]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
Merge tag 'for-upstream' of https://repo.or.cz/qemu/kevin into staging
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cs->env_ptr;
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cs->env_ptr;
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* Trap on implementation defined registers. */
247 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
248 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
249 }
250 /* and to the FP/Neon instructions */
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, FPEN, 3);
253 /* and to the SVE instructions, with default vector length */
254 if (cpu_isar_feature(aa64_sve, cpu)) {
255 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
256 CPACR_EL1, ZEN, 3);
257 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
258 }
259 /* and for SME instructions, with default vector length, and TPIDR2 */
260 if (cpu_isar_feature(aa64_sme, cpu)) {
261 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
262 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
263 CPACR_EL1, SMEN, 3);
264 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
265 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
266 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
267 SMCR, FA64, 1);
268 }
269 }
270 /*
271 * Enable 48-bit address space (TODO: take reserved_va into account).
272 * Enable TBI0 but not TBI1.
273 * Note that this must match useronly_clean_ptr.
274 */
275 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
276
277 /* Enable MTE */
278 if (cpu_isar_feature(aa64_mte, cpu)) {
279 /* Enable tag access, but leave TCF0 as No Effect (0). */
280 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
281 /*
282 * Exclude all tags, so that tag 0 is always used.
283 * This corresponds to Linux current->thread.gcr_incl = 0.
284 *
285 * Set RRND, so that helper_irg() will generate a seed later.
286 * Here in cpu_reset(), the crypto subsystem has not yet been
287 * initialized.
288 */
289 env->cp15.gcr_el1 = 0x1ffff;
290 }
291 /*
292 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
293 * This is not yet exposed from the Linux kernel in any way.
294 */
295 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
296 /* Disable access to Debug Communication Channel (DCC). */
297 env->cp15.mdscr_el1 |= 1 << 12;
298 #else
299 /* Reset into the highest available EL */
300 if (arm_feature(env, ARM_FEATURE_EL3)) {
301 env->pstate = PSTATE_MODE_EL3h;
302 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
303 env->pstate = PSTATE_MODE_EL2h;
304 } else {
305 env->pstate = PSTATE_MODE_EL1h;
306 }
307
308 /* Sample rvbar at reset. */
309 env->cp15.rvbar = cpu->rvbar_prop;
310 env->pc = env->cp15.rvbar;
311 #endif
312 } else {
313 #if defined(CONFIG_USER_ONLY)
314 /* Userspace expects access to cp10 and cp11 for FP/Neon */
315 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
316 CPACR, CP10, 3);
317 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
318 CPACR, CP11, 3);
319 #endif
320 if (arm_feature(env, ARM_FEATURE_V8)) {
321 env->cp15.rvbar = cpu->rvbar_prop;
322 env->regs[15] = cpu->rvbar_prop;
323 }
324 }
325
326 #if defined(CONFIG_USER_ONLY)
327 env->uncached_cpsr = ARM_CPU_MODE_USR;
328 /* For user mode we must enable access to coprocessors */
329 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
330 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
331 env->cp15.c15_cpar = 3;
332 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
333 env->cp15.c15_cpar = 1;
334 }
335 #else
336
337 /*
338 * If the highest available EL is EL2, AArch32 will start in Hyp
339 * mode; otherwise it starts in SVC. Note that if we start in
340 * AArch64 then these values in the uncached_cpsr will be ignored.
341 */
342 if (arm_feature(env, ARM_FEATURE_EL2) &&
343 !arm_feature(env, ARM_FEATURE_EL3)) {
344 env->uncached_cpsr = ARM_CPU_MODE_HYP;
345 } else {
346 env->uncached_cpsr = ARM_CPU_MODE_SVC;
347 }
348 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
349
350 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
351 * executing as AArch32 then check if highvecs are enabled and
352 * adjust the PC accordingly.
353 */
354 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
355 env->regs[15] = 0xFFFF0000;
356 }
357
358 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
359 #endif
360
361 if (arm_feature(env, ARM_FEATURE_M)) {
362 #ifndef CONFIG_USER_ONLY
363 uint32_t initial_msp; /* Loaded from 0x0 */
364 uint32_t initial_pc; /* Loaded from 0x4 */
365 uint8_t *rom;
366 uint32_t vecbase;
367 #endif
368
369 if (cpu_isar_feature(aa32_lob, cpu)) {
370 /*
371 * LTPSIZE is constant 4 if MVE not implemented, and resets
372 * to an UNKNOWN value if MVE is implemented. We choose to
373 * always reset to 4.
374 */
375 env->v7m.ltpsize = 4;
376 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
377 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
378 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
379 }
380
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 env->v7m.secure = true;
383 } else {
384 /* This bit resets to 0 if security is supported, but 1 if
385 * it is not. The bit is not present in v7M, but we set it
386 * here so we can avoid having to make checks on it conditional
387 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
388 */
389 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
390 /*
391 * Set NSACR to indicate "NS access permitted to everything";
392 * this avoids having to have all the tests of it being
393 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
394 * v8.1M the guest-visible value of NSACR in a CPU without the
395 * Security Extension is 0xcff.
396 */
397 env->v7m.nsacr = 0xcff;
398 }
399
400 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
401 * that it resets to 1, so QEMU always does that rather than making
402 * it dependent on CPU model. In v8M it is RES1.
403 */
404 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
405 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
406 if (arm_feature(env, ARM_FEATURE_V8)) {
407 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
408 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
409 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410 }
411 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
412 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
413 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414 }
415
416 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
417 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
418 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
419 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
420 }
421
422 #ifndef CONFIG_USER_ONLY
423 /* Unlike A/R profile, M profile defines the reset LR value */
424 env->regs[14] = 0xffffffff;
425
426 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
427 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
428
429 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
430 vecbase = env->v7m.vecbase[env->v7m.secure];
431 rom = rom_ptr_for_as(s->as, vecbase, 8);
432 if (rom) {
433 /* Address zero is covered by ROM which hasn't yet been
434 * copied into physical memory.
435 */
436 initial_msp = ldl_p(rom);
437 initial_pc = ldl_p(rom + 4);
438 } else {
439 /* Address zero not covered by a ROM blob, or the ROM blob
440 * is in non-modifiable memory and this is a second reset after
441 * it got copied into memory. In the latter case, rom_ptr
442 * will return a NULL pointer and we should use ldl_phys instead.
443 */
444 initial_msp = ldl_phys(s->as, vecbase);
445 initial_pc = ldl_phys(s->as, vecbase + 4);
446 }
447
448 qemu_log_mask(CPU_LOG_INT,
449 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
450 initial_msp, initial_pc);
451
452 env->regs[13] = initial_msp & 0xFFFFFFFC;
453 env->regs[15] = initial_pc & ~1;
454 env->thumb = initial_pc & 1;
455 #else
456 /*
457 * For user mode we run non-secure and with access to the FPU.
458 * The FPU context is active (ie does not need further setup)
459 * and is owned by non-secure.
460 */
461 env->v7m.secure = false;
462 env->v7m.nsacr = 0xcff;
463 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
464 env->v7m.fpccr[M_REG_S] &=
465 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
466 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
467 #endif
468 }
469
470 /* M profile requires that reset clears the exclusive monitor;
471 * A profile does not, but clearing it makes more sense than having it
472 * set with an exclusive access on address zero.
473 */
474 arm_clear_exclusive(env);
475
476 if (arm_feature(env, ARM_FEATURE_PMSA)) {
477 if (cpu->pmsav7_dregion > 0) {
478 if (arm_feature(env, ARM_FEATURE_V8)) {
479 memset(env->pmsav8.rbar[M_REG_NS], 0,
480 sizeof(*env->pmsav8.rbar[M_REG_NS])
481 * cpu->pmsav7_dregion);
482 memset(env->pmsav8.rlar[M_REG_NS], 0,
483 sizeof(*env->pmsav8.rlar[M_REG_NS])
484 * cpu->pmsav7_dregion);
485 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
486 memset(env->pmsav8.rbar[M_REG_S], 0,
487 sizeof(*env->pmsav8.rbar[M_REG_S])
488 * cpu->pmsav7_dregion);
489 memset(env->pmsav8.rlar[M_REG_S], 0,
490 sizeof(*env->pmsav8.rlar[M_REG_S])
491 * cpu->pmsav7_dregion);
492 }
493 } else if (arm_feature(env, ARM_FEATURE_V7)) {
494 memset(env->pmsav7.drbar, 0,
495 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
496 memset(env->pmsav7.drsr, 0,
497 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
498 memset(env->pmsav7.dracr, 0,
499 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
500 }
501 }
502
503 if (cpu->pmsav8r_hdregion > 0) {
504 memset(env->pmsav8.hprbar, 0,
505 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
506 memset(env->pmsav8.hprlar, 0,
507 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
508 }
509
510 env->pmsav7.rnr[M_REG_NS] = 0;
511 env->pmsav7.rnr[M_REG_S] = 0;
512 env->pmsav8.mair0[M_REG_NS] = 0;
513 env->pmsav8.mair0[M_REG_S] = 0;
514 env->pmsav8.mair1[M_REG_NS] = 0;
515 env->pmsav8.mair1[M_REG_S] = 0;
516 }
517
518 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
519 if (cpu->sau_sregion > 0) {
520 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
521 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
522 }
523 env->sau.rnr = 0;
524 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
525 * the Cortex-M33 does.
