]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
target/arm: Use bool for unmasked in arm_excp_unmasked
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55 }
56
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
71 }
72
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
82 }
83
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86 {
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
97 {
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135 }
136
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138 {
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156 }
157
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
164
165 acc->parent_reset(s);
166
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
179
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 }
183
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* Enable all PAC instructions */
195 env->cp15.hcr_el2 |= HCR_API;
196 env->cp15.scr_el3 |= SCR_API;
197 /* and to the FP/Neon instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199 /* and to the SVE instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201 env->cp15.cptr_el[3] |= CPTR_EZ;
202 /* with maximum vector length */
203 env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204 cpu->sve_max_vq - 1 : 0;
205 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207 /*
208 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
209 * turning on both here will produce smaller code and otherwise
210 * make no difference to the user-level emulation.
211 */
212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214 /* Reset into the highest available EL */
215 if (arm_feature(env, ARM_FEATURE_EL3)) {
216 env->pstate = PSTATE_MODE_EL3h;
217 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218 env->pstate = PSTATE_MODE_EL2h;
219 } else {
220 env->pstate = PSTATE_MODE_EL1h;
221 }
222 env->pc = cpu->rvbar;
223 #endif
224 } else {
225 #if defined(CONFIG_USER_ONLY)
226 /* Userspace expects access to cp10 and cp11 for FP/Neon */
227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229 }
230
231 #if defined(CONFIG_USER_ONLY)
232 env->uncached_cpsr = ARM_CPU_MODE_USR;
233 /* For user mode we must enable access to coprocessors */
234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236 env->cp15.c15_cpar = 3;
237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238 env->cp15.c15_cpar = 1;
239 }
240 #else
241
242 /*
243 * If the highest available EL is EL2, AArch32 will start in Hyp
244 * mode; otherwise it starts in SVC. Note that if we start in
245 * AArch64 then these values in the uncached_cpsr will be ignored.
246 */
247 if (arm_feature(env, ARM_FEATURE_EL2) &&
248 !arm_feature(env, ARM_FEATURE_EL3)) {
249 env->uncached_cpsr = ARM_CPU_MODE_HYP;
250 } else {
251 env->uncached_cpsr = ARM_CPU_MODE_SVC;
252 }
253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254
255 if (arm_feature(env, ARM_FEATURE_M)) {
256 uint32_t initial_msp; /* Loaded from 0x0 */
257 uint32_t initial_pc; /* Loaded from 0x4 */
258 uint8_t *rom;
259 uint32_t vecbase;
260
261 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262 env->v7m.secure = true;
263 } else {
264 /* This bit resets to 0 if security is supported, but 1 if
265 * it is not. The bit is not present in v7M, but we set it
266 * here so we can avoid having to make checks on it conditional
267 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268 */
269 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270 /*
271 * Set NSACR to indicate "NS access permitted to everything";
272 * this avoids having to have all the tests of it being
273 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274 * v8.1M the guest-visible value of NSACR in a CPU without the
275 * Security Extension is 0xcff.
276 */
277 env->v7m.nsacr = 0xcff;
278 }
279
280 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281 * that it resets to 1, so QEMU always does that rather than making
282 * it dependent on CPU model. In v8M it is RES1.
283 */
284 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286 if (arm_feature(env, ARM_FEATURE_V8)) {
287 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290 }
291 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294 }
295
296 if (arm_feature(env, ARM_FEATURE_VFP)) {
297 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300 }
301 /* Unlike A/R profile, M profile defines the reset LR value */
302 env->regs[14] = 0xffffffff;
303
304 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305
306 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307 vecbase = env->v7m.vecbase[env->v7m.secure];
308 rom = rom_ptr(vecbase, 8);
309 if (rom) {
310 /* Address zero is covered by ROM which hasn't yet been
311 * copied into physical memory.
312 */
313 initial_msp = ldl_p(rom);
314 initial_pc = ldl_p(rom + 4);
315 } else {
316 /* Address zero not covered by a ROM blob, or the ROM blob
317 * is in non-modifiable memory and this is a second reset after
318 * it got copied into memory. In the latter case, rom_ptr
319 * will return a NULL pointer and we should use ldl_phys instead.
320 */
321 initial_msp = ldl_phys(s->as, vecbase);
322 initial_pc = ldl_phys(s->as, vecbase + 4);
323 }
324
325 env->regs[13] = initial_msp & 0xFFFFFFFC;
326 env->regs[15] = initial_pc & ~1;
327 env->thumb = initial_pc & 1;
328 }
329
330 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
331 * executing as AArch32 then check if highvecs are enabled and
332 * adjust the PC accordingly.
333 */
334 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335 env->regs[15] = 0xFFFF0000;
336 }
337
338 /* M profile requires that reset clears the exclusive monitor;
339 * A profile does not, but clearing it makes more sense than having it
340 * set with an exclusive access on address zero.
341 */
342 arm_clear_exclusive(env);
343
344 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346
347 if (arm_feature(env, ARM_FEATURE_PMSA)) {
348 if (cpu->pmsav7_dregion > 0) {
349 if (arm_feature(env, ARM_FEATURE_V8)) {
350 memset(env->pmsav8.rbar[M_REG_NS], 0,
351 sizeof(*env->pmsav8.rbar[M_REG_NS])
352 * cpu->pmsav7_dregion);
353 memset(env->pmsav8.rlar[M_REG_NS], 0,
354 sizeof(*env->pmsav8.rlar[M_REG_NS])
355 * cpu->pmsav7_dregion);
356 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357 memset(env->pmsav8.rbar[M_REG_S], 0,
358 sizeof(*env->pmsav8.rbar[M_REG_S])
359 * cpu->pmsav7_dregion);
360 memset(env->pmsav8.rlar[M_REG_S], 0,
361 sizeof(*env->pmsav8.rlar[M_REG_S])
362 * cpu->pmsav7_dregion);
363 }
364 } else if (arm_feature(env, ARM_FEATURE_V7)) {
365 memset(env->pmsav7.drbar, 0,
366 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367 memset(env->pmsav7.drsr, 0,
368 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369 memset(env->pmsav7.dracr, 0,
370 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371 }
372 }
373 env->pmsav7.rnr[M_REG_NS] = 0;
374 env->pmsav7.rnr[M_REG_S] = 0;
375 env->pmsav8.mair0[M_REG_NS] = 0;
376 env->pmsav8.mair0[M_REG_S] = 0;
377 env->pmsav8.mair1[M_REG_NS] = 0;
378 env->pmsav8.mair1[M_REG_S] = 0;
379 }
380
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 if (cpu->sau_sregion > 0) {
383 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385 }
386 env->sau.rnr = 0;
387 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388 * the Cortex-M33 does.
389 */
390 env->sau.ctrl = 0;
391 }
392
393 set_flush_to_zero(1, &env->vfp.standard_fp_status);
394 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395 set_default_nan_mode(1, &env->vfp.standard_fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.fp_status);
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.standard_fp_status);
400 set_float_detect_tininess(float_tininess_before_rounding,
401 &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403 if (kvm_enabled()) {
404 kvm_arm_reset_vcpu(cpu);
405 }
406 #endif
407
408 hw_breakpoint_update_all(cpu);
409 hw_watchpoint_update_all(cpu);
410 arm_rebuild_hflags(env);
411 }
412
413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
414 unsigned int target_el,
415 unsigned int cur_el, bool secure,
416 uint64_t hcr_el2)
417 {
418 CPUARMState *env = cs->env_ptr;
419 bool pstate_unmasked;
420 bool unmasked = false;
421
422 /*
423 * Don't take exceptions if they target a lower EL.
424 * This check should catch any exceptions that would not be taken
425 * but left pending.
426 */
427 if (cur_el > target_el) {
428 return false;
429 }
430
431 switch (excp_idx) {
432 case EXCP_FIQ:
433 pstate_unmasked = !(env->daif & PSTATE_F);
434 break;
435
436 case EXCP_IRQ:
437 pstate_unmasked = !(env->daif & PSTATE_I);
438 break;
439
440 case EXCP_VFIQ:
441 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
442 /* VFIQs are only taken when hypervized and non-secure. */
443 return false;
444 }
445 return !(env->daif & PSTATE_F);
446 case EXCP_VIRQ:
447 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
448 /* VIRQs are only taken when hypervized and non-secure. */
449 return false;
450 }
451 return !(env->daif & PSTATE_I);
452 default:
453 g_assert_not_reached();
454 }
455
456 /*
457 * Use the target EL, current execution state and SCR/HCR settings to
458 * determine whether the corresponding CPSR bit is used to mask the
459 * interrupt.
460 */
461 if ((target_el > cur_el) && (target_el != 1)) {
462 /* Exceptions targeting a higher EL may not be maskable */
463 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464 /*
465 * 64-bit masking rules are simple: exceptions to EL3
466 * can't be masked, and exceptions to EL2 can only be
467 * masked from Secure state. The HCR and SCR settings
468 * don't affect the masking logic, only the interrupt routing.
469 */
470 if (target_el == 3 || !secure) {
471 unmasked = true;
472 }
473 } else {
474 /*
475 * The old 32-bit-only environment has a more complicated
476 * masking setup. HCR and SCR bits not only affect interrupt
477 * routing but also change the behaviour of masking.
478 */
479 bool hcr, scr;
480
481 switch (excp_idx) {
482 case EXCP_FIQ:
483 /*
484 * If FIQs are routed to EL3 or EL2 then there are cases where
485 * we override the CPSR.F in determining if the exception is
486 * masked or not. If neither of these are set then we fall back
487 * to the CPSR.F setting otherwise we further assess the state
488 * below.
489 */
490 hcr = hcr_el2 & HCR_FMO;
491 scr = (env->cp15.scr_el3 & SCR_FIQ);
492
493 /*
494 * When EL3 is 32-bit, the SCR.FW bit controls whether the
495 * CPSR.F bit masks FIQ interrupts when taken in non-secure
496 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
497 * when non-secure but only when FIQs are only routed to EL3.
498 */
499 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
500 break;
501 case EXCP_IRQ:
502 /*
503 * When EL3 execution state is 32-bit, if HCR.IMO is set then
504 * we may override the CPSR.I masking when in non-secure state.
505 * The SCR.IRQ setting has already been taken into consideration
506 * when setting the target EL, so it does not have a further
507 * affect here.
508 */
509 hcr = hcr_el2 & HCR_IMO;
510 scr = false;
511 break;
512 default:
513 g_assert_not_reached();
514 }
515
516 if ((scr || hcr) && !secure) {
517 unmasked = true;
518 }
519 }
520 }
521
522 /*
523 * The PSTATE bits only mask the interrupt if we have not overriden the
524 * ability above.
