]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
target/hppa: Update to SeaBIOS-hppa version 8
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cs->env_ptr;
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cs->env_ptr;
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* and to the FP/Neon instructions */
247 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248 CPACR_EL1, FPEN, 3);
249 /* and to the SVE instructions, with default vector length */
250 if (cpu_isar_feature(aa64_sve, cpu)) {
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, ZEN, 3);
253 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
254 }
255 /* and for SME instructions, with default vector length, and TPIDR2 */
256 if (cpu_isar_feature(aa64_sme, cpu)) {
257 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
258 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259 CPACR_EL1, SMEN, 3);
260 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
261 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
262 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
263 SMCR, FA64, 1);
264 }
265 }
266 /*
267 * Enable 48-bit address space (TODO: take reserved_va into account).
268 * Enable TBI0 but not TBI1.
269 * Note that this must match useronly_clean_ptr.
270 */
271 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
272
273 /* Enable MTE */
274 if (cpu_isar_feature(aa64_mte, cpu)) {
275 /* Enable tag access, but leave TCF0 as No Effect (0). */
276 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
277 /*
278 * Exclude all tags, so that tag 0 is always used.
279 * This corresponds to Linux current->thread.gcr_incl = 0.
280 *
281 * Set RRND, so that helper_irg() will generate a seed later.
282 * Here in cpu_reset(), the crypto subsystem has not yet been
283 * initialized.
284 */
285 env->cp15.gcr_el1 = 0x1ffff;
286 }
287 /*
288 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289 * This is not yet exposed from the Linux kernel in any way.
290 */
291 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
292 /* Disable access to Debug Communication Channel (DCC). */
293 env->cp15.mdscr_el1 |= 1 << 12;
294 #else
295 /* Reset into the highest available EL */
296 if (arm_feature(env, ARM_FEATURE_EL3)) {
297 env->pstate = PSTATE_MODE_EL3h;
298 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
299 env->pstate = PSTATE_MODE_EL2h;
300 } else {
301 env->pstate = PSTATE_MODE_EL1h;
302 }
303
304 /* Sample rvbar at reset. */
305 env->cp15.rvbar = cpu->rvbar_prop;
306 env->pc = env->cp15.rvbar;
307 #endif
308 } else {
309 #if defined(CONFIG_USER_ONLY)
310 /* Userspace expects access to cp10 and cp11 for FP/Neon */
311 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
312 CPACR, CP10, 3);
313 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
314 CPACR, CP11, 3);
315 #endif
316 if (arm_feature(env, ARM_FEATURE_V8)) {
317 env->cp15.rvbar = cpu->rvbar_prop;
318 env->regs[15] = cpu->rvbar_prop;
319 }
320 }
321
322 #if defined(CONFIG_USER_ONLY)
323 env->uncached_cpsr = ARM_CPU_MODE_USR;
324 /* For user mode we must enable access to coprocessors */
325 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
326 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
327 env->cp15.c15_cpar = 3;
328 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
329 env->cp15.c15_cpar = 1;
330 }
331 #else
332
333 /*
334 * If the highest available EL is EL2, AArch32 will start in Hyp
335 * mode; otherwise it starts in SVC. Note that if we start in
336 * AArch64 then these values in the uncached_cpsr will be ignored.
337 */
338 if (arm_feature(env, ARM_FEATURE_EL2) &&
339 !arm_feature(env, ARM_FEATURE_EL3)) {
340 env->uncached_cpsr = ARM_CPU_MODE_HYP;
341 } else {
342 env->uncached_cpsr = ARM_CPU_MODE_SVC;
343 }
344 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
345
346 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
347 * executing as AArch32 then check if highvecs are enabled and
348 * adjust the PC accordingly.
349 */
350 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
351 env->regs[15] = 0xFFFF0000;
352 }
353
354 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
355 #endif
356
357 if (arm_feature(env, ARM_FEATURE_M)) {
358 #ifndef CONFIG_USER_ONLY
359 uint32_t initial_msp; /* Loaded from 0x0 */
360 uint32_t initial_pc; /* Loaded from 0x4 */
361 uint8_t *rom;
362 uint32_t vecbase;
363 #endif
364
365 if (cpu_isar_feature(aa32_lob, cpu)) {
366 /*
367 * LTPSIZE is constant 4 if MVE not implemented, and resets
368 * to an UNKNOWN value if MVE is implemented. We choose to
369 * always reset to 4.
370 */
371 env->v7m.ltpsize = 4;
372 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
373 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
374 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
375 }
376
377 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
378 env->v7m.secure = true;
379 } else {
380 /* This bit resets to 0 if security is supported, but 1 if
381 * it is not. The bit is not present in v7M, but we set it
382 * here so we can avoid having to make checks on it conditional
383 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
384 */
385 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
386 /*
387 * Set NSACR to indicate "NS access permitted to everything";
388 * this avoids having to have all the tests of it being
389 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
390 * v8.1M the guest-visible value of NSACR in a CPU without the
391 * Security Extension is 0xcff.
392 */
393 env->v7m.nsacr = 0xcff;
394 }
395
396 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
397 * that it resets to 1, so QEMU always does that rather than making
398 * it dependent on CPU model. In v8M it is RES1.
399 */
400 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
401 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
402 if (arm_feature(env, ARM_FEATURE_V8)) {
403 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
404 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
405 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
406 }
407 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
408 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
409 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
410 }
411
412 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
413 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
414 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
415 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
416 }
417
418 #ifndef CONFIG_USER_ONLY
419 /* Unlike A/R profile, M profile defines the reset LR value */
420 env->regs[14] = 0xffffffff;
421
422 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
423 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
424
425 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
426 vecbase = env->v7m.vecbase[env->v7m.secure];
427 rom = rom_ptr_for_as(s->as, vecbase, 8);
428 if (rom) {
429 /* Address zero is covered by ROM which hasn't yet been
430 * copied into physical memory.
431 */
432 initial_msp = ldl_p(rom);
433 initial_pc = ldl_p(rom + 4);
434 } else {
435 /* Address zero not covered by a ROM blob, or the ROM blob
436 * is in non-modifiable memory and this is a second reset after
437 * it got copied into memory. In the latter case, rom_ptr
438 * will return a NULL pointer and we should use ldl_phys instead.
439 */
440 initial_msp = ldl_phys(s->as, vecbase);
441 initial_pc = ldl_phys(s->as, vecbase + 4);
442 }
443
444 qemu_log_mask(CPU_LOG_INT,
445 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
446 initial_msp, initial_pc);
447
448 env->regs[13] = initial_msp & 0xFFFFFFFC;
449 env->regs[15] = initial_pc & ~1;
450 env->thumb = initial_pc & 1;
451 #else
452 /*
453 * For user mode we run non-secure and with access to the FPU.
454 * The FPU context is active (ie does not need further setup)
455 * and is owned by non-secure.
456 */
457 env->v7m.secure = false;
458 env->v7m.nsacr = 0xcff;
459 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
460 env->v7m.fpccr[M_REG_S] &=
461 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
462 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
463 #endif
464 }
465
466 /* M profile requires that reset clears the exclusive monitor;
467 * A profile does not, but clearing it makes more sense than having it
468 * set with an exclusive access on address zero.
