]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
numa: move numa_node from CPUState into target specific classes
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
32
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
35
36 #define CPUArchState struct CPUARMState
37
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41
42 #include "fpu/softfloat.h"
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_HVC 11 /* HyperVisor Call */
54 #define EXCP_HYP_TRAP 12
55 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_VIRQ 14
57 #define EXCP_VFIQ 15
58 #define EXCP_SEMIHOST 16 /* semihosting call */
59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
73
74 /* ARM-specific interrupt pending bits. */
75 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
76 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
77 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
78
79 /* The usual mapping for an AArch64 system register to its AArch32
80 * counterpart is for the 32 bit world to have access to the lower
81 * half only (with writes leaving the upper half untouched). It's
82 * therefore useful to be able to pass TCG the offset of the least
83 * significant half of a uint64_t struct member.
84 */
85 #ifdef HOST_WORDS_BIGENDIAN
86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #define offsetofhigh32(S, M) offsetof(S, M)
88 #else
89 #define offsetoflow32(S, M) offsetof(S, M)
90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #endif
92
93 /* Meanings of the ARMCPU object's four inbound GPIO lines */
94 #define ARM_CPU_IRQ 0
95 #define ARM_CPU_FIQ 1
96 #define ARM_CPU_VIRQ 2
97 #define ARM_CPU_VFIQ 3
98
99 #define NB_MMU_MODES 7
100 /* ARM-specific extra insn start words:
101 * 1: Conditional execution bits
102 * 2: Partial exception syndrome for data aborts
103 */
104 #define TARGET_INSN_START_EXTRA_WORDS 2
105
106 /* The 2nd extra word holding syndrome info for data aborts does not use
107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108 * help the sleb128 encoder do a better job.
109 * When restoring the CPU state, we shift it back up.
110 */
111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112 #define ARM_INSN_START_WORD2_SHIFT 14
113
114 /* We currently assume float and double are IEEE single and double
115 precision respectively.
116 Doing runtime conversions is tricky because VFP registers may contain
117 integer values (eg. as the result of a FTOSI instruction).
118 s<2n> maps to the least significant half of d<n>
119 s<2n+1> maps to the most significant half of d<n>
120 */
121
122 /* CPU state for each instance of a generic timer (in cp15 c14) */
123 typedef struct ARMGenericTimer {
124 uint64_t cval; /* Timer CompareValue register */
125 uint64_t ctl; /* Timer Control register */
126 } ARMGenericTimer;
127
128 #define GTIMER_PHYS 0
129 #define GTIMER_VIRT 1
130 #define GTIMER_HYP 2
131 #define GTIMER_SEC 3
132 #define NUM_GTIMERS 4
133
134 typedef struct {
135 uint64_t raw_tcr;
136 uint32_t mask;
137 uint32_t base_mask;
138 } TCR;
139
140 typedef struct CPUARMState {
141 /* Regs for current mode. */
142 uint32_t regs[16];
143
144 /* 32/64 switch only happens when taking and returning from
145 * exceptions so the overlap semantics are taken care of then
146 * instead of having a complicated union.
147 */
148 /* Regs for A64 mode. */
149 uint64_t xregs[32];
150 uint64_t pc;
151 /* PSTATE isn't an architectural register for ARMv8. However, it is
152 * convenient for us to assemble the underlying state into a 32 bit format
153 * identical to the architectural format used for the SPSR. (This is also
154 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155 * 'pstate' register are.) Of the PSTATE bits:
156 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157 * semantics as for AArch32, as described in the comments on each field)
158 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
159 * DAIF (exception masks) are kept in env->daif
160 * all other bits are stored in their correct places in env->pstate
161 */
162 uint32_t pstate;
163 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
164
165 /* Frequently accessed CPSR bits are stored separately for efficiency.
166 This contains all the other bits. Use cpsr_{read,write} to access
167 the whole CPSR. */
168 uint32_t uncached_cpsr;
169 uint32_t spsr;
170
171 /* Banked registers. */
172 uint64_t banked_spsr[8];
173 uint32_t banked_r13[8];
174 uint32_t banked_r14[8];
175
176 /* These hold r8-r12. */
177 uint32_t usr_regs[5];
178 uint32_t fiq_regs[5];
179
180 /* cpsr flag cache for faster execution */
181 uint32_t CF; /* 0 or 1 */
182 uint32_t VF; /* V is the bit 31. All other bits are undefined */
183 uint32_t NF; /* N is bit 31. All other bits are undefined. */
184 uint32_t ZF; /* Z set if zero. */
185 uint32_t QF; /* 0 or 1 */
186 uint32_t GE; /* cpsr[19:16] */
187 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
188 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
189 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
190
191 uint64_t elr_el[4]; /* AArch64 exception link regs */
192 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
193
194 /* System control coprocessor (cp15) */
195 struct {
196 uint32_t c0_cpuid;
197 union { /* Cache size selection */
198 struct {
199 uint64_t _unused_csselr0;
200 uint64_t csselr_ns;
201 uint64_t _unused_csselr1;
202 uint64_t csselr_s;
203 };
204 uint64_t csselr_el[4];
205 };
206 union { /* System control register. */
207 struct {
208 uint64_t _unused_sctlr;
209 uint64_t sctlr_ns;
210 uint64_t hsctlr;
211 uint64_t sctlr_s;
212 };
213 uint64_t sctlr_el[4];
214 };
215 uint64_t cpacr_el1; /* Architectural feature access control register */
216 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
217 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
218 uint64_t sder; /* Secure debug enable register. */
219 uint32_t nsacr; /* Non-secure access control register. */
220 union { /* MMU translation table base 0. */
221 struct {
222 uint64_t _unused_ttbr0_0;
223 uint64_t ttbr0_ns;
224 uint64_t _unused_ttbr0_1;
225 uint64_t ttbr0_s;
226 };
227 uint64_t ttbr0_el[4];
228 };
229 union { /* MMU translation table base 1. */
230 struct {
231 uint64_t _unused_ttbr1_0;
232 uint64_t ttbr1_ns;
233 uint64_t _unused_ttbr1_1;
234 uint64_t ttbr1_s;
235 };
236 uint64_t ttbr1_el[4];
237 };
238 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
239 /* MMU translation table base control. */
240 TCR tcr_el[4];
241 TCR vtcr_el2; /* Virtualization Translation Control. */
242 uint32_t c2_data; /* MPU data cacheable bits. */
243 uint32_t c2_insn; /* MPU instruction cacheable bits. */
244 union { /* MMU domain access control register
245 * MPU write buffer control.
246 */
247 struct {
248 uint64_t dacr_ns;
249 uint64_t dacr_s;
250 };
251 struct {
252 uint64_t dacr32_el2;
253 };
254 };
255 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
257 uint64_t hcr_el2; /* Hypervisor configuration register */
258 uint64_t scr_el3; /* Secure configuration register. */
259 union { /* Fault status registers. */
260 struct {
261 uint64_t ifsr_ns;
262 uint64_t ifsr_s;
263 };
264 struct {
265 uint64_t ifsr32_el2;
266 };
267 };
268 union {
269 struct {
270 uint64_t _unused_dfsr;
271 uint64_t dfsr_ns;
272 uint64_t hsr;
273 uint64_t dfsr_s;
274 };
275 uint64_t esr_el[4];
276 };
277 uint32_t c6_region[8]; /* MPU base/size registers. */
278 union { /* Fault address registers. */
279 struct {
280 uint64_t _unused_far0;
281 #ifdef HOST_WORDS_BIGENDIAN
282 uint32_t ifar_ns;
283 uint32_t dfar_ns;
284 uint32_t ifar_s;
285 uint32_t dfar_s;
286 #else
287 uint32_t dfar_ns;
288 uint32_t ifar_ns;
289 uint32_t dfar_s;
290 uint32_t ifar_s;
291 #endif
292 uint64_t _unused_far3;
293 };
294 uint64_t far_el[4];
295 };
296 uint64_t hpfar_el2;
297 uint64_t hstr_el2;
298 union { /* Translation result. */
299 struct {
300 uint64_t _unused_par_0;
301 uint64_t par_ns;
302 uint64_t _unused_par_1;
303 uint64_t par_s;
304 };
305 uint64_t par_el[4];
306 };
307
308 uint32_t c6_rgnr;
309
310 uint32_t c9_insn; /* Cache lockdown registers. */
311 uint32_t c9_data;
312 uint64_t c9_pmcr; /* performance monitor control register */
313 uint64_t c9_pmcnten; /* perf monitor counter enables */
314 uint32_t c9_pmovsr; /* perf monitor overflow status */
315 uint32_t c9_pmuserenr; /* perf monitor user enable */
316 uint64_t c9_pmselr; /* perf monitor counter selection register */
317 uint64_t c9_pminten; /* perf monitor interrupt enables */
318 union { /* Memory attribute redirection */
319 struct {
320 #ifdef HOST_WORDS_BIGENDIAN
321 uint64_t _unused_mair_0;
322 uint32_t mair1_ns;
323 uint32_t mair0_ns;
324 uint64_t _unused_mair_1;
325 uint32_t mair1_s;
326 uint32_t mair0_s;
327 #else
328 uint64_t _unused_mair_0;
329 uint32_t mair0_ns;
330 uint32_t mair1_ns;
331 uint64_t _unused_mair_1;
332 uint32_t mair0_s;
333 uint32_t mair1_s;
334 #endif
335 };
336 uint64_t mair_el[4];
337 };
338 union { /* vector base address register */
339 struct {
340 uint64_t _unused_vbar;
341 uint64_t vbar_ns;
342 uint64_t hvbar;
343 uint64_t vbar_s;
344 };
345 uint64_t vbar_el[4];
346 };
347 uint32_t mvbar; /* (monitor) vector base address register */
348 struct { /* FCSE PID. */
349 uint32_t fcseidr_ns;
350 uint32_t fcseidr_s;
351 };
352 union { /* Context ID. */
353 struct {
354 uint64_t _unused_contextidr_0;
355 uint64_t contextidr_ns;
356 uint64_t _unused_contextidr_1;
357 uint64_t contextidr_s;
358 };
359 uint64_t contextidr_el[4];
360 };
361 union { /* User RW Thread register. */
362 struct {
363 uint64_t tpidrurw_ns;
364 uint64_t tpidrprw_ns;
365 uint64_t htpidr;
366 uint64_t _tpidr_el3;
367 };
368 uint64_t tpidr_el[4];
369 };
370 /* The secure banks of these registers don't map anywhere */
371 uint64_t tpidrurw_s;
372 uint64_t tpidrprw_s;
373 uint64_t tpidruro_s;
374
375 union { /* User RO Thread register. */
376 uint64_t tpidruro_ns;
377 uint64_t tpidrro_el[1];
378 };
379 uint64_t c14_cntfrq; /* Counter Frequency register */
380 uint64_t c14_cntkctl; /* Timer Control register */
381 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
382 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
383 ARMGenericTimer c14_timer[NUM_GTIMERS];
384 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
385 uint32_t c15_ticonfig; /* TI925T configuration byte. */
386 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
387 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
388 uint32_t c15_threadid; /* TI debugger thread-ID. */
389 uint32_t c15_config_base_address; /* SCU base address. */
390 uint32_t c15_diagnostic; /* diagnostic register */
391 uint32_t c15_power_diagnostic;
392 uint32_t c15_power_control; /* power control */
393 uint64_t dbgbvr[16]; /* breakpoint value registers */
394 uint64_t dbgbcr[16]; /* breakpoint control registers */
395 uint64_t dbgwvr[16]; /* watchpoint value registers */
396 uint64_t dbgwcr[16]; /* watchpoint control registers */
397 uint64_t mdscr_el1;
398 uint64_t oslsr_el1; /* OS Lock Status */
399 uint64_t mdcr_el2;
400 uint64_t mdcr_el3;
401 /* If the counter is enabled, this stores the last time the counter
402 * was reset. Otherwise it stores the counter value
403 */
404 uint64_t c15_ccnt;
405 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
406 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
407 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
408 } cp15;
409
410 struct {
411 uint32_t other_sp;
412 uint32_t vecbase;
413 uint32_t basepri;
414 uint32_t control;
415 uint32_t ccr; /* Configuration and Control */
416 uint32_t cfsr; /* Configurable Fault Status */
417 uint32_t hfsr; /* HardFault Status */
418 uint32_t dfsr; /* Debug Fault Status Register */
419 uint32_t mmfar; /* MemManage Fault Address */
420 uint32_t bfar; /* BusFault Address */
421 unsigned mpu_ctrl; /* MPU_CTRL (some bits kept in sctlr_el[1]) */
422 int exception;
423 } v7m;
424
425 /* Information associated with an exception about to be taken:
426 * code which raises an exception must set cs->exception_index and
427 * the relevant parts of this structure; the cpu_do_interrupt function
428 * will then set the guest-visible registers as part of the exception
429 * entry process.