525 */
526 return unmasked || pstate_unmasked;
527 }
528
529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
530 {
531 CPUClass *cc = CPU_GET_CLASS(cs);
532 CPUARMState *env = cs->env_ptr;
533 uint32_t cur_el = arm_current_el(env);
534 bool secure = arm_is_secure(env);
535 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
536 uint32_t target_el;
537 uint32_t excp_idx;
538 bool ret = false;
539
540 if (interrupt_request & CPU_INTERRUPT_FIQ) {
541 excp_idx = EXCP_FIQ;
542 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
543 if (arm_excp_unmasked(cs, excp_idx, target_el,
544 cur_el, secure, hcr_el2)) {
545 cs->exception_index = excp_idx;
546 env->exception.target_el = target_el;
547 cc->do_interrupt(cs);
548 ret = true;
549 }
550 }
551 if (interrupt_request & CPU_INTERRUPT_HARD) {
552 excp_idx = EXCP_IRQ;
553 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
554 if (arm_excp_unmasked(cs, excp_idx, target_el,
555 cur_el, secure, hcr_el2)) {
556 cs->exception_index = excp_idx;
557 env->exception.target_el = target_el;
558 cc->do_interrupt(cs);
559 ret = true;
560 }
561 }
562 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
563 excp_idx = EXCP_VIRQ;
564 target_el = 1;
565 if (arm_excp_unmasked(cs, excp_idx, target_el,
566 cur_el, secure, hcr_el2)) {
567 cs->exception_index = excp_idx;
568 env->exception.target_el = target_el;
569 cc->do_interrupt(cs);
570 ret = true;
571 }
572 }
573 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
574 excp_idx = EXCP_VFIQ;
575 target_el = 1;
576 if (arm_excp_unmasked(cs, excp_idx, target_el,
577 cur_el, secure, hcr_el2)) {
578 cs->exception_index = excp_idx;
579 env->exception.target_el = target_el;
580 cc->do_interrupt(cs);
581 ret = true;
582 }
583 }
584
585 return ret;
586 }
587
588 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
589 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
590 {
591 CPUClass *cc = CPU_GET_CLASS(cs);
592 ARMCPU *cpu = ARM_CPU(cs);
593 CPUARMState *env = &cpu->env;
594 bool ret = false;
595
596 /* ARMv7-M interrupt masking works differently than -A or -R.
597 * There is no FIQ/IRQ distinction. Instead of I and F bits
598 * masking FIQ and IRQ interrupts, an exception is taken only
599 * if it is higher priority than the current execution priority
600 * (which depends on state like BASEPRI, FAULTMASK and the
601 * currently active exception).
602 */
603 if (interrupt_request & CPU_INTERRUPT_HARD
604 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
605 cs->exception_index = EXCP_IRQ;
606 cc->do_interrupt(cs);
607 ret = true;
608 }
609 return ret;
610 }
611 #endif
612
613 void arm_cpu_update_virq(ARMCPU *cpu)
614 {
615 /*
616 * Update the interrupt level for VIRQ, which is the logical OR of
617 * the HCR_EL2.VI bit and the input line level from the GIC.
618 */
619 CPUARMState *env = &cpu->env;
620 CPUState *cs = CPU(cpu);
621
622 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
623 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
624
625 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
626 if (new_state) {
627 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
628 } else {
629 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
630 }
631 }
632 }
633
634 void arm_cpu_update_vfiq(ARMCPU *cpu)
635 {
636 /*
637 * Update the interrupt level for VFIQ, which is the logical OR of
638 * the HCR_EL2.VF bit and the input line level from the GIC.
639 */
640 CPUARMState *env = &cpu->env;
641 CPUState *cs = CPU(cpu);
642
643 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
644 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
645
646 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
647 if (new_state) {
648 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
649 } else {
650 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
651 }
652 }
653 }
654
655 #ifndef CONFIG_USER_ONLY
656 static void arm_cpu_set_irq(void *opaque, int irq, int level)
657 {
658 ARMCPU *cpu = opaque;
659 CPUARMState *env = &cpu->env;
660 CPUState *cs = CPU(cpu);
661 static const int mask[] = {
662 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
663 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
664 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
665 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
666 };
667
668 if (level) {
669 env->irq_line_state |= mask[irq];
670 } else {
671 env->irq_line_state &= ~mask[irq];
672 }
673
674 switch (irq) {
675 case ARM_CPU_VIRQ:
676 assert(arm_feature(env, ARM_FEATURE_EL2));
677 arm_cpu_update_virq(cpu);
678 break;
679 case ARM_CPU_VFIQ:
680 assert(arm_feature(env, ARM_FEATURE_EL2));
681 arm_cpu_update_vfiq(cpu);
682 break;
683 case ARM_CPU_IRQ:
684 case ARM_CPU_FIQ:
685 if (level) {
686 cpu_interrupt(cs, mask[irq]);
687 } else {
688 cpu_reset_interrupt(cs, mask[irq]);
689 }
690 break;
691 default:
692 g_assert_not_reached();
693 }
694 }
695
696 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
697 {
698 #ifdef CONFIG_KVM
699 ARMCPU *cpu = opaque;
700 CPUARMState *env = &cpu->env;
701 CPUState *cs = CPU(cpu);
702 uint32_t linestate_bit;
703 int irq_id;
704
705 switch (irq) {
706 case ARM_CPU_IRQ:
707 irq_id = KVM_ARM_IRQ_CPU_IRQ;
708 linestate_bit = CPU_INTERRUPT_HARD;
709 break;
710 case ARM_CPU_FIQ:
711 irq_id = KVM_ARM_IRQ_CPU_FIQ;
712 linestate_bit = CPU_INTERRUPT_FIQ;
713 break;
714 default:
715 g_assert_not_reached();
716 }
717
718 if (level) {
719 env->irq_line_state |= linestate_bit;
720 } else {
721 env->irq_line_state &= ~linestate_bit;
722 }
723 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
724 #endif
725 }
726
727 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
728 {
729 ARMCPU *cpu = ARM_CPU(cs);
730 CPUARMState *env = &cpu->env;
731
732 cpu_synchronize_state(cs);
733 return arm_cpu_data_is_big_endian(env);
734 }
735
736 #endif
737
738 static inline void set_feature(CPUARMState *env, int feature)
739 {
740 env->features |= 1ULL << feature;
741 }
742
743 static inline void unset_feature(CPUARMState *env, int feature)
744 {
745 env->features &= ~(1ULL << feature);
746 }
747
748 static int
749 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
750 {
751 return print_insn_arm(pc | 1, info);
752 }
753
754 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
755 {
756 ARMCPU *ac = ARM_CPU(cpu);
757 CPUARMState *env = &ac->env;
758 bool sctlr_b;
759
760 if (is_a64(env)) {
761 /* We might not be compiled with the A64 disassembler
762 * because it needs a C++ compiler. Leave print_insn
763 * unset in this case to use the caller default behaviour.
764 */
765 #if defined(CONFIG_ARM_A64_DIS)
766 info->print_insn = print_insn_arm_a64;
767 #endif
768 info->cap_arch = CS_ARCH_ARM64;
769 info->cap_insn_unit = 4;
770 info->cap_insn_split = 4;
771 } else {
772 int cap_mode;
773 if (env->thumb) {
774 info->print_insn = print_insn_thumb1;
775 info->cap_insn_unit = 2;
776 info->cap_insn_split = 4;
777 cap_mode = CS_MODE_THUMB;
778 } else {
779 info->print_insn = print_insn_arm;
780 info->cap_insn_unit = 4;
781 info->cap_insn_split = 4;
782 cap_mode = CS_MODE_ARM;
783 }
784 if (arm_feature(env, ARM_FEATURE_V8)) {
785 cap_mode |= CS_MODE_V8;
786 }
787 if (arm_feature(env, ARM_FEATURE_M)) {
788 cap_mode |= CS_MODE_MCLASS;
789 }
790 info->cap_arch = CS_ARCH_ARM;
791 info->cap_mode = cap_mode;
792 }
793
794 sctlr_b = arm_sctlr_b(env);
795 if (bswap_code(sctlr_b)) {
796 #ifdef TARGET_WORDS_BIGENDIAN
797 info->endian = BFD_ENDIAN_LITTLE;
798 #else
799 info->endian = BFD_ENDIAN_BIG;
800 #endif
801 }
802 info->flags &= ~INSN_ARM_BE32;
803 #ifndef CONFIG_USER_ONLY
804 if (sctlr_b) {
805 info->flags |= INSN_ARM_BE32;
806 }
807 #endif
808 }
809
810 #ifdef TARGET_AARCH64
811
812 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
813 {
814 ARMCPU *cpu = ARM_CPU(cs);
815 CPUARMState *env = &cpu->env;
816 uint32_t psr = pstate_read(env);
817 int i;
818 int el = arm_current_el(env);
819 const char *ns_status;
820
821 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
822 for (i = 0; i < 32; i++) {
823 if (i == 31) {
824 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
825 } else {
826 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
827 (i + 2) % 3 ? " " : "\n");
828 }
829 }
830
831 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
832 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
833 } else {
834 ns_status = "";
835 }
836 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
837 psr,
838 psr & PSTATE_N ? 'N' : '-',
839 psr & PSTATE_Z ? 'Z' : '-',
840 psr & PSTATE_C ? 'C' : '-',
841 psr & PSTATE_V ? 'V' : '-',
842 ns_status,
843 el,
844 psr & PSTATE_SP ? 'h' : 't');
845
846 if (cpu_isar_feature(aa64_bti, cpu)) {
847 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
848 }
849 if (!(flags & CPU_DUMP_FPU)) {
850 qemu_fprintf(f, "\n");
851 return;
852 }
853 if (fp_exception_el(env, el) != 0) {
854 qemu_fprintf(f, " FPU disabled\n");
855 return;
856 }
857 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
858 vfp_get_fpcr(env), vfp_get_fpsr(env));
859
860 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
861 int j, zcr_len = sve_zcr_len_for_el(env, el);
862
863 for (i = 0; i <= FFR_PRED_NUM; i++) {
864 bool eol;
865 if (i == FFR_PRED_NUM) {
866 qemu_fprintf(f, "FFR=");
867 /* It's last, so end the line. */
868 eol = true;
869 } else {
870 qemu_fprintf(f, "P%02d=", i);
871 switch (zcr_len) {
872 case 0:
873 eol = i % 8 == 7;
874 break;
875 case 1:
876 eol = i % 6 == 5;
877 break;
878 case 2:
879 case 3:
880 eol = i % 3 == 2;
881 break;
882 default:
883 /* More than one quadword per predicate. */
884 eol = true;
885 break;
886 }
887 }
888 for (j = zcr_len / 4; j >= 0; j--) {
889 int digits;
890 if (j * 4 + 4 <= zcr_len + 1) {
891 digits = 16;
892 } else {
893 digits = (zcr_len % 4 + 1) * 4;
894 }
895 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
896 env->vfp.pregs[i].p[j],
897 j ? ":" : eol ? "\n" : " ");
898 }
899 }
900
901 for (i = 0; i < 32; i++) {
902 if (zcr_len == 0) {
903 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
904 i, env->vfp.zregs[i].d[1],
905 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
906 } else if (zcr_len == 1) {
907 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
908 ":%016" PRIx64 ":%016" PRIx64 "\n",
909 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
910 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
911 } else {
912 for (j = zcr_len; j >= 0; j--) {
913 bool odd = (zcr_len - j) % 2 != 0;
914 if (j == zcr_len) {
915 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
916 } else if (!odd) {
917 if (j > 0) {
918 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
919 } else {
920 qemu_fprintf(f, " [%x]=", j);
921 }
922 }
923 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
924 env->vfp.zregs[i].d[j * 2 + 1],
925 env->vfp.zregs[i].d[j * 2],
926 odd || j == 0 ? "\n" : ":");
927 }
928 }
929 }
930 } else {
931 for (i = 0; i < 32; i++) {
932 uint64_t *q = aa64_vfp_qreg(env, i);
933 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
934 i, q[1], q[0], (i & 1 ? "\n" : " "));
935 }
936 }
937 }
938
939 #else
940
941 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
942 {
943 g_assert_not_reached();
944 }
945
946 #endif
947
948 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
949 {
950 ARMCPU *cpu = ARM_CPU(cs);
951 CPUARMState *env = &cpu->env;
952 int i;
953
954 if (is_a64(env)) {
955 aarch64_cpu_dump_state(cs, f, flags);
956 return;
957 }
958
959 for (i = 0; i < 16; i++) {
960 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
961 if ((i % 4) == 3) {
962 qemu_fprintf(f, "\n");
963 } else {
964 qemu_fprintf(f, " ");
965 }
966 }
967
968 if (arm_feature(env, ARM_FEATURE_M)) {
969 uint32_t xpsr = xpsr_read(env);
970 const char *mode;
971 const char *ns_status = "";
972
973 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
974 ns_status = env->v7m.secure ? "S " : "NS ";
975 }
976
977 if (xpsr & XPSR_EXCP) {
978 mode = "handler";
979 } else {
980 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
981 mode = "unpriv-thread";
982 } else {
983 mode = "priv-thread";
984 }
985 }
986
987 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
988 xpsr,
989 xpsr & XPSR_N ? 'N' : '-',
990 xpsr & XPSR_Z ? 'Z' : '-',
991 xpsr & XPSR_C ? 'C' : '-',
992 xpsr & XPSR_V ? 'V' : '-',
993 xpsr & XPSR_T ? 'T' : 'A',
994 ns_status,
995 mode);
996 } else {
997 uint32_t psr = cpsr_read(env);
998 const char *ns_status = "";
999
1000 if (arm_feature(env, ARM_FEATURE_EL3) &&
1001 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1002 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1003 }
1004
1005 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1006 psr,
1007 psr & CPSR_N ? 'N' : '-',
1008 psr & CPSR_Z ? 'Z' : '-',
1009 psr & CPSR_C ? 'C' : '-',
1010 psr & CPSR_V ? 'V' : '-',
1011 psr & CPSR_T ? 'T' : 'A',
1012 ns_status,
1013 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1014 }
1015
1016 if (flags & CPU_DUMP_FPU) {
1017 int numvfpregs = 0;
1018 if (arm_feature(env, ARM_FEATURE_VFP)) {
1019 numvfpregs += 16;
1020 }
1021 if (arm_feature(env, ARM_FEATURE_VFP3)) {
1022 numvfpregs += 16;
1023 }
1024 for (i = 0; i < numvfpregs; i++) {
1025 uint64_t v = *aa32_vfp_dreg(env, i);
1026 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1027 i * 2, (uint32_t)v,
1028 i * 2 + 1, (uint32_t)(v >> 32),
1029 i, v);
1030 }
1031 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1032 }
1033 }
1034
1035 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1036 {
1037 uint32_t Aff1 = idx / clustersz;
1038 uint32_t Aff0 = idx % clustersz;
1039 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1040 }
1041
1042 static void cpreg_hashtable_data_destroy(gpointer data)
1043 {
1044 /*
1045 * Destroy function for cpu->cp_regs hashtable data entries.
