]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
hw/core/cpu: Return static value with gdb_arch_name()
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cpu_env(cs);
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cpu_env(cs);
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* Trap on implementation defined registers. */
247 if (cpu_isar_feature(aa64_tidcp1, cpu)) {
248 env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
249 }
250 /* and to the FP/Neon instructions */
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, FPEN, 3);
253 /* and to the SVE instructions, with default vector length */
254 if (cpu_isar_feature(aa64_sve, cpu)) {
255 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
256 CPACR_EL1, ZEN, 3);
257 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
258 }
259 /* and for SME instructions, with default vector length, and TPIDR2 */
260 if (cpu_isar_feature(aa64_sme, cpu)) {
261 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
262 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
263 CPACR_EL1, SMEN, 3);
264 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
265 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
266 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
267 SMCR, FA64, 1);
268 }
269 }
270 /*
271 * Enable 48-bit address space (TODO: take reserved_va into account).
272 * Enable TBI0 but not TBI1.
273 * Note that this must match useronly_clean_ptr.
274 */
275 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
276
277 /* Enable MTE */
278 if (cpu_isar_feature(aa64_mte, cpu)) {
279 /* Enable tag access, but leave TCF0 as No Effect (0). */
280 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
281 /*
282 * Exclude all tags, so that tag 0 is always used.
283 * This corresponds to Linux current->thread.gcr_incl = 0.
284 *
285 * Set RRND, so that helper_irg() will generate a seed later.
286 * Here in cpu_reset(), the crypto subsystem has not yet been
287 * initialized.
288 */
289 env->cp15.gcr_el1 = 0x1ffff;
290 }
291 /*
292 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
293 * This is not yet exposed from the Linux kernel in any way.
294 */
295 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
296 /* Disable access to Debug Communication Channel (DCC). */
297 env->cp15.mdscr_el1 |= 1 << 12;
298 #else
299 /* Reset into the highest available EL */
300 if (arm_feature(env, ARM_FEATURE_EL3)) {
301 env->pstate = PSTATE_MODE_EL3h;
302 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
303 env->pstate = PSTATE_MODE_EL2h;
304 } else {
305 env->pstate = PSTATE_MODE_EL1h;
306 }
307
308 /* Sample rvbar at reset. */
309 env->cp15.rvbar = cpu->rvbar_prop;
310 env->pc = env->cp15.rvbar;
311 #endif
312 } else {
313 #if defined(CONFIG_USER_ONLY)
314 /* Userspace expects access to cp10 and cp11 for FP/Neon */
315 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
316 CPACR, CP10, 3);
317 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
318 CPACR, CP11, 3);
319 #endif
320 if (arm_feature(env, ARM_FEATURE_V8)) {
321 env->cp15.rvbar = cpu->rvbar_prop;
322 env->regs[15] = cpu->rvbar_prop;
323 }
324 }
325
326 #if defined(CONFIG_USER_ONLY)
327 env->uncached_cpsr = ARM_CPU_MODE_USR;
328 /* For user mode we must enable access to coprocessors */
329 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
330 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
331 env->cp15.c15_cpar = 3;
332 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
333 env->cp15.c15_cpar = 1;
334 }
335 #else
336
337 /*
338 * If the highest available EL is EL2, AArch32 will start in Hyp
339 * mode; otherwise it starts in SVC. Note that if we start in
340 * AArch64 then these values in the uncached_cpsr will be ignored.
341 */
342 if (arm_feature(env, ARM_FEATURE_EL2) &&
343 !arm_feature(env, ARM_FEATURE_EL3)) {
344 env->uncached_cpsr = ARM_CPU_MODE_HYP;
345 } else {
346 env->uncached_cpsr = ARM_CPU_MODE_SVC;
347 }
348 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
349
350 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
351 * executing as AArch32 then check if highvecs are enabled and
352 * adjust the PC accordingly.
353 */
354 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
355 env->regs[15] = 0xFFFF0000;
356 }
357
358 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
359 #endif
360
361 if (arm_feature(env, ARM_FEATURE_M)) {
362 #ifndef CONFIG_USER_ONLY
363 uint32_t initial_msp; /* Loaded from 0x0 */
364 uint32_t initial_pc; /* Loaded from 0x4 */
365 uint8_t *rom;
366 uint32_t vecbase;
367 #endif
368
369 if (cpu_isar_feature(aa32_lob, cpu)) {
370 /*
371 * LTPSIZE is constant 4 if MVE not implemented, and resets
372 * to an UNKNOWN value if MVE is implemented. We choose to
373 * always reset to 4.
374 */
375 env->v7m.ltpsize = 4;
376 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
377 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
378 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
379 }
380
381 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382 env->v7m.secure = true;
383 } else {
384 /* This bit resets to 0 if security is supported, but 1 if
385 * it is not. The bit is not present in v7M, but we set it
386 * here so we can avoid having to make checks on it conditional
387 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
388 */
389 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
390 /*
391 * Set NSACR to indicate "NS access permitted to everything";
392 * this avoids having to have all the tests of it being
393 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
394 * v8.1M the guest-visible value of NSACR in a CPU without the
395 * Security Extension is 0xcff.
396 */
397 env->v7m.nsacr = 0xcff;
398 }
399
400 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
401 * that it resets to 1, so QEMU always does that rather than making
402 * it dependent on CPU model. In v8M it is RES1.
403 */
404 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
405 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
406 if (arm_feature(env, ARM_FEATURE_V8)) {
407 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
408 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
409 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410 }
411 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
412 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
413 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414 }
415
416 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
417 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
418 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
419 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
420 }
421
422 #ifndef CONFIG_USER_ONLY
423 /* Unlike A/R profile, M profile defines the reset LR value */
424 env->regs[14] = 0xffffffff;
425
426 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
427 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
428
429 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
430 vecbase = env->v7m.vecbase[env->v7m.secure];
431 rom = rom_ptr_for_as(s->as, vecbase, 8);
432 if (rom) {
433 /* Address zero is covered by ROM which hasn't yet been
434 * copied into physical memory.
435 */
436 initial_msp = ldl_p(rom);
437 initial_pc = ldl_p(rom + 4);
438 } else {
439 /* Address zero not covered by a ROM blob, or the ROM blob
440 * is in non-modifiable memory and this is a second reset after
441 * it got copied into memory. In the latter case, rom_ptr
442 * will return a NULL pointer and we should use ldl_phys instead.
443 */
444 initial_msp = ldl_phys(s->as, vecbase);
445 initial_pc = ldl_phys(s->as, vecbase + 4);
446 }
447
448 qemu_log_mask(CPU_LOG_INT,
449 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
450 initial_msp, initial_pc);
451
452 env->regs[13] = initial_msp & 0xFFFFFFFC;
453 env->regs[15] = initial_pc & ~1;
454 env->thumb = initial_pc & 1;
455 #else
456 /*
457 * For user mode we run non-secure and with access to the FPU.
458 * The FPU context is active (ie does not need further setup)
459 * and is owned by non-secure.
460 */
461 env->v7m.secure = false;
462 env->v7m.nsacr = 0xcff;
463 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
464 env->v7m.fpccr[M_REG_S] &=
465 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
466 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
467 #endif
468 }
469
470 /* M profile requires that reset clears the exclusive monitor;
471 * A profile does not, but clearing it makes more sense than having it
472 * set with an exclusive access on address zero.