430 */
431 struct {
432 uint32_t syndrome; /* AArch64 format syndrome register */
433 uint32_t fsr; /* AArch32 format fault status register info */
434 uint64_t vaddress; /* virtual addr associated with exception, if any */
435 uint32_t target_el; /* EL the exception should be targeted for */
436 /* If we implement EL2 we will also need to store information
437 * about the intermediate physical address for stage 2 faults.
438 */
439 } exception;
440
441 /* Thumb-2 EE state. */
442 uint32_t teecr;
443 uint32_t teehbr;
444
445 /* VFP coprocessor state. */
446 struct {
447 /* VFP/Neon register state. Note that the mapping between S, D and Q
448 * views of the register bank differs between AArch64 and AArch32:
449 * In AArch32:
450 * Qn = regs[2n+1]:regs[2n]
451 * Dn = regs[n]
452 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
453 * (and regs[32] to regs[63] are inaccessible)
454 * In AArch64:
455 * Qn = regs[2n+1]:regs[2n]
456 * Dn = regs[2n]
457 * Sn = regs[2n] bits 31..0
458 * This corresponds to the architecturally defined mapping between
459 * the two execution states, and means we do not need to explicitly
460 * map these registers when changing states.
461 */
462 float64 regs[64];
463
464 uint32_t xregs[16];
465 /* We store these fpcsr fields separately for convenience. */
466 int vec_len;
467 int vec_stride;
468
469 /* scratch space when Tn are not sufficient. */
470 uint32_t scratch[8];
471
472 /* fp_status is the "normal" fp status. standard_fp_status retains
473 * values corresponding to the ARM "Standard FPSCR Value", ie
474 * default-NaN, flush-to-zero, round-to-nearest and is used by
475 * any operations (generally Neon) which the architecture defines
476 * as controlled by the standard FPSCR value rather than the FPSCR.
477 *
478 * To avoid having to transfer exception bits around, we simply
479 * say that the FPSCR cumulative exception flags are the logical
480 * OR of the flags in the two fp statuses. This relies on the
481 * only thing which needs to read the exception flags being
482 * an explicit FPSCR read.
483 */
484 float_status fp_status;
485 float_status standard_fp_status;
486 } vfp;
487 uint64_t exclusive_addr;
488 uint64_t exclusive_val;
489 uint64_t exclusive_high;
490
491 /* iwMMXt coprocessor state. */
492 struct {
493 uint64_t regs[16];
494 uint64_t val;
495
496 uint32_t cregs[16];
497 } iwmmxt;
498
499 #if defined(CONFIG_USER_ONLY)
500 /* For usermode syscall translation. */
501 int eabi;
502 #endif
503
504 struct CPUBreakpoint *cpu_breakpoint[16];
505 struct CPUWatchpoint *cpu_watchpoint[16];
506
507 /* Fields up to this point are cleared by a CPU reset */
508 struct {} end_reset_fields;
509
510 CPU_COMMON
511
512 /* Fields after CPU_COMMON are preserved across CPU reset. */
513
514 /* Internal CPU feature flags. */
515 uint64_t features;
516
517 /* PMSAv7 MPU */
518 struct {
519 uint32_t *drbar;
520 uint32_t *drsr;
521 uint32_t *dracr;
522 } pmsav7;
523
524 void *nvic;
525 const struct arm_boot_info *boot_info;
526 /* Store GICv3CPUState to access from this struct */
527 void *gicv3state;
528 } CPUARMState;
529
530 /**
531 * ARMELChangeHook:
532 * type of a function which can be registered via arm_register_el_change_hook()
533 * to get callbacks when the CPU changes its exception level or mode.
534 */
535 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
536
537
538 /* These values map onto the return values for
539 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
540 typedef enum ARMPSCIState {
541 PSCI_ON = 0,
542 PSCI_OFF = 1,
543 PSCI_ON_PENDING = 2
544 } ARMPSCIState;
545
546 /**
547 * ARMCPU:
548 * @env: #CPUARMState
549 *
550 * An ARM CPU core.
551 */
552 struct ARMCPU {
553 /*< private >*/
554 CPUState parent_obj;
555 /*< public >*/
556
557 CPUARMState env;
558
559 /* Coprocessor information */
560 GHashTable *cp_regs;
561 /* For marshalling (mostly coprocessor) register state between the
562 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
563 * we use these arrays.
564 */
565 /* List of register indexes managed via these arrays; (full KVM style
566 * 64 bit indexes, not CPRegInfo 32 bit indexes)
567 */
568 uint64_t *cpreg_indexes;
569 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
570 uint64_t *cpreg_values;
571 /* Length of the indexes, values, reset_values arrays */
572 int32_t cpreg_array_len;
573 /* These are used only for migration: incoming data arrives in
574 * these fields and is sanity checked in post_load before copying
575 * to the working data structures above.
576 */
577 uint64_t *cpreg_vmstate_indexes;
578 uint64_t *cpreg_vmstate_values;
579 int32_t cpreg_vmstate_array_len;
580
581 /* Timers used by the generic (architected) timer */
582 QEMUTimer *gt_timer[NUM_GTIMERS];
583 /* GPIO outputs for generic timer */
584 qemu_irq gt_timer_outputs[NUM_GTIMERS];
585 /* GPIO output for GICv3 maintenance interrupt signal */
586 qemu_irq gicv3_maintenance_interrupt;
587
588 /* MemoryRegion to use for secure physical accesses */
589 MemoryRegion *secure_memory;
590
591 /* 'compatible' string for this CPU for Linux device trees */
592 const char *dtb_compatible;
593
594 /* PSCI version for this CPU
595 * Bits[31:16] = Major Version
596 * Bits[15:0] = Minor Version
597 */
598 uint32_t psci_version;
599
600 /* Should CPU start in PSCI powered-off state? */
601 bool start_powered_off;
602
603 /* Current power state, access guarded by BQL */
604 ARMPSCIState power_state;
605
606 /* CPU has virtualization extension */
607 bool has_el2;
608 /* CPU has security extension */
609 bool has_el3;
610 /* CPU has PMU (Performance Monitor Unit) */
611 bool has_pmu;
612
613 /* CPU has memory protection unit */
614 bool has_mpu;
615 /* PMSAv7 MPU number of supported regions */
616 uint32_t pmsav7_dregion;
617
618 /* PSCI conduit used to invoke PSCI methods
619 * 0 - disabled, 1 - smc, 2 - hvc
620 */
621 uint32_t psci_conduit;
622
623 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
624 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
625 */
626 uint32_t kvm_target;
627
628 /* KVM init features for this CPU */
629 uint32_t kvm_init_features[7];
630
631 /* Uniprocessor system with MP extensions */
632 bool mp_is_up;
633
634 /* The instance init functions for implementation-specific subclasses
635 * set these fields to specify the implementation-dependent values of
636 * various constant registers and reset values of non-constant
637 * registers.
638 * Some of these might become QOM properties eventually.
639 * Field names match the official register names as defined in the
640 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
641 * is used for reset values of non-constant registers; no reset_
642 * prefix means a constant register.
643 */
644 uint32_t midr;
645 uint32_t revidr;
646 uint32_t reset_fpsid;
647 uint32_t mvfr0;
648 uint32_t mvfr1;
649 uint32_t mvfr2;
650 uint32_t ctr;
651 uint32_t reset_sctlr;
652 uint32_t id_pfr0;
653 uint32_t id_pfr1;
654 uint32_t id_dfr0;
655 uint32_t pmceid0;
656 uint32_t pmceid1;
657 uint32_t id_afr0;
658 uint32_t id_mmfr0;
659 uint32_t id_mmfr1;
660 uint32_t id_mmfr2;
661 uint32_t id_mmfr3;
662 uint32_t id_mmfr4;
663 uint32_t id_isar0;
664 uint32_t id_isar1;
665 uint32_t id_isar2;
666 uint32_t id_isar3;
667 uint32_t id_isar4;
668 uint32_t id_isar5;
669 uint64_t id_aa64pfr0;
670 uint64_t id_aa64pfr1;
671 uint64_t id_aa64dfr0;
672 uint64_t id_aa64dfr1;
673 uint64_t id_aa64afr0;
674 uint64_t id_aa64afr1;
675 uint64_t id_aa64isar0;
676 uint64_t id_aa64isar1;
677 uint64_t id_aa64mmfr0;
678 uint64_t id_aa64mmfr1;
679 uint32_t dbgdidr;
680 uint32_t clidr;
681 uint64_t mp_affinity; /* MP ID without feature bits */
682 /* The elements of this array are the CCSIDR values for each cache,
683 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
684 */
685 uint32_t ccsidr[16];
686 uint64_t reset_cbar;
687 uint32_t reset_auxcr;
688 bool reset_hivecs;
689 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
690 uint32_t dcz_blocksize;
691 uint64_t rvbar;
692
693 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
694 int gic_num_lrs; /* number of list registers */
695 int gic_vpribits; /* number of virtual priority bits */
696 int gic_vprebits; /* number of virtual preemption bits */
697
698 /* Whether the cfgend input is high (i.e. this CPU should reset into
699 * big-endian mode). This setting isn't used directly: instead it modifies
700 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
701 * architecture version.
