectly creates a CPU which it has
870 * promised via minimum_page_size that it will not.
871 */
872 error_setg(errp, "This CPU requires a smaller page size than the "
873 "system is using");
874 return;
875 }
876
877 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
878 * We don't support setting cluster ID ([16..23]) (known as Aff2
879 * in later ARM ARM versions), or any of the higher affinity level fields,
880 * so these bits always RAZ.
881 */
882 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
883 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
884 ARM_DEFAULT_CPUS_PER_CLUSTER);
885 }
886
887 if (cpu->reset_hivecs) {
888 cpu->reset_sctlr |= (1 << 13);
889 }
890
891 if (cpu->cfgend) {
892 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
893 cpu->reset_sctlr |= SCTLR_EE;
894 } else {
895 cpu->reset_sctlr |= SCTLR_B;
896 }
897 }
898
899 if (!cpu->has_el3) {
900 /* If the has_el3 CPU property is disabled then we need to disable the
901 * feature.
902 */
903 unset_feature(env, ARM_FEATURE_EL3);
904
905 /* Disable the security extension feature bits in the processor feature
906 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
907 */
908 cpu->id_pfr1 &= ~0xf0;
909 cpu->id_aa64pfr0 &= ~0xf000;
910 }
911
912 if (!cpu->has_el2) {
913 unset_feature(env, ARM_FEATURE_EL2);
914 }
915
916 if (!cpu->has_pmu) {
917 unset_feature(env, ARM_FEATURE_PMU);
918 cpu->id_aa64dfr0 &= ~0xf00;
919 }
920
921 if (!arm_feature(env, ARM_FEATURE_EL2)) {
922 /* Disable the hypervisor feature bits in the processor feature
923 * registers if we don't have EL2. These are id_pfr1[15:12] and
924 * id_aa64pfr0_el1[11:8].
925 */
926 cpu->id_aa64pfr0 &= ~0xf00;
927 cpu->id_pfr1 &= ~0xf000;
928 }
929
930 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
931 * to false or by setting pmsav7-dregion to 0.
932 */
933 if (!cpu->has_mpu) {
934 cpu->pmsav7_dregion = 0;
935 }
936 if (cpu->pmsav7_dregion == 0) {
937 cpu->has_mpu = false;
938 }
939
940 if (arm_feature(env, ARM_FEATURE_PMSA) &&
941 arm_feature(env, ARM_FEATURE_V7)) {
942 uint32_t nr = cpu->pmsav7_dregion;
943
944 if (nr > 0xff) {
945 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
946 return;
947 }
948
949 if (nr) {
950 if (arm_feature(env, ARM_FEATURE_V8)) {
951 /* PMSAv8 */
952 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
953 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
954 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
955 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
956 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
957 }
958 } else {
959 env->pmsav7.drbar = g_new0(uint32_t, nr);
960 env->pmsav7.drsr = g_new0(uint32_t, nr);
961 env->pmsav7.dracr = g_new0(uint32_t, nr);
962 }
963 }
964 }
965
966 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
967 uint32_t nr = cpu->sau_sregion;
968
969 if (nr > 0xff) {
970 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
971 return;
972 }
973
974 if (nr) {
975 env->sau.rbar = g_new0(uint32_t, nr);
976 env->sau.rlar = g_new0(uint32_t, nr);
977 }
978 }
979
980 if (arm_feature(env, ARM_FEATURE_EL3)) {
981 set_feature(env, ARM_FEATURE_VBAR);
982 }
983
984 register_cp_regs_for_features(cpu);
985 arm_cpu_register_gdb_regs_for_features(cpu);
986
987 init_cpreg_list(cpu);
988
989 #ifndef CONFIG_USER_ONLY
990 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
991 cs->num_ases = 2;
992
993 if (!cpu->secure_memory) {
994 cpu->secure_memory = cs->memory;
995 }
996 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
997 cpu->secure_memory);
998 } else {
999 cs->num_ases = 1;
1000 }
1001 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1002
1003 /* No core_count specified, default to smp_cpus. */
1004 if (cpu->core_count == -1) {
1005 cpu->core_count = smp_cpus;
1006 }
1007 #endif
1008
1009 qemu_init_vcpu(cs);
1010 cpu_reset(cs);
1011
1012 acc->parent_realize(dev, errp);
1013 }
1014
1015 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1016 {
1017 ObjectClass *oc;
1018 char *typename;
1019 char **cpuname;
1020 const char *cpunamestr;
1021
1022 cpuname = g_strsplit(cpu_model, ",", 1);
1023 cpunamestr = cpuname[0];
1024 #ifdef CONFIG_USER_ONLY
1025 /* For backwards compatibility usermode emulation allows "-cpu any",
1026 * which has the same semantics as "-cpu max".