473 */
474 arm_clear_exclusive(env);
475
476 if (arm_feature(env, ARM_FEATURE_PMSA)) {
477 if (cpu->pmsav7_dregion > 0) {
478 if (arm_feature(env, ARM_FEATURE_V8)) {
479 memset(env->pmsav8.rbar[M_REG_NS], 0,
480 sizeof(*env->pmsav8.rbar[M_REG_NS])
481 * cpu->pmsav7_dregion);
482 memset(env->pmsav8.rlar[M_REG_NS], 0,
483 sizeof(*env->pmsav8.rlar[M_REG_NS])
484 * cpu->pmsav7_dregion);
485 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
486 memset(env->pmsav8.rbar[M_REG_S], 0,
487 sizeof(*env->pmsav8.rbar[M_REG_S])
488 * cpu->pmsav7_dregion);
489 memset(env->pmsav8.rlar[M_REG_S], 0,
490 sizeof(*env->pmsav8.rlar[M_REG_S])
491 * cpu->pmsav7_dregion);
492 }
493 } else if (arm_feature(env, ARM_FEATURE_V7)) {
494 memset(env->pmsav7.drbar, 0,
495 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
496 memset(env->pmsav7.drsr, 0,
497 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
498 memset(env->pmsav7.dracr, 0,
499 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
500 }
501 }
502
503 if (cpu->pmsav8r_hdregion > 0) {
504 memset(env->pmsav8.hprbar, 0,
505 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
506 memset(env->pmsav8.hprlar, 0,
507 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
508 }
509
510 env->pmsav7.rnr[M_REG_NS] = 0;
511 env->pmsav7.rnr[M_REG_S] = 0;
512 env->pmsav8.mair0[M_REG_NS] = 0;
513 env->pmsav8.mair0[M_REG_S] = 0;
514 env->pmsav8.mair1[M_REG_NS] = 0;
515 env->pmsav8.mair1[M_REG_S] = 0;
516 }
517
518 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
519 if (cpu->sau_sregion > 0) {
520 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
521 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
522 }
523 env->sau.rnr = 0;
524 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
525 * the Cortex-M33 does.
526 */
527 env->sau.ctrl = 0;
528 }
529
530 set_flush_to_zero(1, &env->vfp.standard_fp_status);
531 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
532 set_default_nan_mode(1, &env->vfp.standard_fp_status);
533 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.fp_status);
536 set_float_detect_tininess(float_tininess_before_rounding,
537 &env->vfp.standard_fp_status);
538 set_float_detect_tininess(float_tininess_before_rounding,
539 &env->vfp.fp_status_f16);
540 set_float_detect_tininess(float_tininess_before_rounding,
541 &env->vfp.standard_fp_status_f16);
542 #ifndef CONFIG_USER_ONLY
543 if (kvm_enabled()) {
544 kvm_arm_reset_vcpu(cpu);
545 }
546 #endif
547
548 if (tcg_enabled()) {
549 hw_breakpoint_update_all(cpu);
550 hw_watchpoint_update_all(cpu);
551
552 arm_rebuild_hflags(env);
553 }
554 }
555
556 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
557
558 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
559 unsigned int target_el,
560 unsigned int cur_el, bool secure,
561 uint64_t hcr_el2)
562 {
563 CPUARMState *env = cpu_env(cs);
564 bool pstate_unmasked;
565 bool unmasked = false;
566
567 /*
568 * Don't take exceptions if they target a lower EL.
569 * This check should catch any exceptions that would not be taken
570 * but left pending.
571 */
572 if (cur_el > target_el) {
573 return false;
574 }
575
576 switch (excp_idx) {
577 case EXCP_FIQ:
578 pstate_unmasked = !(env->daif & PSTATE_F);
579 break;
580
581 case EXCP_IRQ:
582 pstate_unmasked = !(env->daif & PSTATE_I);
583 break;
584
585 case EXCP_VFIQ:
586 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
587 /* VFIQs are only taken when hypervized. */
588 return false;
589 }
590 return !(env->daif & PSTATE_F);
591 case EXCP_VIRQ:
592 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
593 /* VIRQs are only taken when hypervized. */
594 return false;
595 }
596 return !(env->daif & PSTATE_I);
597 case EXCP_VSERR:
598 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
599 /* VIRQs are only taken when hypervized. */
600 return false;
601 }
602 return !(env->daif & PSTATE_A);
603 default:
604 g_assert_not_reached();
605 }
606
607 /*
608 * Use the target EL, current execution state and SCR/HCR settings to
609 * determine whether the corresponding CPSR bit is used to mask the
610 * interrupt.
611 */
612 if ((target_el > cur_el) && (target_el != 1)) {
613 /* Exceptions targeting a higher EL may not be maskable */
614 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
615 switch (target_el) {
616 case 2:
617 /*
618 * According to ARM DDI 0487H.a, an interrupt can be masked
619 * when HCR_E2H and HCR_TGE are both set regardless of the
620 * current Security state. Note that we need to revisit this
621 * part again once we need to support NMI.
622 */
623 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
624 unmasked = true;
625 }
626 break;
627 case 3:
628 /* Interrupt cannot be masked when the target EL is 3 */
629 unmasked = true;
630 break;
631 default:
632 g_assert_not_reached();
633 }
634 } else {
635 /*
636 * The old 32-bit-only environment has a more complicated
637 * masking setup. HCR and SCR bits not only affect interrupt
638 * routing but also change the behaviour of masking.
639 */
640 bool hcr, scr;
641
642 switch (excp_idx) {
643 case EXCP_FIQ:
644 /*
645 * If FIQs are routed to EL3 or EL2 then there are cases where
646 * we override the CPSR.F in determining if the exception is
647 * masked or not. If neither of these are set then we fall back
648 * to the CPSR.F setting otherwise we further assess the state
649 * below.
650 */
651 hcr = hcr_el2 & HCR_FMO;
652 scr = (env->cp15.scr_el3 & SCR_FIQ);
653
654 /*
655 * When EL3 is 32-bit, the SCR.FW bit controls whether the
656 * CPSR.F bit masks FIQ interrupts when taken in non-secure
657 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
658 * when non-secure but only when FIQs are only routed to EL3.
659 */
660 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
661 break;
662 case EXCP_IRQ:
663 /*
664 * When EL3 execution state is 32-bit, if HCR.IMO is set then
665 * we may override the CPSR.I masking when in non-secure state.
666 * The SCR.IRQ setting has already been taken into consideration
667 * when setting the target EL, so it does not have a further
668 * affect here.
669 */
670 hcr = hcr_el2 & HCR_IMO;
671 scr = false;
672 break;
673 default:
674 g_assert_not_reached();
675 }
676
677 if ((scr || hcr) && !secure) {
678 unmasked = true;
679 }
680 }
681 }
682
683 /*
684 * The PSTATE bits only mask the interrupt if we have not overridden the
685 * ability above.
686 */
687 return unmasked || pstate_unmasked;
688 }
689
690 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
691 {
692 CPUClass *cc = CPU_GET_CLASS(cs);
693 CPUARMState *env = cpu_env(cs);
694 uint32_t cur_el = arm_current_el(env);
695 bool secure = arm_is_secure(env);
696 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
697 uint32_t target_el;
698 uint32_t excp_idx;
699
700 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
701
702 if (interrupt_request & CPU_INTERRUPT_FIQ) {
703 excp_idx = EXCP_FIQ;
704 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
705 if (arm_excp_unmasked(cs, excp_idx, target_el,
706 cur_el, secure, hcr_el2)) {
707 goto found;
708 }
709 }
710 if (interrupt_request & CPU_INTERRUPT_HARD) {
711 excp_idx = EXCP_IRQ;
712 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
713 if (arm_excp_unmasked(cs, excp_idx, target_el,
714 cur_el, secure, hcr_el2)) {
715 goto found;
716 }
717 }
718 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
719 excp_idx = EXCP_VIRQ;
720 target_el = 1;
721 if (arm_excp_unmasked(cs, excp_idx, target_el,
722 cur_el, secure, hcr_el2)) {
723 goto found;
724 }
725 }
726 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
727 excp_idx = EXCP_VFIQ;
728 target_el = 1;
729 if (arm_excp_unmasked(cs, excp_idx, target_el,
730 cur_el, secure, hcr_el2)) {
731 goto found;
732 }
733 }
734 if (interrupt_request & CPU_INTERRUPT_VSERR) {
735 excp_idx = EXCP_VSERR;
736 target_el = 1;
737 if (arm_excp_unmasked(cs, excp_idx, target_el,
738 cur_el, secure, hcr_el2)) {
739 /* Taking a virtual abort clears HCR_EL2.VSE */
740 env->cp15.hcr_el2 &= ~HCR_VSE;
741 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
742 goto found;
743 }
744 }
745 return false;
746
747 found:
748 cs->exception_index = excp_idx;
749 env->exception.target_el = target_el;
750 cc->tcg_ops->do_interrupt(cs);
751 return true;
752 }
753
754 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
755
756 void arm_cpu_update_virq(ARMCPU *cpu)
757 {
758 /*
759 * Update the interrupt level for VIRQ, which is the logical OR of
760 * the HCR_EL2.VI bit and the input line level from the GIC.