702 */
703 bool cfgend;
704
705 ARMELChangeHook *el_change_hook;
706 void *el_change_hook_opaque;
707
708 int32_t node_id; /* NUMA node this CPU belongs to */
709 };
710
711 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
712 {
713 return container_of(env, ARMCPU, env);
714 }
715
716 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
717
718 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
719
720 #define ENV_OFFSET offsetof(ARMCPU, env)
721
722 #ifndef CONFIG_USER_ONLY
723 extern const struct VMStateDescription vmstate_arm_cpu;
724 #endif
725
726 void arm_cpu_do_interrupt(CPUState *cpu);
727 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
728 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
729
730 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
731 int flags);
732
733 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
734 MemTxAttrs *attrs);
735
736 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
737 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
738
739 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
740 int cpuid, void *opaque);
741 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
742 int cpuid, void *opaque);
743
744 #ifdef TARGET_AARCH64
745 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
746 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
747 #endif
748
749 ARMCPU *cpu_arm_init(const char *cpu_model);
750 target_ulong do_arm_semihosting(CPUARMState *env);
751 void aarch64_sync_32_to_64(CPUARMState *env);
752 void aarch64_sync_64_to_32(CPUARMState *env);
753
754 static inline bool is_a64(CPUARMState *env)
755 {
756 return env->aarch64;
757 }
758
759 /* you can call this signal handler from your SIGBUS and SIGSEGV
760 signal handlers to inform the virtual CPU of exceptions. non zero
761 is returned if the signal was handled by the virtual CPU. */
762 int cpu_arm_signal_handler(int host_signum, void *pinfo,
763 void *puc);
764
765 /**
766 * pmccntr_sync
767 * @env: CPUARMState
768 *
769 * Synchronises the counter in the PMCCNTR. This must always be called twice,
770 * once before any action that might affect the timer and again afterwards.
771 * The function is used to swap the state of the register if required.
772 * This only happens when not in user mode (!CONFIG_USER_ONLY)
773 */
774 void pmccntr_sync(CPUARMState *env);
775
776 /* SCTLR bit meanings. Several bits have been reused in newer
777 * versions of the architecture; in that case we define constants
778 * for both old and new bit meanings. Code which tests against those
779 * bits should probably check or otherwise arrange that the CPU
780 * is the architectural version it expects.
781 */
782 #define SCTLR_M (1U << 0)
783 #define SCTLR_A (1U << 1)
784 #define SCTLR_C (1U << 2)
785 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
786 #define SCTLR_SA (1U << 3)
787 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
788 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
789 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
790 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
791 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
792 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
793 #define SCTLR_ITD (1U << 7) /* v8 onward */
794 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
795 #define SCTLR_SED (1U << 8) /* v8 onward */
796 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
797 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
798 #define SCTLR_F (1U << 10) /* up to v6 */
799 #define SCTLR_SW (1U << 10) /* v7 onward */
800 #define SCTLR_Z (1U << 11)
801 #define SCTLR_I (1U << 12)
802 #define SCTLR_V (1U << 13)
803 #define SCTLR_RR (1U << 14) /* up to v7 */
804 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
805 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
806 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
807 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
808 #define SCTLR_nTWI (1U << 16) /* v8 onward */
809 #define SCTLR_HA (1U << 17)
810 #define SCTLR_BR (1U << 17) /* PMSA only */
811 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
812 #define SCTLR_nTWE (1U << 18) /* v8 onward */
813 #define SCTLR_WXN (1U << 19)
814 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
815 #define SCTLR_UWXN (1U << 20) /* v7 onward */
816 #define SCTLR_FI (1U << 21)
817 #define SCTLR_U (1U << 22)
818 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
819 #define SCTLR_VE (1U << 24) /* up to v7 */
820 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
821 #define SCTLR_EE (1U << 25)
822 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
823 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
824 #define SCTLR_NMFI (1U << 27)
825 #define SCTLR_TRE (1U << 28)
826 #define SCTLR_AFE (1U << 29)
827 #define SCTLR_TE (1U << 30)
828
829 #define CPTR_TCPAC (1U << 31)
830 #define CPTR_TTA (1U << 20)
831 #define CPTR_TFP (1U << 10)
832
833 #define MDCR_EPMAD (1U << 21)
834 #define MDCR_EDAD (1U << 20)
835 #define MDCR_SPME (1U << 17)
836 #define MDCR_SDD (1U << 16)
837 #define MDCR_SPD (3U << 14)
838 #define MDCR_TDRA (1U << 11)
839 #define MDCR_TDOSA (1U << 10)
840 #define MDCR_TDA (1U << 9)
841 #define MDCR_TDE (1U << 8)
842 #define MDCR_HPME (1U << 7)
843 #define MDCR_TPM (1U << 6)
844 #define MDCR_TPMCR (1U << 5)
845
846 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
847 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
848
849 #define CPSR_M (0x1fU)
850 #define CPSR_T (1U << 5)
851 #define CPSR_F (1U << 6)
852 #define CPSR_I (1U << 7)
853 #define CPSR_A (1U << 8)
854 #define CPSR_E (1U << 9)
855 #define CPSR_IT_2_7 (0xfc00U)
856 #define CPSR_GE (0xfU << 16)
857 #define CPSR_IL (1U << 20)
858 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
859 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
860 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
861 * where it is live state but not accessible to the AArch32 code.
862 */
863 #define CPSR_RESERVED (0x7U << 21)
864 #define CPSR_J (1U << 24)
865 #define CPSR_IT_0_1 (3U << 25)
866 #define CPSR_Q (1U << 27)
867 #define CPSR_V (1U << 28)
868 #define CPSR_C (1U << 29)
869 #define CPSR_Z (1U << 30)
870 #define CPSR_N (1U << 31)
871 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
872 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
873
874 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
875 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
876 | CPSR_NZCV)
877 /* Bits writable in user mode. */
878 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
879 /* Execution state bits. MRS read as zero, MSR writes ignored. */
880 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
881 /* Mask of bits which may be set by exception return copying them from SPSR */
882 #define CPSR_ERET_MASK (~CPSR_RESERVED)
883
884 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
885 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
886 #define TTBCR_PD0 (1U << 4)
887 #define TTBCR_PD1 (1U << 5)
888 #define TTBCR_EPD0 (1U << 7)
889 #define TTBCR_IRGN0 (3U << 8)
890 #define TTBCR_ORGN0 (3U << 10)
891 #define TTBCR_SH0 (3U << 12)
892 #define TTBCR_T1SZ (3U << 16)
893 #define TTBCR_A1 (1U << 22)
894 #define TTBCR_EPD1 (1U << 23)
895 #define TTBCR_IRGN1 (3U << 24)
896 #define TTBCR_ORGN1 (3U << 26)
897 #define TTBCR_SH1 (1U << 28)
898 #define TTBCR_EAE (1U << 31)
899
900 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
901 * Only these are valid when in AArch64 mode; in
902 * AArch32 mode SPSRs are basically CPSR-format.
903 */
904 #define PSTATE_SP (1U)
905 #define PSTATE_M (0xFU)
906 #define PSTATE_nRW (1U << 4)
907 #define PSTATE_F (1U << 6)
908 #define PSTATE_I (1U << 7)
909 #define PSTATE_A (1U << 8)
910 #define PSTATE_D (1U << 9)
911 #define PSTATE_IL (1U << 20)
912 #define PSTATE_SS (1U << 21)
913 #define PSTATE_V (1U << 28)
914 #define PSTATE_C (1U << 29)
915 #define PSTATE_Z (1U << 30)
916 #define PSTATE_N (1U << 31)
917 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
918 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
919 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
920 /* Mode values for AArch64 */
921 #define PSTATE_MODE_EL3h 13
922 #define PSTATE_MODE_EL3t 12
923 #define PSTATE_MODE_EL2h 9
924 #define PSTATE_MODE_EL2t 8
925 #define PSTATE_MODE_EL1h 5
926 #define PSTATE_MODE_EL1t 4
927 #define PSTATE_MODE_EL0t 0
928
929 /* Map EL and handler into a PSTATE_MODE. */
930 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
931 {
932 return (el << 2) | handler;
933 }
934
935 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
936 * interprocessing, so we don't attempt to sync with the cpsr state used by
937 * the 32 bit decoder.
