]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
target/arm: Define arm_cpu_do_unaligned_access for user-only
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55 }
56
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
71 }
72
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
82 }
83
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86 {
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
97 {
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135 }
136
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138 {
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156 }
157
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160 CPUState *s = CPU(dev);
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
164
165 acc->parent_reset(dev);
166
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
179
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 }
183
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* and to the FP/Neon instructions */
195 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196 /* and to the SVE instructions */
197 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198 /* with reasonable vector length */
199 if (cpu_isar_feature(aa64_sve, cpu)) {
200 env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
201 }
202 /*
203 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
204 * turning on both here will produce smaller code and otherwise
205 * make no difference to the user-level emulation.
206 */
207 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
208 #else
209 /* Reset into the highest available EL */
210 if (arm_feature(env, ARM_FEATURE_EL3)) {
211 env->pstate = PSTATE_MODE_EL3h;
212 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
213 env->pstate = PSTATE_MODE_EL2h;
214 } else {
215 env->pstate = PSTATE_MODE_EL1h;
216 }
217 env->pc = cpu->rvbar;
218 #endif
219 } else {
220 #if defined(CONFIG_USER_ONLY)
221 /* Userspace expects access to cp10 and cp11 for FP/Neon */
222 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
223 #endif
224 }
225
226 #if defined(CONFIG_USER_ONLY)
227 env->uncached_cpsr = ARM_CPU_MODE_USR;
228 /* For user mode we must enable access to coprocessors */
229 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->cp15.c15_cpar = 3;
232 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
233 env->cp15.c15_cpar = 1;
234 }
235 #else
236
237 /*
238 * If the highest available EL is EL2, AArch32 will start in Hyp
239 * mode; otherwise it starts in SVC. Note that if we start in
240 * AArch64 then these values in the uncached_cpsr will be ignored.
241 */
242 if (arm_feature(env, ARM_FEATURE_EL2) &&
243 !arm_feature(env, ARM_FEATURE_EL3)) {
244 env->uncached_cpsr = ARM_CPU_MODE_HYP;
245 } else {
246 env->uncached_cpsr = ARM_CPU_MODE_SVC;
247 }
248 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
249
250 if (arm_feature(env, ARM_FEATURE_M)) {
251 uint32_t initial_msp; /* Loaded from 0x0 */
252 uint32_t initial_pc; /* Loaded from 0x4 */
253 uint8_t *rom;
254 uint32_t vecbase;
255
256 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
257 env->v7m.secure = true;
258 } else {
259 /* This bit resets to 0 if security is supported, but 1 if
260 * it is not. The bit is not present in v7M, but we set it
261 * here so we can avoid having to make checks on it conditional
262 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
263 */
264 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
265 /*
266 * Set NSACR to indicate "NS access permitted to everything";
267 * this avoids having to have all the tests of it being
268 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
269 * v8.1M the guest-visible value of NSACR in a CPU without the
270 * Security Extension is 0xcff.
271 */
272 env->v7m.nsacr = 0xcff;
273 }
274
275 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
276 * that it resets to 1, so QEMU always does that rather than making
277 * it dependent on CPU model. In v8M it is RES1.
278 */
279 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
280 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
281 if (arm_feature(env, ARM_FEATURE_V8)) {
282 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
283 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
284 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
285 }
286 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
287 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
288 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
289 }
290
291 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
292 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
293 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
294 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
295 }
296 /* Unlike A/R profile, M profile defines the reset LR value */
297 env->regs[14] = 0xffffffff;
298
299 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
300
301 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
302 vecbase = env->v7m.vecbase[env->v7m.secure];
303 rom = rom_ptr(vecbase, 8);
304 if (rom) {
305 /* Address zero is covered by ROM which hasn't yet been
306 * copied into physical memory.
307 */
308 initial_msp = ldl_p(rom);
309 initial_pc = ldl_p(rom + 4);
310 } else {
311 /* Address zero not covered by a ROM blob, or the ROM blob
312 * is in non-modifiable memory and this is a second reset after
313 * it got copied into memory. In the latter case, rom_ptr
314 * will return a NULL pointer and we should use ldl_phys instead.
315 */
316 initial_msp = ldl_phys(s->as, vecbase);
317 initial_pc = ldl_phys(s->as, vecbase + 4);
318 }
319
320 env->regs[13] = initial_msp & 0xFFFFFFFC;
321 env->regs[15] = initial_pc & ~1;
322 env->thumb = initial_pc & 1;
323 }
324
325 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
326 * executing as AArch32 then check if highvecs are enabled and
327 * adjust the PC accordingly.
328 */
329 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
330 env->regs[15] = 0xFFFF0000;
331 }
332
333 /* M profile requires that reset clears the exclusive monitor;
334 * A profile does not, but clearing it makes more sense than having it
335 * set with an exclusive access on address zero.
336 */
337 arm_clear_exclusive(env);
338
339 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
340 #endif
341
342 if (arm_feature(env, ARM_FEATURE_PMSA)) {
343 if (cpu->pmsav7_dregion > 0) {
344 if (arm_feature(env, ARM_FEATURE_V8)) {
345 memset(env->pmsav8.rbar[M_REG_NS], 0,
346 sizeof(*env->pmsav8.rbar[M_REG_NS])
347 * cpu->pmsav7_dregion);
348 memset(env->pmsav8.rlar[M_REG_NS], 0,
349 sizeof(*env->pmsav8.rlar[M_REG_NS])
350 * cpu->pmsav7_dregion);
351 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
352 memset(env->pmsav8.rbar[M_REG_S], 0,
353 sizeof(*env->pmsav8.rbar[M_REG_S])
354 * cpu->pmsav7_dregion);
355 memset(env->pmsav8.rlar[M_REG_S], 0,
356 sizeof(*env->pmsav8.rlar[M_REG_S])
357 * cpu->pmsav7_dregion);
358 }
359 } else if (arm_feature(env, ARM_FEATURE_V7)) {
360 memset(env->pmsav7.drbar, 0,
361 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
362 memset(env->pmsav7.drsr, 0,
363 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
364 memset(env->pmsav7.dracr, 0,
365 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
366 }
367 }
368 env->pmsav7.rnr[M_REG_NS] = 0;
369 env->pmsav7.rnr[M_REG_S] = 0;
370 env->pmsav8.mair0[M_REG_NS] = 0;
371 env->pmsav8.mair0[M_REG_S] = 0;
372 env->pmsav8.mair1[M_REG_NS] = 0;
373 env->pmsav8.mair1[M_REG_S] = 0;
374 }
375
376 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
377 if (cpu->sau_sregion > 0) {
378 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
379 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
380 }
381 env->sau.rnr = 0;
382 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
383 * the Cortex-M33 does.
384 */
385 env->sau.ctrl = 0;
386 }
387
388 set_flush_to_zero(1, &env->vfp.standard_fp_status);
389 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
390 set_default_nan_mode(1, &env->vfp.standard_fp_status);
391 set_float_detect_tininess(float_tininess_before_rounding,
392 &env->vfp.fp_status);
393 set_float_detect_tininess(float_tininess_before_rounding,
394 &env->vfp.standard_fp_status);
395 set_float_detect_tininess(float_tininess_before_rounding,
396 &env->vfp.fp_status_f16);
397 #ifndef CONFIG_USER_ONLY
398 if (kvm_enabled()) {
399 kvm_arm_reset_vcpu(cpu);
400 }
401 #endif
402
403 hw_breakpoint_update_all(cpu);
404 hw_watchpoint_update_all(cpu);
405 arm_rebuild_hflags(env);
406 }
407
408 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
409 unsigned int target_el,
410 unsigned int cur_el, bool secure,
411 uint64_t hcr_el2)
412 {
413 CPUARMState *env = cs->env_ptr;
414 bool pstate_unmasked;
415 bool unmasked = false;
416
417 /*
418 * Don't take exceptions if they target a lower EL.
419 * This check should catch any exceptions that would not be taken
420 * but left pending.
