]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
Merge tag 'pull-lu-20231030' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51
52 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
53 {
54 ARMCPU *cpu = ARM_CPU(cs);
55 CPUARMState *env = &cpu->env;
56
57 if (is_a64(env)) {
58 env->pc = value;
59 env->thumb = false;
60 } else {
61 env->regs[15] = value & ~1;
62 env->thumb = value & 1;
63 }
64 }
65
66 static vaddr arm_cpu_get_pc(CPUState *cs)
67 {
68 ARMCPU *cpu = ARM_CPU(cs);
69 CPUARMState *env = &cpu->env;
70
71 if (is_a64(env)) {
72 return env->pc;
73 } else {
74 return env->regs[15];
75 }
76 }
77
78 #ifdef CONFIG_TCG
79 void arm_cpu_synchronize_from_tb(CPUState *cs,
80 const TranslationBlock *tb)
81 {
82 /* The program counter is always up to date with CF_PCREL. */
83 if (!(tb_cflags(tb) & CF_PCREL)) {
84 CPUARMState *env = cpu_env(cs);
85 /*
86 * It's OK to look at env for the current mode here, because it's
87 * never possible for an AArch64 TB to chain to an AArch32 TB.
88 */
89 if (is_a64(env)) {
90 env->pc = tb->pc;
91 } else {
92 env->regs[15] = tb->pc;
93 }
94 }
95 }
96
97 void arm_restore_state_to_opc(CPUState *cs,
98 const TranslationBlock *tb,
99 const uint64_t *data)
100 {
101 CPUARMState *env = cpu_env(cs);
102
103 if (is_a64(env)) {
104 if (tb_cflags(tb) & CF_PCREL) {
105 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
106 } else {
107 env->pc = data[0];
108 }
109 env->condexec_bits = 0;
110 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
111 } else {
112 if (tb_cflags(tb) & CF_PCREL) {
113 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
114 } else {
115 env->regs[15] = data[0];
116 }
117 env->condexec_bits = data[1];
118 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
119 }
120 }
121 #endif /* CONFIG_TCG */
122
123 static bool arm_cpu_has_work(CPUState *cs)
124 {
125 ARMCPU *cpu = ARM_CPU(cs);
126
127 return (cpu->power_state != PSCI_OFF)
128 && cs->interrupt_request &
129 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
130 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
131 | CPU_INTERRUPT_EXITTB);
132 }
133
134 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
135 void *opaque)
136 {
137 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
138
139 entry->hook = hook;
140 entry->opaque = opaque;
141
142 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
143 }
144
145 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
146 void *opaque)
147 {
148 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
149
150 entry->hook = hook;
151 entry->opaque = opaque;
152
153 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
154 }
155
156 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
157 {
158 /* Reset a single ARMCPRegInfo register */
159 ARMCPRegInfo *ri = value;
160 ARMCPU *cpu = opaque;
161
162 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
163 return;
164 }
165
166 if (ri->resetfn) {
167 ri->resetfn(&cpu->env, ri);
168 return;
169 }
170
171 /* A zero offset is never possible as it would be regs[0]
172 * so we use it to indicate that reset is being handled elsewhere.
173 * This is basically only used for fields in non-core coprocessors
174 * (like the pxa2xx ones).
175 */
176 if (!ri->fieldoffset) {
177 return;
178 }
179
180 if (cpreg_field_is_64bit(ri)) {
181 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
182 } else {
183 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
184 }
185 }
186
187 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
188 {
189 /* Purely an assertion check: we've already done reset once,
190 * so now check that running the reset for the cpreg doesn't
191 * change its value. This traps bugs where two different cpregs
192 * both try to reset the same state field but to different values.
193 */
194 ARMCPRegInfo *ri = value;
195 ARMCPU *cpu = opaque;
196 uint64_t oldvalue, newvalue;
197
198 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
199 return;
200 }
201
202 oldvalue = read_raw_cp_reg(&cpu->env, ri);
203 cp_reg_reset(key, value, opaque);
204 newvalue = read_raw_cp_reg(&cpu->env, ri);
205 assert(oldvalue == newvalue);
206 }
207
208 static void arm_cpu_reset_hold(Object *obj)
209 {
210 CPUState *s = CPU(obj);
211 ARMCPU *cpu = ARM_CPU(s);
212 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
213 CPUARMState *env = &cpu->env;
214
215 if (acc->parent_phases.hold) {
216 acc->parent_phases.hold(obj);
217 }
218
219 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
220
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
222 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
223
224 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
225 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
226 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
227 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
228
229 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
230
231 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
232 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
233 }
234
235 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
236 /* 64 bit CPUs always start in 64 bit mode */
237 env->aarch64 = true;
238 #if defined(CONFIG_USER_ONLY)
239 env->pstate = PSTATE_MODE_EL0t;
240 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
241 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
242 /* Enable all PAC keys. */
243 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
244 SCTLR_EnDA | SCTLR_EnDB);
245 /* Trap on btype=3 for PACIxSP. */
246 env->cp15.sctlr_el[1] |= SCTLR_BT0;
247 /* Trap on implementation defined registers. */
248 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
249 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
250 }
251 /* and to the FP/Neon instructions */
252 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
253 CPACR_EL1, FPEN, 3);
254 /* and to the SVE instructions, with default vector length */
255 if (cpu_isar_feature(aa64_sve, cpu)) {
256 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257 CPACR_EL1, ZEN, 3);
258 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
259 }
260 /* and for SME instructions, with default vector length, and TPIDR2 */
261 if (cpu_isar_feature(aa64_sme, cpu)) {
262 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
263 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
264 CPACR_EL1, SMEN, 3);
265 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
266 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
267 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
268 SMCR, FA64, 1);
269 }
270 }
271 /*
272 * Enable 48-bit address space (TODO: take reserved_va into account).
273 * Enable TBI0 but not TBI1.
274 * Note that this must match useronly_clean_ptr.
275 */
276 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
277
278 /* Enable MTE */
279 if (cpu_isar_feature(aa64_mte, cpu)) {
280 /* Enable tag access, but leave TCF0 as No Effect (0). */
281 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
282 /*
283 * Exclude all tags, so that tag 0 is always used.
284 * This corresponds to Linux current->thread.gcr_incl = 0.
285 *
286 * Set RRND, so that helper_irg() will generate a seed later.
287 * Here in cpu_reset(), the crypto subsystem has not yet been
288 * initialized.
289 */
290 env->cp15.gcr_el1 = 0x1ffff;
291 }
292 /*
293 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
294 * This is not yet exposed from the Linux kernel in any way.
295 */
296 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
297 /* Disable access to Debug Communication Channel (DCC). */
298 env->cp15.mdscr_el1 |= 1 << 12;
299 #else
300 /* Reset into the highest available EL */
301 if (arm_feature(env, ARM_FEATURE_EL3)) {
302 env->pstate = PSTATE_MODE_EL3h;
303 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
304 env->pstate = PSTATE_MODE_EL2h;
305 } else {
306 env->pstate = PSTATE_MODE_EL1h;
307 }
308
309 /* Sample rvbar at reset. */
310 env->cp15.rvbar = cpu->rvbar_prop;
311 env->pc = env->cp15.rvbar;
312 #endif
313 } else {
314 #if defined(CONFIG_USER_ONLY)
315 /* Userspace expects access to cp10 and cp11 for FP/Neon */
316 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
317 CPACR, CP10, 3);
318 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
319 CPACR, CP11, 3);
320 #endif
321 if (arm_feature(env, ARM_FEATURE_V8)) {
322 env->cp15.rvbar = cpu->rvbar_prop;
323 env->regs[15] = cpu->rvbar_prop;
324 }
325 }
326
327 #if defined(CONFIG_USER_ONLY)
328 env->uncached_cpsr = ARM_CPU_MODE_USR;
329 /* For user mode we must enable access to coprocessors */
330 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
331 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
332 env->cp15.c15_cpar = 3;
333 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
334 env->cp15.c15_cpar = 1;
335 }
336 #else
337
338 /*
339 * If the highest available EL is EL2, AArch32 will start in Hyp
340 * mode; otherwise it starts in SVC. Note that if we start in
341 * AArch64 then these values in the uncached_cpsr will be ignored.
342 */
343 if (arm_feature(env, ARM_FEATURE_EL2) &&
344 !arm_feature(env, ARM_FEATURE_EL3)) {
345 env->uncached_cpsr = ARM_CPU_MODE_HYP;
346 } else {
347 env->uncached_cpsr = ARM_CPU_MODE_SVC;
348 }
349 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
350
351 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
352 * executing as AArch32 then check if highvecs are enabled and
353 * adjust the PC accordingly.
354 */
355 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
356 env->regs[15] = 0xFFFF0000;
357 }
358
359 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
360 #endif
361
362 if (arm_feature(env, ARM_FEATURE_M)) {
363 #ifndef CONFIG_USER_ONLY
364 uint32_t initial_msp; /* Loaded from 0x0 */
365 uint32_t initial_pc; /* Loaded from 0x4 */
366 uint8_t *rom;
367 uint32_t vecbase;
368 #endif
369
370 if (cpu_isar_feature(aa32_lob, cpu)) {
371 /*
372 * LTPSIZE is constant 4 if MVE not implemented, and resets
373 * to an UNKNOWN value if MVE is implemented. We choose to
374 * always reset to 4.