938 */
939 static inline uint32_t pstate_read(CPUARMState *env)
940 {
941 int ZF;
942
943 ZF = (env->ZF == 0);
944 return (env->NF & 0x80000000) | (ZF << 30)
945 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
946 | env->pstate | env->daif;
947 }
948
949 static inline void pstate_write(CPUARMState *env, uint32_t val)
950 {
951 env->ZF = (~val) & PSTATE_Z;
952 env->NF = val;
953 env->CF = (val >> 29) & 1;
954 env->VF = (val << 3) & 0x80000000;
955 env->daif = val & PSTATE_DAIF;
956 env->pstate = val & ~CACHED_PSTATE_BITS;
957 }
958
959 /* Return the current CPSR value. */
960 uint32_t cpsr_read(CPUARMState *env);
961
962 typedef enum CPSRWriteType {
963 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
964 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
965 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
966 CPSRWriteByGDBStub = 3, /* from the GDB stub */
967 } CPSRWriteType;
968
969 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
970 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
971 CPSRWriteType write_type);
972
973 /* Return the current xPSR value. */
974 static inline uint32_t xpsr_read(CPUARMState *env)
975 {
976 int ZF;
977 ZF = (env->ZF == 0);
978 return (env->NF & 0x80000000) | (ZF << 30)
979 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
980 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
981 | ((env->condexec_bits & 0xfc) << 8)
982 | env->v7m.exception;
983 }
984
985 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
986 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
987 {
988 if (mask & CPSR_NZCV) {
989 env->ZF = (~val) & CPSR_Z;
990 env->NF = val;
991 env->CF = (val >> 29) & 1;
992 env->VF = (val << 3) & 0x80000000;
993 }
994 if (mask & CPSR_Q)
995 env->QF = ((val & CPSR_Q) != 0);
996 if (mask & (1 << 24))
997 env->thumb = ((val & (1 << 24)) != 0);
998 if (mask & CPSR_IT_0_1) {
999 env->condexec_bits &= ~3;
1000 env->condexec_bits |= (val >> 25) & 3;
1001 }
1002 if (mask & CPSR_IT_2_7) {
1003 env->condexec_bits &= 3;
1004 env->condexec_bits |= (val >> 8) & 0xfc;
1005 }
1006 if (mask & 0x1ff) {
1007 env->v7m.exception = val & 0x1ff;
1008 }
1009 }
1010
1011 #define HCR_VM (1ULL << 0)
1012 #define HCR_SWIO (1ULL << 1)
1013 #define HCR_PTW (1ULL << 2)
1014 #define HCR_FMO (1ULL << 3)
1015 #define HCR_IMO (1ULL << 4)
1016 #define HCR_AMO (1ULL << 5)
1017 #define HCR_VF (1ULL << 6)
1018 #define HCR_VI (1ULL << 7)
1019 #define HCR_VSE (1ULL << 8)
1020 #define HCR_FB (1ULL << 9)
1021 #define HCR_BSU_MASK (3ULL << 10)
1022 #define HCR_DC (1ULL << 12)
1023 #define HCR_TWI (1ULL << 13)
1024 #define HCR_TWE (1ULL << 14)
1025 #define HCR_TID0 (1ULL << 15)
1026 #define HCR_TID1 (1ULL << 16)
1027 #define HCR_TID2 (1ULL << 17)
1028 #define HCR_TID3 (1ULL << 18)
1029 #define HCR_TSC (1ULL << 19)
1030 #define HCR_TIDCP (1ULL << 20)
1031 #define HCR_TACR (1ULL << 21)
1032 #define HCR_TSW (1ULL << 22)
1033 #define HCR_TPC (1ULL << 23)
1034 #define HCR_TPU (1ULL << 24)
1035 #define HCR_TTLB (1ULL << 25)
1036 #define HCR_TVM (1ULL << 26)
1037 #define HCR_TGE (1ULL << 27)
1038 #define HCR_TDZ (1ULL << 28)
1039 #define HCR_HCD (1ULL << 29)
1040 #define HCR_TRVM (1ULL << 30)
1041 #define HCR_RW (1ULL << 31)
1042 #define HCR_CD (1ULL << 32)
1043 #define HCR_ID (1ULL << 33)
1044 #define HCR_MASK ((1ULL << 34) - 1)
1045
1046 #define SCR_NS (1U << 0)
1047 #define SCR_IRQ (1U << 1)
1048 #define SCR_FIQ (1U << 2)
1049 #define SCR_EA (1U << 3)
1050 #define SCR_FW (1U << 4)
1051 #define SCR_AW (1U << 5)
1052 #define SCR_NET (1U << 6)
1053 #define SCR_SMD (1U << 7)
1054 #define SCR_HCE (1U << 8)
1055 #define SCR_SIF (1U << 9)
1056 #define SCR_RW (1U << 10)
1057 #define SCR_ST (1U << 11)
1058 #define SCR_TWI (1U << 12)
1059 #define SCR_TWE (1U << 13)
1060 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1061 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1062
1063 /* Return the current FPSCR value. */
1064 uint32_t vfp_get_fpscr(CPUARMState *env);
1065 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1066
1067 /* For A64 the FPSCR is split into two logically distinct registers,
1068 * FPCR and FPSR. However since they still use non-overlapping bits
1069 * we store the underlying state in fpscr and just mask on read/write.
1070 */
1071 #define FPSR_MASK 0xf800009f
1072 #define FPCR_MASK 0x07f79f00
1073 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1074 {
1075 return vfp_get_fpscr(env) & FPSR_MASK;
1076 }
1077
1078 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1079 {
1080 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1081 vfp_set_fpscr(env, new_fpscr);
1082 }
1083
1084 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1085 {
1086 return vfp_get_fpscr(env) & FPCR_MASK;
1087 }
1088
1089 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1090 {
1091 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1092 vfp_set_fpscr(env, new_fpscr);
1093 }
1094
1095 enum arm_cpu_mode {
1096 ARM_CPU_MODE_USR = 0x10,
1097 ARM_CPU_MODE_FIQ = 0x11,
1098 ARM_CPU_MODE_IRQ = 0x12,
1099 ARM_CPU_MODE_SVC = 0x13,
1100 ARM_CPU_MODE_MON = 0x16,
1101 ARM_CPU_MODE_ABT = 0x17,
1102 ARM_CPU_MODE_HYP = 0x1a,
1103 ARM_CPU_MODE_UND = 0x1b,
1104 ARM_CPU_MODE_SYS = 0x1f
1105 };
1106
1107 /* VFP system registers. */
1108 #define ARM_VFP_FPSID 0
1109 #define ARM_VFP_FPSCR 1
1110 #define ARM_VFP_MVFR2 5
1111 #define ARM_VFP_MVFR1 6
1112 #define ARM_VFP_MVFR0 7
1113 #define ARM_VFP_FPEXC 8
1114 #define ARM_VFP_FPINST 9
1115 #define ARM_VFP_FPINST2 10
1116
1117 /* iwMMXt coprocessor control registers. */
1118 #define ARM_IWMMXT_wCID 0
1119 #define ARM_IWMMXT_wCon 1
1120 #define ARM_IWMMXT_wCSSF 2
1121 #define ARM_IWMMXT_wCASF 3
1122 #define ARM_IWMMXT_wCGR0 8
1123 #define ARM_IWMMXT_wCGR1 9
1124 #define ARM_IWMMXT_wCGR2 10
1125 #define ARM_IWMMXT_wCGR3 11
1126
1127 /* V7M CCR bits */
1128 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1129 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1130 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1131 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1132 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1133 FIELD(V7M_CCR, STKALIGN, 9, 1)
1134 FIELD(V7M_CCR, DC, 16, 1)
1135 FIELD(V7M_CCR, IC, 17, 1)
1136
1137 /* V7M CFSR bits for MMFSR */
1138 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1139 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1140 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1141 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1142 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1143 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1144
1145 /* V7M CFSR bits for BFSR */
1146 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1147 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1148 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1149 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1150 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1151 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1152 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1153
1154 /* V7M CFSR bits for UFSR */
1155 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1156 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1157 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1158 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1159 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1160 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1161
1162 /* V7M HFSR bits */
1163 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1164 FIELD(V7M_HFSR, FORCED, 30, 1)
1165 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1166
1167 /* V7M DFSR bits */
1168 FIELD(V7M_DFSR, HALTED, 0, 1)
1169 FIELD(V7M_DFSR, BKPT, 1, 1)
1170 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1171 FIELD(V7M_DFSR, VCATCH, 3, 1)
1172 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1173
1174 /* v7M MPU_CTRL bits */
1175 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1176 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1177 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1178
1179 /* If adding a feature bit which corresponds to a Linux ELF
1180 * HWCAP bit, remember to update the feature-bit-to-hwcap
1181 * mapping in linux-user/elfload.c:get_elf_hwcap().
1182 */
1183 enum arm_features {
1184 ARM_FEATURE_VFP,
1185 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1186 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1187 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1188 ARM_FEATURE_V6,
1189 ARM_FEATURE_V6K,
1190 ARM_FEATURE_V7,
1191 ARM_FEATURE_THUMB2,
1192 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1193 ARM_FEATURE_VFP3,
1194 ARM_FEATURE_VFP_FP16,
1195 ARM_FEATURE_NEON,
1196 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1197 ARM_FEATURE_M, /* Microcontroller profile. */
1198 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1199 ARM_FEATURE_THUMB2EE,
1200 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1201 ARM_FEATURE_V4T,
1202 ARM_FEATURE_V5,
1203 ARM_FEATURE_STRONGARM,
1204 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1205 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1206 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1207 ARM_FEATURE_GENERIC_TIMER,
1208 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1209 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1210 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1211 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1212 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1213 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1214 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1215 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1216 ARM_FEATURE_V8,
1217 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1218 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1219 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1220 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1221 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1222 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1223 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1224 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1225 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1226 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1227 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1228 ARM_FEATURE_PMU, /* has PMU support */
1229 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1230 };
1231
1232 static inline int arm_feature(CPUARMState *env, int feature)
1233 {
1234 return (env->features & (1ULL << feature)) != 0;
1235 }
1236
1237 #if !defined(CONFIG_USER_ONLY)
1238 /* Return true if exception levels below EL3 are in secure state,
1239 * or would be following an exception return to that level.
1240 * Unlike arm_is_secure() (which is always a question about the
1241 * _current_ state of the CPU) this doesn't care about the current
1242 * EL or mode.
1243 */
1244 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1245 {
1246 if (arm_feature(env, ARM_FEATURE_EL3)) {
1247 return !(env->cp15.scr_el3 & SCR_NS);
1248 } else {
1249 /* If EL3 is not supported then the secure state is implementation
1250 * defined, in which case QEMU defaults to non-secure.
1251 */
1252 return false;
1253 }
1254 }
1255
1256 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1257 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1258 {
1259 if (arm_feature(env, ARM_FEATURE_EL3)) {
1260 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1261 /* CPU currently in AArch64 state and EL3 */
1262 return true;
1263 } else if (!is_a64(env) &&
1264 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1265 /* CPU currently in AArch32 state and monitor mode */
1266 return true;
1267 }
1268 }
1269 return false;
1270 }
1271
1272 /* Return true if the processor is in secure state */
1273 static inline bool arm_is_secure(CPUARMState *env)
1274 {
1275 if (arm_is_el3_or_mon(env)) {
1276 return true;
1277 }
1278 return arm_is_secure_below_el3(env);
1279 }
1280
1281 #else
1282 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1283 {
1284 return false;
1285 }
1286
1287 static inline bool arm_is_secure(CPUARMState *env)
1288 {
1289 return false;
1290 }
1291 #endif
1292
1293 /* Return true if the specified exception level is running in AArch64 state. */
1294 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1295 {
1296 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1297 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1298 */
1299 assert(el >= 1 && el <= 3);
1300 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1301
1302 /* The highest exception level is always at the maximum supported
1303 * register width, and then lower levels have a register width controlled
1304 * by bits in the SCR or HCR registers.
