]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
Merge tag 'hppa-boot-reboot-fixes-pull-request' of https://github.com/hdeller/qemu...
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cs->env_ptr;
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cs->env_ptr;
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* and to the FP/Neon instructions */
247 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248 CPACR_EL1, FPEN, 3);
249 /* and to the SVE instructions, with default vector length */
250 if (cpu_isar_feature(aa64_sve, cpu)) {
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, ZEN, 3);
253 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
254 }
255 /* and for SME instructions, with default vector length, and TPIDR2 */
256 if (cpu_isar_feature(aa64_sme, cpu)) {
257 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
258 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259 CPACR_EL1, SMEN, 3);
260 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
261 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
262 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
263 SMCR, FA64, 1);
264 }
265 }
266 /*
267 * Enable 48-bit address space (TODO: take reserved_va into account).
268 * Enable TBI0 but not TBI1.
269 * Note that this must match useronly_clean_ptr.
270 */
271 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
272
273 /* Enable MTE */
274 if (cpu_isar_feature(aa64_mte, cpu)) {
275 /* Enable tag access, but leave TCF0 as No Effect (0). */
276 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
277 /*
278 * Exclude all tags, so that tag 0 is always used.
279 * This corresponds to Linux current->thread.gcr_incl = 0.
280 *
281 * Set RRND, so that helper_irg() will generate a seed later.
282 * Here in cpu_reset(), the crypto subsystem has not yet been
283 * initialized.
284 */
285 env->cp15.gcr_el1 = 0x1ffff;
286 }
287 /*
288 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289 * This is not yet exposed from the Linux kernel in any way.
290 */
291 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
292 /* Disable access to Debug Communication Channel (DCC). */
293 env->cp15.mdscr_el1 |= 1 << 12;
294 #else
295 /* Reset into the highest available EL */
296 if (arm_feature(env, ARM_FEATURE_EL3)) {
297 env->pstate = PSTATE_MODE_EL3h;
298 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
299 env->pstate = PSTATE_MODE_EL2h;
300 } else {
301 env->pstate = PSTATE_MODE_EL1h;
302 }
303
304 /* Sample rvbar at reset. */
305 env->cp15.rvbar = cpu->rvbar_prop;
306 env->pc = env->cp15.rvbar;
307 #endif
308 } else {
309 #if defined(CONFIG_USER_ONLY)
310 /* Userspace expects access to cp10 and cp11 for FP/Neon */
311 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
312 CPACR, CP10, 3);
313 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
314 CPACR, CP11, 3);
315 #endif
316 if (arm_feature(env, ARM_FEATURE_V8)) {
317 env->cp15.rvbar = cpu->rvbar_prop;
318 env->regs[15] = cpu->rvbar_prop;
319 }
320 }
321
322 #if defined(CONFIG_USER_ONLY)
323 env->uncached_cpsr = ARM_CPU_MODE_USR;
324 /* For user mode we must enable access to coprocessors */
325 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
326 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
327 env->cp15.c15_cpar = 3;
328 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
329 env->cp15.c15_cpar = 1;
330 }
331 #else
332
333 /*
334 * If the highest available EL is EL2, AArch32 will start in Hyp
335 * mode; otherwise it starts in SVC. Note that if we start in
336 * AArch64 then these values in the uncached_cpsr will be ignored.
337 */
338 if (arm_feature(env, ARM_FEATURE_EL2) &&
339 !arm_feature(env, ARM_FEATURE_EL3)) {
340 env->uncached_cpsr = ARM_CPU_MODE_HYP;
341 } else {
342 env->uncached_cpsr = ARM_CPU_MODE_SVC;
343 }
344 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
345
346 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
347 * executing as AArch32 then check if highvecs are enabled and
348 * adjust the PC accordingly.
349 */
350 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
351 env->regs[15] = 0xFFFF0000;
352 }
353
354 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
355 #endif
356
357 if (arm_feature(env, ARM_FEATURE_M)) {
358 #ifndef CONFIG_USER_ONLY
359 uint32_t initial_msp; /* Loaded from 0x0 */
360 uint32_t initial_pc; /* Loaded from 0x4 */
361 uint8_t *rom;
362 uint32_t vecbase;
363 #endif
364
365 if (cpu_isar_feature(aa32_lob, cpu)) {
366 /*
367 * LTPSIZE is constant 4 if MVE not implemented, and resets
368 * to an UNKNOWN value if MVE is implemented. We choose to
369 * always reset to 4.
370 */
371 env->v7m.ltpsize = 4;
372 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
373 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
374 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
375 }
376
377 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
378 env->v7m.secure = true;
379 } else {
380 /* This bit resets to 0 if security is supported, but 1 if
381 * it is not. The bit is not present in v7M, but we set it
382 * here so we can avoid having to make checks on it conditional
383 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
384 */
385 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
386 /*
387 * Set NSACR to indicate "NS access permitted to everything";
388 * this avoids having to have all the tests of it being
389 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
390 * v8.1M the guest-visible value of NSACR in a CPU without the
391 * Security Extension is 0xcff.
392 */
393 env->v7m.nsacr = 0xcff;
394 }
395
396 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
397 * that it resets to 1, so QEMU always does that rather than making
398 * it dependent on CPU model. In v8M it is RES1.
399 */
400 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
401 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
402 if (arm_feature(env, ARM_FEATURE_V8)) {
403 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
404 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
405 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
406 }
407 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
408 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
409 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
410 }
411
412 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
413 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
414 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
415 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
416 }
417
418 #ifndef CONFIG_USER_ONLY
419 /* Unlike A/R profile, M profile defines the reset LR value */
420 env->regs[14] = 0xffffffff;
421
422 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
423 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
424
425 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
426 vecbase = env->v7m.vecbase[env->v7m.secure];
427 rom = rom_ptr_for_as(s->as, vecbase, 8);
428 if (rom) {
429 /* Address zero is covered by ROM which hasn't yet been
430 * copied into physical memory.
431 */
432 initial_msp = ldl_p(rom);
433 initial_pc = ldl_p(rom + 4);
434 } else {
435 /* Address zero not covered by a ROM blob, or the ROM blob
436 * is in non-modifiable memory and this is a second reset after
437 * it got copied into memory. In the latter case, rom_ptr
438 * will return a NULL pointer and we should use ldl_phys instead.
439 */
440 initial_msp = ldl_phys(s->as, vecbase);
441 initial_pc = ldl_phys(s->as, vecbase + 4);
442 }
443
444 qemu_log_mask(CPU_LOG_INT,
445 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
446 initial_msp, initial_pc);
447
448 env->regs[13] = initial_msp & 0xFFFFFFFC;
449 env->regs[15] = initial_pc & ~1;
450 env->thumb = initial_pc & 1;
451 #else
452 /*
453 * For user mode we run non-secure and with access to the FPU.
454 * The FPU context is active (ie does not need further setup)
455 * and is owned by non-secure.
456 */
457 env->v7m.secure = false;
458 env->v7m.nsacr = 0xcff;
459 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
460 env->v7m.fpccr[M_REG_S] &=
461 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
462 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
463 #endif
464 }
465
466 /* M profile requires that reset clears the exclusive monitor;
467 * A profile does not, but clearing it makes more sense than having it
468 * set with an exclusive access on address zero.