375 */
376 env->v7m.ltpsize = 4;
377 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
378 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
379 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
380 }
381
382 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383 env->v7m.secure = true;
384 } else {
385 /* This bit resets to 0 if security is supported, but 1 if
386 * it is not. The bit is not present in v7M, but we set it
387 * here so we can avoid having to make checks on it conditional
388 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
389 */
390 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
391 /*
392 * Set NSACR to indicate "NS access permitted to everything";
393 * this avoids having to have all the tests of it being
394 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
395 * v8.1M the guest-visible value of NSACR in a CPU without the
396 * Security Extension is 0xcff.
397 */
398 env->v7m.nsacr = 0xcff;
399 }
400
401 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
402 * that it resets to 1, so QEMU always does that rather than making
403 * it dependent on CPU model. In v8M it is RES1.
404 */
405 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
406 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
407 if (arm_feature(env, ARM_FEATURE_V8)) {
408 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
409 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
411 }
412 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
413 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
415 }
416
417 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
418 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
419 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
420 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
421 }
422
423 #ifndef CONFIG_USER_ONLY
424 /* Unlike A/R profile, M profile defines the reset LR value */
425 env->regs[14] = 0xffffffff;
426
427 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
428 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
429
430 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
431 vecbase = env->v7m.vecbase[env->v7m.secure];
432 rom = rom_ptr_for_as(s->as, vecbase, 8);
433 if (rom) {
434 /* Address zero is covered by ROM which hasn't yet been
435 * copied into physical memory.
436 */
437 initial_msp = ldl_p(rom);
438 initial_pc = ldl_p(rom + 4);
439 } else {
440 /* Address zero not covered by a ROM blob, or the ROM blob
441 * is in non-modifiable memory and this is a second reset after
442 * it got copied into memory. In the latter case, rom_ptr
443 * will return a NULL pointer and we should use ldl_phys instead.
444 */
445 initial_msp = ldl_phys(s->as, vecbase);
446 initial_pc = ldl_phys(s->as, vecbase + 4);
447 }
448
449 qemu_log_mask(CPU_LOG_INT,
450 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
451 initial_msp, initial_pc);
452
453 env->regs[13] = initial_msp & 0xFFFFFFFC;
454 env->regs[15] = initial_pc & ~1;
455 env->thumb = initial_pc & 1;
456 #else
457 /*
458 * For user mode we run non-secure and with access to the FPU.
459 * The FPU context is active (ie does not need further setup)
460 * and is owned by non-secure.
461 */
462 env->v7m.secure = false;
463 env->v7m.nsacr = 0xcff;
464 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
465 env->v7m.fpccr[M_REG_S] &=
466 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
467 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
468 #endif
469 }
470
471 /* M profile requires that reset clears the exclusive monitor;
472 * A profile does not, but clearing it makes more sense than having it
473 * set with an exclusive access on address zero.
474 */
475 arm_clear_exclusive(env);
476
477 if (arm_feature(env, ARM_FEATURE_PMSA)) {
478 if (cpu->pmsav7_dregion > 0) {
479 if (arm_feature(env, ARM_FEATURE_V8)) {
480 memset(env->pmsav8.rbar[M_REG_NS], 0,
481 sizeof(*env->pmsav8.rbar[M_REG_NS])
482 * cpu->pmsav7_dregion);
483 memset(env->pmsav8.rlar[M_REG_NS], 0,
484 sizeof(*env->pmsav8.rlar[M_REG_NS])
485 * cpu->pmsav7_dregion);
486 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
487 memset(env->pmsav8.rbar[M_REG_S], 0,
488 sizeof(*env->pmsav8.rbar[M_REG_S])
489 * cpu->pmsav7_dregion);
490 memset(env->pmsav8.rlar[M_REG_S], 0,
491 sizeof(*env->pmsav8.rlar[M_REG_S])
492 * cpu->pmsav7_dregion);
493 }
494 } else if (arm_feature(env, ARM_FEATURE_V7)) {
495 memset(env->pmsav7.drbar, 0,
496 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
497 memset(env->pmsav7.drsr, 0,
498 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
499 memset(env->pmsav7.dracr, 0,
500 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
501 }
502 }
503
504 if (cpu->pmsav8r_hdregion > 0) {
505 memset(env->pmsav8.hprbar, 0,
506 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
507 memset(env->pmsav8.hprlar, 0,
508 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
509 }
510
511 env->pmsav7.rnr[M_REG_NS] = 0;
512 env->pmsav7.rnr[M_REG_S] = 0;
513 env->pmsav8.mair0[M_REG_NS] = 0;
514 env->pmsav8.mair0[M_REG_S] = 0;
515 env->pmsav8.mair1[M_REG_NS] = 0;
516 env->pmsav8.mair1[M_REG_S] = 0;
517 }
518
519 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
520 if (cpu->sau_sregion > 0) {
521 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
522 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
523 }
524 env->sau.rnr = 0;
525 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
526 * the Cortex-M33 does.
527 */
528 env->sau.ctrl = 0;
529 }
530
531 set_flush_to_zero(1, &env->vfp.standard_fp_status);
532 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
533 set_default_nan_mode(1, &env->vfp.standard_fp_status);
534 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
535 set_float_detect_tininess(float_tininess_before_rounding,
536 &env->vfp.fp_status);
537 set_float_detect_tininess(float_tininess_before_rounding,
538 &env->vfp.standard_fp_status);
539 set_float_detect_tininess(float_tininess_before_rounding,
540 &env->vfp.fp_status_f16);
541 set_float_detect_tininess(float_tininess_before_rounding,
542 &env->vfp.standard_fp_status_f16);
543 #ifndef CONFIG_USER_ONLY
544 if (kvm_enabled()) {
545 kvm_arm_reset_vcpu(cpu);
546 }
547 #endif
548
549 if (tcg_enabled()) {
550 hw_breakpoint_update_all(cpu);
551 hw_watchpoint_update_all(cpu);
552
553 arm_rebuild_hflags(env);
554 }
555 }
556
557 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
558 {
559 ARMCPU *cpu = ARM_CPU(cpustate);
560 CPUARMState *env = &cpu->env;
561 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
562 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
563
564 /*
565 * Check we have the EL we're aiming for. If that is the
566 * highest implemented EL, then cpu_reset has already done
567 * all the work.
568 */
569 switch (target_el) {
570 case 3:
571 assert(have_el3);
572 return;
573 case 2:
574 assert(have_el2);
575 if (!have_el3) {
576 return;
577 }
578 break;
579 case 1:
580 if (!have_el3 && !have_el2) {
581 return;
582 }
583 break;
584 default:
585 g_assert_not_reached();
586 }
587
588 if (have_el3) {
589 /*
590 * Set the EL3 state so code can run at EL2. This should match
591 * the requirements set by Linux in its booting spec.
592 */
593 if (env->aarch64) {
594 env->cp15.scr_el3 |= SCR_RW;
595 if (cpu_isar_feature(aa64_pauth, cpu)) {
596 env->cp15.scr_el3 |= SCR_API | SCR_APK;
597 }
598 if (cpu_isar_feature(aa64_mte, cpu)) {
599 env->cp15.scr_el3 |= SCR_ATA;
600 }
601 if (cpu_isar_feature(aa64_sve, cpu)) {
602 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
603 env->vfp.zcr_el[3] = 0xf;
604 }
605 if (cpu_isar_feature(aa64_sme, cpu)) {
606 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
607 env->cp15.scr_el3 |= SCR_ENTP2;
608 env->vfp.smcr_el[3] = 0xf;
609 }
610 if (cpu_isar_feature(aa64_hcx, cpu)) {
611 env->cp15.scr_el3 |= SCR_HXEN;
612 }
613 if (cpu_isar_feature(aa64_fgt, cpu)) {
614 env->cp15.scr_el3 |= SCR_FGTEN;
615 }
616 }
617
618 if (target_el == 2) {
619 /* If the guest is at EL2 then Linux expects the HVC insn to work */
620 env->cp15.scr_el3 |= SCR_HCE;
621 }
622
623 /* Put CPU into non-secure state */
624 env->cp15.scr_el3 |= SCR_NS;
625 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
626 env->cp15.nsacr |= 3 << 10;
627 }
628
629 if (have_el2 && target_el < 2) {
630 /* Set EL2 state so code can run at EL1. */
631 if (env->aarch64) {
632 env->cp15.hcr_el2 |= HCR_RW;
633 }
634 }
635
636 /* Set the CPU to the desired state */
637 if (env->aarch64) {
638 env->pstate = aarch64_pstate_mode(target_el, true);
639 } else {
640 static const uint32_t mode_for_el[] = {
641 0,
642 ARM_CPU_MODE_SVC,
643 ARM_CPU_MODE_HYP,
644 ARM_CPU_MODE_SVC,
645 };
646
647 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
648 }
649 }
650
651
652 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
653
654 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
655 unsigned int target_el,
656 unsigned int cur_el, bool secure,
657 uint64_t hcr_el2)
658 {
659 CPUARMState *env = cpu_env(cs);
660 bool pstate_unmasked;
661 bool unmasked = false;
662
663 /*
664 * Don't take exceptions if they target a lower EL.
665 * This check should catch any exceptions that would not be taken
666 * but left pending.