526 */
527 env->sau.ctrl = 0;
528 }
529
530 set_flush_to_zero(1, &env->vfp.standard_fp_status);
531 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
532 set_default_nan_mode(1, &env->vfp.standard_fp_status);
533 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.fp_status);
536 set_float_detect_tininess(float_tininess_before_rounding,
537 &env->vfp.standard_fp_status);
538 set_float_detect_tininess(float_tininess_before_rounding,
539 &env->vfp.fp_status_f16);
540 set_float_detect_tininess(float_tininess_before_rounding,
541 &env->vfp.standard_fp_status_f16);
542 #ifndef CONFIG_USER_ONLY
543 if (kvm_enabled()) {
544 kvm_arm_reset_vcpu(cpu);
545 }
546 #endif
547
548 if (tcg_enabled()) {
549 hw_breakpoint_update_all(cpu);
550 hw_watchpoint_update_all(cpu);
551
552 arm_rebuild_hflags(env);
553 }
554 }
555
556 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
557
558 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
559 unsigned int target_el,
560 unsigned int cur_el, bool secure,
561 uint64_t hcr_el2)
562 {
563 CPUARMState *env = cs->env_ptr;
564 bool pstate_unmasked;
565 bool unmasked = false;
566
567 /*
568 * Don't take exceptions if they target a lower EL.
569 * This check should catch any exceptions that would not be taken
570 * but left pending.
571 */
572 if (cur_el > target_el) {
573 return false;
574 }
575
576 switch (excp_idx) {
577 case EXCP_FIQ:
578 pstate_unmasked = !(env->daif & PSTATE_F);
579 break;
580
581 case EXCP_IRQ:
582 pstate_unmasked = !(env->daif & PSTATE_I);
583 break;
584
585 case EXCP_VFIQ:
586 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
587 /* VFIQs are only taken when hypervized. */
588 return false;
589 }
590 return !(env->daif & PSTATE_F);
591 case EXCP_VIRQ:
592 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
593 /* VIRQs are only taken when hypervized. */
594 return false;
595 }
596 return !(env->daif & PSTATE_I);
597 case EXCP_VSERR:
598 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
599 /* VIRQs are only taken when hypervized. */
600 return false;
601 }
602 return !(env->daif & PSTATE_A);
603 default:
604 g_assert_not_reached();
605 }
606
607 /*
608 * Use the target EL, current execution state and SCR/HCR settings to
609 * determine whether the corresponding CPSR bit is used to mask the
610 * interrupt.
611 */
612 if ((target_el > cur_el) && (target_el != 1)) {
613 /* Exceptions targeting a higher EL may not be maskable */
614 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
615 switch (target_el) {
616 case 2:
617 /*
618 * According to ARM DDI 0487H.a, an interrupt can be masked
619 * when HCR_E2H and HCR_TGE are both set regardless of the
620 * current Security state. Note that we need to revisit this
621 * part again once we need to support NMI.
622 */
623 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
624 unmasked = true;
625 }
626 break;
627 case 3:
628 /* Interrupt cannot be masked when the target EL is 3 */
629 unmasked = true;
630 break;
631 default:
632 g_assert_not_reached();
633 }
634 } else {
635 /*
636 * The old 32-bit-only environment has a more complicated
637 * masking setup. HCR and SCR bits not only affect interrupt
638 * routing but also change the behaviour of masking.
639 */
640 bool hcr, scr;
641
642 switch (excp_idx) {
643 case EXCP_FIQ:
644 /*
645 * If FIQs are routed to EL3 or EL2 then there are cases where
646 * we override the CPSR.F in determining if the exception is
647 * masked or not. If neither of these are set then we fall back
648 * to the CPSR.F setting otherwise we further assess the state
649 * below.
650 */
651 hcr = hcr_el2 & HCR_FMO;
652 scr = (env->cp15.scr_el3 & SCR_FIQ);
653
654 /*
655 * When EL3 is 32-bit, the SCR.FW bit controls whether the
656 * CPSR.F bit masks FIQ interrupts when taken in non-secure
657 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
658 * when non-secure but only when FIQs are only routed to EL3.
659 */
660 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
661 break;
662 case EXCP_IRQ:
663 /*
664 * When EL3 execution state is 32-bit, if HCR.IMO is set then
665 * we may override the CPSR.I masking when in non-secure state.
666 * The SCR.IRQ setting has already been taken into consideration
667 * when setting the target EL, so it does not have a further
668 * affect here.
669 */
670 hcr = hcr_el2 & HCR_IMO;
671 scr = false;
672 break;
673 default:
674 g_assert_not_reached();
675 }
676
677 if ((scr || hcr) && !secure) {
678 unmasked = true;
679 }
680 }
681 }
682
683 /*
684 * The PSTATE bits only mask the interrupt if we have not overridden the
685 * ability above.
686 */
687 return unmasked || pstate_unmasked;
688 }
689
690 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
691 {
692 CPUClass *cc = CPU_GET_CLASS(cs);
693 CPUARMState *env = cs->env_ptr;
694 uint32_t cur_el = arm_current_el(env);
695 bool secure = arm_is_secure(env);
696 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
697 uint32_t target_el;
698 uint32_t excp_idx;
699
700 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
701
702 if (interrupt_request & CPU_INTERRUPT_FIQ) {
703 excp_idx = EXCP_FIQ;
704 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
705 if (arm_excp_unmasked(cs, excp_idx, target_el,
706 cur_el, secure, hcr_el2)) {
707 goto found;
708 }
709 }
710 if (interrupt_request & CPU_INTERRUPT_HARD) {
711 excp_idx = EXCP_IRQ;
712 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
713 if (arm_excp_unmasked(cs, excp_idx, target_el,
714 cur_el, secure, hcr_el2)) {
715 goto found;
716 }
717 }
718 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
719 excp_idx = EXCP_VIRQ;
720 target_el = 1;
721 if (arm_excp_unmasked(cs, excp_idx, target_el,
722 cur_el, secure, hcr_el2)) {
723 goto found;
724 }
725 }
726 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
727 excp_idx = EXCP_VFIQ;
728 target_el = 1;
729 if (arm_excp_unmasked(cs, excp_idx, target_el,
730 cur_el, secure, hcr_el2)) {
731 goto found;
732 }
733 }
734 if (interrupt_request & CPU_INTERRUPT_VSERR) {
735 excp_idx = EXCP_VSERR;
736 target_el = 1;
737 if (arm_excp_unmasked(cs, excp_idx, target_el,
738 cur_el, secure, hcr_el2)) {
739 /* Taking a virtual abort clears HCR_EL2.VSE */
740 env->cp15.hcr_el2 &= ~HCR_VSE;
741 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
742 goto found;
743 }
744 }
745 return false;
746
747 found:
748 cs->exception_index = excp_idx;
749 env->exception.target_el = target_el;
750 cc->tcg_ops->do_interrupt(cs);
751 return true;
752 }
753
754 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
755
756 void arm_cpu_update_virq(ARMCPU *cpu)
757 {
758 /*
759 * Update the interrupt level for VIRQ, which is the logical OR of
760 * the HCR_EL2.VI bit and the input line level from the GIC.
