]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.c
Merge tag 'for-upstream-urgent' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / target / arm / cpu.c
1 /*
2 * QEMU ARM CPU
3 *
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53 ARMCPU *cpu = ARM_CPU(cs);
54 CPUARMState *env = &cpu->env;
55
56 if (is_a64(env)) {
57 env->pc = value;
58 env->thumb = false;
59 } else {
60 env->regs[15] = value & ~1;
61 env->thumb = value & 1;
62 }
63 }
64
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
69
70 if (is_a64(env)) {
71 return env->pc;
72 } else {
73 return env->regs[15];
74 }
75 }
76
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79 const TranslationBlock *tb)
80 {
81 /* The program counter is always up to date with CF_PCREL. */
82 if (!(tb_cflags(tb) & CF_PCREL)) {
83 CPUARMState *env = cs->env_ptr;
84 /*
85 * It's OK to look at env for the current mode here, because it's
86 * never possible for an AArch64 TB to chain to an AArch32 TB.
87 */
88 if (is_a64(env)) {
89 env->pc = tb->pc;
90 } else {
91 env->regs[15] = tb->pc;
92 }
93 }
94 }
95
96 void arm_restore_state_to_opc(CPUState *cs,
97 const TranslationBlock *tb,
98 const uint64_t *data)
99 {
100 CPUARMState *env = cs->env_ptr;
101
102 if (is_a64(env)) {
103 if (tb_cflags(tb) & CF_PCREL) {
104 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 } else {
106 env->pc = data[0];
107 }
108 env->condexec_bits = 0;
109 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110 } else {
111 if (tb_cflags(tb) & CF_PCREL) {
112 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113 } else {
114 env->regs[15] = data[0];
115 }
116 env->condexec_bits = data[1];
117 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118 }
119 }
120 #endif /* CONFIG_TCG */
121
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124 ARMCPU *cpu = ARM_CPU(cs);
125
126 return (cpu->power_state != PSCI_OFF)
127 && cs->interrupt_request &
128 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130 | CPU_INTERRUPT_EXITTB);
131 }
132
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134 void *opaque)
135 {
136 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137
138 entry->hook = hook;
139 entry->opaque = opaque;
140
141 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145 void *opaque)
146 {
147 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148
149 entry->hook = hook;
150 entry->opaque = opaque;
151
152 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157 /* Reset a single ARMCPRegInfo register */
158 ARMCPRegInfo *ri = value;
159 ARMCPU *cpu = opaque;
160
161 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162 return;
163 }
164
165 if (ri->resetfn) {
166 ri->resetfn(&cpu->env, ri);
167 return;
168 }
169
170 /* A zero offset is never possible as it would be regs[0]
171 * so we use it to indicate that reset is being handled elsewhere.
172 * This is basically only used for fields in non-core coprocessors
173 * (like the pxa2xx ones).
174 */
175 if (!ri->fieldoffset) {
176 return;
177 }
178
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181 } else {
182 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 }
184 }
185
186 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
187 {
188 /* Purely an assertion check: we've already done reset once,
189 * so now check that running the reset for the cpreg doesn't
190 * change its value. This traps bugs where two different cpregs
191 * both try to reset the same state field but to different values.
192 */
193 ARMCPRegInfo *ri = value;
194 ARMCPU *cpu = opaque;
195 uint64_t oldvalue, newvalue;
196
197 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 return;
199 }
200
201 oldvalue = read_raw_cp_reg(&cpu->env, ri);
202 cp_reg_reset(key, value, opaque);
203 newvalue = read_raw_cp_reg(&cpu->env, ri);
204 assert(oldvalue == newvalue);
205 }
206
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209 CPUState *s = CPU(obj);
210 ARMCPU *cpu = ARM_CPU(s);
211 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212 CPUARMState *env = &cpu->env;
213
214 if (acc->parent_phases.hold) {
215 acc->parent_phases.hold(obj);
216 }
217
218 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219
220 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222
223 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227
228 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229
230 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232 }
233
234 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235 /* 64 bit CPUs always start in 64 bit mode */
236 env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238 env->pstate = PSTATE_MODE_EL0t;
239 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241 /* Enable all PAC keys. */
242 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243 SCTLR_EnDA | SCTLR_EnDB);
244 /* Trap on btype=3 for PACIxSP. */
245 env->cp15.sctlr_el[1] |= SCTLR_BT0;
246 /* and to the FP/Neon instructions */
247 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248 CPACR_EL1, FPEN, 3);
249 /* and to the SVE instructions, with default vector length */
250 if (cpu_isar_feature(aa64_sve, cpu)) {
251 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252 CPACR_EL1, ZEN, 3);
253 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
254 }
255 /* and for SME instructions, with default vector length, and TPIDR2 */
256 if (cpu_isar_feature(aa64_sme, cpu)) {
257 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
258 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259 CPACR_EL1, SMEN, 3);
260 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
261 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
262 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
263 SMCR, FA64, 1);
264 }
265 }
266 /*
267 * Enable 48-bit address space (TODO: take reserved_va into account).
268 * Enable TBI0 but not TBI1.
269 * Note that this must match useronly_clean_ptr.
270 */
271 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
272
273 /* Enable MTE */
274 if (cpu_isar_feature(aa64_mte, cpu)) {
275 /* Enable tag access, but leave TCF0 as No Effect (0). */
276 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
277 /*
278 * Exclude all tags, so that tag 0 is always used.
279 * This corresponds to Linux current->thread.gcr_incl = 0.
280 *
281 * Set RRND, so that helper_irg() will generate a seed later.
282 * Here in cpu_reset(), the crypto subsystem has not yet been
283 * initialized.
284 */
285 env->cp15.gcr_el1 = 0x1ffff;
286 }
287 /*
288 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289 * This is not yet exposed from the Linux kernel in any way.
290 */
291 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
292 #else
293 /* Reset into the highest available EL */
294 if (arm_feature(env, ARM_FEATURE_EL3)) {
295 env->pstate = PSTATE_MODE_EL3h;
296 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
297 env->pstate = PSTATE_MODE_EL2h;
298 } else {
299 env->pstate = PSTATE_MODE_EL1h;
300 }
301
302 /* Sample rvbar at reset. */
303 env->cp15.rvbar = cpu->rvbar_prop;
304 env->pc = env->cp15.rvbar;
305 #endif
306 } else {
307 #if defined(CONFIG_USER_ONLY)
308 /* Userspace expects access to cp10 and cp11 for FP/Neon */
309 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
310 CPACR, CP10, 3);
311 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
312 CPACR, CP11, 3);
313 #endif
314 if (arm_feature(env, ARM_FEATURE_V8)) {
315 env->cp15.rvbar = cpu->rvbar_prop;
316 env->regs[15] = cpu->rvbar_prop;
317 }
318 }
319
320 #if defined(CONFIG_USER_ONLY)
321 env->uncached_cpsr = ARM_CPU_MODE_USR;
322 /* For user mode we must enable access to coprocessors */
323 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
324 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
325 env->cp15.c15_cpar = 3;
326 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
327 env->cp15.c15_cpar = 1;
328 }
329 #else
330
331 /*
332 * If the highest available EL is EL2, AArch32 will start in Hyp
333 * mode; otherwise it starts in SVC. Note that if we start in
334 * AArch64 then these values in the uncached_cpsr will be ignored.
335 */
336 if (arm_feature(env, ARM_FEATURE_EL2) &&
337 !arm_feature(env, ARM_FEATURE_EL3)) {
338 env->uncached_cpsr = ARM_CPU_MODE_HYP;
339 } else {
340 env->uncached_cpsr = ARM_CPU_MODE_SVC;
341 }
342 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
343
344 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
345 * executing as AArch32 then check if highvecs are enabled and
346 * adjust the PC accordingly.
347 */
348 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
349 env->regs[15] = 0xFFFF0000;
350 }
351
352 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
353 #endif
354
355 if (arm_feature(env, ARM_FEATURE_M)) {
356 #ifndef CONFIG_USER_ONLY
357 uint32_t initial_msp; /* Loaded from 0x0 */
358 uint32_t initial_pc; /* Loaded from 0x4 */
359 uint8_t *rom;
360 uint32_t vecbase;
361 #endif
362
363 if (cpu_isar_feature(aa32_lob, cpu)) {
364 /*
365 * LTPSIZE is constant 4 if MVE not implemented, and resets
366 * to an UNKNOWN value if MVE is implemented. We choose to
367 * always reset to 4.