1305 */
1306 if (el == 3) {
1307 return aa64;
1308 }
1309
1310 if (arm_feature(env, ARM_FEATURE_EL3)) {
1311 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1312 }
1313
1314 if (el == 2) {
1315 return aa64;
1316 }
1317
1318 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1319 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1320 }
1321
1322 return aa64;
1323 }
1324
1325 /* Function for determing whether guest cp register reads and writes should
1326 * access the secure or non-secure bank of a cp register. When EL3 is
1327 * operating in AArch32 state, the NS-bit determines whether the secure
1328 * instance of a cp register should be used. When EL3 is AArch64 (or if
1329 * it doesn't exist at all) then there is no register banking, and all
1330 * accesses are to the non-secure version.
1331 */
1332 static inline bool access_secure_reg(CPUARMState *env)
1333 {
1334 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1335 !arm_el_is_aa64(env, 3) &&
1336 !(env->cp15.scr_el3 & SCR_NS));
1337
1338 return ret;
1339 }
1340
1341 /* Macros for accessing a specified CP register bank */
1342 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1343 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1344
1345 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1346 do { \
1347 if (_secure) { \
1348 (_env)->cp15._regname##_s = (_val); \
1349 } else { \
1350 (_env)->cp15._regname##_ns = (_val); \
1351 } \
1352 } while (0)
1353
1354 /* Macros for automatically accessing a specific CP register bank depending on
1355 * the current secure state of the system. These macros are not intended for
1356 * supporting instruction translation reads/writes as these are dependent
1357 * solely on the SCR.NS bit and not the mode.
1358 */
1359 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1360 A32_BANKED_REG_GET((_env), _regname, \
1361 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1362
1363 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1364 A32_BANKED_REG_SET((_env), _regname, \
1365 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1366 (_val))
1367
1368 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1369 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1370 uint32_t cur_el, bool secure);
1371
1372 /* Interface between CPU and Interrupt controller. */
1373 #ifndef CONFIG_USER_ONLY
1374 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1375 #else
1376 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1377 {
1378 return true;
1379 }
1380 #endif
1381 void armv7m_nvic_set_pending(void *opaque, int irq);
1382 void armv7m_nvic_acknowledge_irq(void *opaque);
1383 /**
1384 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1385 * @opaque: the NVIC
1386 * @irq: the exception number to complete
1387 *
1388 * Returns: -1 if the irq was not active
1389 * 1 if completing this irq brought us back to base (no active irqs)
1390 * 0 if there is still an irq active after this one was completed
1391 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1392 */
1393 int armv7m_nvic_complete_irq(void *opaque, int irq);
1394
1395 /* Interface for defining coprocessor registers.
1396 * Registers are defined in tables of arm_cp_reginfo structs
1397 * which are passed to define_arm_cp_regs().
1398 */
1399
1400 /* When looking up a coprocessor register we look for it
1401 * via an integer which encodes all of:
1402 * coprocessor number
1403 * Crn, Crm, opc1, opc2 fields
1404 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1405 * or via MRRC/MCRR?)
1406 * non-secure/secure bank (AArch32 only)
1407 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1408 * (In this case crn and opc2 should be zero.)
1409 * For AArch64, there is no 32/64 bit size distinction;
1410 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1411 * and 4 bit CRn and CRm. The encoding patterns are chosen
1412 * to be easy to convert to and from the KVM encodings, and also
1413 * so that the hashtable can contain both AArch32 and AArch64
1414 * registers (to allow for interprocessing where we might run
1415 * 32 bit code on a 64 bit core).
1416 */
1417 /* This bit is private to our hashtable cpreg; in KVM register
1418 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1419 * in the upper bits of the 64 bit ID.
1420 */
1421 #define CP_REG_AA64_SHIFT 28
1422 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1423
1424 /* To enable banking of coprocessor registers depending on ns-bit we
1425 * add a bit to distinguish between secure and non-secure cpregs in the
1426 * hashtable.
1427 */
1428 #define CP_REG_NS_SHIFT 29
1429 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1430
1431 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1432 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1433 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1434
1435 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1436 (CP_REG_AA64_MASK | \
1437 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1438 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1439 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1440 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1441 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1442 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1443
1444 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1445 * version used as a key for the coprocessor register hashtable
1446 */
1447 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1448 {
1449 uint32_t cpregid = kvmid;
1450 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1451 cpregid |= CP_REG_AA64_MASK;
1452 } else {
1453 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1454 cpregid |= (1 << 15);
1455 }
1456
1457 /* KVM is always non-secure so add the NS flag on AArch32 register
1458 * entries.
1459 */
1460 cpregid |= 1 << CP_REG_NS_SHIFT;
1461 }
1462 return cpregid;
1463 }
1464
1465 /* Convert a truncated 32 bit hashtable key into the full
1466 * 64 bit KVM register ID.
1467 */
1468 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1469 {
1470 uint64_t kvmid;
1471
1472 if (cpregid & CP_REG_AA64_MASK) {
1473 kvmid = cpregid & ~CP_REG_AA64_MASK;
1474 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1475 } else {
1476 kvmid = cpregid & ~(1 << 15);
1477 if (cpregid & (1 << 15)) {
1478 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1479 } else {
1480 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1481 }
1482 }
1483 return kvmid;
1484 }
1485
1486 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1487 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1488 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1489 * TCG can assume the value to be constant (ie load at translate time)
1490 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1491 * indicates that the TB should not be ended after a write to this register
1492 * (the default is that the TB ends after cp writes). OVERRIDE permits
1493 * a register definition to override a previous definition for the
1494 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1495 * old must have the OVERRIDE bit set.
1496 * ALIAS indicates that this register is an alias view of some underlying
1497 * state which is also visible via another register, and that the other
1498 * register is handling migration and reset; registers marked ALIAS will not be
1499 * migrated but may have their state set by syncing of register state from KVM.
1500 * NO_RAW indicates that this register has no underlying state and does not
1501 * support raw access for state saving/loading; it will not be used for either
1502 * migration or KVM state synchronization. (Typically this is for "registers"
1503 * which are actually used as instructions for cache maintenance and so on.)
1504 * IO indicates that this register does I/O and therefore its accesses
1505 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1506 * registers which implement clocks or timers require this.
1507 */
1508 #define ARM_CP_SPECIAL 1
1509 #define ARM_CP_CONST 2
1510 #define ARM_CP_64BIT 4
1511 #define ARM_CP_SUPPRESS_TB_END 8
1512 #define ARM_CP_OVERRIDE 16
1513 #define ARM_CP_ALIAS 32
1514 #define ARM_CP_IO 64
1515 #define ARM_CP_NO_RAW 128
1516 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1517 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1518 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1519 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1520 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1521 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1522 /* Used only as a terminator for ARMCPRegInfo lists */
1523 #define ARM_CP_SENTINEL 0xffff
1524 /* Mask of only the flag bits in a type field */
1525 #define ARM_CP_FLAG_MASK 0xff
1526
1527 /* Valid values for ARMCPRegInfo state field, indicating which of
1528 * the AArch32 and AArch64 execution states this register is visible in.
1529 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1530 * If the reginfo is declared to be visible in both states then a second
1531 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1532 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1533 * Note that we rely on the values of these enums as we iterate through
1534 * the various states in some places.
1535 */
1536 enum {
1537 ARM_CP_STATE_AA32 = 0,
1538 ARM_CP_STATE_AA64 = 1,
1539 ARM_CP_STATE_BOTH = 2,
1540 };
1541
1542 /* ARM CP register secure state flags. These flags identify security state
1543 * attributes for a given CP register entry.
1544 * The existence of both or neither secure and non-secure flags indicates that
1545 * the register has both a secure and non-secure hash entry. A single one of
1546 * these flags causes the register to only be hashed for the specified
1547 * security state.
1548 * Although definitions may have any combination of the S/NS bits, each
1549 * registered entry will only have one to identify whether the entry is secure
1550 * or non-secure.
1551 */
1552 enum {
1553 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1554 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1555 };
1556
1557 /* Return true if cptype is a valid type field. This is used to try to
1558 * catch errors where the sentinel has been accidentally left off the end
1559 * of a list of registers.
1560 */
1561 static inline bool cptype_valid(int cptype)
1562 {
1563 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1564 || ((cptype & ARM_CP_SPECIAL) &&
1565 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1566 }
1567
1568 /* Access rights:
1569 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1570 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1571 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1572 * (ie any of the privileged modes in Secure state, or Monitor mode).
1573 * If a register is accessible in one privilege level it's always accessible
1574 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1575 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1576 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1577 * terminology a little and call this PL3.
1578 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1579 * with the ELx exception levels.
1580 *
1581 * If access permissions for a register are more complex than can be
1582 * described with these bits, then use a laxer set of restrictions, and
1583 * do the more restrictive/complex check inside a helper function.
1584 */
1585 #define PL3_R 0x80
1586 #define PL3_W 0x40
1587 #define PL2_R (0x20 | PL3_R)
1588 #define PL2_W (0x10 | PL3_W)
1589 #define PL1_R (0x08 | PL2_R)
1590 #define PL1_W (0x04 | PL2_W)
1591 #define PL0_R (0x02 | PL1_R)
1592 #define PL0_W (0x01 | PL1_W)
1593
1594 #define PL3_RW (PL3_R | PL3_W)
1595 #define PL2_RW (PL2_R | PL2_W)
1596 #define PL1_RW (PL1_R | PL1_W)
1597 #define PL0_RW (PL0_R | PL0_W)
1598
1599 /* Return the highest implemented Exception Level */
1600 static inline int arm_highest_el(CPUARMState *env)
1601 {
1602 if (arm_feature(env, ARM_FEATURE_EL3)) {
1603 return 3;
1604 }
1605 if (arm_feature(env, ARM_FEATURE_EL2)) {
1606 return 2;
1607 }
1608 return 1;
1609 }
1610
1611 /* Return the current Exception Level (as per ARMv8; note that this differs
1612 * from the ARMv7 Privilege Level).
1613 */
1614 static inline int arm_current_el(CPUARMState *env)
1615 {
1616 if (arm_feature(env, ARM_FEATURE_M)) {
1617 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1618 }
1619
1620 if (is_a64(env)) {
1621 return extract32(env->pstate, 2, 2);
1622 }
1623
1624 switch (env->uncached_cpsr & 0x1f) {
1625 case ARM_CPU_MODE_USR:
1626 return 0;
1627 case ARM_CPU_MODE_HYP:
1628 return 2;
1629 case ARM_CPU_MODE_MON:
1630 return 3;
1631 default:
1632 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1633 /* If EL3 is 32-bit then all secure privileged modes run in
1634 * EL3
1635 */
1636 return 3;
1637 }
1638
1639 return 1;
1640 }
1641 }
1642
1643 typedef struct ARMCPRegInfo ARMCPRegInfo;
1644
1645 typedef enum CPAccessResult {
1646 /* Access is permitted */
1647 CP_ACCESS_OK = 0,
1648 /* Access fails due to a configurable trap or enable which would
1649 * result in a categorized exception syndrome giving information about
1650 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1651 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1652 * PL1 if in EL0, otherwise to the current EL).