421 */
422 if (cur_el > target_el) {
423 return false;
424 }
425
426 switch (excp_idx) {
427 case EXCP_FIQ:
428 pstate_unmasked = !(env->daif & PSTATE_F);
429 break;
430
431 case EXCP_IRQ:
432 pstate_unmasked = !(env->daif & PSTATE_I);
433 break;
434
435 case EXCP_VFIQ:
436 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
437 /* VFIQs are only taken when hypervized and non-secure. */
438 return false;
439 }
440 return !(env->daif & PSTATE_F);
441 case EXCP_VIRQ:
442 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
443 /* VIRQs are only taken when hypervized and non-secure. */
444 return false;
445 }
446 return !(env->daif & PSTATE_I);
447 default:
448 g_assert_not_reached();
449 }
450
451 /*
452 * Use the target EL, current execution state and SCR/HCR settings to
453 * determine whether the corresponding CPSR bit is used to mask the
454 * interrupt.
455 */
456 if ((target_el > cur_el) && (target_el != 1)) {
457 /* Exceptions targeting a higher EL may not be maskable */
458 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
459 /*
460 * 64-bit masking rules are simple: exceptions to EL3
461 * can't be masked, and exceptions to EL2 can only be
462 * masked from Secure state. The HCR and SCR settings
463 * don't affect the masking logic, only the interrupt routing.
464 */
465 if (target_el == 3 || !secure) {
466 unmasked = true;
467 }
468 } else {
469 /*
470 * The old 32-bit-only environment has a more complicated
471 * masking setup. HCR and SCR bits not only affect interrupt
472 * routing but also change the behaviour of masking.
473 */
474 bool hcr, scr;
475
476 switch (excp_idx) {
477 case EXCP_FIQ:
478 /*
479 * If FIQs are routed to EL3 or EL2 then there are cases where
480 * we override the CPSR.F in determining if the exception is
481 * masked or not. If neither of these are set then we fall back
482 * to the CPSR.F setting otherwise we further assess the state
483 * below.
484 */
485 hcr = hcr_el2 & HCR_FMO;
486 scr = (env->cp15.scr_el3 & SCR_FIQ);
487
488 /*
489 * When EL3 is 32-bit, the SCR.FW bit controls whether the
490 * CPSR.F bit masks FIQ interrupts when taken in non-secure
491 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
492 * when non-secure but only when FIQs are only routed to EL3.
493 */
494 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
495 break;
496 case EXCP_IRQ:
497 /*
498 * When EL3 execution state is 32-bit, if HCR.IMO is set then
499 * we may override the CPSR.I masking when in non-secure state.
500 * The SCR.IRQ setting has already been taken into consideration
501 * when setting the target EL, so it does not have a further
502 * affect here.
503 */
504 hcr = hcr_el2 & HCR_IMO;
505 scr = false;
506 break;
507 default:
508 g_assert_not_reached();
509 }
510
511 if ((scr || hcr) && !secure) {
512 unmasked = true;
513 }
514 }
515 }
516
517 /*
518 * The PSTATE bits only mask the interrupt if we have not overriden the
519 * ability above.
520 */
521 return unmasked || pstate_unmasked;
522 }
523
524 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
525 {
526 CPUClass *cc = CPU_GET_CLASS(cs);
527 CPUARMState *env = cs->env_ptr;
528 uint32_t cur_el = arm_current_el(env);
529 bool secure = arm_is_secure(env);
530 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
531 uint32_t target_el;
532 uint32_t excp_idx;
533
534 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
535
536 if (interrupt_request & CPU_INTERRUPT_FIQ) {
537 excp_idx = EXCP_FIQ;
538 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
539 if (arm_excp_unmasked(cs, excp_idx, target_el,
540 cur_el, secure, hcr_el2)) {
541 goto found;
542 }
543 }
544 if (interrupt_request & CPU_INTERRUPT_HARD) {
545 excp_idx = EXCP_IRQ;
546 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
547 if (arm_excp_unmasked(cs, excp_idx, target_el,
548 cur_el, secure, hcr_el2)) {
549 goto found;
550 }
551 }
552 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
553 excp_idx = EXCP_VIRQ;
554 target_el = 1;
555 if (arm_excp_unmasked(cs, excp_idx, target_el,
556 cur_el, secure, hcr_el2)) {
557 goto found;
558 }
559 }
560 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
561 excp_idx = EXCP_VFIQ;
562 target_el = 1;
563 if (arm_excp_unmasked(cs, excp_idx, target_el,
564 cur_el, secure, hcr_el2)) {
565 goto found;
566 }
567 }
568 return false;
569
570 found:
571 cs->exception_index = excp_idx;
572 env->exception.target_el = target_el;
573 cc->do_interrupt(cs);
574 return true;
575 }
576
577 void arm_cpu_update_virq(ARMCPU *cpu)
578 {
579 /*
580 * Update the interrupt level for VIRQ, which is the logical OR of
581 * the HCR_EL2.VI bit and the input line level from the GIC.
582 */
583 CPUARMState *env = &cpu->env;
584 CPUState *cs = CPU(cpu);
585
586 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
587 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
588
589 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
590 if (new_state) {
591 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
592 } else {
593 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
594 }
595 }
596 }
597
598 void arm_cpu_update_vfiq(ARMCPU *cpu)
599 {
600 /*
601 * Update the interrupt level for VFIQ, which is the logical OR of
602 * the HCR_EL2.VF bit and the input line level from the GIC.
603 */
604 CPUARMState *env = &cpu->env;
605 CPUState *cs = CPU(cpu);
606
607 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
608 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
609
610 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
611 if (new_state) {
612 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
613 } else {
614 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
615 }
616 }
617 }
618
619 #ifndef CONFIG_USER_ONLY
620 static void arm_cpu_set_irq(void *opaque, int irq, int level)
621 {
622 ARMCPU *cpu = opaque;
623 CPUARMState *env = &cpu->env;
624 CPUState *cs = CPU(cpu);
625 static const int mask[] = {
626 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
627 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
628 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
629 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
630 };
631
632 if (level) {
633 env->irq_line_state |= mask[irq];
634 } else {
635 env->irq_line_state &= ~mask[irq];
636 }
637
638 switch (irq) {
639 case ARM_CPU_VIRQ:
640 assert(arm_feature(env, ARM_FEATURE_EL2));
641 arm_cpu_update_virq(cpu);
642 break;
643 case ARM_CPU_VFIQ:
644 assert(arm_feature(env, ARM_FEATURE_EL2));
645 arm_cpu_update_vfiq(cpu);
646 break;
647 case ARM_CPU_IRQ:
648 case ARM_CPU_FIQ:
649 if (level) {
650 cpu_interrupt(cs, mask[irq]);
651 } else {
652 cpu_reset_interrupt(cs, mask[irq]);
653 }
654 break;
655 default:
656 g_assert_not_reached();
657 }
658 }
659
660 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
661 {
662 #ifdef CONFIG_KVM
663 ARMCPU *cpu = opaque;
664 CPUARMState *env = &cpu->env;
665 CPUState *cs = CPU(cpu);
666 uint32_t linestate_bit;
667 int irq_id;
668
669 switch (irq) {
670 case ARM_CPU_IRQ:
671 irq_id = KVM_ARM_IRQ_CPU_IRQ;
672 linestate_bit = CPU_INTERRUPT_HARD;
673 break;
674 case ARM_CPU_FIQ:
675 irq_id = KVM_ARM_IRQ_CPU_FIQ;
676 linestate_bit = CPU_INTERRUPT_FIQ;
677 break;
678 default:
679 g_assert_not_reached();
680 }
681
682 if (level) {
683 env->irq_line_state |= linestate_bit;
684 } else {
685 env->irq_line_state &= ~linestate_bit;
686 }
687 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
688 #endif
689 }
690
691 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
692 {
693 ARMCPU *cpu = ARM_CPU(cs);
694 CPUARMState *env = &cpu->env;
695
696 cpu_synchronize_state(cs);
697 return arm_cpu_data_is_big_endian(env);
698 }
699
700 #endif
701
702 static int
703 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
704 {
705 return print_insn_arm(pc | 1, info);
706 }
707
708 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
709 {
710 ARMCPU *ac = ARM_CPU(cpu);
711 CPUARMState *env = &ac->env;
712 bool sctlr_b;
713
714 if (is_a64(env)) {
715 /* We might not be compiled with the A64 disassembler
716 * because it needs a C++ compiler. Leave print_insn
717 * unset in this case to use the caller default behaviour.