368 */
369 env->v7m.ltpsize = 4;
370 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
371 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
372 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
373 }
374
375 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
376 env->v7m.secure = true;
377 } else {
378 /* This bit resets to 0 if security is supported, but 1 if
379 * it is not. The bit is not present in v7M, but we set it
380 * here so we can avoid having to make checks on it conditional
381 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
382 */
383 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
384 /*
385 * Set NSACR to indicate "NS access permitted to everything";
386 * this avoids having to have all the tests of it being
387 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
388 * v8.1M the guest-visible value of NSACR in a CPU without the
389 * Security Extension is 0xcff.
390 */
391 env->v7m.nsacr = 0xcff;
392 }
393
394 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
395 * that it resets to 1, so QEMU always does that rather than making
396 * it dependent on CPU model. In v8M it is RES1.
397 */
398 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
399 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
400 if (arm_feature(env, ARM_FEATURE_V8)) {
401 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
402 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
403 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
404 }
405 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
406 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
407 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
408 }
409
410 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
411 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
412 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
413 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
414 }
415
416 #ifndef CONFIG_USER_ONLY
417 /* Unlike A/R profile, M profile defines the reset LR value */
418 env->regs[14] = 0xffffffff;
419
420 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
421 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
422
423 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
424 vecbase = env->v7m.vecbase[env->v7m.secure];
425 rom = rom_ptr_for_as(s->as, vecbase, 8);
426 if (rom) {
427 /* Address zero is covered by ROM which hasn't yet been
428 * copied into physical memory.
429 */
430 initial_msp = ldl_p(rom);
431 initial_pc = ldl_p(rom + 4);
432 } else {
433 /* Address zero not covered by a ROM blob, or the ROM blob
434 * is in non-modifiable memory and this is a second reset after
435 * it got copied into memory. In the latter case, rom_ptr
436 * will return a NULL pointer and we should use ldl_phys instead.
437 */
438 initial_msp = ldl_phys(s->as, vecbase);
439 initial_pc = ldl_phys(s->as, vecbase + 4);
440 }
441
442 qemu_log_mask(CPU_LOG_INT,
443 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
444 initial_msp, initial_pc);
445
446 env->regs[13] = initial_msp & 0xFFFFFFFC;
447 env->regs[15] = initial_pc & ~1;
448 env->thumb = initial_pc & 1;
449 #else
450 /*
451 * For user mode we run non-secure and with access to the FPU.
452 * The FPU context is active (ie does not need further setup)
453 * and is owned by non-secure.
454 */
455 env->v7m.secure = false;
456 env->v7m.nsacr = 0xcff;
457 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
458 env->v7m.fpccr[M_REG_S] &=
459 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
460 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
461 #endif
462 }
463
464 /* M profile requires that reset clears the exclusive monitor;
465 * A profile does not, but clearing it makes more sense than having it
466 * set with an exclusive access on address zero.
467 */
468 arm_clear_exclusive(env);
469
470 if (arm_feature(env, ARM_FEATURE_PMSA)) {
471 if (cpu->pmsav7_dregion > 0) {
472 if (arm_feature(env, ARM_FEATURE_V8)) {
473 memset(env->pmsav8.rbar[M_REG_NS], 0,
474 sizeof(*env->pmsav8.rbar[M_REG_NS])
475 * cpu->pmsav7_dregion);
476 memset(env->pmsav8.rlar[M_REG_NS], 0,
477 sizeof(*env->pmsav8.rlar[M_REG_NS])
478 * cpu->pmsav7_dregion);
479 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
480 memset(env->pmsav8.rbar[M_REG_S], 0,
481 sizeof(*env->pmsav8.rbar[M_REG_S])
482 * cpu->pmsav7_dregion);
483 memset(env->pmsav8.rlar[M_REG_S], 0,
484 sizeof(*env->pmsav8.rlar[M_REG_S])
485 * cpu->pmsav7_dregion);
486 }
487 } else if (arm_feature(env, ARM_FEATURE_V7)) {
488 memset(env->pmsav7.drbar, 0,
489 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
490 memset(env->pmsav7.drsr, 0,
491 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
492 memset(env->pmsav7.dracr, 0,
493 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
494 }
495 }
496
497 if (cpu->pmsav8r_hdregion > 0) {
498 memset(env->pmsav8.hprbar, 0,
499 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
500 memset(env->pmsav8.hprlar, 0,
501 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
502 }
503
504 env->pmsav7.rnr[M_REG_NS] = 0;
505 env->pmsav7.rnr[M_REG_S] = 0;
506 env->pmsav8.mair0[M_REG_NS] = 0;
507 env->pmsav8.mair0[M_REG_S] = 0;
508 env->pmsav8.mair1[M_REG_NS] = 0;
509 env->pmsav8.mair1[M_REG_S] = 0;
510 }
511
512 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
513 if (cpu->sau_sregion > 0) {
514 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
515 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
516 }
517 env->sau.rnr = 0;
518 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
519 * the Cortex-M33 does.
520 */
521 env->sau.ctrl = 0;
522 }
523
524 set_flush_to_zero(1, &env->vfp.standard_fp_status);
525 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
526 set_default_nan_mode(1, &env->vfp.standard_fp_status);
527 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
528 set_float_detect_tininess(float_tininess_before_rounding,
529 &env->vfp.fp_status);
530 set_float_detect_tininess(float_tininess_before_rounding,
531 &env->vfp.standard_fp_status);
532 set_float_detect_tininess(float_tininess_before_rounding,
533 &env->vfp.fp_status_f16);
534 set_float_detect_tininess(float_tininess_before_rounding,
535 &env->vfp.standard_fp_status_f16);
536 #ifndef CONFIG_USER_ONLY
537 if (kvm_enabled()) {
538 kvm_arm_reset_vcpu(cpu);
539 }
540 #endif
541
542 if (tcg_enabled()) {
543 hw_breakpoint_update_all(cpu);
544 hw_watchpoint_update_all(cpu);
545
546 arm_rebuild_hflags(env);
547 }
548 }
549
550 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
551
552 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
553 unsigned int target_el,
554 unsigned int cur_el, bool secure,
555 uint64_t hcr_el2)
556 {
557 CPUARMState *env = cs->env_ptr;
558 bool pstate_unmasked;
559 bool unmasked = false;
560
561 /*
562 * Don't take exceptions if they target a lower EL.
563 * This check should catch any exceptions that would not be taken
564 * but left pending.
565 */
566 if (cur_el > target_el) {
567 return false;
568 }
569
570 switch (excp_idx) {
571 case EXCP_FIQ:
572 pstate_unmasked = !(env->daif & PSTATE_F);
573 break;
574
575 case EXCP_IRQ:
576 pstate_unmasked = !(env->daif & PSTATE_I);
577 break;
578
579 case EXCP_VFIQ:
580 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
581 /* VFIQs are only taken when hypervized. */
582 return false;
583 }
584 return !(env->daif & PSTATE_F);
585 case EXCP_VIRQ:
586 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
587 /* VIRQs are only taken when hypervized. */
588 return false;
589 }
590 return !(env->daif & PSTATE_I);
591 case EXCP_VSERR:
592 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
593 /* VIRQs are only taken when hypervized. */
594 return false;
595 }
596 return !(env->daif & PSTATE_A);
597 default:
598 g_assert_not_reached();
599 }
600
601 /*
602 * Use the target EL, current execution state and SCR/HCR settings to
603 * determine whether the corresponding CPSR bit is used to mask the
604 * interrupt.
605 */
606 if ((target_el > cur_el) && (target_el != 1)) {
607 /* Exceptions targeting a higher EL may not be maskable */
608 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
609 switch (target_el) {
610 case 2:
611 /*
612 * According to ARM DDI 0487H.a, an interrupt can be masked
613 * when HCR_E2H and HCR_TGE are both set regardless of the
614 * current Security state. Note that we need to revisit this
615 * part again once we need to support NMI.
616 */
617 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
618 unmasked = true;
619 }
620 break;
621 case 3:
622 /* Interrupt cannot be masked when the target EL is 3 */
623 unmasked = true;
624 break;
625 default:
626 g_assert_not_reached();
627 }
628 } else {
629 /*
630 * The old 32-bit-only environment has a more complicated
631 * masking setup. HCR and SCR bits not only affect interrupt
632 * routing but also change the behaviour of masking.