1653 */
1654 CP_ACCESS_TRAP = 1,
1655 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1656 * Note that this is not a catch-all case -- the set of cases which may
1657 * result in this failure is specifically defined by the architecture.
1658 */
1659 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1660 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1661 CP_ACCESS_TRAP_EL2 = 3,
1662 CP_ACCESS_TRAP_EL3 = 4,
1663 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1664 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1665 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1666 /* Access fails and results in an exception syndrome for an FP access,
1667 * trapped directly to EL2 or EL3
1668 */
1669 CP_ACCESS_TRAP_FP_EL2 = 7,
1670 CP_ACCESS_TRAP_FP_EL3 = 8,
1671 } CPAccessResult;
1672
1673 /* Access functions for coprocessor registers. These cannot fail and
1674 * may not raise exceptions.
1675 */
1676 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1677 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1678 uint64_t value);
1679 /* Access permission check functions for coprocessor registers. */
1680 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1681 const ARMCPRegInfo *opaque,
1682 bool isread);
1683 /* Hook function for register reset */
1684 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1685
1686 #define CP_ANY 0xff
1687
1688 /* Definition of an ARM coprocessor register */
1689 struct ARMCPRegInfo {
1690 /* Name of register (useful mainly for debugging, need not be unique) */
1691 const char *name;
1692 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1693 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1694 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1695 * will be decoded to this register. The register read and write
1696 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1697 * used by the program, so it is possible to register a wildcard and
1698 * then behave differently on read/write if necessary.
1699 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1700 * must both be zero.
1701 * For AArch64-visible registers, opc0 is also used.
1702 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1703 * way to distinguish (for KVM's benefit) guest-visible system registers
1704 * from demuxed ones provided to preserve the "no side effects on
1705 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1706 * visible (to match KVM's encoding); cp==0 will be converted to
1707 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1708 */
1709 uint8_t cp;
1710 uint8_t crn;
1711 uint8_t crm;
1712 uint8_t opc0;
1713 uint8_t opc1;
1714 uint8_t opc2;
1715 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1716 int state;
1717 /* Register type: ARM_CP_* bits/values */
1718 int type;
1719 /* Access rights: PL*_[RW] */
1720 int access;
1721 /* Security state: ARM_CP_SECSTATE_* bits/values */
1722 int secure;
1723 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1724 * this register was defined: can be used to hand data through to the
1725 * register read/write functions, since they are passed the ARMCPRegInfo*.
1726 */
1727 void *opaque;
1728 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1729 * fieldoffset is non-zero, the reset value of the register.
1730 */
1731 uint64_t resetvalue;
1732 /* Offset of the field in CPUARMState for this register.
1733 *
1734 * This is not needed if either:
1735 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1736 * 2. both readfn and writefn are specified
1737 */
1738 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1739
1740 /* Offsets of the secure and non-secure fields in CPUARMState for the
1741 * register if it is banked. These fields are only used during the static
1742 * registration of a register. During hashing the bank associated
1743 * with a given security state is copied to fieldoffset which is used from
1744 * there on out.
1745 *
1746 * It is expected that register definitions use either fieldoffset or
1747 * bank_fieldoffsets in the definition but not both. It is also expected
1748 * that both bank offsets are set when defining a banked register. This
1749 * use indicates that a register is banked.
1750 */
1751 ptrdiff_t bank_fieldoffsets[2];
1752
1753 /* Function for making any access checks for this register in addition to
1754 * those specified by the 'access' permissions bits. If NULL, no extra
1755 * checks required. The access check is performed at runtime, not at
1756 * translate time.
1757 */
1758 CPAccessFn *accessfn;
1759 /* Function for handling reads of this register. If NULL, then reads
1760 * will be done by loading from the offset into CPUARMState specified
1761 * by fieldoffset.
1762 */
1763 CPReadFn *readfn;
1764 /* Function for handling writes of this register. If NULL, then writes
1765 * will be done by writing to the offset into CPUARMState specified
1766 * by fieldoffset.
1767 */
1768 CPWriteFn *writefn;
1769 /* Function for doing a "raw" read; used when we need to copy
1770 * coprocessor state to the kernel for KVM or out for
1771 * migration. This only needs to be provided if there is also a
1772 * readfn and it has side effects (for instance clear-on-read bits).
1773 */
1774 CPReadFn *raw_readfn;
1775 /* Function for doing a "raw" write; used when we need to copy KVM
1776 * kernel coprocessor state into userspace, or for inbound
1777 * migration. This only needs to be provided if there is also a
1778 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1779 * or similar behaviour.
1780 */
1781 CPWriteFn *raw_writefn;
1782 /* Function for resetting the register. If NULL, then reset will be done
1783 * by writing resetvalue to the field specified in fieldoffset. If
1784 * fieldoffset is 0 then no reset will be done.
1785 */
1786 CPResetFn *resetfn;
1787 };
1788
1789 /* Macros which are lvalues for the field in CPUARMState for the
1790 * ARMCPRegInfo *ri.
1791 */
1792 #define CPREG_FIELD32(env, ri) \
1793 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1794 #define CPREG_FIELD64(env, ri) \
1795 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1796
1797 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1798
1799 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1800 const ARMCPRegInfo *regs, void *opaque);
1801 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1802 const ARMCPRegInfo *regs, void *opaque);
1803 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1804 {
1805 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1806 }
1807 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1808 {
1809 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1810 }
1811 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1812
1813 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1814 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value);
1816 /* CPReadFn that can be used for read-as-zero behaviour */
1817 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1818
1819 /* CPResetFn that does nothing, for use if no reset is required even
1820 * if fieldoffset is non zero.
1821 */
1822 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1823
1824 /* Return true if this reginfo struct's field in the cpu state struct
1825 * is 64 bits wide.
1826 */
1827 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1828 {
1829 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1830 }
1831
1832 static inline bool cp_access_ok(int current_el,
1833 const ARMCPRegInfo *ri, int isread)
1834 {
1835 return (ri->access >> ((current_el * 2) + isread)) & 1;
1836 }
1837
1838 /* Raw read of a coprocessor register (as needed for migration, etc) */
1839 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1840
1841 /**
1842 * write_list_to_cpustate
1843 * @cpu: ARMCPU
1844 *
1845 * For each register listed in the ARMCPU cpreg_indexes list, write
1846 * its value from the cpreg_values list into the ARMCPUState structure.
1847 * This updates TCG's working data structures from KVM data or
1848 * from incoming migration state.
1849 *
1850 * Returns: true if all register values were updated correctly,
1851 * false if some register was unknown or could not be written.
1852 * Note that we do not stop early on failure -- we will attempt
1853 * writing all registers in the list.
1854 */
1855 bool write_list_to_cpustate(ARMCPU *cpu);
1856
1857 /**
1858 * write_cpustate_to_list:
1859 * @cpu: ARMCPU
1860 *
1861 * For each register listed in the ARMCPU cpreg_indexes list, write
1862 * its value from the ARMCPUState structure into the cpreg_values list.
1863 * This is used to copy info from TCG's working data structures into
1864 * KVM or for outbound migration.
1865 *
1866 * Returns: true if all register values were read correctly,
1867 * false if some register was unknown or could not be read.
1868 * Note that we do not stop early on failure -- we will attempt
1869 * reading all registers in the list.
1870 */
1871 bool write_cpustate_to_list(ARMCPU *cpu);
1872
1873 #define ARM_CPUID_TI915T 0x54029152
1874 #define ARM_CPUID_TI925T 0x54029252
1875
1876 #if defined(CONFIG_USER_ONLY)
1877 #define TARGET_PAGE_BITS 12
1878 #else
1879 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1880 * have to support 1K tiny pages.
1881 */
1882 #define TARGET_PAGE_BITS_VARY
1883 #define TARGET_PAGE_BITS_MIN 10
1884 #endif
1885
1886 #if defined(TARGET_AARCH64)
1887 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1888 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1889 #else
1890 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1891 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1892 #endif
1893
1894 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1895 unsigned int target_el)
1896 {
1897 CPUARMState *env = cs->env_ptr;
1898 unsigned int cur_el = arm_current_el(env);
1899 bool secure = arm_is_secure(env);
1900 bool pstate_unmasked;
1901 int8_t unmasked = 0;
1902
1903 /* Don't take exceptions if they target a lower EL.
1904 * This check should catch any exceptions that would not be taken but left
1905 * pending.
1906 */
1907 if (cur_el > target_el) {
1908 return false;
1909 }
1910
1911 switch (excp_idx) {
1912 case EXCP_FIQ:
1913 pstate_unmasked = !(env->daif & PSTATE_F);
1914 break;
1915
1916 case EXCP_IRQ:
1917 pstate_unmasked = !(env->daif & PSTATE_I);
1918 break;
1919
1920 case EXCP_VFIQ:
1921 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1922 /* VFIQs are only taken when hypervized and non-secure. */
1923 return false;
1924 }
1925 return !(env->daif & PSTATE_F);
1926 case EXCP_VIRQ:
1927 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1928 /* VIRQs are only taken when hypervized and non-secure. */
1929 return false;
1930 }
1931 return !(env->daif & PSTATE_I);
1932 default:
1933 g_assert_not_reached();
1934 }
1935
1936 /* Use the target EL, current execution state and SCR/HCR settings to
1937 * determine whether the corresponding CPSR bit is used to mask the
1938 * interrupt.
1939 */
1940 if ((target_el > cur_el) && (target_el != 1)) {
1941 /* Exceptions targeting a higher EL may not be maskable */
1942 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1943 /* 64-bit masking rules are simple: exceptions to EL3
1944 * can't be masked, and exceptions to EL2 can only be
1945 * masked from Secure state. The HCR and SCR settings
1946 * don't affect the masking logic, only the interrupt routing.
1947 */
1948 if (target_el == 3 || !secure) {
1949 unmasked = 1;
1950 }
1951 } else {
1952 /* The old 32-bit-only environment has a more complicated
1953 * masking setup. HCR and SCR bits not only affect interrupt
1954 * routing but also change the behaviour of masking.
