]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
q800: fix coverity warning CID 1412799
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
47
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
54 }
55 }
56
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
61
62 /*
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
65 */
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
70 }
71 }
72
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75 ARMCPU *cpu = ARM_CPU(cs);
76
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
82 }
83
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
86 {
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88
89 entry->hook = hook;
90 entry->opaque = opaque;
91
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
97 {
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99
100 entry->hook = hook;
101 entry->opaque = opaque;
102
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
111
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
114 }
115
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
119 }
120
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
125 */
126 if (!ri->fieldoffset) {
127 return;
128 }
129
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134 }
135 }
136
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
138 {
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
143 */
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
147
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
150 }
151
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
156 }
157
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
164
165 acc->parent_reset(s);
166
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
179
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 }
183
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* Enable all PAC instructions */
195 env->cp15.hcr_el2 |= HCR_API;
196 env->cp15.scr_el3 |= SCR_API;
197 /* and to the FP/Neon instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199 /* and to the SVE instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201 env->cp15.cptr_el[3] |= CPTR_EZ;
202 /* with maximum vector length */
203 env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
204 cpu->sve_max_vq - 1 : 0;
205 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
206 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207 /*
208 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
209 * turning on both here will produce smaller code and otherwise
210 * make no difference to the user-level emulation.
211 */
212 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
213 #else
214 /* Reset into the highest available EL */
215 if (arm_feature(env, ARM_FEATURE_EL3)) {
216 env->pstate = PSTATE_MODE_EL3h;
217 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
218 env->pstate = PSTATE_MODE_EL2h;
219 } else {
220 env->pstate = PSTATE_MODE_EL1h;
221 }
222 env->pc = cpu->rvbar;
223 #endif
224 } else {
225 #if defined(CONFIG_USER_ONLY)
226 /* Userspace expects access to cp10 and cp11 for FP/Neon */
227 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #endif
229 }
230
231 #if defined(CONFIG_USER_ONLY)
232 env->uncached_cpsr = ARM_CPU_MODE_USR;
233 /* For user mode we must enable access to coprocessors */
234 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
235 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
236 env->cp15.c15_cpar = 3;
237 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
238 env->cp15.c15_cpar = 1;
239 }
240 #else
241
242 /*
243 * If the highest available EL is EL2, AArch32 will start in Hyp
244 * mode; otherwise it starts in SVC. Note that if we start in
245 * AArch64 then these values in the uncached_cpsr will be ignored.
246 */
247 if (arm_feature(env, ARM_FEATURE_EL2) &&
248 !arm_feature(env, ARM_FEATURE_EL3)) {
249 env->uncached_cpsr = ARM_CPU_MODE_HYP;
250 } else {
251 env->uncached_cpsr = ARM_CPU_MODE_SVC;
252 }
253 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254
255 if (arm_feature(env, ARM_FEATURE_M)) {
256 uint32_t initial_msp; /* Loaded from 0x0 */
257 uint32_t initial_pc; /* Loaded from 0x4 */
258 uint8_t *rom;
259 uint32_t vecbase;
260
261 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
262 env->v7m.secure = true;
263 } else {
264 /* This bit resets to 0 if security is supported, but 1 if
265 * it is not. The bit is not present in v7M, but we set it
266 * here so we can avoid having to make checks on it conditional
267 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268 */
269 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
270 /*
271 * Set NSACR to indicate "NS access permitted to everything";
272 * this avoids having to have all the tests of it being
273 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
274 * v8.1M the guest-visible value of NSACR in a CPU without the
275 * Security Extension is 0xcff.
276 */
277 env->v7m.nsacr = 0xcff;
278 }
279
280 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
281 * that it resets to 1, so QEMU always does that rather than making
282 * it dependent on CPU model. In v8M it is RES1.
283 */
284 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
285 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
286 if (arm_feature(env, ARM_FEATURE_V8)) {
287 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
288 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
290 }
291 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
292 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
294 }
295
296 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
297 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
298 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
299 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
300 }
301 /* Unlike A/R profile, M profile defines the reset LR value */
302 env->regs[14] = 0xffffffff;
303
304 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
305
306 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
307 vecbase = env->v7m.vecbase[env->v7m.secure];
308 rom = rom_ptr(vecbase, 8);
309 if (rom) {
310 /* Address zero is covered by ROM which hasn't yet been
311 * copied into physical memory.
312 */
313 initial_msp = ldl_p(rom);
314 initial_pc = ldl_p(rom + 4);
315 } else {
316 /* Address zero not covered by a ROM blob, or the ROM blob
317 * is in non-modifiable memory and this is a second reset after
318 * it got copied into memory. In the latter case, rom_ptr
319 * will return a NULL pointer and we should use ldl_phys instead.
320 */
321 initial_msp = ldl_phys(s->as, vecbase);
322 initial_pc = ldl_phys(s->as, vecbase + 4);
323 }
324
325 env->regs[13] = initial_msp & 0xFFFFFFFC;
326 env->regs[15] = initial_pc & ~1;
327 env->thumb = initial_pc & 1;
328 }
329
330 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
331 * executing as AArch32 then check if highvecs are enabled and
332 * adjust the PC accordingly.
333 */
334 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
335 env->regs[15] = 0xFFFF0000;
336 }
337
338 /* M profile requires that reset clears the exclusive monitor;
339 * A profile does not, but clearing it makes more sense than having it
340 * set with an exclusive access on address zero.
341 */
342 arm_clear_exclusive(env);
343
344 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346
347 if (arm_feature(env, ARM_FEATURE_PMSA)) {
348 if (cpu->pmsav7_dregion > 0) {
349 if (arm_feature(env, ARM_FEATURE_V8)) {
350 memset(env->pmsav8.rbar[M_REG_NS], 0,
351 sizeof(*env->pmsav8.rbar[M_REG_NS])
352 * cpu->pmsav7_dregion);
353 memset(env->pmsav8.rlar[M_REG_NS], 0,
354 sizeof(*env->pmsav8.rlar[M_REG_NS])
355 * cpu->pmsav7_dregion);
356 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
357 memset(env->pmsav8.rbar[M_REG_S], 0,
358 sizeof(*env->pmsav8.rbar[M_REG_S])
359 * cpu->pmsav7_dregion);
360 memset(env->pmsav8.rlar[M_REG_S], 0,
361 sizeof(*env->pmsav8.rlar[M_REG_S])
362 * cpu->pmsav7_dregion);
363 }
364 } else if (arm_feature(env, ARM_FEATURE_V7)) {
365 memset(env->pmsav7.drbar, 0,
366 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
367 memset(env->pmsav7.drsr, 0,
368 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
369 memset(env->pmsav7.dracr, 0,
370 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
371 }
372 }
373 env->pmsav7.rnr[M_REG_NS] = 0;
374 env->pmsav7.rnr[M_REG_S] = 0;
375 env->pmsav8.mair0[M_REG_NS] = 0;
376 env->pmsav8.mair0[M_REG_S] = 0;
377 env->pmsav8.mair1[M_REG_NS] = 0;
378 env->pmsav8.mair1[M_REG_S] = 0;
379 }
380
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 if (cpu->sau_sregion > 0) {
383 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
384 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
385 }
386 env->sau.rnr = 0;
387 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
388 * the Cortex-M33 does.
389 */
390 env->sau.ctrl = 0;
391 }
392
393 set_flush_to_zero(1, &env->vfp.standard_fp_status);
394 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
395 set_default_nan_mode(1, &env->vfp.standard_fp_status);
396 set_float_detect_tininess(float_tininess_before_rounding,
397 &env->vfp.fp_status);
398 set_float_detect_tininess(float_tininess_before_rounding,
399 &env->vfp.standard_fp_status);
400 set_float_detect_tininess(float_tininess_before_rounding,
401 &env->vfp.fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403 if (kvm_enabled()) {
404 kvm_arm_reset_vcpu(cpu);
405 }
406 #endif
407
408 hw_breakpoint_update_all(cpu);
409 hw_watchpoint_update_all(cpu);
410 arm_rebuild_hflags(env);
411 }
412
413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
414 unsigned int target_el,
415 unsigned int cur_el, bool secure,
416 uint64_t hcr_el2)
417 {
418 CPUARMState *env = cs->env_ptr;
419 bool pstate_unmasked;
420 bool unmasked = false;
421
422 /*
423 * Don't take exceptions if they target a lower EL.
424 * This check should catch any exceptions that would not be taken
425 * but left pending.
426 */
427 if (cur_el > target_el) {
428 return false;
429 }
430
431 switch (excp_idx) {
432 case EXCP_FIQ:
433 pstate_unmasked = !(env->daif & PSTATE_F);
434 break;
435
436 case EXCP_IRQ:
437 pstate_unmasked = !(env->daif & PSTATE_I);
438 break;
439
440 case EXCP_VFIQ:
441 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
442 /* VFIQs are only taken when hypervized and non-secure. */
443 return false;
444 }
445 return !(env->daif & PSTATE_F);
446 case EXCP_VIRQ:
447 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
448 /* VIRQs are only taken when hypervized and non-secure. */
449 return false;
450 }
451 return !(env->daif & PSTATE_I);
452 default:
453 g_assert_not_reached();
454 }
455
456 /*
457 * Use the target EL, current execution state and SCR/HCR settings to
458 * determine whether the corresponding CPSR bit is used to mask the
459 * interrupt.
460 */
461 if ((target_el > cur_el) && (target_el != 1)) {
462 /* Exceptions targeting a higher EL may not be maskable */
463 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464 /*
465 * 64-bit masking rules are simple: exceptions to EL3
466 * can't be masked, and exceptions to EL2 can only be
467 * masked from Secure state. The HCR and SCR settings
468 * don't affect the masking logic, only the interrupt routing.
469 */
470 if (target_el == 3 || !secure) {
471 unmasked = true;
472 }
473 } else {
474 /*
475 * The old 32-bit-only environment has a more complicated
476 * masking setup. HCR and SCR bits not only affect interrupt
477 * routing but also change the behaviour of masking.
478 */
479 bool hcr, scr;
480
481 switch (excp_idx) {
482 case EXCP_FIQ:
483 /*
484 * If FIQs are routed to EL3 or EL2 then there are cases where
485 * we override the CPSR.F in determining if the exception is
486 * masked or not. If neither of these are set then we fall back
487 * to the CPSR.F setting otherwise we further assess the state
488 * below.
489 */
490 hcr = hcr_el2 & HCR_FMO;
491 scr = (env->cp15.scr_el3 & SCR_FIQ);
492
493 /*
494 * When EL3 is 32-bit, the SCR.FW bit controls whether the
495 * CPSR.F bit masks FIQ interrupts when taken in non-secure
496 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
497 * when non-secure but only when FIQs are only routed to EL3.
498 */
499 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
500 break;
501 case EXCP_IRQ:
502 /*
503 * When EL3 execution state is 32-bit, if HCR.IMO is set then
504 * we may override the CPSR.I masking when in non-secure state.
505 * The SCR.IRQ setting has already been taken into consideration
506 * when setting the target EL, so it does not have a further
507 * affect here.
508 */
509 hcr = hcr_el2 & HCR_IMO;
510 scr = false;
511 break;
512 default:
513 g_assert_not_reached();
514 }
515
516 if ((scr || hcr) && !secure) {
517 unmasked = true;
518 }
519 }
520 }
521
522 /*
523 * The PSTATE bits only mask the interrupt if we have not overriden the
524 * ability above.