718 */
719 #if defined(CONFIG_ARM_A64_DIS)
720 info->print_insn = print_insn_arm_a64;
721 #endif
722 info->cap_arch = CS_ARCH_ARM64;
723 info->cap_insn_unit = 4;
724 info->cap_insn_split = 4;
725 } else {
726 int cap_mode;
727 if (env->thumb) {
728 info->print_insn = print_insn_thumb1;
729 info->cap_insn_unit = 2;
730 info->cap_insn_split = 4;
731 cap_mode = CS_MODE_THUMB;
732 } else {
733 info->print_insn = print_insn_arm;
734 info->cap_insn_unit = 4;
735 info->cap_insn_split = 4;
736 cap_mode = CS_MODE_ARM;
737 }
738 if (arm_feature(env, ARM_FEATURE_V8)) {
739 cap_mode |= CS_MODE_V8;
740 }
741 if (arm_feature(env, ARM_FEATURE_M)) {
742 cap_mode |= CS_MODE_MCLASS;
743 }
744 info->cap_arch = CS_ARCH_ARM;
745 info->cap_mode = cap_mode;
746 }
747
748 sctlr_b = arm_sctlr_b(env);
749 if (bswap_code(sctlr_b)) {
750 #ifdef TARGET_WORDS_BIGENDIAN
751 info->endian = BFD_ENDIAN_LITTLE;
752 #else
753 info->endian = BFD_ENDIAN_BIG;
754 #endif
755 }
756 info->flags &= ~INSN_ARM_BE32;
757 #ifndef CONFIG_USER_ONLY
758 if (sctlr_b) {
759 info->flags |= INSN_ARM_BE32;
760 }
761 #endif
762 }
763
764 #ifdef TARGET_AARCH64
765
766 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
767 {
768 ARMCPU *cpu = ARM_CPU(cs);
769 CPUARMState *env = &cpu->env;
770 uint32_t psr = pstate_read(env);
771 int i;
772 int el = arm_current_el(env);
773 const char *ns_status;
774
775 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
776 for (i = 0; i < 32; i++) {
777 if (i == 31) {
778 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
779 } else {
780 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
781 (i + 2) % 3 ? " " : "\n");
782 }
783 }
784
785 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
786 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
787 } else {
788 ns_status = "";
789 }
790 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
791 psr,
792 psr & PSTATE_N ? 'N' : '-',
793 psr & PSTATE_Z ? 'Z' : '-',
794 psr & PSTATE_C ? 'C' : '-',
795 psr & PSTATE_V ? 'V' : '-',
796 ns_status,
797 el,
798 psr & PSTATE_SP ? 'h' : 't');
799
800 if (cpu_isar_feature(aa64_bti, cpu)) {
801 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
802 }
803 if (!(flags & CPU_DUMP_FPU)) {
804 qemu_fprintf(f, "\n");
805 return;
806 }
807 if (fp_exception_el(env, el) != 0) {
808 qemu_fprintf(f, " FPU disabled\n");
809 return;
810 }
811 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
812 vfp_get_fpcr(env), vfp_get_fpsr(env));
813
814 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
815 int j, zcr_len = sve_zcr_len_for_el(env, el);
816
817 for (i = 0; i <= FFR_PRED_NUM; i++) {
818 bool eol;
819 if (i == FFR_PRED_NUM) {
820 qemu_fprintf(f, "FFR=");
821 /* It's last, so end the line. */
822 eol = true;
823 } else {
824 qemu_fprintf(f, "P%02d=", i);
825 switch (zcr_len) {
826 case 0:
827 eol = i % 8 == 7;
828 break;
829 case 1:
830 eol = i % 6 == 5;
831 break;
832 case 2:
833 case 3:
834 eol = i % 3 == 2;
835 break;
836 default:
837 /* More than one quadword per predicate. */
838 eol = true;
839 break;
840 }
841 }
842 for (j = zcr_len / 4; j >= 0; j--) {
843 int digits;
844 if (j * 4 + 4 <= zcr_len + 1) {
845 digits = 16;
846 } else {
847 digits = (zcr_len % 4 + 1) * 4;
848 }
849 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
850 env->vfp.pregs[i].p[j],
851 j ? ":" : eol ? "\n" : " ");
852 }
853 }
854
855 for (i = 0; i < 32; i++) {
856 if (zcr_len == 0) {
857 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
858 i, env->vfp.zregs[i].d[1],
859 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
860 } else if (zcr_len == 1) {
861 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
862 ":%016" PRIx64 ":%016" PRIx64 "\n",
863 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
864 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
865 } else {
866 for (j = zcr_len; j >= 0; j--) {
867 bool odd = (zcr_len - j) % 2 != 0;
868 if (j == zcr_len) {
869 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
870 } else if (!odd) {
871 if (j > 0) {
872 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
873 } else {
874 qemu_fprintf(f, " [%x]=", j);
875 }
876 }
877 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
878 env->vfp.zregs[i].d[j * 2 + 1],
879 env->vfp.zregs[i].d[j * 2],
880 odd || j == 0 ? "\n" : ":");
881 }
882 }
883 }
884 } else {
885 for (i = 0; i < 32; i++) {
886 uint64_t *q = aa64_vfp_qreg(env, i);
887 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
888 i, q[1], q[0], (i & 1 ? "\n" : " "));
889 }
890 }
891 }
892
893 #else
894
895 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
896 {
897 g_assert_not_reached();
898 }
899
900 #endif
901
902 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
903 {
904 ARMCPU *cpu = ARM_CPU(cs);
905 CPUARMState *env = &cpu->env;
906 int i;
907
908 if (is_a64(env)) {
909 aarch64_cpu_dump_state(cs, f, flags);
910 return;
911 }
912
913 for (i = 0; i < 16; i++) {
914 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
915 if ((i % 4) == 3) {
916 qemu_fprintf(f, "\n");
917 } else {
918 qemu_fprintf(f, " ");
919 }
920 }
921
922 if (arm_feature(env, ARM_FEATURE_M)) {
923 uint32_t xpsr = xpsr_read(env);
924 const char *mode;
925 const char *ns_status = "";
926
927 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
928 ns_status = env->v7m.secure ? "S " : "NS ";
929 }
930
931 if (xpsr & XPSR_EXCP) {
932 mode = "handler";
933 } else {
934 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
935 mode = "unpriv-thread";
936 } else {
937 mode = "priv-thread";
938 }
939 }
940
941 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
942 xpsr,
943 xpsr & XPSR_N ? 'N' : '-',
944 xpsr & XPSR_Z ? 'Z' : '-',
945 xpsr & XPSR_C ? 'C' : '-',
946 xpsr & XPSR_V ? 'V' : '-',
947 xpsr & XPSR_T ? 'T' : 'A',
948 ns_status,
949 mode);
950 } else {
951 uint32_t psr = cpsr_read(env);
952 const char *ns_status = "";
953
954 if (arm_feature(env, ARM_FEATURE_EL3) &&
955 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
956 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
957 }
958
959 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
960 psr,
961 psr & CPSR_N ? 'N' : '-',
962 psr & CPSR_Z ? 'Z' : '-',
963 psr & CPSR_C ? 'C' : '-',
964 psr & CPSR_V ? 'V' : '-',
965 psr & CPSR_T ? 'T' : 'A',
966 ns_status,
967 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
968 }
969
970 if (flags & CPU_DUMP_FPU) {
971 int numvfpregs = 0;
972 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
973 numvfpregs = 32;
974 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
975 numvfpregs = 16;
976 }
977 for (i = 0; i < numvfpregs; i++) {
978 uint64_t v = *aa32_vfp_dreg(env, i);
979 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
980 i * 2, (uint32_t)v,
981 i * 2 + 1, (uint32_t)(v >> 32),
982 i, v);
983 }
984 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
985 }
986 }
987
988 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
989 {
990 uint32_t Aff1 = idx / clustersz;
991 uint32_t Aff0 = idx % clustersz;
992 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
993 }
994
995 static void cpreg_hashtable_data_destroy(gpointer data)
996 {
997 /*
998 * Destroy function for cpu->cp_regs hashtable data entries.