1955 */
1956 bool hcr, scr;
1957
1958 switch (excp_idx) {
1959 case EXCP_FIQ:
1960 /* If FIQs are routed to EL3 or EL2 then there are cases where
1961 * we override the CPSR.F in determining if the exception is
1962 * masked or not. If neither of these are set then we fall back
1963 * to the CPSR.F setting otherwise we further assess the state
1964 * below.
1965 */
1966 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1967 scr = (env->cp15.scr_el3 & SCR_FIQ);
1968
1969 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1970 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1971 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1972 * when non-secure but only when FIQs are only routed to EL3.
1973 */
1974 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1975 break;
1976 case EXCP_IRQ:
1977 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1978 * we may override the CPSR.I masking when in non-secure state.
1979 * The SCR.IRQ setting has already been taken into consideration
1980 * when setting the target EL, so it does not have a further
1981 * affect here.
1982 */
1983 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1984 scr = false;
1985 break;
1986 default:
1987 g_assert_not_reached();
1988 }
1989
1990 if ((scr || hcr) && !secure) {
1991 unmasked = 1;
1992 }
1993 }
1994 }
1995
1996 /* The PSTATE bits only mask the interrupt if we have not overriden the
1997 * ability above.
1998 */
1999 return unmasked || pstate_unmasked;
2000 }
2001
2002 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
2003
2004 #define cpu_signal_handler cpu_arm_signal_handler
2005 #define cpu_list arm_cpu_list
2006
2007 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2008 *
2009 * If EL3 is 64-bit:
2010 * + NonSecure EL1 & 0 stage 1
2011 * + NonSecure EL1 & 0 stage 2
2012 * + NonSecure EL2
2013 * + Secure EL1 & EL0
2014 * + Secure EL3
2015 * If EL3 is 32-bit:
2016 * + NonSecure PL1 & 0 stage 1
2017 * + NonSecure PL1 & 0 stage 2
2018 * + NonSecure PL2
2019 * + Secure PL0 & PL1
2020 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2021 *
2022 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2023 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2024 * may differ in access permissions even if the VA->PA map is the same
2025 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2026 * translation, which means that we have one mmu_idx that deals with two
2027 * concatenated translation regimes [this sort of combined s1+2 TLB is
2028 * architecturally permitted]
2029 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2030 * handling via the TLB. The only way to do a stage 1 translation without
2031 * the immediate stage 2 translation is via the ATS or AT system insns,
2032 * which can be slow-pathed and always do a page table walk.
2033 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2034 * translation regimes, because they map reasonably well to each other
2035 * and they can't both be active at the same time.
2036 * This gives us the following list of mmu_idx values:
2037 *
2038 * NS EL0 (aka NS PL0) stage 1+2
2039 * NS EL1 (aka NS PL1) stage 1+2
2040 * NS EL2 (aka NS PL2)
2041 * S EL3 (aka S PL1)
2042 * S EL0 (aka S PL0)
2043 * S EL1 (not used if EL3 is 32 bit)
2044 * NS EL0+1 stage 2
2045 *
2046 * (The last of these is an mmu_idx because we want to be able to use the TLB
2047 * for the accesses done as part of a stage 1 page table walk, rather than
2048 * having to walk the stage 2 page table over and over.)
2049 *
2050 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2051 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2052 * NS EL2 if we ever model a Cortex-R52).
2053 *
2054 * M profile CPUs are rather different as they do not have a true MMU.
2055 * They have the following different MMU indexes:
2056 * User
2057 * Privileged
2058 * Execution priority negative (this is like privileged, but the
2059 * MPU HFNMIENA bit means that it may have different access permission
2060 * check results to normal privileged code, so can't share a TLB).
2061 *
2062 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2063 * are not quite the same -- different CPU types (most notably M profile
2064 * vs A/R profile) would like to use MMU indexes with different semantics,
2065 * but since we don't ever need to use all of those in a single CPU we
2066 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2067 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2068 * the same for any particular CPU.
2069 * Variables of type ARMMUIdx are always full values, and the core
2070 * index values are in variables of type 'int'.
2071 *
2072 * Our enumeration includes at the end some entries which are not "true"
2073 * mmu_idx values in that they don't have corresponding TLBs and are only
2074 * valid for doing slow path page table walks.
2075 *
2076 * The constant names here are patterned after the general style of the names
2077 * of the AT/ATS operations.
2078 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2079 */
2080 #define ARM_MMU_IDX_A 0x10 /* A profile */
2081 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2082 #define ARM_MMU_IDX_M 0x40 /* M profile */
2083
2084 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2085 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2086
2087 typedef enum ARMMMUIdx {
2088 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2089 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2090 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2091 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2092 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2093 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2094 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2095 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2096 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2097 ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
2098 /* Indexes below here don't have TLBs and are used only for AT system
2099 * instructions or for the first stage of an S12 page table walk.
2100 */
2101 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2102 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2103 } ARMMMUIdx;
2104
2105 /* Bit macros for the core-mmu-index values for each index,
2106 * for use when calling tlb_flush_by_mmuidx() and friends.
2107 */
2108 typedef enum ARMMMUIdxBit {
2109 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2110 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2111 ARMMMUIdxBit_S1E2 = 1 << 2,
2112 ARMMMUIdxBit_S1E3 = 1 << 3,
2113 ARMMMUIdxBit_S1SE0 = 1 << 4,
2114 ARMMMUIdxBit_S1SE1 = 1 << 5,
2115 ARMMMUIdxBit_S2NS = 1 << 6,
2116 ARMMMUIdxBit_MUser = 1 << 0,
2117 ARMMMUIdxBit_MPriv = 1 << 1,
2118 ARMMMUIdxBit_MNegPri = 1 << 2,
2119 } ARMMMUIdxBit;
2120
2121 #define MMU_USER_IDX 0
2122
2123 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2124 {
2125 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2126 }
2127
2128 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2129 {
2130 if (arm_feature(env, ARM_FEATURE_M)) {
2131 return mmu_idx | ARM_MMU_IDX_M;
2132 } else {
2133 return mmu_idx | ARM_MMU_IDX_A;
2134 }
2135 }
2136
2137 /* Return the exception level we're running at if this is our mmu_idx */
2138 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2139 {
2140 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2141 case ARM_MMU_IDX_A:
2142 return mmu_idx & 3;
2143 case ARM_MMU_IDX_M:
2144 return mmu_idx == ARMMMUIdx_MUser ? 0 : 1;
2145 default:
2146 g_assert_not_reached();
2147 }
2148 }
2149
2150 /* Determine the current mmu_idx to use for normal loads/stores */
2151 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2152 {
2153 int el = arm_current_el(env);
2154
2155 if (arm_feature(env, ARM_FEATURE_M)) {
2156 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2157
2158 /* Execution priority is negative if FAULTMASK is set or
2159 * we're in a HardFault or NMI handler.
2160 */
2161 if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
2162 || env->daif & PSTATE_F) {
2163 return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri);
2164 }
2165
2166 return arm_to_core_mmu_idx(mmu_idx);
2167 }
2168
2169 if (el < 2 && arm_is_secure_below_el3(env)) {
2170 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2171 }
2172 return el;
2173 }
2174
2175 /* Indexes used when registering address spaces with cpu_address_space_init */
2176 typedef enum ARMASIdx {
2177 ARMASIdx_NS = 0,
2178 ARMASIdx_S = 1,
2179 } ARMASIdx;
2180
2181 /* Return the Exception Level targeted by debug exceptions. */
2182 static inline int arm_debug_target_el(CPUARMState *env)
2183 {
2184 bool secure = arm_is_secure(env);
2185 bool route_to_el2 = false;
2186
2187 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2188 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2189 env->cp15.mdcr_el2 & (1 << 8);
2190 }
2191
2192 if (route_to_el2) {
2193 return 2;
2194 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2195 !arm_el_is_aa64(env, 3) && secure) {
2196 return 3;
2197 } else {
2198 return 1;
2199 }
2200 }
2201
2202 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2203 {
2204 if (arm_is_secure(env)) {
2205 /* MDCR_EL3.SDD disables debug events from Secure state */
2206 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2207 || arm_current_el(env) == 3) {
2208 return false;
2209 }
2210 }
2211
2212 if (arm_current_el(env) == arm_debug_target_el(env)) {
2213 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2214 || (env->daif & PSTATE_D)) {
2215 return false;
2216 }
2217 }
2218 return true;
2219 }
2220
2221 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2222 {
2223 int el = arm_current_el(env);
2224
2225 if (el == 0 && arm_el_is_aa64(env, 1)) {
2226 return aa64_generate_debug_exceptions(env);
2227 }
2228
2229 if (arm_is_secure(env)) {
2230 int spd;
2231
2232 if (el == 0 && (env->cp15.sder & 1)) {
2233 /* SDER.SUIDEN means debug exceptions from Secure EL0
2234 * are always enabled. Otherwise they are controlled by
2235 * SDCR.SPD like those from other Secure ELs.
2236 */
2237 return true;
2238 }
2239
2240 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2241 switch (spd) {
2242 case 1:
2243 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2244 case 0:
2245 /* For 0b00 we return true if external secure invasive debug
2246 * is enabled. On real hardware this is controlled by external
2247 * signals to the core. QEMU always permits debug, and behaves
2248 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2249 */
2250 return true;
2251 case 2:
2252 return false;
2253 case 3:
2254 return true;
2255 }
2256 }
2257
2258 return el != 2;
2259 }
2260
2261 /* Return true if debugging exceptions are currently enabled.
2262 * This corresponds to what in ARM ARM pseudocode would be
2263 * if UsingAArch32() then
2264 * return AArch32.GenerateDebugExceptions()
2265 * else
2266 * return AArch64.GenerateDebugExceptions()
2267 * We choose to push the if() down into this function for clarity,
2268 * since the pseudocode has it at all callsites except for the one in
2269 * CheckSoftwareStep(), where it is elided because both branches would
2270 * always return the same value.
2271 *
2272 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2273 * don't yet implement those exception levels or their associated trap bits.
2274 */
2275 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2276 {
2277 if (env->aarch64) {
2278 return aa64_generate_debug_exceptions(env);
2279 } else {
2280 return aa32_generate_debug_exceptions(env);
2281 }
2282 }
2283
2284 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2285 * implicitly means this always returns false in pre-v8 CPUs.)
2286 */
2287 static inline bool arm_singlestep_active(CPUARMState *env)
2288 {
2289 return extract32(env->cp15.mdscr_el1, 0, 1)
2290 && arm_el_is_aa64(env, arm_debug_target_el(env))
2291 && arm_generate_debug_exceptions(env);
2292 }
2293
2294 static inline bool arm_sctlr_b(CPUARMState *env)
2295 {
2296 return
2297 /* We need not implement SCTLR.ITD in user-mode emulation, so
2298 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2299 * This lets people run BE32 binaries with "-cpu any".