525 */
526 return unmasked || pstate_unmasked;
527 }
528
529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
530 {
531 CPUClass *cc = CPU_GET_CLASS(cs);
532 CPUARMState *env = cs->env_ptr;
533 uint32_t cur_el = arm_current_el(env);
534 bool secure = arm_is_secure(env);
535 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
536 uint32_t target_el;
537 uint32_t excp_idx;
538
539 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
540
541 if (interrupt_request & CPU_INTERRUPT_FIQ) {
542 excp_idx = EXCP_FIQ;
543 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
544 if (arm_excp_unmasked(cs, excp_idx, target_el,
545 cur_el, secure, hcr_el2)) {
546 goto found;
547 }
548 }
549 if (interrupt_request & CPU_INTERRUPT_HARD) {
550 excp_idx = EXCP_IRQ;
551 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
552 if (arm_excp_unmasked(cs, excp_idx, target_el,
553 cur_el, secure, hcr_el2)) {
554 goto found;
555 }
556 }
557 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
558 excp_idx = EXCP_VIRQ;
559 target_el = 1;
560 if (arm_excp_unmasked(cs, excp_idx, target_el,
561 cur_el, secure, hcr_el2)) {
562 goto found;
563 }
564 }
565 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
566 excp_idx = EXCP_VFIQ;
567 target_el = 1;
568 if (arm_excp_unmasked(cs, excp_idx, target_el,
569 cur_el, secure, hcr_el2)) {
570 goto found;
571 }
572 }
573 return false;
574
575 found:
576 cs->exception_index = excp_idx;
577 env->exception.target_el = target_el;
578 cc->do_interrupt(cs);
579 return true;
580 }
581
582 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
583 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
584 {
585 CPUClass *cc = CPU_GET_CLASS(cs);
586 ARMCPU *cpu = ARM_CPU(cs);
587 CPUARMState *env = &cpu->env;
588 bool ret = false;
589
590 /* ARMv7-M interrupt masking works differently than -A or -R.
591 * There is no FIQ/IRQ distinction. Instead of I and F bits
592 * masking FIQ and IRQ interrupts, an exception is taken only
593 * if it is higher priority than the current execution priority
594 * (which depends on state like BASEPRI, FAULTMASK and the
595 * currently active exception).
596 */
597 if (interrupt_request & CPU_INTERRUPT_HARD
598 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
599 cs->exception_index = EXCP_IRQ;
600 cc->do_interrupt(cs);
601 ret = true;
602 }
603 return ret;
604 }
605 #endif
606
607 void arm_cpu_update_virq(ARMCPU *cpu)
608 {
609 /*
610 * Update the interrupt level for VIRQ, which is the logical OR of
611 * the HCR_EL2.VI bit and the input line level from the GIC.
612 */
613 CPUARMState *env = &cpu->env;
614 CPUState *cs = CPU(cpu);
615
616 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
617 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
618
619 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
620 if (new_state) {
621 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
622 } else {
623 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
624 }
625 }
626 }
627
628 void arm_cpu_update_vfiq(ARMCPU *cpu)
629 {
630 /*
631 * Update the interrupt level for VFIQ, which is the logical OR of
632 * the HCR_EL2.VF bit and the input line level from the GIC.
633 */
634 CPUARMState *env = &cpu->env;
635 CPUState *cs = CPU(cpu);
636
637 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
638 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
639
640 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
641 if (new_state) {
642 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
643 } else {
644 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
645 }
646 }
647 }
648
649 #ifndef CONFIG_USER_ONLY
650 static void arm_cpu_set_irq(void *opaque, int irq, int level)
651 {
652 ARMCPU *cpu = opaque;
653 CPUARMState *env = &cpu->env;
654 CPUState *cs = CPU(cpu);
655 static const int mask[] = {
656 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
657 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
658 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
659 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
660 };
661
662 if (level) {
663 env->irq_line_state |= mask[irq];
664 } else {
665 env->irq_line_state &= ~mask[irq];
666 }
667
668 switch (irq) {
669 case ARM_CPU_VIRQ:
670 assert(arm_feature(env, ARM_FEATURE_EL2));
671 arm_cpu_update_virq(cpu);
672 break;
673 case ARM_CPU_VFIQ:
674 assert(arm_feature(env, ARM_FEATURE_EL2));
675 arm_cpu_update_vfiq(cpu);
676 break;
677 case ARM_CPU_IRQ:
678 case ARM_CPU_FIQ:
679 if (level) {
680 cpu_interrupt(cs, mask[irq]);
681 } else {
682 cpu_reset_interrupt(cs, mask[irq]);
683 }
684 break;
685 default:
686 g_assert_not_reached();
687 }
688 }
689
690 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
691 {
692 #ifdef CONFIG_KVM
693 ARMCPU *cpu = opaque;
694 CPUARMState *env = &cpu->env;
695 CPUState *cs = CPU(cpu);
696 uint32_t linestate_bit;
697 int irq_id;
698
699 switch (irq) {
700 case ARM_CPU_IRQ:
701 irq_id = KVM_ARM_IRQ_CPU_IRQ;
702 linestate_bit = CPU_INTERRUPT_HARD;
703 break;
704 case ARM_CPU_FIQ:
705 irq_id = KVM_ARM_IRQ_CPU_FIQ;
706 linestate_bit = CPU_INTERRUPT_FIQ;
707 break;
708 default:
709 g_assert_not_reached();
710 }
711
712 if (level) {
713 env->irq_line_state |= linestate_bit;
714 } else {
715 env->irq_line_state &= ~linestate_bit;
716 }
717 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
718 #endif
719 }
720
721 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
722 {
723 ARMCPU *cpu = ARM_CPU(cs);
724 CPUARMState *env = &cpu->env;
725
726 cpu_synchronize_state(cs);
727 return arm_cpu_data_is_big_endian(env);
728 }
729
730 #endif
731
732 static inline void set_feature(CPUARMState *env, int feature)
733 {
734 env->features |= 1ULL << feature;
735 }
736
737 static inline void unset_feature(CPUARMState *env, int feature)
738 {
739 env->features &= ~(1ULL << feature);
740 }
741
742 static int
743 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
744 {
745 return print_insn_arm(pc | 1, info);
746 }
747
748 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
749 {
750 ARMCPU *ac = ARM_CPU(cpu);
751 CPUARMState *env = &ac->env;
752 bool sctlr_b;
753
754 if (is_a64(env)) {
755 /* We might not be compiled with the A64 disassembler
756 * because it needs a C++ compiler. Leave print_insn
757 * unset in this case to use the caller default behaviour.
758 */
759 #if defined(CONFIG_ARM_A64_DIS)
760 info->print_insn = print_insn_arm_a64;
761 #endif
762 info->cap_arch = CS_ARCH_ARM64;
763 info->cap_insn_unit = 4;
764 info->cap_insn_split = 4;
765 } else {
766 int cap_mode;
767 if (env->thumb) {
768 info->print_insn = print_insn_thumb1;
769 info->cap_insn_unit = 2;
770 info->cap_insn_split = 4;
771 cap_mode = CS_MODE_THUMB;
772 } else {
773 info->print_insn = print_insn_arm;
774 info->cap_insn_unit = 4;
775 info->cap_insn_split = 4;
776 cap_mode = CS_MODE_ARM;
777 }
778 if (arm_feature(env, ARM_FEATURE_V8)) {
779 cap_mode |= CS_MODE_V8;
780 }
781 if (arm_feature(env, ARM_FEATURE_M)) {
782 cap_mode |= CS_MODE_MCLASS;
783 }
784 info->cap_arch = CS_ARCH_ARM;
785 info->cap_mode = cap_mode;
786 }
787
788 sctlr_b = arm_sctlr_b(env);
789 if (bswap_code(sctlr_b)) {
790 #ifdef TARGET_WORDS_BIGENDIAN
791 info->endian = BFD_ENDIAN_LITTLE;
792 #else
793 info->endian = BFD_ENDIAN_BIG;
794 #endif
795 }
796 info->flags &= ~INSN_ARM_BE32;
797 #ifndef CONFIG_USER_ONLY
798 if (sctlr_b) {
799 info->flags |= INSN_ARM_BE32;
800 }
801 #endif
802 }
803
804 #ifdef TARGET_AARCH64
805
806 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
807 {
808 ARMCPU *cpu = ARM_CPU(cs);
809 CPUARMState *env = &cpu->env;
810 uint32_t psr = pstate_read(env);
811 int i;
812 int el = arm_current_el(env);
813 const char *ns_status;
814
815 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
816 for (i = 0; i < 32; i++) {
817 if (i == 31) {
818 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
819 } else {
820 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
821 (i + 2) % 3 ? " " : "\n");
822 }
823 }
824
825 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
826 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
827 } else {
828 ns_status = "";
829 }
830 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
831 psr,
832 psr & PSTATE_N ? 'N' : '-',
833 psr & PSTATE_Z ? 'Z' : '-',
834 psr & PSTATE_C ? 'C' : '-',
835 psr & PSTATE_V ? 'V' : '-',
836 ns_status,
837 el,
838 psr & PSTATE_SP ? 'h' : 't');
839
840 if (cpu_isar_feature(aa64_bti, cpu)) {
841 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
842 }
843 if (!(flags & CPU_DUMP_FPU)) {
844 qemu_fprintf(f, "\n");
845 return;
846 }
847 if (fp_exception_el(env, el) != 0) {
848 qemu_fprintf(f, " FPU disabled\n");
849 return;
850 }
851 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
852 vfp_get_fpcr(env), vfp_get_fpsr(env));
853
854 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
855 int j, zcr_len = sve_zcr_len_for_el(env, el);
856
857 for (i = 0; i <= FFR_PRED_NUM; i++) {
858 bool eol;
859 if (i == FFR_PRED_NUM) {
860 qemu_fprintf(f, "FFR=");
861 /* It's last, so end the line. */
862 eol = true;
863 } else {
864 qemu_fprintf(f, "P%02d=", i);
865 switch (zcr_len) {
866 case 0:
867 eol = i % 8 == 7;
868 break;
869 case 1:
870 eol = i % 6 == 5;
871 break;
872 case 2:
873 case 3:
874 eol = i % 3 == 2;
875 break;
876 default:
877 /* More than one quadword per predicate. */
878 eol = true;
879 break;
880 }
881 }
882 for (j = zcr_len / 4; j >= 0; j--) {
883 int digits;
884 if (j * 4 + 4 <= zcr_len + 1) {
885 digits = 16;
886 } else {
887 digits = (zcr_len % 4 + 1) * 4;
888 }
889 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
890 env->vfp.pregs[i].p[j],
891 j ? ":" : eol ? "\n" : " ");
892 }
893 }
894
895 for (i = 0; i < 32; i++) {
896 if (zcr_len == 0) {
897 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
898 i, env->vfp.zregs[i].d[1],
899 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
900 } else if (zcr_len == 1) {
901 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
902 ":%016" PRIx64 ":%016" PRIx64 "\n",
903 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
904 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
905 } else {
906 for (j = zcr_len; j >= 0; j--) {
907 bool odd = (zcr_len - j) % 2 != 0;
908 if (j == zcr_len) {
909 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
910 } else if (!odd) {
911 if (j > 0) {
912 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
913 } else {
914 qemu_fprintf(f, " [%x]=", j);
915 }
916 }
917 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
918 env->vfp.zregs[i].d[j * 2 + 1],
919 env->vfp.zregs[i].d[j * 2],
920 odd || j == 0 ? "\n" : ":");
921 }
922 }
923 }
924 } else {
925 for (i = 0; i < 32; i++) {
926 uint64_t *q = aa64_vfp_qreg(env, i);
927 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
928 i, q[1], q[0], (i & 1 ? "\n" : " "));
929 }
930 }
931 }
932
933 #else
934
935 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
936 {
937 g_assert_not_reached();
938 }
939
940 #endif
941
942 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
943 {
944 ARMCPU *cpu = ARM_CPU(cs);
945 CPUARMState *env = &cpu->env;
946 int i;
947
948 if (is_a64(env)) {
949 aarch64_cpu_dump_state(cs, f, flags);
950 return;
951 }
952
953 for (i = 0; i < 16; i++) {
954 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
955 if ((i % 4) == 3) {
956 qemu_fprintf(f, "\n");
957 } else {
958 qemu_fprintf(f, " ");
959 }
960 }
961
962 if (arm_feature(env, ARM_FEATURE_M)) {
963 uint32_t xpsr = xpsr_read(env);
964 const char *mode;
965 const char *ns_status = "";
966
967 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
968 ns_status = env->v7m.secure ? "S " : "NS ";
969 }
970
971 if (xpsr & XPSR_EXCP) {
972 mode = "handler";
973 } else {
974 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
975 mode = "unpriv-thread";
976 } else {
977 mode = "priv-thread";
978 }
979 }
980
981 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
982 xpsr,
983 xpsr & XPSR_N ? 'N' : '-',
984 xpsr & XPSR_Z ? 'Z' : '-',
985 xpsr & XPSR_C ? 'C' : '-',
986 xpsr & XPSR_V ? 'V' : '-',
987 xpsr & XPSR_T ? 'T' : 'A',
988 ns_status,
989 mode);
990 } else {
991 uint32_t psr = cpsr_read(env);
992 const char *ns_status = "";
993
994 if (arm_feature(env, ARM_FEATURE_EL3) &&
995 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
996 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
997 }
998
999 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1000 psr,
1001 psr & CPSR_N ? 'N' : '-',
1002 psr & CPSR_Z ? 'Z' : '-',
1003 psr & CPSR_C ? 'C' : '-',
1004 psr & CPSR_V ? 'V' : '-',
1005 psr & CPSR_T ? 'T' : 'A',
1006 ns_status,
1007 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1008 }
1009
1010 if (flags & CPU_DUMP_FPU) {
1011 int numvfpregs = 0;
1012 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1013 numvfpregs = 32;
1014 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1015 numvfpregs = 16;
1016 }
1017 for (i = 0; i < numvfpregs; i++) {
1018 uint64_t v = *aa32_vfp_dreg(env, i);
1019 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1020 i * 2, (uint32_t)v,
1021 i * 2 + 1, (uint32_t)(v >> 32),
1022 i, v);
1023 }
1024 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1025 }
1026 }
1027
1028 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1029 {
1030 uint32_t Aff1 = idx / clustersz;
1031 uint32_t Aff0 = idx % clustersz;
1032 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1033 }
1034
1035 static void cpreg_hashtable_data_destroy(gpointer data)
1036 {
1037 /*
1038 * Destroy function for cpu->cp_regs hashtable data entries.
