]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
d906d2b1caafed5f13578af8fc7e328d27e6402b
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cs->env_ptr;
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cs->env_ptr;
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* and to the FP/Neon instructions */
247 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248 CPACR_EL1, FPEN, 3);
249 /* and to the SVE instructions, with default vector length */
250 if (cpu_isar_feature(aa64_sve, cpu)) {
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, ZEN, 3);
253 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
254 }
255 /* and for SME instructions, with default vector length, and TPIDR2 */
256 if (cpu_isar_feature(aa64_sme, cpu)) {
257 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
258 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259 CPACR_EL1, SMEN, 3);
260 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
261 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
262 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
263 SMCR, FA64, 1);
264 }
265 }
266 /*
267 * Enable 48-bit address space (TODO: take reserved_va into account).
268 * Enable TBI0 but not TBI1.
269 * Note that this must match useronly_clean_ptr.
270 */
271 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
272
273 /* Enable MTE */
274 if (cpu_isar_feature(aa64_mte, cpu)) {
275 /* Enable tag access, but leave TCF0 as No Effect (0). */
276 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
277 /*
278 * Exclude all tags, so that tag 0 is always used.
279 * This corresponds to Linux current->thread.gcr_incl = 0.
280 *
281 * Set RRND, so that helper_irg() will generate a seed later.
282 * Here in cpu_reset(), the crypto subsystem has not yet been
283 * initialized.
284 */
285 env->cp15.gcr_el1 = 0x1ffff;
286 }
287 /*
288 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289 * This is not yet exposed from the Linux kernel in any way.
290 */
291 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
292 /* Disable access to Debug Communication Channel (DCC). */
293 env->cp15.mdscr_el1 |= 1 << 12;
294 #else
295 /* Reset into the highest available EL */
296 if (arm_feature(env, ARM_FEATURE_EL3)) {
297 env->pstate = PSTATE_MODE_EL3h;
298 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
299 env->pstate = PSTATE_MODE_EL2h;
300 } else {
301 env->pstate = PSTATE_MODE_EL1h;
302 }
303
304 /* Sample rvbar at reset. */
305 env->cp15.rvbar = cpu->rvbar_prop;
306 env->pc = env->cp15.rvbar;
307 #endif
308 } else {
309 #if defined(CONFIG_USER_ONLY)
310 /* Userspace expects access to cp10 and cp11 for FP/Neon */
311 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
312 CPACR, CP10, 3);
313 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
314 CPACR, CP11, 3);
315 #endif
316 if (arm_feature(env, ARM_FEATURE_V8)) {
317 env->cp15.rvbar = cpu->rvbar_prop;
318 env->regs[15] = cpu->rvbar_prop;
319 }
320 }
321
322 #if defined(CONFIG_USER_ONLY)
323 env->uncached_cpsr = ARM_CPU_MODE_USR;
324 /* For user mode we must enable access to coprocessors */
325 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
326 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
327 env->cp15.c15_cpar = 3;
328 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
329 env->cp15.c15_cpar = 1;
330 }
331 #else
332
333 /*
334 * If the highest available EL is EL2, AArch32 will start in Hyp
335 * mode; otherwise it starts in SVC. Note that if we start in
336 * AArch64 then these values in the uncached_cpsr will be ignored.
337 */
338 if (arm_feature(env, ARM_FEATURE_EL2) &&
339 !arm_feature(env, ARM_FEATURE_EL3)) {
340 env->uncached_cpsr = ARM_CPU_MODE_HYP;
341 } else {
342 env->uncached_cpsr = ARM_CPU_MODE_SVC;
343 }
344 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
345
346 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
347 * executing as AArch32 then check if highvecs are enabled and
348 * adjust the PC accordingly.
349 */
350 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
351 env->regs[15] = 0xFFFF0000;
352 }
353
354 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
355 #endif
356
357 if (arm_feature(env, ARM_FEATURE_M)) {
358 #ifndef CONFIG_USER_ONLY
359 uint32_t initial_msp; /* Loaded from 0x0 */
360 uint32_t initial_pc; /* Loaded from 0x4 */
361 uint8_t *rom;
362 uint32_t vecbase;
363 #endif
364
365 if (cpu_isar_feature(aa32_lob, cpu)) {
366 /*
367 * LTPSIZE is constant 4 if MVE not implemented, and resets
368 * to an UNKNOWN value if MVE is implemented. We choose to
369 * always reset to 4.
370 */
371 env->v7m.ltpsize = 4;
372 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
373 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
374 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
375 }
376
377 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
378 env->v7m.secure = true;
379 } else {
380 /* This bit resets to 0 if security is supported, but 1 if
381 * it is not. The bit is not present in v7M, but we set it
382 * here so we can avoid having to make checks on it conditional
383 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
384 */
385 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
386 /*
387 * Set NSACR to indicate "NS access permitted to everything";
388 * this avoids having to have all the tests of it being
389 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
390 * v8.1M the guest-visible value of NSACR in a CPU without the
391 * Security Extension is 0xcff.
392 */
393 env->v7m.nsacr = 0xcff;
394 }
395
396 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
397 * that it resets to 1, so QEMU always does that rather than making
398 * it dependent on CPU model. In v8M it is RES1.
399 */
400 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
401 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
402 if (arm_feature(env, ARM_FEATURE_V8)) {
403 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
404 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
405 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
406 }
407 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
408 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
409 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
410 }
411
412 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
413 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
414 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
415 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
416 }
417
418 #ifndef CONFIG_USER_ONLY
419 /* Unlike A/R profile, M profile defines the reset LR value */
420 env->regs[14] = 0xffffffff;
421
422 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
423 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
424
425 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
426 vecbase = env->v7m.vecbase[env->v7m.secure];
427 rom = rom_ptr_for_as(s->as, vecbase, 8);
428 if (rom) {
429 /* Address zero is covered by ROM which hasn't yet been
430 * copied into physical memory.
431 */
432 initial_msp = ldl_p(rom);
433 initial_pc = ldl_p(rom + 4);
434 } else {
435 /* Address zero not covered by a ROM blob, or the ROM blob
436 * is in non-modifiable memory and this is a second reset after
437 * it got copied into memory. In the latter case, rom_ptr
438 * will return a NULL pointer and we should use ldl_phys instead.
439 */
440 initial_msp = ldl_phys(s->as, vecbase);
441 initial_pc = ldl_phys(s->as, vecbase + 4);
442 }
443
444 qemu_log_mask(CPU_LOG_INT,
445 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
446 initial_msp, initial_pc);
447
448 env->regs[13] = initial_msp & 0xFFFFFFFC;
449 env->regs[15] = initial_pc & ~1;
450 env->thumb = initial_pc & 1;
451 #else
452 /*
453 * For user mode we run non-secure and with access to the FPU.
454 * The FPU context is active (ie does not need further setup)
455 * and is owned by non-secure.
456 */
457 env->v7m.secure = false;
458 env->v7m.nsacr = 0xcff;
459 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
460 env->v7m.fpccr[M_REG_S] &=
461 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
462 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
463 #endif
464 }
465
466 /* M profile requires that reset clears the exclusive monitor;
467 * A profile does not, but clearing it makes more sense than having it
468 * set with an exclusive access on address zero.
469 */
470 arm_clear_exclusive(env);
471
472 if (arm_feature(env, ARM_FEATURE_PMSA)) {
473 if (cpu->pmsav7_dregion > 0) {
474 if (arm_feature(env, ARM_FEATURE_V8)) {
475 memset(env->pmsav8.rbar[M_REG_NS], 0,
476 sizeof(*env->pmsav8.rbar[M_REG_NS])
477 * cpu->pmsav7_dregion);
478 memset(env->pmsav8.rlar[M_REG_NS], 0,
479 sizeof(*env->pmsav8.rlar[M_REG_NS])
480 * cpu->pmsav7_dregion);
481 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
482 memset(env->pmsav8.rbar[M_REG_S], 0,
483 sizeof(*env->pmsav8.rbar[M_REG_S])
484 * cpu->pmsav7_dregion);
485 memset(env->pmsav8.rlar[M_REG_S], 0,
486 sizeof(*env->pmsav8.rlar[M_REG_S])
487 * cpu->pmsav7_dregion);
488 }
489 } else if (arm_feature(env, ARM_FEATURE_V7)) {
490 memset(env->pmsav7.drbar, 0,
491 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
492 memset(env->pmsav7.drsr, 0,
493 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
494 memset(env->pmsav7.dracr, 0,
495 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
496 }
497 }
498
499 if (cpu->pmsav8r_hdregion > 0) {
500 memset(env->pmsav8.hprbar, 0,
501 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
502 memset(env->pmsav8.hprlar, 0,
503 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
504 }
505
506 env->pmsav7.rnr[M_REG_NS] = 0;
507 env->pmsav7.rnr[M_REG_S] = 0;
508 env->pmsav8.mair0[M_REG_NS] = 0;
509 env->pmsav8.mair0[M_REG_S] = 0;
510 env->pmsav8.mair1[M_REG_NS] = 0;
511 env->pmsav8.mair1[M_REG_S] = 0;
512 }
513
514 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
515 if (cpu->sau_sregion > 0) {
516 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
517 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
518 }
519 env->sau.rnr = 0;
520 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
521 * the Cortex-M33 does.