469 */
470 arm_clear_exclusive(env);
471
472 if (arm_feature(env, ARM_FEATURE_PMSA)) {
473 if (cpu->pmsav7_dregion > 0) {
474 if (arm_feature(env, ARM_FEATURE_V8)) {
475 memset(env->pmsav8.rbar[M_REG_NS], 0,
476 sizeof(*env->pmsav8.rbar[M_REG_NS])
477 * cpu->pmsav7_dregion);
478 memset(env->pmsav8.rlar[M_REG_NS], 0,
479 sizeof(*env->pmsav8.rlar[M_REG_NS])
480 * cpu->pmsav7_dregion);
481 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
482 memset(env->pmsav8.rbar[M_REG_S], 0,
483 sizeof(*env->pmsav8.rbar[M_REG_S])
484 * cpu->pmsav7_dregion);
485 memset(env->pmsav8.rlar[M_REG_S], 0,
486 sizeof(*env->pmsav8.rlar[M_REG_S])
487 * cpu->pmsav7_dregion);
488 }
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 memset(env->pmsav7.drbar, 0,
491 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
492 memset(env->pmsav7.drsr, 0,
493 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
494 memset(env->pmsav7.dracr, 0,
495 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
496 }
497 }
498
499 if (cpu->pmsav8r_hdregion > 0) {
500 memset(env->pmsav8.hprbar, 0,
501 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
502 memset(env->pmsav8.hprlar, 0,
503 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
504 }
505
506 env->pmsav7.rnr[M_REG_NS] = 0;
507 env->pmsav7.rnr[M_REG_S] = 0;
508 env->pmsav8.mair0[M_REG_NS] = 0;
509 env->pmsav8.mair0[M_REG_S] = 0;
510 env->pmsav8.mair1[M_REG_NS] = 0;
511 env->pmsav8.mair1[M_REG_S] = 0;
512 }
513
514 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
515 if (cpu->sau_sregion > 0) {
516 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
517 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
518 }
519 env->sau.rnr = 0;
520 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
521 * the Cortex-M33 does.
522 */
523 env->sau.ctrl = 0;
524 }
525
526 set_flush_to_zero(1, &env->vfp.standard_fp_status);
527 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
528 set_default_nan_mode(1, &env->vfp.standard_fp_status);
529 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
530 set_float_detect_tininess(float_tininess_before_rounding,
531 &env->vfp.fp_status);
532 set_float_detect_tininess(float_tininess_before_rounding,
533 &env->vfp.standard_fp_status);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.fp_status_f16);
536 set_float_detect_tininess(float_tininess_before_rounding,
537 &env->vfp.standard_fp_status_f16);
538 #ifndef CONFIG_USER_ONLY
539 if (kvm_enabled()) {
540 kvm_arm_reset_vcpu(cpu);
541 }
542 #endif
543
544 if (tcg_enabled()) {
545 hw_breakpoint_update_all(cpu);
546 hw_watchpoint_update_all(cpu);
547
548 arm_rebuild_hflags(env);
549 }
550 }
551
552 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
553
554 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
555 unsigned int target_el,
556 unsigned int cur_el, bool secure,
557 uint64_t hcr_el2)
558 {
559 CPUARMState *env = cs->env_ptr;
560 bool pstate_unmasked;
561 bool unmasked = false;
562
563 /*
564 * Don't take exceptions if they target a lower EL.
565 * This check should catch any exceptions that would not be taken
566 * but left pending.
567 */
568 if (cur_el > target_el) {
569 return false;
570 }
571
572 switch (excp_idx) {
573 case EXCP_FIQ:
574 pstate_unmasked = !(env->daif & PSTATE_F);
575 break;
576
577 case EXCP_IRQ:
578 pstate_unmasked = !(env->daif & PSTATE_I);
579 break;
580
581 case EXCP_VFIQ:
582 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
583 /* VFIQs are only taken when hypervized. */
584 return false;
585 }
586 return !(env->daif & PSTATE_F);
587 case EXCP_VIRQ:
588 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
589 /* VIRQs are only taken when hypervized. */
590 return false;
591 }
592 return !(env->daif & PSTATE_I);
593 case EXCP_VSERR:
594 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
595 /* VIRQs are only taken when hypervized. */
596 return false;
597 }
598 return !(env->daif & PSTATE_A);
599 default:
600 g_assert_not_reached();
601 }
602
603 /*
604 * Use the target EL, current execution state and SCR/HCR settings to
605 * determine whether the corresponding CPSR bit is used to mask the
606 * interrupt.
607 */
608 if ((target_el > cur_el) && (target_el != 1)) {
609 /* Exceptions targeting a higher EL may not be maskable */
610 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
611 switch (target_el) {
612 case 2:
613 /*
614 * According to ARM DDI 0487H.a, an interrupt can be masked
615 * when HCR_E2H and HCR_TGE are both set regardless of the
616 * current Security state. Note that we need to revisit this
617 * part again once we need to support NMI.
618 */
619 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
620 unmasked = true;
621 }
622 break;
623 case 3:
624 /* Interrupt cannot be masked when the target EL is 3 */
625 unmasked = true;
626 break;
627 default:
628 g_assert_not_reached();
629 }
630 } else {
631 /*
632 * The old 32-bit-only environment has a more complicated
633 * masking setup. HCR and SCR bits not only affect interrupt
634 * routing but also change the behaviour of masking.
635 */
636 bool hcr, scr;
637
638 switch (excp_idx) {
639 case EXCP_FIQ:
640 /*
641 * If FIQs are routed to EL3 or EL2 then there are cases where
642 * we override the CPSR.F in determining if the exception is
643 * masked or not. If neither of these are set then we fall back
644 * to the CPSR.F setting otherwise we further assess the state
645 * below.
646 */
647 hcr = hcr_el2 & HCR_FMO;
648 scr = (env->cp15.scr_el3 & SCR_FIQ);
649
650 /*
651 * When EL3 is 32-bit, the SCR.FW bit controls whether the
652 * CPSR.F bit masks FIQ interrupts when taken in non-secure
653 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
654 * when non-secure but only when FIQs are only routed to EL3.
655 */
656 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
657 break;
658 case EXCP_IRQ:
659 /*
660 * When EL3 execution state is 32-bit, if HCR.IMO is set then
661 * we may override the CPSR.I masking when in non-secure state.
662 * The SCR.IRQ setting has already been taken into consideration
663 * when setting the target EL, so it does not have a further
664 * affect here.
665 */
666 hcr = hcr_el2 & HCR_IMO;
667 scr = false;
668 break;
669 default:
670 g_assert_not_reached();
671 }
672
673 if ((scr || hcr) && !secure) {
674 unmasked = true;
675 }
676 }
677 }
678
679 /*
680 * The PSTATE bits only mask the interrupt if we have not overriden the
681 * ability above.
682 */
683 return unmasked || pstate_unmasked;
684 }
685
686 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
687 {
688 CPUClass *cc = CPU_GET_CLASS(cs);
689 CPUARMState *env = cs->env_ptr;
690 uint32_t cur_el = arm_current_el(env);
691 bool secure = arm_is_secure(env);
692 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
693 uint32_t target_el;
694 uint32_t excp_idx;
695
696 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
697
698 if (interrupt_request & CPU_INTERRUPT_FIQ) {
699 excp_idx = EXCP_FIQ;
700 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
701 if (arm_excp_unmasked(cs, excp_idx, target_el,
702 cur_el, secure, hcr_el2)) {
703 goto found;
704 }
705 }
706 if (interrupt_request & CPU_INTERRUPT_HARD) {
707 excp_idx = EXCP_IRQ;
708 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
709 if (arm_excp_unmasked(cs, excp_idx, target_el,
710 cur_el, secure, hcr_el2)) {
711 goto found;
712 }
713 }
714 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
715 excp_idx = EXCP_VIRQ;
716 target_el = 1;
717 if (arm_excp_unmasked(cs, excp_idx, target_el,
718 cur_el, secure, hcr_el2)) {
719 goto found;
720 }
721 }
722 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
723 excp_idx = EXCP_VFIQ;
724 target_el = 1;
725 if (arm_excp_unmasked(cs, excp_idx, target_el,
726 cur_el, secure, hcr_el2)) {
727 goto found;
728 }
729 }
730 if (interrupt_request & CPU_INTERRUPT_VSERR) {
731 excp_idx = EXCP_VSERR;
732 target_el = 1;
733 if (arm_excp_unmasked(cs, excp_idx, target_el,
734 cur_el, secure, hcr_el2)) {
735 /* Taking a virtual abort clears HCR_EL2.VSE */
736 env->cp15.hcr_el2 &= ~HCR_VSE;
737 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
738 goto found;
739 }
740 }
741 return false;
742
743 found:
744 cs->exception_index = excp_idx;
745 env->exception.target_el = target_el;
746 cc->tcg_ops->do_interrupt(cs);
747 return true;
748 }
749
750 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
751
752 void arm_cpu_update_virq(ARMCPU *cpu)
753 {
754 /*
755 * Update the interrupt level for VIRQ, which is the logical OR of
756 * the HCR_EL2.VI bit and the input line level from the GIC.