999 * We must free the name string because it was g_strdup()ed in
1000 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1001 * from r->name because we know we definitely allocated it.
1002 */
1003 ARMCPRegInfo *r = data;
1004
1005 g_free((void *)r->name);
1006 g_free(r);
1007 }
1008
1009 static void arm_cpu_initfn(Object *obj)
1010 {
1011 ARMCPU *cpu = ARM_CPU(obj);
1012
1013 cpu_set_cpustate_pointers(cpu);
1014 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1015 g_free, cpreg_hashtable_data_destroy);
1016
1017 QLIST_INIT(&cpu->pre_el_change_hooks);
1018 QLIST_INIT(&cpu->el_change_hooks);
1019
1020 #ifndef CONFIG_USER_ONLY
1021 /* Our inbound IRQ and FIQ lines */
1022 if (kvm_enabled()) {
1023 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1024 * the same interface as non-KVM CPUs.
1025 */
1026 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1027 } else {
1028 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1029 }
1030
1031 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1032 ARRAY_SIZE(cpu->gt_timer_outputs));
1033
1034 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1035 "gicv3-maintenance-interrupt", 1);
1036 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1037 "pmu-interrupt", 1);
1038 #endif
1039
1040 /* DTB consumers generally don't in fact care what the 'compatible'
1041 * string is, so always provide some string and trust that a hypothetical
1042 * picky DTB consumer will also provide a helpful error message.
1043 */
1044 cpu->dtb_compatible = "qemu,unknown";
1045 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1046 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1047
1048 if (tcg_enabled()) {
1049 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1050 }
1051 }
1052
1053 static Property arm_cpu_gt_cntfrq_property =
1054 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1055 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1056
1057 static Property arm_cpu_reset_cbar_property =
1058 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1059
1060 static Property arm_cpu_reset_hivecs_property =
1061 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1062
1063 static Property arm_cpu_rvbar_property =
1064 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1065
1066 #ifndef CONFIG_USER_ONLY
1067 static Property arm_cpu_has_el2_property =
1068 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1069
1070 static Property arm_cpu_has_el3_property =
1071 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1072 #endif
1073
1074 static Property arm_cpu_cfgend_property =
1075 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1076
1077 static Property arm_cpu_has_vfp_property =
1078 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1079
1080 static Property arm_cpu_has_neon_property =
1081 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1082
1083 static Property arm_cpu_has_dsp_property =
1084 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1085
1086 static Property arm_cpu_has_mpu_property =
1087 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1088
1089 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1090 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1091 * the right value for that particular CPU type, and we don't want
1092 * to override that with an incorrect constant value.
1093 */
1094 static Property arm_cpu_pmsav7_dregion_property =
1095 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1096 pmsav7_dregion,
1097 qdev_prop_uint32, uint32_t);
1098
1099 static bool arm_get_pmu(Object *obj, Error **errp)
1100 {
1101 ARMCPU *cpu = ARM_CPU(obj);
1102
1103 return cpu->has_pmu;
1104 }
1105
1106 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1107 {
1108 ARMCPU *cpu = ARM_CPU(obj);
1109
1110 if (value) {
1111 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1112 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1113 return;
1114 }
1115 set_feature(&cpu->env, ARM_FEATURE_PMU);
1116 } else {
1117 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1118 }
1119 cpu->has_pmu = value;
1120 }
1121
1122 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1123 {
1124 /*
1125 * The exact approach to calculating guest ticks is:
1126 *
1127 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1128 * NANOSECONDS_PER_SECOND);
1129 *
1130 * We don't do that. Rather we intentionally use integer division
1131 * truncation below and in the caller for the conversion of host monotonic
1132 * time to guest ticks to provide the exact inverse for the semantics of
1133 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1134 * it loses precision when representing frequencies where
1135 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1136 * provide an exact inverse leads to scheduling timers with negative
1137 * periods, which in turn leads to sticky behaviour in the guest.
1138 *
1139 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1140 * cannot become zero.
1141 */
1142 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1143 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1144 }
1145
1146 void arm_cpu_post_init(Object *obj)
1147 {
1148 ARMCPU *cpu = ARM_CPU(obj);
1149
1150 /* M profile implies PMSA. We have to do this here rather than
1151 * in realize with the other feature-implication checks because
1152 * we look at the PMSA bit to see if we should add some properties.
1153 */
1154 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1155 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1156 }
1157
1158 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1159 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1160 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1161 }
1162
1163 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1164 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1165 }
1166
1167 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1168 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1169 }
1170
1171 #ifndef CONFIG_USER_ONLY
1172 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1173 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1174 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1175 */
1176 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1177
1178 object_property_add_link(obj, "secure-memory",
1179 TYPE_MEMORY_REGION,
1180 (Object **)&cpu->secure_memory,
1181 qdev_prop_allow_set_link_before_realize,
1182 OBJ_PROP_LINK_STRONG);
1183 }
1184
1185 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1186 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1187 }
1188 #endif
1189
1190 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1191 cpu->has_pmu = true;
1192 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1193 }
1194
1195 /*
1196 * Allow user to turn off VFP and Neon support, but only for TCG --
1197 * KVM does not currently allow us to lie to the guest about its
1198 * ID/feature registers, so the guest always sees what the host has.
1199 */
1200 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1201 ? cpu_isar_feature(aa64_fp_simd, cpu)
1202 : cpu_isar_feature(aa32_vfp, cpu)) {
1203 cpu->has_vfp = true;
1204 if (!kvm_enabled()) {
1205 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1206 }
1207 }
1208
1209 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1210 cpu->has_neon = true;
1211 if (!kvm_enabled()) {
1212 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1213 }
1214 }
1215
1216 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1217 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1218 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1219 }
1220
1221 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1222 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1223 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1224 qdev_property_add_static(DEVICE(obj),
1225 &arm_cpu_pmsav7_dregion_property);
1226 }
1227 }
1228
1229 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1230 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1231 qdev_prop_allow_set_link_before_realize,
1232 OBJ_PROP_LINK_STRONG);
1233 /*
1234 * M profile: initial value of the Secure VTOR. We can't just use
1235 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1236 * the property to be set after realize.
1237 */
1238 object_property_add_uint32_ptr(obj, "init-svtor",
1239 &cpu->init_svtor,
1240 OBJ_PROP_FLAG_READWRITE);
1241 }
1242
1243 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1244
1245 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1246 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1247 }
1248
1249 if (kvm_enabled()) {
1250 kvm_arm_add_vcpu_properties(obj);
1251 }
1252 }
1253
1254 static void arm_cpu_finalizefn(Object *obj)
1255 {
1256 ARMCPU *cpu = ARM_CPU(obj);
1257 ARMELChangeHook *hook, *next;
1258
1259 g_hash_table_destroy(cpu->cp_regs);
1260
1261 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1262 QLIST_REMOVE(hook, node);
1263 g_free(hook);
1264 }
1265 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1266 QLIST_REMOVE(hook, node);
1267 g_free(hook);
1268 }
1269 #ifndef CONFIG_USER_ONLY
1270 if (cpu->pmu_timer) {
1271 timer_del(cpu->pmu_timer);
1272 timer_deinit(cpu->pmu_timer);
1273 timer_free(cpu->pmu_timer);
1274 }
1275 #endif
1276 }
1277
1278 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1279 {
1280 Error *local_err = NULL;
1281
1282 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1283 arm_cpu_sve_finalize(cpu, &local_err);
1284 if (local_err != NULL) {
1285 error_propagate(errp, local_err);
1286 return;
1287 }
1288 }
1289 }
1290
1291 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1292 {
1293 CPUState *cs = CPU(dev);
1294 ARMCPU *cpu = ARM_CPU(dev);
1295 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1296 CPUARMState *env = &cpu->env;
1297 int pagebits;
1298 Error *local_err = NULL;
1299 bool no_aa32 = false;
1300
1301 /* If we needed to query the host kernel for the CPU features
1302 * then it's possible that might have failed in the initfn, but
1303 * this is the first point where we can report it.