761 */
762 CPUARMState *env = &cpu->env;
763 CPUState *cs = CPU(cpu);
764
765 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
766 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
767
768 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
769 if (new_state) {
770 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
771 } else {
772 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
773 }
774 }
775 }
776
777 void arm_cpu_update_vfiq(ARMCPU *cpu)
778 {
779 /*
780 * Update the interrupt level for VFIQ, which is the logical OR of
781 * the HCR_EL2.VF bit and the input line level from the GIC.
782 */
783 CPUARMState *env = &cpu->env;
784 CPUState *cs = CPU(cpu);
785
786 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
787 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
788
789 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
790 if (new_state) {
791 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
792 } else {
793 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
794 }
795 }
796 }
797
798 void arm_cpu_update_vserr(ARMCPU *cpu)
799 {
800 /*
801 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
802 */
803 CPUARMState *env = &cpu->env;
804 CPUState *cs = CPU(cpu);
805
806 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
807
808 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
809 if (new_state) {
810 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
811 } else {
812 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
813 }
814 }
815 }
816
817 #ifndef CONFIG_USER_ONLY
818 static void arm_cpu_set_irq(void *opaque, int irq, int level)
819 {
820 ARMCPU *cpu = opaque;
821 CPUARMState *env = &cpu->env;
822 CPUState *cs = CPU(cpu);
823 static const int mask[] = {
824 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
825 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
826 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
827 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
828 };
829
830 if (!arm_feature(env, ARM_FEATURE_EL2) &&
831 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
832 /*
833 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
834 * have EL2 support we don't care. (Unless the guest is doing something
835 * silly this will only be calls saying "level is still 0".)
836 */
837 return;
838 }
839
840 if (level) {
841 env->irq_line_state |= mask[irq];
842 } else {
843 env->irq_line_state &= ~mask[irq];
844 }
845
846 switch (irq) {
847 case ARM_CPU_VIRQ:
848 arm_cpu_update_virq(cpu);
849 break;
850 case ARM_CPU_VFIQ:
851 arm_cpu_update_vfiq(cpu);
852 break;
853 case ARM_CPU_IRQ:
854 case ARM_CPU_FIQ:
855 if (level) {
856 cpu_interrupt(cs, mask[irq]);
857 } else {
858 cpu_reset_interrupt(cs, mask[irq]);
859 }
860 break;
861 default:
862 g_assert_not_reached();
863 }
864 }
865
866 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
867 {
868 #ifdef CONFIG_KVM
869 ARMCPU *cpu = opaque;
870 CPUARMState *env = &cpu->env;
871 CPUState *cs = CPU(cpu);
872 uint32_t linestate_bit;
873 int irq_id;
874
875 switch (irq) {
876 case ARM_CPU_IRQ:
877 irq_id = KVM_ARM_IRQ_CPU_IRQ;
878 linestate_bit = CPU_INTERRUPT_HARD;
879 break;
880 case ARM_CPU_FIQ:
881 irq_id = KVM_ARM_IRQ_CPU_FIQ;
882 linestate_bit = CPU_INTERRUPT_FIQ;
883 break;
884 default:
885 g_assert_not_reached();
886 }
887
888 if (level) {
889 env->irq_line_state |= linestate_bit;
890 } else {
891 env->irq_line_state &= ~linestate_bit;
892 }
893 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
894 #endif
895 }
896
897 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
898 {
899 ARMCPU *cpu = ARM_CPU(cs);
900 CPUARMState *env = &cpu->env;
901
902 cpu_synchronize_state(cs);
903 return arm_cpu_data_is_big_endian(env);
904 }
905
906 #endif
907
908 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
909 {
910 ARMCPU *ac = ARM_CPU(cpu);
911 CPUARMState *env = &ac->env;
912 bool sctlr_b;
913
914 if (is_a64(env)) {
915 info->cap_arch = CS_ARCH_ARM64;
916 info->cap_insn_unit = 4;
917 info->cap_insn_split = 4;
918 } else {
919 int cap_mode;
920 if (env->thumb) {
921 info->cap_insn_unit = 2;
922 info->cap_insn_split = 4;
923 cap_mode = CS_MODE_THUMB;
924 } else {
925 info->cap_insn_unit = 4;
926 info->cap_insn_split = 4;
927 cap_mode = CS_MODE_ARM;
928 }
929 if (arm_feature(env, ARM_FEATURE_V8)) {
930 cap_mode |= CS_MODE_V8;
931 }
932 if (arm_feature(env, ARM_FEATURE_M)) {
933 cap_mode |= CS_MODE_MCLASS;
934 }
935 info->cap_arch = CS_ARCH_ARM;
936 info->cap_mode = cap_mode;
937 }
938
939 sctlr_b = arm_sctlr_b(env);
940 if (bswap_code(sctlr_b)) {
941 #if TARGET_BIG_ENDIAN
942 info->endian = BFD_ENDIAN_LITTLE;
943 #else
944 info->endian = BFD_ENDIAN_BIG;
945 #endif
946 }
947 info->flags &= ~INSN_ARM_BE32;
948 #ifndef CONFIG_USER_ONLY
949 if (sctlr_b) {
950 info->flags |= INSN_ARM_BE32;
951 }
952 #endif
953 }
954
955 #ifdef TARGET_AARCH64
956
957 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
958 {
959 ARMCPU *cpu = ARM_CPU(cs);
960 CPUARMState *env = &cpu->env;
961 uint32_t psr = pstate_read(env);
962 int i, j;
963 int el = arm_current_el(env);
964 const char *ns_status;
965 bool sve;
966
967 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
968 for (i = 0; i < 32; i++) {
969 if (i == 31) {
970 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
971 } else {
972 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
973 (i + 2) % 3 ? " " : "\n");
974 }
975 }
976
977 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
978 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
979 } else {
980 ns_status = "";
981 }
982 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
983 psr,
984 psr & PSTATE_N ? 'N' : '-',
985 psr & PSTATE_Z ? 'Z' : '-',
986 psr & PSTATE_C ? 'C' : '-',
987 psr & PSTATE_V ? 'V' : '-',
988 ns_status,
989 el,
990 psr & PSTATE_SP ? 'h' : 't');
991
992 if (cpu_isar_feature(aa64_sme, cpu)) {
993 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
994 env->svcr,
995 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
996 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
997 }
998 if (cpu_isar_feature(aa64_bti, cpu)) {
999 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1000 }
1001 if (!(flags & CPU_DUMP_FPU)) {
1002 qemu_fprintf(f, "\n");
1003 return;
1004 }
1005 if (fp_exception_el(env, el) != 0) {
1006 qemu_fprintf(f, " FPU disabled\n");
1007 return;
1008 }
1009 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1010 vfp_get_fpcr(env), vfp_get_fpsr(env));
1011
1012 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1013 sve = sme_exception_el(env, el) == 0;
1014 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1015 sve = sve_exception_el(env, el) == 0;
1016 } else {
1017 sve = false;
1018 }
1019
1020 if (sve) {
1021 int zcr_len = sve_vqm1_for_el(env, el);
1022
1023 for (i = 0; i <= FFR_PRED_NUM; i++) {
1024 bool eol;
1025 if (i == FFR_PRED_NUM) {
1026 qemu_fprintf(f, "FFR=");
1027 /* It's last, so end the line. */
1028 eol = true;
1029 } else {
1030 qemu_fprintf(f, "P%02d=", i);
1031 switch (zcr_len) {
1032 case 0:
1033 eol = i % 8 == 7;
1034 break;
1035 case 1:
1036 eol = i % 6 == 5;
1037 break;
1038 case 2:
1039 case 3:
1040 eol = i % 3 == 2;
1041 break;
1042 default:
1043 /* More than one quadword per predicate. */
1044 eol = true;
1045 break;
1046 }
1047 }
1048 for (j = zcr_len / 4; j >= 0; j--) {
1049 int digits;
1050 if (j * 4 + 4 <= zcr_len + 1) {
1051 digits = 16;
1052 } else {
1053 digits = (zcr_len % 4 + 1) * 4;
1054 }
1055 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1056 env->vfp.pregs[i].p[j],
1057 j ? ":" : eol ? "\n" : " ");
1058 }
1059 }
1060
1061 if (zcr_len == 0) {
1062 /*
1063 * With vl=16, there are only 37 columns per register,
1064 * so output two registers per line.