757 */
758 CPUARMState *env = &cpu->env;
759 CPUState *cs = CPU(cpu);
760
761 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
762 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
763
764 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
765 if (new_state) {
766 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
767 } else {
768 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
769 }
770 }
771 }
772
773 void arm_cpu_update_vfiq(ARMCPU *cpu)
774 {
775 /*
776 * Update the interrupt level for VFIQ, which is the logical OR of
777 * the HCR_EL2.VF bit and the input line level from the GIC.
778 */
779 CPUARMState *env = &cpu->env;
780 CPUState *cs = CPU(cpu);
781
782 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
783 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
784
785 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
786 if (new_state) {
787 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
788 } else {
789 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
790 }
791 }
792 }
793
794 void arm_cpu_update_vserr(ARMCPU *cpu)
795 {
796 /*
797 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
798 */
799 CPUARMState *env = &cpu->env;
800 CPUState *cs = CPU(cpu);
801
802 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
803
804 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
805 if (new_state) {
806 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
807 } else {
808 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
809 }
810 }
811 }
812
813 #ifndef CONFIG_USER_ONLY
814 static void arm_cpu_set_irq(void *opaque, int irq, int level)
815 {
816 ARMCPU *cpu = opaque;
817 CPUARMState *env = &cpu->env;
818 CPUState *cs = CPU(cpu);
819 static const int mask[] = {
820 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
821 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
822 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
823 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
824 };
825
826 if (!arm_feature(env, ARM_FEATURE_EL2) &&
827 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
828 /*
829 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
830 * have EL2 support we don't care. (Unless the guest is doing something
831 * silly this will only be calls saying "level is still 0".)
832 */
833 return;
834 }
835
836 if (level) {
837 env->irq_line_state |= mask[irq];
838 } else {
839 env->irq_line_state &= ~mask[irq];
840 }
841
842 switch (irq) {
843 case ARM_CPU_VIRQ:
844 arm_cpu_update_virq(cpu);
845 break;
846 case ARM_CPU_VFIQ:
847 arm_cpu_update_vfiq(cpu);
848 break;
849 case ARM_CPU_IRQ:
850 case ARM_CPU_FIQ:
851 if (level) {
852 cpu_interrupt(cs, mask[irq]);
853 } else {
854 cpu_reset_interrupt(cs, mask[irq]);
855 }
856 break;
857 default:
858 g_assert_not_reached();
859 }
860 }
861
862 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
863 {
864 #ifdef CONFIG_KVM
865 ARMCPU *cpu = opaque;
866 CPUARMState *env = &cpu->env;
867 CPUState *cs = CPU(cpu);
868 uint32_t linestate_bit;
869 int irq_id;
870
871 switch (irq) {
872 case ARM_CPU_IRQ:
873 irq_id = KVM_ARM_IRQ_CPU_IRQ;
874 linestate_bit = CPU_INTERRUPT_HARD;
875 break;
876 case ARM_CPU_FIQ:
877 irq_id = KVM_ARM_IRQ_CPU_FIQ;
878 linestate_bit = CPU_INTERRUPT_FIQ;
879 break;
880 default:
881 g_assert_not_reached();
882 }
883
884 if (level) {
885 env->irq_line_state |= linestate_bit;
886 } else {
887 env->irq_line_state &= ~linestate_bit;
888 }
889 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
890 #endif
891 }
892
893 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
894 {
895 ARMCPU *cpu = ARM_CPU(cs);
896 CPUARMState *env = &cpu->env;
897
898 cpu_synchronize_state(cs);
899 return arm_cpu_data_is_big_endian(env);
900 }
901
902 #endif
903
904 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
905 {
906 ARMCPU *ac = ARM_CPU(cpu);
907 CPUARMState *env = &ac->env;
908 bool sctlr_b;
909
910 if (is_a64(env)) {
911 info->cap_arch = CS_ARCH_ARM64;
912 info->cap_insn_unit = 4;
913 info->cap_insn_split = 4;
914 } else {
915 int cap_mode;
916 if (env->thumb) {
917 info->cap_insn_unit = 2;
918 info->cap_insn_split = 4;
919 cap_mode = CS_MODE_THUMB;
920 } else {
921 info->cap_insn_unit = 4;
922 info->cap_insn_split = 4;
923 cap_mode = CS_MODE_ARM;
924 }
925 if (arm_feature(env, ARM_FEATURE_V8)) {
926 cap_mode |= CS_MODE_V8;
927 }
928 if (arm_feature(env, ARM_FEATURE_M)) {
929 cap_mode |= CS_MODE_MCLASS;
930 }
931 info->cap_arch = CS_ARCH_ARM;
932 info->cap_mode = cap_mode;
933 }
934
935 sctlr_b = arm_sctlr_b(env);
936 if (bswap_code(sctlr_b)) {
937 #if TARGET_BIG_ENDIAN
938 info->endian = BFD_ENDIAN_LITTLE;
939 #else
940 info->endian = BFD_ENDIAN_BIG;
941 #endif
942 }
943 info->flags &= ~INSN_ARM_BE32;
944 #ifndef CONFIG_USER_ONLY
945 if (sctlr_b) {
946 info->flags |= INSN_ARM_BE32;
947 }
948 #endif
949 }
950
951 #ifdef TARGET_AARCH64
952
953 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
954 {
955 ARMCPU *cpu = ARM_CPU(cs);
956 CPUARMState *env = &cpu->env;
957 uint32_t psr = pstate_read(env);
958 int i;
959 int el = arm_current_el(env);
960 const char *ns_status;
961 bool sve;
962
963 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
964 for (i = 0; i < 32; i++) {
965 if (i == 31) {
966 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
967 } else {
968 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
969 (i + 2) % 3 ? " " : "\n");
970 }
971 }
972
973 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
974 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
975 } else {
976 ns_status = "";
977 }
978 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
979 psr,
980 psr & PSTATE_N ? 'N' : '-',
981 psr & PSTATE_Z ? 'Z' : '-',
982 psr & PSTATE_C ? 'C' : '-',
983 psr & PSTATE_V ? 'V' : '-',
984 ns_status,
985 el,
986 psr & PSTATE_SP ? 'h' : 't');
987
988 if (cpu_isar_feature(aa64_sme, cpu)) {
989 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
990 env->svcr,
991 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
992 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
993 }
994 if (cpu_isar_feature(aa64_bti, cpu)) {
995 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
996 }
997 if (!(flags & CPU_DUMP_FPU)) {
998 qemu_fprintf(f, "\n");
999 return;
1000 }
1001 if (fp_exception_el(env, el) != 0) {
1002 qemu_fprintf(f, " FPU disabled\n");
1003 return;
1004 }
1005 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1006 vfp_get_fpcr(env), vfp_get_fpsr(env));
1007
1008 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1009 sve = sme_exception_el(env, el) == 0;
1010 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1011 sve = sve_exception_el(env, el) == 0;
1012 } else {
1013 sve = false;
1014 }
1015
1016 if (sve) {
1017 int j, zcr_len = sve_vqm1_for_el(env, el);
1018
1019 for (i = 0; i <= FFR_PRED_NUM; i++) {
1020 bool eol;
1021 if (i == FFR_PRED_NUM) {
1022 qemu_fprintf(f, "FFR=");
1023 /* It's last, so end the line. */
1024 eol = true;
1025 } else {
1026 qemu_fprintf(f, "P%02d=", i);
1027 switch (zcr_len) {
1028 case 0:
1029 eol = i % 8 == 7;
1030 break;
1031 case 1:
1032 eol = i % 6 == 5;
1033 break;
1034 case 2:
1035 case 3:
1036 eol = i % 3 == 2;
1037 break;
1038 default:
1039 /* More than one quadword per predicate. */
1040 eol = true;
1041 break;
1042 }
1043 }
1044 for (j = zcr_len / 4; j >= 0; j--) {
1045 int digits;
1046 if (j * 4 + 4 <= zcr_len + 1) {
1047 digits = 16;
1048 } else {
1049 digits = (zcr_len % 4 + 1) * 4;
1050 }
1051 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1052 env->vfp.pregs[i].p[j],
1053 j ? ":" : eol ? "\n" : " ");
1054 }
1055 }
1056
1057 for (i = 0; i < 32; i++) {
1058 if (zcr_len == 0) {
1059 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1060 i, env->vfp.zregs[i].d[1],
1061 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1062 } else if (zcr_len == 1) {
1063 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1064 ":%016" PRIx64 ":%016" PRIx64 "\n",
1065 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1066 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1067 } else {
1068 for (j = zcr_len; j >= 0; j--) {
1069 bool odd = (zcr_len - j) % 2 != 0;
1070 if (j == zcr_len) {
1071 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1072 } else if (!odd) {