1027 */
1028 if (!strcmp(cpunamestr, "any")) {
1029 cpunamestr = "max";
1030 }
1031 #endif
1032 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1033 oc = object_class_by_name(typename);
1034 g_strfreev(cpuname);
1035 g_free(typename);
1036 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1037 object_class_is_abstract(oc)) {
1038 return NULL;
1039 }
1040 return oc;
1041 }
1042
1043 /* CPU models. These are not needed for the AArch64 linux-user build. */
1044 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1045
1046 static void arm926_initfn(Object *obj)
1047 {
1048 ARMCPU *cpu = ARM_CPU(obj);
1049
1050 cpu->dtb_compatible = "arm,arm926";
1051 set_feature(&cpu->env, ARM_FEATURE_V5);
1052 set_feature(&cpu->env, ARM_FEATURE_VFP);
1053 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1054 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1055 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1056 cpu->midr = 0x41069265;
1057 cpu->reset_fpsid = 0x41011090;
1058 cpu->ctr = 0x1dd20d2;
1059 cpu->reset_sctlr = 0x00090078;
1060 }
1061
1062 static void arm946_initfn(Object *obj)
1063 {
1064 ARMCPU *cpu = ARM_CPU(obj);
1065
1066 cpu->dtb_compatible = "arm,arm946";
1067 set_feature(&cpu->env, ARM_FEATURE_V5);
1068 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1069 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1070 cpu->midr = 0x41059461;
1071 cpu->ctr = 0x0f004006;
1072 cpu->reset_sctlr = 0x00000078;
1073 }
1074
1075 static void arm1026_initfn(Object *obj)
1076 {
1077 ARMCPU *cpu = ARM_CPU(obj);
1078
1079 cpu->dtb_compatible = "arm,arm1026";
1080 set_feature(&cpu->env, ARM_FEATURE_V5);
1081 set_feature(&cpu->env, ARM_FEATURE_VFP);
1082 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1083 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1084 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1085 set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
1086 cpu->midr = 0x4106a262;
1087 cpu->reset_fpsid = 0x410110a0;
1088 cpu->ctr = 0x1dd20d2;
1089 cpu->reset_sctlr = 0x00090078;
1090 cpu->reset_auxcr = 1;
1091 {
1092 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1093 ARMCPRegInfo ifar = {
1094 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1095 .access = PL1_RW,
1096 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1097 .resetvalue = 0
1098 };
1099 define_one_arm_cp_reg(cpu, &ifar);
1100 }
1101 }
1102
1103 static void arm1136_r2_initfn(Object *obj)
1104 {
1105 ARMCPU *cpu = ARM_CPU(obj);
1106 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1107 * older core than plain "arm1136". In particular this does not
1108 * have the v6K features.
1109 * These ID register values are correct for 1136 but may be wrong
1110 * for 1136_r2 (in particular r0p2 does not actually implement most
1111 * of the ID registers).
1112 */
1113
1114 cpu->dtb_compatible = "arm,arm1136";
1115 set_feature(&cpu->env, ARM_FEATURE_V6);
1116 set_feature(&cpu->env, ARM_FEATURE_VFP);
1117 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1118 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1119 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1120 cpu->midr = 0x4107b362;
1121 cpu->reset_fpsid = 0x410120b4;
1122 cpu->mvfr0 = 0x11111111;
1123 cpu->mvfr1 = 0x00000000;
1124 cpu->ctr = 0x1dd20d2;
1125 cpu->reset_sctlr = 0x00050078;
1126 cpu->id_pfr0 = 0x111;
1127 cpu->id_pfr1 = 0x1;
1128 cpu->id_dfr0 = 0x2;
1129 cpu->id_afr0 = 0x3;
1130 cpu->id_mmfr0 = 0x01130003;
1131 cpu->id_mmfr1 = 0x10030302;
1132 cpu->id_mmfr2 = 0x01222110;
1133 cpu->id_isar0 = 0x00140011;
1134 cpu->id_isar1 = 0x12002111;
1135 cpu->id_isar2 = 0x11231111;
1136 cpu->id_isar3 = 0x01102131;
1137 cpu->id_isar4 = 0x141;
1138 cpu->reset_auxcr = 7;
1139 }
1140
1141 static void arm1136_initfn(Object *obj)
1142 {
1143 ARMCPU *cpu = ARM_CPU(obj);
1144
1145 cpu->dtb_compatible = "arm,arm1136";
1146 set_feature(&cpu->env, ARM_FEATURE_V6K);
1147 set_feature(&cpu->env, ARM_FEATURE_V6);
1148 set_feature(&cpu->env, ARM_FEATURE_VFP);
1149 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1150 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1151 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1152 cpu->midr = 0x4117b363;
1153 cpu->reset_fpsid = 0x410120b4;
1154 cpu->mvfr0 = 0x11111111;
1155 cpu->mvfr1 = 0x00000000;
1156 cpu->ctr = 0x1dd20d2;
1157 cpu->reset_sctlr = 0x00050078;
1158 cpu->id_pfr0 = 0x111;
1159 cpu->id_pfr1 = 0x1;
1160 cpu->id_dfr0 = 0x2;
1161 cpu->id_afr0 = 0x3;
1162 cpu->id_mmfr0 = 0x01130003;
1163 cpu->id_mmfr1 = 0x10030302;
1164 cpu->id_mmfr2 = 0x01222110;
1165 cpu->id_isar0 = 0x00140011;
1166 cpu->id_isar1 = 0x12002111;
1167 cpu->id_isar2 = 0x11231111;
1168 cpu->id_isar3 = 0x01102131;
1169 cpu->id_isar4 = 0x141;
1170 cpu->reset_auxcr = 7;
1171 }
1172
1173 static void arm1176_initfn(Object *obj)
1174 {
1175 ARMCPU *cpu = ARM_CPU(obj);
1176
1177 cpu->dtb_compatible = "arm,arm1176";
1178 set_feature(&cpu->env, ARM_FEATURE_V6K);
1179 set_feature(&cpu->env, ARM_FEATURE_VFP);