1046 * We must free the name string because it was g_strdup()ed in
1047 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1048 * from r->name because we know we definitely allocated it.
1049 */
1050 ARMCPRegInfo *r = data;
1051
1052 g_free((void *)r->name);
1053 g_free(r);
1054 }
1055
1056 static void arm_cpu_initfn(Object *obj)
1057 {
1058 ARMCPU *cpu = ARM_CPU(obj);
1059
1060 cpu_set_cpustate_pointers(cpu);
1061 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1062 g_free, cpreg_hashtable_data_destroy);
1063
1064 QLIST_INIT(&cpu->pre_el_change_hooks);
1065 QLIST_INIT(&cpu->el_change_hooks);
1066
1067 #ifndef CONFIG_USER_ONLY
1068 /* Our inbound IRQ and FIQ lines */
1069 if (kvm_enabled()) {
1070 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1071 * the same interface as non-KVM CPUs.
1072 */
1073 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1074 } else {
1075 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1076 }
1077
1078 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1079 ARRAY_SIZE(cpu->gt_timer_outputs));
1080
1081 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1082 "gicv3-maintenance-interrupt", 1);
1083 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1084 "pmu-interrupt", 1);
1085 #endif
1086
1087 /* DTB consumers generally don't in fact care what the 'compatible'
1088 * string is, so always provide some string and trust that a hypothetical
1089 * picky DTB consumer will also provide a helpful error message.
1090 */
1091 cpu->dtb_compatible = "qemu,unknown";
1092 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1093 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1094
1095 if (tcg_enabled()) {
1096 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1097 }
1098 }
1099
1100 static Property arm_cpu_gt_cntfrq_property =
1101 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1102 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1103
1104 static Property arm_cpu_reset_cbar_property =
1105 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1106
1107 static Property arm_cpu_reset_hivecs_property =
1108 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1109
1110 static Property arm_cpu_rvbar_property =
1111 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1112
1113 static Property arm_cpu_has_el2_property =
1114 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1115
1116 static Property arm_cpu_has_el3_property =
1117 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1118
1119 static Property arm_cpu_cfgend_property =
1120 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1121
1122 static Property arm_cpu_has_vfp_property =
1123 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1124
1125 static Property arm_cpu_has_neon_property =
1126 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1127
1128 static Property arm_cpu_has_dsp_property =
1129 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1130
1131 static Property arm_cpu_has_mpu_property =
1132 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1133
1134 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1135 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1136 * the right value for that particular CPU type, and we don't want
1137 * to override that with an incorrect constant value.
1138 */
1139 static Property arm_cpu_pmsav7_dregion_property =
1140 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1141 pmsav7_dregion,
1142 qdev_prop_uint32, uint32_t);
1143
1144 static bool arm_get_pmu(Object *obj, Error **errp)
1145 {
1146 ARMCPU *cpu = ARM_CPU(obj);
1147
1148 return cpu->has_pmu;
1149 }
1150
1151 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1152 {
1153 ARMCPU *cpu = ARM_CPU(obj);
1154
1155 if (value) {
1156 if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1157 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1158 return;
1159 }
1160 set_feature(&cpu->env, ARM_FEATURE_PMU);
1161 } else {
1162 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1163 }
1164 cpu->has_pmu = value;
1165 }
1166
1167 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1168 void *opaque, Error **errp)
1169 {
1170 ARMCPU *cpu = ARM_CPU(obj);
1171
1172 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1173 }
1174
1175 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1176 void *opaque, Error **errp)
1177 {
1178 ARMCPU *cpu = ARM_CPU(obj);
1179
1180 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1181 }
1182
1183 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1184 {
1185 /*
1186 * The exact approach to calculating guest ticks is:
1187 *
1188 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1189 * NANOSECONDS_PER_SECOND);
1190 *
1191 * We don't do that. Rather we intentionally use integer division
1192 * truncation below and in the caller for the conversion of host monotonic
1193 * time to guest ticks to provide the exact inverse for the semantics of
1194 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1195 * it loses precision when representing frequencies where
1196 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1197 * provide an exact inverse leads to scheduling timers with negative
1198 * periods, which in turn leads to sticky behaviour in the guest.
1199 *
1200 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1201 * cannot become zero.
1202 */
1203 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1204 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1205 }
1206
1207 void arm_cpu_post_init(Object *obj)
1208 {
1209 ARMCPU *cpu = ARM_CPU(obj);
1210
1211 /* M profile implies PMSA. We have to do this here rather than
1212 * in realize with the other feature-implication checks because
1213 * we look at the PMSA bit to see if we should add some properties.
1214 */
1215 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1216 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1217 }
1218 /* Similarly for the VFP feature bits */
1219 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1220 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1221 }
1222 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1223 set_feature(&cpu->env, ARM_FEATURE_VFP);
1224 }
1225
1226 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1227 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1228 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1229 }
1230
1231 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1232 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1233 }
1234
1235 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1236 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1237 }
1238
1239 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1240 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1241 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1242 */
1243 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1244
1245 #ifndef CONFIG_USER_ONLY
1246 object_property_add_link(obj, "secure-memory",
1247 TYPE_MEMORY_REGION,
1248 (Object **)&cpu->secure_memory,
1249 qdev_prop_allow_set_link_before_realize,
1250 OBJ_PROP_LINK_STRONG,
1251 &error_abort);
1252 #endif
1253 }
1254
1255 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1256 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1257 }
1258
1259 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1260 cpu->has_pmu = true;
1261 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1262 &error_abort);
1263 }
1264
1265 /*
1266 * Allow user to turn off VFP and Neon support, but only for TCG --
1267 * KVM does not currently allow us to lie to the guest about its
1268 * ID/feature registers, so the guest always sees what the host has.
1269 */
1270 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1271 cpu->has_vfp = true;
1272 if (!kvm_enabled()) {
1273 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1274 }
1275 }
1276
1277 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1278 cpu->has_neon = true;
1279 if (!kvm_enabled()) {
1280 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1281 }
1282 }
1283
1284 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1285 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1286 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1287 }
1288
1289 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1290 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1291 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1292 qdev_property_add_static(DEVICE(obj),
1293 &arm_cpu_pmsav7_dregion_property);
1294 }
1295 }
1296
1297 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1298 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1299 qdev_prop_allow_set_link_before_realize,
1300 OBJ_PROP_LINK_STRONG,
1301 &error_abort);
1302 /*
1303 * M profile: initial value of the Secure VTOR. We can't just use
1304 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1305 * the property to be set after realize.
1306 */
1307 object_property_add(obj, "init-svtor", "uint32",
1308 arm_get_init_svtor, arm_set_init_svtor,
1309 NULL, NULL, &error_abort);
1310 }
1311
1312 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1313
1314 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1315 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1316 }
1317 }
1318
1319 static void arm_cpu_finalizefn(Object *obj)
1320 {
1321 ARMCPU *cpu = ARM_CPU(obj);
1322 ARMELChangeHook *hook, *next;
1323
1324 g_hash_table_destroy(cpu->cp_regs);
1325
1326 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1327 QLIST_REMOVE(hook, node);
1328 g_free(hook);
1329 }
1330 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1331 QLIST_REMOVE(hook, node);
1332 g_free(hook);
1333 }
1334 #ifndef CONFIG_USER_ONLY
1335 if (cpu->pmu_timer) {
1336 timer_del(cpu->pmu_timer);
1337 timer_deinit(cpu->pmu_timer);
1338 timer_free(cpu->pmu_timer);
1339 }
1340 #endif
1341 }
1342
1343 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1344 {
1345 Error *local_err = NULL;
1346
1347 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1348 arm_cpu_sve_finalize(cpu, &local_err);
1349 if (local_err != NULL) {
1350 error_propagate(errp, local_err);
1351 return;
1352 }
1353 }
1354 }
1355
1356 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1357 {
1358 CPUState *cs = CPU(dev);
1359 ARMCPU *cpu = ARM_CPU(dev);
1360 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1361 CPUARMState *env = &cpu->env;
1362 int pagebits;
1363 Error *local_err = NULL;
1364 bool no_aa32 = false;
1365
1366 /* If we needed to query the host kernel for the CPU features
1367 * then it's possible that might have failed in the initfn, but
1368 * this is the first point where we can report it.