1039 * We must free the name string because it was g_strdup()ed in
1040 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1041 * from r->name because we know we definitely allocated it.
1042 */
1043 ARMCPRegInfo *r = data;
1044
1045 g_free((void *)r->name);
1046 g_free(r);
1047 }
1048
1049 static void arm_cpu_initfn(Object *obj)
1050 {
1051 ARMCPU *cpu = ARM_CPU(obj);
1052
1053 cpu_set_cpustate_pointers(cpu);
1054 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1055 g_free, cpreg_hashtable_data_destroy);
1056
1057 QLIST_INIT(&cpu->pre_el_change_hooks);
1058 QLIST_INIT(&cpu->el_change_hooks);
1059
1060 #ifndef CONFIG_USER_ONLY
1061 /* Our inbound IRQ and FIQ lines */
1062 if (kvm_enabled()) {
1063 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1064 * the same interface as non-KVM CPUs.
1065 */
1066 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1067 } else {
1068 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1069 }
1070
1071 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1072 ARRAY_SIZE(cpu->gt_timer_outputs));
1073
1074 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1075 "gicv3-maintenance-interrupt", 1);
1076 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1077 "pmu-interrupt", 1);
1078 #endif
1079
1080 /* DTB consumers generally don't in fact care what the 'compatible'
1081 * string is, so always provide some string and trust that a hypothetical
1082 * picky DTB consumer will also provide a helpful error message.
1083 */
1084 cpu->dtb_compatible = "qemu,unknown";
1085 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1086 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1087
1088 if (tcg_enabled()) {
1089 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1090 }
1091 }
1092
1093 static Property arm_cpu_gt_cntfrq_property =
1094 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1095 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1096
1097 static Property arm_cpu_reset_cbar_property =
1098 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1099
1100 static Property arm_cpu_reset_hivecs_property =
1101 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1102
1103 static Property arm_cpu_rvbar_property =
1104 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1105
1106 static Property arm_cpu_has_el2_property =
1107 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1108
1109 static Property arm_cpu_has_el3_property =
1110 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1111
1112 static Property arm_cpu_cfgend_property =
1113 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1114
1115 static Property arm_cpu_has_vfp_property =
1116 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1117
1118 static Property arm_cpu_has_neon_property =
1119 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1120
1121 static Property arm_cpu_has_dsp_property =
1122 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1123
1124 static Property arm_cpu_has_mpu_property =
1125 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1126
1127 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1128 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1129 * the right value for that particular CPU type, and we don't want
1130 * to override that with an incorrect constant value.
1131 */
1132 static Property arm_cpu_pmsav7_dregion_property =
1133 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1134 pmsav7_dregion,
1135 qdev_prop_uint32, uint32_t);
1136
1137 static bool arm_get_pmu(Object *obj, Error **errp)
1138 {
1139 ARMCPU *cpu = ARM_CPU(obj);
1140
1141 return cpu->has_pmu;
1142 }
1143
1144 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1145 {
1146 ARMCPU *cpu = ARM_CPU(obj);
1147
1148 if (value) {
1149 if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1150 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1151 return;
1152 }
1153 set_feature(&cpu->env, ARM_FEATURE_PMU);
1154 } else {
1155 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1156 }
1157 cpu->has_pmu = value;
1158 }
1159
1160 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1161 void *opaque, Error **errp)
1162 {
1163 ARMCPU *cpu = ARM_CPU(obj);
1164
1165 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1166 }
1167
1168 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1169 void *opaque, Error **errp)
1170 {
1171 ARMCPU *cpu = ARM_CPU(obj);
1172
1173 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1174 }
1175
1176 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1177 {
1178 /*
1179 * The exact approach to calculating guest ticks is:
1180 *
1181 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1182 * NANOSECONDS_PER_SECOND);
1183 *
1184 * We don't do that. Rather we intentionally use integer division
1185 * truncation below and in the caller for the conversion of host monotonic
1186 * time to guest ticks to provide the exact inverse for the semantics of
1187 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1188 * it loses precision when representing frequencies where
1189 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1190 * provide an exact inverse leads to scheduling timers with negative
1191 * periods, which in turn leads to sticky behaviour in the guest.
1192 *
1193 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1194 * cannot become zero.
1195 */
1196 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1197 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1198 }
1199
1200 void arm_cpu_post_init(Object *obj)
1201 {
1202 ARMCPU *cpu = ARM_CPU(obj);
1203
1204 /* M profile implies PMSA. We have to do this here rather than
1205 * in realize with the other feature-implication checks because
1206 * we look at the PMSA bit to see if we should add some properties.
1207 */
1208 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1209 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1210 }
1211
1212 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1213 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1214 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1215 }
1216
1217 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1218 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1219 }
1220
1221 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1222 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1223 }
1224
1225 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1226 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1227 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1228 */
1229 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1230
1231 #ifndef CONFIG_USER_ONLY
1232 object_property_add_link(obj, "secure-memory",
1233 TYPE_MEMORY_REGION,
1234 (Object **)&cpu->secure_memory,
1235 qdev_prop_allow_set_link_before_realize,
1236 OBJ_PROP_LINK_STRONG,
1237 &error_abort);
1238 #endif
1239 }
1240
1241 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1242 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1243 }
1244
1245 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1246 cpu->has_pmu = true;
1247 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1248 &error_abort);
1249 }
1250
1251 /*
1252 * Allow user to turn off VFP and Neon support, but only for TCG --
1253 * KVM does not currently allow us to lie to the guest about its
1254 * ID/feature registers, so the guest always sees what the host has.
1255 */
1256 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1257 ? cpu_isar_feature(aa64_fp_simd, cpu)
1258 : cpu_isar_feature(aa32_vfp, cpu)) {
1259 cpu->has_vfp = true;
1260 if (!kvm_enabled()) {
1261 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1262 }
1263 }
1264
1265 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1266 cpu->has_neon = true;
1267 if (!kvm_enabled()) {
1268 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1269 }
1270 }
1271
1272 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1273 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1274 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1275 }
1276
1277 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1278 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1279 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1280 qdev_property_add_static(DEVICE(obj),
1281 &arm_cpu_pmsav7_dregion_property);
1282 }
1283 }
1284
1285 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1286 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1287 qdev_prop_allow_set_link_before_realize,
1288 OBJ_PROP_LINK_STRONG,
1289 &error_abort);
1290 /*
1291 * M profile: initial value of the Secure VTOR. We can't just use
1292 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1293 * the property to be set after realize.
1294 */
1295 object_property_add(obj, "init-svtor", "uint32",
1296 arm_get_init_svtor, arm_set_init_svtor,
1297 NULL, NULL, &error_abort);
1298 }
1299
1300 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1301
1302 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1303 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1304 }
1305 }
1306
1307 static void arm_cpu_finalizefn(Object *obj)
1308 {
1309 ARMCPU *cpu = ARM_CPU(obj);
1310 ARMELChangeHook *hook, *next;
1311
1312 g_hash_table_destroy(cpu->cp_regs);
1313
1314 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1315 QLIST_REMOVE(hook, node);
1316 g_free(hook);
1317 }
1318 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1319 QLIST_REMOVE(hook, node);
1320 g_free(hook);
1321 }
1322 #ifndef CONFIG_USER_ONLY
1323 if (cpu->pmu_timer) {
1324 timer_del(cpu->pmu_timer);
1325 timer_deinit(cpu->pmu_timer);
1326 timer_free(cpu->pmu_timer);
1327 }
1328 #endif
1329 }
1330
1331 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1332 {
1333 Error *local_err = NULL;
1334
1335 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1336 arm_cpu_sve_finalize(cpu, &local_err);
1337 if (local_err != NULL) {
1338 error_propagate(errp, local_err);
1339 return;
1340 }
1341 }
1342 }
1343
1344 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1345 {
1346 CPUState *cs = CPU(dev);
1347 ARMCPU *cpu = ARM_CPU(dev);
1348 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1349 CPUARMState *env = &cpu->env;
1350 int pagebits;
1351 Error *local_err = NULL;
1352 bool no_aa32 = false;
1353
1354 /* If we needed to query the host kernel for the CPU features
1355 * then it's possible that might have failed in the initfn, but
1356 * this is the first point where we can report it.