1180 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1181 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1182 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1183 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1184 set_feature(&cpu->env, ARM_FEATURE_EL3);
1185 cpu->midr = 0x410fb767;
1186 cpu->reset_fpsid = 0x410120b5;
1187 cpu->mvfr0 = 0x11111111;
1188 cpu->mvfr1 = 0x00000000;
1189 cpu->ctr = 0x1dd20d2;
1190 cpu->reset_sctlr = 0x00050078;
1191 cpu->id_pfr0 = 0x111;
1192 cpu->id_pfr1 = 0x11;
1193 cpu->id_dfr0 = 0x33;
1194 cpu->id_afr0 = 0;
1195 cpu->id_mmfr0 = 0x01130003;
1196 cpu->id_mmfr1 = 0x10030302;
1197 cpu->id_mmfr2 = 0x01222100;
1198 cpu->id_isar0 = 0x0140011;
1199 cpu->id_isar1 = 0x12002111;
1200 cpu->id_isar2 = 0x11231121;
1201 cpu->id_isar3 = 0x01102131;
1202 cpu->id_isar4 = 0x01141;
1203 cpu->reset_auxcr = 7;
1204 }
1205
1206 static void arm11mpcore_initfn(Object *obj)
1207 {
1208 ARMCPU *cpu = ARM_CPU(obj);
1209
1210 cpu->dtb_compatible = "arm,arm11mpcore";
1211 set_feature(&cpu->env, ARM_FEATURE_V6K);
1212 set_feature(&cpu->env, ARM_FEATURE_VFP);
1213 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1214 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1215 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1216 cpu->midr = 0x410fb022;
1217 cpu->reset_fpsid = 0x410120b4;
1218 cpu->mvfr0 = 0x11111111;
1219 cpu->mvfr1 = 0x00000000;
1220 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1221 cpu->id_pfr0 = 0x111;
1222 cpu->id_pfr1 = 0x1;
1223 cpu->id_dfr0 = 0;
1224 cpu->id_afr0 = 0x2;
1225 cpu->id_mmfr0 = 0x01100103;
1226 cpu->id_mmfr1 = 0x10020302;
1227 cpu->id_mmfr2 = 0x01222000;
1228 cpu->id_isar0 = 0x00100011;
1229 cpu->id_isar1 = 0x12002111;
1230 cpu->id_isar2 = 0x11221011;
1231 cpu->id_isar3 = 0x01102131;
1232 cpu->id_isar4 = 0x141;
1233 cpu->reset_auxcr = 1;
1234 }
1235
1236 static void cortex_m3_initfn(Object *obj)
1237 {
1238 ARMCPU *cpu = ARM_CPU(obj);
1239 set_feature(&cpu->env, ARM_FEATURE_V7);
1240 set_feature(&cpu->env, ARM_FEATURE_M);
1241 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1242 cpu->midr = 0x410fc231;
1243 cpu->pmsav7_dregion = 8;
1244 cpu->id_pfr0 = 0x00000030;
1245 cpu->id_pfr1 = 0x00000200;
1246 cpu->id_dfr0 = 0x00100000;
1247 cpu->id_afr0 = 0x00000000;
1248 cpu->id_mmfr0 = 0x00000030;
1249 cpu->id_mmfr1 = 0x00000000;
1250 cpu->id_mmfr2 = 0x00000000;
1251 cpu->id_mmfr3 = 0x00000000;
1252 cpu->id_isar0 = 0x01141110;
1253 cpu->id_isar1 = 0x02111000;
1254 cpu->id_isar2 = 0x21112231;
1255 cpu->id_isar3 = 0x01111110;
1256 cpu->id_isar4 = 0x01310102;
1257 cpu->id_isar5 = 0x00000000;
1258 }
1259
1260 static void cortex_m4_initfn(Object *obj)
1261 {
1262 ARMCPU *cpu = ARM_CPU(obj);
1263
1264 set_feature(&cpu->env, ARM_FEATURE_V7);
1265 set_feature(&cpu->env, ARM_FEATURE_M);
1266 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1267 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1268 cpu->midr = 0x410fc240; /* r0p0 */
1269 cpu->pmsav7_dregion = 8;
1270 cpu->id_pfr0 = 0x00000030;
1271 cpu->id_pfr1 = 0x00000200;
1272 cpu->id_dfr0 = 0x00100000;
1273 cpu->id_afr0 = 0x00000000;
1274 cpu->id_mmfr0 = 0x00000030;
1275 cpu->id_mmfr1 = 0x00000000;
1276 cpu->id_mmfr2 = 0x00000000;
1277 cpu->id_mmfr3 = 0x00000000;
1278 cpu->id_isar0 = 0x01141110;
1279 cpu->id_isar1 = 0x02111000;
1280 cpu->id_isar2 = 0x21112231;
1281 cpu->id_isar3 = 0x01111110;
1282 cpu->id_isar4 = 0x01310102;
1283 cpu->id_isar5 = 0x00000000;
1284 }
1285
1286 static void cortex_m33_initfn(Object *obj)
1287 {
1288 ARMCPU *cpu = ARM_CPU(obj);
1289
1290 set_feature(&cpu->env, ARM_FEATURE_V8);
1291 set_feature(&cpu->env, ARM_FEATURE_M);
1292 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1293 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1294 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1295 cpu->midr = 0x410fd213; /* r0p3 */
1296 cpu->pmsav7_dregion = 16;
1297 cpu->sau_sregion = 8;
1298 cpu->id_pfr0 = 0x00000030;
1299 cpu->id_pfr1 = 0x00000210;
1300 cpu->id_dfr0 = 0x00200000;
1301 cpu->id_afr0 = 0x00000000;
1302 cpu->id_mmfr0 = 0x00101F40;
1303 cpu->id_mmfr1 = 0x00000000;
1304 cpu->id_mmfr2 = 0x01000000;
1305 cpu->id_mmfr3 = 0x00000000;
1306 cpu->id_isar0 = 0x01101110;
1307 cpu->id_isar1 = 0x02212000;
1308 cpu->id_isar2 = 0x20232232;
1309 cpu->id_isar3 = 0x01111131;
1310 cpu->id_isar4 = 0x01310132;
1311 cpu->id_isar5 = 0x00000000;
1312 cpu->clidr = 0x00000000;
1313 cpu->ctr = 0x8000c000;
1314 }
1315
1316 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1317 {
1318 CPUClass *cc = CPU_CLASS(oc);
1319
1320 #ifndef CONFIG_USER_ONLY
1321 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1322 #endif
1323
1324 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1325 }
1326
1327 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1328 /* Dummy the TCM region regs for the moment */
1329 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1330 .access = PL1_RW, .type = ARM_CP_CONST },
1331 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1332 .access = PL1_RW, .type = ARM_CP_CONST },