1304 */
1305 if (cpu->host_cpu_probe_failed) {
1306 if (!kvm_enabled()) {
1307 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1308 } else {
1309 error_setg(errp, "Failed to retrieve host CPU features");
1310 }
1311 return;
1312 }
1313
1314 #ifndef CONFIG_USER_ONLY
1315 /* The NVIC and M-profile CPU are two halves of a single piece of
1316 * hardware; trying to use one without the other is a command line
1317 * error and will result in segfaults if not caught here.
1318 */
1319 if (arm_feature(env, ARM_FEATURE_M)) {
1320 if (!env->nvic) {
1321 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1322 return;
1323 }
1324 } else {
1325 if (env->nvic) {
1326 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1327 return;
1328 }
1329 }
1330
1331 {
1332 uint64_t scale;
1333
1334 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1335 if (!cpu->gt_cntfrq_hz) {
1336 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1337 cpu->gt_cntfrq_hz);
1338 return;
1339 }
1340 scale = gt_cntfrq_period_ns(cpu);
1341 } else {
1342 scale = GTIMER_SCALE;
1343 }
1344
1345 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1346 arm_gt_ptimer_cb, cpu);
1347 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1348 arm_gt_vtimer_cb, cpu);
1349 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1350 arm_gt_htimer_cb, cpu);
1351 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1352 arm_gt_stimer_cb, cpu);
1353 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1354 arm_gt_hvtimer_cb, cpu);
1355 }
1356 #endif
1357
1358 cpu_exec_realizefn(cs, &local_err);
1359 if (local_err != NULL) {
1360 error_propagate(errp, local_err);
1361 return;
1362 }
1363
1364 arm_cpu_finalize_features(cpu, &local_err);
1365 if (local_err != NULL) {
1366 error_propagate(errp, local_err);
1367 return;
1368 }
1369
1370 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1371 cpu->has_vfp != cpu->has_neon) {
1372 /*
1373 * This is an architectural requirement for AArch64; AArch32 is
1374 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1375 */
1376 error_setg(errp,
1377 "AArch64 CPUs must have both VFP and Neon or neither");
1378 return;
1379 }
1380
1381 if (!cpu->has_vfp) {
1382 uint64_t t;
1383 uint32_t u;
1384
1385 t = cpu->isar.id_aa64isar1;
1386 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1387 cpu->isar.id_aa64isar1 = t;
1388
1389 t = cpu->isar.id_aa64pfr0;
1390 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1391 cpu->isar.id_aa64pfr0 = t;
1392
1393 u = cpu->isar.id_isar6;
1394 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1395 cpu->isar.id_isar6 = u;
1396
1397 u = cpu->isar.mvfr0;
1398 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1399 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1400 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1401 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1402 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1403 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1404 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1405 cpu->isar.mvfr0 = u;
1406
1407 u = cpu->isar.mvfr1;
1408 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1409 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1410 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1411 cpu->isar.mvfr1 = u;
1412
1413 u = cpu->isar.mvfr2;
1414 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1415 cpu->isar.mvfr2 = u;
1416 }
1417
1418 if (!cpu->has_neon) {
1419 uint64_t t;
1420 uint32_t u;
1421
1422 unset_feature(env, ARM_FEATURE_NEON);
1423
1424 t = cpu->isar.id_aa64isar0;
1425 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1426 cpu->isar.id_aa64isar0 = t;
1427
1428 t = cpu->isar.id_aa64isar1;
1429 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1430 cpu->isar.id_aa64isar1 = t;
1431
1432 t = cpu->isar.id_aa64pfr0;
1433 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1434 cpu->isar.id_aa64pfr0 = t;
1435
1436 u = cpu->isar.id_isar5;
1437 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1438 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1439 cpu->isar.id_isar5 = u;
1440
1441 u = cpu->isar.id_isar6;
1442 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1443 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1444 cpu->isar.id_isar6 = u;
1445
1446 u = cpu->isar.mvfr1;
1447 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1448 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1449 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1450 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1451 cpu->isar.mvfr1 = u;
1452
1453 u = cpu->isar.mvfr2;
1454 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1455 cpu->isar.mvfr2 = u;
1456 }
1457
1458 if (!cpu->has_neon && !cpu->has_vfp) {
1459 uint64_t t;
1460 uint32_t u;
1461
1462 t = cpu->isar.id_aa64isar0;
1463 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1464 cpu->isar.id_aa64isar0 = t;
1465
1466 t = cpu->isar.id_aa64isar1;
1467 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1468 cpu->isar.id_aa64isar1 = t;
1469
1470 u = cpu->isar.mvfr0;
1471 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1472 cpu->isar.mvfr0 = u;
1473
1474 /* Despite the name, this field covers both VFP and Neon */
1475 u = cpu->isar.mvfr1;
1476 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1477 cpu->isar.mvfr1 = u;
1478 }
1479
1480 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1481 uint32_t u;
1482
1483 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1484
1485 u = cpu->isar.id_isar1;
1486 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1487 cpu->isar.id_isar1 = u;
1488
1489 u = cpu->isar.id_isar2;
1490 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1491 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1492 cpu->isar.id_isar2 = u;
1493
1494 u = cpu->isar.id_isar3;
1495 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1496 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1497 cpu->isar.id_isar3 = u;
1498 }
1499
1500 /* Some features automatically imply others: */
1501 if (arm_feature(env, ARM_FEATURE_V8)) {
1502 if (arm_feature(env, ARM_FEATURE_M)) {
1503 set_feature(env, ARM_FEATURE_V7);
1504 } else {
1505 set_feature(env, ARM_FEATURE_V7VE);
1506 }
1507 }
1508
1509 /*
1510 * There exist AArch64 cpus without AArch32 support. When KVM
1511 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1512 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1513 * As a general principle, we also do not make ID register
1514 * consistency checks anywhere unless using TCG, because only
1515 * for TCG would a consistency-check failure be a QEMU bug.
1516 */
1517 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1518 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1519 }
1520
1521 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1522 /* v7 Virtualization Extensions. In real hardware this implies
1523 * EL2 and also the presence of the Security Extensions.
1524 * For QEMU, for backwards-compatibility we implement some
1525 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1526 * include the various other features that V7VE implies.
1527 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1528 * Security Extensions is ARM_FEATURE_EL3.
1529 */
1530 assert(!tcg_enabled() || no_aa32 ||
1531 cpu_isar_feature(aa32_arm_div, cpu));
1532 set_feature(env, ARM_FEATURE_LPAE);
1533 set_feature(env, ARM_FEATURE_V7);
1534 }
1535 if (arm_feature(env, ARM_FEATURE_V7)) {
1536 set_feature(env, ARM_FEATURE_VAPA);
1537 set_feature(env, ARM_FEATURE_THUMB2);
1538 set_feature(env, ARM_FEATURE_MPIDR);
1539 if (!arm_feature(env, ARM_FEATURE_M)) {
1540 set_feature(env, ARM_FEATURE_V6K);
1541 } else {
1542 set_feature(env, ARM_FEATURE_V6);
1543 }
1544
1545 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1546 * non-EL3 configs. This is needed by some legacy boards.