1073 if (j > 0) {
1074 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
1075 } else {
1076 qemu_fprintf(f, " [%x]=", j);
1077 }
1078 }
1079 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1080 env->vfp.zregs[i].d[j * 2 + 1],
1081 env->vfp.zregs[i].d[j * 2],
1082 odd || j == 0 ? "\n" : ":");
1083 }
1084 }
1085 }
1086 } else {
1087 for (i = 0; i < 32; i++) {
1088 uint64_t *q = aa64_vfp_qreg(env, i);
1089 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1090 i, q[1], q[0], (i & 1 ? "\n" : " "));
1091 }
1092 }
1093 }
1094
1095 #else
1096
1097 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1098 {
1099 g_assert_not_reached();
1100 }
1101
1102 #endif
1103
1104 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1105 {
1106 ARMCPU *cpu = ARM_CPU(cs);
1107 CPUARMState *env = &cpu->env;
1108 int i;
1109
1110 if (is_a64(env)) {
1111 aarch64_cpu_dump_state(cs, f, flags);
1112 return;
1113 }
1114
1115 for (i = 0; i < 16; i++) {
1116 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1117 if ((i % 4) == 3) {
1118 qemu_fprintf(f, "\n");
1119 } else {
1120 qemu_fprintf(f, " ");
1121 }
1122 }
1123
1124 if (arm_feature(env, ARM_FEATURE_M)) {
1125 uint32_t xpsr = xpsr_read(env);
1126 const char *mode;
1127 const char *ns_status = "";
1128
1129 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1130 ns_status = env->v7m.secure ? "S " : "NS ";
1131 }
1132
1133 if (xpsr & XPSR_EXCP) {
1134 mode = "handler";
1135 } else {
1136 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1137 mode = "unpriv-thread";
1138 } else {
1139 mode = "priv-thread";
1140 }
1141 }
1142
1143 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1144 xpsr,
1145 xpsr & XPSR_N ? 'N' : '-',
1146 xpsr & XPSR_Z ? 'Z' : '-',
1147 xpsr & XPSR_C ? 'C' : '-',
1148 xpsr & XPSR_V ? 'V' : '-',
1149 xpsr & XPSR_T ? 'T' : 'A',
1150 ns_status,
1151 mode);
1152 } else {
1153 uint32_t psr = cpsr_read(env);
1154 const char *ns_status = "";
1155
1156 if (arm_feature(env, ARM_FEATURE_EL3) &&
1157 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1158 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1159 }
1160
1161 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1162 psr,
1163 psr & CPSR_N ? 'N' : '-',
1164 psr & CPSR_Z ? 'Z' : '-',
1165 psr & CPSR_C ? 'C' : '-',
1166 psr & CPSR_V ? 'V' : '-',
1167 psr & CPSR_T ? 'T' : 'A',
1168 ns_status,
1169 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1170 }
1171
1172 if (flags & CPU_DUMP_FPU) {
1173 int numvfpregs = 0;
1174 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1175 numvfpregs = 32;
1176 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1177 numvfpregs = 16;
1178 }
1179 for (i = 0; i < numvfpregs; i++) {
1180 uint64_t v = *aa32_vfp_dreg(env, i);
1181 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1182 i * 2, (uint32_t)v,
1183 i * 2 + 1, (uint32_t)(v >> 32),
1184 i, v);
1185 }
1186 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1187 if (cpu_isar_feature(aa32_mve, cpu)) {
1188 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1189 }
1190 }
1191 }
1192
1193 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1194 {
1195 uint32_t Aff1 = idx / clustersz;
1196 uint32_t Aff0 = idx % clustersz;
1197 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1198 }
1199
1200 static void arm_cpu_initfn(Object *obj)
1201 {
1202 ARMCPU *cpu = ARM_CPU(obj);
1203
1204 cpu_set_cpustate_pointers(cpu);
1205 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1206 NULL, g_free);
1207
1208 QLIST_INIT(&cpu->pre_el_change_hooks);
1209 QLIST_INIT(&cpu->el_change_hooks);
1210
1211 #ifdef CONFIG_USER_ONLY
1212 # ifdef TARGET_AARCH64
1213 /*
1214 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1215 * These values were chosen to fit within the default signal frame.
1216 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1217 * and our corresponding cpu property.
1218 */
1219 cpu->sve_default_vq = 4;
1220 cpu->sme_default_vq = 2;
1221 # endif
1222 #else
1223 /* Our inbound IRQ and FIQ lines */
1224 if (kvm_enabled()) {
1225 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1226 * the same interface as non-KVM CPUs.
1227 */
1228 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1229 } else {
1230 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1231 }
1232
1233 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1234 ARRAY_SIZE(cpu->gt_timer_outputs));
1235
1236 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1237 "gicv3-maintenance-interrupt", 1);
1238 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1239 "pmu-interrupt", 1);
1240 #endif
1241
1242 /* DTB consumers generally don't in fact care what the 'compatible'
1243 * string is, so always provide some string and trust that a hypothetical
1244 * picky DTB consumer will also provide a helpful error message.
1245 */
1246 cpu->dtb_compatible = "qemu,unknown";
1247 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1248 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1249
1250 if (tcg_enabled() || hvf_enabled()) {
1251 /* TCG and HVF implement PSCI 1.1 */
1252 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1253 }
1254 }
1255
1256 static Property arm_cpu_gt_cntfrq_property =
1257 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1258 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1259
1260 static Property arm_cpu_reset_cbar_property =
1261 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1262
1263 static Property arm_cpu_reset_hivecs_property =
1264 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1265
1266 #ifndef CONFIG_USER_ONLY
1267 static Property arm_cpu_has_el2_property =
1268 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1269
1270 static Property arm_cpu_has_el3_property =
1271 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1272 #endif
1273
1274 static Property arm_cpu_cfgend_property =
1275 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1276
1277 static Property arm_cpu_has_vfp_property =
1278 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1279
1280 static Property arm_cpu_has_vfp_d32_property =
1281 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1282
1283 static Property arm_cpu_has_neon_property =
1284 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1285
1286 static Property arm_cpu_has_dsp_property =
1287 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1288
1289 static Property arm_cpu_has_mpu_property =
1290 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1291
1292 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1293 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1294 * the right value for that particular CPU type, and we don't want
1295 * to override that with an incorrect constant value.
1296 */
1297 static Property arm_cpu_pmsav7_dregion_property =
1298 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1299 pmsav7_dregion,
1300 qdev_prop_uint32, uint32_t);
1301
1302 static bool arm_get_pmu(Object *obj, Error **errp)
1303 {
1304 ARMCPU *cpu = ARM_CPU(obj);
1305
1306 return cpu->has_pmu;
1307 }
1308
1309 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1310 {
1311 ARMCPU *cpu = ARM_CPU(obj);
1312
1313 if (value) {
1314 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1315 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1316 return;
1317 }
1318 set_feature(&cpu->env, ARM_FEATURE_PMU);
1319 } else {
1320 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1321 }
1322 cpu->has_pmu = value;
1323 }
1324
1325 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1326 {
1327 /*
1328 * The exact approach to calculating guest ticks is:
1329 *
1330 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1331 * NANOSECONDS_PER_SECOND);
1332 *
1333 * We don't do that. Rather we intentionally use integer division
1334 * truncation below and in the caller for the conversion of host monotonic
1335 * time to guest ticks to provide the exact inverse for the semantics of
1336 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1337 * it loses precision when representing frequencies where
1338 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1339 * provide an exact inverse leads to scheduling timers with negative
1340 * periods, which in turn leads to sticky behaviour in the guest.