1333 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1334 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1335 REGINFO_SENTINEL
1336 };
1337
1338 static void cortex_r5_initfn(Object *obj)
1339 {
1340 ARMCPU *cpu = ARM_CPU(obj);
1341
1342 set_feature(&cpu->env, ARM_FEATURE_V7);
1343 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1344 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1345 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1346 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1347 cpu->midr = 0x411fc153; /* r1p3 */
1348 cpu->id_pfr0 = 0x0131;
1349 cpu->id_pfr1 = 0x001;
1350 cpu->id_dfr0 = 0x010400;
1351 cpu->id_afr0 = 0x0;
1352 cpu->id_mmfr0 = 0x0210030;
1353 cpu->id_mmfr1 = 0x00000000;
1354 cpu->id_mmfr2 = 0x01200000;
1355 cpu->id_mmfr3 = 0x0211;
1356 cpu->id_isar0 = 0x2101111;
1357 cpu->id_isar1 = 0x13112111;
1358 cpu->id_isar2 = 0x21232141;
1359 cpu->id_isar3 = 0x01112131;
1360 cpu->id_isar4 = 0x0010142;
1361 cpu->id_isar5 = 0x0;
1362 cpu->mp_is_up = true;
1363 cpu->pmsav7_dregion = 16;
1364 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1365 }
1366
1367 static void cortex_r5f_initfn(Object *obj)
1368 {
1369 ARMCPU *cpu = ARM_CPU(obj);
1370
1371 cortex_r5_initfn(obj);
1372 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1373 }
1374
1375 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1376 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1377 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1378 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1379 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1380 REGINFO_SENTINEL
1381 };
1382
1383 static void cortex_a8_initfn(Object *obj)
1384 {
1385 ARMCPU *cpu = ARM_CPU(obj);
1386
1387 cpu->dtb_compatible = "arm,cortex-a8";
1388 set_feature(&cpu->env, ARM_FEATURE_V7);
1389 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1390 set_feature(&cpu->env, ARM_FEATURE_NEON);
1391 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1392 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1393 set_feature(&cpu->env, ARM_FEATURE_EL3);
1394 cpu->midr = 0x410fc080;
1395 cpu->reset_fpsid = 0x410330c0;
1396 cpu->mvfr0 = 0x11110222;
1397 cpu->mvfr1 = 0x00011111;
1398 cpu->ctr = 0x82048004;
1399 cpu->reset_sctlr = 0x00c50078;
1400 cpu->id_pfr0 = 0x1031;
1401 cpu->id_pfr1 = 0x11;
1402 cpu->id_dfr0 = 0x400;
1403 cpu->id_afr0 = 0;
1404 cpu->id_mmfr0 = 0x31100003;
1405 cpu->id_mmfr1 = 0x20000000;
1406 cpu->id_mmfr2 = 0x01202000;
1407 cpu->id_mmfr3 = 0x11;
1408 cpu->id_isar0 = 0x00101111;
1409 cpu->id_isar1 = 0x12112111;
1410 cpu->id_isar2 = 0x21232031;
1411 cpu->id_isar3 = 0x11112131;
1412 cpu->id_isar4 = 0x00111142;
1413 cpu->dbgdidr = 0x15141000;
1414 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1415 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1416 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1417 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1418 cpu->reset_auxcr = 2;
1419 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1420 }
1421
1422 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1423 /* power_control should be set to maximum latency. Again,
1424 * default to 0 and set by private hook
1425 */
1426 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1427 .access = PL1_RW, .resetvalue = 0,
1428 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1429 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1430 .access = PL1_RW, .resetvalue = 0,
1431 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1432 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1433 .access = PL1_RW, .resetvalue = 0,
1434 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1435 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1436 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1437 /* TLB lockdown control */
1438 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1439 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1440 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1441 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1442 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1443 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1444 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1445 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1446 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1447 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1448 REGINFO_SENTINEL
1449 };
1450
1451 static void cortex_a9_initfn(Object *obj)
1452 {
1453 ARMCPU *cpu = ARM_CPU(obj);
1454
1455 cpu->dtb_compatible = "arm,cortex-a9";
1456 set_feature(&cpu->env, ARM_FEATURE_V7);
1457 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1458 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1459 set_feature(&cpu->env, ARM_FEATURE_NEON);
1460 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1461 set_feature(&cpu->env, ARM_FEATURE_EL3);
1462 /* Note that A9 supports the MP extensions even for
1463 * A9UP and single-core A9MP (which are both different
1464 * and valid configurations; we don't model A9UP).