633 */
634 bool hcr, scr;
635
636 switch (excp_idx) {
637 case EXCP_FIQ:
638 /*
639 * If FIQs are routed to EL3 or EL2 then there are cases where
640 * we override the CPSR.F in determining if the exception is
641 * masked or not. If neither of these are set then we fall back
642 * to the CPSR.F setting otherwise we further assess the state
643 * below.
644 */
645 hcr = hcr_el2 & HCR_FMO;
646 scr = (env->cp15.scr_el3 & SCR_FIQ);
647
648 /*
649 * When EL3 is 32-bit, the SCR.FW bit controls whether the
650 * CPSR.F bit masks FIQ interrupts when taken in non-secure
651 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
652 * when non-secure but only when FIQs are only routed to EL3.
653 */
654 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
655 break;
656 case EXCP_IRQ:
657 /*
658 * When EL3 execution state is 32-bit, if HCR.IMO is set then
659 * we may override the CPSR.I masking when in non-secure state.
660 * The SCR.IRQ setting has already been taken into consideration
661 * when setting the target EL, so it does not have a further
662 * affect here.
663 */
664 hcr = hcr_el2 & HCR_IMO;
665 scr = false;
666 break;
667 default:
668 g_assert_not_reached();
669 }
670
671 if ((scr || hcr) && !secure) {
672 unmasked = true;
673 }
674 }
675 }
676
677 /*
678 * The PSTATE bits only mask the interrupt if we have not overriden the
679 * ability above.
680 */
681 return unmasked || pstate_unmasked;
682 }
683
684 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
685 {
686 CPUClass *cc = CPU_GET_CLASS(cs);
687 CPUARMState *env = cs->env_ptr;
688 uint32_t cur_el = arm_current_el(env);
689 bool secure = arm_is_secure(env);
690 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
691 uint32_t target_el;
692 uint32_t excp_idx;
693
694 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
695
696 if (interrupt_request & CPU_INTERRUPT_FIQ) {
697 excp_idx = EXCP_FIQ;
698 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
699 if (arm_excp_unmasked(cs, excp_idx, target_el,
700 cur_el, secure, hcr_el2)) {
701 goto found;
702 }
703 }
704 if (interrupt_request & CPU_INTERRUPT_HARD) {
705 excp_idx = EXCP_IRQ;
706 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
707 if (arm_excp_unmasked(cs, excp_idx, target_el,
708 cur_el, secure, hcr_el2)) {
709 goto found;
710 }
711 }
712 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
713 excp_idx = EXCP_VIRQ;
714 target_el = 1;
715 if (arm_excp_unmasked(cs, excp_idx, target_el,
716 cur_el, secure, hcr_el2)) {
717 goto found;
718 }
719 }
720 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
721 excp_idx = EXCP_VFIQ;
722 target_el = 1;
723 if (arm_excp_unmasked(cs, excp_idx, target_el,
724 cur_el, secure, hcr_el2)) {
725 goto found;
726 }
727 }
728 if (interrupt_request & CPU_INTERRUPT_VSERR) {
729 excp_idx = EXCP_VSERR;
730 target_el = 1;
731 if (arm_excp_unmasked(cs, excp_idx, target_el,
732 cur_el, secure, hcr_el2)) {
733 /* Taking a virtual abort clears HCR_EL2.VSE */
734 env->cp15.hcr_el2 &= ~HCR_VSE;
735 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
736 goto found;
737 }
738 }
739 return false;
740
741 found:
742 cs->exception_index = excp_idx;
743 env->exception.target_el = target_el;
744 cc->tcg_ops->do_interrupt(cs);
745 return true;
746 }
747
748 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
749
750 void arm_cpu_update_virq(ARMCPU *cpu)
751 {
752 /*
753 * Update the interrupt level for VIRQ, which is the logical OR of
754 * the HCR_EL2.VI bit and the input line level from the GIC.
755 */
756 CPUARMState *env = &cpu->env;
757 CPUState *cs = CPU(cpu);
758
759 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
760 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
761
762 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
763 if (new_state) {
764 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
765 } else {
766 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
767 }
768 }
769 }
770
771 void arm_cpu_update_vfiq(ARMCPU *cpu)
772 {
773 /*
774 * Update the interrupt level for VFIQ, which is the logical OR of
775 * the HCR_EL2.VF bit and the input line level from the GIC.
776 */
777 CPUARMState *env = &cpu->env;
778 CPUState *cs = CPU(cpu);
779
780 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
781 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
782
783 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
784 if (new_state) {
785 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
786 } else {
787 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
788 }
789 }
790 }
791
792 void arm_cpu_update_vserr(ARMCPU *cpu)
793 {
794 /*
795 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
796 */
797 CPUARMState *env = &cpu->env;
798 CPUState *cs = CPU(cpu);
799
800 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
801
802 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
803 if (new_state) {
804 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
805 } else {
806 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
807 }
808 }
809 }
810
811 #ifndef CONFIG_USER_ONLY
812 static void arm_cpu_set_irq(void *opaque, int irq, int level)
813 {
814 ARMCPU *cpu = opaque;
815 CPUARMState *env = &cpu->env;
816 CPUState *cs = CPU(cpu);
817 static const int mask[] = {
818 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
819 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
820 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
821 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
822 };
823
824 if (!arm_feature(env, ARM_FEATURE_EL2) &&
825 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
826 /*
827 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
828 * have EL2 support we don't care. (Unless the guest is doing something
829 * silly this will only be calls saying "level is still 0".)
830 */
831 return;
832 }
833
834 if (level) {
835 env->irq_line_state |= mask[irq];
836 } else {
837 env->irq_line_state &= ~mask[irq];
838 }
839
840 switch (irq) {
841 case ARM_CPU_VIRQ:
842 arm_cpu_update_virq(cpu);
843 break;
844 case ARM_CPU_VFIQ:
845 arm_cpu_update_vfiq(cpu);
846 break;
847 case ARM_CPU_IRQ:
848 case ARM_CPU_FIQ:
849 if (level) {
850 cpu_interrupt(cs, mask[irq]);
851 } else {
852 cpu_reset_interrupt(cs, mask[irq]);
853 }
854 break;
855 default:
856 g_assert_not_reached();
857 }
858 }
859
860 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
861 {
862 #ifdef CONFIG_KVM
863 ARMCPU *cpu = opaque;
864 CPUARMState *env = &cpu->env;
865 CPUState *cs = CPU(cpu);
866 uint32_t linestate_bit;
867 int irq_id;
868
869 switch (irq) {
870 case ARM_CPU_IRQ:
871 irq_id = KVM_ARM_IRQ_CPU_IRQ;
872 linestate_bit = CPU_INTERRUPT_HARD;
873 break;
874 case ARM_CPU_FIQ:
875 irq_id = KVM_ARM_IRQ_CPU_FIQ;
876 linestate_bit = CPU_INTERRUPT_FIQ;
877 break;
878 default:
879 g_assert_not_reached();
880 }
881
882 if (level) {
883 env->irq_line_state |= linestate_bit;
884 } else {
885 env->irq_line_state &= ~linestate_bit;
886 }
887 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
888 #endif
889 }
890
891 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
892 {
893 ARMCPU *cpu = ARM_CPU(cs);
894 CPUARMState *env = &cpu->env;
895
896 cpu_synchronize_state(cs);
897 return arm_cpu_data_is_big_endian(env);
898 }
899
900 #endif
901
902 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
903 {
904 ARMCPU *ac = ARM_CPU(cpu);
905 CPUARMState *env = &ac->env;
906 bool sctlr_b;
907
908 if (is_a64(env)) {
909 info->cap_arch = CS_ARCH_ARM64;
910 info->cap_insn_unit = 4;
911 info->cap_insn_split = 4;
912 } else {
913 int cap_mode;
914 if (env->thumb) {
915 info->cap_insn_unit = 2;
916 info->cap_insn_split = 4;
917 cap_mode = CS_MODE_THUMB;
918 } else {
919 info->cap_insn_unit = 4;
920 info->cap_insn_split = 4;
921 cap_mode = CS_MODE_ARM;
922 }
923 if (arm_feature(env, ARM_FEATURE_V8)) {