1357 */
1358 if (cpu->host_cpu_probe_failed) {
1359 if (!kvm_enabled()) {
1360 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1361 } else {
1362 error_setg(errp, "Failed to retrieve host CPU features");
1363 }
1364 return;
1365 }
1366
1367 #ifndef CONFIG_USER_ONLY
1368 /* The NVIC and M-profile CPU are two halves of a single piece of
1369 * hardware; trying to use one without the other is a command line
1370 * error and will result in segfaults if not caught here.
1371 */
1372 if (arm_feature(env, ARM_FEATURE_M)) {
1373 if (!env->nvic) {
1374 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1375 return;
1376 }
1377 } else {
1378 if (env->nvic) {
1379 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1380 return;
1381 }
1382 }
1383
1384 {
1385 uint64_t scale;
1386
1387 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1388 if (!cpu->gt_cntfrq_hz) {
1389 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1390 cpu->gt_cntfrq_hz);
1391 return;
1392 }
1393 scale = gt_cntfrq_period_ns(cpu);
1394 } else {
1395 scale = GTIMER_SCALE;
1396 }
1397
1398 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1399 arm_gt_ptimer_cb, cpu);
1400 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1401 arm_gt_vtimer_cb, cpu);
1402 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1403 arm_gt_htimer_cb, cpu);
1404 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1405 arm_gt_stimer_cb, cpu);
1406 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1407 arm_gt_hvtimer_cb, cpu);
1408 }
1409 #endif
1410
1411 cpu_exec_realizefn(cs, &local_err);
1412 if (local_err != NULL) {
1413 error_propagate(errp, local_err);
1414 return;
1415 }
1416
1417 arm_cpu_finalize_features(cpu, &local_err);
1418 if (local_err != NULL) {
1419 error_propagate(errp, local_err);
1420 return;
1421 }
1422
1423 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1424 cpu->has_vfp != cpu->has_neon) {
1425 /*
1426 * This is an architectural requirement for AArch64; AArch32 is
1427 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1428 */
1429 error_setg(errp,
1430 "AArch64 CPUs must have both VFP and Neon or neither");
1431 return;
1432 }
1433
1434 if (!cpu->has_vfp) {
1435 uint64_t t;
1436 uint32_t u;
1437
1438 t = cpu->isar.id_aa64isar1;
1439 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1440 cpu->isar.id_aa64isar1 = t;
1441
1442 t = cpu->isar.id_aa64pfr0;
1443 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1444 cpu->isar.id_aa64pfr0 = t;
1445
1446 u = cpu->isar.id_isar6;
1447 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1448 cpu->isar.id_isar6 = u;
1449
1450 u = cpu->isar.mvfr0;
1451 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1452 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1453 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1454 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1455 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1456 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1457 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1458 cpu->isar.mvfr0 = u;
1459
1460 u = cpu->isar.mvfr1;
1461 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1462 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1463 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1464 cpu->isar.mvfr1 = u;
1465
1466 u = cpu->isar.mvfr2;
1467 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1468 cpu->isar.mvfr2 = u;
1469 }
1470
1471 if (!cpu->has_neon) {
1472 uint64_t t;
1473 uint32_t u;
1474
1475 unset_feature(env, ARM_FEATURE_NEON);
1476
1477 t = cpu->isar.id_aa64isar0;
1478 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1479 cpu->isar.id_aa64isar0 = t;
1480
1481 t = cpu->isar.id_aa64isar1;
1482 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1483 cpu->isar.id_aa64isar1 = t;
1484
1485 t = cpu->isar.id_aa64pfr0;
1486 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1487 cpu->isar.id_aa64pfr0 = t;
1488
1489 u = cpu->isar.id_isar5;
1490 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1491 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1492 cpu->isar.id_isar5 = u;
1493
1494 u = cpu->isar.id_isar6;
1495 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1496 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1497 cpu->isar.id_isar6 = u;
1498
1499 u = cpu->isar.mvfr1;
1500 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1501 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1502 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1503 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1504 cpu->isar.mvfr1 = u;
1505
1506 u = cpu->isar.mvfr2;
1507 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1508 cpu->isar.mvfr2 = u;
1509 }
1510
1511 if (!cpu->has_neon && !cpu->has_vfp) {
1512 uint64_t t;
1513 uint32_t u;
1514
1515 t = cpu->isar.id_aa64isar0;
1516 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1517 cpu->isar.id_aa64isar0 = t;
1518
1519 t = cpu->isar.id_aa64isar1;
1520 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1521 cpu->isar.id_aa64isar1 = t;
1522
1523 u = cpu->isar.mvfr0;
1524 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1525 cpu->isar.mvfr0 = u;
1526
1527 /* Despite the name, this field covers both VFP and Neon */
1528 u = cpu->isar.mvfr1;
1529 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1530 cpu->isar.mvfr1 = u;
1531 }
1532
1533 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1534 uint32_t u;
1535
1536 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1537
1538 u = cpu->isar.id_isar1;
1539 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1540 cpu->isar.id_isar1 = u;
1541
1542 u = cpu->isar.id_isar2;
1543 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1544 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1545 cpu->isar.id_isar2 = u;
1546
1547 u = cpu->isar.id_isar3;
1548 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1549 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1550 cpu->isar.id_isar3 = u;
1551 }
1552
1553 /* Some features automatically imply others: */
1554 if (arm_feature(env, ARM_FEATURE_V8)) {
1555 if (arm_feature(env, ARM_FEATURE_M)) {
1556 set_feature(env, ARM_FEATURE_V7);
1557 } else {
1558 set_feature(env, ARM_FEATURE_V7VE);
1559 }
1560 }
1561
1562 /*
1563 * There exist AArch64 cpus without AArch32 support. When KVM
1564 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1565 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1566 * As a general principle, we also do not make ID register
1567 * consistency checks anywhere unless using TCG, because only
1568 * for TCG would a consistency-check failure be a QEMU bug.
1569 */
1570 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1571 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1572 }
1573
1574 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1575 /* v7 Virtualization Extensions. In real hardware this implies
1576 * EL2 and also the presence of the Security Extensions.
1577 * For QEMU, for backwards-compatibility we implement some
1578 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1579 * include the various other features that V7VE implies.
1580 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1581 * Security Extensions is ARM_FEATURE_EL3.
1582 */
1583 assert(!tcg_enabled() || no_aa32 ||
1584 cpu_isar_feature(aa32_arm_div, cpu));
1585 set_feature(env, ARM_FEATURE_LPAE);
1586 set_feature(env, ARM_FEATURE_V7);
1587 }
1588 if (arm_feature(env, ARM_FEATURE_V7)) {
1589 set_feature(env, ARM_FEATURE_VAPA);
1590 set_feature(env, ARM_FEATURE_THUMB2);
1591 set_feature(env, ARM_FEATURE_MPIDR);
1592 if (!arm_feature(env, ARM_FEATURE_M)) {
1593 set_feature(env, ARM_FEATURE_V6K);
1594 } else {
1595 set_feature(env, ARM_FEATURE_V6);
1596 }
1597
1598 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1599 * non-EL3 configs. This is needed by some legacy boards.
1600 */
1601 set_feature(env, ARM_FEATURE_VBAR);
1602 }
1603 if (arm_feature(env, ARM_FEATURE_V6K)) {
1604 set_feature(env, ARM_FEATURE_V6);
1605 set_feature(env, ARM_FEATURE_MVFR);
1606 }
1607 if (arm_feature(env, ARM_FEATURE_V6)) {
1608 set_feature(env, ARM_FEATURE_V5);
1609 if (!arm_feature(env, ARM_FEATURE_M)) {
1610 assert(!tcg_enabled() || no_aa32 ||
1611 cpu_isar_feature(aa32_jazelle, cpu));
1612 set_feature(env, ARM_FEATURE_AUXCR);
1613 }
1614 }
1615 if (arm_feature(env, ARM_FEATURE_V5)) {
1616 set_feature(env, ARM_FEATURE_V4T);
1617 }
1618 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1619 set_feature(env, ARM_FEATURE_V7MP);
1620 set_feature(env, ARM_FEATURE_PXN);
1621 }
1622 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1623 set_feature(env, ARM_FEATURE_CBAR);
1624 }
1625 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1626 !arm_feature(env, ARM_FEATURE_M)) {
1627 set_feature(env, ARM_FEATURE_THUMB_DSP);
1628 }
1629
1630 /*
1631 * We rely on no XScale CPU having VFP so we can use the same bits in the
1632 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1633 */
1634 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1635 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1636 !arm_feature(env, ARM_FEATURE_XSCALE));
1637
1638 if (arm_feature(env, ARM_FEATURE_V7) &&
1639 !arm_feature(env, ARM_FEATURE_M) &&
1640 !arm_feature(env, ARM_FEATURE_PMSA)) {
1641 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1642 * can use 4K pages.
1643 */
1644 pagebits = 12;
1645 } else {
1646 /* For CPUs which might have tiny 1K pages, or which have an
1647 * MPU and might have small region sizes, stick with 1K pages.
1648 */
1649 pagebits = 10;
1650 }
1651 if (!set_preferred_target_page_bits(pagebits)) {
1652 /* This can only ever happen for hotplugging a CPU, or if
1653 * the board code incorrectly creates a CPU which it has
1654 * promised via minimum_page_size that it will not.
1655 */
1656 error_setg(errp, "This CPU requires a smaller page size than the "
1657 "system is using");
1658 return;
1659 }
1660
1661 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1662 * We don't support setting cluster ID ([16..23]) (known as Aff2
1663 * in later ARM ARM versions), or any of the higher affinity level fields,
1664 * so these bits always RAZ.
1665 */
1666 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1667 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1668 ARM_DEFAULT_CPUS_PER_CLUSTER);
1669 }
1670
1671 if (cpu->reset_hivecs) {
1672 cpu->reset_sctlr |= (1 << 13);
1673 }
1674
1675 if (cpu->cfgend) {
1676 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1677 cpu->reset_sctlr |= SCTLR_EE;
1678 } else {
1679 cpu->reset_sctlr |= SCTLR_B;
1680 }
1681 }
1682
1683 if (!cpu->has_el3) {
1684 /* If the has_el3 CPU property is disabled then we need to disable the
1685 * feature.
1686 */
1687 unset_feature(env, ARM_FEATURE_EL3);
1688
1689 /* Disable the security extension feature bits in the processor feature
1690 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1691 */
1692 cpu->id_pfr1 &= ~0xf0;
1693 cpu->isar.id_aa64pfr0 &= ~0xf000;
1694 }
1695
1696 if (!cpu->has_el2) {
1697 unset_feature(env, ARM_FEATURE_EL2);
1698 }
1699
1700 if (!cpu->has_pmu) {
1701 unset_feature(env, ARM_FEATURE_PMU);
1702 }
1703 if (arm_feature(env, ARM_FEATURE_PMU)) {
1704 pmu_init(cpu);
1705
1706 if (!kvm_enabled()) {
1707 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1708 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1709 }
1710
1711 #ifndef CONFIG_USER_ONLY
1712 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1713 cpu);
1714 #endif
1715 } else {
1716 cpu->isar.id_aa64dfr0 =
1717 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1718 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1719 cpu->pmceid0 = 0;
1720 cpu->pmceid1 = 0;
1721 }
1722
1723 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1724 /* Disable the hypervisor feature bits in the processor feature
1725 * registers if we don't have EL2. These are id_pfr1[15:12] and
1726 * id_aa64pfr0_el1[11:8].