667 */
668 if (cur_el > target_el) {
669 return false;
670 }
671
672 switch (excp_idx) {
673 case EXCP_FIQ:
674 pstate_unmasked = !(env->daif & PSTATE_F);
675 break;
676
677 case EXCP_IRQ:
678 pstate_unmasked = !(env->daif & PSTATE_I);
679 break;
680
681 case EXCP_VFIQ:
682 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
683 /* VFIQs are only taken when hypervized. */
684 return false;
685 }
686 return !(env->daif & PSTATE_F);
687 case EXCP_VIRQ:
688 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
689 /* VIRQs are only taken when hypervized. */
690 return false;
691 }
692 return !(env->daif & PSTATE_I);
693 case EXCP_VSERR:
694 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
695 /* VIRQs are only taken when hypervized. */
696 return false;
697 }
698 return !(env->daif & PSTATE_A);
699 default:
700 g_assert_not_reached();
701 }
702
703 /*
704 * Use the target EL, current execution state and SCR/HCR settings to
705 * determine whether the corresponding CPSR bit is used to mask the
706 * interrupt.
707 */
708 if ((target_el > cur_el) && (target_el != 1)) {
709 /* Exceptions targeting a higher EL may not be maskable */
710 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
711 switch (target_el) {
712 case 2:
713 /*
714 * According to ARM DDI 0487H.a, an interrupt can be masked
715 * when HCR_E2H and HCR_TGE are both set regardless of the
716 * current Security state. Note that we need to revisit this
717 * part again once we need to support NMI.
718 */
719 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
720 unmasked = true;
721 }
722 break;
723 case 3:
724 /* Interrupt cannot be masked when the target EL is 3 */
725 unmasked = true;
726 break;
727 default:
728 g_assert_not_reached();
729 }
730 } else {
731 /*
732 * The old 32-bit-only environment has a more complicated
733 * masking setup. HCR and SCR bits not only affect interrupt
734 * routing but also change the behaviour of masking.
735 */
736 bool hcr, scr;
737
738 switch (excp_idx) {
739 case EXCP_FIQ:
740 /*
741 * If FIQs are routed to EL3 or EL2 then there are cases where
742 * we override the CPSR.F in determining if the exception is
743 * masked or not. If neither of these are set then we fall back
744 * to the CPSR.F setting otherwise we further assess the state
745 * below.
746 */
747 hcr = hcr_el2 & HCR_FMO;
748 scr = (env->cp15.scr_el3 & SCR_FIQ);
749
750 /*
751 * When EL3 is 32-bit, the SCR.FW bit controls whether the
752 * CPSR.F bit masks FIQ interrupts when taken in non-secure
753 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
754 * when non-secure but only when FIQs are only routed to EL3.
755 */
756 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
757 break;
758 case EXCP_IRQ:
759 /*
760 * When EL3 execution state is 32-bit, if HCR.IMO is set then
761 * we may override the CPSR.I masking when in non-secure state.
762 * The SCR.IRQ setting has already been taken into consideration
763 * when setting the target EL, so it does not have a further
764 * affect here.
765 */
766 hcr = hcr_el2 & HCR_IMO;
767 scr = false;
768 break;
769 default:
770 g_assert_not_reached();
771 }
772
773 if ((scr || hcr) && !secure) {
774 unmasked = true;
775 }
776 }
777 }
778
779 /*
780 * The PSTATE bits only mask the interrupt if we have not overridden the
781 * ability above.
782 */
783 return unmasked || pstate_unmasked;
784 }
785
786 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
787 {
788 CPUClass *cc = CPU_GET_CLASS(cs);
789 CPUARMState *env = cpu_env(cs);
790 uint32_t cur_el = arm_current_el(env);
791 bool secure = arm_is_secure(env);
792 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
793 uint32_t target_el;
794 uint32_t excp_idx;
795
796 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
797
798 if (interrupt_request & CPU_INTERRUPT_FIQ) {
799 excp_idx = EXCP_FIQ;
800 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
801 if (arm_excp_unmasked(cs, excp_idx, target_el,
802 cur_el, secure, hcr_el2)) {
803 goto found;
804 }
805 }
806 if (interrupt_request & CPU_INTERRUPT_HARD) {
807 excp_idx = EXCP_IRQ;
808 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
809 if (arm_excp_unmasked(cs, excp_idx, target_el,
810 cur_el, secure, hcr_el2)) {
811 goto found;
812 }
813 }
814 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
815 excp_idx = EXCP_VIRQ;
816 target_el = 1;
817 if (arm_excp_unmasked(cs, excp_idx, target_el,
818 cur_el, secure, hcr_el2)) {
819 goto found;
820 }
821 }
822 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
823 excp_idx = EXCP_VFIQ;
824 target_el = 1;
825 if (arm_excp_unmasked(cs, excp_idx, target_el,
826 cur_el, secure, hcr_el2)) {
827 goto found;
828 }
829 }
830 if (interrupt_request & CPU_INTERRUPT_VSERR) {
831 excp_idx = EXCP_VSERR;
832 target_el = 1;
833 if (arm_excp_unmasked(cs, excp_idx, target_el,
834 cur_el, secure, hcr_el2)) {
835 /* Taking a virtual abort clears HCR_EL2.VSE */
836 env->cp15.hcr_el2 &= ~HCR_VSE;
837 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
838 goto found;
839 }
840 }
841 return false;
842
843 found:
844 cs->exception_index = excp_idx;
845 env->exception.target_el = target_el;
846 cc->tcg_ops->do_interrupt(cs);
847 return true;
848 }
849
850 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
851
852 void arm_cpu_update_virq(ARMCPU *cpu)
853 {
854 /*
855 * Update the interrupt level for VIRQ, which is the logical OR of
856 * the HCR_EL2.VI bit and the input line level from the GIC.
857 */
858 CPUARMState *env = &cpu->env;
859 CPUState *cs = CPU(cpu);
860
861 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
862 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
863
864 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
865 if (new_state) {
866 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
867 } else {
868 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
869 }
870 }
871 }
872
873 void arm_cpu_update_vfiq(ARMCPU *cpu)
874 {
875 /*
876 * Update the interrupt level for VFIQ, which is the logical OR of
877 * the HCR_EL2.VF bit and the input line level from the GIC.
878 */
879 CPUARMState *env = &cpu->env;
880 CPUState *cs = CPU(cpu);
881
882 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
883 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
884
885 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
886 if (new_state) {
887 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
888 } else {
889 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
890 }
891 }
892 }
893
894 void arm_cpu_update_vserr(ARMCPU *cpu)
895 {
896 /*
897 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
898 */
899 CPUARMState *env = &cpu->env;
900 CPUState *cs = CPU(cpu);
901
902 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
903
904 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
905 if (new_state) {
906 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
907 } else {
908 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
909 }
910 }
911 }
912
913 #ifndef CONFIG_USER_ONLY
914 static void arm_cpu_set_irq(void *opaque, int irq, int level)
915 {
916 ARMCPU *cpu = opaque;
917 CPUARMState *env = &cpu->env;
918 CPUState *cs = CPU(cpu);
919 static const int mask[] = {
920 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
921 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
922 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
923 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
924 };
925
926 if (!arm_feature(env, ARM_FEATURE_EL2) &&
927 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
928 /*
929 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
930 * have EL2 support we don't care. (Unless the guest is doing something
931 * silly this will only be calls saying "level is still 0".)