1547 */
1548 set_feature(env, ARM_FEATURE_VBAR);
1549 }
1550 if (arm_feature(env, ARM_FEATURE_V6K)) {
1551 set_feature(env, ARM_FEATURE_V6);
1552 set_feature(env, ARM_FEATURE_MVFR);
1553 }
1554 if (arm_feature(env, ARM_FEATURE_V6)) {
1555 set_feature(env, ARM_FEATURE_V5);
1556 if (!arm_feature(env, ARM_FEATURE_M)) {
1557 assert(!tcg_enabled() || no_aa32 ||
1558 cpu_isar_feature(aa32_jazelle, cpu));
1559 set_feature(env, ARM_FEATURE_AUXCR);
1560 }
1561 }
1562 if (arm_feature(env, ARM_FEATURE_V5)) {
1563 set_feature(env, ARM_FEATURE_V4T);
1564 }
1565 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1566 set_feature(env, ARM_FEATURE_V7MP);
1567 set_feature(env, ARM_FEATURE_PXN);
1568 }
1569 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1570 set_feature(env, ARM_FEATURE_CBAR);
1571 }
1572 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1573 !arm_feature(env, ARM_FEATURE_M)) {
1574 set_feature(env, ARM_FEATURE_THUMB_DSP);
1575 }
1576
1577 /*
1578 * We rely on no XScale CPU having VFP so we can use the same bits in the
1579 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1580 */
1581 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1582 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1583 !arm_feature(env, ARM_FEATURE_XSCALE));
1584
1585 if (arm_feature(env, ARM_FEATURE_V7) &&
1586 !arm_feature(env, ARM_FEATURE_M) &&
1587 !arm_feature(env, ARM_FEATURE_PMSA)) {
1588 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1589 * can use 4K pages.
1590 */
1591 pagebits = 12;
1592 } else {
1593 /* For CPUs which might have tiny 1K pages, or which have an
1594 * MPU and might have small region sizes, stick with 1K pages.
1595 */
1596 pagebits = 10;
1597 }
1598 if (!set_preferred_target_page_bits(pagebits)) {
1599 /* This can only ever happen for hotplugging a CPU, or if
1600 * the board code incorrectly creates a CPU which it has
1601 * promised via minimum_page_size that it will not.
1602 */
1603 error_setg(errp, "This CPU requires a smaller page size than the "
1604 "system is using");
1605 return;
1606 }
1607
1608 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1609 * We don't support setting cluster ID ([16..23]) (known as Aff2
1610 * in later ARM ARM versions), or any of the higher affinity level fields,
1611 * so these bits always RAZ.
1612 */
1613 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1614 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1615 ARM_DEFAULT_CPUS_PER_CLUSTER);
1616 }
1617
1618 if (cpu->reset_hivecs) {
1619 cpu->reset_sctlr |= (1 << 13);
1620 }
1621
1622 if (cpu->cfgend) {
1623 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1624 cpu->reset_sctlr |= SCTLR_EE;
1625 } else {
1626 cpu->reset_sctlr |= SCTLR_B;
1627 }
1628 }
1629
1630 if (!cpu->has_el3) {
1631 /* If the has_el3 CPU property is disabled then we need to disable the
1632 * feature.
1633 */
1634 unset_feature(env, ARM_FEATURE_EL3);
1635
1636 /* Disable the security extension feature bits in the processor feature
1637 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1638 */
1639 cpu->id_pfr1 &= ~0xf0;
1640 cpu->isar.id_aa64pfr0 &= ~0xf000;
1641 }
1642
1643 if (!cpu->has_el2) {
1644 unset_feature(env, ARM_FEATURE_EL2);
1645 }
1646
1647 if (!cpu->has_pmu) {
1648 unset_feature(env, ARM_FEATURE_PMU);
1649 }
1650 if (arm_feature(env, ARM_FEATURE_PMU)) {
1651 pmu_init(cpu);
1652
1653 if (!kvm_enabled()) {
1654 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1655 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1656 }
1657
1658 #ifndef CONFIG_USER_ONLY
1659 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1660 cpu);
1661 #endif
1662 } else {
1663 cpu->isar.id_aa64dfr0 =
1664 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1665 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1666 cpu->pmceid0 = 0;
1667 cpu->pmceid1 = 0;
1668 }
1669
1670 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1671 /* Disable the hypervisor feature bits in the processor feature
1672 * registers if we don't have EL2. These are id_pfr1[15:12] and
1673 * id_aa64pfr0_el1[11:8].
1674 */
1675 cpu->isar.id_aa64pfr0 &= ~0xf00;
1676 cpu->id_pfr1 &= ~0xf000;
1677 }
1678
1679 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1680 * to false or by setting pmsav7-dregion to 0.
1681 */
1682 if (!cpu->has_mpu) {
1683 cpu->pmsav7_dregion = 0;
1684 }
1685 if (cpu->pmsav7_dregion == 0) {
1686 cpu->has_mpu = false;
1687 }
1688
1689 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1690 arm_feature(env, ARM_FEATURE_V7)) {
1691 uint32_t nr = cpu->pmsav7_dregion;
1692
1693 if (nr > 0xff) {
1694 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1695 return;
1696 }
1697
1698 if (nr) {
1699 if (arm_feature(env, ARM_FEATURE_V8)) {
1700 /* PMSAv8 */
1701 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1702 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1703 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1704 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1705 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1706 }
1707 } else {
1708 env->pmsav7.drbar = g_new0(uint32_t, nr);
1709 env->pmsav7.drsr = g_new0(uint32_t, nr);
1710 env->pmsav7.dracr = g_new0(uint32_t, nr);
1711 }
1712 }
1713 }
1714
1715 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1716 uint32_t nr = cpu->sau_sregion;
1717
1718 if (nr > 0xff) {
1719 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1720 return;
1721 }
1722
1723 if (nr) {
1724 env->sau.rbar = g_new0(uint32_t, nr);
1725 env->sau.rlar = g_new0(uint32_t, nr);
1726 }
1727 }
1728
1729 if (arm_feature(env, ARM_FEATURE_EL3)) {
1730 set_feature(env, ARM_FEATURE_VBAR);
1731 }
1732
1733 register_cp_regs_for_features(cpu);
1734 arm_cpu_register_gdb_regs_for_features(cpu);
1735
1736 init_cpreg_list(cpu);
1737
1738 #ifndef CONFIG_USER_ONLY
1739 MachineState *ms = MACHINE(qdev_get_machine());
1740 unsigned int smp_cpus = ms->smp.cpus;
1741
1742 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1743 cs->num_ases = 2;
1744
1745 if (!cpu->secure_memory) {
1746 cpu->secure_memory = cs->memory;
1747 }
1748 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1749 cpu->secure_memory);
1750 } else {
1751 cs->num_ases = 1;
1752 }
1753 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1754
1755 /* No core_count specified, default to smp_cpus. */
1756 if (cpu->core_count == -1) {
1757 cpu->core_count = smp_cpus;
1758 }
1759 #endif
1760
1761 qemu_init_vcpu(cs);
1762 cpu_reset(cs);
1763
1764 acc->parent_realize(dev, errp);
1765 }
1766
1767 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1768 {
1769 ObjectClass *oc;
1770 char *typename;
1771 char **cpuname;
1772 const char *cpunamestr;
1773
1774 cpuname = g_strsplit(cpu_model, ",", 1);
1775 cpunamestr = cpuname[0];
1776 #ifdef CONFIG_USER_ONLY
1777 /* For backwards compatibility usermode emulation allows "-cpu any",
1778 * which has the same semantics as "-cpu max".