1727 */
1728 cpu->isar.id_aa64pfr0 &= ~0xf00;
1729 cpu->id_pfr1 &= ~0xf000;
1730 }
1731
1732 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1733 * to false or by setting pmsav7-dregion to 0.
1734 */
1735 if (!cpu->has_mpu) {
1736 cpu->pmsav7_dregion = 0;
1737 }
1738 if (cpu->pmsav7_dregion == 0) {
1739 cpu->has_mpu = false;
1740 }
1741
1742 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1743 arm_feature(env, ARM_FEATURE_V7)) {
1744 uint32_t nr = cpu->pmsav7_dregion;
1745
1746 if (nr > 0xff) {
1747 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1748 return;
1749 }
1750
1751 if (nr) {
1752 if (arm_feature(env, ARM_FEATURE_V8)) {
1753 /* PMSAv8 */
1754 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1755 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1756 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1757 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1758 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1759 }
1760 } else {
1761 env->pmsav7.drbar = g_new0(uint32_t, nr);
1762 env->pmsav7.drsr = g_new0(uint32_t, nr);
1763 env->pmsav7.dracr = g_new0(uint32_t, nr);
1764 }
1765 }
1766 }
1767
1768 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1769 uint32_t nr = cpu->sau_sregion;
1770
1771 if (nr > 0xff) {
1772 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1773 return;
1774 }
1775
1776 if (nr) {
1777 env->sau.rbar = g_new0(uint32_t, nr);
1778 env->sau.rlar = g_new0(uint32_t, nr);
1779 }
1780 }
1781
1782 if (arm_feature(env, ARM_FEATURE_EL3)) {
1783 set_feature(env, ARM_FEATURE_VBAR);
1784 }
1785
1786 register_cp_regs_for_features(cpu);
1787 arm_cpu_register_gdb_regs_for_features(cpu);
1788
1789 init_cpreg_list(cpu);
1790
1791 #ifndef CONFIG_USER_ONLY
1792 MachineState *ms = MACHINE(qdev_get_machine());
1793 unsigned int smp_cpus = ms->smp.cpus;
1794
1795 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1796 cs->num_ases = 2;
1797
1798 if (!cpu->secure_memory) {
1799 cpu->secure_memory = cs->memory;
1800 }
1801 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1802 cpu->secure_memory);
1803 } else {
1804 cs->num_ases = 1;
1805 }
1806 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1807
1808 /* No core_count specified, default to smp_cpus. */
1809 if (cpu->core_count == -1) {
1810 cpu->core_count = smp_cpus;
1811 }
1812 #endif
1813
1814 qemu_init_vcpu(cs);
1815 cpu_reset(cs);
1816
1817 acc->parent_realize(dev, errp);
1818 }
1819
1820 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1821 {
1822 ObjectClass *oc;
1823 char *typename;
1824 char **cpuname;
1825 const char *cpunamestr;
1826
1827 cpuname = g_strsplit(cpu_model, ",", 1);
1828 cpunamestr = cpuname[0];
1829 #ifdef CONFIG_USER_ONLY
1830 /* For backwards compatibility usermode emulation allows "-cpu any",
1831 * which has the same semantics as "-cpu max".
1832 */
1833 if (!strcmp(cpunamestr, "any")) {
1834 cpunamestr = "max";
1835 }
1836 #endif
1837 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1838 oc = object_class_by_name(typename);
1839 g_strfreev(cpuname);
1840 g_free(typename);
1841 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1842 object_class_is_abstract(oc)) {
1843 return NULL;
1844 }
1845 return oc;
1846 }
1847
1848 /* CPU models. These are not needed for the AArch64 linux-user build. */
1849 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1850
1851 static void arm926_initfn(Object *obj)
1852 {
1853 ARMCPU *cpu = ARM_CPU(obj);
1854
1855 cpu->dtb_compatible = "arm,arm926";
1856 set_feature(&cpu->env, ARM_FEATURE_V5);
1857 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1858 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1859 cpu->midr = 0x41069265;
1860 cpu->reset_fpsid = 0x41011090;
1861 cpu->ctr = 0x1dd20d2;
1862 cpu->reset_sctlr = 0x00090078;
1863
1864 /*
1865 * ARMv5 does not have the ID_ISAR registers, but we can still
1866 * set the field to indicate Jazelle support within QEMU.
1867 */
1868 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1869 /*
1870 * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1871 * support even though ARMv5 doesn't have this register.
1872 */
1873 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1874 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1875 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1876 }
1877
1878 static void arm946_initfn(Object *obj)
1879 {
1880 ARMCPU *cpu = ARM_CPU(obj);
1881
1882 cpu->dtb_compatible = "arm,arm946";
1883 set_feature(&cpu->env, ARM_FEATURE_V5);
1884 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1885 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1886 cpu->midr = 0x41059461;
1887 cpu->ctr = 0x0f004006;
1888 cpu->reset_sctlr = 0x00000078;
1889 }
1890
1891 static void arm1026_initfn(Object *obj)
1892 {
1893 ARMCPU *cpu = ARM_CPU(obj);
1894
1895 cpu->dtb_compatible = "arm,arm1026";
1896 set_feature(&cpu->env, ARM_FEATURE_V5);
1897 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1898 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1899 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1900 cpu->midr = 0x4106a262;
1901 cpu->reset_fpsid = 0x410110a0;
1902 cpu->ctr = 0x1dd20d2;
1903 cpu->reset_sctlr = 0x00090078;
1904 cpu->reset_auxcr = 1;
1905
1906 /*
1907 * ARMv5 does not have the ID_ISAR registers, but we can still
1908 * set the field to indicate Jazelle support within QEMU.
1909 */
1910 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1911 /*
1912 * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1913 * support even though ARMv5 doesn't have this register.
1914 */
1915 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1916 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1917 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1918
1919 {
1920 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1921 ARMCPRegInfo ifar = {
1922 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1923 .access = PL1_RW,
1924 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1925 .resetvalue = 0
1926 };
1927 define_one_arm_cp_reg(cpu, &ifar);
1928 }
1929 }
1930
1931 static void arm1136_r2_initfn(Object *obj)
1932 {
1933 ARMCPU *cpu = ARM_CPU(obj);
1934 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1935 * older core than plain "arm1136". In particular this does not
1936 * have the v6K features.
1937 * These ID register values are correct for 1136 but may be wrong
1938 * for 1136_r2 (in particular r0p2 does not actually implement most
1939 * of the ID registers).
1940 */
1941
1942 cpu->dtb_compatible = "arm,arm1136";
1943 set_feature(&cpu->env, ARM_FEATURE_V6);
1944 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1945 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1946 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1947 cpu->midr = 0x4107b362;
1948 cpu->reset_fpsid = 0x410120b4;
1949 cpu->isar.mvfr0 = 0x11111111;
1950 cpu->isar.mvfr1 = 0x00000000;
1951 cpu->ctr = 0x1dd20d2;
1952 cpu->reset_sctlr = 0x00050078;
1953 cpu->id_pfr0 = 0x111;
1954 cpu->id_pfr1 = 0x1;
1955 cpu->isar.id_dfr0 = 0x2;
1956 cpu->id_afr0 = 0x3;
1957 cpu->isar.id_mmfr0 = 0x01130003;
1958 cpu->isar.id_mmfr1 = 0x10030302;
1959 cpu->isar.id_mmfr2 = 0x01222110;
1960 cpu->isar.id_isar0 = 0x00140011;
1961 cpu->isar.id_isar1 = 0x12002111;
1962 cpu->isar.id_isar2 = 0x11231111;
1963 cpu->isar.id_isar3 = 0x01102131;
1964 cpu->isar.id_isar4 = 0x141;
1965 cpu->reset_auxcr = 7;
1966 }
1967
1968 static void arm1136_initfn(Object *obj)
1969 {
1970 ARMCPU *cpu = ARM_CPU(obj);
1971
1972 cpu->dtb_compatible = "arm,arm1136";
1973 set_feature(&cpu->env, ARM_FEATURE_V6K);
1974 set_feature(&cpu->env, ARM_FEATURE_V6);
1975 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1976 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1977 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1978 cpu->midr = 0x4117b363;
1979 cpu->reset_fpsid = 0x410120b4;
1980 cpu->isar.mvfr0 = 0x11111111;
1981 cpu->isar.mvfr1 = 0x00000000;
1982 cpu->ctr = 0x1dd20d2;
1983 cpu->reset_sctlr = 0x00050078;
1984 cpu->id_pfr0 = 0x111;
1985 cpu->id_pfr1 = 0x1;
1986 cpu->isar.id_dfr0 = 0x2;
1987 cpu->id_afr0 = 0x3;
1988 cpu->isar.id_mmfr0 = 0x01130003;
1989 cpu->isar.id_mmfr1 = 0x10030302;
1990 cpu->isar.id_mmfr2 = 0x01222110;
1991 cpu->isar.id_isar0 = 0x00140011;
1992 cpu->isar.id_isar1 = 0x12002111;
1993 cpu->isar.id_isar2 = 0x11231111;
1994 cpu->isar.id_isar3 = 0x01102131;
1995 cpu->isar.id_isar4 = 0x141;
1996 cpu->reset_auxcr = 7;
1997 }
1998
1999 static void arm1176_initfn(Object *obj)
2000 {
2001 ARMCPU *cpu = ARM_CPU(obj);
2002
2003 cpu->dtb_compatible = "arm,arm1176";
2004 set_feature(&cpu->env, ARM_FEATURE_V6K);
2005 set_feature(&cpu->env, ARM_FEATURE_VAPA);
2006 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2007 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
2008 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
2009 set_feature(&cpu->env, ARM_FEATURE_EL3);
2010 cpu->midr = 0x410fb767;
2011 cpu->reset_fpsid = 0x410120b5;
2012 cpu->isar.mvfr0 = 0x11111111;
2013 cpu->isar.mvfr1 = 0x00000000;
2014 cpu->ctr = 0x1dd20d2;
2015 cpu->reset_sctlr = 0x00050078;
2016 cpu->id_pfr0 = 0x111;
2017 cpu->id_pfr1 = 0x11;
2018 cpu->isar.id_dfr0 = 0x33;
2019 cpu->id_afr0 = 0;
2020 cpu->isar.id_mmfr0 = 0x01130003;
2021 cpu->isar.id_mmfr1 = 0x10030302;
2022 cpu->isar.id_mmfr2 = 0x01222100;
2023 cpu->isar.id_isar0 = 0x0140011;
2024 cpu->isar.id_isar1 = 0x12002111;
2025 cpu->isar.id_isar2 = 0x11231121;
2026 cpu->isar.id_isar3 = 0x01102131;
2027 cpu->isar.id_isar4 = 0x01141;
2028 cpu->reset_auxcr = 7;
2029 }
2030
2031 static void arm11mpcore_initfn(Object *obj)
2032 {
2033 ARMCPU *cpu = ARM_CPU(obj);
2034
2035 cpu->dtb_compatible = "arm,arm11mpcore";
2036 set_feature(&cpu->env, ARM_FEATURE_V6K);
2037 set_feature(&cpu->env, ARM_FEATURE_VAPA);
2038 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2039 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2040 cpu->midr = 0x410fb022;
2041 cpu->reset_fpsid = 0x410120b4;
2042 cpu->isar.mvfr0 = 0x11111111;
2043 cpu->isar.mvfr1 = 0x00000000;
2044 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2045 cpu->id_pfr0 = 0x111;
2046 cpu->id_pfr1 = 0x1;
2047 cpu->isar.id_dfr0 = 0;
2048 cpu->id_afr0 = 0x2;
2049 cpu->isar.id_mmfr0 = 0x01100103;
2050 cpu->isar.id_mmfr1 = 0x10020302;