469 */
470 arm_clear_exclusive(env);
471
472 if (arm_feature(env, ARM_FEATURE_PMSA)) {
473 if (cpu->pmsav7_dregion > 0) {
474 if (arm_feature(env, ARM_FEATURE_V8)) {
475 memset(env->pmsav8.rbar[M_REG_NS], 0,
476 sizeof(*env->pmsav8.rbar[M_REG_NS])
477 * cpu->pmsav7_dregion);
478 memset(env->pmsav8.rlar[M_REG_NS], 0,
479 sizeof(*env->pmsav8.rlar[M_REG_NS])
480 * cpu->pmsav7_dregion);
481 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
482 memset(env->pmsav8.rbar[M_REG_S], 0,
483 sizeof(*env->pmsav8.rbar[M_REG_S])
484 * cpu->pmsav7_dregion);
485 memset(env->pmsav8.rlar[M_REG_S], 0,
486 sizeof(*env->pmsav8.rlar[M_REG_S])
487 * cpu->pmsav7_dregion);
488 }
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 memset(env->pmsav7.drbar, 0,
491 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
492 memset(env->pmsav7.drsr, 0,
493 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
494 memset(env->pmsav7.dracr, 0,
495 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
496 }
497 }
498
499 if (cpu->pmsav8r_hdregion > 0) {
500 memset(env->pmsav8.hprbar, 0,
501 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
502 memset(env->pmsav8.hprlar, 0,
503 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
504 }
505
506 env->pmsav7.rnr[M_REG_NS] = 0;
507 env->pmsav7.rnr[M_REG_S] = 0;
508 env->pmsav8.mair0[M_REG_NS] = 0;
509 env->pmsav8.mair0[M_REG_S] = 0;
510 env->pmsav8.mair1[M_REG_NS] = 0;
511 env->pmsav8.mair1[M_REG_S] = 0;
512 }
513
514 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
515 if (cpu->sau_sregion > 0) {
516 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
517 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
518 }
519 env->sau.rnr = 0;
520 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
521 * the Cortex-M33 does.
522 */
523 env->sau.ctrl = 0;
524 }
525
526 set_flush_to_zero(1, &env->vfp.standard_fp_status);
527 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
528 set_default_nan_mode(1, &env->vfp.standard_fp_status);
529 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
530 set_float_detect_tininess(float_tininess_before_rounding,
531 &env->vfp.fp_status);
532 set_float_detect_tininess(float_tininess_before_rounding,
533 &env->vfp.standard_fp_status);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.fp_status_f16);
536 set_float_detect_tininess(float_tininess_before_rounding,
537 &env->vfp.standard_fp_status_f16);
538 #ifndef CONFIG_USER_ONLY
539 if (kvm_enabled()) {
540 kvm_arm_reset_vcpu(cpu);
541 }
542 #endif
543
544 if (tcg_enabled()) {
545 hw_breakpoint_update_all(cpu);
546 hw_watchpoint_update_all(cpu);
547
548 arm_rebuild_hflags(env);
549 }
550 }
551
552 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
553
554 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
555 unsigned int target_el,
556 unsigned int cur_el, bool secure,
557 uint64_t hcr_el2)
558 {
559 CPUARMState *env = cs->env_ptr;
560 bool pstate_unmasked;
561 bool unmasked = false;
562
563 /*
564 * Don't take exceptions if they target a lower EL.
565 * This check should catch any exceptions that would not be taken
566 * but left pending.
567 */
568 if (cur_el > target_el) {
569 return false;
570 }
571
572 switch (excp_idx) {
573 case EXCP_FIQ:
574 pstate_unmasked = !(env->daif & PSTATE_F);
575 break;
576
577 case EXCP_IRQ:
578 pstate_unmasked = !(env->daif & PSTATE_I);
579 break;
580
581 case EXCP_VFIQ:
582 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
583 /* VFIQs are only taken when hypervized. */
584 return false;
585 }
586 return !(env->daif & PSTATE_F);
587 case EXCP_VIRQ:
588 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
589 /* VIRQs are only taken when hypervized. */
590 return false;
591 }
592 return !(env->daif & PSTATE_I);
593 case EXCP_VSERR:
594 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
595 /* VIRQs are only taken when hypervized. */
596 return false;
597 }
598 return !(env->daif & PSTATE_A);
599 default:
600 g_assert_not_reached();
601 }
602
603 /*
604 * Use the target EL, current execution state and SCR/HCR settings to
605 * determine whether the corresponding CPSR bit is used to mask the
606 * interrupt.
607 */
608 if ((target_el > cur_el) && (target_el != 1)) {
609 /* Exceptions targeting a higher EL may not be maskable */
610 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
611 switch (target_el) {
612 case 2:
613 /*
614 * According to ARM DDI 0487H.a, an interrupt can be masked
615 * when HCR_E2H and HCR_TGE are both set regardless of the
616 * current Security state. Note that we need to revisit this
617 * part again once we need to support NMI.
618 */
619 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
620 unmasked = true;
621 }
622 break;
623 case 3:
624 /* Interrupt cannot be masked when the target EL is 3 */
625 unmasked = true;
626 break;
627 default:
628 g_assert_not_reached();
629 }
630 } else {
631 /*
632 * The old 32-bit-only environment has a more complicated
633 * masking setup. HCR and SCR bits not only affect interrupt
634 * routing but also change the behaviour of masking.
635 */
636 bool hcr, scr;
637
638 switch (excp_idx) {
639 case EXCP_FIQ:
640 /*
641 * If FIQs are routed to EL3 or EL2 then there are cases where
642 * we override the CPSR.F in determining if the exception is
643 * masked or not. If neither of these are set then we fall back
644 * to the CPSR.F setting otherwise we further assess the state
645 * below.
646 */
647 hcr = hcr_el2 & HCR_FMO;
648 scr = (env->cp15.scr_el3 & SCR_FIQ);
649
650 /*
651 * When EL3 is 32-bit, the SCR.FW bit controls whether the
652 * CPSR.F bit masks FIQ interrupts when taken in non-secure
653 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
654 * when non-secure but only when FIQs are only routed to EL3.
655 */
656 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
657 break;
658 case EXCP_IRQ:
659 /*
660 * When EL3 execution state is 32-bit, if HCR.IMO is set then
661 * we may override the CPSR.I masking when in non-secure state.
662 * The SCR.IRQ setting has already been taken into consideration
663 * when setting the target EL, so it does not have a further
664 * affect here.
665 */
666 hcr = hcr_el2 & HCR_IMO;
667 scr = false;
668 break;
669 default:
670 g_assert_not_reached();
671 }
672
673 if ((scr || hcr) && !secure) {
674 unmasked = true;
675 }
676 }
677 }
678
679 /*
680 * The PSTATE bits only mask the interrupt if we have not overriden the
681 * ability above.
682 */
683 return unmasked || pstate_unmasked;
684 }
685
686 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
687 {
688 CPUClass *cc = CPU_GET_CLASS(cs);
689 CPUARMState *env = cs->env_ptr;
690 uint32_t cur_el = arm_current_el(env);
691 bool secure = arm_is_secure(env);
692 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
693 uint32_t target_el;
694 uint32_t excp_idx;
695
696 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
697
698 if (interrupt_request & CPU_INTERRUPT_FIQ) {
699 excp_idx = EXCP_FIQ;
700 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
701 if (arm_excp_unmasked(cs, excp_idx, target_el,
702 cur_el, secure, hcr_el2)) {
703 goto found;
704 }
705 }
706 if (interrupt_request & CPU_INTERRUPT_HARD) {
707 excp_idx = EXCP_IRQ;
708 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
709 if (arm_excp_unmasked(cs, excp_idx, target_el,
710 cur_el, secure, hcr_el2)) {
711 goto found;
712 }
713 }
714 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
715 excp_idx = EXCP_VIRQ;
716 target_el = 1;
717 if (arm_excp_unmasked(cs, excp_idx, target_el,
718 cur_el, secure, hcr_el2)) {
719 goto found;
720 }
721 }
722 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
723 excp_idx = EXCP_VFIQ;
724 target_el = 1;
725 if (arm_excp_unmasked(cs, excp_idx, target_el,
726 cur_el, secure, hcr_el2)) {
727 goto found;
728 }
729 }
730 if (interrupt_request & CPU_INTERRUPT_VSERR) {
731 excp_idx = EXCP_VSERR;
732 target_el = 1;
733 if (arm_excp_unmasked(cs, excp_idx, target_el,
734 cur_el, secure, hcr_el2)) {
735 /* Taking a virtual abort clears HCR_EL2.VSE */
736 env->cp15.hcr_el2 &= ~HCR_VSE;
737 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
738 goto found;
739 }
740 }
741 return false;
742
743 found:
744 cs->exception_index = excp_idx;
745 env->exception.target_el = target_el;
746 cc->tcg_ops->do_interrupt(cs);
747 return true;
748 }
749
750 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
751
752 void arm_cpu_update_virq(ARMCPU *cpu)
753 {
754 /*
755 * Update the interrupt level for VIRQ, which is the logical OR of
756 * the HCR_EL2.VI bit and the input line level from the GIC.