1341 *
1342 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1343 * cannot become zero.
1344 */
1345 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1346 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1347 }
1348
1349 void arm_cpu_post_init(Object *obj)
1350 {
1351 ARMCPU *cpu = ARM_CPU(obj);
1352
1353 /* M profile implies PMSA. We have to do this here rather than
1354 * in realize with the other feature-implication checks because
1355 * we look at the PMSA bit to see if we should add some properties.
1356 */
1357 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1358 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1359 }
1360
1361 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1362 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1363 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1364 }
1365
1366 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1367 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1368 }
1369
1370 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1371 object_property_add_uint64_ptr(obj, "rvbar",
1372 &cpu->rvbar_prop,
1373 OBJ_PROP_FLAG_READWRITE);
1374 }
1375
1376 #ifndef CONFIG_USER_ONLY
1377 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1378 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1379 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1380 */
1381 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1382
1383 object_property_add_link(obj, "secure-memory",
1384 TYPE_MEMORY_REGION,
1385 (Object **)&cpu->secure_memory,
1386 qdev_prop_allow_set_link_before_realize,
1387 OBJ_PROP_LINK_STRONG);
1388 }
1389
1390 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1391 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1392 }
1393 #endif
1394
1395 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1396 cpu->has_pmu = true;
1397 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1398 }
1399
1400 /*
1401 * Allow user to turn off VFP and Neon support, but only for TCG --
1402 * KVM does not currently allow us to lie to the guest about its
1403 * ID/feature registers, so the guest always sees what the host has.
1404 */
1405 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1406 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1407 cpu->has_vfp = true;
1408 cpu->has_vfp_d32 = true;
1409 if (tcg_enabled() || qtest_enabled()) {
1410 qdev_property_add_static(DEVICE(obj),
1411 &arm_cpu_has_vfp_property);
1412 }
1413 }
1414 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1415 cpu->has_vfp = true;
1416 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1417 cpu->has_vfp_d32 = true;
1418 /*
1419 * The permitted values of the SIMDReg bits [3:0] on
1420 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1421 * make sure that has_vfp_d32 can not be set to false.
1422 */
1423 if ((tcg_enabled() || qtest_enabled())
1424 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1425 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1426 qdev_property_add_static(DEVICE(obj),
1427 &arm_cpu_has_vfp_d32_property);
1428 }
1429 }
1430 }
1431
1432 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1433 cpu->has_neon = true;
1434 if (!kvm_enabled()) {
1435 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1436 }
1437 }
1438
1439 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1440 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1441 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1442 }
1443
1444 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1445 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1446 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1447 qdev_property_add_static(DEVICE(obj),
1448 &arm_cpu_pmsav7_dregion_property);
1449 }
1450 }
1451
1452 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1453 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1454 qdev_prop_allow_set_link_before_realize,
1455 OBJ_PROP_LINK_STRONG);
1456 /*
1457 * M profile: initial value of the Secure VTOR. We can't just use
1458 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1459 * the property to be set after realize.
1460 */
1461 object_property_add_uint32_ptr(obj, "init-svtor",
1462 &cpu->init_svtor,
1463 OBJ_PROP_FLAG_READWRITE);
1464 }
1465 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1466 /*
1467 * Initial value of the NS VTOR (for cores without the Security
1468 * extension, this is the only VTOR)
1469 */
1470 object_property_add_uint32_ptr(obj, "init-nsvtor",
1471 &cpu->init_nsvtor,
1472 OBJ_PROP_FLAG_READWRITE);
1473 }
1474
1475 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1476 object_property_add_uint32_ptr(obj, "psci-conduit",
1477 &cpu->psci_conduit,
1478 OBJ_PROP_FLAG_READWRITE);
1479
1480 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1481
1482 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1483 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1484 }
1485
1486 if (kvm_enabled()) {
1487 kvm_arm_add_vcpu_properties(obj);
1488 }
1489
1490 #ifndef CONFIG_USER_ONLY
1491 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1492 cpu_isar_feature(aa64_mte, cpu)) {
1493 object_property_add_link(obj, "tag-memory",
1494 TYPE_MEMORY_REGION,
1495 (Object **)&cpu->tag_memory,
1496 qdev_prop_allow_set_link_before_realize,
1497 OBJ_PROP_LINK_STRONG);
1498
1499 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1500 object_property_add_link(obj, "secure-tag-memory",
1501 TYPE_MEMORY_REGION,
1502 (Object **)&cpu->secure_tag_memory,
1503 qdev_prop_allow_set_link_before_realize,
1504 OBJ_PROP_LINK_STRONG);
1505 }
1506 }
1507 #endif
1508 }
1509
1510 static void arm_cpu_finalizefn(Object *obj)
1511 {
1512 ARMCPU *cpu = ARM_CPU(obj);
1513 ARMELChangeHook *hook, *next;
1514
1515 g_hash_table_destroy(cpu->cp_regs);
1516
1517 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1518 QLIST_REMOVE(hook, node);
1519 g_free(hook);
1520 }
1521 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1522 QLIST_REMOVE(hook, node);
1523 g_free(hook);
1524 }
1525 #ifndef CONFIG_USER_ONLY
1526 if (cpu->pmu_timer) {
1527 timer_free(cpu->pmu_timer);
1528 }
1529 #endif
1530 }
1531
1532 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1533 {
1534 Error *local_err = NULL;
1535
1536 #ifdef TARGET_AARCH64
1537 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1538 arm_cpu_sve_finalize(cpu, &local_err);
1539 if (local_err != NULL) {
1540 error_propagate(errp, local_err);
1541 return;
1542 }
1543
1544 arm_cpu_sme_finalize(cpu, &local_err);
1545 if (local_err != NULL) {
1546 error_propagate(errp, local_err);
1547 return;
1548 }
1549
1550 arm_cpu_pauth_finalize(cpu, &local_err);
1551 if (local_err != NULL) {
1552 error_propagate(errp, local_err);
1553 return;
1554 }
1555
1556 arm_cpu_lpa2_finalize(cpu, &local_err);
1557 if (local_err != NULL) {
1558 error_propagate(errp, local_err);
1559 return;
1560 }
1561 }
1562 #endif
1563
1564 if (kvm_enabled()) {
1565 kvm_arm_steal_time_finalize(cpu, &local_err);
1566 if (local_err != NULL) {
1567 error_propagate(errp, local_err);
1568 return;
1569 }
1570 }
1571 }
1572
1573 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1574 {
1575 CPUState *cs = CPU(dev);
1576 ARMCPU *cpu = ARM_CPU(dev);
1577 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1578 CPUARMState *env = &cpu->env;
1579 int pagebits;
1580 Error *local_err = NULL;
1581 bool no_aa32 = false;
1582
1583 /* Use pc-relative instructions in system-mode */
1584 #ifndef CONFIG_USER_ONLY
1585 cs->tcg_cflags |= CF_PCREL;
1586 #endif
1587
1588 /* If we needed to query the host kernel for the CPU features
1589 * then it's possible that might have failed in the initfn, but
1590 * this is the first point where we can report it.
1591 */
1592 if (cpu->host_cpu_probe_failed) {
1593 if (!kvm_enabled() && !hvf_enabled()) {
1594 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1595 } else {
1596 error_setg(errp, "Failed to retrieve host CPU features");
1597 }
1598 return;
1599 }
1600
1601 #ifndef CONFIG_USER_ONLY
1602 /* The NVIC and M-profile CPU are two halves of a single piece of
1603 * hardware; trying to use one without the other is a command line
1604 * error and will result in segfaults if not caught here.