1369 */
1370 if (cpu->host_cpu_probe_failed) {
1371 if (!kvm_enabled()) {
1372 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1373 } else {
1374 error_setg(errp, "Failed to retrieve host CPU features");
1375 }
1376 return;
1377 }
1378
1379 #ifndef CONFIG_USER_ONLY
1380 /* The NVIC and M-profile CPU are two halves of a single piece of
1381 * hardware; trying to use one without the other is a command line
1382 * error and will result in segfaults if not caught here.
1383 */
1384 if (arm_feature(env, ARM_FEATURE_M)) {
1385 if (!env->nvic) {
1386 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1387 return;
1388 }
1389 } else {
1390 if (env->nvic) {
1391 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1392 return;
1393 }
1394 }
1395
1396 {
1397 uint64_t scale;
1398
1399 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1400 if (!cpu->gt_cntfrq_hz) {
1401 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1402 cpu->gt_cntfrq_hz);
1403 return;
1404 }
1405 scale = gt_cntfrq_period_ns(cpu);
1406 } else {
1407 scale = GTIMER_SCALE;
1408 }
1409
1410 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1411 arm_gt_ptimer_cb, cpu);
1412 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1413 arm_gt_vtimer_cb, cpu);
1414 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1415 arm_gt_htimer_cb, cpu);
1416 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1417 arm_gt_stimer_cb, cpu);
1418 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1419 arm_gt_hvtimer_cb, cpu);
1420 }
1421 #endif
1422
1423 cpu_exec_realizefn(cs, &local_err);
1424 if (local_err != NULL) {
1425 error_propagate(errp, local_err);
1426 return;
1427 }
1428
1429 arm_cpu_finalize_features(cpu, &local_err);
1430 if (local_err != NULL) {
1431 error_propagate(errp, local_err);
1432 return;
1433 }
1434
1435 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1436 cpu->has_vfp != cpu->has_neon) {
1437 /*
1438 * This is an architectural requirement for AArch64; AArch32 is
1439 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1440 */
1441 error_setg(errp,
1442 "AArch64 CPUs must have both VFP and Neon or neither");
1443 return;
1444 }
1445
1446 if (!cpu->has_vfp) {
1447 uint64_t t;
1448 uint32_t u;
1449
1450 unset_feature(env, ARM_FEATURE_VFP);
1451 unset_feature(env, ARM_FEATURE_VFP3);
1452 unset_feature(env, ARM_FEATURE_VFP4);
1453
1454 t = cpu->isar.id_aa64isar1;
1455 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1456 cpu->isar.id_aa64isar1 = t;
1457
1458 t = cpu->isar.id_aa64pfr0;
1459 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1460 cpu->isar.id_aa64pfr0 = t;
1461
1462 u = cpu->isar.id_isar6;
1463 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1464 cpu->isar.id_isar6 = u;
1465
1466 u = cpu->isar.mvfr0;
1467 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1468 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1469 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1470 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1471 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1472 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1473 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1474 cpu->isar.mvfr0 = u;
1475
1476 u = cpu->isar.mvfr1;
1477 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1478 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1479 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1480 cpu->isar.mvfr1 = u;
1481
1482 u = cpu->isar.mvfr2;
1483 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1484 cpu->isar.mvfr2 = u;
1485 }
1486
1487 if (!cpu->has_neon) {
1488 uint64_t t;
1489 uint32_t u;
1490
1491 unset_feature(env, ARM_FEATURE_NEON);
1492
1493 t = cpu->isar.id_aa64isar0;
1494 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1495 cpu->isar.id_aa64isar0 = t;
1496
1497 t = cpu->isar.id_aa64isar1;
1498 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1499 cpu->isar.id_aa64isar1 = t;
1500
1501 t = cpu->isar.id_aa64pfr0;
1502 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1503 cpu->isar.id_aa64pfr0 = t;
1504
1505 u = cpu->isar.id_isar5;
1506 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1507 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1508 cpu->isar.id_isar5 = u;
1509
1510 u = cpu->isar.id_isar6;
1511 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1512 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1513 cpu->isar.id_isar6 = u;
1514
1515 u = cpu->isar.mvfr1;
1516 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1517 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1518 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1519 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1520 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1521 cpu->isar.mvfr1 = u;
1522
1523 u = cpu->isar.mvfr2;
1524 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1525 cpu->isar.mvfr2 = u;
1526 }
1527
1528 if (!cpu->has_neon && !cpu->has_vfp) {
1529 uint64_t t;
1530 uint32_t u;
1531
1532 t = cpu->isar.id_aa64isar0;
1533 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1534 cpu->isar.id_aa64isar0 = t;
1535
1536 t = cpu->isar.id_aa64isar1;
1537 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1538 cpu->isar.id_aa64isar1 = t;
1539
1540 u = cpu->isar.mvfr0;
1541 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1542 cpu->isar.mvfr0 = u;
1543 }
1544
1545 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1546 uint32_t u;
1547
1548 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1549
1550 u = cpu->isar.id_isar1;
1551 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1552 cpu->isar.id_isar1 = u;
1553
1554 u = cpu->isar.id_isar2;
1555 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1556 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1557 cpu->isar.id_isar2 = u;
1558
1559 u = cpu->isar.id_isar3;
1560 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1561 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1562 cpu->isar.id_isar3 = u;
1563 }
1564
1565 /* Some features automatically imply others: */
1566 if (arm_feature(env, ARM_FEATURE_V8)) {
1567 if (arm_feature(env, ARM_FEATURE_M)) {
1568 set_feature(env, ARM_FEATURE_V7);
1569 } else {
1570 set_feature(env, ARM_FEATURE_V7VE);
1571 }
1572 }
1573
1574 /*
1575 * There exist AArch64 cpus without AArch32 support. When KVM
1576 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1577 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1578 * As a general principle, we also do not make ID register
1579 * consistency checks anywhere unless using TCG, because only
1580 * for TCG would a consistency-check failure be a QEMU bug.
1581 */
1582 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1583 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1584 }
1585
1586 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1587 /* v7 Virtualization Extensions. In real hardware this implies
1588 * EL2 and also the presence of the Security Extensions.
1589 * For QEMU, for backwards-compatibility we implement some
1590 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1591 * include the various other features that V7VE implies.
1592 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1593 * Security Extensions is ARM_FEATURE_EL3.
1594 */
1595 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1596 set_feature(env, ARM_FEATURE_LPAE);
1597 set_feature(env, ARM_FEATURE_V7);
1598 }
1599 if (arm_feature(env, ARM_FEATURE_V7)) {
1600 set_feature(env, ARM_FEATURE_VAPA);
1601 set_feature(env, ARM_FEATURE_THUMB2);
1602 set_feature(env, ARM_FEATURE_MPIDR);
1603 if (!arm_feature(env, ARM_FEATURE_M)) {
1604 set_feature(env, ARM_FEATURE_V6K);
1605 } else {
1606 set_feature(env, ARM_FEATURE_V6);
1607 }
1608
1609 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1610 * non-EL3 configs. This is needed by some legacy boards.
1611 */
1612 set_feature(env, ARM_FEATURE_VBAR);
1613 }
1614 if (arm_feature(env, ARM_FEATURE_V6K)) {
1615 set_feature(env, ARM_FEATURE_V6);
1616 set_feature(env, ARM_FEATURE_MVFR);
1617 }
1618 if (arm_feature(env, ARM_FEATURE_V6)) {
1619 set_feature(env, ARM_FEATURE_V5);
1620 if (!arm_feature(env, ARM_FEATURE_M)) {
1621 assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1622 set_feature(env, ARM_FEATURE_AUXCR);
1623 }
1624 }
1625 if (arm_feature(env, ARM_FEATURE_V5)) {
1626 set_feature(env, ARM_FEATURE_V4T);
1627 }
1628 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1629 set_feature(env, ARM_FEATURE_V7MP);
1630 set_feature(env, ARM_FEATURE_PXN);
1631 }
1632 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1633 set_feature(env, ARM_FEATURE_CBAR);
1634 }
1635 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1636 !arm_feature(env, ARM_FEATURE_M)) {
1637 set_feature(env, ARM_FEATURE_THUMB_DSP);
1638 }
1639
1640 /*
1641 * We rely on no XScale CPU having VFP so we can use the same bits in the
1642 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1643 */
1644 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1645 arm_feature(env, ARM_FEATURE_XSCALE)));
1646
1647 if (arm_feature(env, ARM_FEATURE_V7) &&
1648 !arm_feature(env, ARM_FEATURE_M) &&
1649 !arm_feature(env, ARM_FEATURE_PMSA)) {
1650 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1651 * can use 4K pages.
1652 */
1653 pagebits = 12;
1654 } else {
1655 /* For CPUs which might have tiny 1K pages, or which have an
1656 * MPU and might have small region sizes, stick with 1K pages.
1657 */
1658 pagebits = 10;
1659 }
1660 if (!set_preferred_target_page_bits(pagebits)) {
1661 /* This can only ever happen for hotplugging a CPU, or if
1662 * the board code incorrectly creates a CPU which it has
1663 * promised via minimum_page_size that it will not.
1664 */
1665 error_setg(errp, "This CPU requires a smaller page size than the "
1666 "system is using");
1667 return;
1668 }
1669
1670 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1671 * We don't support setting cluster ID ([16..23]) (known as Aff2
1672 * in later ARM ARM versions), or any of the higher affinity level fields,
1673 * so these bits always RAZ.
1674 */
1675 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1676 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1677 ARM_DEFAULT_CPUS_PER_CLUSTER);
1678 }
1679
1680 if (cpu->reset_hivecs) {
1681 cpu->reset_sctlr |= (1 << 13);
1682 }
1683
1684 if (cpu->cfgend) {
1685 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1686 cpu->reset_sctlr |= SCTLR_EE;
1687 } else {
1688 cpu->reset_sctlr |= SCTLR_B;
1689 }
1690 }
1691
1692 if (!cpu->has_el3) {
1693 /* If the has_el3 CPU property is disabled then we need to disable the
1694 * feature.
1695 */
1696 unset_feature(env, ARM_FEATURE_EL3);
1697
1698 /* Disable the security extension feature bits in the processor feature
1699 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1700 */
1701 cpu->id_pfr1 &= ~0xf0;
1702 cpu->isar.id_aa64pfr0 &= ~0xf000;
1703 }
1704
1705 if (!cpu->has_el2) {
1706 unset_feature(env, ARM_FEATURE_EL2);
1707 }
1708
1709 if (!cpu->has_pmu) {
1710 unset_feature(env, ARM_FEATURE_PMU);
1711 }
1712 if (arm_feature(env, ARM_FEATURE_PMU)) {
1713 pmu_init(cpu);
1714
1715 if (!kvm_enabled()) {
1716 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1717 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1718 }
1719
1720 #ifndef CONFIG_USER_ONLY
1721 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1722 cpu);
1723 #endif
1724 } else {
1725 cpu->id_aa64dfr0 &= ~0xf00;
1726 cpu->id_dfr0 &= ~(0xf << 24);
1727 cpu->pmceid0 = 0;
1728 cpu->pmceid1 = 0;
1729 }
1730
1731 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1732 /* Disable the hypervisor feature bits in the processor feature
1733 * registers if we don't have EL2. These are id_pfr1[15:12] and
1734 * id_aa64pfr0_el1[11:8].