932 */
933 return;
934 }
935
936 if (level) {
937 env->irq_line_state |= mask[irq];
938 } else {
939 env->irq_line_state &= ~mask[irq];
940 }
941
942 switch (irq) {
943 case ARM_CPU_VIRQ:
944 arm_cpu_update_virq(cpu);
945 break;
946 case ARM_CPU_VFIQ:
947 arm_cpu_update_vfiq(cpu);
948 break;
949 case ARM_CPU_IRQ:
950 case ARM_CPU_FIQ:
951 if (level) {
952 cpu_interrupt(cs, mask[irq]);
953 } else {
954 cpu_reset_interrupt(cs, mask[irq]);
955 }
956 break;
957 default:
958 g_assert_not_reached();
959 }
960 }
961
962 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
963 {
964 #ifdef CONFIG_KVM
965 ARMCPU *cpu = opaque;
966 CPUARMState *env = &cpu->env;
967 CPUState *cs = CPU(cpu);
968 uint32_t linestate_bit;
969 int irq_id;
970
971 switch (irq) {
972 case ARM_CPU_IRQ:
973 irq_id = KVM_ARM_IRQ_CPU_IRQ;
974 linestate_bit = CPU_INTERRUPT_HARD;
975 break;
976 case ARM_CPU_FIQ:
977 irq_id = KVM_ARM_IRQ_CPU_FIQ;
978 linestate_bit = CPU_INTERRUPT_FIQ;
979 break;
980 default:
981 g_assert_not_reached();
982 }
983
984 if (level) {
985 env->irq_line_state |= linestate_bit;
986 } else {
987 env->irq_line_state &= ~linestate_bit;
988 }
989 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
990 #endif
991 }
992
993 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
994 {
995 ARMCPU *cpu = ARM_CPU(cs);
996 CPUARMState *env = &cpu->env;
997
998 cpu_synchronize_state(cs);
999 return arm_cpu_data_is_big_endian(env);
1000 }
1001
1002 #endif
1003
1004 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1005 {
1006 ARMCPU *ac = ARM_CPU(cpu);
1007 CPUARMState *env = &ac->env;
1008 bool sctlr_b;
1009
1010 if (is_a64(env)) {
1011 info->cap_arch = CS_ARCH_ARM64;
1012 info->cap_insn_unit = 4;
1013 info->cap_insn_split = 4;
1014 } else {
1015 int cap_mode;
1016 if (env->thumb) {
1017 info->cap_insn_unit = 2;
1018 info->cap_insn_split = 4;
1019 cap_mode = CS_MODE_THUMB;
1020 } else {
1021 info->cap_insn_unit = 4;
1022 info->cap_insn_split = 4;
1023 cap_mode = CS_MODE_ARM;
1024 }
1025 if (arm_feature(env, ARM_FEATURE_V8)) {
1026 cap_mode |= CS_MODE_V8;
1027 }
1028 if (arm_feature(env, ARM_FEATURE_M)) {
1029 cap_mode |= CS_MODE_MCLASS;
1030 }
1031 info->cap_arch = CS_ARCH_ARM;
1032 info->cap_mode = cap_mode;
1033 }
1034
1035 sctlr_b = arm_sctlr_b(env);
1036 if (bswap_code(sctlr_b)) {
1037 #if TARGET_BIG_ENDIAN
1038 info->endian = BFD_ENDIAN_LITTLE;
1039 #else
1040 info->endian = BFD_ENDIAN_BIG;
1041 #endif
1042 }
1043 info->flags &= ~INSN_ARM_BE32;
1044 #ifndef CONFIG_USER_ONLY
1045 if (sctlr_b) {
1046 info->flags |= INSN_ARM_BE32;
1047 }
1048 #endif
1049 }
1050
1051 #ifdef TARGET_AARCH64
1052
1053 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1054 {
1055 ARMCPU *cpu = ARM_CPU(cs);
1056 CPUARMState *env = &cpu->env;
1057 uint32_t psr = pstate_read(env);
1058 int i, j;
1059 int el = arm_current_el(env);
1060 const char *ns_status;
1061 bool sve;
1062
1063 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1064 for (i = 0; i < 32; i++) {
1065 if (i == 31) {
1066 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1067 } else {
1068 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1069 (i + 2) % 3 ? " " : "\n");
1070 }
1071 }
1072
1073 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1074 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1075 } else {
1076 ns_status = "";
1077 }
1078 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1079 psr,
1080 psr & PSTATE_N ? 'N' : '-',
1081 psr & PSTATE_Z ? 'Z' : '-',
1082 psr & PSTATE_C ? 'C' : '-',
1083 psr & PSTATE_V ? 'V' : '-',
1084 ns_status,
1085 el,
1086 psr & PSTATE_SP ? 'h' : 't');
1087
1088 if (cpu_isar_feature(aa64_sme, cpu)) {
1089 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
1090 env->svcr,
1091 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1092 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1093 }
1094 if (cpu_isar_feature(aa64_bti, cpu)) {
1095 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1096 }
1097 if (!(flags & CPU_DUMP_FPU)) {
1098 qemu_fprintf(f, "\n");
1099 return;
1100 }
1101 if (fp_exception_el(env, el) != 0) {
1102 qemu_fprintf(f, " FPU disabled\n");
1103 return;
1104 }
1105 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1106 vfp_get_fpcr(env), vfp_get_fpsr(env));
1107
1108 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1109 sve = sme_exception_el(env, el) == 0;
1110 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1111 sve = sve_exception_el(env, el) == 0;
1112 } else {
1113 sve = false;
1114 }
1115
1116 if (sve) {
1117 int zcr_len = sve_vqm1_for_el(env, el);
1118
1119 for (i = 0; i <= FFR_PRED_NUM; i++) {
1120 bool eol;
1121 if (i == FFR_PRED_NUM) {
1122 qemu_fprintf(f, "FFR=");
1123 /* It's last, so end the line. */
1124 eol = true;
1125 } else {
1126 qemu_fprintf(f, "P%02d=", i);
1127 switch (zcr_len) {
1128 case 0:
1129 eol = i % 8 == 7;
1130 break;
1131 case 1:
1132 eol = i % 6 == 5;
1133 break;
1134 case 2:
1135 case 3:
1136 eol = i % 3 == 2;
1137 break;
1138 default:
1139 /* More than one quadword per predicate. */
1140 eol = true;
1141 break;
1142 }
1143 }
1144 for (j = zcr_len / 4; j >= 0; j--) {
1145 int digits;
1146 if (j * 4 + 4 <= zcr_len + 1) {
1147 digits = 16;
1148 } else {
1149 digits = (zcr_len % 4 + 1) * 4;
1150 }
1151 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1152 env->vfp.pregs[i].p[j],
1153 j ? ":" : eol ? "\n" : " ");
1154 }
1155 }
1156
1157 if (zcr_len == 0) {
1158 /*
1159 * With vl=16, there are only 37 columns per register,
1160 * so output two registers per line.
1161 */
1162 for (i = 0; i < 32; i++) {
1163 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1164 i, env->vfp.zregs[i].d[1],
1165 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1166 }
1167 } else {
1168 for (i = 0; i < 32; i++) {
1169 qemu_fprintf(f, "Z%02d=", i);
1170 for (j = zcr_len; j >= 0; j--) {
1171 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1172 env->vfp.zregs[i].d[j * 2 + 1],
1173 env->vfp.zregs[i].d[j * 2 + 0],
1174 j ? ":" : "\n");
1175 }
1176 }
1177 }
1178 } else {
1179 for (i = 0; i < 32; i++) {
1180 uint64_t *q = aa64_vfp_qreg(env, i);
1181 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1182 i, q[1], q[0], (i & 1 ? "\n" : " "));
1183 }
1184 }
1185
1186 if (cpu_isar_feature(aa64_sme, cpu) &&
1187 FIELD_EX64(env->svcr, SVCR, ZA) &&
1188 sme_exception_el(env, el) == 0) {
1189 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1190 int svl = (zcr_len + 1) * 16;
1191 int svl_lg10 = svl < 100 ? 2 : 3;
1192
1193 for (i = 0; i < svl; i++) {
1194 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1195 for (j = zcr_len; j >= 0; --j) {
1196 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1197 env->zarray[i].d[2 * j + 1],
1198 env->zarray[i].d[2 * j],
1199 j ? ':' : '\n');
1200 }
1201 }
1202 }
1203 }
1204
1205 #else
1206
1207 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1208 {
1209 g_assert_not_reached();
1210 }
1211
1212 #endif
1213
1214 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1215 {
1216 ARMCPU *cpu = ARM_CPU(cs);
1217 CPUARMState *env = &cpu->env;
1218 int i;
1219
1220 if (is_a64(env)) {
1221 aarch64_cpu_dump_state(cs, f, flags);
1222 return;
1223 }
1224
1225 for (i = 0; i < 16; i++) {
1226 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1227 if ((i % 4) == 3) {
1228 qemu_fprintf(f, "\n");
1229 } else {
1230 qemu_fprintf(f, " ");
1231 }
1232 }
1233
1234 if (arm_feature(env, ARM_FEATURE_M)) {
1235 uint32_t xpsr = xpsr_read(env);
1236 const char *mode;
1237 const char *ns_status = "";
1238
1239 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1240 ns_status = env->v7m.secure ? "S " : "NS ";
1241 }
1242
1243 if (xpsr & XPSR_EXCP) {
1244 mode = "handler";
1245 } else {
1246 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1247 mode = "unpriv-thread";
1248 } else {
1249 mode = "priv-thread";
1250 }
1251 }
1252
1253 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1254 xpsr,
1255 xpsr & XPSR_N ? 'N' : '-',
1256 xpsr & XPSR_Z ? 'Z' : '-',
1257 xpsr & XPSR_C ? 'C' : '-',
1258 xpsr & XPSR_V ? 'V' : '-',
1259 xpsr & XPSR_T ? 'T' : 'A',
1260 ns_status,
1261 mode);
1262 } else {
1263 uint32_t psr = cpsr_read(env);
1264 const char *ns_status = "";
1265
1266 if (arm_feature(env, ARM_FEATURE_EL3) &&
1267 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1268 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1269 }
1270
1271 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1272 psr,
1273 psr & CPSR_N ? 'N' : '-',
1274 psr & CPSR_Z ? 'Z' : '-',
1275 psr & CPSR_C ? 'C' : '-',
1276 psr & CPSR_V ? 'V' : '-',
1277 psr & CPSR_T ? 'T' : 'A',
1278 ns_status,
1279 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1280 }
1281
1282 if (flags & CPU_DUMP_FPU) {
1283 int numvfpregs = 0;
1284 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1285 numvfpregs = 32;
1286 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1287 numvfpregs = 16;
1288 }
1289 for (i = 0; i < numvfpregs; i++) {
1290 uint64_t v = *aa32_vfp_dreg(env, i);
1291 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1292 i * 2, (uint32_t)v,
1293 i * 2 + 1, (uint32_t)(v >> 32),
1294 i, v);
1295 }
1296 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1297 if (cpu_isar_feature(aa32_mve, cpu)) {
1298 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1299 }
1300 }
1301 }
1302
1303 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1304 {
1305 uint32_t Aff1 = idx / clustersz;
1306 uint32_t Aff0 = idx % clustersz;
1307 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1308 }
1309
1310 static void arm_cpu_initfn(Object *obj)
1311 {
1312 ARMCPU *cpu = ARM_CPU(obj);
1313
1314 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1315 NULL, g_free);
1316
1317 QLIST_INIT(&cpu->pre_el_change_hooks);
1318 QLIST_INIT(&cpu->el_change_hooks);
1319
1320 #ifdef CONFIG_USER_ONLY
1321 # ifdef TARGET_AARCH64
1322 /*
1323 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1324 * These values were chosen to fit within the default signal frame.