1605 */
1606 if (arm_feature(env, ARM_FEATURE_M)) {
1607 if (!env->nvic) {
1608 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1609 return;
1610 }
1611 } else {
1612 if (env->nvic) {
1613 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1614 return;
1615 }
1616 }
1617
1618 if (!tcg_enabled() && !qtest_enabled()) {
1619 /*
1620 * We assume that no accelerator except TCG (and the "not really an
1621 * accelerator" qtest) can handle these features, because Arm hardware
1622 * virtualization can't virtualize them.
1623 *
1624 * Catch all the cases which might cause us to create more than one
1625 * address space for the CPU (otherwise we will assert() later in
1626 * cpu_address_space_init()).
1627 */
1628 if (arm_feature(env, ARM_FEATURE_M)) {
1629 error_setg(errp,
1630 "Cannot enable %s when using an M-profile guest CPU",
1631 current_accel_name());
1632 return;
1633 }
1634 if (cpu->has_el3) {
1635 error_setg(errp,
1636 "Cannot enable %s when guest CPU has EL3 enabled",
1637 current_accel_name());
1638 return;
1639 }
1640 if (cpu->tag_memory) {
1641 error_setg(errp,
1642 "Cannot enable %s when guest CPUs has MTE enabled",
1643 current_accel_name());
1644 return;
1645 }
1646 }
1647
1648 {
1649 uint64_t scale;
1650
1651 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1652 if (!cpu->gt_cntfrq_hz) {
1653 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1654 cpu->gt_cntfrq_hz);
1655 return;
1656 }
1657 scale = gt_cntfrq_period_ns(cpu);
1658 } else {
1659 scale = GTIMER_SCALE;
1660 }
1661
1662 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1663 arm_gt_ptimer_cb, cpu);
1664 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1665 arm_gt_vtimer_cb, cpu);
1666 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1667 arm_gt_htimer_cb, cpu);
1668 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1669 arm_gt_stimer_cb, cpu);
1670 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1671 arm_gt_hvtimer_cb, cpu);
1672 }
1673 #endif
1674
1675 cpu_exec_realizefn(cs, &local_err);
1676 if (local_err != NULL) {
1677 error_propagate(errp, local_err);
1678 return;
1679 }
1680
1681 arm_cpu_finalize_features(cpu, &local_err);
1682 if (local_err != NULL) {
1683 error_propagate(errp, local_err);
1684 return;
1685 }
1686
1687 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1688 cpu->has_vfp != cpu->has_neon) {
1689 /*
1690 * This is an architectural requirement for AArch64; AArch32 is
1691 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1692 */
1693 error_setg(errp,
1694 "AArch64 CPUs must have both VFP and Neon or neither");
1695 return;
1696 }
1697
1698 if (cpu->has_vfp_d32 != cpu->has_neon) {
1699 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1700 return;
1701 }
1702
1703 if (!cpu->has_vfp_d32) {
1704 uint32_t u;
1705
1706 u = cpu->isar.mvfr0;
1707 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1708 cpu->isar.mvfr0 = u;
1709 }
1710
1711 if (!cpu->has_vfp) {
1712 uint64_t t;
1713 uint32_t u;
1714
1715 t = cpu->isar.id_aa64isar1;
1716 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1717 cpu->isar.id_aa64isar1 = t;
1718
1719 t = cpu->isar.id_aa64pfr0;
1720 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1721 cpu->isar.id_aa64pfr0 = t;
1722
1723 u = cpu->isar.id_isar6;
1724 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1725 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1726 cpu->isar.id_isar6 = u;
1727
1728 u = cpu->isar.mvfr0;
1729 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1730 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1731 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1732 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1733 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1734 if (!arm_feature(env, ARM_FEATURE_M)) {
1735 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1736 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1737 }
1738 cpu->isar.mvfr0 = u;
1739
1740 u = cpu->isar.mvfr1;
1741 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1742 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1743 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1744 if (arm_feature(env, ARM_FEATURE_M)) {
1745 u = FIELD_DP32(u, MVFR1, FP16, 0);
1746 }
1747 cpu->isar.mvfr1 = u;
1748
1749 u = cpu->isar.mvfr2;
1750 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1751 cpu->isar.mvfr2 = u;
1752 }
1753
1754 if (!cpu->has_neon) {
1755 uint64_t t;
1756 uint32_t u;
1757
1758 unset_feature(env, ARM_FEATURE_NEON);
1759
1760 t = cpu->isar.id_aa64isar0;
1761 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1762 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1763 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1764 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1765 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1766 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1767 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1768 cpu->isar.id_aa64isar0 = t;
1769
1770 t = cpu->isar.id_aa64isar1;
1771 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1772 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1773 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1774 cpu->isar.id_aa64isar1 = t;
1775
1776 t = cpu->isar.id_aa64pfr0;
1777 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1778 cpu->isar.id_aa64pfr0 = t;
1779
1780 u = cpu->isar.id_isar5;
1781 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1782 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1783 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1784 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1785 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1786 cpu->isar.id_isar5 = u;
1787
1788 u = cpu->isar.id_isar6;
1789 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1790 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1791 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1792 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1793 cpu->isar.id_isar6 = u;
1794
1795 if (!arm_feature(env, ARM_FEATURE_M)) {
1796 u = cpu->isar.mvfr1;
1797 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1798 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1799 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1800 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1801 cpu->isar.mvfr1 = u;
1802
1803 u = cpu->isar.mvfr2;
1804 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1805 cpu->isar.mvfr2 = u;
1806 }
1807 }
1808
1809 if (!cpu->has_neon && !cpu->has_vfp) {
1810 uint64_t t;
1811 uint32_t u;
1812
1813 t = cpu->isar.id_aa64isar0;
1814 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1815 cpu->isar.id_aa64isar0 = t;
1816
1817 t = cpu->isar.id_aa64isar1;
1818 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1819 cpu->isar.id_aa64isar1 = t;
1820
1821 u = cpu->isar.mvfr0;
1822 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1823 cpu->isar.mvfr0 = u;
1824
1825 /* Despite the name, this field covers both VFP and Neon */
1826 u = cpu->isar.mvfr1;
1827 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1828 cpu->isar.mvfr1 = u;
1829 }
1830
1831 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1832 uint32_t u;
1833
1834 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1835
1836 u = cpu->isar.id_isar1;
1837 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1838 cpu->isar.id_isar1 = u;
1839
1840 u = cpu->isar.id_isar2;
1841 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1842 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1843 cpu->isar.id_isar2 = u;
1844
1845 u = cpu->isar.id_isar3;
1846 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1847 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1848 cpu->isar.id_isar3 = u;
1849 }
1850
1851 /* Some features automatically imply others: */
1852 if (arm_feature(env, ARM_FEATURE_V8)) {
1853 if (arm_feature(env, ARM_FEATURE_M)) {
1854 set_feature(env, ARM_FEATURE_V7);
1855 } else {
1856 set_feature(env, ARM_FEATURE_V7VE);
1857 }
1858 }
1859
1860 /*
1861 * There exist AArch64 cpus without AArch32 support. When KVM
1862 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1863 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1864 * As a general principle, we also do not make ID register
1865 * consistency checks anywhere unless using TCG, because only
1866 * for TCG would a consistency-check failure be a QEMU bug.
1867 */
1868 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1869 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1870 }
1871
1872 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1873 /* v7 Virtualization Extensions. In real hardware this implies
1874 * EL2 and also the presence of the Security Extensions.
1875 * For QEMU, for backwards-compatibility we implement some
1876 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1877 * include the various other features that V7VE implies.
1878 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1879 * Security Extensions is ARM_FEATURE_EL3.