757 */
758 CPUARMState *env = &cpu->env;
759 CPUState *cs = CPU(cpu);
760
761 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
762 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
763
764 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
765 if (new_state) {
766 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
767 } else {
768 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
769 }
770 }
771 }
772
773 void arm_cpu_update_vfiq(ARMCPU *cpu)
774 {
775 /*
776 * Update the interrupt level for VFIQ, which is the logical OR of
777 * the HCR_EL2.VF bit and the input line level from the GIC.
778 */
779 CPUARMState *env = &cpu->env;
780 CPUState *cs = CPU(cpu);
781
782 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
783 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
784
785 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
786 if (new_state) {
787 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
788 } else {
789 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
790 }
791 }
792 }
793
794 void arm_cpu_update_vserr(ARMCPU *cpu)
795 {
796 /*
797 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
798 */
799 CPUARMState *env = &cpu->env;
800 CPUState *cs = CPU(cpu);
801
802 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
803
804 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
805 if (new_state) {
806 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
807 } else {
808 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
809 }
810 }
811 }
812
813 #ifndef CONFIG_USER_ONLY
814 static void arm_cpu_set_irq(void *opaque, int irq, int level)
815 {
816 ARMCPU *cpu = opaque;
817 CPUARMState *env = &cpu->env;
818 CPUState *cs = CPU(cpu);
819 static const int mask[] = {
820 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
821 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
822 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
823 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
824 };
825
826 if (!arm_feature(env, ARM_FEATURE_EL2) &&
827 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
828 /*
829 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
830 * have EL2 support we don't care. (Unless the guest is doing something
831 * silly this will only be calls saying "level is still 0".)
832 */
833 return;
834 }
835
836 if (level) {
837 env->irq_line_state |= mask[irq];
838 } else {
839 env->irq_line_state &= ~mask[irq];
840 }
841
842 switch (irq) {
843 case ARM_CPU_VIRQ:
844 arm_cpu_update_virq(cpu);
845 break;
846 case ARM_CPU_VFIQ:
847 arm_cpu_update_vfiq(cpu);
848 break;
849 case ARM_CPU_IRQ:
850 case ARM_CPU_FIQ:
851 if (level) {
852 cpu_interrupt(cs, mask[irq]);
853 } else {
854 cpu_reset_interrupt(cs, mask[irq]);
855 }
856 break;
857 default:
858 g_assert_not_reached();
859 }
860 }
861
862 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
863 {
864 #ifdef CONFIG_KVM
865 ARMCPU *cpu = opaque;
866 CPUARMState *env = &cpu->env;
867 CPUState *cs = CPU(cpu);
868 uint32_t linestate_bit;
869 int irq_id;
870
871 switch (irq) {
872 case ARM_CPU_IRQ:
873 irq_id = KVM_ARM_IRQ_CPU_IRQ;
874 linestate_bit = CPU_INTERRUPT_HARD;
875 break;
876 case ARM_CPU_FIQ:
877 irq_id = KVM_ARM_IRQ_CPU_FIQ;
878 linestate_bit = CPU_INTERRUPT_FIQ;
879 break;
880 default:
881 g_assert_not_reached();
882 }
883
884 if (level) {
885 env->irq_line_state |= linestate_bit;
886 } else {
887 env->irq_line_state &= ~linestate_bit;
888 }
889 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
890 #endif
891 }
892
893 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
894 {
895 ARMCPU *cpu = ARM_CPU(cs);
896 CPUARMState *env = &cpu->env;
897
898 cpu_synchronize_state(cs);
899 return arm_cpu_data_is_big_endian(env);
900 }
901
902 #endif
903
904 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
905 {
906 ARMCPU *ac = ARM_CPU(cpu);
907 CPUARMState *env = &ac->env;
908 bool sctlr_b;
909
910 if (is_a64(env)) {
911 info->cap_arch = CS_ARCH_ARM64;
912 info->cap_insn_unit = 4;
913 info->cap_insn_split = 4;
914 } else {
915 int cap_mode;
916 if (env->thumb) {
917 info->cap_insn_unit = 2;
918 info->cap_insn_split = 4;
919 cap_mode = CS_MODE_THUMB;
920 } else {
921 info->cap_insn_unit = 4;
922 info->cap_insn_split = 4;
923 cap_mode = CS_MODE_ARM;
924 }
925 if (arm_feature(env, ARM_FEATURE_V8)) {
926 cap_mode |= CS_MODE_V8;
927 }
928 if (arm_feature(env, ARM_FEATURE_M)) {
929 cap_mode |= CS_MODE_MCLASS;
930 }
931 info->cap_arch = CS_ARCH_ARM;
932 info->cap_mode = cap_mode;
933 }
934
935 sctlr_b = arm_sctlr_b(env);
936 if (bswap_code(sctlr_b)) {
937 #if TARGET_BIG_ENDIAN
938 info->endian = BFD_ENDIAN_LITTLE;
939 #else
940 info->endian = BFD_ENDIAN_BIG;
941 #endif
942 }
943 info->flags &= ~INSN_ARM_BE32;
944 #ifndef CONFIG_USER_ONLY
945 if (sctlr_b) {
946 info->flags |= INSN_ARM_BE32;
947 }
948 #endif
949 }
950
951 #ifdef TARGET_AARCH64
952
953 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
954 {
955 ARMCPU *cpu = ARM_CPU(cs);
956 CPUARMState *env = &cpu->env;
957 uint32_t psr = pstate_read(env);
958 int i;
959 int el = arm_current_el(env);
960 const char *ns_status;
961 bool sve;
962
963 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
964 for (i = 0; i < 32; i++) {
965 if (i == 31) {
966 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
967 } else {
968 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
969 (i + 2) % 3 ? " " : "\n");
970 }
971 }
972
973 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
974 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
975 } else {
976 ns_status = "";
977 }
978 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
979 psr,
980 psr & PSTATE_N ? 'N' : '-',
981 psr & PSTATE_Z ? 'Z' : '-',
982 psr & PSTATE_C ? 'C' : '-',
983 psr & PSTATE_V ? 'V' : '-',
984 ns_status,
985 el,
986 psr & PSTATE_SP ? 'h' : 't');
987
988 if (cpu_isar_feature(aa64_sme, cpu)) {
989 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
990 env->svcr,
991 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
992 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
993 }
994 if (cpu_isar_feature(aa64_bti, cpu)) {
995 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
996 }
997 if (!(flags & CPU_DUMP_FPU)) {
998 qemu_fprintf(f, "\n");
999 return;
1000 }
1001 if (fp_exception_el(env, el) != 0) {
1002 qemu_fprintf(f, " FPU disabled\n");
1003 return;
1004 }
1005 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1006 vfp_get_fpcr(env), vfp_get_fpsr(env));
1007
1008 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1009 sve = sme_exception_el(env, el) == 0;
1010 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1011 sve = sve_exception_el(env, el) == 0;
1012 } else {
1013 sve = false;
1014 }
1015
1016 if (sve) {
1017 int j, zcr_len = sve_vqm1_for_el(env, el);
1018
1019 for (i = 0; i <= FFR_PRED_NUM; i++) {
1020 bool eol;
1021 if (i == FFR_PRED_NUM) {
1022 qemu_fprintf(f, "FFR=");
1023 /* It's last, so end the line. */
1024 eol = true;
1025 } else {
1026 qemu_fprintf(f, "P%02d=", i);
1027 switch (zcr_len) {
1028 case 0:
1029 eol = i % 8 == 7;
1030 break;
1031 case 1:
1032 eol = i % 6 == 5;
1033 break;
1034 case 2:
1035 case 3:
1036 eol = i % 3 == 2;
1037 break;
1038 default:
1039 /* More than one quadword per predicate. */
1040 eol = true;
1041 break;
1042 }
1043 }
1044 for (j = zcr_len / 4; j >= 0; j--) {
1045 int digits;
1046 if (j * 4 + 4 <= zcr_len + 1) {
1047 digits = 16;
1048 } else {
1049 digits = (zcr_len % 4 + 1) * 4;
1050 }
1051 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1052 env->vfp.pregs[i].p[j],
1053 j ? ":" : eol ? "\n" : " ");
1054 }
1055 }
1056
1057 for (i = 0; i < 32; i++) {
1058 if (zcr_len == 0) {
1059 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1060 i, env->vfp.zregs[i].d[1],
1061 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1062 } else if (zcr_len == 1) {
1063 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1064 ":%016" PRIx64 ":%016" PRIx64 "\n",
1065 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1066 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1067 } else {
1068 for (j = zcr_len; j >= 0; j--) {
1069 bool odd = (zcr_len - j) % 2 != 0;
1070 if (j == zcr_len) {
1071 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1072 } else if (!odd) {