1325 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1326 * and our corresponding cpu property.
1327 */
1328 cpu->sve_default_vq = 4;
1329 cpu->sme_default_vq = 2;
1330 # endif
1331 #else
1332 /* Our inbound IRQ and FIQ lines */
1333 if (kvm_enabled()) {
1334 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1335 * the same interface as non-KVM CPUs.
1336 */
1337 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1338 } else {
1339 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1340 }
1341
1342 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1343 ARRAY_SIZE(cpu->gt_timer_outputs));
1344
1345 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1346 "gicv3-maintenance-interrupt", 1);
1347 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1348 "pmu-interrupt", 1);
1349 #endif
1350
1351 /* DTB consumers generally don't in fact care what the 'compatible'
1352 * string is, so always provide some string and trust that a hypothetical
1353 * picky DTB consumer will also provide a helpful error message.
1354 */
1355 cpu->dtb_compatible = "qemu,unknown";
1356 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1357 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1358
1359 if (tcg_enabled() || hvf_enabled()) {
1360 /* TCG and HVF implement PSCI 1.1 */
1361 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1362 }
1363 }
1364
1365 static Property arm_cpu_gt_cntfrq_property =
1366 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1367 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1368
1369 static Property arm_cpu_reset_cbar_property =
1370 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1371
1372 static Property arm_cpu_reset_hivecs_property =
1373 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1374
1375 #ifndef CONFIG_USER_ONLY
1376 static Property arm_cpu_has_el2_property =
1377 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1378
1379 static Property arm_cpu_has_el3_property =
1380 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1381 #endif
1382
1383 static Property arm_cpu_cfgend_property =
1384 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1385
1386 static Property arm_cpu_has_vfp_property =
1387 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1388
1389 static Property arm_cpu_has_vfp_d32_property =
1390 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1391
1392 static Property arm_cpu_has_neon_property =
1393 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1394
1395 static Property arm_cpu_has_dsp_property =
1396 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1397
1398 static Property arm_cpu_has_mpu_property =
1399 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1400
1401 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1402 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1403 * the right value for that particular CPU type, and we don't want
1404 * to override that with an incorrect constant value.
1405 */
1406 static Property arm_cpu_pmsav7_dregion_property =
1407 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1408 pmsav7_dregion,
1409 qdev_prop_uint32, uint32_t);
1410
1411 static bool arm_get_pmu(Object *obj, Error **errp)
1412 {
1413 ARMCPU *cpu = ARM_CPU(obj);
1414
1415 return cpu->has_pmu;
1416 }
1417
1418 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1419 {
1420 ARMCPU *cpu = ARM_CPU(obj);
1421
1422 if (value) {
1423 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1424 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1425 return;
1426 }
1427 set_feature(&cpu->env, ARM_FEATURE_PMU);
1428 } else {
1429 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1430 }
1431 cpu->has_pmu = value;
1432 }
1433
1434 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1435 {
1436 /*
1437 * The exact approach to calculating guest ticks is:
1438 *
1439 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1440 * NANOSECONDS_PER_SECOND);
1441 *
1442 * We don't do that. Rather we intentionally use integer division
1443 * truncation below and in the caller for the conversion of host monotonic
1444 * time to guest ticks to provide the exact inverse for the semantics of
1445 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1446 * it loses precision when representing frequencies where
1447 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1448 * provide an exact inverse leads to scheduling timers with negative
1449 * periods, which in turn leads to sticky behaviour in the guest.
1450 *
1451 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1452 * cannot become zero.
1453 */
1454 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1455 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1456 }
1457
1458 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1459 {
1460 CPUARMState *env = &cpu->env;
1461 bool no_aa32 = false;
1462
1463 /*
1464 * Some features automatically imply others: set the feature
1465 * bits explicitly for these cases.
1466 */
1467
1468 if (arm_feature(env, ARM_FEATURE_M)) {
1469 set_feature(env, ARM_FEATURE_PMSA);
1470 }
1471
1472 if (arm_feature(env, ARM_FEATURE_V8)) {
1473 if (arm_feature(env, ARM_FEATURE_M)) {
1474 set_feature(env, ARM_FEATURE_V7);
1475 } else {
1476 set_feature(env, ARM_FEATURE_V7VE);
1477 }
1478 }
1479
1480 /*
1481 * There exist AArch64 cpus without AArch32 support. When KVM
1482 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1483 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1484 * As a general principle, we also do not make ID register
1485 * consistency checks anywhere unless using TCG, because only
1486 * for TCG would a consistency-check failure be a QEMU bug.
1487 */
1488 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1489 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1490 }
1491
1492 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1493 /*
1494 * v7 Virtualization Extensions. In real hardware this implies
1495 * EL2 and also the presence of the Security Extensions.
1496 * For QEMU, for backwards-compatibility we implement some
1497 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1498 * include the various other features that V7VE implies.
1499 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1500 * Security Extensions is ARM_FEATURE_EL3.
1501 */
1502 assert(!tcg_enabled() || no_aa32 ||
1503 cpu_isar_feature(aa32_arm_div, cpu));
1504 set_feature(env, ARM_FEATURE_LPAE);
1505 set_feature(env, ARM_FEATURE_V7);
1506 }
1507 if (arm_feature(env, ARM_FEATURE_V7)) {
1508 set_feature(env, ARM_FEATURE_VAPA);
1509 set_feature(env, ARM_FEATURE_THUMB2);
1510 set_feature(env, ARM_FEATURE_MPIDR);
1511 if (!arm_feature(env, ARM_FEATURE_M)) {
1512 set_feature(env, ARM_FEATURE_V6K);
1513 } else {
1514 set_feature(env, ARM_FEATURE_V6);
1515 }
1516
1517 /*
1518 * Always define VBAR for V7 CPUs even if it doesn't exist in
1519 * non-EL3 configs. This is needed by some legacy boards.
1520 */
1521 set_feature(env, ARM_FEATURE_VBAR);
1522 }
1523 if (arm_feature(env, ARM_FEATURE_V6K)) {
1524 set_feature(env, ARM_FEATURE_V6);
1525 set_feature(env, ARM_FEATURE_MVFR);
1526 }
1527 if (arm_feature(env, ARM_FEATURE_V6)) {
1528 set_feature(env, ARM_FEATURE_V5);
1529 if (!arm_feature(env, ARM_FEATURE_M)) {
1530 assert(!tcg_enabled() || no_aa32 ||
1531 cpu_isar_feature(aa32_jazelle, cpu));
1532 set_feature(env, ARM_FEATURE_AUXCR);
1533 }
1534 }
1535 if (arm_feature(env, ARM_FEATURE_V5)) {
1536 set_feature(env, ARM_FEATURE_V4T);
1537 }
1538 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1539 set_feature(env, ARM_FEATURE_V7MP);
1540 }
1541 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1542 set_feature(env, ARM_FEATURE_CBAR);
1543 }
1544 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1545 !arm_feature(env, ARM_FEATURE_M)) {
1546 set_feature(env, ARM_FEATURE_THUMB_DSP);
1547 }
1548 }
1549
1550 void arm_cpu_post_init(Object *obj)
1551 {
1552 ARMCPU *cpu = ARM_CPU(obj);
1553
1554 /*
1555 * Some features imply others. Figure this out now, because we
1556 * are going to look at the feature bits in deciding which
1557 * properties to add.
1558 */
1559 arm_cpu_propagate_feature_implications(cpu);
1560
1561 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1562 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1563 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1564 }
1565
1566 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1567 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1568 }
1569
1570 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571 object_property_add_uint64_ptr(obj, "rvbar",
1572 &cpu->rvbar_prop,
1573 OBJ_PROP_FLAG_READWRITE);
1574 }
1575
1576 #ifndef CONFIG_USER_ONLY
1577 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1578 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1579 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1580 */
1581 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1582
1583 object_property_add_link(obj, "secure-memory",
1584 TYPE_MEMORY_REGION,
1585 (Object **)&cpu->secure_memory,
1586 qdev_prop_allow_set_link_before_realize,
1587 OBJ_PROP_LINK_STRONG);
1588 }
1589
1590 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1591 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1592 }
1593 #endif
1594
1595 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1596 cpu->has_pmu = true;
1597 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1598 }
1599
1600 /*
1601 * Allow user to turn off VFP and Neon support, but only for TCG --
1602 * KVM does not currently allow us to lie to the guest about its
1603 * ID/feature registers, so the guest always sees what the host has.
1604 */
1605 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1606 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1607 cpu->has_vfp = true;
1608 cpu->has_vfp_d32 = true;
1609 if (tcg_enabled() || qtest_enabled()) {
1610 qdev_property_add_static(DEVICE(obj),
1611 &arm_cpu_has_vfp_property);
1612 }
1613 }
1614 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1615 cpu->has_vfp = true;
1616 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1617 cpu->has_vfp_d32 = true;
1618 /*
1619 * The permitted values of the SIMDReg bits [3:0] on
1620 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1621 * make sure that has_vfp_d32 can not be set to false.