522 */
523 env->sau.ctrl = 0;
524 }
525
526 set_flush_to_zero(1, &env->vfp.standard_fp_status);
527 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
528 set_default_nan_mode(1, &env->vfp.standard_fp_status);
529 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
530 set_float_detect_tininess(float_tininess_before_rounding,
531 &env->vfp.fp_status);
532 set_float_detect_tininess(float_tininess_before_rounding,
533 &env->vfp.standard_fp_status);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.fp_status_f16);
536 set_float_detect_tininess(float_tininess_before_rounding,
537 &env->vfp.standard_fp_status_f16);
538 #ifndef CONFIG_USER_ONLY
539 if (kvm_enabled()) {
540 kvm_arm_reset_vcpu(cpu);
541 }
542 #endif
543
544 if (tcg_enabled()) {
545 hw_breakpoint_update_all(cpu);
546 hw_watchpoint_update_all(cpu);
547
548 arm_rebuild_hflags(env);
549 }
550 }
551
552 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
553
554 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
555 unsigned int target_el,
556 unsigned int cur_el, bool secure,
557 uint64_t hcr_el2)
558 {
559 CPUARMState *env = cs->env_ptr;
560 bool pstate_unmasked;
561 bool unmasked = false;
562
563 /*
564 * Don't take exceptions if they target a lower EL.
565 * This check should catch any exceptions that would not be taken
566 * but left pending.
567 */
568 if (cur_el > target_el) {
569 return false;
570 }
571
572 switch (excp_idx) {
573 case EXCP_FIQ:
574 pstate_unmasked = !(env->daif & PSTATE_F);
575 break;
576
577 case EXCP_IRQ:
578 pstate_unmasked = !(env->daif & PSTATE_I);
579 break;
580
581 case EXCP_VFIQ:
582 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
583 /* VFIQs are only taken when hypervized. */
584 return false;
585 }
586 return !(env->daif & PSTATE_F);
587 case EXCP_VIRQ:
588 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
589 /* VIRQs are only taken when hypervized. */
590 return false;
591 }
592 return !(env->daif & PSTATE_I);
593 case EXCP_VSERR:
594 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
595 /* VIRQs are only taken when hypervized. */
596 return false;
597 }
598 return !(env->daif & PSTATE_A);
599 default:
600 g_assert_not_reached();
601 }
602
603 /*
604 * Use the target EL, current execution state and SCR/HCR settings to
605 * determine whether the corresponding CPSR bit is used to mask the
606 * interrupt.
607 */
608 if ((target_el > cur_el) && (target_el != 1)) {
609 /* Exceptions targeting a higher EL may not be maskable */
610 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
611 switch (target_el) {
612 case 2:
613 /*
614 * According to ARM DDI 0487H.a, an interrupt can be masked
615 * when HCR_E2H and HCR_TGE are both set regardless of the
616 * current Security state. Note that we need to revisit this
617 * part again once we need to support NMI.
618 */
619 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
620 unmasked = true;
621 }
622 break;
623 case 3:
624 /* Interrupt cannot be masked when the target EL is 3 */
625 unmasked = true;
626 break;
627 default:
628 g_assert_not_reached();
629 }
630 } else {
631 /*
632 * The old 32-bit-only environment has a more complicated
633 * masking setup. HCR and SCR bits not only affect interrupt
634 * routing but also change the behaviour of masking.
635 */
636 bool hcr, scr;
637
638 switch (excp_idx) {
639 case EXCP_FIQ:
640 /*
641 * If FIQs are routed to EL3 or EL2 then there are cases where
642 * we override the CPSR.F in determining if the exception is
643 * masked or not. If neither of these are set then we fall back
644 * to the CPSR.F setting otherwise we further assess the state
645 * below.
646 */
647 hcr = hcr_el2 & HCR_FMO;
648 scr = (env->cp15.scr_el3 & SCR_FIQ);
649
650 /*
651 * When EL3 is 32-bit, the SCR.FW bit controls whether the
652 * CPSR.F bit masks FIQ interrupts when taken in non-secure
653 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
654 * when non-secure but only when FIQs are only routed to EL3.
655 */
656 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
657 break;
658 case EXCP_IRQ:
659 /*
660 * When EL3 execution state is 32-bit, if HCR.IMO is set then
661 * we may override the CPSR.I masking when in non-secure state.
662 * The SCR.IRQ setting has already been taken into consideration
663 * when setting the target EL, so it does not have a further
664 * affect here.
665 */
666 hcr = hcr_el2 & HCR_IMO;
667 scr = false;
668 break;
669 default:
670 g_assert_not_reached();
671 }
672
673 if ((scr || hcr) && !secure) {
674 unmasked = true;
675 }
676 }
677 }
678
679 /*
680 * The PSTATE bits only mask the interrupt if we have not overridden the
681 * ability above.
682 */
683 return unmasked || pstate_unmasked;
684 }
685
686 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
687 {
688 CPUClass *cc = CPU_GET_CLASS(cs);
689 CPUARMState *env = cs->env_ptr;
690 uint32_t cur_el = arm_current_el(env);
691 bool secure = arm_is_secure(env);
692 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
693 uint32_t target_el;
694 uint32_t excp_idx;
695
696 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
697
698 if (interrupt_request & CPU_INTERRUPT_FIQ) {
699 excp_idx = EXCP_FIQ;
700 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
701 if (arm_excp_unmasked(cs, excp_idx, target_el,
702 cur_el, secure, hcr_el2)) {
703 goto found;
704 }
705 }
706 if (interrupt_request & CPU_INTERRUPT_HARD) {
707 excp_idx = EXCP_IRQ;
708 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
709 if (arm_excp_unmasked(cs, excp_idx, target_el,
710 cur_el, secure, hcr_el2)) {
711 goto found;
712 }
713 }
714 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
715 excp_idx = EXCP_VIRQ;
716 target_el = 1;
717 if (arm_excp_unmasked(cs, excp_idx, target_el,
718 cur_el, secure, hcr_el2)) {
719 goto found;
720 }
721 }
722 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
723 excp_idx = EXCP_VFIQ;
724 target_el = 1;
725 if (arm_excp_unmasked(cs, excp_idx, target_el,
726 cur_el, secure, hcr_el2)) {
727 goto found;
728 }
729 }
730 if (interrupt_request & CPU_INTERRUPT_VSERR) {
731 excp_idx = EXCP_VSERR;
732 target_el = 1;
733 if (arm_excp_unmasked(cs, excp_idx, target_el,
734 cur_el, secure, hcr_el2)) {
735 /* Taking a virtual abort clears HCR_EL2.VSE */
736 env->cp15.hcr_el2 &= ~HCR_VSE;
737 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
738 goto found;
739 }
740 }
741 return false;
742
743 found:
744 cs->exception_index = excp_idx;
745 env->exception.target_el = target_el;
746 cc->tcg_ops->do_interrupt(cs);
747 return true;
748 }
749
750 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
751
752 void arm_cpu_update_virq(ARMCPU *cpu)
753 {
754 /*
755 * Update the interrupt level for VIRQ, which is the logical OR of
756 * the HCR_EL2.VI bit and the input line level from the GIC.