1735 */
1736 cpu->isar.id_aa64pfr0 &= ~0xf00;
1737 cpu->id_pfr1 &= ~0xf000;
1738 }
1739
1740 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1741 * to false or by setting pmsav7-dregion to 0.
1742 */
1743 if (!cpu->has_mpu) {
1744 cpu->pmsav7_dregion = 0;
1745 }
1746 if (cpu->pmsav7_dregion == 0) {
1747 cpu->has_mpu = false;
1748 }
1749
1750 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1751 arm_feature(env, ARM_FEATURE_V7)) {
1752 uint32_t nr = cpu->pmsav7_dregion;
1753
1754 if (nr > 0xff) {
1755 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1756 return;
1757 }
1758
1759 if (nr) {
1760 if (arm_feature(env, ARM_FEATURE_V8)) {
1761 /* PMSAv8 */
1762 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1763 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1764 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1765 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1766 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1767 }
1768 } else {
1769 env->pmsav7.drbar = g_new0(uint32_t, nr);
1770 env->pmsav7.drsr = g_new0(uint32_t, nr);
1771 env->pmsav7.dracr = g_new0(uint32_t, nr);
1772 }
1773 }
1774 }
1775
1776 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1777 uint32_t nr = cpu->sau_sregion;
1778
1779 if (nr > 0xff) {
1780 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1781 return;
1782 }
1783
1784 if (nr) {
1785 env->sau.rbar = g_new0(uint32_t, nr);
1786 env->sau.rlar = g_new0(uint32_t, nr);
1787 }
1788 }
1789
1790 if (arm_feature(env, ARM_FEATURE_EL3)) {
1791 set_feature(env, ARM_FEATURE_VBAR);
1792 }
1793
1794 register_cp_regs_for_features(cpu);
1795 arm_cpu_register_gdb_regs_for_features(cpu);
1796
1797 init_cpreg_list(cpu);
1798
1799 #ifndef CONFIG_USER_ONLY
1800 MachineState *ms = MACHINE(qdev_get_machine());
1801 unsigned int smp_cpus = ms->smp.cpus;
1802
1803 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1804 cs->num_ases = 2;
1805
1806 if (!cpu->secure_memory) {
1807 cpu->secure_memory = cs->memory;
1808 }
1809 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1810 cpu->secure_memory);
1811 } else {
1812 cs->num_ases = 1;
1813 }
1814 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1815
1816 /* No core_count specified, default to smp_cpus. */
1817 if (cpu->core_count == -1) {
1818 cpu->core_count = smp_cpus;
1819 }
1820 #endif
1821
1822 qemu_init_vcpu(cs);
1823 cpu_reset(cs);
1824
1825 acc->parent_realize(dev, errp);
1826 }
1827
1828 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1829 {
1830 ObjectClass *oc;
1831 char *typename;
1832 char **cpuname;
1833 const char *cpunamestr;
1834
1835 cpuname = g_strsplit(cpu_model, ",", 1);
1836 cpunamestr = cpuname[0];
1837 #ifdef CONFIG_USER_ONLY
1838 /* For backwards compatibility usermode emulation allows "-cpu any",
1839 * which has the same semantics as "-cpu max".
1840 */
1841 if (!strcmp(cpunamestr, "any")) {
1842 cpunamestr = "max";
1843 }
1844 #endif
1845 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1846 oc = object_class_by_name(typename);
1847 g_strfreev(cpuname);
1848 g_free(typename);
1849 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1850 object_class_is_abstract(oc)) {
1851 return NULL;
1852 }
1853 return oc;
1854 }
1855
1856 /* CPU models. These are not needed for the AArch64 linux-user build. */
1857 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1858
1859 static void arm926_initfn(Object *obj)
1860 {
1861 ARMCPU *cpu = ARM_CPU(obj);
1862
1863 cpu->dtb_compatible = "arm,arm926";
1864 set_feature(&cpu->env, ARM_FEATURE_V5);
1865 set_feature(&cpu->env, ARM_FEATURE_VFP);
1866 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1867 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1868 cpu->midr = 0x41069265;
1869 cpu->reset_fpsid = 0x41011090;
1870 cpu->ctr = 0x1dd20d2;
1871 cpu->reset_sctlr = 0x00090078;
1872
1873 /*
1874 * ARMv5 does not have the ID_ISAR registers, but we can still
1875 * set the field to indicate Jazelle support within QEMU.
1876 */
1877 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1878 /*
1879 * Similarly, we need to set MVFR0 fields to enable double precision
1880 * and short vector support even though ARMv5 doesn't have this register.
1881 */
1882 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1883 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1884 }
1885
1886 static void arm946_initfn(Object *obj)
1887 {
1888 ARMCPU *cpu = ARM_CPU(obj);
1889
1890 cpu->dtb_compatible = "arm,arm946";
1891 set_feature(&cpu->env, ARM_FEATURE_V5);
1892 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1893 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1894 cpu->midr = 0x41059461;
1895 cpu->ctr = 0x0f004006;
1896 cpu->reset_sctlr = 0x00000078;
1897 }
1898
1899 static void arm1026_initfn(Object *obj)
1900 {
1901 ARMCPU *cpu = ARM_CPU(obj);
1902
1903 cpu->dtb_compatible = "arm,arm1026";
1904 set_feature(&cpu->env, ARM_FEATURE_V5);
1905 set_feature(&cpu->env, ARM_FEATURE_VFP);
1906 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1907 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1908 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1909 cpu->midr = 0x4106a262;
1910 cpu->reset_fpsid = 0x410110a0;
1911 cpu->ctr = 0x1dd20d2;
1912 cpu->reset_sctlr = 0x00090078;
1913 cpu->reset_auxcr = 1;
1914
1915 /*
1916 * ARMv5 does not have the ID_ISAR registers, but we can still
1917 * set the field to indicate Jazelle support within QEMU.
1918 */
1919 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1920 /*
1921 * Similarly, we need to set MVFR0 fields to enable double precision
1922 * and short vector support even though ARMv5 doesn't have this register.
1923 */
1924 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1925 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1926
1927 {
1928 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1929 ARMCPRegInfo ifar = {
1930 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1931 .access = PL1_RW,
1932 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1933 .resetvalue = 0
1934 };
1935 define_one_arm_cp_reg(cpu, &ifar);
1936 }
1937 }
1938
1939 static void arm1136_r2_initfn(Object *obj)
1940 {
1941 ARMCPU *cpu = ARM_CPU(obj);
1942 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1943 * older core than plain "arm1136". In particular this does not
1944 * have the v6K features.
1945 * These ID register values are correct for 1136 but may be wrong
1946 * for 1136_r2 (in particular r0p2 does not actually implement most
1947 * of the ID registers).
1948 */
1949
1950 cpu->dtb_compatible = "arm,arm1136";
1951 set_feature(&cpu->env, ARM_FEATURE_V6);
1952 set_feature(&cpu->env, ARM_FEATURE_VFP);
1953 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1954 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1955 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1956 cpu->midr = 0x4107b362;
1957 cpu->reset_fpsid = 0x410120b4;
1958 cpu->isar.mvfr0 = 0x11111111;
1959 cpu->isar.mvfr1 = 0x00000000;
1960 cpu->ctr = 0x1dd20d2;
1961 cpu->reset_sctlr = 0x00050078;
1962 cpu->id_pfr0 = 0x111;
1963 cpu->id_pfr1 = 0x1;
1964 cpu->id_dfr0 = 0x2;
1965 cpu->id_afr0 = 0x3;
1966 cpu->id_mmfr0 = 0x01130003;
1967 cpu->id_mmfr1 = 0x10030302;
1968 cpu->id_mmfr2 = 0x01222110;
1969 cpu->isar.id_isar0 = 0x00140011;
1970 cpu->isar.id_isar1 = 0x12002111;
1971 cpu->isar.id_isar2 = 0x11231111;
1972 cpu->isar.id_isar3 = 0x01102131;
1973 cpu->isar.id_isar4 = 0x141;
1974 cpu->reset_auxcr = 7;
1975 }
1976
1977 static void arm1136_initfn(Object *obj)
1978 {
1979 ARMCPU *cpu = ARM_CPU(obj);
1980
1981 cpu->dtb_compatible = "arm,arm1136";
1982 set_feature(&cpu->env, ARM_FEATURE_V6K);
1983 set_feature(&cpu->env, ARM_FEATURE_V6);
1984 set_feature(&cpu->env, ARM_FEATURE_VFP);
1985 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1986 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1987 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1988 cpu->midr = 0x4117b363;
1989 cpu->reset_fpsid = 0x410120b4;
1990 cpu->isar.mvfr0 = 0x11111111;
1991 cpu->isar.mvfr1 = 0x00000000;
1992 cpu->ctr = 0x1dd20d2;
1993 cpu->reset_sctlr = 0x00050078;
1994 cpu->id_pfr0 = 0x111;
1995 cpu->id_pfr1 = 0x1;
1996 cpu->id_dfr0 = 0x2;
1997 cpu->id_afr0 = 0x3;
1998 cpu->id_mmfr0 = 0x01130003;
1999 cpu->id_mmfr1 = 0x10030302;
2000 cpu->id_mmfr2 = 0x01222110;
2001 cpu->isar.id_isar0 = 0x00140011;
2002 cpu->isar.id_isar1 = 0x12002111;
2003 cpu->isar.id_isar2 = 0x11231111;
2004 cpu->isar.id_isar3 = 0x01102131;
2005 cpu->isar.id_isar4 = 0x141;
2006 cpu->reset_auxcr = 7;
2007 }
2008
2009 static void arm1176_initfn(Object *obj)
2010 {
2011 ARMCPU *cpu = ARM_CPU(obj);
2012
2013 cpu->dtb_compatible = "arm,arm1176";
2014 set_feature(&cpu->env, ARM_FEATURE_V6K);
2015 set_feature(&cpu->env, ARM_FEATURE_VFP);
2016 set_feature(&cpu->env, ARM_FEATURE_VAPA);
2017 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2018 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
2019 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
2020 set_feature(&cpu->env, ARM_FEATURE_EL3);
2021 cpu->midr = 0x410fb767;
2022 cpu->reset_fpsid = 0x410120b5;
2023 cpu->isar.mvfr0 = 0x11111111;
2024 cpu->isar.mvfr1 = 0x00000000;
2025 cpu->ctr = 0x1dd20d2;
2026 cpu->reset_sctlr = 0x00050078;
2027 cpu->id_pfr0 = 0x111;
2028 cpu->id_pfr1 = 0x11;
2029 cpu->id_dfr0 = 0x33;
2030 cpu->id_afr0 = 0;
2031 cpu->id_mmfr0 = 0x01130003;
2032 cpu->id_mmfr1 = 0x10030302;
2033 cpu->id_mmfr2 = 0x01222100;
2034 cpu->isar.id_isar0 = 0x0140011;
2035 cpu->isar.id_isar1 = 0x12002111;
2036 cpu->isar.id_isar2 = 0x11231121;
2037 cpu->isar.id_isar3 = 0x01102131;
2038 cpu->isar.id_isar4 = 0x01141;
2039 cpu->reset_auxcr = 7;
2040 }
2041
2042 static void arm11mpcore_initfn(Object *obj)
2043 {
2044 ARMCPU *cpu = ARM_CPU(obj);
2045
2046 cpu->dtb_compatible = "arm,arm11mpcore";
2047 set_feature(&cpu->env, ARM_FEATURE_V6K);
2048 set_feature(&cpu->env, ARM_FEATURE_VFP);
2049 set_feature(&cpu->env, ARM_FEATURE_VAPA);
2050 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2051 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2052 cpu->midr = 0x410fb022;
2053 cpu->reset_fpsid = 0x410120b4;
2054 cpu->isar.mvfr0 = 0x11111111;
2055 cpu->isar.mvfr1 = 0x00000000;
2056 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2057 cpu->id_pfr0 = 0x111;
2058 cpu->id_pfr1 = 0x1;
2059 cpu->id_dfr0 = 0;
2060 cpu->id_afr0 = 0x2;
2061 cpu->id_mmfr0 = 0x01100103;
2062 cpu->id_mmfr1 = 0x10020302;