1622 */
1623 if ((tcg_enabled() || qtest_enabled())
1624 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1625 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1626 qdev_property_add_static(DEVICE(obj),
1627 &arm_cpu_has_vfp_d32_property);
1628 }
1629 }
1630 }
1631
1632 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1633 cpu->has_neon = true;
1634 if (!kvm_enabled()) {
1635 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1636 }
1637 }
1638
1639 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1640 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1641 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1642 }
1643
1644 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1645 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1646 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1647 qdev_property_add_static(DEVICE(obj),
1648 &arm_cpu_pmsav7_dregion_property);
1649 }
1650 }
1651
1652 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1653 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1654 qdev_prop_allow_set_link_before_realize,
1655 OBJ_PROP_LINK_STRONG);
1656 /*
1657 * M profile: initial value of the Secure VTOR. We can't just use
1658 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1659 * the property to be set after realize.
1660 */
1661 object_property_add_uint32_ptr(obj, "init-svtor",
1662 &cpu->init_svtor,
1663 OBJ_PROP_FLAG_READWRITE);
1664 }
1665 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1666 /*
1667 * Initial value of the NS VTOR (for cores without the Security
1668 * extension, this is the only VTOR)
1669 */
1670 object_property_add_uint32_ptr(obj, "init-nsvtor",
1671 &cpu->init_nsvtor,
1672 OBJ_PROP_FLAG_READWRITE);
1673 }
1674
1675 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1676 object_property_add_uint32_ptr(obj, "psci-conduit",
1677 &cpu->psci_conduit,
1678 OBJ_PROP_FLAG_READWRITE);
1679
1680 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1681
1682 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1683 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1684 }
1685
1686 if (kvm_enabled()) {
1687 kvm_arm_add_vcpu_properties(obj);
1688 }
1689
1690 #ifndef CONFIG_USER_ONLY
1691 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1692 cpu_isar_feature(aa64_mte, cpu)) {
1693 object_property_add_link(obj, "tag-memory",
1694 TYPE_MEMORY_REGION,
1695 (Object **)&cpu->tag_memory,
1696 qdev_prop_allow_set_link_before_realize,
1697 OBJ_PROP_LINK_STRONG);
1698
1699 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1700 object_property_add_link(obj, "secure-tag-memory",
1701 TYPE_MEMORY_REGION,
1702 (Object **)&cpu->secure_tag_memory,
1703 qdev_prop_allow_set_link_before_realize,
1704 OBJ_PROP_LINK_STRONG);
1705 }
1706 }
1707 #endif
1708 }
1709
1710 static void arm_cpu_finalizefn(Object *obj)
1711 {
1712 ARMCPU *cpu = ARM_CPU(obj);
1713 ARMELChangeHook *hook, *next;
1714
1715 g_hash_table_destroy(cpu->cp_regs);
1716
1717 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1718 QLIST_REMOVE(hook, node);
1719 g_free(hook);
1720 }
1721 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1722 QLIST_REMOVE(hook, node);
1723 g_free(hook);
1724 }
1725 #ifndef CONFIG_USER_ONLY
1726 if (cpu->pmu_timer) {
1727 timer_free(cpu->pmu_timer);
1728 }
1729 #endif
1730 }
1731
1732 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1733 {
1734 Error *local_err = NULL;
1735
1736 #ifdef TARGET_AARCH64
1737 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1738 arm_cpu_sve_finalize(cpu, &local_err);
1739 if (local_err != NULL) {
1740 error_propagate(errp, local_err);
1741 return;
1742 }
1743
1744 arm_cpu_sme_finalize(cpu, &local_err);
1745 if (local_err != NULL) {
1746 error_propagate(errp, local_err);
1747 return;
1748 }
1749
1750 arm_cpu_pauth_finalize(cpu, &local_err);
1751 if (local_err != NULL) {
1752 error_propagate(errp, local_err);
1753 return;
1754 }
1755
1756 arm_cpu_lpa2_finalize(cpu, &local_err);
1757 if (local_err != NULL) {
1758 error_propagate(errp, local_err);
1759 return;
1760 }
1761 }
1762 #endif
1763
1764 if (kvm_enabled()) {
1765 kvm_arm_steal_time_finalize(cpu, &local_err);
1766 if (local_err != NULL) {
1767 error_propagate(errp, local_err);
1768 return;
1769 }
1770 }
1771 }
1772
1773 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1774 {
1775 CPUState *cs = CPU(dev);
1776 ARMCPU *cpu = ARM_CPU(dev);
1777 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1778 CPUARMState *env = &cpu->env;
1779 int pagebits;
1780 Error *local_err = NULL;
1781
1782 /* Use pc-relative instructions in system-mode */
1783 #ifndef CONFIG_USER_ONLY
1784 cs->tcg_cflags |= CF_PCREL;
1785 #endif
1786
1787 /* If we needed to query the host kernel for the CPU features
1788 * then it's possible that might have failed in the initfn, but
1789 * this is the first point where we can report it.
1790 */
1791 if (cpu->host_cpu_probe_failed) {
1792 if (!kvm_enabled() && !hvf_enabled()) {
1793 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1794 } else {
1795 error_setg(errp, "Failed to retrieve host CPU features");
1796 }
1797 return;
1798 }
1799
1800 #ifndef CONFIG_USER_ONLY
1801 /* The NVIC and M-profile CPU are two halves of a single piece of
1802 * hardware; trying to use one without the other is a command line
1803 * error and will result in segfaults if not caught here.
1804 */
1805 if (arm_feature(env, ARM_FEATURE_M)) {
1806 if (!env->nvic) {
1807 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1808 return;
1809 }
1810 } else {
1811 if (env->nvic) {
1812 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1813 return;
1814 }
1815 }
1816
1817 if (!tcg_enabled() && !qtest_enabled()) {
1818 /*
1819 * We assume that no accelerator except TCG (and the "not really an
1820 * accelerator" qtest) can handle these features, because Arm hardware
1821 * virtualization can't virtualize them.
1822 *
1823 * Catch all the cases which might cause us to create more than one
1824 * address space for the CPU (otherwise we will assert() later in
1825 * cpu_address_space_init()).
1826 */
1827 if (arm_feature(env, ARM_FEATURE_M)) {
1828 error_setg(errp,
1829 "Cannot enable %s when using an M-profile guest CPU",
1830 current_accel_name());
1831 return;
1832 }
1833 if (cpu->has_el3) {
1834 error_setg(errp,
1835 "Cannot enable %s when guest CPU has EL3 enabled",
1836 current_accel_name());
1837 return;
1838 }
1839 if (cpu->tag_memory) {
1840 error_setg(errp,
1841 "Cannot enable %s when guest CPUs has MTE enabled",
1842 current_accel_name());
1843 return;
1844 }
1845 }
1846
1847 {
1848 uint64_t scale;
1849
1850 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1851 if (!cpu->gt_cntfrq_hz) {
1852 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1853 cpu->gt_cntfrq_hz);
1854 return;
1855 }
1856 scale = gt_cntfrq_period_ns(cpu);
1857 } else {
1858 scale = GTIMER_SCALE;
1859 }
1860
1861 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1862 arm_gt_ptimer_cb, cpu);
1863 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1864 arm_gt_vtimer_cb, cpu);
1865 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1866 arm_gt_htimer_cb, cpu);
1867 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1868 arm_gt_stimer_cb, cpu);
1869 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1870 arm_gt_hvtimer_cb, cpu);
1871 }
1872 #endif
1873
1874 cpu_exec_realizefn(cs, &local_err);
1875 if (local_err != NULL) {
1876 error_propagate(errp, local_err);
1877 return;
1878 }
1879
1880 arm_cpu_finalize_features(cpu, &local_err);
1881 if (local_err != NULL) {
1882 error_propagate(errp, local_err);
1883 return;
1884 }
1885
1886 #ifdef CONFIG_USER_ONLY
1887 /*
1888 * User mode relies on IC IVAU instructions to catch modification of
1889 * dual-mapped code.
1890 *
1891 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1892 * IC IVAU even if the emulated processor does not normally require it.