757 */
758 CPUARMState *env = &cpu->env;
759 CPUState *cs = CPU(cpu);
760
761 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
762 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
763
764 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
765 if (new_state) {
766 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
767 } else {
768 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
769 }
770 }
771 }
772
773 void arm_cpu_update_vfiq(ARMCPU *cpu)
774 {
775 /*
776 * Update the interrupt level for VFIQ, which is the logical OR of
777 * the HCR_EL2.VF bit and the input line level from the GIC.
778 */
779 CPUARMState *env = &cpu->env;
780 CPUState *cs = CPU(cpu);
781
782 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
783 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
784
785 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
786 if (new_state) {
787 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
788 } else {
789 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
790 }
791 }
792 }
793
794 void arm_cpu_update_vserr(ARMCPU *cpu)
795 {
796 /*
797 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
798 */
799 CPUARMState *env = &cpu->env;
800 CPUState *cs = CPU(cpu);
801
802 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
803
804 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
805 if (new_state) {
806 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
807 } else {
808 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
809 }
810 }
811 }
812
813 #ifndef CONFIG_USER_ONLY
814 static void arm_cpu_set_irq(void *opaque, int irq, int level)
815 {
816 ARMCPU *cpu = opaque;
817 CPUARMState *env = &cpu->env;
818 CPUState *cs = CPU(cpu);
819 static const int mask[] = {
820 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
821 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
822 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
823 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
824 };
825
826 if (!arm_feature(env, ARM_FEATURE_EL2) &&
827 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
828 /*
829 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
830 * have EL2 support we don't care. (Unless the guest is doing something
831 * silly this will only be calls saying "level is still 0".)
832 */
833 return;
834 }
835
836 if (level) {
837 env->irq_line_state |= mask[irq];
838 } else {
839 env->irq_line_state &= ~mask[irq];
840 }
841
842 switch (irq) {
843 case ARM_CPU_VIRQ:
844 arm_cpu_update_virq(cpu);
845 break;
846 case ARM_CPU_VFIQ:
847 arm_cpu_update_vfiq(cpu);
848 break;
849 case ARM_CPU_IRQ:
850 case ARM_CPU_FIQ:
851 if (level) {
852 cpu_interrupt(cs, mask[irq]);
853 } else {
854 cpu_reset_interrupt(cs, mask[irq]);
855 }
856 break;
857 default:
858 g_assert_not_reached();
859 }
860 }
861
862 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
863 {
864 #ifdef CONFIG_KVM
865 ARMCPU *cpu = opaque;
866 CPUARMState *env = &cpu->env;
867 CPUState *cs = CPU(cpu);
868 uint32_t linestate_bit;
869 int irq_id;
870
871 switch (irq) {
872 case ARM_CPU_IRQ:
873 irq_id = KVM_ARM_IRQ_CPU_IRQ;
874 linestate_bit = CPU_INTERRUPT_HARD;
875 break;
876 case ARM_CPU_FIQ:
877 irq_id = KVM_ARM_IRQ_CPU_FIQ;
878 linestate_bit = CPU_INTERRUPT_FIQ;
879 break;
880 default:
881 g_assert_not_reached();
882 }
883
884 if (level) {
885 env->irq_line_state |= linestate_bit;
886 } else {
887 env->irq_line_state &= ~linestate_bit;
888 }
889 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
890 #endif
891 }
892
893 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
894 {
895 ARMCPU *cpu = ARM_CPU(cs);
896 CPUARMState *env = &cpu->env;
897
898 cpu_synchronize_state(cs);
899 return arm_cpu_data_is_big_endian(env);
900 }
901
902 #endif
903
904 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
905 {
906 ARMCPU *ac = ARM_CPU(cpu);
907 CPUARMState *env = &ac->env;
908 bool sctlr_b;
909
910 if (is_a64(env)) {
911 info->cap_arch = CS_ARCH_ARM64;
912 info->cap_insn_unit = 4;
913 info->cap_insn_split = 4;
914 } else {
915 int cap_mode;
916 if (env->thumb) {
917 info->cap_insn_unit = 2;
918 info->cap_insn_split = 4;
919 cap_mode = CS_MODE_THUMB;
920 } else {
921 info->cap_insn_unit = 4;
922 info->cap_insn_split = 4;
923 cap_mode = CS_MODE_ARM;
924 }
925 if (arm_feature(env, ARM_FEATURE_V8)) {
926 cap_mode |= CS_MODE_V8;
927 }
928 if (arm_feature(env, ARM_FEATURE_M)) {
929 cap_mode |= CS_MODE_MCLASS;
930 }
931 info->cap_arch = CS_ARCH_ARM;
932 info->cap_mode = cap_mode;
933 }
934
935 sctlr_b = arm_sctlr_b(env);
936 if (bswap_code(sctlr_b)) {
937 #if TARGET_BIG_ENDIAN
938 info->endian = BFD_ENDIAN_LITTLE;
939 #else
940 info->endian = BFD_ENDIAN_BIG;
941 #endif
942 }
943 info->flags &= ~INSN_ARM_BE32;
944 #ifndef CONFIG_USER_ONLY
945 if (sctlr_b) {
946 info->flags |= INSN_ARM_BE32;
947 }
948 #endif
949 }
950
951 #ifdef TARGET_AARCH64
952
953 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
954 {
955 ARMCPU *cpu = ARM_CPU(cs);
956 CPUARMState *env = &cpu->env;
957 uint32_t psr = pstate_read(env);
958 int i, j;
959 int el = arm_current_el(env);
960 const char *ns_status;
961 bool sve;
962
963 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
964 for (i = 0; i < 32; i++) {
965 if (i == 31) {
966 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
967 } else {
968 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
969 (i + 2) % 3 ? " " : "\n");
970 }
971 }
972
973 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
974 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
975 } else {
976 ns_status = "";
977 }
978 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
979 psr,
980 psr & PSTATE_N ? 'N' : '-',
981 psr & PSTATE_Z ? 'Z' : '-',
982 psr & PSTATE_C ? 'C' : '-',
983 psr & PSTATE_V ? 'V' : '-',
984 ns_status,
985 el,
986 psr & PSTATE_SP ? 'h' : 't');
987
988 if (cpu_isar_feature(aa64_sme, cpu)) {
989 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
990 env->svcr,
991 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
992 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
993 }
994 if (cpu_isar_feature(aa64_bti, cpu)) {
995 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
996 }
997 if (!(flags & CPU_DUMP_FPU)) {
998 qemu_fprintf(f, "\n");
999 return;
1000 }
1001 if (fp_exception_el(env, el) != 0) {
1002 qemu_fprintf(f, " FPU disabled\n");
1003 return;
1004 }
1005 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1006 vfp_get_fpcr(env), vfp_get_fpsr(env));
1007
1008 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1009 sve = sme_exception_el(env, el) == 0;
1010 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1011 sve = sve_exception_el(env, el) == 0;
1012 } else {
1013 sve = false;
1014 }
1015
1016 if (sve) {
1017 int zcr_len = sve_vqm1_for_el(env, el);
1018
1019 for (i = 0; i <= FFR_PRED_NUM; i++) {
1020 bool eol;
1021 if (i == FFR_PRED_NUM) {
1022 qemu_fprintf(f, "FFR=");
1023 /* It's last, so end the line. */
1024 eol = true;
1025 } else {
1026 qemu_fprintf(f, "P%02d=", i);
1027 switch (zcr_len) {
1028 case 0:
1029 eol = i % 8 == 7;
1030 break;
1031 case 1:
1032 eol = i % 6 == 5;
1033 break;
1034 case 2:
1035 case 3:
1036 eol = i % 3 == 2;
1037 break;
1038 default:
1039 /* More than one quadword per predicate. */
1040 eol = true;
1041 break;
1042 }
1043 }
1044 for (j = zcr_len / 4; j >= 0; j--) {
1045 int digits;
1046 if (j * 4 + 4 <= zcr_len + 1) {
1047 digits = 16;
1048 } else {
1049 digits = (zcr_len % 4 + 1) * 4;
1050 }
1051 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1052 env->vfp.pregs[i].p[j],
1053 j ? ":" : eol ? "\n" : " ");
1054 }
1055 }
1056
1057 if (zcr_len == 0) {
1058 /*
1059 * With vl=16, there are only 37 columns per register,
1060 * so output two registers per line.