761 */
762 CPUARMState *env = &cpu->env;
763 CPUState *cs = CPU(cpu);
764
765 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
766 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
767
768 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
769 if (new_state) {
770 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
771 } else {
772 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
773 }
774 }
775 }
776
777 void arm_cpu_update_vfiq(ARMCPU *cpu)
778 {
779 /*
780 * Update the interrupt level for VFIQ, which is the logical OR of
781 * the HCR_EL2.VF bit and the input line level from the GIC.
782 */
783 CPUARMState *env = &cpu->env;
784 CPUState *cs = CPU(cpu);
785
786 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
787 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
788
789 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
790 if (new_state) {
791 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
792 } else {
793 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
794 }
795 }
796 }
797
798 void arm_cpu_update_vserr(ARMCPU *cpu)
799 {
800 /*
801 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
802 */
803 CPUARMState *env = &cpu->env;
804 CPUState *cs = CPU(cpu);
805
806 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
807
808 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
809 if (new_state) {
810 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
811 } else {
812 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
813 }
814 }
815 }
816
817 #ifndef CONFIG_USER_ONLY
818 static void arm_cpu_set_irq(void *opaque, int irq, int level)
819 {
820 ARMCPU *cpu = opaque;
821 CPUARMState *env = &cpu->env;
822 CPUState *cs = CPU(cpu);
823 static const int mask[] = {
824 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
825 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
826 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
827 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
828 };
829
830 if (!arm_feature(env, ARM_FEATURE_EL2) &&
831 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
832 /*
833 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
834 * have EL2 support we don't care. (Unless the guest is doing something
835 * silly this will only be calls saying "level is still 0".)
836 */
837 return;
838 }
839
840 if (level) {
841 env->irq_line_state |= mask[irq];
842 } else {
843 env->irq_line_state &= ~mask[irq];
844 }
845
846 switch (irq) {
847 case ARM_CPU_VIRQ:
848 arm_cpu_update_virq(cpu);
849 break;
850 case ARM_CPU_VFIQ:
851 arm_cpu_update_vfiq(cpu);
852 break;
853 case ARM_CPU_IRQ:
854 case ARM_CPU_FIQ:
855 if (level) {
856 cpu_interrupt(cs, mask[irq]);
857 } else {
858 cpu_reset_interrupt(cs, mask[irq]);
859 }
860 break;
861 default:
862 g_assert_not_reached();
863 }
864 }
865
866 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
867 {
868 #ifdef CONFIG_KVM
869 ARMCPU *cpu = opaque;
870 CPUARMState *env = &cpu->env;
871 CPUState *cs = CPU(cpu);
872 uint32_t linestate_bit;
873 int irq_id;
874
875 switch (irq) {
876 case ARM_CPU_IRQ:
877 irq_id = KVM_ARM_IRQ_CPU_IRQ;
878 linestate_bit = CPU_INTERRUPT_HARD;
879 break;
880 case ARM_CPU_FIQ:
881 irq_id = KVM_ARM_IRQ_CPU_FIQ;
882 linestate_bit = CPU_INTERRUPT_FIQ;
883 break;
884 default:
885 g_assert_not_reached();
886 }
887
888 if (level) {
889 env->irq_line_state |= linestate_bit;
890 } else {
891 env->irq_line_state &= ~linestate_bit;
892 }
893 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
894 #endif
895 }
896
897 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
898 {
899 ARMCPU *cpu = ARM_CPU(cs);
900 CPUARMState *env = &cpu->env;
901
902 cpu_synchronize_state(cs);
903 return arm_cpu_data_is_big_endian(env);
904 }
905
906 #endif
907
908 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
909 {
910 ARMCPU *ac = ARM_CPU(cpu);
911 CPUARMState *env = &ac->env;
912 bool sctlr_b;
913
914 if (is_a64(env)) {
915 info->cap_arch = CS_ARCH_ARM64;
916 info->cap_insn_unit = 4;
917 info->cap_insn_split = 4;
918 } else {
919 int cap_mode;
920 if (env->thumb) {
921 info->cap_insn_unit = 2;
922 info->cap_insn_split = 4;
923 cap_mode = CS_MODE_THUMB;
924 } else {
925 info->cap_insn_unit = 4;
926 info->cap_insn_split = 4;
927 cap_mode = CS_MODE_ARM;
928 }
929 if (arm_feature(env, ARM_FEATURE_V8)) {
930 cap_mode |= CS_MODE_V8;
931 }
932 if (arm_feature(env, ARM_FEATURE_M)) {
933 cap_mode |= CS_MODE_MCLASS;
934 }
935 info->cap_arch = CS_ARCH_ARM;
936 info->cap_mode = cap_mode;
937 }
938
939 sctlr_b = arm_sctlr_b(env);
940 if (bswap_code(sctlr_b)) {
941 #if TARGET_BIG_ENDIAN
942 info->endian = BFD_ENDIAN_LITTLE;
943 #else
944 info->endian = BFD_ENDIAN_BIG;
945 #endif
946 }
947 info->flags &= ~INSN_ARM_BE32;
948 #ifndef CONFIG_USER_ONLY
949 if (sctlr_b) {
950 info->flags |= INSN_ARM_BE32;
951 }
952 #endif
953 }
954
955 #ifdef TARGET_AARCH64
956
957 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
958 {
959 ARMCPU *cpu = ARM_CPU(cs);
960 CPUARMState *env = &cpu->env;
961 uint32_t psr = pstate_read(env);
962 int i, j;
963 int el = arm_current_el(env);
964 const char *ns_status;
965 bool sve;
966
967 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
968 for (i = 0; i < 32; i++) {
969 if (i == 31) {
970 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
971 } else {
972 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
973 (i + 2) % 3 ? " " : "\n");
974 }
975 }
976
977 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
978 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
979 } else {
980 ns_status = "";
981 }
982 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
983 psr,
984 psr & PSTATE_N ? 'N' : '-',
985 psr & PSTATE_Z ? 'Z' : '-',
986 psr & PSTATE_C ? 'C' : '-',
987 psr & PSTATE_V ? 'V' : '-',
988 ns_status,
989 el,
990 psr & PSTATE_SP ? 'h' : 't');
991
992 if (cpu_isar_feature(aa64_sme, cpu)) {
993 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
994 env->svcr,
995 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
996 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
997 }
998 if (cpu_isar_feature(aa64_bti, cpu)) {
999 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1000 }
1001 if (!(flags & CPU_DUMP_FPU)) {
1002 qemu_fprintf(f, "\n");
1003 return;
1004 }
1005 if (fp_exception_el(env, el) != 0) {
1006 qemu_fprintf(f, " FPU disabled\n");
1007 return;
1008 }
1009 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1010 vfp_get_fpcr(env), vfp_get_fpsr(env));
1011
1012 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1013 sve = sme_exception_el(env, el) == 0;
1014 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1015 sve = sve_exception_el(env, el) == 0;
1016 } else {
1017 sve = false;
1018 }
1019
1020 if (sve) {
1021 int zcr_len = sve_vqm1_for_el(env, el);
1022
1023 for (i = 0; i <= FFR_PRED_NUM; i++) {
1024 bool eol;
1025 if (i == FFR_PRED_NUM) {
1026 qemu_fprintf(f, "FFR=");
1027 /* It's last, so end the line. */
1028 eol = true;
1029 } else {
1030 qemu_fprintf(f, "P%02d=", i);
1031 switch (zcr_len) {
1032 case 0:
1033 eol = i % 8 == 7;
1034 break;
1035 case 1:
1036 eol = i % 6 == 5;
1037 break;
1038 case 2:
1039 case 3:
1040 eol = i % 3 == 2;
1041 break;
1042 default:
1043 /* More than one quadword per predicate. */
1044 eol = true;
1045 break;
1046 }
1047 }
1048 for (j = zcr_len / 4; j >= 0; j--) {
1049 int digits;
1050 if (j * 4 + 4 <= zcr_len + 1) {
1051 digits = 16;
1052 } else {
1053 digits = (zcr_len % 4 + 1) * 4;
1054 }
1055 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1056 env->vfp.pregs[i].p[j],
1057 j ? ":" : eol ? "\n" : " ");
1058 }
1059 }
1060
1061 if (zcr_len == 0) {
1062 /*
1063 * With vl=16, there are only 37 columns per register,
1064 * so output two registers per line.