924 cap_mode |= CS_MODE_V8;
925 }
926 if (arm_feature(env, ARM_FEATURE_M)) {
927 cap_mode |= CS_MODE_MCLASS;
928 }
929 info->cap_arch = CS_ARCH_ARM;
930 info->cap_mode = cap_mode;
931 }
932
933 sctlr_b = arm_sctlr_b(env);
934 if (bswap_code(sctlr_b)) {
935 #if TARGET_BIG_ENDIAN
936 info->endian = BFD_ENDIAN_LITTLE;
937 #else
938 info->endian = BFD_ENDIAN_BIG;
939 #endif
940 }
941 info->flags &= ~INSN_ARM_BE32;
942 #ifndef CONFIG_USER_ONLY
943 if (sctlr_b) {
944 info->flags |= INSN_ARM_BE32;
945 }
946 #endif
947 }
948
949 #ifdef TARGET_AARCH64
950
951 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
952 {
953 ARMCPU *cpu = ARM_CPU(cs);
954 CPUARMState *env = &cpu->env;
955 uint32_t psr = pstate_read(env);
956 int i;
957 int el = arm_current_el(env);
958 const char *ns_status;
959 bool sve;
960
961 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
962 for (i = 0; i < 32; i++) {
963 if (i == 31) {
964 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
965 } else {
966 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
967 (i + 2) % 3 ? " " : "\n");
968 }
969 }
970
971 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
972 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
973 } else {
974 ns_status = "";
975 }
976 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
977 psr,
978 psr & PSTATE_N ? 'N' : '-',
979 psr & PSTATE_Z ? 'Z' : '-',
980 psr & PSTATE_C ? 'C' : '-',
981 psr & PSTATE_V ? 'V' : '-',
982 ns_status,
983 el,
984 psr & PSTATE_SP ? 'h' : 't');
985
986 if (cpu_isar_feature(aa64_sme, cpu)) {
987 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
988 env->svcr,
989 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
990 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
991 }
992 if (cpu_isar_feature(aa64_bti, cpu)) {
993 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
994 }
995 if (!(flags & CPU_DUMP_FPU)) {
996 qemu_fprintf(f, "\n");
997 return;
998 }
999 if (fp_exception_el(env, el) != 0) {
1000 qemu_fprintf(f, " FPU disabled\n");
1001 return;
1002 }
1003 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
1004 vfp_get_fpcr(env), vfp_get_fpsr(env));
1005
1006 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1007 sve = sme_exception_el(env, el) == 0;
1008 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1009 sve = sve_exception_el(env, el) == 0;
1010 } else {
1011 sve = false;
1012 }
1013
1014 if (sve) {
1015 int j, zcr_len = sve_vqm1_for_el(env, el);
1016
1017 for (i = 0; i <= FFR_PRED_NUM; i++) {
1018 bool eol;
1019 if (i == FFR_PRED_NUM) {
1020 qemu_fprintf(f, "FFR=");
1021 /* It's last, so end the line. */
1022 eol = true;
1023 } else {
1024 qemu_fprintf(f, "P%02d=", i);
1025 switch (zcr_len) {
1026 case 0:
1027 eol = i % 8 == 7;
1028 break;
1029 case 1:
1030 eol = i % 6 == 5;
1031 break;
1032 case 2:
1033 case 3:
1034 eol = i % 3 == 2;
1035 break;
1036 default:
1037 /* More than one quadword per predicate. */
1038 eol = true;
1039 break;
1040 }
1041 }
1042 for (j = zcr_len / 4; j >= 0; j--) {
1043 int digits;
1044 if (j * 4 + 4 <= zcr_len + 1) {
1045 digits = 16;
1046 } else {
1047 digits = (zcr_len % 4 + 1) * 4;
1048 }
1049 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1050 env->vfp.pregs[i].p[j],
1051 j ? ":" : eol ? "\n" : " ");
1052 }
1053 }
1054
1055 for (i = 0; i < 32; i++) {
1056 if (zcr_len == 0) {
1057 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1058 i, env->vfp.zregs[i].d[1],
1059 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1060 } else if (zcr_len == 1) {
1061 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1062 ":%016" PRIx64 ":%016" PRIx64 "\n",
1063 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1064 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1065 } else {
1066 for (j = zcr_len; j >= 0; j--) {
1067 bool odd = (zcr_len - j) % 2 != 0;
1068 if (j == zcr_len) {
1069 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1070 } else if (!odd) {
1071 if (j > 0) {
1072 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
1073 } else {
1074 qemu_fprintf(f, " [%x]=", j);
1075 }
1076 }
1077 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1078 env->vfp.zregs[i].d[j * 2 + 1],
1079 env->vfp.zregs[i].d[j * 2],
1080 odd || j == 0 ? "\n" : ":");
1081 }
1082 }
1083 }
1084 } else {
1085 for (i = 0; i < 32; i++) {
1086 uint64_t *q = aa64_vfp_qreg(env, i);
1087 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1088 i, q[1], q[0], (i & 1 ? "\n" : " "));
1089 }
1090 }
1091 }
1092
1093 #else
1094
1095 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1096 {
1097 g_assert_not_reached();
1098 }
1099
1100 #endif
1101
1102 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1103 {
1104 ARMCPU *cpu = ARM_CPU(cs);
1105 CPUARMState *env = &cpu->env;
1106 int i;
1107
1108 if (is_a64(env)) {
1109 aarch64_cpu_dump_state(cs, f, flags);
1110 return;
1111 }
1112
1113 for (i = 0; i < 16; i++) {
1114 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1115 if ((i % 4) == 3) {
1116 qemu_fprintf(f, "\n");
1117 } else {
1118 qemu_fprintf(f, " ");
1119 }
1120 }
1121
1122 if (arm_feature(env, ARM_FEATURE_M)) {
1123 uint32_t xpsr = xpsr_read(env);
1124 const char *mode;
1125 const char *ns_status = "";
1126
1127 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1128 ns_status = env->v7m.secure ? "S " : "NS ";
1129 }
1130
1131 if (xpsr & XPSR_EXCP) {
1132 mode = "handler";
1133 } else {
1134 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1135 mode = "unpriv-thread";
1136 } else {
1137 mode = "priv-thread";
1138 }
1139 }
1140
1141 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1142 xpsr,
1143 xpsr & XPSR_N ? 'N' : '-',
1144 xpsr & XPSR_Z ? 'Z' : '-',
1145 xpsr & XPSR_C ? 'C' : '-',
1146 xpsr & XPSR_V ? 'V' : '-',
1147 xpsr & XPSR_T ? 'T' : 'A',
1148 ns_status,
1149 mode);
1150 } else {
1151 uint32_t psr = cpsr_read(env);
1152 const char *ns_status = "";
1153
1154 if (arm_feature(env, ARM_FEATURE_EL3) &&
1155 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1156 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1157 }
1158
1159 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1160 psr,
1161 psr & CPSR_N ? 'N' : '-',
1162 psr & CPSR_Z ? 'Z' : '-',
1163 psr & CPSR_C ? 'C' : '-',
1164 psr & CPSR_V ? 'V' : '-',
1165 psr & CPSR_T ? 'T' : 'A',
1166 ns_status,
1167 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1168 }
1169
1170 if (flags & CPU_DUMP_FPU) {
1171 int numvfpregs = 0;
1172 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1173 numvfpregs = 32;
1174 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1175 numvfpregs = 16;
1176 }
1177 for (i = 0; i < numvfpregs; i++) {
1178 uint64_t v = *aa32_vfp_dreg(env, i);
1179 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1180 i * 2, (uint32_t)v,
1181 i * 2 + 1, (uint32_t)(v >> 32),
1182 i, v);
1183 }
1184 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1185 if (cpu_isar_feature(aa32_mve, cpu)) {
1186 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1187 }
1188 }
1189 }
1190
1191 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1192 {
1193 uint32_t Aff1 = idx / clustersz;
1194 uint32_t Aff0 = idx % clustersz;
1195 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1196 }
1197
1198 static void arm_cpu_initfn(Object *obj)
1199 {
1200 ARMCPU *cpu = ARM_CPU(obj);
1201
1202 cpu_set_cpustate_pointers(cpu);
1203 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1204 NULL, g_free);
1205
1206 QLIST_INIT(&cpu->pre_el_change_hooks);
1207 QLIST_INIT(&cpu->el_change_hooks);
1208
1209 #ifdef CONFIG_USER_ONLY
1210 # ifdef TARGET_AARCH64
1211 /*
1212 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1213 * These values were chosen to fit within the default signal frame.
1214 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1215 * and our corresponding cpu property.