1061 */
1062 for (i = 0; i < 32; i++) {
1063 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1064 i, env->vfp.zregs[i].d[1],
1065 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1066 }
1067 } else {
1068 for (i = 0; i < 32; i++) {
1069 qemu_fprintf(f, "Z%02d=", i);
1070 for (j = zcr_len; j >= 0; j--) {
1071 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1072 env->vfp.zregs[i].d[j * 2 + 1],
1073 env->vfp.zregs[i].d[j * 2 + 0],
1074 j ? ":" : "\n");
1075 }
1076 }
1077 }
1078 } else {
1079 for (i = 0; i < 32; i++) {
1080 uint64_t *q = aa64_vfp_qreg(env, i);
1081 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1082 i, q[1], q[0], (i & 1 ? "\n" : " "));
1083 }
1084 }
1085
1086 if (cpu_isar_feature(aa64_sme, cpu) &&
1087 FIELD_EX64(env->svcr, SVCR, ZA) &&
1088 sme_exception_el(env, el) == 0) {
1089 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1090 int svl = (zcr_len + 1) * 16;
1091 int svl_lg10 = svl < 100 ? 2 : 3;
1092
1093 for (i = 0; i < svl; i++) {
1094 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1095 for (j = zcr_len; j >= 0; --j) {
1096 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1097 env->zarray[i].d[2 * j + 1],
1098 env->zarray[i].d[2 * j],
1099 j ? ':' : '\n');
1100 }
1101 }
1102 }
1103 }
1104
1105 #else
1106
1107 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1108 {
1109 g_assert_not_reached();
1110 }
1111
1112 #endif
1113
1114 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1115 {
1116 ARMCPU *cpu = ARM_CPU(cs);
1117 CPUARMState *env = &cpu->env;
1118 int i;
1119
1120 if (is_a64(env)) {
1121 aarch64_cpu_dump_state(cs, f, flags);
1122 return;
1123 }
1124
1125 for (i = 0; i < 16; i++) {
1126 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1127 if ((i % 4) == 3) {
1128 qemu_fprintf(f, "\n");
1129 } else {
1130 qemu_fprintf(f, " ");
1131 }
1132 }
1133
1134 if (arm_feature(env, ARM_FEATURE_M)) {
1135 uint32_t xpsr = xpsr_read(env);
1136 const char *mode;
1137 const char *ns_status = "";
1138
1139 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1140 ns_status = env->v7m.secure ? "S " : "NS ";
1141 }
1142
1143 if (xpsr & XPSR_EXCP) {
1144 mode = "handler";
1145 } else {
1146 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1147 mode = "unpriv-thread";
1148 } else {
1149 mode = "priv-thread";
1150 }
1151 }
1152
1153 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1154 xpsr,
1155 xpsr & XPSR_N ? 'N' : '-',
1156 xpsr & XPSR_Z ? 'Z' : '-',
1157 xpsr & XPSR_C ? 'C' : '-',
1158 xpsr & XPSR_V ? 'V' : '-',
1159 xpsr & XPSR_T ? 'T' : 'A',
1160 ns_status,
1161 mode);
1162 } else {
1163 uint32_t psr = cpsr_read(env);
1164 const char *ns_status = "";
1165
1166 if (arm_feature(env, ARM_FEATURE_EL3) &&
1167 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1168 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1169 }
1170
1171 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1172 psr,
1173 psr & CPSR_N ? 'N' : '-',
1174 psr & CPSR_Z ? 'Z' : '-',
1175 psr & CPSR_C ? 'C' : '-',
1176 psr & CPSR_V ? 'V' : '-',
1177 psr & CPSR_T ? 'T' : 'A',
1178 ns_status,
1179 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1180 }
1181
1182 if (flags & CPU_DUMP_FPU) {
1183 int numvfpregs = 0;
1184 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1185 numvfpregs = 32;
1186 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1187 numvfpregs = 16;
1188 }
1189 for (i = 0; i < numvfpregs; i++) {
1190 uint64_t v = *aa32_vfp_dreg(env, i);
1191 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1192 i * 2, (uint32_t)v,
1193 i * 2 + 1, (uint32_t)(v >> 32),
1194 i, v);
1195 }
1196 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1197 if (cpu_isar_feature(aa32_mve, cpu)) {
1198 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1199 }
1200 }
1201 }
1202
1203 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1204 {
1205 uint32_t Aff1 = idx / clustersz;
1206 uint32_t Aff0 = idx % clustersz;
1207 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1208 }
1209
1210 static void arm_cpu_initfn(Object *obj)
1211 {
1212 ARMCPU *cpu = ARM_CPU(obj);
1213
1214 cpu_set_cpustate_pointers(cpu);
1215 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1216 NULL, g_free);
1217
1218 QLIST_INIT(&cpu->pre_el_change_hooks);
1219 QLIST_INIT(&cpu->el_change_hooks);
1220
1221 #ifdef CONFIG_USER_ONLY
1222 # ifdef TARGET_AARCH64
1223 /*
1224 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1225 * These values were chosen to fit within the default signal frame.
1226 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1227 * and our corresponding cpu property.
1228 */
1229 cpu->sve_default_vq = 4;
1230 cpu->sme_default_vq = 2;
1231 # endif
1232 #else
1233 /* Our inbound IRQ and FIQ lines */
1234 if (kvm_enabled()) {
1235 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1236 * the same interface as non-KVM CPUs.
1237 */
1238 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1239 } else {
1240 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1241 }
1242
1243 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1244 ARRAY_SIZE(cpu->gt_timer_outputs));
1245
1246 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1247 "gicv3-maintenance-interrupt", 1);
1248 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1249 "pmu-interrupt", 1);
1250 #endif
1251
1252 /* DTB consumers generally don't in fact care what the 'compatible'
1253 * string is, so always provide some string and trust that a hypothetical
1254 * picky DTB consumer will also provide a helpful error message.
1255 */
1256 cpu->dtb_compatible = "qemu,unknown";
1257 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1258 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1259
1260 if (tcg_enabled() || hvf_enabled()) {
1261 /* TCG and HVF implement PSCI 1.1 */
1262 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1263 }
1264 }
1265
1266 static Property arm_cpu_gt_cntfrq_property =
1267 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1268 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1269
1270 static Property arm_cpu_reset_cbar_property =
1271 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1272
1273 static Property arm_cpu_reset_hivecs_property =
1274 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1275
1276 #ifndef CONFIG_USER_ONLY
1277 static Property arm_cpu_has_el2_property =
1278 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1279
1280 static Property arm_cpu_has_el3_property =
1281 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1282 #endif
1283
1284 static Property arm_cpu_cfgend_property =
1285 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1286
1287 static Property arm_cpu_has_vfp_property =
1288 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1289
1290 static Property arm_cpu_has_vfp_d32_property =
1291 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1292
1293 static Property arm_cpu_has_neon_property =
1294 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1295
1296 static Property arm_cpu_has_dsp_property =
1297 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1298
1299 static Property arm_cpu_has_mpu_property =
1300 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1301
1302 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1303 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1304 * the right value for that particular CPU type, and we don't want
1305 * to override that with an incorrect constant value.
1306 */
1307 static Property arm_cpu_pmsav7_dregion_property =
1308 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1309 pmsav7_dregion,
1310 qdev_prop_uint32, uint32_t);
1311
1312 static bool arm_get_pmu(Object *obj, Error **errp)
1313 {
1314 ARMCPU *cpu = ARM_CPU(obj);
1315
1316 return cpu->has_pmu;
1317 }
1318
1319 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1320 {
1321 ARMCPU *cpu = ARM_CPU(obj);
1322
1323 if (value) {
1324 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1325 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1326 return;
1327 }
1328 set_feature(&cpu->env, ARM_FEATURE_PMU);
1329 } else {
1330 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1331 }
1332 cpu->has_pmu = value;
1333 }
1334
1335 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1336 {
1337 /*
1338 * The exact approach to calculating guest ticks is:
1339 *
1340 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1341 * NANOSECONDS_PER_SECOND);
1342 *
1343 * We don't do that. Rather we intentionally use integer division
1344 * truncation below and in the caller for the conversion of host monotonic
1345 * time to guest ticks to provide the exact inverse for the semantics of
1346 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1347 * it loses precision when representing frequencies where
1348 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1349 * provide an exact inverse leads to scheduling timers with negative
1350 * periods, which in turn leads to sticky behaviour in the guest.