1065 */
1066 for (i = 0; i < 32; i++) {
1067 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1068 i, env->vfp.zregs[i].d[1],
1069 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1070 }
1071 } else {
1072 for (i = 0; i < 32; i++) {
1073 qemu_fprintf(f, "Z%02d=", i);
1074 for (j = zcr_len; j >= 0; j--) {
1075 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1076 env->vfp.zregs[i].d[j * 2 + 1],
1077 env->vfp.zregs[i].d[j * 2 + 0],
1078 j ? ":" : "\n");
1079 }
1080 }
1081 }
1082 } else {
1083 for (i = 0; i < 32; i++) {
1084 uint64_t *q = aa64_vfp_qreg(env, i);
1085 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1086 i, q[1], q[0], (i & 1 ? "\n" : " "));
1087 }
1088 }
1089
1090 if (cpu_isar_feature(aa64_sme, cpu) &&
1091 FIELD_EX64(env->svcr, SVCR, ZA) &&
1092 sme_exception_el(env, el) == 0) {
1093 int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1094 int svl = (zcr_len + 1) * 16;
1095 int svl_lg10 = svl < 100 ? 2 : 3;
1096
1097 for (i = 0; i < svl; i++) {
1098 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1099 for (j = zcr_len; j >= 0; --j) {
1100 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1101 env->zarray[i].d[2 * j + 1],
1102 env->zarray[i].d[2 * j],
1103 j ? ':' : '\n');
1104 }
1105 }
1106 }
1107 }
1108
1109 #else
1110
1111 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1112 {
1113 g_assert_not_reached();
1114 }
1115
1116 #endif
1117
1118 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1119 {
1120 ARMCPU *cpu = ARM_CPU(cs);
1121 CPUARMState *env = &cpu->env;
1122 int i;
1123
1124 if (is_a64(env)) {
1125 aarch64_cpu_dump_state(cs, f, flags);
1126 return;
1127 }
1128
1129 for (i = 0; i < 16; i++) {
1130 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1131 if ((i % 4) == 3) {
1132 qemu_fprintf(f, "\n");
1133 } else {
1134 qemu_fprintf(f, " ");
1135 }
1136 }
1137
1138 if (arm_feature(env, ARM_FEATURE_M)) {
1139 uint32_t xpsr = xpsr_read(env);
1140 const char *mode;
1141 const char *ns_status = "";
1142
1143 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1144 ns_status = env->v7m.secure ? "S " : "NS ";
1145 }
1146
1147 if (xpsr & XPSR_EXCP) {
1148 mode = "handler";
1149 } else {
1150 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1151 mode = "unpriv-thread";
1152 } else {
1153 mode = "priv-thread";
1154 }
1155 }
1156
1157 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1158 xpsr,
1159 xpsr & XPSR_N ? 'N' : '-',
1160 xpsr & XPSR_Z ? 'Z' : '-',
1161 xpsr & XPSR_C ? 'C' : '-',
1162 xpsr & XPSR_V ? 'V' : '-',
1163 xpsr & XPSR_T ? 'T' : 'A',
1164 ns_status,
1165 mode);
1166 } else {
1167 uint32_t psr = cpsr_read(env);
1168 const char *ns_status = "";
1169
1170 if (arm_feature(env, ARM_FEATURE_EL3) &&
1171 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1172 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1173 }
1174
1175 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1176 psr,
1177 psr & CPSR_N ? 'N' : '-',
1178 psr & CPSR_Z ? 'Z' : '-',
1179 psr & CPSR_C ? 'C' : '-',
1180 psr & CPSR_V ? 'V' : '-',
1181 psr & CPSR_T ? 'T' : 'A',
1182 ns_status,
1183 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1184 }
1185
1186 if (flags & CPU_DUMP_FPU) {
1187 int numvfpregs = 0;
1188 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1189 numvfpregs = 32;
1190 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1191 numvfpregs = 16;
1192 }
1193 for (i = 0; i < numvfpregs; i++) {
1194 uint64_t v = *aa32_vfp_dreg(env, i);
1195 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1196 i * 2, (uint32_t)v,
1197 i * 2 + 1, (uint32_t)(v >> 32),
1198 i, v);
1199 }
1200 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1201 if (cpu_isar_feature(aa32_mve, cpu)) {
1202 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1203 }
1204 }
1205 }
1206
1207 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1208 {
1209 uint32_t Aff1 = idx / clustersz;
1210 uint32_t Aff0 = idx % clustersz;
1211 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1212 }
1213
1214 static void arm_cpu_initfn(Object *obj)
1215 {
1216 ARMCPU *cpu = ARM_CPU(obj);
1217
1218 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1219 NULL, g_free);
1220
1221 QLIST_INIT(&cpu->pre_el_change_hooks);
1222 QLIST_INIT(&cpu->el_change_hooks);
1223
1224 #ifdef CONFIG_USER_ONLY
1225 # ifdef TARGET_AARCH64
1226 /*
1227 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1228 * These values were chosen to fit within the default signal frame.
1229 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1230 * and our corresponding cpu property.
1231 */
1232 cpu->sve_default_vq = 4;
1233 cpu->sme_default_vq = 2;
1234 # endif
1235 #else
1236 /* Our inbound IRQ and FIQ lines */
1237 if (kvm_enabled()) {
1238 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1239 * the same interface as non-KVM CPUs.
1240 */
1241 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1242 } else {
1243 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1244 }
1245
1246 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1247 ARRAY_SIZE(cpu->gt_timer_outputs));
1248
1249 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1250 "gicv3-maintenance-interrupt", 1);
1251 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1252 "pmu-interrupt", 1);
1253 #endif
1254
1255 /* DTB consumers generally don't in fact care what the 'compatible'
1256 * string is, so always provide some string and trust that a hypothetical
1257 * picky DTB consumer will also provide a helpful error message.
1258 */
1259 cpu->dtb_compatible = "qemu,unknown";
1260 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1261 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1262
1263 if (tcg_enabled() || hvf_enabled()) {
1264 /* TCG and HVF implement PSCI 1.1 */
1265 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1266 }
1267 }
1268
1269 static Property arm_cpu_gt_cntfrq_property =
1270 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1271 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1272
1273 static Property arm_cpu_reset_cbar_property =
1274 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1275
1276 static Property arm_cpu_reset_hivecs_property =
1277 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1278
1279 #ifndef CONFIG_USER_ONLY
1280 static Property arm_cpu_has_el2_property =
1281 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1282
1283 static Property arm_cpu_has_el3_property =
1284 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1285 #endif
1286
1287 static Property arm_cpu_cfgend_property =
1288 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1289
1290 static Property arm_cpu_has_vfp_property =
1291 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1292
1293 static Property arm_cpu_has_vfp_d32_property =
1294 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1295
1296 static Property arm_cpu_has_neon_property =
1297 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1298
1299 static Property arm_cpu_has_dsp_property =
1300 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1301
1302 static Property arm_cpu_has_mpu_property =
1303 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1304
1305 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1306 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1307 * the right value for that particular CPU type, and we don't want
1308 * to override that with an incorrect constant value.
1309 */
1310 static Property arm_cpu_pmsav7_dregion_property =
1311 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1312 pmsav7_dregion,
1313 qdev_prop_uint32, uint32_t);
1314
1315 static bool arm_get_pmu(Object *obj, Error **errp)
1316 {
1317 ARMCPU *cpu = ARM_CPU(obj);
1318
1319 return cpu->has_pmu;
1320 }
1321
1322 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1323 {
1324 ARMCPU *cpu = ARM_CPU(obj);
1325
1326 if (value) {
1327 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1328 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1329 return;
1330 }
1331 set_feature(&cpu->env, ARM_FEATURE_PMU);
1332 } else {
1333 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1334 }
1335 cpu->has_pmu = value;
1336 }
1337
1338 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1339 {
1340 /*
1341 * The exact approach to calculating guest ticks is:
1342 *
1343 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1344 * NANOSECONDS_PER_SECOND);
1345 *
1346 * We don't do that. Rather we intentionally use integer division
1347 * truncation below and in the caller for the conversion of host monotonic
1348 * time to guest ticks to provide the exact inverse for the semantics of
1349 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1350 * it loses precision when representing frequencies where
1351 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1352 * provide an exact inverse leads to scheduling timers with negative
1353 * periods, which in turn leads to sticky behaviour in the guest.
1354 *
1355 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1356 * cannot become zero.
1357 */
1358 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1359 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1360 }
1361
1362 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1363 {
1364 CPUARMState *env = &cpu->env;
1365 bool no_aa32 = false;
1366
1367 /*
1368 * Some features automatically imply others: set the feature
1369 * bits explicitly for these cases.