1216 */
1217 cpu->sve_default_vq = 4;
1218 cpu->sme_default_vq = 2;
1219 # endif
1220 #else
1221 /* Our inbound IRQ and FIQ lines */
1222 if (kvm_enabled()) {
1223 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1224 * the same interface as non-KVM CPUs.
1225 */
1226 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1227 } else {
1228 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1229 }
1230
1231 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1232 ARRAY_SIZE(cpu->gt_timer_outputs));
1233
1234 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1235 "gicv3-maintenance-interrupt", 1);
1236 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1237 "pmu-interrupt", 1);
1238 #endif
1239
1240 /* DTB consumers generally don't in fact care what the 'compatible'
1241 * string is, so always provide some string and trust that a hypothetical
1242 * picky DTB consumer will also provide a helpful error message.
1243 */
1244 cpu->dtb_compatible = "qemu,unknown";
1245 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1246 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1247
1248 if (tcg_enabled() || hvf_enabled()) {
1249 /* TCG and HVF implement PSCI 1.1 */
1250 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1251 }
1252 }
1253
1254 static Property arm_cpu_gt_cntfrq_property =
1255 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1256 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1257
1258 static Property arm_cpu_reset_cbar_property =
1259 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1260
1261 static Property arm_cpu_reset_hivecs_property =
1262 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1263
1264 #ifndef CONFIG_USER_ONLY
1265 static Property arm_cpu_has_el2_property =
1266 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1267
1268 static Property arm_cpu_has_el3_property =
1269 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1270 #endif
1271
1272 static Property arm_cpu_cfgend_property =
1273 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1274
1275 static Property arm_cpu_has_vfp_property =
1276 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1277
1278 static Property arm_cpu_has_neon_property =
1279 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1280
1281 static Property arm_cpu_has_dsp_property =
1282 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1283
1284 static Property arm_cpu_has_mpu_property =
1285 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1286
1287 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1288 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1289 * the right value for that particular CPU type, and we don't want
1290 * to override that with an incorrect constant value.
1291 */
1292 static Property arm_cpu_pmsav7_dregion_property =
1293 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1294 pmsav7_dregion,
1295 qdev_prop_uint32, uint32_t);
1296
1297 static bool arm_get_pmu(Object *obj, Error **errp)
1298 {
1299 ARMCPU *cpu = ARM_CPU(obj);
1300
1301 return cpu->has_pmu;
1302 }
1303
1304 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1305 {
1306 ARMCPU *cpu = ARM_CPU(obj);
1307
1308 if (value) {
1309 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1310 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1311 return;
1312 }
1313 set_feature(&cpu->env, ARM_FEATURE_PMU);
1314 } else {
1315 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1316 }
1317 cpu->has_pmu = value;
1318 }
1319
1320 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1321 {
1322 /*
1323 * The exact approach to calculating guest ticks is:
1324 *
1325 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1326 * NANOSECONDS_PER_SECOND);
1327 *
1328 * We don't do that. Rather we intentionally use integer division
1329 * truncation below and in the caller for the conversion of host monotonic
1330 * time to guest ticks to provide the exact inverse for the semantics of
1331 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1332 * it loses precision when representing frequencies where
1333 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1334 * provide an exact inverse leads to scheduling timers with negative
1335 * periods, which in turn leads to sticky behaviour in the guest.
1336 *
1337 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1338 * cannot become zero.
1339 */
1340 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1341 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1342 }
1343
1344 void arm_cpu_post_init(Object *obj)
1345 {
1346 ARMCPU *cpu = ARM_CPU(obj);
1347
1348 /* M profile implies PMSA. We have to do this here rather than
1349 * in realize with the other feature-implication checks because
1350 * we look at the PMSA bit to see if we should add some properties.
1351 */
1352 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1353 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1354 }
1355
1356 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1357 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1358 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1359 }
1360
1361 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1362 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1363 }
1364
1365 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1366 object_property_add_uint64_ptr(obj, "rvbar",
1367 &cpu->rvbar_prop,
1368 OBJ_PROP_FLAG_READWRITE);
1369 }
1370
1371 #ifndef CONFIG_USER_ONLY
1372 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1373 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1374 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1375 */
1376 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1377
1378 object_property_add_link(obj, "secure-memory",
1379 TYPE_MEMORY_REGION,
1380 (Object **)&cpu->secure_memory,
1381 qdev_prop_allow_set_link_before_realize,
1382 OBJ_PROP_LINK_STRONG);
1383 }
1384
1385 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1386 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1387 }
1388 #endif
1389
1390 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1391 cpu->has_pmu = true;
1392 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1393 }
1394
1395 /*
1396 * Allow user to turn off VFP and Neon support, but only for TCG --
1397 * KVM does not currently allow us to lie to the guest about its
1398 * ID/feature registers, so the guest always sees what the host has.
1399 */
1400 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1401 ? cpu_isar_feature(aa64_fp_simd, cpu)
1402 : cpu_isar_feature(aa32_vfp, cpu)) {
1403 cpu->has_vfp = true;
1404 if (!kvm_enabled()) {
1405 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1406 }
1407 }
1408
1409 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1410 cpu->has_neon = true;
1411 if (!kvm_enabled()) {
1412 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1413 }
1414 }
1415
1416 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1417 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1418 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1419 }
1420
1421 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1422 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1423 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1424 qdev_property_add_static(DEVICE(obj),
1425 &arm_cpu_pmsav7_dregion_property);
1426 }
1427 }
1428
1429 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1430 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1431 qdev_prop_allow_set_link_before_realize,
1432 OBJ_PROP_LINK_STRONG);
1433 /*
1434 * M profile: initial value of the Secure VTOR. We can't just use
1435 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1436 * the property to be set after realize.
1437 */
1438 object_property_add_uint32_ptr(obj, "init-svtor",
1439 &cpu->init_svtor,
1440 OBJ_PROP_FLAG_READWRITE);
1441 }
1442 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1443 /*
1444 * Initial value of the NS VTOR (for cores without the Security
1445 * extension, this is the only VTOR)
1446 */
1447 object_property_add_uint32_ptr(obj, "init-nsvtor",
1448 &cpu->init_nsvtor,
1449 OBJ_PROP_FLAG_READWRITE);
1450 }
1451
1452 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1453 object_property_add_uint32_ptr(obj, "psci-conduit",
1454 &cpu->psci_conduit,
1455 OBJ_PROP_FLAG_READWRITE);
1456
1457 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1458
1459 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1460 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1461 }
1462
1463 if (kvm_enabled()) {
1464 kvm_arm_add_vcpu_properties(obj);
1465 }
1466
1467 #ifndef CONFIG_USER_ONLY
1468 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1469 cpu_isar_feature(aa64_mte, cpu)) {
1470 object_property_add_link(obj, "tag-memory",
1471 TYPE_MEMORY_REGION,
1472 (Object **)&cpu->tag_memory,
1473 qdev_prop_allow_set_link_before_realize,
1474 OBJ_PROP_LINK_STRONG);
1475
1476 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1477 object_property_add_link(obj, "secure-tag-memory",
1478 TYPE_MEMORY_REGION,
1479 (Object **)&cpu->secure_tag_memory,
1480 qdev_prop_allow_set_link_before_realize,
1481 OBJ_PROP_LINK_STRONG);
1482 }
1483 }
1484 #endif
1485 }
1486
1487 static void arm_cpu_finalizefn(Object *obj)
1488 {
1489 ARMCPU *cpu = ARM_CPU(obj);
1490 ARMELChangeHook *hook, *next;
1491
1492 g_hash_table_destroy(cpu->cp_regs);
1493
1494 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1495 QLIST_REMOVE(hook, node);
1496 g_free(hook);
1497 }
1498 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1499 QLIST_REMOVE(hook, node);
1500 g_free(hook);
1501 }
1502 #ifndef CONFIG_USER_ONLY
1503 if (cpu->pmu_timer) {
1504 timer_free(cpu->pmu_timer);
1505 }
1506 #endif
1507 }
1508
1509 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1510 {
1511 Error *local_err = NULL;
1512
1513 #ifdef TARGET_AARCH64
1514 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1515 arm_cpu_sve_finalize(cpu, &local_err);
1516 if (local_err != NULL) {
1517 error_propagate(errp, local_err);
1518 return;
1519 }
1520
1521 arm_cpu_sme_finalize(cpu, &local_err);
1522 if (local_err != NULL) {
1523 error_propagate(errp, local_err);
1524 return;
1525 }
1526
1527 arm_cpu_pauth_finalize(cpu, &local_err);
1528 if (local_err != NULL) {
1529 error_propagate(errp, local_err);
1530 return;
1531 }
1532
1533 arm_cpu_lpa2_finalize(cpu, &local_err);
1534 if (local_err != NULL) {
1535 error_propagate(errp, local_err);
1536 return;
1537 }
1538 }
1539 #endif
1540
1541 if (kvm_enabled()) {
1542 kvm_arm_steal_time_finalize(cpu, &local_err);
1543 if (local_err != NULL) {
1544 error_propagate(errp, local_err);
1545 return;
1546 }
1547 }
1548 }
1549
1550 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1551 {
1552 CPUState *cs = CPU(dev);
1553 ARMCPU *cpu = ARM_CPU(dev);
1554 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1555 CPUARMState *env = &cpu->env;
1556 int pagebits;
1557 Error *local_err = NULL;
1558 bool no_aa32 = false;
1559
1560 /* Use pc-relative instructions in system-mode */
1561 #ifndef CONFIG_USER_ONLY
1562 cs->tcg_cflags |= CF_PCREL;
1563 #endif
1564
1565 /* If we needed to query the host kernel for the CPU features
1566 * then it's possible that might have failed in the initfn, but
1567 * this is the first point where we can report it.