1351 *
1352 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1353 * cannot become zero.
1354 */
1355 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1356 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1357 }
1358
1359 void arm_cpu_post_init(Object *obj)
1360 {
1361 ARMCPU *cpu = ARM_CPU(obj);
1362
1363 /* M profile implies PMSA. We have to do this here rather than
1364 * in realize with the other feature-implication checks because
1365 * we look at the PMSA bit to see if we should add some properties.
1366 */
1367 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1368 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1369 }
1370
1371 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1372 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1373 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1374 }
1375
1376 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1377 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1378 }
1379
1380 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1381 object_property_add_uint64_ptr(obj, "rvbar",
1382 &cpu->rvbar_prop,
1383 OBJ_PROP_FLAG_READWRITE);
1384 }
1385
1386 #ifndef CONFIG_USER_ONLY
1387 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1388 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1389 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1390 */
1391 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1392
1393 object_property_add_link(obj, "secure-memory",
1394 TYPE_MEMORY_REGION,
1395 (Object **)&cpu->secure_memory,
1396 qdev_prop_allow_set_link_before_realize,
1397 OBJ_PROP_LINK_STRONG);
1398 }
1399
1400 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1401 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1402 }
1403 #endif
1404
1405 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1406 cpu->has_pmu = true;
1407 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1408 }
1409
1410 /*
1411 * Allow user to turn off VFP and Neon support, but only for TCG --
1412 * KVM does not currently allow us to lie to the guest about its
1413 * ID/feature registers, so the guest always sees what the host has.
1414 */
1415 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1416 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1417 cpu->has_vfp = true;
1418 cpu->has_vfp_d32 = true;
1419 if (tcg_enabled() || qtest_enabled()) {
1420 qdev_property_add_static(DEVICE(obj),
1421 &arm_cpu_has_vfp_property);
1422 }
1423 }
1424 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1425 cpu->has_vfp = true;
1426 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1427 cpu->has_vfp_d32 = true;
1428 /*
1429 * The permitted values of the SIMDReg bits [3:0] on
1430 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1431 * make sure that has_vfp_d32 can not be set to false.
1432 */
1433 if ((tcg_enabled() || qtest_enabled())
1434 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1435 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1436 qdev_property_add_static(DEVICE(obj),
1437 &arm_cpu_has_vfp_d32_property);
1438 }
1439 }
1440 }
1441
1442 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1443 cpu->has_neon = true;
1444 if (!kvm_enabled()) {
1445 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1446 }
1447 }
1448
1449 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1450 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1451 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1452 }
1453
1454 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1455 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1456 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1457 qdev_property_add_static(DEVICE(obj),
1458 &arm_cpu_pmsav7_dregion_property);
1459 }
1460 }
1461
1462 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1463 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1464 qdev_prop_allow_set_link_before_realize,
1465 OBJ_PROP_LINK_STRONG);
1466 /*
1467 * M profile: initial value of the Secure VTOR. We can't just use
1468 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1469 * the property to be set after realize.
1470 */
1471 object_property_add_uint32_ptr(obj, "init-svtor",
1472 &cpu->init_svtor,
1473 OBJ_PROP_FLAG_READWRITE);
1474 }
1475 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1476 /*
1477 * Initial value of the NS VTOR (for cores without the Security
1478 * extension, this is the only VTOR)
1479 */
1480 object_property_add_uint32_ptr(obj, "init-nsvtor",
1481 &cpu->init_nsvtor,
1482 OBJ_PROP_FLAG_READWRITE);
1483 }
1484
1485 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1486 object_property_add_uint32_ptr(obj, "psci-conduit",
1487 &cpu->psci_conduit,
1488 OBJ_PROP_FLAG_READWRITE);
1489
1490 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1491
1492 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1493 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1494 }
1495
1496 if (kvm_enabled()) {
1497 kvm_arm_add_vcpu_properties(obj);
1498 }
1499
1500 #ifndef CONFIG_USER_ONLY
1501 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1502 cpu_isar_feature(aa64_mte, cpu)) {
1503 object_property_add_link(obj, "tag-memory",
1504 TYPE_MEMORY_REGION,
1505 (Object **)&cpu->tag_memory,
1506 qdev_prop_allow_set_link_before_realize,
1507 OBJ_PROP_LINK_STRONG);
1508
1509 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1510 object_property_add_link(obj, "secure-tag-memory",
1511 TYPE_MEMORY_REGION,
1512 (Object **)&cpu->secure_tag_memory,
1513 qdev_prop_allow_set_link_before_realize,
1514 OBJ_PROP_LINK_STRONG);
1515 }
1516 }
1517 #endif
1518 }
1519
1520 static void arm_cpu_finalizefn(Object *obj)
1521 {
1522 ARMCPU *cpu = ARM_CPU(obj);
1523 ARMELChangeHook *hook, *next;
1524
1525 g_hash_table_destroy(cpu->cp_regs);
1526
1527 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1528 QLIST_REMOVE(hook, node);
1529 g_free(hook);
1530 }
1531 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1532 QLIST_REMOVE(hook, node);
1533 g_free(hook);
1534 }
1535 #ifndef CONFIG_USER_ONLY
1536 if (cpu->pmu_timer) {
1537 timer_free(cpu->pmu_timer);
1538 }
1539 #endif
1540 }
1541
1542 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1543 {
1544 Error *local_err = NULL;
1545
1546 #ifdef TARGET_AARCH64
1547 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1548 arm_cpu_sve_finalize(cpu, &local_err);
1549 if (local_err != NULL) {
1550 error_propagate(errp, local_err);
1551 return;
1552 }
1553
1554 arm_cpu_sme_finalize(cpu, &local_err);
1555 if (local_err != NULL) {
1556 error_propagate(errp, local_err);
1557 return;
1558 }
1559
1560 arm_cpu_pauth_finalize(cpu, &local_err);
1561 if (local_err != NULL) {
1562 error_propagate(errp, local_err);
1563 return;
1564 }
1565
1566 arm_cpu_lpa2_finalize(cpu, &local_err);
1567 if (local_err != NULL) {
1568 error_propagate(errp, local_err);
1569 return;
1570 }
1571 }
1572 #endif
1573
1574 if (kvm_enabled()) {
1575 kvm_arm_steal_time_finalize(cpu, &local_err);
1576 if (local_err != NULL) {
1577 error_propagate(errp, local_err);
1578 return;
1579 }
1580 }
1581 }
1582
1583 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1584 {
1585 CPUState *cs = CPU(dev);
1586 ARMCPU *cpu = ARM_CPU(dev);
1587 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1588 CPUARMState *env = &cpu->env;
1589 int pagebits;
1590 Error *local_err = NULL;
1591 bool no_aa32 = false;
1592
1593 /* Use pc-relative instructions in system-mode */
1594 #ifndef CONFIG_USER_ONLY
1595 cs->tcg_cflags |= CF_PCREL;
1596 #endif
1597
1598 /* If we needed to query the host kernel for the CPU features
1599 * then it's possible that might have failed in the initfn, but
1600 * this is the first point where we can report it.
1601 */
1602 if (cpu->host_cpu_probe_failed) {
1603 if (!kvm_enabled() && !hvf_enabled()) {
1604 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1605 } else {
1606 error_setg(errp, "Failed to retrieve host CPU features");
1607 }
1608 return;
1609 }
1610
1611 #ifndef CONFIG_USER_ONLY
1612 /* The NVIC and M-profile CPU are two halves of a single piece of
1613 * hardware; trying to use one without the other is a command line
1614 * error and will result in segfaults if not caught here.
1615 */
1616 if (arm_feature(env, ARM_FEATURE_M)) {
1617 if (!env->nvic) {
1618 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1619 return;
1620 }
1621 } else {
1622 if (env->nvic) {
1623 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1624 return;
1625 }
1626 }
1627
1628 if (!tcg_enabled() && !qtest_enabled()) {
1629 /*
1630 * We assume that no accelerator except TCG (and the "not really an
1631 * accelerator" qtest) can handle these features, because Arm hardware
1632 * virtualization can't virtualize them.