1370 */
1371
1372 if (arm_feature(env, ARM_FEATURE_M)) {
1373 set_feature(env, ARM_FEATURE_PMSA);
1374 }
1375
1376 if (arm_feature(env, ARM_FEATURE_V8)) {
1377 if (arm_feature(env, ARM_FEATURE_M)) {
1378 set_feature(env, ARM_FEATURE_V7);
1379 } else {
1380 set_feature(env, ARM_FEATURE_V7VE);
1381 }
1382 }
1383
1384 /*
1385 * There exist AArch64 cpus without AArch32 support. When KVM
1386 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1387 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1388 * As a general principle, we also do not make ID register
1389 * consistency checks anywhere unless using TCG, because only
1390 * for TCG would a consistency-check failure be a QEMU bug.
1391 */
1392 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1393 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1394 }
1395
1396 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1397 /*
1398 * v7 Virtualization Extensions. In real hardware this implies
1399 * EL2 and also the presence of the Security Extensions.
1400 * For QEMU, for backwards-compatibility we implement some
1401 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1402 * include the various other features that V7VE implies.
1403 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1404 * Security Extensions is ARM_FEATURE_EL3.
1405 */
1406 assert(!tcg_enabled() || no_aa32 ||
1407 cpu_isar_feature(aa32_arm_div, cpu));
1408 set_feature(env, ARM_FEATURE_LPAE);
1409 set_feature(env, ARM_FEATURE_V7);
1410 }
1411 if (arm_feature(env, ARM_FEATURE_V7)) {
1412 set_feature(env, ARM_FEATURE_VAPA);
1413 set_feature(env, ARM_FEATURE_THUMB2);
1414 set_feature(env, ARM_FEATURE_MPIDR);
1415 if (!arm_feature(env, ARM_FEATURE_M)) {
1416 set_feature(env, ARM_FEATURE_V6K);
1417 } else {
1418 set_feature(env, ARM_FEATURE_V6);
1419 }
1420
1421 /*
1422 * Always define VBAR for V7 CPUs even if it doesn't exist in
1423 * non-EL3 configs. This is needed by some legacy boards.
1424 */
1425 set_feature(env, ARM_FEATURE_VBAR);
1426 }
1427 if (arm_feature(env, ARM_FEATURE_V6K)) {
1428 set_feature(env, ARM_FEATURE_V6);
1429 set_feature(env, ARM_FEATURE_MVFR);
1430 }
1431 if (arm_feature(env, ARM_FEATURE_V6)) {
1432 set_feature(env, ARM_FEATURE_V5);
1433 if (!arm_feature(env, ARM_FEATURE_M)) {
1434 assert(!tcg_enabled() || no_aa32 ||
1435 cpu_isar_feature(aa32_jazelle, cpu));
1436 set_feature(env, ARM_FEATURE_AUXCR);
1437 }
1438 }
1439 if (arm_feature(env, ARM_FEATURE_V5)) {
1440 set_feature(env, ARM_FEATURE_V4T);
1441 }
1442 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1443 set_feature(env, ARM_FEATURE_V7MP);
1444 }
1445 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1446 set_feature(env, ARM_FEATURE_CBAR);
1447 }
1448 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1449 !arm_feature(env, ARM_FEATURE_M)) {
1450 set_feature(env, ARM_FEATURE_THUMB_DSP);
1451 }
1452 }
1453
1454 void arm_cpu_post_init(Object *obj)
1455 {
1456 ARMCPU *cpu = ARM_CPU(obj);
1457
1458 /*
1459 * Some features imply others. Figure this out now, because we
1460 * are going to look at the feature bits in deciding which
1461 * properties to add.
1462 */
1463 arm_cpu_propagate_feature_implications(cpu);
1464
1465 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1466 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1467 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1468 }
1469
1470 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1471 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1472 }
1473
1474 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1475 object_property_add_uint64_ptr(obj, "rvbar",
1476 &cpu->rvbar_prop,
1477 OBJ_PROP_FLAG_READWRITE);
1478 }
1479
1480 #ifndef CONFIG_USER_ONLY
1481 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1482 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1483 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1484 */
1485 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1486
1487 object_property_add_link(obj, "secure-memory",
1488 TYPE_MEMORY_REGION,
1489 (Object **)&cpu->secure_memory,
1490 qdev_prop_allow_set_link_before_realize,
1491 OBJ_PROP_LINK_STRONG);
1492 }
1493
1494 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1495 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1496 }
1497 #endif
1498
1499 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1500 cpu->has_pmu = true;
1501 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1502 }
1503
1504 /*
1505 * Allow user to turn off VFP and Neon support, but only for TCG --
1506 * KVM does not currently allow us to lie to the guest about its
1507 * ID/feature registers, so the guest always sees what the host has.
1508 */
1509 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1510 if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1511 cpu->has_vfp = true;
1512 cpu->has_vfp_d32 = true;
1513 if (tcg_enabled() || qtest_enabled()) {
1514 qdev_property_add_static(DEVICE(obj),
1515 &arm_cpu_has_vfp_property);
1516 }
1517 }
1518 } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1519 cpu->has_vfp = true;
1520 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1521 cpu->has_vfp_d32 = true;
1522 /*
1523 * The permitted values of the SIMDReg bits [3:0] on
1524 * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1525 * make sure that has_vfp_d32 can not be set to false.
1526 */
1527 if ((tcg_enabled() || qtest_enabled())
1528 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1529 && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1530 qdev_property_add_static(DEVICE(obj),
1531 &arm_cpu_has_vfp_d32_property);
1532 }
1533 }
1534 }
1535
1536 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1537 cpu->has_neon = true;
1538 if (!kvm_enabled()) {
1539 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1540 }
1541 }
1542
1543 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1544 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1545 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1546 }
1547
1548 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1549 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1550 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1551 qdev_property_add_static(DEVICE(obj),
1552 &arm_cpu_pmsav7_dregion_property);
1553 }
1554 }
1555
1556 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1557 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1558 qdev_prop_allow_set_link_before_realize,
1559 OBJ_PROP_LINK_STRONG);
1560 /*
1561 * M profile: initial value of the Secure VTOR. We can't just use
1562 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1563 * the property to be set after realize.
1564 */
1565 object_property_add_uint32_ptr(obj, "init-svtor",
1566 &cpu->init_svtor,
1567 OBJ_PROP_FLAG_READWRITE);
1568 }
1569 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1570 /*
1571 * Initial value of the NS VTOR (for cores without the Security
1572 * extension, this is the only VTOR)
1573 */
1574 object_property_add_uint32_ptr(obj, "init-nsvtor",
1575 &cpu->init_nsvtor,
1576 OBJ_PROP_FLAG_READWRITE);
1577 }
1578
1579 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1580 object_property_add_uint32_ptr(obj, "psci-conduit",
1581 &cpu->psci_conduit,
1582 OBJ_PROP_FLAG_READWRITE);
1583
1584 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1585
1586 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1587 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1588 }
1589
1590 if (kvm_enabled()) {
1591 kvm_arm_add_vcpu_properties(obj);
1592 }
1593
1594 #ifndef CONFIG_USER_ONLY
1595 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1596 cpu_isar_feature(aa64_mte, cpu)) {
1597 object_property_add_link(obj, "tag-memory",
1598 TYPE_MEMORY_REGION,
1599 (Object **)&cpu->tag_memory,
1600 qdev_prop_allow_set_link_before_realize,
1601 OBJ_PROP_LINK_STRONG);
1602
1603 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1604 object_property_add_link(obj, "secure-tag-memory",
1605 TYPE_MEMORY_REGION,
1606 (Object **)&cpu->secure_tag_memory,
1607 qdev_prop_allow_set_link_before_realize,
1608 OBJ_PROP_LINK_STRONG);
1609 }
1610 }
1611 #endif
1612 }
1613
1614 static void arm_cpu_finalizefn(Object *obj)
1615 {
1616 ARMCPU *cpu = ARM_CPU(obj);
1617 ARMELChangeHook *hook, *next;
1618
1619 g_hash_table_destroy(cpu->cp_regs);
1620
1621 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1622 QLIST_REMOVE(hook, node);
1623 g_free(hook);
1624 }
1625 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1626 QLIST_REMOVE(hook, node);
1627 g_free(hook);
1628 }
1629 #ifndef CONFIG_USER_ONLY
1630 if (cpu->pmu_timer) {
1631 timer_free(cpu->pmu_timer);
1632 }
1633 #endif
1634 }
1635
1636 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1637 {
1638 Error *local_err = NULL;
1639
1640 #ifdef TARGET_AARCH64
1641 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1642 arm_cpu_sve_finalize(cpu, &local_err);
1643 if (local_err != NULL) {
1644 error_propagate(errp, local_err);
1645 return;
1646 }
1647
1648 arm_cpu_sme_finalize(cpu, &local_err);
1649 if (local_err != NULL) {
1650 error_propagate(errp, local_err);
1651 return;
1652 }
1653
1654 arm_cpu_pauth_finalize(cpu, &local_err);
1655 if (local_err != NULL) {
1656 error_propagate(errp, local_err);
1657 return;
1658 }
1659
1660 arm_cpu_lpa2_finalize(cpu, &local_err);
1661 if (local_err != NULL) {
1662 error_propagate(errp, local_err);
1663 return;
1664 }
1665 }
1666 #endif
1667
1668 if (kvm_enabled()) {
1669 kvm_arm_steal_time_finalize(cpu, &local_err);
1670 if (local_err != NULL) {
1671 error_propagate(errp, local_err);
1672 return;
1673 }
1674 }
1675 }
1676
1677 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1678 {
1679 CPUState *cs = CPU(dev);
1680 ARMCPU *cpu = ARM_CPU(dev);
1681 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1682 CPUARMState *env = &cpu->env;
1683 int pagebits;
1684 Error *local_err = NULL;
1685
1686 /* Use pc-relative instructions in system-mode */
1687 #ifndef CONFIG_USER_ONLY
1688 cs->tcg_cflags |= CF_PCREL;
1689 #endif
1690
1691 /* If we needed to query the host kernel for the CPU features
1692 * then it's possible that might have failed in the initfn, but
1693 * this is the first point where we can report it.