2051 cpu->isar.id_mmfr2 = 0x01222000;
2052 cpu->isar.id_isar0 = 0x00100011;
2053 cpu->isar.id_isar1 = 0x12002111;
2054 cpu->isar.id_isar2 = 0x11221011;
2055 cpu->isar.id_isar3 = 0x01102131;
2056 cpu->isar.id_isar4 = 0x141;
2057 cpu->reset_auxcr = 1;
2058 }
2059
2060 static void cortex_m0_initfn(Object *obj)
2061 {
2062 ARMCPU *cpu = ARM_CPU(obj);
2063 set_feature(&cpu->env, ARM_FEATURE_V6);
2064 set_feature(&cpu->env, ARM_FEATURE_M);
2065
2066 cpu->midr = 0x410cc200;
2067 }
2068
2069 static void cortex_m3_initfn(Object *obj)
2070 {
2071 ARMCPU *cpu = ARM_CPU(obj);
2072 set_feature(&cpu->env, ARM_FEATURE_V7);
2073 set_feature(&cpu->env, ARM_FEATURE_M);
2074 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2075 cpu->midr = 0x410fc231;
2076 cpu->pmsav7_dregion = 8;
2077 cpu->id_pfr0 = 0x00000030;
2078 cpu->id_pfr1 = 0x00000200;
2079 cpu->isar.id_dfr0 = 0x00100000;
2080 cpu->id_afr0 = 0x00000000;
2081 cpu->isar.id_mmfr0 = 0x00000030;
2082 cpu->isar.id_mmfr1 = 0x00000000;
2083 cpu->isar.id_mmfr2 = 0x00000000;
2084 cpu->isar.id_mmfr3 = 0x00000000;
2085 cpu->isar.id_isar0 = 0x01141110;
2086 cpu->isar.id_isar1 = 0x02111000;
2087 cpu->isar.id_isar2 = 0x21112231;
2088 cpu->isar.id_isar3 = 0x01111110;
2089 cpu->isar.id_isar4 = 0x01310102;
2090 cpu->isar.id_isar5 = 0x00000000;
2091 cpu->isar.id_isar6 = 0x00000000;
2092 }
2093
2094 static void cortex_m4_initfn(Object *obj)
2095 {
2096 ARMCPU *cpu = ARM_CPU(obj);
2097
2098 set_feature(&cpu->env, ARM_FEATURE_V7);
2099 set_feature(&cpu->env, ARM_FEATURE_M);
2100 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2101 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2102 cpu->midr = 0x410fc240; /* r0p0 */
2103 cpu->pmsav7_dregion = 8;
2104 cpu->isar.mvfr0 = 0x10110021;
2105 cpu->isar.mvfr1 = 0x11000011;
2106 cpu->isar.mvfr2 = 0x00000000;
2107 cpu->id_pfr0 = 0x00000030;
2108 cpu->id_pfr1 = 0x00000200;
2109 cpu->isar.id_dfr0 = 0x00100000;
2110 cpu->id_afr0 = 0x00000000;
2111 cpu->isar.id_mmfr0 = 0x00000030;
2112 cpu->isar.id_mmfr1 = 0x00000000;
2113 cpu->isar.id_mmfr2 = 0x00000000;
2114 cpu->isar.id_mmfr3 = 0x00000000;
2115 cpu->isar.id_isar0 = 0x01141110;
2116 cpu->isar.id_isar1 = 0x02111000;
2117 cpu->isar.id_isar2 = 0x21112231;
2118 cpu->isar.id_isar3 = 0x01111110;
2119 cpu->isar.id_isar4 = 0x01310102;
2120 cpu->isar.id_isar5 = 0x00000000;
2121 cpu->isar.id_isar6 = 0x00000000;
2122 }
2123
2124 static void cortex_m7_initfn(Object *obj)
2125 {
2126 ARMCPU *cpu = ARM_CPU(obj);
2127
2128 set_feature(&cpu->env, ARM_FEATURE_V7);
2129 set_feature(&cpu->env, ARM_FEATURE_M);
2130 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2131 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2132 cpu->midr = 0x411fc272; /* r1p2 */
2133 cpu->pmsav7_dregion = 8;
2134 cpu->isar.mvfr0 = 0x10110221;
2135 cpu->isar.mvfr1 = 0x12000011;
2136 cpu->isar.mvfr2 = 0x00000040;
2137 cpu->id_pfr0 = 0x00000030;
2138 cpu->id_pfr1 = 0x00000200;
2139 cpu->isar.id_dfr0 = 0x00100000;
2140 cpu->id_afr0 = 0x00000000;
2141 cpu->isar.id_mmfr0 = 0x00100030;
2142 cpu->isar.id_mmfr1 = 0x00000000;
2143 cpu->isar.id_mmfr2 = 0x01000000;
2144 cpu->isar.id_mmfr3 = 0x00000000;
2145 cpu->isar.id_isar0 = 0x01101110;
2146 cpu->isar.id_isar1 = 0x02112000;
2147 cpu->isar.id_isar2 = 0x20232231;
2148 cpu->isar.id_isar3 = 0x01111131;
2149 cpu->isar.id_isar4 = 0x01310132;
2150 cpu->isar.id_isar5 = 0x00000000;
2151 cpu->isar.id_isar6 = 0x00000000;
2152 }
2153
2154 static void cortex_m33_initfn(Object *obj)
2155 {
2156 ARMCPU *cpu = ARM_CPU(obj);
2157
2158 set_feature(&cpu->env, ARM_FEATURE_V8);
2159 set_feature(&cpu->env, ARM_FEATURE_M);
2160 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2161 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2162 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2163 cpu->midr = 0x410fd213; /* r0p3 */
2164 cpu->pmsav7_dregion = 16;
2165 cpu->sau_sregion = 8;
2166 cpu->isar.mvfr0 = 0x10110021;
2167 cpu->isar.mvfr1 = 0x11000011;
2168 cpu->isar.mvfr2 = 0x00000040;
2169 cpu->id_pfr0 = 0x00000030;
2170 cpu->id_pfr1 = 0x00000210;
2171 cpu->isar.id_dfr0 = 0x00200000;
2172 cpu->id_afr0 = 0x00000000;
2173 cpu->isar.id_mmfr0 = 0x00101F40;
2174 cpu->isar.id_mmfr1 = 0x00000000;
2175 cpu->isar.id_mmfr2 = 0x01000000;
2176 cpu->isar.id_mmfr3 = 0x00000000;
2177 cpu->isar.id_isar0 = 0x01101110;
2178 cpu->isar.id_isar1 = 0x02212000;
2179 cpu->isar.id_isar2 = 0x20232232;
2180 cpu->isar.id_isar3 = 0x01111131;
2181 cpu->isar.id_isar4 = 0x01310132;
2182 cpu->isar.id_isar5 = 0x00000000;
2183 cpu->isar.id_isar6 = 0x00000000;
2184 cpu->clidr = 0x00000000;
2185 cpu->ctr = 0x8000c000;
2186 }
2187
2188 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2189 {
2190 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2191 CPUClass *cc = CPU_CLASS(oc);
2192
2193 acc->info = data;
2194 #ifndef CONFIG_USER_ONLY
2195 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2196 #endif
2197
2198 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2199 }
2200
2201 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2202 /* Dummy the TCM region regs for the moment */
2203 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2204 .access = PL1_RW, .type = ARM_CP_CONST },
2205 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2206 .access = PL1_RW, .type = ARM_CP_CONST },
2207 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2208 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2209 REGINFO_SENTINEL
2210 };
2211
2212 static void cortex_r5_initfn(Object *obj)
2213 {
2214 ARMCPU *cpu = ARM_CPU(obj);
2215
2216 set_feature(&cpu->env, ARM_FEATURE_V7);
2217 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2218 set_feature(&cpu->env, ARM_FEATURE_PMSA);
2219 set_feature(&cpu->env, ARM_FEATURE_PMU);
2220 cpu->midr = 0x411fc153; /* r1p3 */
2221 cpu->id_pfr0 = 0x0131;
2222 cpu->id_pfr1 = 0x001;
2223 cpu->isar.id_dfr0 = 0x010400;
2224 cpu->id_afr0 = 0x0;
2225 cpu->isar.id_mmfr0 = 0x0210030;
2226 cpu->isar.id_mmfr1 = 0x00000000;
2227 cpu->isar.id_mmfr2 = 0x01200000;
2228 cpu->isar.id_mmfr3 = 0x0211;
2229 cpu->isar.id_isar0 = 0x02101111;
2230 cpu->isar.id_isar1 = 0x13112111;
2231 cpu->isar.id_isar2 = 0x21232141;
2232 cpu->isar.id_isar3 = 0x01112131;
2233 cpu->isar.id_isar4 = 0x0010142;
2234 cpu->isar.id_isar5 = 0x0;
2235 cpu->isar.id_isar6 = 0x0;
2236 cpu->mp_is_up = true;
2237 cpu->pmsav7_dregion = 16;
2238 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2239 }
2240
2241 static void cortex_r5f_initfn(Object *obj)
2242 {
2243 ARMCPU *cpu = ARM_CPU(obj);
2244
2245 cortex_r5_initfn(obj);
2246 cpu->isar.mvfr0 = 0x10110221;
2247 cpu->isar.mvfr1 = 0x00000011;
2248 }
2249
2250 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2251 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2252 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2253 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2254 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2255 REGINFO_SENTINEL
2256 };
2257
2258 static void cortex_a8_initfn(Object *obj)
2259 {
2260 ARMCPU *cpu = ARM_CPU(obj);
2261
2262 cpu->dtb_compatible = "arm,cortex-a8";
2263 set_feature(&cpu->env, ARM_FEATURE_V7);
2264 set_feature(&cpu->env, ARM_FEATURE_NEON);
2265 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2266 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2267 set_feature(&cpu->env, ARM_FEATURE_EL3);
2268 cpu->midr = 0x410fc080;
2269 cpu->reset_fpsid = 0x410330c0;
2270 cpu->isar.mvfr0 = 0x11110222;
2271 cpu->isar.mvfr1 = 0x00011111;
2272 cpu->ctr = 0x82048004;
2273 cpu->reset_sctlr = 0x00c50078;
2274 cpu->id_pfr0 = 0x1031;
2275 cpu->id_pfr1 = 0x11;
2276 cpu->isar.id_dfr0 = 0x400;
2277 cpu->id_afr0 = 0;
2278 cpu->isar.id_mmfr0 = 0x31100003;
2279 cpu->isar.id_mmfr1 = 0x20000000;
2280 cpu->isar.id_mmfr2 = 0x01202000;
2281 cpu->isar.id_mmfr3 = 0x11;
2282 cpu->isar.id_isar0 = 0x00101111;
2283 cpu->isar.id_isar1 = 0x12112111;
2284 cpu->isar.id_isar2 = 0x21232031;
2285 cpu->isar.id_isar3 = 0x11112131;
2286 cpu->isar.id_isar4 = 0x00111142;
2287 cpu->isar.dbgdidr = 0x15141000;
2288 cpu->clidr = (1 << 27) | (2 << 24) | 3;
2289 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2290 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2291 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2292 cpu->reset_auxcr = 2;
2293 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2294 }
2295
2296 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2297 /* power_control should be set to maximum latency. Again,
2298 * default to 0 and set by private hook
2299 */
2300 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2301 .access = PL1_RW, .resetvalue = 0,
2302 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2303 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2304 .access = PL1_RW, .resetvalue = 0,
2305 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2306 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2307 .access = PL1_RW, .resetvalue = 0,
2308 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2309 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2310 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2311 /* TLB lockdown control */
2312 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2313 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2314 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2315 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2316 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2317 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2318 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2319 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2320 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2321 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2322 REGINFO_SENTINEL
2323 };
2324
2325 static void cortex_a9_initfn(Object *obj)
2326 {
2327 ARMCPU *cpu = ARM_CPU(obj);
2328
2329 cpu->dtb_compatible = "arm,cortex-a9";
2330 set_feature(&cpu->env, ARM_FEATURE_V7);
2331 set_feature(&cpu->env, ARM_FEATURE_NEON);
2332 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2333 set_feature(&cpu->env, ARM_FEATURE_EL3);
2334 /* Note that A9 supports the MP extensions even for
2335 * A9UP and single-core A9MP (which are both different
2336 * and valid configurations; we don't model A9UP).