1633 *
1634 * Catch all the cases which might cause us to create more than one
1635 * address space for the CPU (otherwise we will assert() later in
1636 * cpu_address_space_init()).
1637 */
1638 if (arm_feature(env, ARM_FEATURE_M)) {
1639 error_setg(errp,
1640 "Cannot enable %s when using an M-profile guest CPU",
1641 current_accel_name());
1642 return;
1643 }
1644 if (cpu->has_el3) {
1645 error_setg(errp,
1646 "Cannot enable %s when guest CPU has EL3 enabled",
1647 current_accel_name());
1648 return;
1649 }
1650 if (cpu->tag_memory) {
1651 error_setg(errp,
1652 "Cannot enable %s when guest CPUs has MTE enabled",
1653 current_accel_name());
1654 return;
1655 }
1656 }
1657
1658 {
1659 uint64_t scale;
1660
1661 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1662 if (!cpu->gt_cntfrq_hz) {
1663 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1664 cpu->gt_cntfrq_hz);
1665 return;
1666 }
1667 scale = gt_cntfrq_period_ns(cpu);
1668 } else {
1669 scale = GTIMER_SCALE;
1670 }
1671
1672 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1673 arm_gt_ptimer_cb, cpu);
1674 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1675 arm_gt_vtimer_cb, cpu);
1676 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1677 arm_gt_htimer_cb, cpu);
1678 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1679 arm_gt_stimer_cb, cpu);
1680 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1681 arm_gt_hvtimer_cb, cpu);
1682 }
1683 #endif
1684
1685 cpu_exec_realizefn(cs, &local_err);
1686 if (local_err != NULL) {
1687 error_propagate(errp, local_err);
1688 return;
1689 }
1690
1691 arm_cpu_finalize_features(cpu, &local_err);
1692 if (local_err != NULL) {
1693 error_propagate(errp, local_err);
1694 return;
1695 }
1696
1697 #ifdef CONFIG_USER_ONLY
1698 /*
1699 * User mode relies on IC IVAU instructions to catch modification of
1700 * dual-mapped code.
1701 *
1702 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1703 * IC IVAU even if the emulated processor does not normally require it.
1704 */
1705 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1706 #endif
1707
1708 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1709 cpu->has_vfp != cpu->has_neon) {
1710 /*
1711 * This is an architectural requirement for AArch64; AArch32 is
1712 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1713 */
1714 error_setg(errp,
1715 "AArch64 CPUs must have both VFP and Neon or neither");
1716 return;
1717 }
1718
1719 if (cpu->has_vfp_d32 != cpu->has_neon) {
1720 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1721 return;
1722 }
1723
1724 if (!cpu->has_vfp_d32) {
1725 uint32_t u;
1726
1727 u = cpu->isar.mvfr0;
1728 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1729 cpu->isar.mvfr0 = u;
1730 }
1731
1732 if (!cpu->has_vfp) {
1733 uint64_t t;
1734 uint32_t u;
1735
1736 t = cpu->isar.id_aa64isar1;
1737 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1738 cpu->isar.id_aa64isar1 = t;
1739
1740 t = cpu->isar.id_aa64pfr0;
1741 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1742 cpu->isar.id_aa64pfr0 = t;
1743
1744 u = cpu->isar.id_isar6;
1745 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1746 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1747 cpu->isar.id_isar6 = u;
1748
1749 u = cpu->isar.mvfr0;
1750 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1751 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1752 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1753 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1754 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1755 if (!arm_feature(env, ARM_FEATURE_M)) {
1756 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1757 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1758 }
1759 cpu->isar.mvfr0 = u;
1760
1761 u = cpu->isar.mvfr1;
1762 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1763 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1764 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1765 if (arm_feature(env, ARM_FEATURE_M)) {
1766 u = FIELD_DP32(u, MVFR1, FP16, 0);
1767 }
1768 cpu->isar.mvfr1 = u;
1769
1770 u = cpu->isar.mvfr2;
1771 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1772 cpu->isar.mvfr2 = u;
1773 }
1774
1775 if (!cpu->has_neon) {
1776 uint64_t t;
1777 uint32_t u;
1778
1779 unset_feature(env, ARM_FEATURE_NEON);
1780
1781 t = cpu->isar.id_aa64isar0;
1782 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1783 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1784 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1785 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1786 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1787 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1788 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1789 cpu->isar.id_aa64isar0 = t;
1790
1791 t = cpu->isar.id_aa64isar1;
1792 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1793 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1794 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1795 cpu->isar.id_aa64isar1 = t;
1796
1797 t = cpu->isar.id_aa64pfr0;
1798 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1799 cpu->isar.id_aa64pfr0 = t;
1800
1801 u = cpu->isar.id_isar5;
1802 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1803 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1804 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1805 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1806 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1807 cpu->isar.id_isar5 = u;
1808
1809 u = cpu->isar.id_isar6;
1810 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1811 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1812 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1813 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1814 cpu->isar.id_isar6 = u;
1815
1816 if (!arm_feature(env, ARM_FEATURE_M)) {
1817 u = cpu->isar.mvfr1;
1818 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1819 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1820 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1821 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1822 cpu->isar.mvfr1 = u;
1823
1824 u = cpu->isar.mvfr2;
1825 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1826 cpu->isar.mvfr2 = u;
1827 }
1828 }
1829
1830 if (!cpu->has_neon && !cpu->has_vfp) {
1831 uint64_t t;
1832 uint32_t u;
1833
1834 t = cpu->isar.id_aa64isar0;
1835 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1836 cpu->isar.id_aa64isar0 = t;
1837
1838 t = cpu->isar.id_aa64isar1;
1839 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1840 cpu->isar.id_aa64isar1 = t;
1841
1842 u = cpu->isar.mvfr0;
1843 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1844 cpu->isar.mvfr0 = u;
1845
1846 /* Despite the name, this field covers both VFP and Neon */
1847 u = cpu->isar.mvfr1;
1848 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1849 cpu->isar.mvfr1 = u;
1850 }
1851
1852 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1853 uint32_t u;
1854
1855 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1856
1857 u = cpu->isar.id_isar1;
1858 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1859 cpu->isar.id_isar1 = u;
1860
1861 u = cpu->isar.id_isar2;
1862 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1863 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1864 cpu->isar.id_isar2 = u;
1865
1866 u = cpu->isar.id_isar3;
1867 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1868 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1869 cpu->isar.id_isar3 = u;
1870 }
1871
1872 /* Some features automatically imply others: */
1873 if (arm_feature(env, ARM_FEATURE_V8)) {
1874 if (arm_feature(env, ARM_FEATURE_M)) {
1875 set_feature(env, ARM_FEATURE_V7);
1876 } else {
1877 set_feature(env, ARM_FEATURE_V7VE);
1878 }
1879 }
1880
1881 /*
1882 * There exist AArch64 cpus without AArch32 support. When KVM
1883 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1884 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1885 * As a general principle, we also do not make ID register
1886 * consistency checks anywhere unless using TCG, because only
1887 * for TCG would a consistency-check failure be a QEMU bug.
1888 */
1889 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1890 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1891 }
1892
1893 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1894 /* v7 Virtualization Extensions. In real hardware this implies
1895 * EL2 and also the presence of the Security Extensions.
1896 * For QEMU, for backwards-compatibility we implement some
1897 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1898 * include the various other features that V7VE implies.
1899 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1900 * Security Extensions is ARM_FEATURE_EL3.
1901 */
1902 assert(!tcg_enabled() || no_aa32 ||
1903 cpu_isar_feature(aa32_arm_div, cpu));
1904 set_feature(env, ARM_FEATURE_LPAE);
1905 set_feature(env, ARM_FEATURE_V7);
1906 }
1907 if (arm_feature(env, ARM_FEATURE_V7)) {
1908 set_feature(env, ARM_FEATURE_VAPA);
1909 set_feature(env, ARM_FEATURE_THUMB2);
1910 set_feature(env, ARM_FEATURE_MPIDR);
1911 if (!arm_feature(env, ARM_FEATURE_M)) {
1912 set_feature(env, ARM_FEATURE_V6K);
1913 } else {
1914 set_feature(env, ARM_FEATURE_V6);
1915 }
1916
1917 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1918 * non-EL3 configs. This is needed by some legacy boards.