1073 if (j > 0) {
1074 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
1075 } else {
1076 qemu_fprintf(f, " [%x]=", j);
1077 }
1078 }
1079 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1080 env->vfp.zregs[i].d[j * 2 + 1],
1081 env->vfp.zregs[i].d[j * 2],
1082 odd || j == 0 ? "\n" : ":");
1083 }
1084 }
1085 }
1086 } else {
1087 for (i = 0; i < 32; i++) {
1088 uint64_t *q = aa64_vfp_qreg(env, i);
1089 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1090 i, q[1], q[0], (i & 1 ? "\n" : " "));
1091 }
1092 }
1093 }
1094
1095 #else
1096
1097 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1098 {
1099 g_assert_not_reached();
1100 }
1101
1102 #endif
1103
1104 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1105 {
1106 ARMCPU *cpu = ARM_CPU(cs);
1107 CPUARMState *env = &cpu->env;
1108 int i;
1109
1110 if (is_a64(env)) {
1111 aarch64_cpu_dump_state(cs, f, flags);
1112 return;
1113 }
1114
1115 for (i = 0; i < 16; i++) {
1116 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1117 if ((i % 4) == 3) {
1118 qemu_fprintf(f, "\n");
1119 } else {
1120 qemu_fprintf(f, " ");
1121 }
1122 }
1123
1124 if (arm_feature(env, ARM_FEATURE_M)) {
1125 uint32_t xpsr = xpsr_read(env);
1126 const char *mode;
1127 const char *ns_status = "";
1128
1129 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1130 ns_status = env->v7m.secure ? "S " : "NS ";
1131 }
1132
1133 if (xpsr & XPSR_EXCP) {
1134 mode = "handler";
1135 } else {
1136 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1137 mode = "unpriv-thread";
1138 } else {
1139 mode = "priv-thread";
1140 }
1141 }
1142
1143 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1144 xpsr,
1145 xpsr & XPSR_N ? 'N' : '-',
1146 xpsr & XPSR_Z ? 'Z' : '-',
1147 xpsr & XPSR_C ? 'C' : '-',
1148 xpsr & XPSR_V ? 'V' : '-',
1149 xpsr & XPSR_T ? 'T' : 'A',
1150 ns_status,
1151 mode);
1152 } else {
1153 uint32_t psr = cpsr_read(env);
1154 const char *ns_status = "";
1155
1156 if (arm_feature(env, ARM_FEATURE_EL3) &&
1157 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1158 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1159 }
1160
1161 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1162 psr,
1163 psr & CPSR_N ? 'N' : '-',
1164 psr & CPSR_Z ? 'Z' : '-',
1165 psr & CPSR_C ? 'C' : '-',
1166 psr & CPSR_V ? 'V' : '-',
1167 psr & CPSR_T ? 'T' : 'A',
1168 ns_status,
1169 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1170 }
1171
1172 if (flags & CPU_DUMP_FPU) {
1173 int numvfpregs = 0;
1174 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1175 numvfpregs = 32;
1176 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1177 numvfpregs = 16;
1178 }
1179 for (i = 0; i < numvfpregs; i++) {
1180 uint64_t v = *aa32_vfp_dreg(env, i);
1181 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1182 i * 2, (uint32_t)v,
1183 i * 2 + 1, (uint32_t)(v >> 32),
1184 i, v);
1185 }
1186 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1187 if (cpu_isar_feature(aa32_mve, cpu)) {
1188 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1189 }
1190 }
1191 }
1192
1193 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1194 {
1195 uint32_t Aff1 = idx / clustersz;
1196 uint32_t Aff0 = idx % clustersz;
1197 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1198 }
1199
1200 static void arm_cpu_initfn(Object *obj)
1201 {
1202 ARMCPU *cpu = ARM_CPU(obj);
1203
1204 cpu_set_cpustate_pointers(cpu);
1205 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1206 NULL, g_free);
1207
1208 QLIST_INIT(&cpu->pre_el_change_hooks);
1209 QLIST_INIT(&cpu->el_change_hooks);
1210
1211 #ifdef CONFIG_USER_ONLY
1212 # ifdef TARGET_AARCH64
1213 /*
1214 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1215 * These values were chosen to fit within the default signal frame.
1216 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1217 * and our corresponding cpu property.
1218 */
1219 cpu->sve_default_vq = 4;
1220 cpu->sme_default_vq = 2;
1221 # endif
1222 #else
1223 /* Our inbound IRQ and FIQ lines */
1224 if (kvm_enabled()) {
1225 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1226 * the same interface as non-KVM CPUs.
1227 */
1228 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1229 } else {
1230 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1231 }
1232
1233 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1234 ARRAY_SIZE(cpu->gt_timer_outputs));
1235
1236 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1237 "gicv3-maintenance-interrupt", 1);
1238 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1239 "pmu-interrupt", 1);
1240 #endif
1241
1242 /* DTB consumers generally don't in fact care what the 'compatible'
1243 * string is, so always provide some string and trust that a hypothetical
1244 * picky DTB consumer will also provide a helpful error message.
1245 */
1246 cpu->dtb_compatible = "qemu,unknown";
1247 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1248 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1249
1250 if (tcg_enabled() || hvf_enabled()) {
1251 /* TCG and HVF implement PSCI 1.1 */
1252 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1253 }
1254 }
1255
1256 static Property arm_cpu_gt_cntfrq_property =
1257 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1258 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1259
1260 static Property arm_cpu_reset_cbar_property =
1261 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1262
1263 static Property arm_cpu_reset_hivecs_property =
1264 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1265
1266 #ifndef CONFIG_USER_ONLY
1267 static Property arm_cpu_has_el2_property =
1268 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1269
1270 static Property arm_cpu_has_el3_property =
1271 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1272 #endif
1273
1274 static Property arm_cpu_cfgend_property =
1275 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1276
1277 static Property arm_cpu_has_vfp_property =
1278 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1279
1280 static Property arm_cpu_has_vfp_d32_property =
1281 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1282
1283 static Property arm_cpu_has_neon_property =
1284 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1285
1286 static Property arm_cpu_has_dsp_property =
1287 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1288
1289 static Property arm_cpu_has_mpu_property =
1290 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1291
1292 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1293 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1294 * the right value for that particular CPU type, and we don't want
1295 * to override that with an incorrect constant value.
1296 */
1297 static Property arm_cpu_pmsav7_dregion_property =
1298 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1299 pmsav7_dregion,
1300 qdev_prop_uint32, uint32_t);
1301
1302 static bool arm_get_pmu(Object *obj, Error **errp)
1303 {
1304 ARMCPU *cpu = ARM_CPU(obj);
1305
1306 return cpu->has_pmu;
1307 }
1308
1309 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1310 {
1311 ARMCPU *cpu = ARM_CPU(obj);
1312
1313 if (value) {
1314 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1315 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1316 return;
1317 }
1318 set_feature(&cpu->env, ARM_FEATURE_PMU);
1319 } else {
1320 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1321 }
1322 cpu->has_pmu = value;
1323 }
1324
1325 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1326 {
1327 /*
1328 * The exact approach to calculating guest ticks is:
1329 *
1330 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1331 * NANOSECONDS_PER_SECOND);
1332 *
1333 * We don't do that. Rather we intentionally use integer division
1334 * truncation below and in the caller for the conversion of host monotonic
1335 * time to guest ticks to provide the exact inverse for the semantics of
1336 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1337 * it loses precision when representing frequencies where
1338 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1339 * provide an exact inverse leads to scheduling timers with negative
1340 * periods, which in turn leads to sticky behaviour in the guest.