2337 */
2338 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2339 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2340 cpu->midr = 0x410fc090;
2341 cpu->reset_fpsid = 0x41033090;
2342 cpu->isar.mvfr0 = 0x11110222;
2343 cpu->isar.mvfr1 = 0x01111111;
2344 cpu->ctr = 0x80038003;
2345 cpu->reset_sctlr = 0x00c50078;
2346 cpu->id_pfr0 = 0x1031;
2347 cpu->id_pfr1 = 0x11;
2348 cpu->isar.id_dfr0 = 0x000;
2349 cpu->id_afr0 = 0;
2350 cpu->isar.id_mmfr0 = 0x00100103;
2351 cpu->isar.id_mmfr1 = 0x20000000;
2352 cpu->isar.id_mmfr2 = 0x01230000;
2353 cpu->isar.id_mmfr3 = 0x00002111;
2354 cpu->isar.id_isar0 = 0x00101111;
2355 cpu->isar.id_isar1 = 0x13112111;
2356 cpu->isar.id_isar2 = 0x21232041;
2357 cpu->isar.id_isar3 = 0x11112131;
2358 cpu->isar.id_isar4 = 0x00111142;
2359 cpu->isar.dbgdidr = 0x35141000;
2360 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2361 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2362 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2363 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2364 }
2365
2366 #ifndef CONFIG_USER_ONLY
2367 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2368 {
2369 MachineState *ms = MACHINE(qdev_get_machine());
2370
2371 /* Linux wants the number of processors from here.
2372 * Might as well set the interrupt-controller bit too.
2373 */
2374 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2375 }
2376 #endif
2377
2378 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2379 #ifndef CONFIG_USER_ONLY
2380 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2381 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2382 .writefn = arm_cp_write_ignore, },
2383 #endif
2384 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2385 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2386 REGINFO_SENTINEL
2387 };
2388
2389 static void cortex_a7_initfn(Object *obj)
2390 {
2391 ARMCPU *cpu = ARM_CPU(obj);
2392
2393 cpu->dtb_compatible = "arm,cortex-a7";
2394 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2395 set_feature(&cpu->env, ARM_FEATURE_NEON);
2396 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2397 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2398 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2399 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2400 set_feature(&cpu->env, ARM_FEATURE_EL2);
2401 set_feature(&cpu->env, ARM_FEATURE_EL3);
2402 set_feature(&cpu->env, ARM_FEATURE_PMU);
2403 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2404 cpu->midr = 0x410fc075;
2405 cpu->reset_fpsid = 0x41023075;
2406 cpu->isar.mvfr0 = 0x10110222;
2407 cpu->isar.mvfr1 = 0x11111111;
2408 cpu->ctr = 0x84448003;
2409 cpu->reset_sctlr = 0x00c50078;
2410 cpu->id_pfr0 = 0x00001131;
2411 cpu->id_pfr1 = 0x00011011;
2412 cpu->isar.id_dfr0 = 0x02010555;
2413 cpu->id_afr0 = 0x00000000;
2414 cpu->isar.id_mmfr0 = 0x10101105;
2415 cpu->isar.id_mmfr1 = 0x40000000;
2416 cpu->isar.id_mmfr2 = 0x01240000;
2417 cpu->isar.id_mmfr3 = 0x02102211;
2418 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2419 * table 4-41 gives 0x02101110, which includes the arm div insns.
2420 */
2421 cpu->isar.id_isar0 = 0x02101110;
2422 cpu->isar.id_isar1 = 0x13112111;
2423 cpu->isar.id_isar2 = 0x21232041;
2424 cpu->isar.id_isar3 = 0x11112131;
2425 cpu->isar.id_isar4 = 0x10011142;
2426 cpu->isar.dbgdidr = 0x3515f005;
2427 cpu->clidr = 0x0a200023;
2428 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2429 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2430 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2431 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2432 }
2433
2434 static void cortex_a15_initfn(Object *obj)
2435 {
2436 ARMCPU *cpu = ARM_CPU(obj);
2437
2438 cpu->dtb_compatible = "arm,cortex-a15";
2439 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2440 set_feature(&cpu->env, ARM_FEATURE_NEON);
2441 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2442 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2443 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2444 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2445 set_feature(&cpu->env, ARM_FEATURE_EL2);
2446 set_feature(&cpu->env, ARM_FEATURE_EL3);
2447 set_feature(&cpu->env, ARM_FEATURE_PMU);
2448 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2449 cpu->midr = 0x412fc0f1;
2450 cpu->reset_fpsid = 0x410430f0;
2451 cpu->isar.mvfr0 = 0x10110222;
2452 cpu->isar.mvfr1 = 0x11111111;
2453 cpu->ctr = 0x8444c004;
2454 cpu->reset_sctlr = 0x00c50078;
2455 cpu->id_pfr0 = 0x00001131;
2456 cpu->id_pfr1 = 0x00011011;
2457 cpu->isar.id_dfr0 = 0x02010555;
2458 cpu->id_afr0 = 0x00000000;
2459 cpu->isar.id_mmfr0 = 0x10201105;
2460 cpu->isar.id_mmfr1 = 0x20000000;
2461 cpu->isar.id_mmfr2 = 0x01240000;
2462 cpu->isar.id_mmfr3 = 0x02102211;
2463 cpu->isar.id_isar0 = 0x02101110;
2464 cpu->isar.id_isar1 = 0x13112111;
2465 cpu->isar.id_isar2 = 0x21232041;
2466 cpu->isar.id_isar3 = 0x11112131;
2467 cpu->isar.id_isar4 = 0x10011142;
2468 cpu->isar.dbgdidr = 0x3515f021;
2469 cpu->clidr = 0x0a200023;
2470 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2471 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2472 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2473 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2474 }
2475
2476 static void ti925t_initfn(Object *obj)
2477 {
2478 ARMCPU *cpu = ARM_CPU(obj);
2479 set_feature(&cpu->env, ARM_FEATURE_V4T);
2480 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2481 cpu->midr = ARM_CPUID_TI925T;
2482 cpu->ctr = 0x5109149;
2483 cpu->reset_sctlr = 0x00000070;
2484 }
2485
2486 static void sa1100_initfn(Object *obj)
2487 {
2488 ARMCPU *cpu = ARM_CPU(obj);
2489
2490 cpu->dtb_compatible = "intel,sa1100";
2491 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2492 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2493 cpu->midr = 0x4401A11B;
2494 cpu->reset_sctlr = 0x00000070;
2495 }
2496
2497 static void sa1110_initfn(Object *obj)
2498 {
2499 ARMCPU *cpu = ARM_CPU(obj);
2500 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2501 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2502 cpu->midr = 0x6901B119;
2503 cpu->reset_sctlr = 0x00000070;
2504 }
2505
2506 static void pxa250_initfn(Object *obj)
2507 {
2508 ARMCPU *cpu = ARM_CPU(obj);
2509
2510 cpu->dtb_compatible = "marvell,xscale";
2511 set_feature(&cpu->env, ARM_FEATURE_V5);
2512 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2513 cpu->midr = 0x69052100;
2514 cpu->ctr = 0xd172172;
2515 cpu->reset_sctlr = 0x00000078;
2516 }
2517
2518 static void pxa255_initfn(Object *obj)
2519 {
2520 ARMCPU *cpu = ARM_CPU(obj);
2521
2522 cpu->dtb_compatible = "marvell,xscale";
2523 set_feature(&cpu->env, ARM_FEATURE_V5);
2524 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2525 cpu->midr = 0x69052d00;
2526 cpu->ctr = 0xd172172;
2527 cpu->reset_sctlr = 0x00000078;
2528 }
2529
2530 static void pxa260_initfn(Object *obj)
2531 {
2532 ARMCPU *cpu = ARM_CPU(obj);
2533
2534 cpu->dtb_compatible = "marvell,xscale";
2535 set_feature(&cpu->env, ARM_FEATURE_V5);
2536 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2537 cpu->midr = 0x69052903;
2538 cpu->ctr = 0xd172172;
2539 cpu->reset_sctlr = 0x00000078;
2540 }
2541
2542 static void pxa261_initfn(Object *obj)
2543 {
2544 ARMCPU *cpu = ARM_CPU(obj);
2545
2546 cpu->dtb_compatible = "marvell,xscale";
2547 set_feature(&cpu->env, ARM_FEATURE_V5);
2548 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2549 cpu->midr = 0x69052d05;
2550 cpu->ctr = 0xd172172;
2551 cpu->reset_sctlr = 0x00000078;
2552 }
2553
2554 static void pxa262_initfn(Object *obj)
2555 {
2556 ARMCPU *cpu = ARM_CPU(obj);
2557
2558 cpu->dtb_compatible = "marvell,xscale";
2559 set_feature(&cpu->env, ARM_FEATURE_V5);
2560 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2561 cpu->midr = 0x69052d06;
2562 cpu->ctr = 0xd172172;
2563 cpu->reset_sctlr = 0x00000078;
2564 }
2565
2566 static void pxa270a0_initfn(Object *obj)
2567 {
2568 ARMCPU *cpu = ARM_CPU(obj);
2569
2570 cpu->dtb_compatible = "marvell,xscale";
2571 set_feature(&cpu->env, ARM_FEATURE_V5);
2572 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2573 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2574 cpu->midr = 0x69054110;
2575 cpu->ctr = 0xd172172;
2576 cpu->reset_sctlr = 0x00000078;
2577 }
2578
2579 static void pxa270a1_initfn(Object *obj)
2580 {
2581 ARMCPU *cpu = ARM_CPU(obj);
2582
2583 cpu->dtb_compatible = "marvell,xscale";
2584 set_feature(&cpu->env, ARM_FEATURE_V5);
2585 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2586 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2587 cpu->midr = 0x69054111;
2588 cpu->ctr = 0xd172172;
2589 cpu->reset_sctlr = 0x00000078;
2590 }
2591
2592 static void pxa270b0_initfn(Object *obj)
2593 {
2594 ARMCPU *cpu = ARM_CPU(obj);
2595
2596 cpu->dtb_compatible = "marvell,xscale";
2597 set_feature(&cpu->env, ARM_FEATURE_V5);
2598 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2599 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2600 cpu->midr = 0x69054112;
2601 cpu->ctr = 0xd172172;
2602 cpu->reset_sctlr = 0x00000078;
2603 }
2604
2605 static void pxa270b1_initfn(Object *obj)
2606 {
2607 ARMCPU *cpu = ARM_CPU(obj);
2608
2609 cpu->dtb_compatible = "marvell,xscale";
2610 set_feature(&cpu->env, ARM_FEATURE_V5);
2611 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2612 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2613 cpu->midr = 0x69054113;
2614 cpu->ctr = 0xd172172;
2615 cpu->reset_sctlr = 0x00000078;
2616 }
2617
2618 static void pxa270c0_initfn(Object *obj)
2619 {
2620 ARMCPU *cpu = ARM_CPU(obj);
2621
2622 cpu->dtb_compatible = "marvell,xscale";
2623 set_feature(&cpu->env, ARM_FEATURE_V5);
2624 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2625 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2626 cpu->midr = 0x69054114;
2627 cpu->ctr = 0xd172172;
2628 cpu->reset_sctlr = 0x00000078;
2629 }
2630
2631 static void pxa270c5_initfn(Object *obj)
2632 {
2633 ARMCPU *cpu = ARM_CPU(obj);
2634
2635 cpu->dtb_compatible = "marvell,xscale";
2636 set_feature(&cpu->env, ARM_FEATURE_V5);
2637 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2638 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2639 cpu->midr = 0x69054117;
2640 cpu->ctr = 0xd172172;
2641 cpu->reset_sctlr = 0x00000078;
2642 }
2643
2644 #ifndef TARGET_AARCH64
2645 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2646 * otherwise, a CPU with as many features enabled as our emulation supports.