1893 */
1894 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1895 #endif
1896
1897 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1898 cpu->has_vfp != cpu->has_neon) {
1899 /*
1900 * This is an architectural requirement for AArch64; AArch32 is
1901 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1902 */
1903 error_setg(errp,
1904 "AArch64 CPUs must have both VFP and Neon or neither");
1905 return;
1906 }
1907
1908 if (cpu->has_vfp_d32 != cpu->has_neon) {
1909 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1910 return;
1911 }
1912
1913 if (!cpu->has_vfp_d32) {
1914 uint32_t u;
1915
1916 u = cpu->isar.mvfr0;
1917 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1918 cpu->isar.mvfr0 = u;
1919 }
1920
1921 if (!cpu->has_vfp) {
1922 uint64_t t;
1923 uint32_t u;
1924
1925 t = cpu->isar.id_aa64isar1;
1926 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1927 cpu->isar.id_aa64isar1 = t;
1928
1929 t = cpu->isar.id_aa64pfr0;
1930 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1931 cpu->isar.id_aa64pfr0 = t;
1932
1933 u = cpu->isar.id_isar6;
1934 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1935 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1936 cpu->isar.id_isar6 = u;
1937
1938 u = cpu->isar.mvfr0;
1939 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1940 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1941 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1942 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1943 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1944 if (!arm_feature(env, ARM_FEATURE_M)) {
1945 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1946 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1947 }
1948 cpu->isar.mvfr0 = u;
1949
1950 u = cpu->isar.mvfr1;
1951 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1952 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1953 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1954 if (arm_feature(env, ARM_FEATURE_M)) {
1955 u = FIELD_DP32(u, MVFR1, FP16, 0);
1956 }
1957 cpu->isar.mvfr1 = u;
1958
1959 u = cpu->isar.mvfr2;
1960 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1961 cpu->isar.mvfr2 = u;
1962 }
1963
1964 if (!cpu->has_neon) {
1965 uint64_t t;
1966 uint32_t u;
1967
1968 unset_feature(env, ARM_FEATURE_NEON);
1969
1970 t = cpu->isar.id_aa64isar0;
1971 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1972 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1973 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1974 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1975 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1976 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1977 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1978 cpu->isar.id_aa64isar0 = t;
1979
1980 t = cpu->isar.id_aa64isar1;
1981 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1982 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1983 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1984 cpu->isar.id_aa64isar1 = t;
1985
1986 t = cpu->isar.id_aa64pfr0;
1987 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1988 cpu->isar.id_aa64pfr0 = t;
1989
1990 u = cpu->isar.id_isar5;
1991 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1992 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1993 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1994 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1995 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1996 cpu->isar.id_isar5 = u;
1997
1998 u = cpu->isar.id_isar6;
1999 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2000 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2001 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2002 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2003 cpu->isar.id_isar6 = u;
2004
2005 if (!arm_feature(env, ARM_FEATURE_M)) {
2006 u = cpu->isar.mvfr1;
2007 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2008 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2009 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2010 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2011 cpu->isar.mvfr1 = u;
2012
2013 u = cpu->isar.mvfr2;
2014 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2015 cpu->isar.mvfr2 = u;
2016 }
2017 }
2018
2019 if (!cpu->has_neon && !cpu->has_vfp) {
2020 uint64_t t;
2021 uint32_t u;
2022
2023 t = cpu->isar.id_aa64isar0;
2024 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2025 cpu->isar.id_aa64isar0 = t;
2026
2027 t = cpu->isar.id_aa64isar1;
2028 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2029 cpu->isar.id_aa64isar1 = t;
2030
2031 u = cpu->isar.mvfr0;
2032 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2033 cpu->isar.mvfr0 = u;
2034
2035 /* Despite the name, this field covers both VFP and Neon */
2036 u = cpu->isar.mvfr1;
2037 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2038 cpu->isar.mvfr1 = u;
2039 }
2040
2041 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2042 uint32_t u;
2043
2044 unset_feature(env, ARM_FEATURE_THUMB_DSP);
2045
2046 u = cpu->isar.id_isar1;
2047 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2048 cpu->isar.id_isar1 = u;
2049
2050 u = cpu->isar.id_isar2;
2051 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2052 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2053 cpu->isar.id_isar2 = u;
2054
2055 u = cpu->isar.id_isar3;
2056 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2057 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2058 cpu->isar.id_isar3 = u;
2059 }
2060
2061
2062 /*
2063 * We rely on no XScale CPU having VFP so we can use the same bits in the
2064 * TB flags field for VECSTRIDE and XSCALE_CPAR.
2065 */
2066 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2067 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2068 !arm_feature(env, ARM_FEATURE_XSCALE));
2069
2070 if (arm_feature(env, ARM_FEATURE_V7) &&
2071 !arm_feature(env, ARM_FEATURE_M) &&
2072 !arm_feature(env, ARM_FEATURE_PMSA)) {
2073 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2074 * can use 4K pages.
2075 */
2076 pagebits = 12;
2077 } else {
2078 /* For CPUs which might have tiny 1K pages, or which have an
2079 * MPU and might have small region sizes, stick with 1K pages.
2080 */
2081 pagebits = 10;
2082 }
2083 if (!set_preferred_target_page_bits(pagebits)) {
2084 /* This can only ever happen for hotplugging a CPU, or if
2085 * the board code incorrectly creates a CPU which it has
2086 * promised via minimum_page_size that it will not.
2087 */
2088 error_setg(errp, "This CPU requires a smaller page size than the "
2089 "system is using");
2090 return;
2091 }
2092
2093 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2094 * We don't support setting cluster ID ([16..23]) (known as Aff2
2095 * in later ARM ARM versions), or any of the higher affinity level fields,
2096 * so these bits always RAZ.
2097 */
2098 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2099 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2100 ARM_DEFAULT_CPUS_PER_CLUSTER);
2101 }
2102
2103 if (cpu->reset_hivecs) {
2104 cpu->reset_sctlr |= (1 << 13);
2105 }
2106
2107 if (cpu->cfgend) {
2108 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2109 cpu->reset_sctlr |= SCTLR_EE;
2110 } else {
2111 cpu->reset_sctlr |= SCTLR_B;
2112 }
2113 }
2114
2115 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2116 /* If the has_el3 CPU property is disabled then we need to disable the
2117 * feature.
2118 */
2119 unset_feature(env, ARM_FEATURE_EL3);
2120
2121 /*
2122 * Disable the security extension feature bits in the processor
2123 * feature registers as well.
2124 */
2125 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2126 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2127 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2128 ID_AA64PFR0, EL3, 0);
2129
2130 /* Disable the realm management extension, which requires EL3. */
2131 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2132 ID_AA64PFR0, RME, 0);
2133 }
2134
2135 if (!cpu->has_el2) {
2136 unset_feature(env, ARM_FEATURE_EL2);
2137 }
2138
2139 if (!cpu->has_pmu) {
2140 unset_feature(env, ARM_FEATURE_PMU);
2141 }
2142 if (arm_feature(env, ARM_FEATURE_PMU)) {
2143 pmu_init(cpu);
2144
2145 if (!kvm_enabled()) {
2146 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2147 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2148 }
2149
2150 #ifndef CONFIG_USER_ONLY
2151 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2152 cpu);
2153 #endif
2154 } else {
2155 cpu->isar.id_aa64dfr0 =
2156 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2157 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2158 cpu->pmceid0 = 0;
2159 cpu->pmceid1 = 0;
2160 }
2161
2162 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2163 /*
2164 * Disable the hypervisor feature bits in the processor feature
2165 * registers if we don't have EL2.
2166 */
2167 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2168 ID_AA64PFR0, EL2, 0);
2169 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2170 ID_PFR1, VIRTUALIZATION, 0);
2171 }
2172
2173 if (cpu_isar_feature(aa64_mte, cpu)) {
2174 /*
2175 * The architectural range of GM blocksize is 2-6, however qemu
2176 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2177 */
2178 if (tcg_enabled()) {
2179 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2180 }
2181
2182 #ifndef CONFIG_USER_ONLY
2183 /*
2184 * If we do not have tag-memory provided by the machine,
2185 * reduce MTE support to instructions enabled at EL0.
2186 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2187 */
2188 if (cpu->tag_memory == NULL) {
2189 cpu->isar.id_aa64pfr1 =
2190 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2191 }
2192 #endif
2193 }
2194
2195 if (tcg_enabled()) {
2196 /*
2197 * Don't report some architectural features in the ID registers
2198 * where TCG does not yet implement it (not even a minimal
2199 * stub version). This avoids guests falling over when they
2200 * try to access the non-existent system registers for them.
2201 */
2202 /* FEAT_SPE (Statistical Profiling Extension) */
2203 cpu->isar.id_aa64dfr0 =
2204 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2205 /* FEAT_TRBE (Trace Buffer Extension) */
2206 cpu->isar.id_aa64dfr0 =
2207 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2208 /* FEAT_TRF (Self-hosted Trace Extension) */
2209 cpu->isar.id_aa64dfr0 =
2210 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2211 cpu->isar.id_dfr0 =
2212 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2213 /* Trace Macrocell system register access */
2214 cpu->isar.id_aa64dfr0 =
2215 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2216 cpu->isar.id_dfr0 =
2217 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2218 /* Memory mapped trace */
2219 cpu->isar.id_dfr0 =
2220 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2221 /* FEAT_AMU (Activity Monitors Extension) */
2222 cpu->isar.id_aa64pfr0 =
2223 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2224 cpu->isar.id_pfr0 =
2225 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2226 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2227 cpu->isar.id_aa64pfr0 =
2228 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2229 /* FEAT_NV (Nested Virtualization) */
2230 cpu->isar.id_aa64mmfr2 =
2231 FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2232 }
2233
2234 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2235 * to false or by setting pmsav7-dregion to 0.