1341 *
1342 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1343 * cannot become zero.
1344 */
1345 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1346 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1347 }
1348
1349 void arm_cpu_post_init(Object *obj)
1350 {
1351 ARMCPU *cpu = ARM_CPU(obj);
1352
1353 /* M profile implies PMSA. We have to do this here rather than
1354 * in realize with the other feature-implication checks because
1355 * we look at the PMSA bit to see if we should add some properties.
1356 */
1357 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1358 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1359 }
1360
1361 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1362 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1363 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1364 }
1365
1366 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1367 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1368 }
1369
1370 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1371 object_property_add_uint64_ptr(obj, "rvbar",
1372 &cpu->rvbar_prop,
1373 OBJ_PROP_FLAG_READWRITE);
1374 }
1375
1376 #ifndef CONFIG_USER_ONLY
1377 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1378 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1379 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1380 */
1381 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1382
1383 object_property_add_link(obj, "secure-memory",
1384 TYPE_MEMORY_REGION,
1385 (Object **)&cpu->secure_memory,
1386 qdev_prop_allow_set_link_before_realize,
1387 OBJ_PROP_LINK_STRONG);
1388 }
1389
1390 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1391 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1392 }
1393 #endif
1394
1395 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1396 cpu->has_pmu = true;
1397 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1398 }
1399
1400 /*
1401 * Allow user to turn off VFP and Neon support, but only for TCG --
1402 * KVM does not currently allow us to lie to the guest about its
1403 * ID/feature registers, so the guest always sees what the host has.
1404 */
1405 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1406 ? cpu_isar_feature(aa64_fp_simd, cpu)
1407 : cpu_isar_feature(aa32_vfp, cpu)) {
1408 cpu->has_vfp = true;
1409 if (!kvm_enabled()) {
1410 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1411 }
1412 }
1413
1414 if (cpu->has_vfp && cpu_isar_feature(aa32_simd_r32, cpu)) {
1415 cpu->has_vfp_d32 = true;
1416 if (!kvm_enabled()) {
1417 /*
1418 * The permitted values of the SIMDReg bits [3:0] on
1419 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1420 * make sure that has_vfp_d32 can not be set to false.
1421 */
1422 if (!(arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1423 !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1424 qdev_property_add_static(DEVICE(obj),
1425 &arm_cpu_has_vfp_d32_property);
1426 }
1427 }
1428 }
1429
1430 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1431 cpu->has_neon = true;
1432 if (!kvm_enabled()) {
1433 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1434 }
1435 }
1436
1437 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1438 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1439 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1440 }
1441
1442 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1443 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1444 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1445 qdev_property_add_static(DEVICE(obj),
1446 &arm_cpu_pmsav7_dregion_property);
1447 }
1448 }
1449
1450 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1451 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1452 qdev_prop_allow_set_link_before_realize,
1453 OBJ_PROP_LINK_STRONG);
1454 /*
1455 * M profile: initial value of the Secure VTOR. We can't just use
1456 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1457 * the property to be set after realize.
1458 */
1459 object_property_add_uint32_ptr(obj, "init-svtor",
1460 &cpu->init_svtor,
1461 OBJ_PROP_FLAG_READWRITE);
1462 }
1463 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1464 /*
1465 * Initial value of the NS VTOR (for cores without the Security
1466 * extension, this is the only VTOR)
1467 */
1468 object_property_add_uint32_ptr(obj, "init-nsvtor",
1469 &cpu->init_nsvtor,
1470 OBJ_PROP_FLAG_READWRITE);
1471 }
1472
1473 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1474 object_property_add_uint32_ptr(obj, "psci-conduit",
1475 &cpu->psci_conduit,
1476 OBJ_PROP_FLAG_READWRITE);
1477
1478 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1479
1480 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1481 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1482 }
1483
1484 if (kvm_enabled()) {
1485 kvm_arm_add_vcpu_properties(obj);
1486 }
1487
1488 #ifndef CONFIG_USER_ONLY
1489 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1490 cpu_isar_feature(aa64_mte, cpu)) {
1491 object_property_add_link(obj, "tag-memory",
1492 TYPE_MEMORY_REGION,
1493 (Object **)&cpu->tag_memory,
1494 qdev_prop_allow_set_link_before_realize,
1495 OBJ_PROP_LINK_STRONG);
1496
1497 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1498 object_property_add_link(obj, "secure-tag-memory",
1499 TYPE_MEMORY_REGION,
1500 (Object **)&cpu->secure_tag_memory,
1501 qdev_prop_allow_set_link_before_realize,
1502 OBJ_PROP_LINK_STRONG);
1503 }
1504 }
1505 #endif
1506 }
1507
1508 static void arm_cpu_finalizefn(Object *obj)
1509 {
1510 ARMCPU *cpu = ARM_CPU(obj);
1511 ARMELChangeHook *hook, *next;
1512
1513 g_hash_table_destroy(cpu->cp_regs);
1514
1515 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1516 QLIST_REMOVE(hook, node);
1517 g_free(hook);
1518 }
1519 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1520 QLIST_REMOVE(hook, node);
1521 g_free(hook);
1522 }
1523 #ifndef CONFIG_USER_ONLY
1524 if (cpu->pmu_timer) {
1525 timer_free(cpu->pmu_timer);
1526 }
1527 #endif
1528 }
1529
1530 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1531 {
1532 Error *local_err = NULL;
1533
1534 #ifdef TARGET_AARCH64
1535 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1536 arm_cpu_sve_finalize(cpu, &local_err);
1537 if (local_err != NULL) {
1538 error_propagate(errp, local_err);
1539 return;
1540 }
1541
1542 arm_cpu_sme_finalize(cpu, &local_err);
1543 if (local_err != NULL) {
1544 error_propagate(errp, local_err);
1545 return;
1546 }
1547
1548 arm_cpu_pauth_finalize(cpu, &local_err);
1549 if (local_err != NULL) {
1550 error_propagate(errp, local_err);
1551 return;
1552 }
1553
1554 arm_cpu_lpa2_finalize(cpu, &local_err);
1555 if (local_err != NULL) {
1556 error_propagate(errp, local_err);
1557 return;
1558 }
1559 }
1560 #endif
1561
1562 if (kvm_enabled()) {
1563 kvm_arm_steal_time_finalize(cpu, &local_err);
1564 if (local_err != NULL) {
1565 error_propagate(errp, local_err);
1566 return;
1567 }
1568 }
1569 }
1570
1571 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1572 {
1573 CPUState *cs = CPU(dev);
1574 ARMCPU *cpu = ARM_CPU(dev);
1575 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1576 CPUARMState *env = &cpu->env;
1577 int pagebits;
1578 Error *local_err = NULL;
1579 bool no_aa32 = false;
1580
1581 /* Use pc-relative instructions in system-mode */
1582 #ifndef CONFIG_USER_ONLY
1583 cs->tcg_cflags |= CF_PCREL;
1584 #endif
1585
1586 /* If we needed to query the host kernel for the CPU features
1587 * then it's possible that might have failed in the initfn, but
1588 * this is the first point where we can report it.
1589 */
1590 if (cpu->host_cpu_probe_failed) {
1591 if (!kvm_enabled() && !hvf_enabled()) {
1592 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1593 } else {
1594 error_setg(errp, "Failed to retrieve host CPU features");
1595 }
1596 return;
1597 }
1598
1599 #ifndef CONFIG_USER_ONLY
1600 /* The NVIC and M-profile CPU are two halves of a single piece of
1601 * hardware; trying to use one without the other is a command line
1602 * error and will result in segfaults if not caught here.