1919 */
1920 set_feature(env, ARM_FEATURE_VBAR);
1921 }
1922 if (arm_feature(env, ARM_FEATURE_V6K)) {
1923 set_feature(env, ARM_FEATURE_V6);
1924 set_feature(env, ARM_FEATURE_MVFR);
1925 }
1926 if (arm_feature(env, ARM_FEATURE_V6)) {
1927 set_feature(env, ARM_FEATURE_V5);
1928 if (!arm_feature(env, ARM_FEATURE_M)) {
1929 assert(!tcg_enabled() || no_aa32 ||
1930 cpu_isar_feature(aa32_jazelle, cpu));
1931 set_feature(env, ARM_FEATURE_AUXCR);
1932 }
1933 }
1934 if (arm_feature(env, ARM_FEATURE_V5)) {
1935 set_feature(env, ARM_FEATURE_V4T);
1936 }
1937 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1938 set_feature(env, ARM_FEATURE_V7MP);
1939 }
1940 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1941 set_feature(env, ARM_FEATURE_CBAR);
1942 }
1943 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1944 !arm_feature(env, ARM_FEATURE_M)) {
1945 set_feature(env, ARM_FEATURE_THUMB_DSP);
1946 }
1947
1948 /*
1949 * We rely on no XScale CPU having VFP so we can use the same bits in the
1950 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1951 */
1952 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1953 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1954 !arm_feature(env, ARM_FEATURE_XSCALE));
1955
1956 if (arm_feature(env, ARM_FEATURE_V7) &&
1957 !arm_feature(env, ARM_FEATURE_M) &&
1958 !arm_feature(env, ARM_FEATURE_PMSA)) {
1959 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1960 * can use 4K pages.
1961 */
1962 pagebits = 12;
1963 } else {
1964 /* For CPUs which might have tiny 1K pages, or which have an
1965 * MPU and might have small region sizes, stick with 1K pages.
1966 */
1967 pagebits = 10;
1968 }
1969 if (!set_preferred_target_page_bits(pagebits)) {
1970 /* This can only ever happen for hotplugging a CPU, or if
1971 * the board code incorrectly creates a CPU which it has
1972 * promised via minimum_page_size that it will not.
1973 */
1974 error_setg(errp, "This CPU requires a smaller page size than the "
1975 "system is using");
1976 return;
1977 }
1978
1979 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1980 * We don't support setting cluster ID ([16..23]) (known as Aff2
1981 * in later ARM ARM versions), or any of the higher affinity level fields,
1982 * so these bits always RAZ.
1983 */
1984 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1985 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1986 ARM_DEFAULT_CPUS_PER_CLUSTER);
1987 }
1988
1989 if (cpu->reset_hivecs) {
1990 cpu->reset_sctlr |= (1 << 13);
1991 }
1992
1993 if (cpu->cfgend) {
1994 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1995 cpu->reset_sctlr |= SCTLR_EE;
1996 } else {
1997 cpu->reset_sctlr |= SCTLR_B;
1998 }
1999 }
2000
2001 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2002 /* If the has_el3 CPU property is disabled then we need to disable the
2003 * feature.
2004 */
2005 unset_feature(env, ARM_FEATURE_EL3);
2006
2007 /*
2008 * Disable the security extension feature bits in the processor
2009 * feature registers as well.
2010 */
2011 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2012 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2013 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2014 ID_AA64PFR0, EL3, 0);
2015
2016 /* Disable the realm management extension, which requires EL3. */
2017 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2018 ID_AA64PFR0, RME, 0);
2019 }
2020
2021 if (!cpu->has_el2) {
2022 unset_feature(env, ARM_FEATURE_EL2);
2023 }
2024
2025 if (!cpu->has_pmu) {
2026 unset_feature(env, ARM_FEATURE_PMU);
2027 }
2028 if (arm_feature(env, ARM_FEATURE_PMU)) {
2029 pmu_init(cpu);
2030
2031 if (!kvm_enabled()) {
2032 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2033 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2034 }
2035
2036 #ifndef CONFIG_USER_ONLY
2037 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2038 cpu);
2039 #endif
2040 } else {
2041 cpu->isar.id_aa64dfr0 =
2042 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2043 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2044 cpu->pmceid0 = 0;
2045 cpu->pmceid1 = 0;
2046 }
2047
2048 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2049 /*
2050 * Disable the hypervisor feature bits in the processor feature
2051 * registers if we don't have EL2.
2052 */
2053 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2054 ID_AA64PFR0, EL2, 0);
2055 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2056 ID_PFR1, VIRTUALIZATION, 0);
2057 }
2058
2059 #ifndef CONFIG_USER_ONLY
2060 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
2061 /*
2062 * Disable the MTE feature bits if we do not have tag-memory
2063 * provided by the machine.
2064 */
2065 cpu->isar.id_aa64pfr1 =
2066 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2067 }
2068 #endif
2069
2070 if (tcg_enabled()) {
2071 /*
2072 * Don't report some architectural features in the ID registers
2073 * where TCG does not yet implement it (not even a minimal
2074 * stub version). This avoids guests falling over when they
2075 * try to access the non-existent system registers for them.
2076 */
2077 /* FEAT_SPE (Statistical Profiling Extension) */
2078 cpu->isar.id_aa64dfr0 =
2079 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2080 /* FEAT_TRF (Self-hosted Trace Extension) */
2081 cpu->isar.id_aa64dfr0 =
2082 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2083 cpu->isar.id_dfr0 =
2084 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2085 /* Trace Macrocell system register access */
2086 cpu->isar.id_aa64dfr0 =
2087 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2088 cpu->isar.id_dfr0 =
2089 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2090 /* Memory mapped trace */
2091 cpu->isar.id_dfr0 =
2092 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2093 /* FEAT_AMU (Activity Monitors Extension) */
2094 cpu->isar.id_aa64pfr0 =
2095 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2096 cpu->isar.id_pfr0 =
2097 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2098 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2099 cpu->isar.id_aa64pfr0 =
2100 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2101 /* FEAT_NV (Nested Virtualization) */
2102 cpu->isar.id_aa64mmfr2 =
2103 FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2104 }
2105
2106 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2107 * to false or by setting pmsav7-dregion to 0.
2108 */
2109 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2110 cpu->has_mpu = false;
2111 cpu->pmsav7_dregion = 0;
2112 cpu->pmsav8r_hdregion = 0;
2113 }
2114
2115 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2116 arm_feature(env, ARM_FEATURE_V7)) {
2117 uint32_t nr = cpu->pmsav7_dregion;
2118
2119 if (nr > 0xff) {
2120 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2121 return;
2122 }
2123
2124 if (nr) {
2125 if (arm_feature(env, ARM_FEATURE_V8)) {
2126 /* PMSAv8 */
2127 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2128 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2129 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2130 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2131 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2132 }
2133 } else {
2134 env->pmsav7.drbar = g_new0(uint32_t, nr);
2135 env->pmsav7.drsr = g_new0(uint32_t, nr);
2136 env->pmsav7.dracr = g_new0(uint32_t, nr);
2137 }
2138 }
2139
2140 if (cpu->pmsav8r_hdregion > 0xff) {
2141 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2142 cpu->pmsav8r_hdregion);
2143 return;
2144 }
2145
2146 if (cpu->pmsav8r_hdregion) {
2147 env->pmsav8.hprbar = g_new0(uint32_t,
2148 cpu->pmsav8r_hdregion);
2149 env->pmsav8.hprlar = g_new0(uint32_t,
2150 cpu->pmsav8r_hdregion);
2151 }
2152 }
2153
2154 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2155 uint32_t nr = cpu->sau_sregion;
2156
2157 if (nr > 0xff) {
2158 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2159 return;
2160 }
2161
2162 if (nr) {
2163 env->sau.rbar = g_new0(uint32_t, nr);
2164 env->sau.rlar = g_new0(uint32_t, nr);
2165 }
2166 }
2167
2168 if (arm_feature(env, ARM_FEATURE_EL3)) {
2169 set_feature(env, ARM_FEATURE_VBAR);
2170 }
2171
2172 #ifndef CONFIG_USER_ONLY
2173 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2174 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2175 }
2176 #endif
2177
2178 register_cp_regs_for_features(cpu);
2179 arm_cpu_register_gdb_regs_for_features(cpu);
2180
2181 init_cpreg_list(cpu);
2182
2183 #ifndef CONFIG_USER_ONLY
2184 MachineState *ms = MACHINE(qdev_get_machine());
2185 unsigned int smp_cpus = ms->smp.cpus;
2186 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2187
2188 /*
2189 * We must set cs->num_ases to the final value before
2190 * the first call to cpu_address_space_init.