1779 */
1780 if (!strcmp(cpunamestr, "any")) {
1781 cpunamestr = "max";
1782 }
1783 #endif
1784 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1785 oc = object_class_by_name(typename);
1786 g_strfreev(cpuname);
1787 g_free(typename);
1788 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1789 object_class_is_abstract(oc)) {
1790 return NULL;
1791 }
1792 return oc;
1793 }
1794
1795 /* CPU models. These are not needed for the AArch64 linux-user build. */
1796 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1797
1798 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1799 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1800 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1801 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1803 REGINFO_SENTINEL
1804 };
1805
1806 static void cortex_a8_initfn(Object *obj)
1807 {
1808 ARMCPU *cpu = ARM_CPU(obj);
1809
1810 cpu->dtb_compatible = "arm,cortex-a8";
1811 set_feature(&cpu->env, ARM_FEATURE_V7);
1812 set_feature(&cpu->env, ARM_FEATURE_NEON);
1813 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1814 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1815 set_feature(&cpu->env, ARM_FEATURE_EL3);
1816 cpu->midr = 0x410fc080;
1817 cpu->reset_fpsid = 0x410330c0;
1818 cpu->isar.mvfr0 = 0x11110222;
1819 cpu->isar.mvfr1 = 0x00011111;
1820 cpu->ctr = 0x82048004;
1821 cpu->reset_sctlr = 0x00c50078;
1822 cpu->id_pfr0 = 0x1031;
1823 cpu->id_pfr1 = 0x11;
1824 cpu->isar.id_dfr0 = 0x400;
1825 cpu->id_afr0 = 0;
1826 cpu->isar.id_mmfr0 = 0x31100003;
1827 cpu->isar.id_mmfr1 = 0x20000000;
1828 cpu->isar.id_mmfr2 = 0x01202000;
1829 cpu->isar.id_mmfr3 = 0x11;
1830 cpu->isar.id_isar0 = 0x00101111;
1831 cpu->isar.id_isar1 = 0x12112111;
1832 cpu->isar.id_isar2 = 0x21232031;
1833 cpu->isar.id_isar3 = 0x11112131;
1834 cpu->isar.id_isar4 = 0x00111142;
1835 cpu->isar.dbgdidr = 0x15141000;
1836 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1837 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1838 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1839 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1840 cpu->reset_auxcr = 2;
1841 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1842 }
1843
1844 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1845 /* power_control should be set to maximum latency. Again,
1846 * default to 0 and set by private hook
1847 */
1848 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1849 .access = PL1_RW, .resetvalue = 0,
1850 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1851 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1852 .access = PL1_RW, .resetvalue = 0,
1853 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1854 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1855 .access = PL1_RW, .resetvalue = 0,
1856 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1857 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1858 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1859 /* TLB lockdown control */
1860 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1861 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1862 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1863 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1864 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1865 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1866 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1867 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1868 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1869 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1870 REGINFO_SENTINEL
1871 };
1872
1873 static void cortex_a9_initfn(Object *obj)
1874 {
1875 ARMCPU *cpu = ARM_CPU(obj);
1876
1877 cpu->dtb_compatible = "arm,cortex-a9";
1878 set_feature(&cpu->env, ARM_FEATURE_V7);
1879 set_feature(&cpu->env, ARM_FEATURE_NEON);
1880 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1881 set_feature(&cpu->env, ARM_FEATURE_EL3);
1882 /* Note that A9 supports the MP extensions even for
1883 * A9UP and single-core A9MP (which are both different
1884 * and valid configurations; we don't model A9UP).
1885 */
1886 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1887 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1888 cpu->midr = 0x410fc090;
1889 cpu->reset_fpsid = 0x41033090;
1890 cpu->isar.mvfr0 = 0x11110222;
1891 cpu->isar.mvfr1 = 0x01111111;
1892 cpu->ctr = 0x80038003;
1893 cpu->reset_sctlr = 0x00c50078;
1894 cpu->id_pfr0 = 0x1031;
1895 cpu->id_pfr1 = 0x11;
1896 cpu->isar.id_dfr0 = 0x000;
1897 cpu->id_afr0 = 0;
1898 cpu->isar.id_mmfr0 = 0x00100103;
1899 cpu->isar.id_mmfr1 = 0x20000000;
1900 cpu->isar.id_mmfr2 = 0x01230000;
1901 cpu->isar.id_mmfr3 = 0x00002111;
1902 cpu->isar.id_isar0 = 0x00101111;
1903 cpu->isar.id_isar1 = 0x13112111;
1904 cpu->isar.id_isar2 = 0x21232041;
1905 cpu->isar.id_isar3 = 0x11112131;
1906 cpu->isar.id_isar4 = 0x00111142;
1907 cpu->isar.dbgdidr = 0x35141000;
1908 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1909 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1910 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1911 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1912 }
1913
1914 #ifndef CONFIG_USER_ONLY
1915 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1916 {
1917 MachineState *ms = MACHINE(qdev_get_machine());
1918
1919 /* Linux wants the number of processors from here.
1920 * Might as well set the interrupt-controller bit too.
1921 */
1922 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
1923 }
1924 #endif
1925
1926 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1927 #ifndef CONFIG_USER_ONLY
1928 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1929 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1930 .writefn = arm_cp_write_ignore, },
1931 #endif
1932 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1933 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1934 REGINFO_SENTINEL
1935 };
1936
1937 static void cortex_a7_initfn(Object *obj)
1938 {
1939 ARMCPU *cpu = ARM_CPU(obj);
1940
1941 cpu->dtb_compatible = "arm,cortex-a7";
1942 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1943 set_feature(&cpu->env, ARM_FEATURE_NEON);
1944 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1945 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1946 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1947 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1948 set_feature(&cpu->env, ARM_FEATURE_EL2);
1949 set_feature(&cpu->env, ARM_FEATURE_EL3);
1950 set_feature(&cpu->env, ARM_FEATURE_PMU);
1951 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1952 cpu->midr = 0x410fc075;
1953 cpu->reset_fpsid = 0x41023075;
1954 cpu->isar.mvfr0 = 0x10110222;
1955 cpu->isar.mvfr1 = 0x11111111;
1956 cpu->ctr = 0x84448003;
1957 cpu->reset_sctlr = 0x00c50078;
1958 cpu->id_pfr0 = 0x00001131;
1959 cpu->id_pfr1 = 0x00011011;
1960 cpu->isar.id_dfr0 = 0x02010555;
1961 cpu->id_afr0 = 0x00000000;
1962 cpu->isar.id_mmfr0 = 0x10101105;
1963 cpu->isar.id_mmfr1 = 0x40000000;
1964 cpu->isar.id_mmfr2 = 0x01240000;
1965 cpu->isar.id_mmfr3 = 0x02102211;
1966 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1967 * table 4-41 gives 0x02101110, which includes the arm div insns.
1968 */
1969 cpu->isar.id_isar0 = 0x02101110;
1970 cpu->isar.id_isar1 = 0x13112111;
1971 cpu->isar.id_isar2 = 0x21232041;
1972 cpu->isar.id_isar3 = 0x11112131;
1973 cpu->isar.id_isar4 = 0x10011142;
1974 cpu->isar.dbgdidr = 0x3515f005;
1975 cpu->clidr = 0x0a200023;
1976 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1977 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1978 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1979 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1980 }
1981
1982 static void cortex_a15_initfn(Object *obj)
1983 {
1984 ARMCPU *cpu = ARM_CPU(obj);
1985
1986 cpu->dtb_compatible = "arm,cortex-a15";
1987 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1988 set_feature(&cpu->env, ARM_FEATURE_NEON);
1989 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1990 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1991 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1992 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1993 set_feature(&cpu->env, ARM_FEATURE_EL2);
1994 set_feature(&cpu->env, ARM_FEATURE_EL3);
1995 set_feature(&cpu->env, ARM_FEATURE_PMU);
1996 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1997 cpu->midr = 0x412fc0f1;
1998 cpu->reset_fpsid = 0x410430f0;
1999 cpu->isar.mvfr0 = 0x10110222;
2000 cpu->isar.mvfr1 = 0x11111111;
2001 cpu->ctr = 0x8444c004;
2002 cpu->reset_sctlr = 0x00c50078;
2003 cpu->id_pfr0 = 0x00001131;
2004 cpu->id_pfr1 = 0x00011011;
2005 cpu->isar.id_dfr0 = 0x02010555;
2006 cpu->id_afr0 = 0x00000000;
2007 cpu->isar.id_mmfr0 = 0x10201105;
2008 cpu->isar.id_mmfr1 = 0x20000000;
2009 cpu->isar.id_mmfr2 = 0x01240000;
2010 cpu->isar.id_mmfr3 = 0x02102211;
2011 cpu->isar.id_isar0 = 0x02101110;
2012 cpu->isar.id_isar1 = 0x13112111;
2013 cpu->isar.id_isar2 = 0x21232041;
2014 cpu->isar.id_isar3 = 0x11112131;
2015 cpu->isar.id_isar4 = 0x10011142;
2016 cpu->isar.dbgdidr = 0x3515f021;
2017 cpu->clidr = 0x0a200023;
2018 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2019 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2020 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2021 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2022 }
2023
2024 #ifndef TARGET_AARCH64
2025 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2026 * otherwise, a CPU with as many features enabled as our emulation supports.