1603 */
1604 if (arm_feature(env, ARM_FEATURE_M)) {
1605 if (!env->nvic) {
1606 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1607 return;
1608 }
1609 } else {
1610 if (env->nvic) {
1611 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1612 return;
1613 }
1614 }
1615
1616 if (!tcg_enabled() && !qtest_enabled()) {
1617 /*
1618 * We assume that no accelerator except TCG (and the "not really an
1619 * accelerator" qtest) can handle these features, because Arm hardware
1620 * virtualization can't virtualize them.
1621 *
1622 * Catch all the cases which might cause us to create more than one
1623 * address space for the CPU (otherwise we will assert() later in
1624 * cpu_address_space_init()).
1625 */
1626 if (arm_feature(env, ARM_FEATURE_M)) {
1627 error_setg(errp,
1628 "Cannot enable %s when using an M-profile guest CPU",
1629 current_accel_name());
1630 return;
1631 }
1632 if (cpu->has_el3) {
1633 error_setg(errp,
1634 "Cannot enable %s when guest CPU has EL3 enabled",
1635 current_accel_name());
1636 return;
1637 }
1638 if (cpu->tag_memory) {
1639 error_setg(errp,
1640 "Cannot enable %s when guest CPUs has MTE enabled",
1641 current_accel_name());
1642 return;
1643 }
1644 }
1645
1646 {
1647 uint64_t scale;
1648
1649 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1650 if (!cpu->gt_cntfrq_hz) {
1651 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1652 cpu->gt_cntfrq_hz);
1653 return;
1654 }
1655 scale = gt_cntfrq_period_ns(cpu);
1656 } else {
1657 scale = GTIMER_SCALE;
1658 }
1659
1660 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1661 arm_gt_ptimer_cb, cpu);
1662 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1663 arm_gt_vtimer_cb, cpu);
1664 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1665 arm_gt_htimer_cb, cpu);
1666 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1667 arm_gt_stimer_cb, cpu);
1668 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1669 arm_gt_hvtimer_cb, cpu);
1670 }
1671 #endif
1672
1673 cpu_exec_realizefn(cs, &local_err);
1674 if (local_err != NULL) {
1675 error_propagate(errp, local_err);
1676 return;
1677 }
1678
1679 arm_cpu_finalize_features(cpu, &local_err);
1680 if (local_err != NULL) {
1681 error_propagate(errp, local_err);
1682 return;
1683 }
1684
1685 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1686 cpu->has_vfp != cpu->has_neon) {
1687 /*
1688 * This is an architectural requirement for AArch64; AArch32 is
1689 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1690 */
1691 error_setg(errp,
1692 "AArch64 CPUs must have both VFP and Neon or neither");
1693 return;
1694 }
1695
1696 if (cpu->has_vfp_d32 != cpu->has_neon) {
1697 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1698 return;
1699 }
1700
1701 if (!cpu->has_vfp_d32) {
1702 uint32_t u;
1703
1704 u = cpu->isar.mvfr0;
1705 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1706 cpu->isar.mvfr0 = u;
1707 }
1708
1709 if (!cpu->has_vfp) {
1710 uint64_t t;
1711 uint32_t u;
1712
1713 t = cpu->isar.id_aa64isar1;
1714 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1715 cpu->isar.id_aa64isar1 = t;
1716
1717 t = cpu->isar.id_aa64pfr0;
1718 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1719 cpu->isar.id_aa64pfr0 = t;
1720
1721 u = cpu->isar.id_isar6;
1722 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1723 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1724 cpu->isar.id_isar6 = u;
1725
1726 u = cpu->isar.mvfr0;
1727 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1728 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1729 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1730 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1731 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1732 if (!arm_feature(env, ARM_FEATURE_M)) {
1733 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1734 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1735 }
1736 cpu->isar.mvfr0 = u;
1737
1738 u = cpu->isar.mvfr1;
1739 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1740 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1741 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1742 if (arm_feature(env, ARM_FEATURE_M)) {
1743 u = FIELD_DP32(u, MVFR1, FP16, 0);
1744 }
1745 cpu->isar.mvfr1 = u;
1746
1747 u = cpu->isar.mvfr2;
1748 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1749 cpu->isar.mvfr2 = u;
1750 }
1751
1752 if (!cpu->has_neon) {
1753 uint64_t t;
1754 uint32_t u;
1755
1756 unset_feature(env, ARM_FEATURE_NEON);
1757
1758 t = cpu->isar.id_aa64isar0;
1759 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1760 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1761 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1762 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1763 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1764 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1765 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1766 cpu->isar.id_aa64isar0 = t;
1767
1768 t = cpu->isar.id_aa64isar1;
1769 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1770 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1771 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1772 cpu->isar.id_aa64isar1 = t;
1773
1774 t = cpu->isar.id_aa64pfr0;
1775 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1776 cpu->isar.id_aa64pfr0 = t;
1777
1778 u = cpu->isar.id_isar5;
1779 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1780 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1781 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1782 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1783 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1784 cpu->isar.id_isar5 = u;
1785
1786 u = cpu->isar.id_isar6;
1787 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1788 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1789 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1790 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1791 cpu->isar.id_isar6 = u;
1792
1793 if (!arm_feature(env, ARM_FEATURE_M)) {
1794 u = cpu->isar.mvfr1;
1795 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1796 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1797 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1798 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1799 cpu->isar.mvfr1 = u;
1800
1801 u = cpu->isar.mvfr2;
1802 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1803 cpu->isar.mvfr2 = u;
1804 }
1805 }
1806
1807 if (!cpu->has_neon && !cpu->has_vfp) {
1808 uint64_t t;
1809 uint32_t u;
1810
1811 t = cpu->isar.id_aa64isar0;
1812 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1813 cpu->isar.id_aa64isar0 = t;
1814
1815 t = cpu->isar.id_aa64isar1;
1816 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1817 cpu->isar.id_aa64isar1 = t;
1818
1819 u = cpu->isar.mvfr0;
1820 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1821 cpu->isar.mvfr0 = u;
1822
1823 /* Despite the name, this field covers both VFP and Neon */
1824 u = cpu->isar.mvfr1;
1825 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1826 cpu->isar.mvfr1 = u;
1827 }
1828
1829 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1830 uint32_t u;
1831
1832 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1833
1834 u = cpu->isar.id_isar1;
1835 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1836 cpu->isar.id_isar1 = u;
1837
1838 u = cpu->isar.id_isar2;
1839 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1840 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1841 cpu->isar.id_isar2 = u;
1842
1843 u = cpu->isar.id_isar3;
1844 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1845 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1846 cpu->isar.id_isar3 = u;
1847 }
1848
1849 /* Some features automatically imply others: */
1850 if (arm_feature(env, ARM_FEATURE_V8)) {
1851 if (arm_feature(env, ARM_FEATURE_M)) {
1852 set_feature(env, ARM_FEATURE_V7);
1853 } else {
1854 set_feature(env, ARM_FEATURE_V7VE);
1855 }
1856 }
1857
1858 /*
1859 * There exist AArch64 cpus without AArch32 support. When KVM
1860 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1861 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1862 * As a general principle, we also do not make ID register
1863 * consistency checks anywhere unless using TCG, because only
1864 * for TCG would a consistency-check failure be a QEMU bug.
1865 */
1866 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1867 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1868 }
1869
1870 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1871 /* v7 Virtualization Extensions. In real hardware this implies
1872 * EL2 and also the presence of the Security Extensions.
1873 * For QEMU, for backwards-compatibility we implement some
1874 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1875 * include the various other features that V7VE implies.
1876 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1877 * Security Extensions is ARM_FEATURE_EL3.