1880 */
1881 assert(!tcg_enabled() || no_aa32 ||
1882 cpu_isar_feature(aa32_arm_div, cpu));
1883 set_feature(env, ARM_FEATURE_LPAE);
1884 set_feature(env, ARM_FEATURE_V7);
1885 }
1886 if (arm_feature(env, ARM_FEATURE_V7)) {
1887 set_feature(env, ARM_FEATURE_VAPA);
1888 set_feature(env, ARM_FEATURE_THUMB2);
1889 set_feature(env, ARM_FEATURE_MPIDR);
1890 if (!arm_feature(env, ARM_FEATURE_M)) {
1891 set_feature(env, ARM_FEATURE_V6K);
1892 } else {
1893 set_feature(env, ARM_FEATURE_V6);
1894 }
1895
1896 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1897 * non-EL3 configs. This is needed by some legacy boards.
1898 */
1899 set_feature(env, ARM_FEATURE_VBAR);
1900 }
1901 if (arm_feature(env, ARM_FEATURE_V6K)) {
1902 set_feature(env, ARM_FEATURE_V6);
1903 set_feature(env, ARM_FEATURE_MVFR);
1904 }
1905 if (arm_feature(env, ARM_FEATURE_V6)) {
1906 set_feature(env, ARM_FEATURE_V5);
1907 if (!arm_feature(env, ARM_FEATURE_M)) {
1908 assert(!tcg_enabled() || no_aa32 ||
1909 cpu_isar_feature(aa32_jazelle, cpu));
1910 set_feature(env, ARM_FEATURE_AUXCR);
1911 }
1912 }
1913 if (arm_feature(env, ARM_FEATURE_V5)) {
1914 set_feature(env, ARM_FEATURE_V4T);
1915 }
1916 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1917 set_feature(env, ARM_FEATURE_V7MP);
1918 }
1919 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1920 set_feature(env, ARM_FEATURE_CBAR);
1921 }
1922 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1923 !arm_feature(env, ARM_FEATURE_M)) {
1924 set_feature(env, ARM_FEATURE_THUMB_DSP);
1925 }
1926
1927 /*
1928 * We rely on no XScale CPU having VFP so we can use the same bits in the
1929 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1930 */
1931 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1932 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1933 !arm_feature(env, ARM_FEATURE_XSCALE));
1934
1935 if (arm_feature(env, ARM_FEATURE_V7) &&
1936 !arm_feature(env, ARM_FEATURE_M) &&
1937 !arm_feature(env, ARM_FEATURE_PMSA)) {
1938 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1939 * can use 4K pages.
1940 */
1941 pagebits = 12;
1942 } else {
1943 /* For CPUs which might have tiny 1K pages, or which have an
1944 * MPU and might have small region sizes, stick with 1K pages.
1945 */
1946 pagebits = 10;
1947 }
1948 if (!set_preferred_target_page_bits(pagebits)) {
1949 /* This can only ever happen for hotplugging a CPU, or if
1950 * the board code incorrectly creates a CPU which it has
1951 * promised via minimum_page_size that it will not.
1952 */
1953 error_setg(errp, "This CPU requires a smaller page size than the "
1954 "system is using");
1955 return;
1956 }
1957
1958 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1959 * We don't support setting cluster ID ([16..23]) (known as Aff2
1960 * in later ARM ARM versions), or any of the higher affinity level fields,
1961 * so these bits always RAZ.
1962 */
1963 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1964 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1965 ARM_DEFAULT_CPUS_PER_CLUSTER);
1966 }
1967
1968 if (cpu->reset_hivecs) {
1969 cpu->reset_sctlr |= (1 << 13);
1970 }
1971
1972 if (cpu->cfgend) {
1973 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1974 cpu->reset_sctlr |= SCTLR_EE;
1975 } else {
1976 cpu->reset_sctlr |= SCTLR_B;
1977 }
1978 }
1979
1980 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1981 /* If the has_el3 CPU property is disabled then we need to disable the
1982 * feature.
1983 */
1984 unset_feature(env, ARM_FEATURE_EL3);
1985
1986 /*
1987 * Disable the security extension feature bits in the processor
1988 * feature registers as well.
1989 */
1990 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1991 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1992 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1993 ID_AA64PFR0, EL3, 0);
1994
1995 /* Disable the realm management extension, which requires EL3. */
1996 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1997 ID_AA64PFR0, RME, 0);
1998 }
1999
2000 if (!cpu->has_el2) {
2001 unset_feature(env, ARM_FEATURE_EL2);
2002 }
2003
2004 if (!cpu->has_pmu) {
2005 unset_feature(env, ARM_FEATURE_PMU);
2006 }
2007 if (arm_feature(env, ARM_FEATURE_PMU)) {
2008 pmu_init(cpu);
2009
2010 if (!kvm_enabled()) {
2011 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2012 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2013 }
2014
2015 #ifndef CONFIG_USER_ONLY
2016 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2017 cpu);
2018 #endif
2019 } else {
2020 cpu->isar.id_aa64dfr0 =
2021 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2022 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2023 cpu->pmceid0 = 0;
2024 cpu->pmceid1 = 0;
2025 }
2026
2027 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2028 /*
2029 * Disable the hypervisor feature bits in the processor feature
2030 * registers if we don't have EL2.
2031 */
2032 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2033 ID_AA64PFR0, EL2, 0);
2034 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2035 ID_PFR1, VIRTUALIZATION, 0);
2036 }
2037
2038 #ifndef CONFIG_USER_ONLY
2039 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
2040 /*
2041 * Disable the MTE feature bits if we do not have tag-memory
2042 * provided by the machine.
2043 */
2044 cpu->isar.id_aa64pfr1 =
2045 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2046 }
2047 #endif
2048
2049 if (tcg_enabled()) {
2050 /*
2051 * Don't report the Statistical Profiling Extension in the ID
2052 * registers, because TCG doesn't implement it yet (not even a
2053 * minimal stub version) and guests will fall over when they
2054 * try to access the non-existent system registers for it.
2055 */
2056 cpu->isar.id_aa64dfr0 =
2057 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2058 }
2059
2060 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2061 * to false or by setting pmsav7-dregion to 0.
2062 */
2063 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2064 cpu->has_mpu = false;
2065 cpu->pmsav7_dregion = 0;
2066 cpu->pmsav8r_hdregion = 0;
2067 }
2068
2069 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2070 arm_feature(env, ARM_FEATURE_V7)) {
2071 uint32_t nr = cpu->pmsav7_dregion;
2072
2073 if (nr > 0xff) {
2074 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2075 return;
2076 }
2077
2078 if (nr) {
2079 if (arm_feature(env, ARM_FEATURE_V8)) {
2080 /* PMSAv8 */
2081 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2082 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2083 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2084 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2085 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2086 }
2087 } else {
2088 env->pmsav7.drbar = g_new0(uint32_t, nr);
2089 env->pmsav7.drsr = g_new0(uint32_t, nr);
2090 env->pmsav7.dracr = g_new0(uint32_t, nr);
2091 }
2092 }
2093
2094 if (cpu->pmsav8r_hdregion > 0xff) {
2095 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2096 cpu->pmsav8r_hdregion);
2097 return;
2098 }
2099
2100 if (cpu->pmsav8r_hdregion) {
2101 env->pmsav8.hprbar = g_new0(uint32_t,
2102 cpu->pmsav8r_hdregion);
2103 env->pmsav8.hprlar = g_new0(uint32_t,
2104 cpu->pmsav8r_hdregion);
2105 }
2106 }
2107
2108 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2109 uint32_t nr = cpu->sau_sregion;
2110
2111 if (nr > 0xff) {
2112 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2113 return;
2114 }
2115
2116 if (nr) {
2117 env->sau.rbar = g_new0(uint32_t, nr);
2118 env->sau.rlar = g_new0(uint32_t, nr);
2119 }
2120 }
2121
2122 if (arm_feature(env, ARM_FEATURE_EL3)) {
2123 set_feature(env, ARM_FEATURE_VBAR);
2124 }
2125
2126 register_cp_regs_for_features(cpu);
2127 arm_cpu_register_gdb_regs_for_features(cpu);
2128
2129 init_cpreg_list(cpu);
2130
2131 #ifndef CONFIG_USER_ONLY
2132 MachineState *ms = MACHINE(qdev_get_machine());
2133 unsigned int smp_cpus = ms->smp.cpus;
2134 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2135
2136 /*
2137 * We must set cs->num_ases to the final value before
2138 * the first call to cpu_address_space_init.