1568 */
1569 if (cpu->host_cpu_probe_failed) {
1570 if (!kvm_enabled() && !hvf_enabled()) {
1571 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1572 } else {
1573 error_setg(errp, "Failed to retrieve host CPU features");
1574 }
1575 return;
1576 }
1577
1578 #ifndef CONFIG_USER_ONLY
1579 /* The NVIC and M-profile CPU are two halves of a single piece of
1580 * hardware; trying to use one without the other is a command line
1581 * error and will result in segfaults if not caught here.
1582 */
1583 if (arm_feature(env, ARM_FEATURE_M)) {
1584 if (!env->nvic) {
1585 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1586 return;
1587 }
1588 } else {
1589 if (env->nvic) {
1590 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1591 return;
1592 }
1593 }
1594
1595 if (!tcg_enabled() && !qtest_enabled()) {
1596 /*
1597 * We assume that no accelerator except TCG (and the "not really an
1598 * accelerator" qtest) can handle these features, because Arm hardware
1599 * virtualization can't virtualize them.
1600 *
1601 * Catch all the cases which might cause us to create more than one
1602 * address space for the CPU (otherwise we will assert() later in
1603 * cpu_address_space_init()).
1604 */
1605 if (arm_feature(env, ARM_FEATURE_M)) {
1606 error_setg(errp,
1607 "Cannot enable %s when using an M-profile guest CPU",
1608 current_accel_name());
1609 return;
1610 }
1611 if (cpu->has_el3) {
1612 error_setg(errp,
1613 "Cannot enable %s when guest CPU has EL3 enabled",
1614 current_accel_name());
1615 return;
1616 }
1617 if (cpu->tag_memory) {
1618 error_setg(errp,
1619 "Cannot enable %s when guest CPUs has MTE enabled",
1620 current_accel_name());
1621 return;
1622 }
1623 }
1624
1625 {
1626 uint64_t scale;
1627
1628 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1629 if (!cpu->gt_cntfrq_hz) {
1630 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1631 cpu->gt_cntfrq_hz);
1632 return;
1633 }
1634 scale = gt_cntfrq_period_ns(cpu);
1635 } else {
1636 scale = GTIMER_SCALE;
1637 }
1638
1639 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1640 arm_gt_ptimer_cb, cpu);
1641 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1642 arm_gt_vtimer_cb, cpu);
1643 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1644 arm_gt_htimer_cb, cpu);
1645 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1646 arm_gt_stimer_cb, cpu);
1647 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1648 arm_gt_hvtimer_cb, cpu);
1649 }
1650 #endif
1651
1652 cpu_exec_realizefn(cs, &local_err);
1653 if (local_err != NULL) {
1654 error_propagate(errp, local_err);
1655 return;
1656 }
1657
1658 arm_cpu_finalize_features(cpu, &local_err);
1659 if (local_err != NULL) {
1660 error_propagate(errp, local_err);
1661 return;
1662 }
1663
1664 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1665 cpu->has_vfp != cpu->has_neon) {
1666 /*
1667 * This is an architectural requirement for AArch64; AArch32 is
1668 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1669 */
1670 error_setg(errp,
1671 "AArch64 CPUs must have both VFP and Neon or neither");
1672 return;
1673 }
1674
1675 if (!cpu->has_vfp) {
1676 uint64_t t;
1677 uint32_t u;
1678
1679 t = cpu->isar.id_aa64isar1;
1680 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1681 cpu->isar.id_aa64isar1 = t;
1682
1683 t = cpu->isar.id_aa64pfr0;
1684 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1685 cpu->isar.id_aa64pfr0 = t;
1686
1687 u = cpu->isar.id_isar6;
1688 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1689 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1690 cpu->isar.id_isar6 = u;
1691
1692 u = cpu->isar.mvfr0;
1693 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1694 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1695 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1696 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1697 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1698 if (!arm_feature(env, ARM_FEATURE_M)) {
1699 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1700 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1701 }
1702 cpu->isar.mvfr0 = u;
1703
1704 u = cpu->isar.mvfr1;
1705 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1706 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1707 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1708 if (arm_feature(env, ARM_FEATURE_M)) {
1709 u = FIELD_DP32(u, MVFR1, FP16, 0);
1710 }
1711 cpu->isar.mvfr1 = u;
1712
1713 u = cpu->isar.mvfr2;
1714 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1715 cpu->isar.mvfr2 = u;
1716 }
1717
1718 if (!cpu->has_neon) {
1719 uint64_t t;
1720 uint32_t u;
1721
1722 unset_feature(env, ARM_FEATURE_NEON);
1723
1724 t = cpu->isar.id_aa64isar0;
1725 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1726 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1727 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1728 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1729 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1730 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1731 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1732 cpu->isar.id_aa64isar0 = t;
1733
1734 t = cpu->isar.id_aa64isar1;
1735 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1736 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1737 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1738 cpu->isar.id_aa64isar1 = t;
1739
1740 t = cpu->isar.id_aa64pfr0;
1741 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1742 cpu->isar.id_aa64pfr0 = t;
1743
1744 u = cpu->isar.id_isar5;
1745 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1746 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1747 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1748 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1749 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1750 cpu->isar.id_isar5 = u;
1751
1752 u = cpu->isar.id_isar6;
1753 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1754 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1755 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1756 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1757 cpu->isar.id_isar6 = u;
1758
1759 if (!arm_feature(env, ARM_FEATURE_M)) {
1760 u = cpu->isar.mvfr1;
1761 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1762 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1763 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1764 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1765 cpu->isar.mvfr1 = u;
1766
1767 u = cpu->isar.mvfr2;
1768 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1769 cpu->isar.mvfr2 = u;
1770 }
1771 }
1772
1773 if (!cpu->has_neon && !cpu->has_vfp) {
1774 uint64_t t;
1775 uint32_t u;
1776
1777 t = cpu->isar.id_aa64isar0;
1778 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1779 cpu->isar.id_aa64isar0 = t;
1780
1781 t = cpu->isar.id_aa64isar1;
1782 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1783 cpu->isar.id_aa64isar1 = t;
1784
1785 u = cpu->isar.mvfr0;
1786 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1787 cpu->isar.mvfr0 = u;
1788
1789 /* Despite the name, this field covers both VFP and Neon */
1790 u = cpu->isar.mvfr1;
1791 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1792 cpu->isar.mvfr1 = u;
1793 }
1794
1795 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1796 uint32_t u;
1797
1798 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1799
1800 u = cpu->isar.id_isar1;
1801 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1802 cpu->isar.id_isar1 = u;
1803
1804 u = cpu->isar.id_isar2;
1805 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1806 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1807 cpu->isar.id_isar2 = u;
1808
1809 u = cpu->isar.id_isar3;
1810 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1811 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1812 cpu->isar.id_isar3 = u;
1813 }
1814
1815 /* Some features automatically imply others: */
1816 if (arm_feature(env, ARM_FEATURE_V8)) {
1817 if (arm_feature(env, ARM_FEATURE_M)) {
1818 set_feature(env, ARM_FEATURE_V7);
1819 } else {
1820 set_feature(env, ARM_FEATURE_V7VE);
1821 }
1822 }
1823
1824 /*
1825 * There exist AArch64 cpus without AArch32 support. When KVM
1826 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1827 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1828 * As a general principle, we also do not make ID register
1829 * consistency checks anywhere unless using TCG, because only
1830 * for TCG would a consistency-check failure be a QEMU bug.