1465 */
1466 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1467 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1468 cpu->midr = 0x410fc090;
1469 cpu->reset_fpsid = 0x41033090;
1470 cpu->mvfr0 = 0x11110222;
1471 cpu->mvfr1 = 0x01111111;
1472 cpu->ctr = 0x80038003;
1473 cpu->reset_sctlr = 0x00c50078;
1474 cpu->id_pfr0 = 0x1031;
1475 cpu->id_pfr1 = 0x11;
1476 cpu->id_dfr0 = 0x000;
1477 cpu->id_afr0 = 0;
1478 cpu->id_mmfr0 = 0x00100103;
1479 cpu->id_mmfr1 = 0x20000000;
1480 cpu->id_mmfr2 = 0x01230000;
1481 cpu->id_mmfr3 = 0x00002111;
1482 cpu->id_isar0 = 0x00101111;
1483 cpu->id_isar1 = 0x13112111;
1484 cpu->id_isar2 = 0x21232041;
1485 cpu->id_isar3 = 0x11112131;
1486 cpu->id_isar4 = 0x00111142;
1487 cpu->dbgdidr = 0x35141000;
1488 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1489 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1490 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1491 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1492 }
1493
1494 #ifndef CONFIG_USER_ONLY
1495 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1496 {
1497 /* Linux wants the number of processors from here.
1498 * Might as well set the interrupt-controller bit too.
1499 */
1500 return ((smp_cpus - 1) << 24) | (1 << 23);
1501 }
1502 #endif
1503
1504 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1505 #ifndef CONFIG_USER_ONLY
1506 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1507 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1508 .writefn = arm_cp_write_ignore, },
1509 #endif
1510 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1511 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1512 REGINFO_SENTINEL
1513 };
1514
1515 static void cortex_a7_initfn(Object *obj)
1516 {
1517 ARMCPU *cpu = ARM_CPU(obj);
1518
1519 cpu->dtb_compatible = "arm,cortex-a7";
1520 set_feature(&cpu->env, ARM_FEATURE_V7);
1521 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1522 set_feature(&cpu->env, ARM_FEATURE_NEON);
1523 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1524 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1525 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1526 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1527 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1528 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1529 set_feature(&cpu->env, ARM_FEATURE_EL3);
1530 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1531 cpu->midr = 0x410fc075;
1532 cpu->reset_fpsid = 0x41023075;
1533 cpu->mvfr0 = 0x10110222;
1534 cpu->mvfr1 = 0x11111111;
1535 cpu->ctr = 0x84448003;
1536 cpu->reset_sctlr = 0x00c50078;
1537 cpu->id_pfr0 = 0x00001131;
1538 cpu->id_pfr1 = 0x00011011;
1539 cpu->id_dfr0 = 0x02010555;
1540 cpu->pmceid0 = 0x00000000;
1541 cpu->pmceid1 = 0x00000000;
1542 cpu->id_afr0 = 0x00000000;
1543 cpu->id_mmfr0 = 0x10101105;
1544 cpu->id_mmfr1 = 0x40000000;
1545 cpu->id_mmfr2 = 0x01240000;
1546 cpu->id_mmfr3 = 0x02102211;
1547 cpu->id_isar0 = 0x01101110;
1548 cpu->id_isar1 = 0x13112111;
1549 cpu->id_isar2 = 0x21232041;
1550 cpu->id_isar3 = 0x11112131;
1551 cpu->id_isar4 = 0x10011142;
1552 cpu->dbgdidr = 0x3515f005;
1553 cpu->clidr = 0x0a200023;
1554 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1555 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1556 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1557 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1558 }
1559
1560 static void cortex_a15_initfn(Object *obj)
1561 {
1562 ARMCPU *cpu = ARM_CPU(obj);
1563
1564 cpu->dtb_compatible = "arm,cortex-a15";
1565 set_feature(&cpu->env, ARM_FEATURE_V7);
1566 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1567 set_feature(&cpu->env, ARM_FEATURE_NEON);
1568 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1569 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1570 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1571 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1572 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1573 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1574 set_feature(&cpu->env, ARM_FEATURE_EL3);
1575 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1576 cpu->midr = 0x412fc0f1;
1577 cpu->reset_fpsid = 0x410430f0;
1578 cpu->mvfr0 = 0x10110222;
1579 cpu->mvfr1 = 0x11111111;
1580 cpu->ctr = 0x8444c004;
1581 cpu->reset_sctlr = 0x00c50078;
1582 cpu->id_pfr0 = 0x00001131;
1583 cpu->id_pfr1 = 0x00011011;
1584 cpu->id_dfr0 = 0x02010555;
1585 cpu->pmceid0 = 0x0000000;
1586 cpu->pmceid1 = 0x00000000;
1587 cpu->id_afr0 = 0x00000000;
1588 cpu->id_mmfr0 = 0x10201105;
1589 cpu->id_mmfr1 = 0x20000000;
1590 cpu->id_mmfr2 = 0x01240000;
1591 cpu->id_mmfr3 = 0x02102211;
1592 cpu->id_isar0 = 0x02101110;
1593 cpu->id_isar1 = 0x13112111;
1594 cpu->id_isar2 = 0x21232041;