1065 */
1066 for (i = 0; i < 32; i++) {
1067 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1068 i, env->vfp.zregs[i].d[1],
1069 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1070 }
1071 } else {
1072 for (i = 0; i < 32; i++) {
1073 qemu_fprintf(f, "Z%02d=", i);
1074 for (j = zcr_len; j >= 0; j--) {
1075 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1076 env->vfp.zregs[i].d[j * 2 + 1],
1077 env->vfp.zregs[i].d[j * 2 + 0],
1078 j ? ":" : "\n");
1079 }
1080 }
1081 }
1082 } else {
1083 for (i = 0; i < 32; i++) {
1084 uint64_t *q = aa64_vfp_qreg(env, i);
1085 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1086 i, q[1], q[0], (i & 1 ? "\n" : " "));
1087 }
1088 }
1089
1090 if (cpu_isar_feature(aa64_sme, cpu) &&
1091 FIELD_EX64(env->svcr, SVCR, ZA) &&
1092 sme_exception_el(env, el) == 0) {
1093 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1094 int svl = (zcr_len + 1) * 16;
1095 int svl_lg10 = svl < 100 ? 2 : 3;
1096
1097 for (i = 0; i < svl; i++) {
1098 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1099 for (j = zcr_len; j >= 0; --j) {
1100 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1101 env->zarray[i].d[2 * j + 1],
1102 env->zarray[i].d[2 * j],
1103 j ? ':' : '\n');
1104 }
1105 }
1106 }
1107 }
1108
1109 #else
1110
1111 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1112 {
1113 g_assert_not_reached();
1114 }
1115
1116 #endif
1117
1118 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1119 {
1120 ARMCPU *cpu = ARM_CPU(cs);
1121 CPUARMState *env = &cpu->env;
1122 int i;
1123
1124 if (is_a64(env)) {
1125 aarch64_cpu_dump_state(cs, f, flags);
1126 return;
1127 }
1128
1129 for (i = 0; i < 16; i++) {
1130 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1131 if ((i % 4) == 3) {
1132 qemu_fprintf(f, "\n");
1133 } else {
1134 qemu_fprintf(f, " ");
1135 }
1136 }
1137
1138 if (arm_feature(env, ARM_FEATURE_M)) {
1139 uint32_t xpsr = xpsr_read(env);
1140 const char *mode;
1141 const char *ns_status = "";
1142
1143 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1144 ns_status = env->v7m.secure ? "S " : "NS ";
1145 }
1146
1147 if (xpsr & XPSR_EXCP) {
1148 mode = "handler";
1149 } else {
1150 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1151 mode = "unpriv-thread";
1152 } else {
1153 mode = "priv-thread";
1154 }
1155 }
1156
1157 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1158 xpsr,
1159 xpsr & XPSR_N ? 'N' : '-',
1160 xpsr & XPSR_Z ? 'Z' : '-',
1161 xpsr & XPSR_C ? 'C' : '-',
1162 xpsr & XPSR_V ? 'V' : '-',
1163 xpsr & XPSR_T ? 'T' : 'A',
1164 ns_status,
1165 mode);
1166 } else {
1167 uint32_t psr = cpsr_read(env);
1168 const char *ns_status = "";
1169
1170 if (arm_feature(env, ARM_FEATURE_EL3) &&
1171 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1172 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1173 }
1174
1175 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1176 psr,
1177 psr & CPSR_N ? 'N' : '-',
1178 psr & CPSR_Z ? 'Z' : '-',
1179 psr & CPSR_C ? 'C' : '-',
1180 psr & CPSR_V ? 'V' : '-',
1181 psr & CPSR_T ? 'T' : 'A',
1182 ns_status,
1183 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1184 }
1185
1186 if (flags & CPU_DUMP_FPU) {
1187 int numvfpregs = 0;
1188 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1189 numvfpregs = 32;
1190 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1191 numvfpregs = 16;
1192 }
1193 for (i = 0; i < numvfpregs; i++) {
1194 uint64_t v = *aa32_vfp_dreg(env, i);
1195 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1196 i * 2, (uint32_t)v,
1197 i * 2 + 1, (uint32_t)(v >> 32),
1198 i, v);
1199 }
1200 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1201 if (cpu_isar_feature(aa32_mve, cpu)) {
1202 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1203 }
1204 }
1205 }
1206
1207 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1208 {
1209 uint32_t Aff1 = idx / clustersz;
1210 uint32_t Aff0 = idx % clustersz;
1211 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1212 }
1213
1214 static void arm_cpu_initfn(Object *obj)
1215 {
1216 ARMCPU *cpu = ARM_CPU(obj);
1217
1218 cpu_set_cpustate_pointers(cpu);
1219 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1220 NULL, g_free);
1221
1222 QLIST_INIT(&cpu->pre_el_change_hooks);
1223 QLIST_INIT(&cpu->el_change_hooks);
1224
1225 #ifdef CONFIG_USER_ONLY
1226 # ifdef TARGET_AARCH64
1227 /*
1228 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1229 * These values were chosen to fit within the default signal frame.
1230 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1231 * and our corresponding cpu property.
1232 */
1233 cpu->sve_default_vq = 4;
1234 cpu->sme_default_vq = 2;
1235 # endif
1236 #else
1237 /* Our inbound IRQ and FIQ lines */
1238 if (kvm_enabled()) {
1239 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1240 * the same interface as non-KVM CPUs.
1241 */
1242 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1243 } else {
1244 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1245 }
1246
1247 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1248 ARRAY_SIZE(cpu->gt_timer_outputs));
1249
1250 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1251 "gicv3-maintenance-interrupt", 1);
1252 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1253 "pmu-interrupt", 1);
1254 #endif
1255
1256 /* DTB consumers generally don't in fact care what the 'compatible'
1257 * string is, so always provide some string and trust that a hypothetical
1258 * picky DTB consumer will also provide a helpful error message.
1259 */
1260 cpu->dtb_compatible = "qemu,unknown";
1261 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1262 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1263
1264 if (tcg_enabled() || hvf_enabled()) {
1265 /* TCG and HVF implement PSCI 1.1 */
1266 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1267 }
1268 }
1269
1270 static Property arm_cpu_gt_cntfrq_property =
1271 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1272 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1273
1274 static Property arm_cpu_reset_cbar_property =
1275 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1276
1277 static Property arm_cpu_reset_hivecs_property =
1278 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1279
1280 #ifndef CONFIG_USER_ONLY
1281 static Property arm_cpu_has_el2_property =
1282 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1283
1284 static Property arm_cpu_has_el3_property =
1285 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1286 #endif
1287
1288 static Property arm_cpu_cfgend_property =
1289 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1290
1291 static Property arm_cpu_has_vfp_property =
1292 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1293
1294 static Property arm_cpu_has_vfp_d32_property =
1295 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1296
1297 static Property arm_cpu_has_neon_property =
1298 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1299
1300 static Property arm_cpu_has_dsp_property =
1301 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1302
1303 static Property arm_cpu_has_mpu_property =
1304 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1305
1306 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1307 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1308 * the right value for that particular CPU type, and we don't want
1309 * to override that with an incorrect constant value.
1310 */
1311 static Property arm_cpu_pmsav7_dregion_property =
1312 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1313 pmsav7_dregion,
1314 qdev_prop_uint32, uint32_t);
1315
1316 static bool arm_get_pmu(Object *obj, Error **errp)
1317 {
1318 ARMCPU *cpu = ARM_CPU(obj);
1319
1320 return cpu->has_pmu;
1321 }
1322
1323 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1324 {
1325 ARMCPU *cpu = ARM_CPU(obj);
1326
1327 if (value) {
1328 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1329 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1330 return;
1331 }
1332 set_feature(&cpu->env, ARM_FEATURE_PMU);
1333 } else {
1334 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1335 }
1336 cpu->has_pmu = value;
1337 }
1338
1339 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1340 {
1341 /*
1342 * The exact approach to calculating guest ticks is:
1343 *
1344 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1345 * NANOSECONDS_PER_SECOND);
1346 *
1347 * We don't do that. Rather we intentionally use integer division
1348 * truncation below and in the caller for the conversion of host monotonic
1349 * time to guest ticks to provide the exact inverse for the semantics of
1350 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1351 * it loses precision when representing frequencies where
1352 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1353 * provide an exact inverse leads to scheduling timers with negative
1354 * periods, which in turn leads to sticky behaviour in the guest.
1355 *
1356 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1357 * cannot become zero.
1358 */
1359 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1360 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1361 }
1362
1363 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1364 {
1365 CPUARMState *env = &cpu->env;
1366 bool no_aa32 = false;
1367
1368 /*
1369 * Some features automatically imply others: set the feature
1370 * bits explicitly for these cases.