1694 */
1695 if (cpu->host_cpu_probe_failed) {
1696 if (!kvm_enabled() && !hvf_enabled()) {
1697 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1698 } else {
1699 error_setg(errp, "Failed to retrieve host CPU features");
1700 }
1701 return;
1702 }
1703
1704 #ifndef CONFIG_USER_ONLY
1705 /* The NVIC and M-profile CPU are two halves of a single piece of
1706 * hardware; trying to use one without the other is a command line
1707 * error and will result in segfaults if not caught here.
1708 */
1709 if (arm_feature(env, ARM_FEATURE_M)) {
1710 if (!env->nvic) {
1711 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1712 return;
1713 }
1714 } else {
1715 if (env->nvic) {
1716 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1717 return;
1718 }
1719 }
1720
1721 if (!tcg_enabled() && !qtest_enabled()) {
1722 /*
1723 * We assume that no accelerator except TCG (and the "not really an
1724 * accelerator" qtest) can handle these features, because Arm hardware
1725 * virtualization can't virtualize them.
1726 *
1727 * Catch all the cases which might cause us to create more than one
1728 * address space for the CPU (otherwise we will assert() later in
1729 * cpu_address_space_init()).
1730 */
1731 if (arm_feature(env, ARM_FEATURE_M)) {
1732 error_setg(errp,
1733 "Cannot enable %s when using an M-profile guest CPU",
1734 current_accel_name());
1735 return;
1736 }
1737 if (cpu->has_el3) {
1738 error_setg(errp,
1739 "Cannot enable %s when guest CPU has EL3 enabled",
1740 current_accel_name());
1741 return;
1742 }
1743 if (cpu->tag_memory) {
1744 error_setg(errp,
1745 "Cannot enable %s when guest CPUs has MTE enabled",
1746 current_accel_name());
1747 return;
1748 }
1749 }
1750
1751 {
1752 uint64_t scale;
1753
1754 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1755 if (!cpu->gt_cntfrq_hz) {
1756 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1757 cpu->gt_cntfrq_hz);
1758 return;
1759 }
1760 scale = gt_cntfrq_period_ns(cpu);
1761 } else {
1762 scale = GTIMER_SCALE;
1763 }
1764
1765 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1766 arm_gt_ptimer_cb, cpu);
1767 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1768 arm_gt_vtimer_cb, cpu);
1769 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1770 arm_gt_htimer_cb, cpu);
1771 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1772 arm_gt_stimer_cb, cpu);
1773 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1774 arm_gt_hvtimer_cb, cpu);
1775 }
1776 #endif
1777
1778 cpu_exec_realizefn(cs, &local_err);
1779 if (local_err != NULL) {
1780 error_propagate(errp, local_err);
1781 return;
1782 }
1783
1784 arm_cpu_finalize_features(cpu, &local_err);
1785 if (local_err != NULL) {
1786 error_propagate(errp, local_err);
1787 return;
1788 }
1789
1790 #ifdef CONFIG_USER_ONLY
1791 /*
1792 * User mode relies on IC IVAU instructions to catch modification of
1793 * dual-mapped code.
1794 *
1795 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1796 * IC IVAU even if the emulated processor does not normally require it.
1797 */
1798 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1799 #endif
1800
1801 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1802 cpu->has_vfp != cpu->has_neon) {
1803 /*
1804 * This is an architectural requirement for AArch64; AArch32 is
1805 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1806 */
1807 error_setg(errp,
1808 "AArch64 CPUs must have both VFP and Neon or neither");
1809 return;
1810 }
1811
1812 if (cpu->has_vfp_d32 != cpu->has_neon) {
1813 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1814 return;
1815 }
1816
1817 if (!cpu->has_vfp_d32) {
1818 uint32_t u;
1819
1820 u = cpu->isar.mvfr0;
1821 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1822 cpu->isar.mvfr0 = u;
1823 }
1824
1825 if (!cpu->has_vfp) {
1826 uint64_t t;
1827 uint32_t u;
1828
1829 t = cpu->isar.id_aa64isar1;
1830 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1831 cpu->isar.id_aa64isar1 = t;
1832
1833 t = cpu->isar.id_aa64pfr0;
1834 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1835 cpu->isar.id_aa64pfr0 = t;
1836
1837 u = cpu->isar.id_isar6;
1838 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1839 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1840 cpu->isar.id_isar6 = u;
1841
1842 u = cpu->isar.mvfr0;
1843 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1844 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1845 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1846 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1847 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1848 if (!arm_feature(env, ARM_FEATURE_M)) {
1849 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1850 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1851 }
1852 cpu->isar.mvfr0 = u;
1853
1854 u = cpu->isar.mvfr1;
1855 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1856 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1857 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1858 if (arm_feature(env, ARM_FEATURE_M)) {
1859 u = FIELD_DP32(u, MVFR1, FP16, 0);
1860 }
1861 cpu->isar.mvfr1 = u;
1862
1863 u = cpu->isar.mvfr2;
1864 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1865 cpu->isar.mvfr2 = u;
1866 }
1867
1868 if (!cpu->has_neon) {
1869 uint64_t t;
1870 uint32_t u;
1871
1872 unset_feature(env, ARM_FEATURE_NEON);
1873
1874 t = cpu->isar.id_aa64isar0;
1875 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1876 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1877 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1878 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1879 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1880 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1881 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1882 cpu->isar.id_aa64isar0 = t;
1883
1884 t = cpu->isar.id_aa64isar1;
1885 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1886 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1887 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1888 cpu->isar.id_aa64isar1 = t;
1889
1890 t = cpu->isar.id_aa64pfr0;
1891 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1892 cpu->isar.id_aa64pfr0 = t;
1893
1894 u = cpu->isar.id_isar5;
1895 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1896 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1897 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1898 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1899 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1900 cpu->isar.id_isar5 = u;
1901
1902 u = cpu->isar.id_isar6;
1903 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1904 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1905 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1906 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1907 cpu->isar.id_isar6 = u;
1908
1909 if (!arm_feature(env, ARM_FEATURE_M)) {
1910 u = cpu->isar.mvfr1;
1911 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1912 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1913 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1914 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1915 cpu->isar.mvfr1 = u;
1916
1917 u = cpu->isar.mvfr2;
1918 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1919 cpu->isar.mvfr2 = u;
1920 }
1921 }
1922
1923 if (!cpu->has_neon && !cpu->has_vfp) {
1924 uint64_t t;
1925 uint32_t u;
1926
1927 t = cpu->isar.id_aa64isar0;
1928 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1929 cpu->isar.id_aa64isar0 = t;
1930
1931 t = cpu->isar.id_aa64isar1;
1932 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1933 cpu->isar.id_aa64isar1 = t;
1934
1935 u = cpu->isar.mvfr0;
1936 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1937 cpu->isar.mvfr0 = u;
1938
1939 /* Despite the name, this field covers both VFP and Neon */
1940 u = cpu->isar.mvfr1;
1941 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1942 cpu->isar.mvfr1 = u;
1943 }
1944
1945 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1946 uint32_t u;
1947
1948 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1949
1950 u = cpu->isar.id_isar1;
1951 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1952 cpu->isar.id_isar1 = u;
1953
1954 u = cpu->isar.id_isar2;
1955 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1956 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1957 cpu->isar.id_isar2 = u;
1958
1959 u = cpu->isar.id_isar3;
1960 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1961 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1962 cpu->isar.id_isar3 = u;
1963 }
1964
1965
1966 /*
1967 * We rely on no XScale CPU having VFP so we can use the same bits in the
1968 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1969 */
1970 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1971 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1972 !arm_feature(env, ARM_FEATURE_XSCALE));
1973
1974 if (arm_feature(env, ARM_FEATURE_V7) &&
1975 !arm_feature(env, ARM_FEATURE_M) &&
1976 !arm_feature(env, ARM_FEATURE_PMSA)) {
1977 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1978 * can use 4K pages.