1595 cpu->id_isar3 = 0x11112131;
1596 cpu->id_isar4 = 0x10011142;
1597 cpu->dbgdidr = 0x3515f021;
1598 cpu->clidr = 0x0a200023;
1599 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1600 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1601 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1602 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1603 }
1604
1605 static void ti925t_initfn(Object *obj)
1606 {
1607 ARMCPU *cpu = ARM_CPU(obj);
1608 set_feature(&cpu->env, ARM_FEATURE_V4T);
1609 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1610 cpu->midr = ARM_CPUID_TI925T;
1611 cpu->ctr = 0x5109149;
1612 cpu->reset_sctlr = 0x00000070;
1613 }
1614
1615 static void sa1100_initfn(Object *obj)
1616 {
1617 ARMCPU *cpu = ARM_CPU(obj);
1618
1619 cpu->dtb_compatible = "intel,sa1100";
1620 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1621 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1622 cpu->midr = 0x4401A11B;
1623 cpu->reset_sctlr = 0x00000070;
1624 }
1625
1626 static void sa1110_initfn(Object *obj)
1627 {
1628 ARMCPU *cpu = ARM_CPU(obj);
1629 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1630 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1631 cpu->midr = 0x6901B119;
1632 cpu->reset_sctlr = 0x00000070;
1633 }
1634
1635 static void pxa250_initfn(Object *obj)
1636 {
1637 ARMCPU *cpu = ARM_CPU(obj);
1638
1639 cpu->dtb_compatible = "marvell,xscale";
1640 set_feature(&cpu->env, ARM_FEATURE_V5);
1641 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1642 cpu->midr = 0x69052100;
1643 cpu->ctr = 0xd172172;
1644 cpu->reset_sctlr = 0x00000078;
1645 }
1646
1647 static void pxa255_initfn(Object *obj)
1648 {
1649 ARMCPU *cpu = ARM_CPU(obj);
1650
1651 cpu->dtb_compatible = "marvell,xscale";
1652 set_feature(&cpu->env, ARM_FEATURE_V5);
1653 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1654 cpu->midr = 0x69052d00;
1655 cpu->ctr = 0xd172172;
1656 cpu->reset_sctlr = 0x00000078;
1657 }
1658
1659 static void pxa260_initfn(Object *obj)
1660 {
1661 ARMCPU *cpu = ARM_CPU(obj);
1662
1663 cpu->dtb_compatible = "marvell,xscale";
1664 set_feature(&cpu->env, ARM_FEATURE_V5);
1665 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1666 cpu->midr = 0x69052903;
1667 cpu->ctr = 0xd172172;
1668 cpu->reset_sctlr = 0x00000078;
1669 }
1670
1671 static void pxa261_initfn(Object *obj)
1672 {
1673 ARMCPU *cpu = ARM_CPU(obj);
1674
1675 cpu->dtb_compatible = "marvell,xscale";
1676 set_feature(&cpu->env, ARM_FEATURE_V5);
1677 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1678 cpu->midr = 0x69052d05;
1679 cpu->ctr = 0xd172172;
1680 cpu->reset_sctlr = 0x00000078;
1681 }
1682
1683 static void pxa262_initfn(Object *obj)
1684 {
1685 ARMCPU *cpu = ARM_CPU(obj);
1686
1687 cpu->dtb_compatible = "marvell,xscale";
1688 set_feature(&cpu->env, ARM_FEATURE_V5);
1689 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1690 cpu->midr = 0x69052d06;
1691 cpu->ctr = 0xd172172;
1692 cpu->reset_sctlr = 0x00000078;
1693 }
1694
1695 static void pxa270a0_initfn(Object *obj)
1696 {
1697 ARMCPU *cpu = ARM_CPU(obj);
1698
1699 cpu->dtb_compatible = "marvell,xscale";
1700 set_feature(&cpu->env, ARM_FEATURE_V5);
1701 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1702 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1703 cpu->midr = 0x69054110;
1704 cpu->ctr = 0xd172172;
1705 cpu->reset_sctlr = 0x00000078;
1706 }
1707
1708 static void pxa270a1_initfn(Object *obj)
1709 {
1710 ARMCPU *cpu = ARM_CPU(obj);
1711
1712 cpu->dtb_compatible = "marvell,xscale";
1713 set_feature(&cpu->env, ARM_FEATURE_V5);
1714 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1715 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1716 cpu->midr = 0x69054111;
1717 cpu->ctr = 0xd172172;
1718 cpu->reset_sctlr = 0x00000078;
1719 }
1720
1721 static void pxa270b0_initfn(Object *obj)
1722 {
1723 ARMCPU *cpu = ARM_CPU(obj);
1724
1725 cpu->dtb_compatible = "marvell,xscale";
1726 set_feature(&cpu->env, ARM_FEATURE_V5);
1727 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1728 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1729 cpu->midr = 0x69054112;
1730 cpu->ctr = 0xd172172;
1731 cpu->reset_sctlr = 0x00000078;
1732 }
1733
1734 static void pxa270b1_initfn(Object *obj)
1735 {
1736 ARMCPU *cpu = ARM_CPU(obj);
1737
1738 cpu->dtb_compatible = "marvell,xscale";
1739 set_feature(&cpu->env, ARM_FEATURE_V5);
1740 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1741 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1742 cpu->midr = 0x69054113;
1743 cpu->ctr = 0xd172172;
1744 cpu->reset_sctlr = 0x00000078;
1745 }
1746
1747 static void pxa270c0_initfn(Object *obj)
1748 {
1749 ARMCPU *cpu = ARM_CPU(obj);
1750
1751 cpu->dtb_compatible = "marvell,xscale";