1831 */
1832 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1833 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1834 }
1835
1836 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1837 /* v7 Virtualization Extensions. In real hardware this implies
1838 * EL2 and also the presence of the Security Extensions.
1839 * For QEMU, for backwards-compatibility we implement some
1840 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1841 * include the various other features that V7VE implies.
1842 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1843 * Security Extensions is ARM_FEATURE_EL3.
1844 */
1845 assert(!tcg_enabled() || no_aa32 ||
1846 cpu_isar_feature(aa32_arm_div, cpu));
1847 set_feature(env, ARM_FEATURE_LPAE);
1848 set_feature(env, ARM_FEATURE_V7);
1849 }
1850 if (arm_feature(env, ARM_FEATURE_V7)) {
1851 set_feature(env, ARM_FEATURE_VAPA);
1852 set_feature(env, ARM_FEATURE_THUMB2);
1853 set_feature(env, ARM_FEATURE_MPIDR);
1854 if (!arm_feature(env, ARM_FEATURE_M)) {
1855 set_feature(env, ARM_FEATURE_V6K);
1856 } else {
1857 set_feature(env, ARM_FEATURE_V6);
1858 }
1859
1860 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1861 * non-EL3 configs. This is needed by some legacy boards.
1862 */
1863 set_feature(env, ARM_FEATURE_VBAR);
1864 }
1865 if (arm_feature(env, ARM_FEATURE_V6K)) {
1866 set_feature(env, ARM_FEATURE_V6);
1867 set_feature(env, ARM_FEATURE_MVFR);
1868 }
1869 if (arm_feature(env, ARM_FEATURE_V6)) {
1870 set_feature(env, ARM_FEATURE_V5);
1871 if (!arm_feature(env, ARM_FEATURE_M)) {
1872 assert(!tcg_enabled() || no_aa32 ||
1873 cpu_isar_feature(aa32_jazelle, cpu));
1874 set_feature(env, ARM_FEATURE_AUXCR);
1875 }
1876 }
1877 if (arm_feature(env, ARM_FEATURE_V5)) {
1878 set_feature(env, ARM_FEATURE_V4T);
1879 }
1880 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1881 set_feature(env, ARM_FEATURE_V7MP);
1882 }
1883 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1884 set_feature(env, ARM_FEATURE_CBAR);
1885 }
1886 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1887 !arm_feature(env, ARM_FEATURE_M)) {
1888 set_feature(env, ARM_FEATURE_THUMB_DSP);
1889 }
1890
1891 /*
1892 * We rely on no XScale CPU having VFP so we can use the same bits in the
1893 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1894 */
1895 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1896 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1897 !arm_feature(env, ARM_FEATURE_XSCALE));
1898
1899 if (arm_feature(env, ARM_FEATURE_V7) &&
1900 !arm_feature(env, ARM_FEATURE_M) &&
1901 !arm_feature(env, ARM_FEATURE_PMSA)) {
1902 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1903 * can use 4K pages.
1904 */
1905 pagebits = 12;
1906 } else {
1907 /* For CPUs which might have tiny 1K pages, or which have an
1908 * MPU and might have small region sizes, stick with 1K pages.
1909 */
1910 pagebits = 10;
1911 }
1912 if (!set_preferred_target_page_bits(pagebits)) {
1913 /* This can only ever happen for hotplugging a CPU, or if
1914 * the board code incorrectly creates a CPU which it has
1915 * promised via minimum_page_size that it will not.
1916 */
1917 error_setg(errp, "This CPU requires a smaller page size than the "
1918 "system is using");
1919 return;
1920 }
1921
1922 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1923 * We don't support setting cluster ID ([16..23]) (known as Aff2
1924 * in later ARM ARM versions), or any of the higher affinity level fields,
1925 * so these bits always RAZ.
1926 */
1927 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1928 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1929 ARM_DEFAULT_CPUS_PER_CLUSTER);
1930 }
1931
1932 if (cpu->reset_hivecs) {
1933 cpu->reset_sctlr |= (1 << 13);
1934 }
1935
1936 if (cpu->cfgend) {
1937 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1938 cpu->reset_sctlr |= SCTLR_EE;
1939 } else {
1940 cpu->reset_sctlr |= SCTLR_B;
1941 }
1942 }
1943
1944 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1945 /* If the has_el3 CPU property is disabled then we need to disable the
1946 * feature.
1947 */
1948 unset_feature(env, ARM_FEATURE_EL3);
1949
1950 /*
1951 * Disable the security extension feature bits in the processor
1952 * feature registers as well.
1953 */
1954 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1955 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1956 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1957 ID_AA64PFR0, EL3, 0);
1958 }
1959
1960 if (!cpu->has_el2) {
1961 unset_feature(env, ARM_FEATURE_EL2);
1962 }
1963
1964 if (!cpu->has_pmu) {
1965 unset_feature(env, ARM_FEATURE_PMU);
1966 }
1967 if (arm_feature(env, ARM_FEATURE_PMU)) {
1968 pmu_init(cpu);
1969
1970 if (!kvm_enabled()) {
1971 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1972 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1973 }
1974
1975 #ifndef CONFIG_USER_ONLY
1976 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1977 cpu);
1978 #endif
1979 } else {
1980 cpu->isar.id_aa64dfr0 =
1981 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1982 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1983 cpu->pmceid0 = 0;
1984 cpu->pmceid1 = 0;
1985 }
1986
1987 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1988 /*
1989 * Disable the hypervisor feature bits in the processor feature
1990 * registers if we don't have EL2.
1991 */
1992 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1993 ID_AA64PFR0, EL2, 0);
1994 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1995 ID_PFR1, VIRTUALIZATION, 0);
1996 }
1997
1998 #ifndef CONFIG_USER_ONLY
1999 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
2000 /*
2001 * Disable the MTE feature bits if we do not have tag-memory
2002 * provided by the machine.
2003 */
2004 cpu->isar.id_aa64pfr1 =
2005 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2006 }
2007 #endif
2008
2009 if (tcg_enabled()) {
2010 /*
2011 * Don't report the Statistical Profiling Extension in the ID
2012 * registers, because TCG doesn't implement it yet (not even a
2013 * minimal stub version) and guests will fall over when they
2014 * try to access the non-existent system registers for it.
2015 */
2016 cpu->isar.id_aa64dfr0 =
2017 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2018 }
2019
2020 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2021 * to false or by setting pmsav7-dregion to 0.
2022 */
2023 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2024 cpu->has_mpu = false;
2025 cpu->pmsav7_dregion = 0;
2026 cpu->pmsav8r_hdregion = 0;
2027 }
2028
2029 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2030 arm_feature(env, ARM_FEATURE_V7)) {
2031 uint32_t nr = cpu->pmsav7_dregion;
2032
2033 if (nr > 0xff) {
2034 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2035 return;
2036 }
2037
2038 if (nr) {
2039 if (arm_feature(env, ARM_FEATURE_V8)) {
2040 /* PMSAv8 */
2041 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2042 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2043 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2044 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2045 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2046 }
2047 } else {
2048 env->pmsav7.drbar = g_new0(uint32_t, nr);
2049 env->pmsav7.drsr = g_new0(uint32_t, nr);
2050 env->pmsav7.dracr = g_new0(uint32_t, nr);
2051 }
2052 }
2053
2054 if (cpu->pmsav8r_hdregion > 0xff) {
2055 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2056 cpu->pmsav8r_hdregion);
2057 return;
2058 }
2059
2060 if (cpu->pmsav8r_hdregion) {
2061 env->pmsav8.hprbar = g_new0(uint32_t,
2062 cpu->pmsav8r_hdregion);
2063 env->pmsav8.hprlar = g_new0(uint32_t,
2064 cpu->pmsav8r_hdregion);
2065 }
2066 }
2067
2068 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2069 uint32_t nr = cpu->sau_sregion;
2070
2071 if (nr > 0xff) {
2072 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2073 return;
2074 }
2075
2076 if (nr) {
2077 env->sau.rbar = g_new0(uint32_t, nr);
2078 env->sau.rlar = g_new0(uint32_t, nr);
2079 }
2080 }
2081
2082 if (arm_feature(env, ARM_FEATURE_EL3)) {
2083 set_feature(env, ARM_FEATURE_VBAR);
2084 }
2085
2086 register_cp_regs_for_features(cpu);
2087 arm_cpu_register_gdb_regs_for_features(cpu);
2088
2089 init_cpreg_list(cpu);
2090
2091 #ifndef CONFIG_USER_ONLY
2092 MachineState *ms = MACHINE(qdev_get_machine());
2093 unsigned int smp_cpus = ms->smp.cpus;
2094 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2095
2096 /*
2097 * We must set cs->num_ases to the final value before
2098 * the first call to cpu_address_space_init.