1979 */
1980 pagebits = 12;
1981 } else {
1982 /* For CPUs which might have tiny 1K pages, or which have an
1983 * MPU and might have small region sizes, stick with 1K pages.
1984 */
1985 pagebits = 10;
1986 }
1987 if (!set_preferred_target_page_bits(pagebits)) {
1988 /* This can only ever happen for hotplugging a CPU, or if
1989 * the board code incorrectly creates a CPU which it has
1990 * promised via minimum_page_size that it will not.
1991 */
1992 error_setg(errp, "This CPU requires a smaller page size than the "
1993 "system is using");
1994 return;
1995 }
1996
1997 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1998 * We don't support setting cluster ID ([16..23]) (known as Aff2
1999 * in later ARM ARM versions), or any of the higher affinity level fields,
2000 * so these bits always RAZ.
2001 */
2002 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2003 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2004 ARM_DEFAULT_CPUS_PER_CLUSTER);
2005 }
2006
2007 if (cpu->reset_hivecs) {
2008 cpu->reset_sctlr |= (1 << 13);
2009 }
2010
2011 if (cpu->cfgend) {
2012 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2013 cpu->reset_sctlr |= SCTLR_EE;
2014 } else {
2015 cpu->reset_sctlr |= SCTLR_B;
2016 }
2017 }
2018
2019 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2020 /* If the has_el3 CPU property is disabled then we need to disable the
2021 * feature.
2022 */
2023 unset_feature(env, ARM_FEATURE_EL3);
2024
2025 /*
2026 * Disable the security extension feature bits in the processor
2027 * feature registers as well.
2028 */
2029 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2030 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2031 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2032 ID_AA64PFR0, EL3, 0);
2033
2034 /* Disable the realm management extension, which requires EL3. */
2035 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2036 ID_AA64PFR0, RME, 0);
2037 }
2038
2039 if (!cpu->has_el2) {
2040 unset_feature(env, ARM_FEATURE_EL2);
2041 }
2042
2043 if (!cpu->has_pmu) {
2044 unset_feature(env, ARM_FEATURE_PMU);
2045 }
2046 if (arm_feature(env, ARM_FEATURE_PMU)) {
2047 pmu_init(cpu);
2048
2049 if (!kvm_enabled()) {
2050 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2051 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2052 }
2053
2054 #ifndef CONFIG_USER_ONLY
2055 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2056 cpu);
2057 #endif
2058 } else {
2059 cpu->isar.id_aa64dfr0 =
2060 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2061 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2062 cpu->pmceid0 = 0;
2063 cpu->pmceid1 = 0;
2064 }
2065
2066 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2067 /*
2068 * Disable the hypervisor feature bits in the processor feature
2069 * registers if we don't have EL2.
2070 */
2071 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2072 ID_AA64PFR0, EL2, 0);
2073 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2074 ID_PFR1, VIRTUALIZATION, 0);
2075 }
2076
2077 if (cpu_isar_feature(aa64_mte, cpu)) {
2078 /*
2079 * The architectural range of GM blocksize is 2-6, however qemu
2080 * doesn't support blocksize of 2 (see HELPER(ldgm)).
2081 */
2082 if (tcg_enabled()) {
2083 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2084 }
2085
2086 #ifndef CONFIG_USER_ONLY
2087 /*
2088 * If we do not have tag-memory provided by the machine,
2089 * reduce MTE support to instructions enabled at EL0.
2090 * This matches Cortex-A710 BROADCASTMTE input being LOW.
2091 */
2092 if (cpu->tag_memory == NULL) {
2093 cpu->isar.id_aa64pfr1 =
2094 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2095 }
2096 #endif
2097 }
2098
2099 if (tcg_enabled()) {
2100 /*
2101 * Don't report some architectural features in the ID registers
2102 * where TCG does not yet implement it (not even a minimal
2103 * stub version). This avoids guests falling over when they
2104 * try to access the non-existent system registers for them.
2105 */
2106 /* FEAT_SPE (Statistical Profiling Extension) */
2107 cpu->isar.id_aa64dfr0 =
2108 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2109 /* FEAT_TRBE (Trace Buffer Extension) */
2110 cpu->isar.id_aa64dfr0 =
2111 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2112 /* FEAT_TRF (Self-hosted Trace Extension) */
2113 cpu->isar.id_aa64dfr0 =
2114 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2115 cpu->isar.id_dfr0 =
2116 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2117 /* Trace Macrocell system register access */
2118 cpu->isar.id_aa64dfr0 =
2119 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2120 cpu->isar.id_dfr0 =
2121 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2122 /* Memory mapped trace */
2123 cpu->isar.id_dfr0 =
2124 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2125 /* FEAT_AMU (Activity Monitors Extension) */
2126 cpu->isar.id_aa64pfr0 =
2127 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2128 cpu->isar.id_pfr0 =
2129 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2130 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2131 cpu->isar.id_aa64pfr0 =
2132 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2133 /* FEAT_NV (Nested Virtualization) */
2134 cpu->isar.id_aa64mmfr2 =
2135 FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2136 }
2137
2138 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2139 * to false or by setting pmsav7-dregion to 0.
2140 */
2141 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2142 cpu->has_mpu = false;
2143 cpu->pmsav7_dregion = 0;
2144 cpu->pmsav8r_hdregion = 0;
2145 }
2146
2147 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2148 arm_feature(env, ARM_FEATURE_V7)) {
2149 uint32_t nr = cpu->pmsav7_dregion;
2150
2151 if (nr > 0xff) {
2152 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2153 return;
2154 }
2155
2156 if (nr) {
2157 if (arm_feature(env, ARM_FEATURE_V8)) {
2158 /* PMSAv8 */
2159 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2160 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2161 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2162 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2163 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2164 }
2165 } else {
2166 env->pmsav7.drbar = g_new0(uint32_t, nr);
2167 env->pmsav7.drsr = g_new0(uint32_t, nr);
2168 env->pmsav7.dracr = g_new0(uint32_t, nr);
2169 }
2170 }
2171
2172 if (cpu->pmsav8r_hdregion > 0xff) {
2173 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2174 cpu->pmsav8r_hdregion);
2175 return;
2176 }
2177
2178 if (cpu->pmsav8r_hdregion) {
2179 env->pmsav8.hprbar = g_new0(uint32_t,
2180 cpu->pmsav8r_hdregion);
2181 env->pmsav8.hprlar = g_new0(uint32_t,
2182 cpu->pmsav8r_hdregion);
2183 }
2184 }
2185
2186 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2187 uint32_t nr = cpu->sau_sregion;
2188
2189 if (nr > 0xff) {
2190 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2191 return;
2192 }
2193
2194 if (nr) {
2195 env->sau.rbar = g_new0(uint32_t, nr);
2196 env->sau.rlar = g_new0(uint32_t, nr);
2197 }
2198 }
2199
2200 if (arm_feature(env, ARM_FEATURE_EL3)) {
2201 set_feature(env, ARM_FEATURE_VBAR);
2202 }
2203
2204 #ifndef CONFIG_USER_ONLY
2205 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2206 arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2207 }
2208 #endif
2209
2210 register_cp_regs_for_features(cpu);
2211 arm_cpu_register_gdb_regs_for_features(cpu);
2212
2213 init_cpreg_list(cpu);
2214
2215 #ifndef CONFIG_USER_ONLY
2216 MachineState *ms = MACHINE(qdev_get_machine());
2217 unsigned int smp_cpus = ms->smp.cpus;
2218 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2219
2220 /*
2221 * We must set cs->num_ases to the final value before
2222 * the first call to cpu_address_space_init.