1371 */
1372
1373 if (arm_feature(env, ARM_FEATURE_M)) {
1374 set_feature(env, ARM_FEATURE_PMSA);
1375 }
1376
1377 if (arm_feature(env, ARM_FEATURE_V8)) {
1378 if (arm_feature(env, ARM_FEATURE_M)) {
1379 set_feature(env, ARM_FEATURE_V7);
1380 } else {
1381 set_feature(env, ARM_FEATURE_V7VE);
1382 }
1383 }
1384
1385 /*
1386 * There exist AArch64 cpus without AArch32 support. When KVM
1387 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1388 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1389 * As a general principle, we also do not make ID register
1390 * consistency checks anywhere unless using TCG, because only
1391 * for TCG would a consistency-check failure be a QEMU bug.
1392 */
1393 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1394 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1395 }
1396
1397 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1398 /*
1399 * v7 Virtualization Extensions. In real hardware this implies
1400 * EL2 and also the presence of the Security Extensions.
1401 * For QEMU, for backwards-compatibility we implement some
1402 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1403 * include the various other features that V7VE implies.
1404 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1405 * Security Extensions is ARM_FEATURE_EL3.
1406 */
1407 assert(!tcg_enabled() || no_aa32 ||
1408 cpu_isar_feature(aa32_arm_div, cpu));
1409 set_feature(env, ARM_FEATURE_LPAE);
1410 set_feature(env, ARM_FEATURE_V7);
1411 }
1412 if (arm_feature(env, ARM_FEATURE_V7)) {
1413 set_feature(env, ARM_FEATURE_VAPA);
1414 set_feature(env, ARM_FEATURE_THUMB2);
1415 set_feature(env, ARM_FEATURE_MPIDR);
1416 if (!arm_feature(env, ARM_FEATURE_M)) {
1417 set_feature(env, ARM_FEATURE_V6K);
1418 } else {
1419 set_feature(env, ARM_FEATURE_V6);
1420 }
1421
1422 /*
1423 * Always define VBAR for V7 CPUs even if it doesn't exist in
1424 * non-EL3 configs. This is needed by some legacy boards.
1425 */
1426 set_feature(env, ARM_FEATURE_VBAR);
1427 }
1428 if (arm_feature(env, ARM_FEATURE_V6K)) {
1429 set_feature(env, ARM_FEATURE_V6);
1430 set_feature(env, ARM_FEATURE_MVFR);
1431 }
1432 if (arm_feature(env, ARM_FEATURE_V6)) {
1433 set_feature(env, ARM_FEATURE_V5);
1434 if (!arm_feature(env, ARM_FEATURE_M)) {
1435 assert(!tcg_enabled() || no_aa32 ||
1436 cpu_isar_feature(aa32_jazelle, cpu));
1437 set_feature(env, ARM_FEATURE_AUXCR);
1438 }
1439 }
1440 if (arm_feature(env, ARM_FEATURE_V5)) {
1441 set_feature(env, ARM_FEATURE_V4T);
1442 }
1443 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1444 set_feature(env, ARM_FEATURE_V7MP);
1445 }
1446 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1447 set_feature(env, ARM_FEATURE_CBAR);
1448 }
1449 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1450 !arm_feature(env, ARM_FEATURE_M)) {
1451 set_feature(env, ARM_FEATURE_THUMB_DSP);
1452 }
1453 }
1454
1455 void arm_cpu_post_init(Object *obj)
1456 {
1457 ARMCPU *cpu = ARM_CPU(obj);
1458
1459 /*
1460 * Some features imply others. Figure this out now, because we
1461 * are going to look at the feature bits in deciding which
1462 * properties to add.
1463 */
1464 arm_cpu_propagate_feature_implications(cpu);
1465
1466 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1467 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1468 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1469 }
1470
1471 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1472 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1473 }
1474
1475 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1476 object_property_add_uint64_ptr(obj, "rvbar",
1477 &cpu->rvbar_prop,
1478 OBJ_PROP_FLAG_READWRITE);
1479 }
1480
1481 #ifndef CONFIG_USER_ONLY
1482 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1483 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1484 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1485 */
1486 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1487
1488 object_property_add_link(obj, "secure-memory",
1489 TYPE_MEMORY_REGION,
1490 (Object **)&cpu->secure_memory,
1491 qdev_prop_allow_set_link_before_realize,
1492 OBJ_PROP_LINK_STRONG);
1493 }
1494
1495 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1496 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1497 }
1498 #endif
1499
1500 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1501 cpu->has_pmu = true;
1502 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1503 }
1504
1505 /*
1506 * Allow user to turn off VFP and Neon support, but only for TCG --
1507 * KVM does not currently allow us to lie to the guest about its
1508 * ID/feature registers, so the guest always sees what the host has.
1509 */
1510 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1511 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1512 cpu->has_vfp = true;
1513 cpu->has_vfp_d32 = true;
1514 if (tcg_enabled() || qtest_enabled()) {
1515 qdev_property_add_static(DEVICE(obj),
1516 &arm_cpu_has_vfp_property);
1517 }
1518 }
1519 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1520 cpu->has_vfp = true;
1521 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1522 cpu->has_vfp_d32 = true;
1523 /*
1524 * The permitted values of the SIMDReg bits [3:0] on
1525 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1526 * make sure that has_vfp_d32 can not be set to false.
1527 */
1528 if ((tcg_enabled() || qtest_enabled())
1529 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1530 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1531 qdev_property_add_static(DEVICE(obj),
1532 &arm_cpu_has_vfp_d32_property);
1533 }
1534 }
1535 }
1536
1537 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1538 cpu->has_neon = true;
1539 if (!kvm_enabled()) {
1540 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1541 }
1542 }
1543
1544 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1545 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1546 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1547 }
1548
1549 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1550 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1551 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1552 qdev_property_add_static(DEVICE(obj),
1553 &arm_cpu_pmsav7_dregion_property);
1554 }
1555 }
1556
1557 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1558 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1559 qdev_prop_allow_set_link_before_realize,
1560 OBJ_PROP_LINK_STRONG);
1561 /*
1562 * M profile: initial value of the Secure VTOR. We can't just use
1563 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1564 * the property to be set after realize.
1565 */
1566 object_property_add_uint32_ptr(obj, "init-svtor",
1567 &cpu->init_svtor,
1568 OBJ_PROP_FLAG_READWRITE);
1569 }
1570 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1571 /*
1572 * Initial value of the NS VTOR (for cores without the Security
1573 * extension, this is the only VTOR)
1574 */
1575 object_property_add_uint32_ptr(obj, "init-nsvtor",
1576 &cpu->init_nsvtor,
1577 OBJ_PROP_FLAG_READWRITE);
1578 }
1579
1580 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1581 object_property_add_uint32_ptr(obj, "psci-conduit",
1582 &cpu->psci_conduit,
1583 OBJ_PROP_FLAG_READWRITE);
1584
1585 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1586
1587 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1588 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1589 }
1590
1591 if (kvm_enabled()) {
1592 kvm_arm_add_vcpu_properties(obj);
1593 }
1594
1595 #ifndef CONFIG_USER_ONLY
1596 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1597 cpu_isar_feature(aa64_mte, cpu)) {
1598 object_property_add_link(obj, "tag-memory",
1599 TYPE_MEMORY_REGION,
1600 (Object **)&cpu->tag_memory,
1601 qdev_prop_allow_set_link_before_realize,
1602 OBJ_PROP_LINK_STRONG);
1603
1604 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1605 object_property_add_link(obj, "secure-tag-memory",
1606 TYPE_MEMORY_REGION,
1607 (Object **)&cpu->secure_tag_memory,
1608 qdev_prop_allow_set_link_before_realize,
1609 OBJ_PROP_LINK_STRONG);
1610 }
1611 }
1612 #endif
1613 }
1614
1615 static void arm_cpu_finalizefn(Object *obj)
1616 {
1617 ARMCPU *cpu = ARM_CPU(obj);
1618 ARMELChangeHook *hook, *next;
1619
1620 g_hash_table_destroy(cpu->cp_regs);
1621
1622 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1623 QLIST_REMOVE(hook, node);
1624 g_free(hook);
1625 }
1626 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1627 QLIST_REMOVE(hook, node);
1628 g_free(hook);
1629 }
1630 #ifndef CONFIG_USER_ONLY
1631 if (cpu->pmu_timer) {
1632 timer_free(cpu->pmu_timer);
1633 }
1634 #endif
1635 }
1636
1637 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1638 {
1639 Error *local_err = NULL;
1640
1641 #ifdef TARGET_AARCH64
1642 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1643 arm_cpu_sve_finalize(cpu, &local_err);
1644 if (local_err != NULL) {
1645 error_propagate(errp, local_err);
1646 return;
1647 }
1648
1649 arm_cpu_sme_finalize(cpu, &local_err);
1650 if (local_err != NULL) {
1651 error_propagate(errp, local_err);
1652 return;
1653 }
1654
1655 arm_cpu_pauth_finalize(cpu, &local_err);
1656 if (local_err != NULL) {
1657 error_propagate(errp, local_err);
1658 return;
1659 }
1660
1661 arm_cpu_lpa2_finalize(cpu, &local_err);
1662 if (local_err != NULL) {
1663 error_propagate(errp, local_err);
1664 return;
1665 }
1666 }
1667 #endif
1668
1669 if (kvm_enabled()) {
1670 kvm_arm_steal_time_finalize(cpu, &local_err);
1671 if (local_err != NULL) {
1672 error_propagate(errp, local_err);
1673 return;
1674 }
1675 }
1676 }
1677
1678 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1679 {
1680 CPUState *cs = CPU(dev);
1681 ARMCPU *cpu = ARM_CPU(dev);
1682 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1683 CPUARMState *env = &cpu->env;
1684 int pagebits;
1685 Error *local_err = NULL;
1686
1687 /* Use pc-relative instructions in system-mode */
1688 #ifndef CONFIG_USER_ONLY
1689 cs->tcg_cflags |= CF_PCREL;
1690 #endif
1691
1692 /* If we needed to query the host kernel for the CPU features
1693 * then it's possible that might have failed in the initfn, but
1694 * this is the first point where we can report it.