2063 cpu->id_mmfr2 = 0x01222000;
2064 cpu->isar.id_isar0 = 0x00100011;
2065 cpu->isar.id_isar1 = 0x12002111;
2066 cpu->isar.id_isar2 = 0x11221011;
2067 cpu->isar.id_isar3 = 0x01102131;
2068 cpu->isar.id_isar4 = 0x141;
2069 cpu->reset_auxcr = 1;
2070 }
2071
2072 static void cortex_m0_initfn(Object *obj)
2073 {
2074 ARMCPU *cpu = ARM_CPU(obj);
2075 set_feature(&cpu->env, ARM_FEATURE_V6);
2076 set_feature(&cpu->env, ARM_FEATURE_M);
2077
2078 cpu->midr = 0x410cc200;
2079 }
2080
2081 static void cortex_m3_initfn(Object *obj)
2082 {
2083 ARMCPU *cpu = ARM_CPU(obj);
2084 set_feature(&cpu->env, ARM_FEATURE_V7);
2085 set_feature(&cpu->env, ARM_FEATURE_M);
2086 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2087 cpu->midr = 0x410fc231;
2088 cpu->pmsav7_dregion = 8;
2089 cpu->id_pfr0 = 0x00000030;
2090 cpu->id_pfr1 = 0x00000200;
2091 cpu->id_dfr0 = 0x00100000;
2092 cpu->id_afr0 = 0x00000000;
2093 cpu->id_mmfr0 = 0x00000030;
2094 cpu->id_mmfr1 = 0x00000000;
2095 cpu->id_mmfr2 = 0x00000000;
2096 cpu->id_mmfr3 = 0x00000000;
2097 cpu->isar.id_isar0 = 0x01141110;
2098 cpu->isar.id_isar1 = 0x02111000;
2099 cpu->isar.id_isar2 = 0x21112231;
2100 cpu->isar.id_isar3 = 0x01111110;
2101 cpu->isar.id_isar4 = 0x01310102;
2102 cpu->isar.id_isar5 = 0x00000000;
2103 cpu->isar.id_isar6 = 0x00000000;
2104 }
2105
2106 static void cortex_m4_initfn(Object *obj)
2107 {
2108 ARMCPU *cpu = ARM_CPU(obj);
2109
2110 set_feature(&cpu->env, ARM_FEATURE_V7);
2111 set_feature(&cpu->env, ARM_FEATURE_M);
2112 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2113 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2114 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2115 cpu->midr = 0x410fc240; /* r0p0 */
2116 cpu->pmsav7_dregion = 8;
2117 cpu->isar.mvfr0 = 0x10110021;
2118 cpu->isar.mvfr1 = 0x11000011;
2119 cpu->isar.mvfr2 = 0x00000000;
2120 cpu->id_pfr0 = 0x00000030;
2121 cpu->id_pfr1 = 0x00000200;
2122 cpu->id_dfr0 = 0x00100000;
2123 cpu->id_afr0 = 0x00000000;
2124 cpu->id_mmfr0 = 0x00000030;
2125 cpu->id_mmfr1 = 0x00000000;
2126 cpu->id_mmfr2 = 0x00000000;
2127 cpu->id_mmfr3 = 0x00000000;
2128 cpu->isar.id_isar0 = 0x01141110;
2129 cpu->isar.id_isar1 = 0x02111000;
2130 cpu->isar.id_isar2 = 0x21112231;
2131 cpu->isar.id_isar3 = 0x01111110;
2132 cpu->isar.id_isar4 = 0x01310102;
2133 cpu->isar.id_isar5 = 0x00000000;
2134 cpu->isar.id_isar6 = 0x00000000;
2135 }
2136
2137 static void cortex_m7_initfn(Object *obj)
2138 {
2139 ARMCPU *cpu = ARM_CPU(obj);
2140
2141 set_feature(&cpu->env, ARM_FEATURE_V7);
2142 set_feature(&cpu->env, ARM_FEATURE_M);
2143 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2144 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2145 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2146 cpu->midr = 0x411fc272; /* r1p2 */
2147 cpu->pmsav7_dregion = 8;
2148 cpu->isar.mvfr0 = 0x10110221;
2149 cpu->isar.mvfr1 = 0x12000011;
2150 cpu->isar.mvfr2 = 0x00000040;
2151 cpu->id_pfr0 = 0x00000030;
2152 cpu->id_pfr1 = 0x00000200;
2153 cpu->id_dfr0 = 0x00100000;
2154 cpu->id_afr0 = 0x00000000;
2155 cpu->id_mmfr0 = 0x00100030;
2156 cpu->id_mmfr1 = 0x00000000;
2157 cpu->id_mmfr2 = 0x01000000;
2158 cpu->id_mmfr3 = 0x00000000;
2159 cpu->isar.id_isar0 = 0x01101110;
2160 cpu->isar.id_isar1 = 0x02112000;
2161 cpu->isar.id_isar2 = 0x20232231;
2162 cpu->isar.id_isar3 = 0x01111131;
2163 cpu->isar.id_isar4 = 0x01310132;
2164 cpu->isar.id_isar5 = 0x00000000;
2165 cpu->isar.id_isar6 = 0x00000000;
2166 }
2167
2168 static void cortex_m33_initfn(Object *obj)
2169 {
2170 ARMCPU *cpu = ARM_CPU(obj);
2171
2172 set_feature(&cpu->env, ARM_FEATURE_V8);
2173 set_feature(&cpu->env, ARM_FEATURE_M);
2174 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2175 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2176 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2177 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2178 cpu->midr = 0x410fd213; /* r0p3 */
2179 cpu->pmsav7_dregion = 16;
2180 cpu->sau_sregion = 8;
2181 cpu->isar.mvfr0 = 0x10110021;
2182 cpu->isar.mvfr1 = 0x11000011;
2183 cpu->isar.mvfr2 = 0x00000040;
2184 cpu->id_pfr0 = 0x00000030;
2185 cpu->id_pfr1 = 0x00000210;
2186 cpu->id_dfr0 = 0x00200000;
2187 cpu->id_afr0 = 0x00000000;
2188 cpu->id_mmfr0 = 0x00101F40;
2189 cpu->id_mmfr1 = 0x00000000;
2190 cpu->id_mmfr2 = 0x01000000;
2191 cpu->id_mmfr3 = 0x00000000;
2192 cpu->isar.id_isar0 = 0x01101110;
2193 cpu->isar.id_isar1 = 0x02212000;
2194 cpu->isar.id_isar2 = 0x20232232;
2195 cpu->isar.id_isar3 = 0x01111131;
2196 cpu->isar.id_isar4 = 0x01310132;
2197 cpu->isar.id_isar5 = 0x00000000;
2198 cpu->isar.id_isar6 = 0x00000000;
2199 cpu->clidr = 0x00000000;
2200 cpu->ctr = 0x8000c000;
2201 }
2202
2203 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2204 {
2205 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2206 CPUClass *cc = CPU_CLASS(oc);
2207
2208 acc->info = data;
2209 #ifndef CONFIG_USER_ONLY
2210 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2211 #endif
2212
2213 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2214 }
2215
2216 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2217 /* Dummy the TCM region regs for the moment */
2218 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2219 .access = PL1_RW, .type = ARM_CP_CONST },
2220 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2221 .access = PL1_RW, .type = ARM_CP_CONST },
2222 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2223 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2224 REGINFO_SENTINEL
2225 };
2226
2227 static void cortex_r5_initfn(Object *obj)
2228 {
2229 ARMCPU *cpu = ARM_CPU(obj);
2230
2231 set_feature(&cpu->env, ARM_FEATURE_V7);
2232 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2233 set_feature(&cpu->env, ARM_FEATURE_PMSA);
2234 set_feature(&cpu->env, ARM_FEATURE_PMU);
2235 cpu->midr = 0x411fc153; /* r1p3 */
2236 cpu->id_pfr0 = 0x0131;
2237 cpu->id_pfr1 = 0x001;
2238 cpu->id_dfr0 = 0x010400;
2239 cpu->id_afr0 = 0x0;
2240 cpu->id_mmfr0 = 0x0210030;
2241 cpu->id_mmfr1 = 0x00000000;
2242 cpu->id_mmfr2 = 0x01200000;
2243 cpu->id_mmfr3 = 0x0211;
2244 cpu->isar.id_isar0 = 0x02101111;
2245 cpu->isar.id_isar1 = 0x13112111;
2246 cpu->isar.id_isar2 = 0x21232141;
2247 cpu->isar.id_isar3 = 0x01112131;
2248 cpu->isar.id_isar4 = 0x0010142;
2249 cpu->isar.id_isar5 = 0x0;
2250 cpu->isar.id_isar6 = 0x0;
2251 cpu->mp_is_up = true;
2252 cpu->pmsav7_dregion = 16;
2253 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2254 }
2255
2256 static void cortex_r5f_initfn(Object *obj)
2257 {
2258 ARMCPU *cpu = ARM_CPU(obj);
2259
2260 cortex_r5_initfn(obj);
2261 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2262 cpu->isar.mvfr0 = 0x10110221;
2263 cpu->isar.mvfr1 = 0x00000011;
2264 }
2265
2266 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2267 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2268 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2269 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2270 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2271 REGINFO_SENTINEL
2272 };
2273
2274 static void cortex_a8_initfn(Object *obj)
2275 {
2276 ARMCPU *cpu = ARM_CPU(obj);
2277
2278 cpu->dtb_compatible = "arm,cortex-a8";
2279 set_feature(&cpu->env, ARM_FEATURE_V7);
2280 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2281 set_feature(&cpu->env, ARM_FEATURE_NEON);
2282 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2283 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2284 set_feature(&cpu->env, ARM_FEATURE_EL3);
2285 cpu->midr = 0x410fc080;
2286 cpu->reset_fpsid = 0x410330c0;
2287 cpu->isar.mvfr0 = 0x11110222;
2288 cpu->isar.mvfr1 = 0x00011111;
2289 cpu->ctr = 0x82048004;
2290 cpu->reset_sctlr = 0x00c50078;
2291 cpu->id_pfr0 = 0x1031;
2292 cpu->id_pfr1 = 0x11;
2293 cpu->id_dfr0 = 0x400;
2294 cpu->id_afr0 = 0;
2295 cpu->id_mmfr0 = 0x31100003;
2296 cpu->id_mmfr1 = 0x20000000;
2297 cpu->id_mmfr2 = 0x01202000;
2298 cpu->id_mmfr3 = 0x11;
2299 cpu->isar.id_isar0 = 0x00101111;
2300 cpu->isar.id_isar1 = 0x12112111;
2301 cpu->isar.id_isar2 = 0x21232031;
2302 cpu->isar.id_isar3 = 0x11112131;
2303 cpu->isar.id_isar4 = 0x00111142;
2304 cpu->dbgdidr = 0x15141000;
2305 cpu->clidr = (1 << 27) | (2 << 24) | 3;
2306 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2307 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2308 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2309 cpu->reset_auxcr = 2;
2310 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2311 }
2312
2313 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2314 /* power_control should be set to maximum latency. Again,
2315 * default to 0 and set by private hook
2316 */
2317 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2318 .access = PL1_RW, .resetvalue = 0,
2319 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2320 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2321 .access = PL1_RW, .resetvalue = 0,
2322 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2323 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2324 .access = PL1_RW, .resetvalue = 0,
2325 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2326 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2327 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2328 /* TLB lockdown control */
2329 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2330 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2331 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2332 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2333 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2334 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2335 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2336 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2337 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2338 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2339 REGINFO_SENTINEL
2340 };
2341
2342 static void cortex_a9_initfn(Object *obj)
2343 {
2344 ARMCPU *cpu = ARM_CPU(obj);
2345
2346 cpu->dtb_compatible = "arm,cortex-a9";
2347 set_feature(&cpu->env, ARM_FEATURE_V7);
2348 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2349 set_feature(&cpu->env, ARM_FEATURE_NEON);
2350 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2351 set_feature(&cpu->env, ARM_FEATURE_EL3);
2352 /* Note that A9 supports the MP extensions even for
2353 * A9UP and single-core A9MP (which are both different
2354 * and valid configurations; we don't model A9UP).