2099 */
2100 if (cpu->tag_memory != NULL) {
2101 cs->num_ases = 3 + has_secure;
2102 } else {
2103 cs->num_ases = 1 + has_secure;
2104 }
2105
2106 if (has_secure) {
2107 if (!cpu->secure_memory) {
2108 cpu->secure_memory = cs->memory;
2109 }
2110 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2111 cpu->secure_memory);
2112 }
2113
2114 if (cpu->tag_memory != NULL) {
2115 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2116 cpu->tag_memory);
2117 if (has_secure) {
2118 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2119 cpu->secure_tag_memory);
2120 }
2121 }
2122
2123 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2124
2125 /* No core_count specified, default to smp_cpus. */
2126 if (cpu->core_count == -1) {
2127 cpu->core_count = smp_cpus;
2128 }
2129 #endif
2130
2131 if (tcg_enabled()) {
2132 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2133
2134 /*
2135 * We only support DCZ blocklen that fits on one page.
2136 *
2137 * Architectually this is always true. However TARGET_PAGE_SIZE
2138 * is variable and, for compatibility with -machine virt-2.7,
2139 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2140 * But even then, while the largest architectural DCZ blocklen
2141 * is 2KiB, no cpu actually uses such a large blocklen.
2142 */
2143 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2144
2145 /*
2146 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2147 * both nibbles of each byte storing tag data may be written at once.
2148 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2149 */
2150 if (cpu_isar_feature(aa64_mte, cpu)) {
2151 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2152 }
2153 }
2154
2155 qemu_init_vcpu(cs);
2156 cpu_reset(cs);
2157
2158 acc->parent_realize(dev, errp);
2159 }
2160
2161 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2162 {
2163 ObjectClass *oc;
2164 char *typename;
2165 char **cpuname;
2166 const char *cpunamestr;
2167
2168 cpuname = g_strsplit(cpu_model, ",", 1);
2169 cpunamestr = cpuname[0];
2170 #ifdef CONFIG_USER_ONLY
2171 /* For backwards compatibility usermode emulation allows "-cpu any",
2172 * which has the same semantics as "-cpu max".
2173 */
2174 if (!strcmp(cpunamestr, "any")) {
2175 cpunamestr = "max";
2176 }
2177 #endif
2178 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2179 oc = object_class_by_name(typename);
2180 g_strfreev(cpuname);
2181 g_free(typename);
2182 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2183 object_class_is_abstract(oc)) {
2184 return NULL;
2185 }
2186 return oc;
2187 }
2188
2189 static Property arm_cpu_properties[] = {
2190 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2191 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2192 mp_affinity, ARM64_AFFINITY_INVALID),
2193 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2194 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2195 DEFINE_PROP_END_OF_LIST()
2196 };
2197
2198 static gchar *arm_gdb_arch_name(CPUState *cs)
2199 {
2200 ARMCPU *cpu = ARM_CPU(cs);
2201 CPUARMState *env = &cpu->env;
2202
2203 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2204 return g_strdup("iwmmxt");
2205 }
2206 return g_strdup("arm");
2207 }
2208
2209 #ifndef CONFIG_USER_ONLY
2210 #include "hw/core/sysemu-cpu-ops.h"
2211
2212 static const struct SysemuCPUOps arm_sysemu_ops = {
2213 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2214 .asidx_from_attrs = arm_asidx_from_attrs,
2215 .write_elf32_note = arm_cpu_write_elf32_note,
2216 .write_elf64_note = arm_cpu_write_elf64_note,
2217 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2218 .legacy_vmsd = &vmstate_arm_cpu,
2219 };
2220 #endif
2221
2222 #ifdef CONFIG_TCG
2223 static const struct TCGCPUOps arm_tcg_ops = {
2224 .initialize = arm_translate_init,
2225 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2226 .debug_excp_handler = arm_debug_excp_handler,
2227 .restore_state_to_opc = arm_restore_state_to_opc,
2228
2229 #ifdef CONFIG_USER_ONLY
2230 .record_sigsegv = arm_cpu_record_sigsegv,
2231 .record_sigbus = arm_cpu_record_sigbus,
2232 #else
2233 .tlb_fill = arm_cpu_tlb_fill,
2234 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2235 .do_interrupt = arm_cpu_do_interrupt,
2236 .do_transaction_failed = arm_cpu_do_transaction_failed,
2237 .do_unaligned_access = arm_cpu_do_unaligned_access,
2238 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2239 .debug_check_watchpoint = arm_debug_check_watchpoint,
2240 .debug_check_breakpoint = arm_debug_check_breakpoint,
2241 #endif /* !CONFIG_USER_ONLY */
2242 };
2243 #endif /* CONFIG_TCG */
2244
2245 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2246 {
2247 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2248 CPUClass *cc = CPU_CLASS(acc);
2249 DeviceClass *dc = DEVICE_CLASS(oc);
2250 ResettableClass *rc = RESETTABLE_CLASS(oc);
2251
2252 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2253 &acc->parent_realize);
2254
2255 device_class_set_props(dc, arm_cpu_properties);
2256
2257 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2258 &acc->parent_phases);
2259
2260 cc->class_by_name = arm_cpu_class_by_name;
2261 cc->has_work = arm_cpu_has_work;
2262 cc->dump_state = arm_cpu_dump_state;
2263 cc->set_pc = arm_cpu_set_pc;
2264 cc->get_pc = arm_cpu_get_pc;
2265 cc->gdb_read_register = arm_cpu_gdb_read_register;
2266 cc->gdb_write_register = arm_cpu_gdb_write_register;
2267 #ifndef CONFIG_USER_ONLY
2268 cc->sysemu_ops = &arm_sysemu_ops;
2269 #endif
2270 cc->gdb_num_core_regs = 26;
2271 cc->gdb_core_xml_file = "arm-core.xml";
2272 cc->gdb_arch_name = arm_gdb_arch_name;
2273 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2274 cc->gdb_stop_before_watchpoint = true;
2275 cc->disas_set_info = arm_disas_set_info;
2276
2277 #ifdef CONFIG_TCG
2278 cc->tcg_ops = &arm_tcg_ops;
2279 #endif /* CONFIG_TCG */
2280 }
2281
2282 static void arm_cpu_instance_init(Object *obj)
2283 {
2284 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2285
2286 acc->info->initfn(obj);
2287 arm_cpu_post_init(obj);
2288 }
2289
2290 static void cpu_register_class_init(ObjectClass *oc, void *data)
2291 {
2292 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2293
2294 acc->info = data;
2295 }
2296
2297 void arm_cpu_register(const ARMCPUInfo *info)
2298 {
2299 TypeInfo type_info = {
2300 .parent = TYPE_ARM_CPU,
2301 .instance_size = sizeof(ARMCPU),
2302 .instance_align = __alignof__(ARMCPU),
2303 .instance_init = arm_cpu_instance_init,
2304 .class_size = sizeof(ARMCPUClass),
2305 .class_init = info->class_init ?: cpu_register_class_init,
2306 .class_data = (void *)info,
2307 };
2308
2309 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2310 type_register(&type_info);
2311 g_free((void *)type_info.name);
2312 }
2313
2314 static const TypeInfo arm_cpu_type_info = {
2315 .name = TYPE_ARM_CPU,
2316 .parent = TYPE_CPU,
2317 .instance_size = sizeof(ARMCPU),
2318 .instance_align = __alignof__(ARMCPU),
2319 .instance_init = arm_cpu_initfn,
2320 .instance_finalize = arm_cpu_finalizefn,
2321 .abstract = true,
2322 .class_size = sizeof(ARMCPUClass),
2323 .class_init = arm_cpu_class_init,
2324 };
2325
2326 static void arm_cpu_register_types(void)
2327 {
2328 type_register_static(&arm_cpu_type_info);
2329 }
2330
2331 type_init(arm_cpu_register_types)