1695 */
1696 if (cpu->host_cpu_probe_failed) {
1697 if (!kvm_enabled() && !hvf_enabled()) {
1698 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1699 } else {
1700 error_setg(errp, "Failed to retrieve host CPU features");
1701 }
1702 return;
1703 }
1704
1705 #ifndef CONFIG_USER_ONLY
1706 /* The NVIC and M-profile CPU are two halves of a single piece of
1707 * hardware; trying to use one without the other is a command line
1708 * error and will result in segfaults if not caught here.
1709 */
1710 if (arm_feature(env, ARM_FEATURE_M)) {
1711 if (!env->nvic) {
1712 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1713 return;
1714 }
1715 } else {
1716 if (env->nvic) {
1717 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1718 return;
1719 }
1720 }
1721
1722 if (!tcg_enabled() && !qtest_enabled()) {
1723 /*
1724 * We assume that no accelerator except TCG (and the "not really an
1725 * accelerator" qtest) can handle these features, because Arm hardware
1726 * virtualization can't virtualize them.
1727 *
1728 * Catch all the cases which might cause us to create more than one
1729 * address space for the CPU (otherwise we will assert() later in
1730 * cpu_address_space_init()).
1731 */
1732 if (arm_feature(env, ARM_FEATURE_M)) {
1733 error_setg(errp,
1734 "Cannot enable %s when using an M-profile guest CPU",
1735 current_accel_name());
1736 return;
1737 }
1738 if (cpu->has_el3) {
1739 error_setg(errp,
1740 "Cannot enable %s when guest CPU has EL3 enabled",
1741 current_accel_name());
1742 return;
1743 }
1744 if (cpu->tag_memory) {
1745 error_setg(errp,
1746 "Cannot enable %s when guest CPUs has MTE enabled",
1747 current_accel_name());
1748 return;
1749 }
1750 }
1751
1752 {
1753 uint64_t scale;
1754
1755 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1756 if (!cpu->gt_cntfrq_hz) {
1757 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1758 cpu->gt_cntfrq_hz);
1759 return;
1760 }
1761 scale = gt_cntfrq_period_ns(cpu);
1762 } else {
1763 scale = GTIMER_SCALE;
1764 }
1765
1766 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1767 arm_gt_ptimer_cb, cpu);
1768 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1769 arm_gt_vtimer_cb, cpu);
1770 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1771 arm_gt_htimer_cb, cpu);
1772 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1773 arm_gt_stimer_cb, cpu);
1774 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1775 arm_gt_hvtimer_cb, cpu);
1776 }
1777 #endif
1778
1779 cpu_exec_realizefn(cs, &local_err);
1780 if (local_err != NULL) {
1781 error_propagate(errp, local_err);
1782 return;
1783 }
1784
1785 arm_cpu_finalize_features(cpu, &local_err);
1786 if (local_err != NULL) {
1787 error_propagate(errp, local_err);
1788 return;
1789 }
1790
1791 #ifdef CONFIG_USER_ONLY
1792 /*
1793 * User mode relies on IC IVAU instructions to catch modification of
1794 * dual-mapped code.
1795 *
1796 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1797 * IC IVAU even if the emulated processor does not normally require it.
1798 */
1799 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1800 #endif
1801
1802 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1803 cpu->has_vfp != cpu->has_neon) {
1804 /*
1805 * This is an architectural requirement for AArch64; AArch32 is
1806 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1807 */
1808 error_setg(errp,
1809 "AArch64 CPUs must have both VFP and Neon or neither");
1810 return;
1811 }
1812
1813 if (cpu->has_vfp_d32 != cpu->has_neon) {
1814 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1815 return;
1816 }
1817
1818 if (!cpu->has_vfp_d32) {
1819 uint32_t u;
1820
1821 u = cpu->isar.mvfr0;
1822 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1823 cpu->isar.mvfr0 = u;
1824 }
1825
1826 if (!cpu->has_vfp) {
1827 uint64_t t;
1828 uint32_t u;
1829
1830 t = cpu->isar.id_aa64isar1;
1831 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1832 cpu->isar.id_aa64isar1 = t;
1833
1834 t = cpu->isar.id_aa64pfr0;
1835 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1836 cpu->isar.id_aa64pfr0 = t;
1837
1838 u = cpu->isar.id_isar6;
1839 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1840 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1841 cpu->isar.id_isar6 = u;
1842
1843 u = cpu->isar.mvfr0;
1844 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1845 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1846 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1847 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1848 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1849 if (!arm_feature(env, ARM_FEATURE_M)) {
1850 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1851 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1852 }
1853 cpu->isar.mvfr0 = u;
1854
1855 u = cpu->isar.mvfr1;
1856 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1857 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1858 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1859 if (arm_feature(env, ARM_FEATURE_M)) {
1860 u = FIELD_DP32(u, MVFR1, FP16, 0);
1861 }
1862 cpu->isar.mvfr1 = u;
1863
1864 u = cpu->isar.mvfr2;
1865 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1866 cpu->isar.mvfr2 = u;
1867 }
1868
1869 if (!cpu->has_neon) {
1870 uint64_t t;
1871 uint32_t u;
1872
1873 unset_feature(env, ARM_FEATURE_NEON);
1874
1875 t = cpu->isar.id_aa64isar0;
1876 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1877 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1878 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1879 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1880 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1881 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1882 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1883 cpu->isar.id_aa64isar0 = t;
1884
1885 t = cpu->isar.id_aa64isar1;
1886 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1887 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1888 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1889 cpu->isar.id_aa64isar1 = t;
1890
1891 t = cpu->isar.id_aa64pfr0;
1892 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1893 cpu->isar.id_aa64pfr0 = t;
1894
1895 u = cpu->isar.id_isar5;
1896 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1897 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1898 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1899 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1900 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1901 cpu->isar.id_isar5 = u;
1902
1903 u = cpu->isar.id_isar6;
1904 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1905 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1906 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1907 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1908 cpu->isar.id_isar6 = u;
1909
1910 if (!arm_feature(env, ARM_FEATURE_M)) {
1911 u = cpu->isar.mvfr1;
1912 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1913 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1914 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1915 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1916 cpu->isar.mvfr1 = u;
1917
1918 u = cpu->isar.mvfr2;
1919 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1920 cpu->isar.mvfr2 = u;
1921 }
1922 }
1923
1924 if (!cpu->has_neon && !cpu->has_vfp) {
1925 uint64_t t;
1926 uint32_t u;
1927
1928 t = cpu->isar.id_aa64isar0;
1929 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1930 cpu->isar.id_aa64isar0 = t;
1931
1932 t = cpu->isar.id_aa64isar1;
1933 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1934 cpu->isar.id_aa64isar1 = t;
1935
1936 u = cpu->isar.mvfr0;
1937 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1938 cpu->isar.mvfr0 = u;
1939
1940 /* Despite the name, this field covers both VFP and Neon */
1941 u = cpu->isar.mvfr1;
1942 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1943 cpu->isar.mvfr1 = u;
1944 }
1945
1946 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1947 uint32_t u;
1948
1949 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1950
1951 u = cpu->isar.id_isar1;
1952 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1953 cpu->isar.id_isar1 = u;
1954
1955 u = cpu->isar.id_isar2;
1956 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1957 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1958 cpu->isar.id_isar2 = u;
1959
1960 u = cpu->isar.id_isar3;
1961 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1962 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1963 cpu->isar.id_isar3 = u;
1964 }
1965
1966
1967 /*
1968 * We rely on no XScale CPU having VFP so we can use the same bits in the
1969 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1970 */
1971 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1972 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1973 !arm_feature(env, ARM_FEATURE_XSCALE));
1974
1975 if (arm_feature(env, ARM_FEATURE_V7) &&
1976 !arm_feature(env, ARM_FEATURE_M) &&
1977 !arm_feature(env, ARM_FEATURE_PMSA)) {
1978 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1979 * can use 4K pages.