2355 */
2356 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2357 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2358 cpu->midr = 0x410fc090;
2359 cpu->reset_fpsid = 0x41033090;
2360 cpu->isar.mvfr0 = 0x11110222;
2361 cpu->isar.mvfr1 = 0x01111111;
2362 cpu->ctr = 0x80038003;
2363 cpu->reset_sctlr = 0x00c50078;
2364 cpu->id_pfr0 = 0x1031;
2365 cpu->id_pfr1 = 0x11;
2366 cpu->id_dfr0 = 0x000;
2367 cpu->id_afr0 = 0;
2368 cpu->id_mmfr0 = 0x00100103;
2369 cpu->id_mmfr1 = 0x20000000;
2370 cpu->id_mmfr2 = 0x01230000;
2371 cpu->id_mmfr3 = 0x00002111;
2372 cpu->isar.id_isar0 = 0x00101111;
2373 cpu->isar.id_isar1 = 0x13112111;
2374 cpu->isar.id_isar2 = 0x21232041;
2375 cpu->isar.id_isar3 = 0x11112131;
2376 cpu->isar.id_isar4 = 0x00111142;
2377 cpu->dbgdidr = 0x35141000;
2378 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2379 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2380 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2381 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2382 }
2383
2384 #ifndef CONFIG_USER_ONLY
2385 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2386 {
2387 MachineState *ms = MACHINE(qdev_get_machine());
2388
2389 /* Linux wants the number of processors from here.
2390 * Might as well set the interrupt-controller bit too.
2391 */
2392 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2393 }
2394 #endif
2395
2396 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2397 #ifndef CONFIG_USER_ONLY
2398 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2399 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2400 .writefn = arm_cp_write_ignore, },
2401 #endif
2402 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2403 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2404 REGINFO_SENTINEL
2405 };
2406
2407 static void cortex_a7_initfn(Object *obj)
2408 {
2409 ARMCPU *cpu = ARM_CPU(obj);
2410
2411 cpu->dtb_compatible = "arm,cortex-a7";
2412 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2413 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2414 set_feature(&cpu->env, ARM_FEATURE_NEON);
2415 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2416 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2417 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2418 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2419 set_feature(&cpu->env, ARM_FEATURE_EL2);
2420 set_feature(&cpu->env, ARM_FEATURE_EL3);
2421 set_feature(&cpu->env, ARM_FEATURE_PMU);
2422 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2423 cpu->midr = 0x410fc075;
2424 cpu->reset_fpsid = 0x41023075;
2425 cpu->isar.mvfr0 = 0x10110222;
2426 cpu->isar.mvfr1 = 0x11111111;
2427 cpu->ctr = 0x84448003;
2428 cpu->reset_sctlr = 0x00c50078;
2429 cpu->id_pfr0 = 0x00001131;
2430 cpu->id_pfr1 = 0x00011011;
2431 cpu->id_dfr0 = 0x02010555;
2432 cpu->id_afr0 = 0x00000000;
2433 cpu->id_mmfr0 = 0x10101105;
2434 cpu->id_mmfr1 = 0x40000000;
2435 cpu->id_mmfr2 = 0x01240000;
2436 cpu->id_mmfr3 = 0x02102211;
2437 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2438 * table 4-41 gives 0x02101110, which includes the arm div insns.
2439 */
2440 cpu->isar.id_isar0 = 0x02101110;
2441 cpu->isar.id_isar1 = 0x13112111;
2442 cpu->isar.id_isar2 = 0x21232041;
2443 cpu->isar.id_isar3 = 0x11112131;
2444 cpu->isar.id_isar4 = 0x10011142;
2445 cpu->dbgdidr = 0x3515f005;
2446 cpu->clidr = 0x0a200023;
2447 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2448 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2449 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2450 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2451 }
2452
2453 static void cortex_a15_initfn(Object *obj)
2454 {
2455 ARMCPU *cpu = ARM_CPU(obj);
2456
2457 cpu->dtb_compatible = "arm,cortex-a15";
2458 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2459 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2460 set_feature(&cpu->env, ARM_FEATURE_NEON);
2461 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2462 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2463 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2464 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2465 set_feature(&cpu->env, ARM_FEATURE_EL2);
2466 set_feature(&cpu->env, ARM_FEATURE_EL3);
2467 set_feature(&cpu->env, ARM_FEATURE_PMU);
2468 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2469 cpu->midr = 0x412fc0f1;
2470 cpu->reset_fpsid = 0x410430f0;
2471 cpu->isar.mvfr0 = 0x10110222;
2472 cpu->isar.mvfr1 = 0x11111111;
2473 cpu->ctr = 0x8444c004;
2474 cpu->reset_sctlr = 0x00c50078;
2475 cpu->id_pfr0 = 0x00001131;
2476 cpu->id_pfr1 = 0x00011011;
2477 cpu->id_dfr0 = 0x02010555;
2478 cpu->id_afr0 = 0x00000000;
2479 cpu->id_mmfr0 = 0x10201105;
2480 cpu->id_mmfr1 = 0x20000000;
2481 cpu->id_mmfr2 = 0x01240000;
2482 cpu->id_mmfr3 = 0x02102211;
2483 cpu->isar.id_isar0 = 0x02101110;
2484 cpu->isar.id_isar1 = 0x13112111;
2485 cpu->isar.id_isar2 = 0x21232041;
2486 cpu->isar.id_isar3 = 0x11112131;
2487 cpu->isar.id_isar4 = 0x10011142;
2488 cpu->dbgdidr = 0x3515f021;
2489 cpu->clidr = 0x0a200023;
2490 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2491 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2492 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2493 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2494 }
2495
2496 static void ti925t_initfn(Object *obj)
2497 {
2498 ARMCPU *cpu = ARM_CPU(obj);
2499 set_feature(&cpu->env, ARM_FEATURE_V4T);
2500 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2501 cpu->midr = ARM_CPUID_TI925T;
2502 cpu->ctr = 0x5109149;
2503 cpu->reset_sctlr = 0x00000070;
2504 }
2505
2506 static void sa1100_initfn(Object *obj)
2507 {
2508 ARMCPU *cpu = ARM_CPU(obj);
2509
2510 cpu->dtb_compatible = "intel,sa1100";
2511 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2512 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2513 cpu->midr = 0x4401A11B;
2514 cpu->reset_sctlr = 0x00000070;
2515 }
2516
2517 static void sa1110_initfn(Object *obj)
2518 {
2519 ARMCPU *cpu = ARM_CPU(obj);
2520 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2521 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2522 cpu->midr = 0x6901B119;
2523 cpu->reset_sctlr = 0x00000070;
2524 }
2525
2526 static void pxa250_initfn(Object *obj)
2527 {
2528 ARMCPU *cpu = ARM_CPU(obj);
2529
2530 cpu->dtb_compatible = "marvell,xscale";
2531 set_feature(&cpu->env, ARM_FEATURE_V5);
2532 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2533 cpu->midr = 0x69052100;
2534 cpu->ctr = 0xd172172;
2535 cpu->reset_sctlr = 0x00000078;
2536 }
2537
2538 static void pxa255_initfn(Object *obj)
2539 {
2540 ARMCPU *cpu = ARM_CPU(obj);
2541
2542 cpu->dtb_compatible = "marvell,xscale";
2543 set_feature(&cpu->env, ARM_FEATURE_V5);
2544 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2545 cpu->midr = 0x69052d00;
2546 cpu->ctr = 0xd172172;
2547 cpu->reset_sctlr = 0x00000078;
2548 }
2549
2550 static void pxa260_initfn(Object *obj)
2551 {
2552 ARMCPU *cpu = ARM_CPU(obj);
2553
2554 cpu->dtb_compatible = "marvell,xscale";
2555 set_feature(&cpu->env, ARM_FEATURE_V5);
2556 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2557 cpu->midr = 0x69052903;
2558 cpu->ctr = 0xd172172;
2559 cpu->reset_sctlr = 0x00000078;
2560 }
2561
2562 static void pxa261_initfn(Object *obj)
2563 {
2564 ARMCPU *cpu = ARM_CPU(obj);
2565
2566 cpu->dtb_compatible = "marvell,xscale";
2567 set_feature(&cpu->env, ARM_FEATURE_V5);
2568 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2569 cpu->midr = 0x69052d05;
2570 cpu->ctr = 0xd172172;
2571 cpu->reset_sctlr = 0x00000078;
2572 }
2573
2574 static void pxa262_initfn(Object *obj)
2575 {
2576 ARMCPU *cpu = ARM_CPU(obj);
2577
2578 cpu->dtb_compatible = "marvell,xscale";
2579 set_feature(&cpu->env, ARM_FEATURE_V5);
2580 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2581 cpu->midr = 0x69052d06;
2582 cpu->ctr = 0xd172172;
2583 cpu->reset_sctlr = 0x00000078;
2584 }
2585
2586 static void pxa270a0_initfn(Object *obj)
2587 {
2588 ARMCPU *cpu = ARM_CPU(obj);
2589
2590 cpu->dtb_compatible = "marvell,xscale";
2591 set_feature(&cpu->env, ARM_FEATURE_V5);
2592 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2593 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2594 cpu->midr = 0x69054110;
2595 cpu->ctr = 0xd172172;
2596 cpu->reset_sctlr = 0x00000078;
2597 }
2598
2599 static void pxa270a1_initfn(Object *obj)
2600 {
2601 ARMCPU *cpu = ARM_CPU(obj);
2602
2603 cpu->dtb_compatible = "marvell,xscale";
2604 set_feature(&cpu->env, ARM_FEATURE_V5);
2605 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2606 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2607 cpu->midr = 0x69054111;
2608 cpu->ctr = 0xd172172;
2609 cpu->reset_sctlr = 0x00000078;
2610 }
2611
2612 static void pxa270b0_initfn(Object *obj)
2613 {
2614 ARMCPU *cpu = ARM_CPU(obj);
2615
2616 cpu->dtb_compatible = "marvell,xscale";
2617 set_feature(&cpu->env, ARM_FEATURE_V5);
2618 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2619 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2620 cpu->midr = 0x69054112;
2621 cpu->ctr = 0xd172172;
2622 cpu->reset_sctlr = 0x00000078;
2623 }
2624
2625 static void pxa270b1_initfn(Object *obj)
2626 {
2627 ARMCPU *cpu = ARM_CPU(obj);
2628
2629 cpu->dtb_compatible = "marvell,xscale";
2630 set_feature(&cpu->env, ARM_FEATURE_V5);
2631 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2632 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2633 cpu->midr = 0x69054113;
2634 cpu->ctr = 0xd172172;
2635 cpu->reset_sctlr = 0x00000078;
2636 }
2637
2638 static void pxa270c0_initfn(Object *obj)
2639 {
2640 ARMCPU *cpu = ARM_CPU(obj);
2641
2642 cpu->dtb_compatible = "marvell,xscale";
2643 set_feature(&cpu->env, ARM_FEATURE_V5);
2644 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2645 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2646 cpu->midr = 0x69054114;
2647 cpu->ctr = 0xd172172;
2648 cpu->reset_sctlr = 0x00000078;
2649 }
2650
2651 static void pxa270c5_initfn(Object *obj)
2652 {
2653 ARMCPU *cpu = ARM_CPU(obj);
2654
2655 cpu->dtb_compatible = "marvell,xscale";
2656 set_feature(&cpu->env, ARM_FEATURE_V5);
2657 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2658 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2659 cpu->midr = 0x69054117;
2660 cpu->ctr = 0xd172172;
2661 cpu->reset_sctlr = 0x00000078;
2662 }
2663
2664 #ifndef TARGET_AARCH64
2665 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2666 * otherwise, a CPU with as many features enabled as our emulation supports.