2236 */
2237 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2238 cpu->has_mpu = false;
2239 cpu->pmsav7_dregion = 0;
2240 cpu->pmsav8r_hdregion = 0;
2241 }
2242
2243 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2244 arm_feature(env, ARM_FEATURE_V7)) {
2245 uint32_t nr = cpu->pmsav7_dregion;
2246
2247 if (nr > 0xff) {
2248 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2249 return;
2250 }
2251
2252 if (nr) {
2253 if (arm_feature(env, ARM_FEATURE_V8)) {
2254 /* PMSAv8 */
2255 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2256 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2257 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2258 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2259 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2260 }
2261 } else {
2262 env->pmsav7.drbar = g_new0(uint32_t, nr);
2263 env->pmsav7.drsr = g_new0(uint32_t, nr);
2264 env->pmsav7.dracr = g_new0(uint32_t, nr);
2265 }
2266 }
2267
2268 if (cpu->pmsav8r_hdregion > 0xff) {
2269 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2270 cpu->pmsav8r_hdregion);
2271 return;
2272 }
2273
2274 if (cpu->pmsav8r_hdregion) {
2275 env->pmsav8.hprbar = g_new0(uint32_t,
2276 cpu->pmsav8r_hdregion);
2277 env->pmsav8.hprlar = g_new0(uint32_t,
2278 cpu->pmsav8r_hdregion);
2279 }
2280 }
2281
2282 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2283 uint32_t nr = cpu->sau_sregion;
2284
2285 if (nr > 0xff) {
2286 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2287 return;
2288 }
2289
2290 if (nr) {
2291 env->sau.rbar = g_new0(uint32_t, nr);
2292 env->sau.rlar = g_new0(uint32_t, nr);
2293 }
2294 }
2295
2296 if (arm_feature(env, ARM_FEATURE_EL3)) {
2297 set_feature(env, ARM_FEATURE_VBAR);
2298 }
2299
2300 #ifndef CONFIG_USER_ONLY
2301 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2302 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2303 }
2304 #endif
2305
2306 register_cp_regs_for_features(cpu);
2307 arm_cpu_register_gdb_regs_for_features(cpu);
2308
2309 init_cpreg_list(cpu);
2310
2311 #ifndef CONFIG_USER_ONLY
2312 MachineState *ms = MACHINE(qdev_get_machine());
2313 unsigned int smp_cpus = ms->smp.cpus;
2314 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2315
2316 /*
2317 * We must set cs->num_ases to the final value before
2318 * the first call to cpu_address_space_init.
2319 */
2320 if (cpu->tag_memory != NULL) {
2321 cs->num_ases = 3 + has_secure;
2322 } else {
2323 cs->num_ases = 1 + has_secure;
2324 }
2325
2326 if (has_secure) {
2327 if (!cpu->secure_memory) {
2328 cpu->secure_memory = cs->memory;
2329 }
2330 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2331 cpu->secure_memory);
2332 }
2333
2334 if (cpu->tag_memory != NULL) {
2335 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2336 cpu->tag_memory);
2337 if (has_secure) {
2338 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2339 cpu->secure_tag_memory);
2340 }
2341 }
2342
2343 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2344
2345 /* No core_count specified, default to smp_cpus. */
2346 if (cpu->core_count == -1) {
2347 cpu->core_count = smp_cpus;
2348 }
2349 #endif
2350
2351 if (tcg_enabled()) {
2352 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2353
2354 /*
2355 * We only support DCZ blocklen that fits on one page.
2356 *
2357 * Architectually this is always true. However TARGET_PAGE_SIZE
2358 * is variable and, for compatibility with -machine virt-2.7,
2359 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2360 * But even then, while the largest architectural DCZ blocklen
2361 * is 2KiB, no cpu actually uses such a large blocklen.
2362 */
2363 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2364
2365 /*
2366 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2367 * both nibbles of each byte storing tag data may be written at once.
2368 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2369 */
2370 if (cpu_isar_feature(aa64_mte, cpu)) {
2371 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2372 }
2373 }
2374
2375 qemu_init_vcpu(cs);
2376 cpu_reset(cs);
2377
2378 acc->parent_realize(dev, errp);
2379 }
2380
2381 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2382 {
2383 ObjectClass *oc;
2384 char *typename;
2385 char **cpuname;
2386 const char *cpunamestr;
2387
2388 cpuname = g_strsplit(cpu_model, ",", 1);
2389 cpunamestr = cpuname[0];
2390 #ifdef CONFIG_USER_ONLY
2391 /* For backwards compatibility usermode emulation allows "-cpu any",
2392 * which has the same semantics as "-cpu max".
2393 */
2394 if (!strcmp(cpunamestr, "any")) {
2395 cpunamestr = "max";
2396 }
2397 #endif
2398 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2399 oc = object_class_by_name(typename);
2400 g_strfreev(cpuname);
2401 g_free(typename);
2402 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2403 object_class_is_abstract(oc)) {
2404 return NULL;
2405 }
2406 return oc;
2407 }
2408
2409 static Property arm_cpu_properties[] = {
2410 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2411 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2412 mp_affinity, ARM64_AFFINITY_INVALID),
2413 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2414 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2415 DEFINE_PROP_END_OF_LIST()
2416 };
2417
2418 static const gchar *arm_gdb_arch_name(CPUState *cs)
2419 {
2420 ARMCPU *cpu = ARM_CPU(cs);
2421 CPUARMState *env = &cpu->env;
2422
2423 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2424 return "iwmmxt";
2425 }
2426 return "arm";
2427 }
2428
2429 #ifndef CONFIG_USER_ONLY
2430 #include "hw/core/sysemu-cpu-ops.h"
2431
2432 static const struct SysemuCPUOps arm_sysemu_ops = {
2433 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2434 .asidx_from_attrs = arm_asidx_from_attrs,
2435 .write_elf32_note = arm_cpu_write_elf32_note,
2436 .write_elf64_note = arm_cpu_write_elf64_note,
2437 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2438 .legacy_vmsd = &vmstate_arm_cpu,
2439 };
2440 #endif
2441
2442 #ifdef CONFIG_TCG
2443 static const struct TCGCPUOps arm_tcg_ops = {
2444 .initialize = arm_translate_init,
2445 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2446 .debug_excp_handler = arm_debug_excp_handler,
2447 .restore_state_to_opc = arm_restore_state_to_opc,
2448
2449 #ifdef CONFIG_USER_ONLY
2450 .record_sigsegv = arm_cpu_record_sigsegv,
2451 .record_sigbus = arm_cpu_record_sigbus,
2452 #else
2453 .tlb_fill = arm_cpu_tlb_fill,
2454 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2455 .do_interrupt = arm_cpu_do_interrupt,
2456 .do_transaction_failed = arm_cpu_do_transaction_failed,
2457 .do_unaligned_access = arm_cpu_do_unaligned_access,
2458 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2459 .debug_check_watchpoint = arm_debug_check_watchpoint,
2460 .debug_check_breakpoint = arm_debug_check_breakpoint,
2461 #endif /* !CONFIG_USER_ONLY */
2462 };
2463 #endif /* CONFIG_TCG */
2464
2465 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2466 {
2467 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2468 CPUClass *cc = CPU_CLASS(acc);
2469 DeviceClass *dc = DEVICE_CLASS(oc);
2470 ResettableClass *rc = RESETTABLE_CLASS(oc);
2471
2472 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2473 &acc->parent_realize);
2474
2475 device_class_set_props(dc, arm_cpu_properties);
2476
2477 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2478 &acc->parent_phases);
2479
2480 cc->class_by_name = arm_cpu_class_by_name;
2481 cc->has_work = arm_cpu_has_work;
2482 cc->dump_state = arm_cpu_dump_state;
2483 cc->set_pc = arm_cpu_set_pc;
2484 cc->get_pc = arm_cpu_get_pc;
2485 cc->gdb_read_register = arm_cpu_gdb_read_register;
2486 cc->gdb_write_register = arm_cpu_gdb_write_register;
2487 #ifndef CONFIG_USER_ONLY
2488 cc->sysemu_ops = &arm_sysemu_ops;
2489 #endif
2490 cc->gdb_num_core_regs = 26;
2491 cc->gdb_arch_name = arm_gdb_arch_name;
2492 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2493 cc->gdb_stop_before_watchpoint = true;
2494 cc->disas_set_info = arm_disas_set_info;
2495
2496 #ifdef CONFIG_TCG
2497 cc->tcg_ops = &arm_tcg_ops;
2498 #endif /* CONFIG_TCG */
2499 }
2500
2501 static void arm_cpu_instance_init(Object *obj)
2502 {
2503 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2504
2505 acc->info->initfn(obj);
2506 arm_cpu_post_init(obj);
2507 }
2508
2509 static void cpu_register_class_init(ObjectClass *oc, void *data)
2510 {
2511 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2512 CPUClass *cc = CPU_CLASS(acc);
2513
2514 acc->info = data;
2515 cc->gdb_core_xml_file = "arm-core.xml";
2516 }
2517
2518 void arm_cpu_register(const ARMCPUInfo *info)
2519 {
2520 TypeInfo type_info = {
2521 .parent = TYPE_ARM_CPU,
2522 .instance_init = arm_cpu_instance_init,
2523 .class_init = info->class_init ?: cpu_register_class_init,
2524 .class_data = (void *)info,
2525 };
2526
2527 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2528 type_register(&type_info);
2529 g_free((void *)type_info.name);
2530 }
2531
2532 static const TypeInfo arm_cpu_type_info = {
2533 .name = TYPE_ARM_CPU,
2534 .parent = TYPE_CPU,
2535 .instance_size = sizeof(ARMCPU),
2536 .instance_align = __alignof__(ARMCPU),
2537 .instance_init = arm_cpu_initfn,
2538 .instance_finalize = arm_cpu_finalizefn,
2539 .abstract = true,
2540 .class_size = sizeof(ARMCPUClass),
2541 .class_init = arm_cpu_class_init,
2542 };
2543
2544 static void arm_cpu_register_types(void)
2545 {
2546 type_register_static(&arm_cpu_type_info);
2547 }
2548
2549 type_init(arm_cpu_register_types)