2300 */
2301 #ifndef CONFIG_USER_ONLY
2302 !arm_feature(env, ARM_FEATURE_V7) &&
2303 #endif
2304 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2305 }
2306
2307 /* Return true if the processor is in big-endian mode. */
2308 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2309 {
2310 int cur_el;
2311
2312 /* In 32bit endianness is determined by looking at CPSR's E bit */
2313 if (!is_a64(env)) {
2314 return
2315 #ifdef CONFIG_USER_ONLY
2316 /* In system mode, BE32 is modelled in line with the
2317 * architecture (as word-invariant big-endianness), where loads
2318 * and stores are done little endian but from addresses which
2319 * are adjusted by XORing with the appropriate constant. So the
2320 * endianness to use for the raw data access is not affected by
2321 * SCTLR.B.
2322 * In user mode, however, we model BE32 as byte-invariant
2323 * big-endianness (because user-only code cannot tell the
2324 * difference), and so we need to use a data access endianness
2325 * that depends on SCTLR.B.
2326 */
2327 arm_sctlr_b(env) ||
2328 #endif
2329 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2330 }
2331
2332 cur_el = arm_current_el(env);
2333
2334 if (cur_el == 0) {
2335 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2336 }
2337
2338 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2339 }
2340
2341 #include "exec/cpu-all.h"
2342
2343 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2344 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2345 * We put flags which are shared between 32 and 64 bit mode at the top
2346 * of the word, and flags which apply to only one mode at the bottom.
2347 */
2348 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2349 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2350 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2351 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2352 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2353 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2354 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2355 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2356 /* Target EL if we take a floating-point-disabled exception */
2357 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2358 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2359
2360 /* Bit usage when in AArch32 state: */
2361 #define ARM_TBFLAG_THUMB_SHIFT 0
2362 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2363 #define ARM_TBFLAG_VECLEN_SHIFT 1
2364 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2365 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2366 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2367 #define ARM_TBFLAG_VFPEN_SHIFT 7
2368 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2369 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2370 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2371 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2372 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2373 /* We store the bottom two bits of the CPAR as TB flags and handle
2374 * checks on the other bits at runtime
2375 */
2376 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2377 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2378 /* Indicates whether cp register reads and writes by guest code should access
2379 * the secure or nonsecure bank of banked registers; note that this is not
2380 * the same thing as the current security state of the processor!
2381 */
2382 #define ARM_TBFLAG_NS_SHIFT 19
2383 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2384 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2385 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2386 /* For M profile only, Handler (ie not Thread) mode */
2387 #define ARM_TBFLAG_HANDLER_SHIFT 21
2388 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2389
2390 /* Bit usage when in AArch64 state */
2391 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2392 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2393 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2394 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2395
2396 /* some convenience accessor macros */
2397 #define ARM_TBFLAG_AARCH64_STATE(F) \
2398 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2399 #define ARM_TBFLAG_MMUIDX(F) \
2400 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2401 #define ARM_TBFLAG_SS_ACTIVE(F) \
2402 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2403 #define ARM_TBFLAG_PSTATE_SS(F) \
2404 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2405 #define ARM_TBFLAG_FPEXC_EL(F) \
2406 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2407 #define ARM_TBFLAG_THUMB(F) \
2408 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2409 #define ARM_TBFLAG_VECLEN(F) \
2410 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2411 #define ARM_TBFLAG_VECSTRIDE(F) \
2412 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2413 #define ARM_TBFLAG_VFPEN(F) \
2414 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2415 #define ARM_TBFLAG_CONDEXEC(F) \
2416 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2417 #define ARM_TBFLAG_SCTLR_B(F) \
2418 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2419 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2420 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2421 #define ARM_TBFLAG_NS(F) \
2422 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2423 #define ARM_TBFLAG_BE_DATA(F) \
2424 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2425 #define ARM_TBFLAG_HANDLER(F) \
2426 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2427 #define ARM_TBFLAG_TBI0(F) \
2428 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2429 #define ARM_TBFLAG_TBI1(F) \
2430 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2431
2432 static inline bool bswap_code(bool sctlr_b)
2433 {
2434 #ifdef CONFIG_USER_ONLY
2435 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2436 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2437 * would also end up as a mixed-endian mode with BE code, LE data.
2438 */
2439 return
2440 #ifdef TARGET_WORDS_BIGENDIAN
2441 1 ^
2442 #endif
2443 sctlr_b;
2444 #else
2445 /* All code access in ARM is little endian, and there are no loaders
2446 * doing swaps that need to be reversed
2447 */
2448 return 0;
2449 #endif
2450 }
2451
2452 /* Return the exception level to which FP-disabled exceptions should
2453 * be taken, or 0 if FP is enabled.
2454 */
2455 static inline int fp_exception_el(CPUARMState *env)
2456 {
2457 int fpen;
2458 int cur_el = arm_current_el(env);
2459
2460 /* CPACR and the CPTR registers don't exist before v6, so FP is
2461 * always accessible
2462 */
2463 if (!arm_feature(env, ARM_FEATURE_V6)) {
2464 return 0;
2465 }
2466
2467 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2468 * 0, 2 : trap EL0 and EL1/PL1 accesses
2469 * 1 : trap only EL0 accesses
2470 * 3 : trap no accesses
2471 */
2472 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2473 switch (fpen) {
2474 case 0:
2475 case 2:
2476 if (cur_el == 0 || cur_el == 1) {
2477 /* Trap to PL1, which might be EL1 or EL3 */
2478 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2479 return 3;
2480 }
2481 return 1;
2482 }
2483 if (cur_el == 3 && !is_a64(env)) {
2484 /* Secure PL1 running at EL3 */
2485 return 3;
2486 }
2487 break;
2488 case 1:
2489 if (cur_el == 0) {
2490 return 1;
2491 }
2492 break;
2493 case 3:
2494 break;
2495 }
2496
2497 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2498 * check because zero bits in the registers mean "don't trap".
2499 */
2500
2501 /* CPTR_EL2 : present in v7VE or v8 */
2502 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2503 && !arm_is_secure_below_el3(env)) {
2504 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2505 return 2;
2506 }
2507
2508 /* CPTR_EL3 : present in v8 */
2509 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2510 /* Trap all FP ops to EL3 */
2511 return 3;
2512 }
2513
2514 return 0;
2515 }
2516
2517 #ifdef CONFIG_USER_ONLY
2518 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2519 {
2520 return
2521 #ifdef TARGET_WORDS_BIGENDIAN
2522 1 ^
2523 #endif
2524 arm_cpu_data_is_big_endian(env);
2525 }
2526 #endif
2527
2528 #ifndef CONFIG_USER_ONLY
2529 /**
2530 * arm_regime_tbi0:
2531 * @env: CPUARMState
2532 * @mmu_idx: MMU index indicating required translation regime
2533 *
2534 * Extracts the TBI0 value from the appropriate TCR for the current EL
2535 *
2536 * Returns: the TBI0 value.
2537 */
2538 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2539
2540 /**
2541 * arm_regime_tbi1:
2542 * @env: CPUARMState
2543 * @mmu_idx: MMU index indicating required translation regime
2544 *
2545 * Extracts the TBI1 value from the appropriate TCR for the current EL
2546 *
2547 * Returns: the TBI1 value.
2548 */
2549 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2550 #else
2551 /* We can't handle tagged addresses properly in user-only mode */
2552 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2553 {
2554 return 0;
2555 }
2556
2557 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2558 {
2559 return 0;
2560 }
2561 #endif
2562
2563 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2564 target_ulong *cs_base, uint32_t *flags)
2565 {
2566 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2567 if (is_a64(env)) {
2568 *pc = env->pc;
2569 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2570 /* Get control bits for tagged addresses */
2571 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2572 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2573 } else {
2574 *pc = env->regs[15];
2575 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2576 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2577 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2578 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2579 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2580 if (!(access_secure_reg(env))) {
2581 *flags |= ARM_TBFLAG_NS_MASK;
2582 }
2583 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2584 || arm_el_is_aa64(env, 1)) {
2585 *flags |= ARM_TBFLAG_VFPEN_MASK;
2586 }
2587 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2588 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2589 }
2590
2591 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2592
2593 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2594 * states defined in the ARM ARM for software singlestep:
2595 * SS_ACTIVE PSTATE.SS State
2596 * 0 x Inactive (the TB flag for SS is always 0)
2597 * 1 0 Active-pending
2598 * 1 1 Active-not-pending
2599 */
2600 if (arm_singlestep_active(env)) {
2601 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2602 if (is_a64(env)) {
2603 if (env->pstate & PSTATE_SS) {
2604 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2605 }
2606 } else {
2607 if (env->uncached_cpsr & PSTATE_SS) {
2608 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2609 }
2610 }
2611 }
2612 if (arm_cpu_data_is_big_endian(env)) {
2613 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2614 }
2615 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2616
2617 if (env->v7m.exception != 0) {
2618 *flags |= ARM_TBFLAG_HANDLER_MASK;
2619 }
2620
2621 *cs_base = 0;
2622 }
2623
2624 enum {
2625 QEMU_PSCI_CONDUIT_DISABLED = 0,
2626 QEMU_PSCI_CONDUIT_SMC = 1,
2627 QEMU_PSCI_CONDUIT_HVC = 2,
2628 };
2629
2630 #ifndef CONFIG_USER_ONLY
2631 /* Return the address space index to use for a memory access */
2632 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2633 {
2634 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2635 }
2636
2637 /* Return the AddressSpace to use for a memory access
2638 * (which depends on whether the access is S or NS, and whether
2639 * the board gave us a separate AddressSpace for S accesses).
2640 */
2641 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2642 {
2643 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2644 }
2645 #endif
2646
2647 /**
2648 * arm_register_el_change_hook:
2649 * Register a hook function which will be called back whenever this
2650 * CPU changes exception level or mode. The hook function will be
2651 * passed a pointer to the ARMCPU and the opaque data pointer passed
2652 * to this function when the hook was registered.
2653 *
2654 * Note that we currently only support registering a single hook function,
2655 * and will assert if this function is called twice.
2656 * This facility is intended for the use of the GICv3 emulation.
2657 */
2658 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2659 void *opaque);
2660
2661 /**
2662 * arm_get_el_change_hook_opaque:
2663 * Return the opaque data that will be used by the el_change_hook
2664 * for this CPU.
2665 */
2666 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2667 {
2668 return cpu->el_change_hook_opaque;
2669 }
2670
2671 #endif