1752 set_feature(&cpu->env, ARM_FEATURE_V5);
1753 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1754 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1755 cpu->midr = 0x69054114;
1756 cpu->ctr = 0xd172172;
1757 cpu->reset_sctlr = 0x00000078;
1758 }
1759
1760 static void pxa270c5_initfn(Object *obj)
1761 {
1762 ARMCPU *cpu = ARM_CPU(obj);
1763
1764 cpu->dtb_compatible = "marvell,xscale";
1765 set_feature(&cpu->env, ARM_FEATURE_V5);
1766 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1767 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1768 cpu->midr = 0x69054117;
1769 cpu->ctr = 0xd172172;
1770 cpu->reset_sctlr = 0x00000078;
1771 }
1772
1773 #ifndef TARGET_AARCH64
1774 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1775 * otherwise, a CPU with as many features enabled as our emulation supports.
1776 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1777 * this only needs to handle 32 bits.
1778 */
1779 static void arm_max_initfn(Object *obj)
1780 {
1781 ARMCPU *cpu = ARM_CPU(obj);
1782
1783 if (kvm_enabled()) {
1784 kvm_arm_set_cpu_features_from_host(cpu);
1785 } else {
1786 cortex_a15_initfn(obj);
1787 #ifdef CONFIG_USER_ONLY
1788 /* We don't set these in system emulation mode for the moment,
1789 * since we don't correctly set the ID registers to advertise them,
1790 */
1791 set_feature(&cpu->env, ARM_FEATURE_V8);
1792 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1793 set_feature(&cpu->env, ARM_FEATURE_NEON);
1794 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1795 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1796 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1797 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1798 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1799 set_feature(&cpu->env, ARM_FEATURE_CRC);
1800 set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
1801 set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
1802 #endif
1803 }
1804 }
1805 #endif
1806
1807 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1808
1809 typedef struct ARMCPUInfo {
1810 const char *name;
1811 void (*initfn)(Object *obj);
1812 void (*class_init)(ObjectClass *oc, void *data);
1813 } ARMCPUInfo;
1814
1815 static const ARMCPUInfo arm_cpus[] = {
1816 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1817 { .name = "arm926", .initfn = arm926_initfn },
1818 { .name = "arm946", .initfn = arm946_initfn },
1819 { .name = "arm1026", .initfn = arm1026_initfn },
1820 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1821 * older core than plain "arm1136". In particular this does not
1822 * have the v6K features.
1823 */
1824 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1825 { .name = "arm1136", .initfn = arm1136_initfn },
1826 { .name = "arm1176", .initfn = arm1176_initfn },
1827 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1828 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1829 .class_init = arm_v7m_class_init },
1830 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1831 .class_init = arm_v7m_class_init },
1832 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
1833 .class_init = arm_v7m_class_init },
1834 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1835 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
1836 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1837 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1838 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1839 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1840 { .name = "ti925t", .initfn = ti925t_initfn },
1841 { .name = "sa1100", .initfn = sa1100_initfn },
1842 { .name = "sa1110", .initfn = sa1110_initfn },
1843 { .name = "pxa250", .initfn = pxa250_initfn },
1844 { .name = "pxa255", .initfn = pxa255_initfn },
1845 { .name = "pxa260", .initfn = pxa260_initfn },
1846 { .name = "pxa261", .initfn = pxa261_initfn },
1847 { .name = "pxa262", .initfn = pxa262_initfn },
1848 /* "pxa270" is an alias for "pxa270-a0" */
1849 { .name = "pxa270", .initfn = pxa270a0_initfn },
1850 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1851 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1852 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1853 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1854 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1855 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1856 #ifndef TARGET_AARCH64
1857 { .name = "max", .initfn = arm_max_initfn },
1858 #endif
1859 #ifdef CONFIG_USER_ONLY
1860 { .name = "any", .initfn = arm_max_initfn },
1861 #endif
1862 #endif
1863 { .name = NULL }
1864 };
1865
1866 static Property arm_cpu_properties[] = {