1878 */
1879 assert(!tcg_enabled() || no_aa32 ||
1880 cpu_isar_feature(aa32_arm_div, cpu));
1881 set_feature(env, ARM_FEATURE_LPAE);
1882 set_feature(env, ARM_FEATURE_V7);
1883 }
1884 if (arm_feature(env, ARM_FEATURE_V7)) {
1885 set_feature(env, ARM_FEATURE_VAPA);
1886 set_feature(env, ARM_FEATURE_THUMB2);
1887 set_feature(env, ARM_FEATURE_MPIDR);
1888 if (!arm_feature(env, ARM_FEATURE_M)) {
1889 set_feature(env, ARM_FEATURE_V6K);
1890 } else {
1891 set_feature(env, ARM_FEATURE_V6);
1892 }
1893
1894 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1895 * non-EL3 configs. This is needed by some legacy boards.
1896 */
1897 set_feature(env, ARM_FEATURE_VBAR);
1898 }
1899 if (arm_feature(env, ARM_FEATURE_V6K)) {
1900 set_feature(env, ARM_FEATURE_V6);
1901 set_feature(env, ARM_FEATURE_MVFR);
1902 }
1903 if (arm_feature(env, ARM_FEATURE_V6)) {
1904 set_feature(env, ARM_FEATURE_V5);
1905 if (!arm_feature(env, ARM_FEATURE_M)) {
1906 assert(!tcg_enabled() || no_aa32 ||
1907 cpu_isar_feature(aa32_jazelle, cpu));
1908 set_feature(env, ARM_FEATURE_AUXCR);
1909 }
1910 }
1911 if (arm_feature(env, ARM_FEATURE_V5)) {
1912 set_feature(env, ARM_FEATURE_V4T);
1913 }
1914 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1915 set_feature(env, ARM_FEATURE_V7MP);
1916 }
1917 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1918 set_feature(env, ARM_FEATURE_CBAR);
1919 }
1920 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1921 !arm_feature(env, ARM_FEATURE_M)) {
1922 set_feature(env, ARM_FEATURE_THUMB_DSP);
1923 }
1924
1925 /*
1926 * We rely on no XScale CPU having VFP so we can use the same bits in the
1927 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1928 */
1929 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1930 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1931 !arm_feature(env, ARM_FEATURE_XSCALE));
1932
1933 if (arm_feature(env, ARM_FEATURE_V7) &&
1934 !arm_feature(env, ARM_FEATURE_M) &&
1935 !arm_feature(env, ARM_FEATURE_PMSA)) {
1936 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1937 * can use 4K pages.
1938 */
1939 pagebits = 12;
1940 } else {
1941 /* For CPUs which might have tiny 1K pages, or which have an
1942 * MPU and might have small region sizes, stick with 1K pages.
1943 */
1944 pagebits = 10;
1945 }
1946 if (!set_preferred_target_page_bits(pagebits)) {
1947 /* This can only ever happen for hotplugging a CPU, or if
1948 * the board code incorrectly creates a CPU which it has
1949 * promised via minimum_page_size that it will not.
1950 */
1951 error_setg(errp, "This CPU requires a smaller page size than the "
1952 "system is using");
1953 return;
1954 }
1955
1956 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1957 * We don't support setting cluster ID ([16..23]) (known as Aff2
1958 * in later ARM ARM versions), or any of the higher affinity level fields,
1959 * so these bits always RAZ.
1960 */
1961 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1962 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1963 ARM_DEFAULT_CPUS_PER_CLUSTER);
1964 }
1965
1966 if (cpu->reset_hivecs) {
1967 cpu->reset_sctlr |= (1 << 13);
1968 }
1969
1970 if (cpu->cfgend) {
1971 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1972 cpu->reset_sctlr |= SCTLR_EE;
1973 } else {
1974 cpu->reset_sctlr |= SCTLR_B;
1975 }
1976 }
1977
1978 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1979 /* If the has_el3 CPU property is disabled then we need to disable the
1980 * feature.
1981 */
1982 unset_feature(env, ARM_FEATURE_EL3);
1983
1984 /*
1985 * Disable the security extension feature bits in the processor
1986 * feature registers as well.
1987 */
1988 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1989 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1990 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1991 ID_AA64PFR0, EL3, 0);
1992 }
1993
1994 if (!cpu->has_el2) {
1995 unset_feature(env, ARM_FEATURE_EL2);
1996 }
1997
1998 if (!cpu->has_pmu) {
1999 unset_feature(env, ARM_FEATURE_PMU);
2000 }
2001 if (arm_feature(env, ARM_FEATURE_PMU)) {
2002 pmu_init(cpu);
2003
2004 if (!kvm_enabled()) {
2005 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2006 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2007 }
2008
2009 #ifndef CONFIG_USER_ONLY
2010 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2011 cpu);
2012 #endif
2013 } else {
2014 cpu->isar.id_aa64dfr0 =
2015 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2016 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2017 cpu->pmceid0 = 0;
2018 cpu->pmceid1 = 0;
2019 }
2020
2021 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2022 /*
2023 * Disable the hypervisor feature bits in the processor feature
2024 * registers if we don't have EL2.
2025 */
2026 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2027 ID_AA64PFR0, EL2, 0);
2028 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2029 ID_PFR1, VIRTUALIZATION, 0);
2030 }
2031
2032 #ifndef CONFIG_USER_ONLY
2033 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
2034 /*
2035 * Disable the MTE feature bits if we do not have tag-memory
2036 * provided by the machine.
2037 */
2038 cpu->isar.id_aa64pfr1 =
2039 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2040 }
2041 #endif
2042
2043 if (tcg_enabled()) {
2044 /*
2045 * Don't report the Statistical Profiling Extension in the ID
2046 * registers, because TCG doesn't implement it yet (not even a
2047 * minimal stub version) and guests will fall over when they
2048 * try to access the non-existent system registers for it.
2049 */
2050 cpu->isar.id_aa64dfr0 =
2051 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2052 }
2053
2054 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2055 * to false or by setting pmsav7-dregion to 0.
2056 */
2057 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2058 cpu->has_mpu = false;
2059 cpu->pmsav7_dregion = 0;
2060 cpu->pmsav8r_hdregion = 0;
2061 }
2062
2063 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2064 arm_feature(env, ARM_FEATURE_V7)) {
2065 uint32_t nr = cpu->pmsav7_dregion;
2066
2067 if (nr > 0xff) {
2068 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2069 return;
2070 }
2071
2072 if (nr) {
2073 if (arm_feature(env, ARM_FEATURE_V8)) {
2074 /* PMSAv8 */
2075 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2076 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2077 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2078 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2079 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2080 }
2081 } else {
2082 env->pmsav7.drbar = g_new0(uint32_t, nr);
2083 env->pmsav7.drsr = g_new0(uint32_t, nr);
2084 env->pmsav7.dracr = g_new0(uint32_t, nr);
2085 }
2086 }
2087
2088 if (cpu->pmsav8r_hdregion > 0xff) {
2089 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2090 cpu->pmsav8r_hdregion);
2091 return;
2092 }
2093
2094 if (cpu->pmsav8r_hdregion) {
2095 env->pmsav8.hprbar = g_new0(uint32_t,
2096 cpu->pmsav8r_hdregion);
2097 env->pmsav8.hprlar = g_new0(uint32_t,
2098 cpu->pmsav8r_hdregion);
2099 }
2100 }
2101
2102 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2103 uint32_t nr = cpu->sau_sregion;
2104
2105 if (nr > 0xff) {
2106 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2107 return;
2108 }
2109
2110 if (nr) {
2111 env->sau.rbar = g_new0(uint32_t, nr);
2112 env->sau.rlar = g_new0(uint32_t, nr);
2113 }
2114 }
2115
2116 if (arm_feature(env, ARM_FEATURE_EL3)) {
2117 set_feature(env, ARM_FEATURE_VBAR);
2118 }
2119
2120 register_cp_regs_for_features(cpu);
2121 arm_cpu_register_gdb_regs_for_features(cpu);
2122
2123 init_cpreg_list(cpu);
2124
2125 #ifndef CONFIG_USER_ONLY
2126 MachineState *ms = MACHINE(qdev_get_machine());
2127 unsigned int smp_cpus = ms->smp.cpus;
2128 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2129
2130 /*
2131 * We must set cs->num_ases to the final value before
2132 * the first call to cpu_address_space_init.