1980 */
1981 pagebits = 12;
1982 } else {
1983 /* For CPUs which might have tiny 1K pages, or which have an
1984 * MPU and might have small region sizes, stick with 1K pages.
1985 */
1986 pagebits = 10;
1987 }
1988 if (!set_preferred_target_page_bits(pagebits)) {
1989 /* This can only ever happen for hotplugging a CPU, or if
1990 * the board code incorrectly creates a CPU which it has
1991 * promised via minimum_page_size that it will not.
1992 */
1993 error_setg(errp, "This CPU requires a smaller page size than the "
1994 "system is using");
1995 return;
1996 }
1997
1998 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1999 * We don't support setting cluster ID ([16..23]) (known as Aff2
2000 * in later ARM ARM versions), or any of the higher affinity level fields,
2001 * so these bits always RAZ.
2002 */
2003 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2004 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2005 ARM_DEFAULT_CPUS_PER_CLUSTER);
2006 }
2007
2008 if (cpu->reset_hivecs) {
2009 cpu->reset_sctlr |= (1 << 13);
2010 }
2011
2012 if (cpu->cfgend) {
2013 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2014 cpu->reset_sctlr |= SCTLR_EE;
2015 } else {
2016 cpu->reset_sctlr |= SCTLR_B;
2017 }
2018 }
2019
2020 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2021 /* If the has_el3 CPU property is disabled then we need to disable the
2022 * feature.
2023 */
2024 unset_feature(env, ARM_FEATURE_EL3);
2025
2026 /*
2027 * Disable the security extension feature bits in the processor
2028 * feature registers as well.
2029 */
2030 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2031 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2032 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2033 ID_AA64PFR0, EL3, 0);
2034
2035 /* Disable the realm management extension, which requires EL3. */
2036 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2037 ID_AA64PFR0, RME, 0);
2038 }
2039
2040 if (!cpu->has_el2) {
2041 unset_feature(env, ARM_FEATURE_EL2);
2042 }
2043
2044 if (!cpu->has_pmu) {
2045 unset_feature(env, ARM_FEATURE_PMU);
2046 }
2047 if (arm_feature(env, ARM_FEATURE_PMU)) {
2048 pmu_init(cpu);
2049
2050 if (!kvm_enabled()) {
2051 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2052 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2053 }
2054
2055 #ifndef CONFIG_USER_ONLY
2056 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2057 cpu);
2058 #endif
2059 } else {
2060 cpu->isar.id_aa64dfr0 =
2061 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2062 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2063 cpu->pmceid0 = 0;
2064 cpu->pmceid1 = 0;
2065 }
2066
2067 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2068 /*
2069 * Disable the hypervisor feature bits in the processor feature
2070 * registers if we don't have EL2.
2071 */
2072 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2073 ID_AA64PFR0, EL2, 0);
2074 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2075 ID_PFR1, VIRTUALIZATION, 0);
2076 }
2077
2078 if (cpu_isar_feature(aa64_mte, cpu)) {
2079 /*
2080 * The architectural range of GM blocksize is 2-6, however qemu
2081 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2082 */
2083 if (tcg_enabled()) {
2084 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2085 }
2086
2087 #ifndef CONFIG_USER_ONLY
2088 /*
2089 * If we do not have tag-memory provided by the machine,
2090 * reduce MTE support to instructions enabled at EL0.
2091 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2092 */
2093 if (cpu->tag_memory == NULL) {
2094 cpu->isar.id_aa64pfr1 =
2095 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2096 }
2097 #endif
2098 }
2099
2100 if (tcg_enabled()) {
2101 /*
2102 * Don't report some architectural features in the ID registers
2103 * where TCG does not yet implement it (not even a minimal
2104 * stub version). This avoids guests falling over when they
2105 * try to access the non-existent system registers for them.
2106 */
2107 /* FEAT_SPE (Statistical Profiling Extension) */
2108 cpu->isar.id_aa64dfr0 =
2109 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2110 /* FEAT_TRBE (Trace Buffer Extension) */
2111 cpu->isar.id_aa64dfr0 =
2112 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2113 /* FEAT_TRF (Self-hosted Trace Extension) */
2114 cpu->isar.id_aa64dfr0 =
2115 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2116 cpu->isar.id_dfr0 =
2117 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2118 /* Trace Macrocell system register access */
2119 cpu->isar.id_aa64dfr0 =
2120 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2121 cpu->isar.id_dfr0 =
2122 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2123 /* Memory mapped trace */
2124 cpu->isar.id_dfr0 =
2125 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2126 /* FEAT_AMU (Activity Monitors Extension) */
2127 cpu->isar.id_aa64pfr0 =
2128 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2129 cpu->isar.id_pfr0 =
2130 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2131 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2132 cpu->isar.id_aa64pfr0 =
2133 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2134 /* FEAT_NV (Nested Virtualization) */
2135 cpu->isar.id_aa64mmfr2 =
2136 FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2137 }
2138
2139 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2140 * to false or by setting pmsav7-dregion to 0.
2141 */
2142 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2143 cpu->has_mpu = false;
2144 cpu->pmsav7_dregion = 0;
2145 cpu->pmsav8r_hdregion = 0;
2146 }
2147
2148 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2149 arm_feature(env, ARM_FEATURE_V7)) {
2150 uint32_t nr = cpu->pmsav7_dregion;
2151
2152 if (nr > 0xff) {
2153 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2154 return;
2155 }
2156
2157 if (nr) {
2158 if (arm_feature(env, ARM_FEATURE_V8)) {
2159 /* PMSAv8 */
2160 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2161 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2162 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2163 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2164 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2165 }
2166 } else {
2167 env->pmsav7.drbar = g_new0(uint32_t, nr);
2168 env->pmsav7.drsr = g_new0(uint32_t, nr);
2169 env->pmsav7.dracr = g_new0(uint32_t, nr);
2170 }
2171 }
2172
2173 if (cpu->pmsav8r_hdregion > 0xff) {
2174 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2175 cpu->pmsav8r_hdregion);
2176 return;
2177 }
2178
2179 if (cpu->pmsav8r_hdregion) {
2180 env->pmsav8.hprbar = g_new0(uint32_t,
2181 cpu->pmsav8r_hdregion);
2182 env->pmsav8.hprlar = g_new0(uint32_t,
2183 cpu->pmsav8r_hdregion);
2184 }
2185 }
2186
2187 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2188 uint32_t nr = cpu->sau_sregion;
2189
2190 if (nr > 0xff) {
2191 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2192 return;
2193 }
2194
2195 if (nr) {
2196 env->sau.rbar = g_new0(uint32_t, nr);
2197 env->sau.rlar = g_new0(uint32_t, nr);
2198 }
2199 }
2200
2201 if (arm_feature(env, ARM_FEATURE_EL3)) {
2202 set_feature(env, ARM_FEATURE_VBAR);
2203 }
2204
2205 #ifndef CONFIG_USER_ONLY
2206 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2207 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2208 }
2209 #endif
2210
2211 register_cp_regs_for_features(cpu);
2212 arm_cpu_register_gdb_regs_for_features(cpu);
2213
2214 init_cpreg_list(cpu);
2215
2216 #ifndef CONFIG_USER_ONLY
2217 MachineState *ms = MACHINE(qdev_get_machine());
2218 unsigned int smp_cpus = ms->smp.cpus;
2219 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2220
2221 /*
2222 * We must set cs->num_ases to the final value before
2223 * the first call to cpu_address_space_init.