1867 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1868 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1869 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1870 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1871 mp_affinity, ARM64_AFFINITY_INVALID),
1872 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1873 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1874 DEFINE_PROP_END_OF_LIST()
1875 };
1876
1877 #ifdef CONFIG_USER_ONLY
1878 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1879 int rw, int mmu_idx)
1880 {
1881 ARMCPU *cpu = ARM_CPU(cs);
1882 CPUARMState *env = &cpu->env;
1883
1884 env->exception.vaddress = address;
1885 if (rw == 2) {
1886 cs->exception_index = EXCP_PREFETCH_ABORT;
1887 } else {
1888 cs->exception_index = EXCP_DATA_ABORT;
1889 }
1890 return 1;
1891 }
1892 #endif
1893
1894 static gchar *arm_gdb_arch_name(CPUState *cs)
1895 {
1896 ARMCPU *cpu = ARM_CPU(cs);
1897 CPUARMState *env = &cpu->env;
1898
1899 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1900 return g_strdup("iwmmxt");
1901 }
1902 return g_strdup("arm");
1903 }
1904
1905 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1906 {
1907 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1908 CPUClass *cc = CPU_CLASS(acc);
1909 DeviceClass *dc = DEVICE_CLASS(oc);
1910
1911 device_class_set_parent_realize(dc, arm_cpu_realizefn,
1912 &acc->parent_realize);
1913 dc->props = arm_cpu_properties;
1914
1915 acc->parent_reset = cc->reset;
1916 cc->reset = arm_cpu_reset;
1917
1918 cc->class_by_name = arm_cpu_class_by_name;
1919 cc->has_work = arm_cpu_has_work;
1920 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1921 cc->dump_state = arm_cpu_dump_state;
1922 cc->set_pc = arm_cpu_set_pc;
1923 cc->gdb_read_register = arm_cpu_gdb_read_register;
1924 cc->gdb_write_register = arm_cpu_gdb_write_register;
1925 #ifdef CONFIG_USER_ONLY
1926 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1927 #else
1928 cc->do_interrupt = arm_cpu_do_interrupt;
1929 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1930 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
1931 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1932 cc->asidx_from_attrs = arm_asidx_from_attrs;
1933 cc->vmsd = &vmstate_arm_cpu;
1934 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1935 cc->write_elf64_note = arm_cpu_write_elf64_note;
1936 cc->write_elf32_note = arm_cpu_write_elf32_note;
1937 #endif
1938 cc->gdb_num_core_regs = 26;
1939 cc->gdb_core_xml_file = "arm-core.xml";
1940 cc->gdb_arch_name = arm_gdb_arch_name;
1941 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1942 cc->gdb_stop_before_watchpoint = true;
1943 cc->debug_excp_handler = arm_debug_excp_handler;
1944 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1945 #if !defined(CONFIG_USER_ONLY)
1946 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1947 #endif
1948
1949 cc->disas_set_info = arm_disas_set_info;
1950 #ifdef CONFIG_TCG
1951 cc->tcg_initialize = arm_translate_init;
1952 #endif
1953 }
1954
1955 #ifdef CONFIG_KVM
1956 static void arm_host_initfn(Object *obj)
1957 {
1958 ARMCPU *cpu = ARM_CPU(obj);
1959
1960 kvm_arm_set_cpu_features_from_host(cpu);
1961 }
1962
1963 static const TypeInfo host_arm_cpu_type_info = {
1964 .name = TYPE_ARM_HOST_CPU,
1965 #ifdef TARGET_AARCH64
1966 .parent = TYPE_AARCH64_CPU,
1967 #else
1968 .parent = TYPE_ARM_CPU,
1969 #endif
1970 .instance_init = arm_host_initfn,
1971 };
1972
1973 #endif
1974
1975 static void cpu_register(const ARMCPUInfo *info)
1976 {
1977 TypeInfo type_info = {
1978 .parent = TYPE_ARM_CPU,
1979 .instance_size = sizeof(ARMCPU),
1980 .instance_init = info->initfn,
1981 .class_size = sizeof(ARMCPUClass),
1982 .class_init = info->class_init,
1983 };
1984
1985 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1986 type_register(&type_info);
1987 g_free((void *)type_info.name);
1988 }
1989
1990 static const TypeInfo arm_cpu_type_info = {
1991 .name = TYPE_ARM_CPU,
1992 .parent = TYPE_CPU,
1993 .instance_size = sizeof(ARMCPU),
1994 .instance_init = arm_cpu_initfn,
1995 .instance_post_init = arm_cpu_post_init,
1996 .instance_finalize = arm_cpu_finalizefn,
1997 .abstract = true,
1998 .class_size = sizeof(ARMCPUClass),
1999 .class_init = arm_cpu_class_init,
2000 };
2001
2002 static const TypeInfo idau_interface_type_info = {
2003 .name = TYPE_IDAU_INTERFACE,
2004 .parent = TYPE_INTERFACE,
2005 .class_size = sizeof(IDAUInterfaceClass),
2006 };
2007
2008 static void arm_cpu_register_types(void)
2009 {
2010 const ARMCPUInfo *info = arm_cpus;
2011
2012 type_register_static(&arm_cpu_type_info);
2013 type_register_static(&idau_interface_type_info);
2014
2015 while (info->name) {
2016 cpu_register(info);
2017 info++;
2018 }
2019
2020 #ifdef CONFIG_KVM
2021 type_register_static(&host_arm_cpu_type_info);
2022 #endif
2023 }
2024
2025 type_init(arm_cpu_register_types)