2027 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2028 * this only needs to handle 32 bits.
2029 */
2030 static void arm_max_initfn(Object *obj)
2031 {
2032 ARMCPU *cpu = ARM_CPU(obj);
2033
2034 if (kvm_enabled()) {
2035 kvm_arm_set_cpu_features_from_host(cpu);
2036 } else {
2037 cortex_a15_initfn(obj);
2038
2039 /* old-style VFP short-vector support */
2040 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2041
2042 #ifdef CONFIG_USER_ONLY
2043 /* We don't set these in system emulation mode for the moment,
2044 * since we don't correctly set (all of) the ID registers to
2045 * advertise them.
2046 */
2047 set_feature(&cpu->env, ARM_FEATURE_V8);
2048 {
2049 uint32_t t;
2050
2051 t = cpu->isar.id_isar5;
2052 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2053 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2054 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2055 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2056 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2057 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2058 cpu->isar.id_isar5 = t;
2059
2060 t = cpu->isar.id_isar6;
2061 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2062 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2063 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2064 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2065 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2066 cpu->isar.id_isar6 = t;
2067
2068 t = cpu->isar.mvfr1;
2069 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2070 cpu->isar.mvfr1 = t;
2071
2072 t = cpu->isar.mvfr2;
2073 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2074 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2075 cpu->isar.mvfr2 = t;
2076
2077 t = cpu->isar.id_mmfr3;
2078 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2079 cpu->isar.id_mmfr3 = t;
2080
2081 t = cpu->isar.id_mmfr4;
2082 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2083 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2084 t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2085 t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2086 cpu->isar.id_mmfr4 = t;
2087 }
2088 #endif
2089 }
2090 }
2091 #endif
2092
2093 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2094
2095 static const ARMCPUInfo arm_cpus[] = {
2096 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2097 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2098 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2099 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2100 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2101 #ifndef TARGET_AARCH64
2102 { .name = "max", .initfn = arm_max_initfn },
2103 #endif
2104 #ifdef CONFIG_USER_ONLY
2105 { .name = "any", .initfn = arm_max_initfn },
2106 #endif
2107 #endif
2108 };
2109
2110 static Property arm_cpu_properties[] = {
2111 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2112 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2113 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2114 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2115 mp_affinity, ARM64_AFFINITY_INVALID),
2116 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2117 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2118 DEFINE_PROP_END_OF_LIST()
2119 };
2120
2121 static gchar *arm_gdb_arch_name(CPUState *cs)
2122 {
2123 ARMCPU *cpu = ARM_CPU(cs);
2124 CPUARMState *env = &cpu->env;
2125
2126 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2127 return g_strdup("iwmmxt");
2128 }
2129 return g_strdup("arm");
2130 }
2131
2132 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2133 {
2134 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2135 CPUClass *cc = CPU_CLASS(acc);
2136 DeviceClass *dc = DEVICE_CLASS(oc);
2137
2138 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2139 &acc->parent_realize);
2140
2141 device_class_set_props(dc, arm_cpu_properties);
2142 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2143
2144 cc->class_by_name = arm_cpu_class_by_name;
2145 cc->has_work = arm_cpu_has_work;
2146 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2147 cc->dump_state = arm_cpu_dump_state;
2148 cc->set_pc = arm_cpu_set_pc;
2149 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2150 cc->gdb_read_register = arm_cpu_gdb_read_register;
2151 cc->gdb_write_register = arm_cpu_gdb_write_register;
2152 #ifndef CONFIG_USER_ONLY
2153 cc->do_interrupt = arm_cpu_do_interrupt;
2154 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2155 cc->asidx_from_attrs = arm_asidx_from_attrs;
2156 cc->vmsd = &vmstate_arm_cpu;
2157 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2158 cc->write_elf64_note = arm_cpu_write_elf64_note;
2159 cc->write_elf32_note = arm_cpu_write_elf32_note;
2160 #endif
2161 cc->gdb_num_core_regs = 26;
2162 cc->gdb_core_xml_file = "arm-core.xml";
2163 cc->gdb_arch_name = arm_gdb_arch_name;
2164 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2165 cc->gdb_stop_before_watchpoint = true;
2166 cc->disas_set_info = arm_disas_set_info;
2167 #ifdef CONFIG_TCG
2168 cc->tcg_initialize = arm_translate_init;
2169 cc->tlb_fill = arm_cpu_tlb_fill;
2170 cc->debug_excp_handler = arm_debug_excp_handler;
2171 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2172 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2173 #if !defined(CONFIG_USER_ONLY)
2174 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2175 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2176 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2177 #endif
2178 }
2179
2180 #ifdef CONFIG_KVM
2181 static void arm_host_initfn(Object *obj)
2182 {
2183 ARMCPU *cpu = ARM_CPU(obj);
2184
2185 kvm_arm_set_cpu_features_from_host(cpu);
2186 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2187 aarch64_add_sve_properties(obj);
2188 }
2189 arm_cpu_post_init(obj);
2190 }
2191
2192 static const TypeInfo host_arm_cpu_type_info = {
2193 .name = TYPE_ARM_HOST_CPU,
2194 #ifdef TARGET_AARCH64
2195 .parent = TYPE_AARCH64_CPU,
2196 #else
2197 .parent = TYPE_ARM_CPU,
2198 #endif
2199 .instance_init = arm_host_initfn,
2200 };
2201
2202 #endif
2203
2204 static void arm_cpu_instance_init(Object *obj)
2205 {
2206 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2207
2208 acc->info->initfn(obj);
2209 arm_cpu_post_init(obj);
2210 }
2211
2212 static void cpu_register_class_init(ObjectClass *oc, void *data)
2213 {
2214 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2215
2216 acc->info = data;
2217 }
2218
2219 void arm_cpu_register(const ARMCPUInfo *info)
2220 {
2221 TypeInfo type_info = {
2222 .parent = TYPE_ARM_CPU,
2223 .instance_size = sizeof(ARMCPU),
2224 .instance_init = arm_cpu_instance_init,
2225 .class_size = sizeof(ARMCPUClass),
2226 .class_init = info->class_init ?: cpu_register_class_init,
2227 .class_data = (void *)info,
2228 };
2229
2230 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2231 type_register(&type_info);
2232 g_free((void *)type_info.name);
2233 }
2234
2235 static const TypeInfo arm_cpu_type_info = {
2236 .name = TYPE_ARM_CPU,
2237 .parent = TYPE_CPU,
2238 .instance_size = sizeof(ARMCPU),
2239 .instance_init = arm_cpu_initfn,
2240 .instance_finalize = arm_cpu_finalizefn,
2241 .abstract = true,
2242 .class_size = sizeof(ARMCPUClass),
2243 .class_init = arm_cpu_class_init,
2244 };
2245
2246 static const TypeInfo idau_interface_type_info = {
2247 .name = TYPE_IDAU_INTERFACE,
2248 .parent = TYPE_INTERFACE,
2249 .class_size = sizeof(IDAUInterfaceClass),
2250 };
2251
2252 static void arm_cpu_register_types(void)
2253 {
2254 const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2255
2256 type_register_static(&arm_cpu_type_info);
2257
2258 #ifdef CONFIG_KVM
2259 type_register_static(&host_arm_cpu_type_info);
2260 #endif
2261
2262 if (cpu_count) {
2263 size_t i;
2264
2265 type_register_static(&idau_interface_type_info);
2266 for (i = 0; i < cpu_count; ++i) {
2267 arm_cpu_register(&arm_cpus[i]);
2268 }
2269 }
2270 }
2271
2272 type_init(arm_cpu_register_types)