2133 */
2134 if (cpu->tag_memory != NULL) {
2135 cs->num_ases = 3 + has_secure;
2136 } else {
2137 cs->num_ases = 1 + has_secure;
2138 }
2139
2140 if (has_secure) {
2141 if (!cpu->secure_memory) {
2142 cpu->secure_memory = cs->memory;
2143 }
2144 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2145 cpu->secure_memory);
2146 }
2147
2148 if (cpu->tag_memory != NULL) {
2149 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2150 cpu->tag_memory);
2151 if (has_secure) {
2152 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2153 cpu->secure_tag_memory);
2154 }
2155 }
2156
2157 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2158
2159 /* No core_count specified, default to smp_cpus. */
2160 if (cpu->core_count == -1) {
2161 cpu->core_count = smp_cpus;
2162 }
2163 #endif
2164
2165 if (tcg_enabled()) {
2166 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2167
2168 /*
2169 * We only support DCZ blocklen that fits on one page.
2170 *
2171 * Architectually this is always true. However TARGET_PAGE_SIZE
2172 * is variable and, for compatibility with -machine virt-2.7,
2173 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2174 * But even then, while the largest architectural DCZ blocklen
2175 * is 2KiB, no cpu actually uses such a large blocklen.
2176 */
2177 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2178
2179 /*
2180 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2181 * both nibbles of each byte storing tag data may be written at once.
2182 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2183 */
2184 if (cpu_isar_feature(aa64_mte, cpu)) {
2185 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2186 }
2187 }
2188
2189 qemu_init_vcpu(cs);
2190 cpu_reset(cs);
2191
2192 acc->parent_realize(dev, errp);
2193 }
2194
2195 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2196 {
2197 ObjectClass *oc;
2198 char *typename;
2199 char **cpuname;
2200 const char *cpunamestr;
2201
2202 cpuname = g_strsplit(cpu_model, ",", 1);
2203 cpunamestr = cpuname[0];
2204 #ifdef CONFIG_USER_ONLY
2205 /* For backwards compatibility usermode emulation allows "-cpu any",
2206 * which has the same semantics as "-cpu max".
2207 */
2208 if (!strcmp(cpunamestr, "any")) {
2209 cpunamestr = "max";
2210 }
2211 #endif
2212 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2213 oc = object_class_by_name(typename);
2214 g_strfreev(cpuname);
2215 g_free(typename);
2216 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2217 object_class_is_abstract(oc)) {
2218 return NULL;
2219 }
2220 return oc;
2221 }
2222
2223 static Property arm_cpu_properties[] = {
2224 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2225 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2226 mp_affinity, ARM64_AFFINITY_INVALID),
2227 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2228 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2229 DEFINE_PROP_END_OF_LIST()
2230 };
2231
2232 static gchar *arm_gdb_arch_name(CPUState *cs)
2233 {
2234 ARMCPU *cpu = ARM_CPU(cs);
2235 CPUARMState *env = &cpu->env;
2236
2237 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2238 return g_strdup("iwmmxt");
2239 }
2240 return g_strdup("arm");
2241 }
2242
2243 #ifndef CONFIG_USER_ONLY
2244 #include "hw/core/sysemu-cpu-ops.h"
2245
2246 static const struct SysemuCPUOps arm_sysemu_ops = {
2247 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2248 .asidx_from_attrs = arm_asidx_from_attrs,
2249 .write_elf32_note = arm_cpu_write_elf32_note,
2250 .write_elf64_note = arm_cpu_write_elf64_note,
2251 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2252 .legacy_vmsd = &vmstate_arm_cpu,
2253 };
2254 #endif
2255
2256 #ifdef CONFIG_TCG
2257 static const struct TCGCPUOps arm_tcg_ops = {
2258 .initialize = arm_translate_init,
2259 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2260 .debug_excp_handler = arm_debug_excp_handler,
2261 .restore_state_to_opc = arm_restore_state_to_opc,
2262
2263 #ifdef CONFIG_USER_ONLY
2264 .record_sigsegv = arm_cpu_record_sigsegv,
2265 .record_sigbus = arm_cpu_record_sigbus,
2266 #else
2267 .tlb_fill = arm_cpu_tlb_fill,
2268 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2269 .do_interrupt = arm_cpu_do_interrupt,
2270 .do_transaction_failed = arm_cpu_do_transaction_failed,
2271 .do_unaligned_access = arm_cpu_do_unaligned_access,
2272 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2273 .debug_check_watchpoint = arm_debug_check_watchpoint,
2274 .debug_check_breakpoint = arm_debug_check_breakpoint,
2275 #endif /* !CONFIG_USER_ONLY */
2276 };
2277 #endif /* CONFIG_TCG */
2278
2279 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2280 {
2281 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2282 CPUClass *cc = CPU_CLASS(acc);
2283 DeviceClass *dc = DEVICE_CLASS(oc);
2284 ResettableClass *rc = RESETTABLE_CLASS(oc);
2285
2286 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2287 &acc->parent_realize);
2288
2289 device_class_set_props(dc, arm_cpu_properties);
2290
2291 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2292 &acc->parent_phases);
2293
2294 cc->class_by_name = arm_cpu_class_by_name;
2295 cc->has_work = arm_cpu_has_work;
2296 cc->dump_state = arm_cpu_dump_state;
2297 cc->set_pc = arm_cpu_set_pc;
2298 cc->get_pc = arm_cpu_get_pc;
2299 cc->gdb_read_register = arm_cpu_gdb_read_register;
2300 cc->gdb_write_register = arm_cpu_gdb_write_register;
2301 #ifndef CONFIG_USER_ONLY
2302 cc->sysemu_ops = &arm_sysemu_ops;
2303 #endif
2304 cc->gdb_num_core_regs = 26;
2305 cc->gdb_core_xml_file = "arm-core.xml";
2306 cc->gdb_arch_name = arm_gdb_arch_name;
2307 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2308 cc->gdb_stop_before_watchpoint = true;
2309 cc->disas_set_info = arm_disas_set_info;
2310
2311 #ifdef CONFIG_TCG
2312 cc->tcg_ops = &arm_tcg_ops;
2313 #endif /* CONFIG_TCG */
2314 }
2315
2316 static void arm_cpu_instance_init(Object *obj)
2317 {
2318 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2319
2320 acc->info->initfn(obj);
2321 arm_cpu_post_init(obj);
2322 }
2323
2324 static void cpu_register_class_init(ObjectClass *oc, void *data)
2325 {
2326 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2327
2328 acc->info = data;
2329 }
2330
2331 void arm_cpu_register(const ARMCPUInfo *info)
2332 {
2333 TypeInfo type_info = {
2334 .parent = TYPE_ARM_CPU,
2335 .instance_size = sizeof(ARMCPU),
2336 .instance_align = __alignof__(ARMCPU),
2337 .instance_init = arm_cpu_instance_init,
2338 .class_size = sizeof(ARMCPUClass),
2339 .class_init = info->class_init ?: cpu_register_class_init,
2340 .class_data = (void *)info,
2341 };
2342
2343 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2344 type_register(&type_info);
2345 g_free((void *)type_info.name);
2346 }
2347
2348 static const TypeInfo arm_cpu_type_info = {
2349 .name = TYPE_ARM_CPU,
2350 .parent = TYPE_CPU,
2351 .instance_size = sizeof(ARMCPU),
2352 .instance_align = __alignof__(ARMCPU),
2353 .instance_init = arm_cpu_initfn,
2354 .instance_finalize = arm_cpu_finalizefn,
2355 .abstract = true,
2356 .class_size = sizeof(ARMCPUClass),
2357 .class_init = arm_cpu_class_init,
2358 };
2359
2360 static void arm_cpu_register_types(void)
2361 {
2362 type_register_static(&arm_cpu_type_info);
2363 }
2364
2365 type_init(arm_cpu_register_types)