2224 */
2225 if (cpu->tag_memory != NULL) {
2226 cs->num_ases = 3 + has_secure;
2227 } else {
2228 cs->num_ases = 1 + has_secure;
2229 }
2230
2231 if (has_secure) {
2232 if (!cpu->secure_memory) {
2233 cpu->secure_memory = cs->memory;
2234 }
2235 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2236 cpu->secure_memory);
2237 }
2238
2239 if (cpu->tag_memory != NULL) {
2240 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2241 cpu->tag_memory);
2242 if (has_secure) {
2243 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2244 cpu->secure_tag_memory);
2245 }
2246 }
2247
2248 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2249
2250 /* No core_count specified, default to smp_cpus. */
2251 if (cpu->core_count == -1) {
2252 cpu->core_count = smp_cpus;
2253 }
2254 #endif
2255
2256 if (tcg_enabled()) {
2257 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2258
2259 /*
2260 * We only support DCZ blocklen that fits on one page.
2261 *
2262 * Architectually this is always true. However TARGET_PAGE_SIZE
2263 * is variable and, for compatibility with -machine virt-2.7,
2264 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2265 * But even then, while the largest architectural DCZ blocklen
2266 * is 2KiB, no cpu actually uses such a large blocklen.
2267 */
2268 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2269
2270 /*
2271 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2272 * both nibbles of each byte storing tag data may be written at once.
2273 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2274 */
2275 if (cpu_isar_feature(aa64_mte, cpu)) {
2276 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2277 }
2278 }
2279
2280 qemu_init_vcpu(cs);
2281 cpu_reset(cs);
2282
2283 acc->parent_realize(dev, errp);
2284 }
2285
2286 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2287 {
2288 ObjectClass *oc;
2289 char *typename;
2290 char **cpuname;
2291 const char *cpunamestr;
2292
2293 cpuname = g_strsplit(cpu_model, ",", 1);
2294 cpunamestr = cpuname[0];
2295 #ifdef CONFIG_USER_ONLY
2296 /* For backwards compatibility usermode emulation allows "-cpu any",
2297 * which has the same semantics as "-cpu max".
2298 */
2299 if (!strcmp(cpunamestr, "any")) {
2300 cpunamestr = "max";
2301 }
2302 #endif
2303 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2304 oc = object_class_by_name(typename);
2305 g_strfreev(cpuname);
2306 g_free(typename);
2307 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2308 object_class_is_abstract(oc)) {
2309 return NULL;
2310 }
2311 return oc;
2312 }
2313
2314 static Property arm_cpu_properties[] = {
2315 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2316 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2317 mp_affinity, ARM64_AFFINITY_INVALID),
2318 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2319 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2320 DEFINE_PROP_END_OF_LIST()
2321 };
2322
2323 static gchar *arm_gdb_arch_name(CPUState *cs)
2324 {
2325 ARMCPU *cpu = ARM_CPU(cs);
2326 CPUARMState *env = &cpu->env;
2327
2328 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2329 return g_strdup("iwmmxt");
2330 }
2331 return g_strdup("arm");
2332 }
2333
2334 #ifndef CONFIG_USER_ONLY
2335 #include "hw/core/sysemu-cpu-ops.h"
2336
2337 static const struct SysemuCPUOps arm_sysemu_ops = {
2338 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2339 .asidx_from_attrs = arm_asidx_from_attrs,
2340 .write_elf32_note = arm_cpu_write_elf32_note,
2341 .write_elf64_note = arm_cpu_write_elf64_note,
2342 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2343 .legacy_vmsd = &vmstate_arm_cpu,
2344 };
2345 #endif
2346
2347 #ifdef CONFIG_TCG
2348 static const struct TCGCPUOps arm_tcg_ops = {
2349 .initialize = arm_translate_init,
2350 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2351 .debug_excp_handler = arm_debug_excp_handler,
2352 .restore_state_to_opc = arm_restore_state_to_opc,
2353
2354 #ifdef CONFIG_USER_ONLY
2355 .record_sigsegv = arm_cpu_record_sigsegv,
2356 .record_sigbus = arm_cpu_record_sigbus,
2357 #else
2358 .tlb_fill = arm_cpu_tlb_fill,
2359 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2360 .do_interrupt = arm_cpu_do_interrupt,
2361 .do_transaction_failed = arm_cpu_do_transaction_failed,
2362 .do_unaligned_access = arm_cpu_do_unaligned_access,
2363 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2364 .debug_check_watchpoint = arm_debug_check_watchpoint,
2365 .debug_check_breakpoint = arm_debug_check_breakpoint,
2366 #endif /* !CONFIG_USER_ONLY */
2367 };
2368 #endif /* CONFIG_TCG */
2369
2370 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2371 {
2372 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2373 CPUClass *cc = CPU_CLASS(acc);
2374 DeviceClass *dc = DEVICE_CLASS(oc);
2375 ResettableClass *rc = RESETTABLE_CLASS(oc);
2376
2377 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2378 &acc->parent_realize);
2379
2380 device_class_set_props(dc, arm_cpu_properties);
2381
2382 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2383 &acc->parent_phases);
2384
2385 cc->class_by_name = arm_cpu_class_by_name;
2386 cc->has_work = arm_cpu_has_work;
2387 cc->dump_state = arm_cpu_dump_state;
2388 cc->set_pc = arm_cpu_set_pc;
2389 cc->get_pc = arm_cpu_get_pc;
2390 cc->gdb_read_register = arm_cpu_gdb_read_register;
2391 cc->gdb_write_register = arm_cpu_gdb_write_register;
2392 #ifndef CONFIG_USER_ONLY
2393 cc->sysemu_ops = &arm_sysemu_ops;
2394 #endif
2395 cc->gdb_num_core_regs = 26;
2396 cc->gdb_core_xml_file = "arm-core.xml";
2397 cc->gdb_arch_name = arm_gdb_arch_name;
2398 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2399 cc->gdb_stop_before_watchpoint = true;
2400 cc->disas_set_info = arm_disas_set_info;
2401
2402 #ifdef CONFIG_TCG
2403 cc->tcg_ops = &arm_tcg_ops;
2404 #endif /* CONFIG_TCG */
2405 }
2406
2407 static void arm_cpu_instance_init(Object *obj)
2408 {
2409 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2410
2411 acc->info->initfn(obj);
2412 arm_cpu_post_init(obj);
2413 }
2414
2415 static void cpu_register_class_init(ObjectClass *oc, void *data)
2416 {
2417 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2418
2419 acc->info = data;
2420 }
2421
2422 void arm_cpu_register(const ARMCPUInfo *info)
2423 {
2424 TypeInfo type_info = {
2425 .parent = TYPE_ARM_CPU,
2426 .instance_size = sizeof(ARMCPU),
2427 .instance_align = __alignof__(ARMCPU),
2428 .instance_init = arm_cpu_instance_init,
2429 .class_size = sizeof(ARMCPUClass),
2430 .class_init = info->class_init ?: cpu_register_class_init,
2431 .class_data = (void *)info,
2432 };
2433
2434 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2435 type_register(&type_info);
2436 g_free((void *)type_info.name);
2437 }
2438
2439 static const TypeInfo arm_cpu_type_info = {
2440 .name = TYPE_ARM_CPU,
2441 .parent = TYPE_CPU,
2442 .instance_size = sizeof(ARMCPU),
2443 .instance_align = __alignof__(ARMCPU),
2444 .instance_init = arm_cpu_initfn,
2445 .instance_finalize = arm_cpu_finalizefn,
2446 .abstract = true,
2447 .class_size = sizeof(ARMCPUClass),
2448 .class_init = arm_cpu_class_init,
2449 };
2450
2451 static void arm_cpu_register_types(void)
2452 {
2453 type_register_static(&arm_cpu_type_info);
2454 }
2455
2456 type_init(arm_cpu_register_types)