2191 */
2192 if (cpu->tag_memory != NULL) {
2193 cs->num_ases = 3 + has_secure;
2194 } else {
2195 cs->num_ases = 1 + has_secure;
2196 }
2197
2198 if (has_secure) {
2199 if (!cpu->secure_memory) {
2200 cpu->secure_memory = cs->memory;
2201 }
2202 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2203 cpu->secure_memory);
2204 }
2205
2206 if (cpu->tag_memory != NULL) {
2207 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2208 cpu->tag_memory);
2209 if (has_secure) {
2210 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2211 cpu->secure_tag_memory);
2212 }
2213 }
2214
2215 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2216
2217 /* No core_count specified, default to smp_cpus. */
2218 if (cpu->core_count == -1) {
2219 cpu->core_count = smp_cpus;
2220 }
2221 #endif
2222
2223 if (tcg_enabled()) {
2224 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2225
2226 /*
2227 * We only support DCZ blocklen that fits on one page.
2228 *
2229 * Architectually this is always true. However TARGET_PAGE_SIZE
2230 * is variable and, for compatibility with -machine virt-2.7,
2231 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2232 * But even then, while the largest architectural DCZ blocklen
2233 * is 2KiB, no cpu actually uses such a large blocklen.
2234 */
2235 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2236
2237 /*
2238 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2239 * both nibbles of each byte storing tag data may be written at once.
2240 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2241 */
2242 if (cpu_isar_feature(aa64_mte, cpu)) {
2243 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2244 }
2245 }
2246
2247 qemu_init_vcpu(cs);
2248 cpu_reset(cs);
2249
2250 acc->parent_realize(dev, errp);
2251 }
2252
2253 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2254 {
2255 ObjectClass *oc;
2256 char *typename;
2257 char **cpuname;
2258 const char *cpunamestr;
2259
2260 cpuname = g_strsplit(cpu_model, ",", 1);
2261 cpunamestr = cpuname[0];
2262 #ifdef CONFIG_USER_ONLY
2263 /* For backwards compatibility usermode emulation allows "-cpu any",
2264 * which has the same semantics as "-cpu max".
2265 */
2266 if (!strcmp(cpunamestr, "any")) {
2267 cpunamestr = "max";
2268 }
2269 #endif
2270 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2271 oc = object_class_by_name(typename);
2272 g_strfreev(cpuname);
2273 g_free(typename);
2274 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2275 object_class_is_abstract(oc)) {
2276 return NULL;
2277 }
2278 return oc;
2279 }
2280
2281 static Property arm_cpu_properties[] = {
2282 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2283 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2284 mp_affinity, ARM64_AFFINITY_INVALID),
2285 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2286 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2287 DEFINE_PROP_END_OF_LIST()
2288 };
2289
2290 static gchar *arm_gdb_arch_name(CPUState *cs)
2291 {
2292 ARMCPU *cpu = ARM_CPU(cs);
2293 CPUARMState *env = &cpu->env;
2294
2295 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2296 return g_strdup("iwmmxt");
2297 }
2298 return g_strdup("arm");
2299 }
2300
2301 #ifndef CONFIG_USER_ONLY
2302 #include "hw/core/sysemu-cpu-ops.h"
2303
2304 static const struct SysemuCPUOps arm_sysemu_ops = {
2305 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2306 .asidx_from_attrs = arm_asidx_from_attrs,
2307 .write_elf32_note = arm_cpu_write_elf32_note,
2308 .write_elf64_note = arm_cpu_write_elf64_note,
2309 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2310 .legacy_vmsd = &vmstate_arm_cpu,
2311 };
2312 #endif
2313
2314 #ifdef CONFIG_TCG
2315 static const struct TCGCPUOps arm_tcg_ops = {
2316 .initialize = arm_translate_init,
2317 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2318 .debug_excp_handler = arm_debug_excp_handler,
2319 .restore_state_to_opc = arm_restore_state_to_opc,
2320
2321 #ifdef CONFIG_USER_ONLY
2322 .record_sigsegv = arm_cpu_record_sigsegv,
2323 .record_sigbus = arm_cpu_record_sigbus,
2324 #else
2325 .tlb_fill = arm_cpu_tlb_fill,
2326 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2327 .do_interrupt = arm_cpu_do_interrupt,
2328 .do_transaction_failed = arm_cpu_do_transaction_failed,
2329 .do_unaligned_access = arm_cpu_do_unaligned_access,
2330 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2331 .debug_check_watchpoint = arm_debug_check_watchpoint,
2332 .debug_check_breakpoint = arm_debug_check_breakpoint,
2333 #endif /* !CONFIG_USER_ONLY */
2334 };
2335 #endif /* CONFIG_TCG */
2336
2337 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2338 {
2339 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2340 CPUClass *cc = CPU_CLASS(acc);
2341 DeviceClass *dc = DEVICE_CLASS(oc);
2342 ResettableClass *rc = RESETTABLE_CLASS(oc);
2343
2344 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2345 &acc->parent_realize);
2346
2347 device_class_set_props(dc, arm_cpu_properties);
2348
2349 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2350 &acc->parent_phases);
2351
2352 cc->class_by_name = arm_cpu_class_by_name;
2353 cc->has_work = arm_cpu_has_work;
2354 cc->dump_state = arm_cpu_dump_state;
2355 cc->set_pc = arm_cpu_set_pc;
2356 cc->get_pc = arm_cpu_get_pc;
2357 cc->gdb_read_register = arm_cpu_gdb_read_register;
2358 cc->gdb_write_register = arm_cpu_gdb_write_register;
2359 #ifndef CONFIG_USER_ONLY
2360 cc->sysemu_ops = &arm_sysemu_ops;
2361 #endif
2362 cc->gdb_num_core_regs = 26;
2363 cc->gdb_core_xml_file = "arm-core.xml";
2364 cc->gdb_arch_name = arm_gdb_arch_name;
2365 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2366 cc->gdb_stop_before_watchpoint = true;
2367 cc->disas_set_info = arm_disas_set_info;
2368
2369 #ifdef CONFIG_TCG
2370 cc->tcg_ops = &arm_tcg_ops;
2371 #endif /* CONFIG_TCG */
2372 }
2373
2374 static void arm_cpu_instance_init(Object *obj)
2375 {
2376 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2377
2378 acc->info->initfn(obj);
2379 arm_cpu_post_init(obj);
2380 }
2381
2382 static void cpu_register_class_init(ObjectClass *oc, void *data)
2383 {
2384 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2385
2386 acc->info = data;
2387 }
2388
2389 void arm_cpu_register(const ARMCPUInfo *info)
2390 {
2391 TypeInfo type_info = {
2392 .parent = TYPE_ARM_CPU,
2393 .instance_size = sizeof(ARMCPU),
2394 .instance_align = __alignof__(ARMCPU),
2395 .instance_init = arm_cpu_instance_init,
2396 .class_size = sizeof(ARMCPUClass),
2397 .class_init = info->class_init ?: cpu_register_class_init,
2398 .class_data = (void *)info,
2399 };
2400
2401 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2402 type_register(&type_info);
2403 g_free((void *)type_info.name);
2404 }
2405
2406 static const TypeInfo arm_cpu_type_info = {
2407 .name = TYPE_ARM_CPU,
2408 .parent = TYPE_CPU,
2409 .instance_size = sizeof(ARMCPU),
2410 .instance_align = __alignof__(ARMCPU),
2411 .instance_init = arm_cpu_initfn,
2412 .instance_finalize = arm_cpu_finalizefn,
2413 .abstract = true,
2414 .class_size = sizeof(ARMCPUClass),
2415 .class_init = arm_cpu_class_init,
2416 };
2417
2418 static void arm_cpu_register_types(void)
2419 {
2420 type_register_static(&arm_cpu_type_info);
2421 }
2422
2423 type_init(arm_cpu_register_types)