2139 */
2140 if (cpu->tag_memory != NULL) {
2141 cs->num_ases = 3 + has_secure;
2142 } else {
2143 cs->num_ases = 1 + has_secure;
2144 }
2145
2146 if (has_secure) {
2147 if (!cpu->secure_memory) {
2148 cpu->secure_memory = cs->memory;
2149 }
2150 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2151 cpu->secure_memory);
2152 }
2153
2154 if (cpu->tag_memory != NULL) {
2155 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2156 cpu->tag_memory);
2157 if (has_secure) {
2158 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2159 cpu->secure_tag_memory);
2160 }
2161 }
2162
2163 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2164
2165 /* No core_count specified, default to smp_cpus. */
2166 if (cpu->core_count == -1) {
2167 cpu->core_count = smp_cpus;
2168 }
2169 #endif
2170
2171 if (tcg_enabled()) {
2172 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2173
2174 /*
2175 * We only support DCZ blocklen that fits on one page.
2176 *
2177 * Architectually this is always true. However TARGET_PAGE_SIZE
2178 * is variable and, for compatibility with -machine virt-2.7,
2179 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2180 * But even then, while the largest architectural DCZ blocklen
2181 * is 2KiB, no cpu actually uses such a large blocklen.
2182 */
2183 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2184
2185 /*
2186 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2187 * both nibbles of each byte storing tag data may be written at once.
2188 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2189 */
2190 if (cpu_isar_feature(aa64_mte, cpu)) {
2191 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2192 }
2193 }
2194
2195 qemu_init_vcpu(cs);
2196 cpu_reset(cs);
2197
2198 acc->parent_realize(dev, errp);
2199 }
2200
2201 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2202 {
2203 ObjectClass *oc;
2204 char *typename;
2205 char **cpuname;
2206 const char *cpunamestr;
2207
2208 cpuname = g_strsplit(cpu_model, ",", 1);
2209 cpunamestr = cpuname[0];
2210 #ifdef CONFIG_USER_ONLY
2211 /* For backwards compatibility usermode emulation allows "-cpu any",
2212 * which has the same semantics as "-cpu max".
2213 */
2214 if (!strcmp(cpunamestr, "any")) {
2215 cpunamestr = "max";
2216 }
2217 #endif
2218 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2219 oc = object_class_by_name(typename);
2220 g_strfreev(cpuname);
2221 g_free(typename);
2222 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2223 object_class_is_abstract(oc)) {
2224 return NULL;
2225 }
2226 return oc;
2227 }
2228
2229 static Property arm_cpu_properties[] = {
2230 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2231 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2232 mp_affinity, ARM64_AFFINITY_INVALID),
2233 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2234 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2235 DEFINE_PROP_END_OF_LIST()
2236 };
2237
2238 static gchar *arm_gdb_arch_name(CPUState *cs)
2239 {
2240 ARMCPU *cpu = ARM_CPU(cs);
2241 CPUARMState *env = &cpu->env;
2242
2243 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2244 return g_strdup("iwmmxt");
2245 }
2246 return g_strdup("arm");
2247 }
2248
2249 #ifndef CONFIG_USER_ONLY
2250 #include "hw/core/sysemu-cpu-ops.h"
2251
2252 static const struct SysemuCPUOps arm_sysemu_ops = {
2253 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2254 .asidx_from_attrs = arm_asidx_from_attrs,
2255 .write_elf32_note = arm_cpu_write_elf32_note,
2256 .write_elf64_note = arm_cpu_write_elf64_note,
2257 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2258 .legacy_vmsd = &vmstate_arm_cpu,
2259 };
2260 #endif
2261
2262 #ifdef CONFIG_TCG
2263 static const struct TCGCPUOps arm_tcg_ops = {
2264 .initialize = arm_translate_init,
2265 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2266 .debug_excp_handler = arm_debug_excp_handler,
2267 .restore_state_to_opc = arm_restore_state_to_opc,
2268
2269 #ifdef CONFIG_USER_ONLY
2270 .record_sigsegv = arm_cpu_record_sigsegv,
2271 .record_sigbus = arm_cpu_record_sigbus,
2272 #else
2273 .tlb_fill = arm_cpu_tlb_fill,
2274 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2275 .do_interrupt = arm_cpu_do_interrupt,
2276 .do_transaction_failed = arm_cpu_do_transaction_failed,
2277 .do_unaligned_access = arm_cpu_do_unaligned_access,
2278 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2279 .debug_check_watchpoint = arm_debug_check_watchpoint,
2280 .debug_check_breakpoint = arm_debug_check_breakpoint,
2281 #endif /* !CONFIG_USER_ONLY */
2282 };
2283 #endif /* CONFIG_TCG */
2284
2285 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2286 {
2287 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2288 CPUClass *cc = CPU_CLASS(acc);
2289 DeviceClass *dc = DEVICE_CLASS(oc);
2290 ResettableClass *rc = RESETTABLE_CLASS(oc);
2291
2292 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2293 &acc->parent_realize);
2294
2295 device_class_set_props(dc, arm_cpu_properties);
2296
2297 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2298 &acc->parent_phases);
2299
2300 cc->class_by_name = arm_cpu_class_by_name;
2301 cc->has_work = arm_cpu_has_work;
2302 cc->dump_state = arm_cpu_dump_state;
2303 cc->set_pc = arm_cpu_set_pc;
2304 cc->get_pc = arm_cpu_get_pc;
2305 cc->gdb_read_register = arm_cpu_gdb_read_register;
2306 cc->gdb_write_register = arm_cpu_gdb_write_register;
2307 #ifndef CONFIG_USER_ONLY
2308 cc->sysemu_ops = &arm_sysemu_ops;
2309 #endif
2310 cc->gdb_num_core_regs = 26;
2311 cc->gdb_core_xml_file = "arm-core.xml";
2312 cc->gdb_arch_name = arm_gdb_arch_name;
2313 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2314 cc->gdb_stop_before_watchpoint = true;
2315 cc->disas_set_info = arm_disas_set_info;
2316
2317 #ifdef CONFIG_TCG
2318 cc->tcg_ops = &arm_tcg_ops;
2319 #endif /* CONFIG_TCG */
2320 }
2321
2322 static void arm_cpu_instance_init(Object *obj)
2323 {
2324 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2325
2326 acc->info->initfn(obj);
2327 arm_cpu_post_init(obj);
2328 }
2329
2330 static void cpu_register_class_init(ObjectClass *oc, void *data)
2331 {
2332 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2333
2334 acc->info = data;
2335 }
2336
2337 void arm_cpu_register(const ARMCPUInfo *info)
2338 {
2339 TypeInfo type_info = {
2340 .parent = TYPE_ARM_CPU,
2341 .instance_size = sizeof(ARMCPU),
2342 .instance_align = __alignof__(ARMCPU),
2343 .instance_init = arm_cpu_instance_init,
2344 .class_size = sizeof(ARMCPUClass),
2345 .class_init = info->class_init ?: cpu_register_class_init,
2346 .class_data = (void *)info,
2347 };
2348
2349 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2350 type_register(&type_info);
2351 g_free((void *)type_info.name);
2352 }
2353
2354 static const TypeInfo arm_cpu_type_info = {
2355 .name = TYPE_ARM_CPU,
2356 .parent = TYPE_CPU,
2357 .instance_size = sizeof(ARMCPU),
2358 .instance_align = __alignof__(ARMCPU),
2359 .instance_init = arm_cpu_initfn,
2360 .instance_finalize = arm_cpu_finalizefn,
2361 .abstract = true,
2362 .class_size = sizeof(ARMCPUClass),
2363 .class_init = arm_cpu_class_init,
2364 };
2365
2366 static void arm_cpu_register_types(void)
2367 {
2368 type_register_static(&arm_cpu_type_info);
2369 }
2370
2371 type_init(arm_cpu_register_types)