2667 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2668 * this only needs to handle 32 bits.
2669 */
2670 static void arm_max_initfn(Object *obj)
2671 {
2672 ARMCPU *cpu = ARM_CPU(obj);
2673
2674 if (kvm_enabled()) {
2675 kvm_arm_set_cpu_features_from_host(cpu);
2676 kvm_arm_add_vcpu_properties(obj);
2677 } else {
2678 cortex_a15_initfn(obj);
2679
2680 /* old-style VFP short-vector support */
2681 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2682
2683 #ifdef CONFIG_USER_ONLY
2684 /* We don't set these in system emulation mode for the moment,
2685 * since we don't correctly set (all of) the ID registers to
2686 * advertise them.
2687 */
2688 set_feature(&cpu->env, ARM_FEATURE_V8);
2689 {
2690 uint32_t t;
2691
2692 t = cpu->isar.id_isar5;
2693 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2694 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2695 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2696 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2697 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2698 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2699 cpu->isar.id_isar5 = t;
2700
2701 t = cpu->isar.id_isar6;
2702 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2703 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2704 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2705 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2706 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2707 cpu->isar.id_isar6 = t;
2708
2709 t = cpu->isar.mvfr1;
2710 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2711 cpu->isar.mvfr1 = t;
2712
2713 t = cpu->isar.mvfr2;
2714 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2715 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2716 cpu->isar.mvfr2 = t;
2717
2718 t = cpu->id_mmfr4;
2719 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2720 cpu->id_mmfr4 = t;
2721 }
2722 #endif
2723 }
2724 }
2725 #endif
2726
2727 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2728
2729 struct ARMCPUInfo {
2730 const char *name;
2731 void (*initfn)(Object *obj);
2732 void (*class_init)(ObjectClass *oc, void *data);
2733 };
2734
2735 static const ARMCPUInfo arm_cpus[] = {
2736 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2737 { .name = "arm926", .initfn = arm926_initfn },
2738 { .name = "arm946", .initfn = arm946_initfn },
2739 { .name = "arm1026", .initfn = arm1026_initfn },
2740 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2741 * older core than plain "arm1136". In particular this does not
2742 * have the v6K features.
2743 */
2744 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2745 { .name = "arm1136", .initfn = arm1136_initfn },
2746 { .name = "arm1176", .initfn = arm1176_initfn },
2747 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2748 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2749 .class_init = arm_v7m_class_init },
2750 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2751 .class_init = arm_v7m_class_init },
2752 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2753 .class_init = arm_v7m_class_init },
2754 { .name = "cortex-m7", .initfn = cortex_m7_initfn,
2755 .class_init = arm_v7m_class_init },
2756 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2757 .class_init = arm_v7m_class_init },
2758 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2759 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2760 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2761 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2762 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2763 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2764 { .name = "ti925t", .initfn = ti925t_initfn },
2765 { .name = "sa1100", .initfn = sa1100_initfn },
2766 { .name = "sa1110", .initfn = sa1110_initfn },
2767 { .name = "pxa250", .initfn = pxa250_initfn },
2768 { .name = "pxa255", .initfn = pxa255_initfn },
2769 { .name = "pxa260", .initfn = pxa260_initfn },
2770 { .name = "pxa261", .initfn = pxa261_initfn },
2771 { .name = "pxa262", .initfn = pxa262_initfn },
2772 /* "pxa270" is an alias for "pxa270-a0" */
2773 { .name = "pxa270", .initfn = pxa270a0_initfn },
2774 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2775 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2776 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2777 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2778 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2779 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2780 #ifndef TARGET_AARCH64
2781 { .name = "max", .initfn = arm_max_initfn },
2782 #endif
2783 #ifdef CONFIG_USER_ONLY
2784 { .name = "any", .initfn = arm_max_initfn },
2785 #endif
2786 #endif
2787 { .name = NULL }
2788 };
2789
2790 static Property arm_cpu_properties[] = {
2791 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2792 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2793 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2794 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2795 mp_affinity, ARM64_AFFINITY_INVALID),
2796 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2797 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2798 DEFINE_PROP_END_OF_LIST()
2799 };
2800
2801 static gchar *arm_gdb_arch_name(CPUState *cs)
2802 {
2803 ARMCPU *cpu = ARM_CPU(cs);
2804 CPUARMState *env = &cpu->env;
2805
2806 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2807 return g_strdup("iwmmxt");
2808 }
2809 return g_strdup("arm");
2810 }
2811
2812 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2813 {
2814 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2815 CPUClass *cc = CPU_CLASS(acc);
2816 DeviceClass *dc = DEVICE_CLASS(oc);
2817
2818 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2819 &acc->parent_realize);
2820
2821 device_class_set_props(dc, arm_cpu_properties);
2822 cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2823
2824 cc->class_by_name = arm_cpu_class_by_name;
2825 cc->has_work = arm_cpu_has_work;
2826 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2827 cc->dump_state = arm_cpu_dump_state;
2828 cc->set_pc = arm_cpu_set_pc;
2829 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2830 cc->gdb_read_register = arm_cpu_gdb_read_register;
2831 cc->gdb_write_register = arm_cpu_gdb_write_register;
2832 #ifndef CONFIG_USER_ONLY
2833 cc->do_interrupt = arm_cpu_do_interrupt;
2834 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2835 cc->asidx_from_attrs = arm_asidx_from_attrs;
2836 cc->vmsd = &vmstate_arm_cpu;
2837 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2838 cc->write_elf64_note = arm_cpu_write_elf64_note;
2839 cc->write_elf32_note = arm_cpu_write_elf32_note;
2840 #endif
2841 cc->gdb_num_core_regs = 26;
2842 cc->gdb_core_xml_file = "arm-core.xml";
2843 cc->gdb_arch_name = arm_gdb_arch_name;
2844 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2845 cc->gdb_stop_before_watchpoint = true;
2846 cc->disas_set_info = arm_disas_set_info;
2847 #ifdef CONFIG_TCG
2848 cc->tcg_initialize = arm_translate_init;
2849 cc->tlb_fill = arm_cpu_tlb_fill;
2850 cc->debug_excp_handler = arm_debug_excp_handler;
2851 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2852 #if !defined(CONFIG_USER_ONLY)
2853 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2854 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2855 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2856 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2857 #endif
2858 }
2859
2860 #ifdef CONFIG_KVM
2861 static void arm_host_initfn(Object *obj)
2862 {
2863 ARMCPU *cpu = ARM_CPU(obj);
2864
2865 kvm_arm_set_cpu_features_from_host(cpu);
2866 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2867 aarch64_add_sve_properties(obj);
2868 }
2869 kvm_arm_add_vcpu_properties(obj);
2870 arm_cpu_post_init(obj);
2871 }
2872
2873 static const TypeInfo host_arm_cpu_type_info = {
2874 .name = TYPE_ARM_HOST_CPU,
2875 #ifdef TARGET_AARCH64
2876 .parent = TYPE_AARCH64_CPU,
2877 #else
2878 .parent = TYPE_ARM_CPU,
2879 #endif
2880 .instance_init = arm_host_initfn,
2881 };
2882
2883 #endif
2884
2885 static void arm_cpu_instance_init(Object *obj)
2886 {
2887 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2888
2889 acc->info->initfn(obj);
2890 arm_cpu_post_init(obj);
2891 }
2892
2893 static void cpu_register_class_init(ObjectClass *oc, void *data)
2894 {
2895 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2896
2897 acc->info = data;
2898 }
2899
2900 static void cpu_register(const ARMCPUInfo *info)
2901 {
2902 TypeInfo type_info = {
2903 .parent = TYPE_ARM_CPU,
2904 .instance_size = sizeof(ARMCPU),
2905 .instance_init = arm_cpu_instance_init,
2906 .class_size = sizeof(ARMCPUClass),
2907 .class_init = info->class_init ?: cpu_register_class_init,
2908 .class_data = (void *)info,
2909 };
2910
2911 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2912 type_register(&type_info);
2913 g_free((void *)type_info.name);
2914 }
2915
2916 static const TypeInfo arm_cpu_type_info = {
2917 .name = TYPE_ARM_CPU,
2918 .parent = TYPE_CPU,
2919 .instance_size = sizeof(ARMCPU),
2920 .instance_init = arm_cpu_initfn,
2921 .instance_finalize = arm_cpu_finalizefn,
2922 .abstract = true,
2923 .class_size = sizeof(ARMCPUClass),
2924 .class_init = arm_cpu_class_init,
2925 };
2926
2927 static const TypeInfo idau_interface_type_info = {
2928 .name = TYPE_IDAU_INTERFACE,
2929 .parent = TYPE_INTERFACE,
2930 .class_size = sizeof(IDAUInterfaceClass),
2931 };
2932
2933 static void arm_cpu_register_types(void)
2934 {
2935 const ARMCPUInfo *info = arm_cpus;
2936
2937 type_register_static(&arm_cpu_type_info);
2938 type_register_static(&idau_interface_type_info);
2939
2940 while (info->name) {
2941 cpu_register(info);
2942 info++;
2943 }
2944
2945 #ifdef CONFIG_KVM
2946 type_register_static(&host_arm_cpu_type_info);
2947 #endif
2948 }
2949
2950 type_init(arm_cpu_register_types)