2647 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2648 * this only needs to handle 32 bits.
2649 */
2650 static void arm_max_initfn(Object *obj)
2651 {
2652 ARMCPU *cpu = ARM_CPU(obj);
2653
2654 if (kvm_enabled()) {
2655 kvm_arm_set_cpu_features_from_host(cpu);
2656 kvm_arm_add_vcpu_properties(obj);
2657 } else {
2658 cortex_a15_initfn(obj);
2659
2660 /* old-style VFP short-vector support */
2661 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2662
2663 #ifdef CONFIG_USER_ONLY
2664 /* We don't set these in system emulation mode for the moment,
2665 * since we don't correctly set (all of) the ID registers to
2666 * advertise them.
2667 */
2668 set_feature(&cpu->env, ARM_FEATURE_V8);
2669 {
2670 uint32_t t;
2671
2672 t = cpu->isar.id_isar5;
2673 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2674 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2675 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2676 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2677 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2678 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2679 cpu->isar.id_isar5 = t;
2680
2681 t = cpu->isar.id_isar6;
2682 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2683 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2684 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2685 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2686 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2687 cpu->isar.id_isar6 = t;
2688
2689 t = cpu->isar.mvfr1;
2690 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2691 cpu->isar.mvfr1 = t;
2692
2693 t = cpu->isar.mvfr2;
2694 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2695 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2696 cpu->isar.mvfr2 = t;
2697
2698 t = cpu->isar.id_mmfr3;
2699 t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2700 cpu->isar.id_mmfr3 = t;
2701
2702 t = cpu->isar.id_mmfr4;
2703 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2704 t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2705 cpu->isar.id_mmfr4 = t;
2706 }
2707 #endif
2708 }
2709 }
2710 #endif
2711
2712 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2713
2714 struct ARMCPUInfo {
2715 const char *name;
2716 void (*initfn)(Object *obj);
2717 void (*class_init)(ObjectClass *oc, void *data);
2718 };
2719
2720 static const ARMCPUInfo arm_cpus[] = {
2721 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2722 { .name = "arm926", .initfn = arm926_initfn },
2723 { .name = "arm946", .initfn = arm946_initfn },
2724 { .name = "arm1026", .initfn = arm1026_initfn },
2725 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2726 * older core than plain "arm1136". In particular this does not
2727 * have the v6K features.
2728 */
2729 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2730 { .name = "arm1136", .initfn = arm1136_initfn },
2731 { .name = "arm1176", .initfn = arm1176_initfn },
2732 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2733 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2734 .class_init = arm_v7m_class_init },
2735 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2736 .class_init = arm_v7m_class_init },
2737 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2738 .class_init = arm_v7m_class_init },
2739 { .name = "cortex-m7", .initfn = cortex_m7_initfn,
2740 .class_init = arm_v7m_class_init },
2741 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2742 .class_init = arm_v7m_class_init },
2743 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2744 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2745 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2746 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2747 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2748 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2749 { .name = "ti925t", .initfn = ti925t_initfn },
2750 { .name = "sa1100", .initfn = sa1100_initfn },
2751 { .name = "sa1110", .initfn = sa1110_initfn },
2752 { .name = "pxa250", .initfn = pxa250_initfn },
2753 { .name = "pxa255", .initfn = pxa255_initfn },
2754 { .name = "pxa260", .initfn = pxa260_initfn },
2755 { .name = "pxa261", .initfn = pxa261_initfn },
2756 { .name = "pxa262", .initfn = pxa262_initfn },
2757 /* "pxa270" is an alias for "pxa270-a0" */
2758 { .name = "pxa270", .initfn = pxa270a0_initfn },
2759 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2760 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2761 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2762 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2763 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2764 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2765 #ifndef TARGET_AARCH64
2766 { .name = "max", .initfn = arm_max_initfn },
2767 #endif
2768 #ifdef CONFIG_USER_ONLY
2769 { .name = "any", .initfn = arm_max_initfn },
2770 #endif
2771 #endif
2772 { .name = NULL }
2773 };
2774
2775 static Property arm_cpu_properties[] = {
2776 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2777 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2778 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2779 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2780 mp_affinity, ARM64_AFFINITY_INVALID),
2781 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2782 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2783 DEFINE_PROP_END_OF_LIST()
2784 };
2785
2786 static gchar *arm_gdb_arch_name(CPUState *cs)
2787 {
2788 ARMCPU *cpu = ARM_CPU(cs);
2789 CPUARMState *env = &cpu->env;
2790
2791 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2792 return g_strdup("iwmmxt");
2793 }
2794 return g_strdup("arm");
2795 }
2796
2797 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2798 {
2799 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2800 CPUClass *cc = CPU_CLASS(acc);
2801 DeviceClass *dc = DEVICE_CLASS(oc);
2802
2803 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2804 &acc->parent_realize);
2805
2806 device_class_set_props(dc, arm_cpu_properties);
2807 cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2808
2809 cc->class_by_name = arm_cpu_class_by_name;
2810 cc->has_work = arm_cpu_has_work;
2811 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2812 cc->dump_state = arm_cpu_dump_state;
2813 cc->set_pc = arm_cpu_set_pc;
2814 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2815 cc->gdb_read_register = arm_cpu_gdb_read_register;
2816 cc->gdb_write_register = arm_cpu_gdb_write_register;
2817 #ifndef CONFIG_USER_ONLY
2818 cc->do_interrupt = arm_cpu_do_interrupt;
2819 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2820 cc->asidx_from_attrs = arm_asidx_from_attrs;
2821 cc->vmsd = &vmstate_arm_cpu;
2822 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2823 cc->write_elf64_note = arm_cpu_write_elf64_note;
2824 cc->write_elf32_note = arm_cpu_write_elf32_note;
2825 #endif
2826 cc->gdb_num_core_regs = 26;
2827 cc->gdb_core_xml_file = "arm-core.xml";
2828 cc->gdb_arch_name = arm_gdb_arch_name;
2829 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2830 cc->gdb_stop_before_watchpoint = true;
2831 cc->disas_set_info = arm_disas_set_info;
2832 #ifdef CONFIG_TCG
2833 cc->tcg_initialize = arm_translate_init;
2834 cc->tlb_fill = arm_cpu_tlb_fill;
2835 cc->debug_excp_handler = arm_debug_excp_handler;
2836 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2837 #if !defined(CONFIG_USER_ONLY)
2838 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2839 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2840 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2841 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2842 #endif
2843 }
2844
2845 #ifdef CONFIG_KVM
2846 static void arm_host_initfn(Object *obj)
2847 {
2848 ARMCPU *cpu = ARM_CPU(obj);
2849
2850 kvm_arm_set_cpu_features_from_host(cpu);
2851 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2852 aarch64_add_sve_properties(obj);
2853 }
2854 kvm_arm_add_vcpu_properties(obj);
2855 arm_cpu_post_init(obj);
2856 }
2857
2858 static const TypeInfo host_arm_cpu_type_info = {
2859 .name = TYPE_ARM_HOST_CPU,
2860 #ifdef TARGET_AARCH64
2861 .parent = TYPE_AARCH64_CPU,
2862 #else
2863 .parent = TYPE_ARM_CPU,
2864 #endif
2865 .instance_init = arm_host_initfn,
2866 };
2867
2868 #endif
2869
2870 static void arm_cpu_instance_init(Object *obj)
2871 {
2872 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2873
2874 acc->info->initfn(obj);
2875 arm_cpu_post_init(obj);
2876 }
2877
2878 static void cpu_register_class_init(ObjectClass *oc, void *data)
2879 {
2880 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2881
2882 acc->info = data;
2883 }
2884
2885 static void cpu_register(const ARMCPUInfo *info)
2886 {
2887 TypeInfo type_info = {
2888 .parent = TYPE_ARM_CPU,
2889 .instance_size = sizeof(ARMCPU),
2890 .instance_init = arm_cpu_instance_init,
2891 .class_size = sizeof(ARMCPUClass),
2892 .class_init = info->class_init ?: cpu_register_class_init,
2893 .class_data = (void *)info,
2894 };
2895
2896 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2897 type_register(&type_info);
2898 g_free((void *)type_info.name);
2899 }
2900
2901 static const TypeInfo arm_cpu_type_info = {
2902 .name = TYPE_ARM_CPU,
2903 .parent = TYPE_CPU,
2904 .instance_size = sizeof(ARMCPU),
2905 .instance_init = arm_cpu_initfn,
2906 .instance_finalize = arm_cpu_finalizefn,
2907 .abstract = true,
2908 .class_size = sizeof(ARMCPUClass),
2909 .class_init = arm_cpu_class_init,
2910 };
2911
2912 static const TypeInfo idau_interface_type_info = {
2913 .name = TYPE_IDAU_INTERFACE,
2914 .parent = TYPE_INTERFACE,
2915 .class_size = sizeof(IDAUInterfaceClass),
2916 };
2917
2918 static void arm_cpu_register_types(void)
2919 {
2920 const ARMCPUInfo *info = arm_cpus;
2921
2922 type_register_static(&arm_cpu_type_info);
2923 type_register_static(&idau_interface_type_info);
2924
2925 while (info->name) {
2926 cpu_register(info);
2927 info++;
2928 }
2929
2930 #ifdef CONFIG_KVM
2931 type_register_static(&host_arm_cpu_type_info);
2932 #endif
2933 }
2934
2935 type_init(arm_cpu_register_types)