2223 */
2224 if (cpu->tag_memory != NULL) {
2225 cs->num_ases = 3 + has_secure;
2226 } else {
2227 cs->num_ases = 1 + has_secure;
2228 }
2229
2230 if (has_secure) {
2231 if (!cpu->secure_memory) {
2232 cpu->secure_memory = cs->memory;
2233 }
2234 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2235 cpu->secure_memory);
2236 }
2237
2238 if (cpu->tag_memory != NULL) {
2239 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2240 cpu->tag_memory);
2241 if (has_secure) {
2242 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2243 cpu->secure_tag_memory);
2244 }
2245 }
2246
2247 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2248
2249 /* No core_count specified, default to smp_cpus. */
2250 if (cpu->core_count == -1) {
2251 cpu->core_count = smp_cpus;
2252 }
2253 #endif
2254
2255 if (tcg_enabled()) {
2256 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2257
2258 /*
2259 * We only support DCZ blocklen that fits on one page.
2260 *
2261 * Architectually this is always true. However TARGET_PAGE_SIZE
2262 * is variable and, for compatibility with -machine virt-2.7,
2263 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2264 * But even then, while the largest architectural DCZ blocklen
2265 * is 2KiB, no cpu actually uses such a large blocklen.
2266 */
2267 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2268
2269 /*
2270 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2271 * both nibbles of each byte storing tag data may be written at once.
2272 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2273 */
2274 if (cpu_isar_feature(aa64_mte, cpu)) {
2275 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2276 }
2277 }
2278
2279 qemu_init_vcpu(cs);
2280 cpu_reset(cs);
2281
2282 acc->parent_realize(dev, errp);
2283 }
2284
2285 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2286 {
2287 ObjectClass *oc;
2288 char *typename;
2289 char **cpuname;
2290 const char *cpunamestr;
2291
2292 cpuname = g_strsplit(cpu_model, ",", 1);
2293 cpunamestr = cpuname[0];
2294 #ifdef CONFIG_USER_ONLY
2295 /* For backwards compatibility usermode emulation allows "-cpu any",
2296 * which has the same semantics as "-cpu max".
2297 */
2298 if (!strcmp(cpunamestr, "any")) {
2299 cpunamestr = "max";
2300 }
2301 #endif
2302 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2303 oc = object_class_by_name(typename);
2304 g_strfreev(cpuname);
2305 g_free(typename);
2306 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2307 object_class_is_abstract(oc)) {
2308 return NULL;
2309 }
2310 return oc;
2311 }
2312
2313 static Property arm_cpu_properties[] = {
2314 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2315 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2316 mp_affinity, ARM64_AFFINITY_INVALID),
2317 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2318 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2319 DEFINE_PROP_END_OF_LIST()
2320 };
2321
2322 static const gchar *arm_gdb_arch_name(CPUState *cs)
2323 {
2324 ARMCPU *cpu = ARM_CPU(cs);
2325 CPUARMState *env = &cpu->env;
2326
2327 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2328 return "iwmmxt";
2329 }
2330 return "arm";
2331 }
2332
2333 #ifndef CONFIG_USER_ONLY
2334 #include "hw/core/sysemu-cpu-ops.h"
2335
2336 static const struct SysemuCPUOps arm_sysemu_ops = {
2337 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2338 .asidx_from_attrs = arm_asidx_from_attrs,
2339 .write_elf32_note = arm_cpu_write_elf32_note,
2340 .write_elf64_note = arm_cpu_write_elf64_note,
2341 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2342 .legacy_vmsd = &vmstate_arm_cpu,
2343 };
2344 #endif
2345
2346 #ifdef CONFIG_TCG
2347 static const struct TCGCPUOps arm_tcg_ops = {
2348 .initialize = arm_translate_init,
2349 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2350 .debug_excp_handler = arm_debug_excp_handler,
2351 .restore_state_to_opc = arm_restore_state_to_opc,
2352
2353 #ifdef CONFIG_USER_ONLY
2354 .record_sigsegv = arm_cpu_record_sigsegv,
2355 .record_sigbus = arm_cpu_record_sigbus,
2356 #else
2357 .tlb_fill = arm_cpu_tlb_fill,
2358 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2359 .do_interrupt = arm_cpu_do_interrupt,
2360 .do_transaction_failed = arm_cpu_do_transaction_failed,
2361 .do_unaligned_access = arm_cpu_do_unaligned_access,
2362 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2363 .debug_check_watchpoint = arm_debug_check_watchpoint,
2364 .debug_check_breakpoint = arm_debug_check_breakpoint,
2365 #endif /* !CONFIG_USER_ONLY */
2366 };
2367 #endif /* CONFIG_TCG */
2368
2369 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2370 {
2371 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2372 CPUClass *cc = CPU_CLASS(acc);
2373 DeviceClass *dc = DEVICE_CLASS(oc);
2374 ResettableClass *rc = RESETTABLE_CLASS(oc);
2375
2376 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2377 &acc->parent_realize);
2378
2379 device_class_set_props(dc, arm_cpu_properties);
2380
2381 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2382 &acc->parent_phases);
2383
2384 cc->class_by_name = arm_cpu_class_by_name;
2385 cc->has_work = arm_cpu_has_work;
2386 cc->dump_state = arm_cpu_dump_state;
2387 cc->set_pc = arm_cpu_set_pc;
2388 cc->get_pc = arm_cpu_get_pc;
2389 cc->gdb_read_register = arm_cpu_gdb_read_register;
2390 cc->gdb_write_register = arm_cpu_gdb_write_register;
2391 #ifndef CONFIG_USER_ONLY
2392 cc->sysemu_ops = &arm_sysemu_ops;
2393 #endif
2394 cc->gdb_num_core_regs = 26;
2395 cc->gdb_arch_name = arm_gdb_arch_name;
2396 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2397 cc->gdb_stop_before_watchpoint = true;
2398 cc->disas_set_info = arm_disas_set_info;
2399
2400 #ifdef CONFIG_TCG
2401 cc->tcg_ops = &arm_tcg_ops;
2402 #endif /* CONFIG_TCG */
2403 }
2404
2405 static void arm_cpu_instance_init(Object *obj)
2406 {
2407 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2408
2409 acc->info->initfn(obj);
2410 arm_cpu_post_init(obj);
2411 }
2412
2413 static void cpu_register_class_init(ObjectClass *oc, void *data)
2414 {
2415 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2416 CPUClass *cc = CPU_CLASS(acc);
2417
2418 acc->info = data;
2419 cc->gdb_core_xml_file = "arm-core.xml";
2420 }
2421
2422 void arm_cpu_register(const ARMCPUInfo *info)
2423 {
2424 TypeInfo type_info = {
2425 .parent = TYPE_ARM_CPU,
2426 .instance_init = arm_cpu_instance_init,
2427 .class_init = info->class_init ?: cpu_register_class_init,
2428 .class_data = (void *)info,
2429 };
2430
2431 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2432 type_register(&type_info);
2433 g_free((void *)type_info.name);
2434 }
2435
2436 static const TypeInfo arm_cpu_type_info = {
2437 .name = TYPE_ARM_CPU,
2438 .parent = TYPE_CPU,
2439 .instance_size = sizeof(ARMCPU),
2440 .instance_align = __alignof__(ARMCPU),
2441 .instance_init = arm_cpu_initfn,
2442 .instance_finalize = arm_cpu_finalizefn,
2443 .abstract = true,
2444 .class_size = sizeof(ARMCPUClass),
2445 .class_init = arm_cpu_class_init,
2446 };
2447
2448 static void arm_cpu_register_types(void)
2449 {
2450 type_register_static(&arm_cpu_type_info);
2451 }
2452
2453 type_init(arm_cpu_register_types)