]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
af89509f5a963e1e89951bfe574c9038692a325c
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO (0)
31
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35
36 #define EXCP_UDEF 1 /* undefined instruction */
37 #define EXCP_SWI 2 /* software interrupt */
38 #define EXCP_PREFETCH_ABORT 3
39 #define EXCP_DATA_ABORT 4
40 #define EXCP_IRQ 5
41 #define EXCP_FIQ 6
42 #define EXCP_BKPT 7
43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
45 #define EXCP_HVC 11 /* HyperVisor Call */
46 #define EXCP_HYP_TRAP 12
47 #define EXCP_SMC 13 /* Secure Monitor Call */
48 #define EXCP_VIRQ 14
49 #define EXCP_VFIQ 15
50 #define EXCP_SEMIHOST 16 /* semihosting call */
51 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
57 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
58 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
59
60 #define ARMV7M_EXCP_RESET 1
61 #define ARMV7M_EXCP_NMI 2
62 #define ARMV7M_EXCP_HARD 3
63 #define ARMV7M_EXCP_MEM 4
64 #define ARMV7M_EXCP_BUS 5
65 #define ARMV7M_EXCP_USAGE 6
66 #define ARMV7M_EXCP_SECURE 7
67 #define ARMV7M_EXCP_SVC 11
68 #define ARMV7M_EXCP_DEBUG 12
69 #define ARMV7M_EXCP_PENDSV 14
70 #define ARMV7M_EXCP_SYSTICK 15
71
72 /* For M profile, some registers are banked secure vs non-secure;
73 * these are represented as a 2-element array where the first element
74 * is the non-secure copy and the second is the secure copy.
75 * When the CPU does not have implement the security extension then
76 * only the first element is used.
77 * This means that the copy for the current security state can be
78 * accessed via env->registerfield[env->v7m.secure] (whether the security
79 * extension is implemented or not).
80 */
81 enum {
82 M_REG_NS = 0,
83 M_REG_S = 1,
84 M_REG_NUM_BANKS = 2,
85 };
86
87 /* ARM-specific interrupt pending bits. */
88 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
89 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
90 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
91
92 /* The usual mapping for an AArch64 system register to its AArch32
93 * counterpart is for the 32 bit world to have access to the lower
94 * half only (with writes leaving the upper half untouched). It's
95 * therefore useful to be able to pass TCG the offset of the least
96 * significant half of a uint64_t struct member.
97 */
98 #ifdef HOST_WORDS_BIGENDIAN
99 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #define offsetofhigh32(S, M) offsetof(S, M)
101 #else
102 #define offsetoflow32(S, M) offsetof(S, M)
103 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #endif
105
106 /* Meanings of the ARMCPU object's four inbound GPIO lines */
107 #define ARM_CPU_IRQ 0
108 #define ARM_CPU_FIQ 1
109 #define ARM_CPU_VIRQ 2
110 #define ARM_CPU_VFIQ 3
111
112 /* ARM-specific extra insn start words:
113 * 1: Conditional execution bits
114 * 2: Partial exception syndrome for data aborts
115 */
116 #define TARGET_INSN_START_EXTRA_WORDS 2
117
118 /* The 2nd extra word holding syndrome info for data aborts does not use
119 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
120 * help the sleb128 encoder do a better job.
121 * When restoring the CPU state, we shift it back up.
122 */
123 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
124 #define ARM_INSN_START_WORD2_SHIFT 14
125
126 /* We currently assume float and double are IEEE single and double
127 precision respectively.
128 Doing runtime conversions is tricky because VFP registers may contain
129 integer values (eg. as the result of a FTOSI instruction).
130 s<2n> maps to the least significant half of d<n>
131 s<2n+1> maps to the most significant half of d<n>
132 */
133
134 /**
135 * DynamicGDBXMLInfo:
136 * @desc: Contains the XML descriptions.
137 * @num: Number of the registers in this XML seen by GDB.
138 * @data: A union with data specific to the set of registers
139 * @cpregs_keys: Array that contains the corresponding Key of
140 * a given cpreg with the same order of the cpreg
141 * in the XML description.
142 */
143 typedef struct DynamicGDBXMLInfo {
144 char *desc;
145 int num;
146 union {
147 struct {
148 uint32_t *keys;
149 } cpregs;
150 } data;
151 } DynamicGDBXMLInfo;
152
153 /* CPU state for each instance of a generic timer (in cp15 c14) */
154 typedef struct ARMGenericTimer {
155 uint64_t cval; /* Timer CompareValue register */
156 uint64_t ctl; /* Timer Control register */
157 } ARMGenericTimer;
158
159 #define GTIMER_PHYS 0
160 #define GTIMER_VIRT 1
161 #define GTIMER_HYP 2
162 #define GTIMER_SEC 3
163 #define GTIMER_HYPVIRT 4
164 #define NUM_GTIMERS 5
165
166 typedef struct {
167 uint64_t raw_tcr;
168 uint32_t mask;
169 uint32_t base_mask;
170 } TCR;
171
172 #define VTCR_NSW (1u << 29)
173 #define VTCR_NSA (1u << 30)
174 #define VSTCR_SW VTCR_NSW
175 #define VSTCR_SA VTCR_NSA
176
177 /* Define a maximum sized vector register.
178 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
179 * For 64-bit, this is a 2048-bit SVE register.
180 *
181 * Note that the mapping between S, D, and Q views of the register bank
182 * differs between AArch64 and AArch32.
183 * In AArch32:
184 * Qn = regs[n].d[1]:regs[n].d[0]
185 * Dn = regs[n / 2].d[n & 1]
186 * Sn = regs[n / 4].d[n % 4 / 2],
187 * bits 31..0 for even n, and bits 63..32 for odd n
188 * (and regs[16] to regs[31] are inaccessible)
189 * In AArch64:
190 * Zn = regs[n].d[*]
191 * Qn = regs[n].d[1]:regs[n].d[0]
192 * Dn = regs[n].d[0]
193 * Sn = regs[n].d[0] bits 31..0
194 * Hn = regs[n].d[0] bits 15..0
195 *
196 * This corresponds to the architecturally defined mapping between
197 * the two execution states, and means we do not need to explicitly
198 * map these registers when changing states.
199 *
200 * Align the data for use with TCG host vector operations.
201 */
202
203 #ifdef TARGET_AARCH64
204 # define ARM_MAX_VQ 16
205 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
206 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
207 #else
208 # define ARM_MAX_VQ 1
209 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
210 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
211 #endif
212
213 typedef struct ARMVectorReg {
214 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
215 } ARMVectorReg;
216
217 #ifdef TARGET_AARCH64
218 /* In AArch32 mode, predicate registers do not exist at all. */
219 typedef struct ARMPredicateReg {
220 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
221 } ARMPredicateReg;
222
223 /* In AArch32 mode, PAC keys do not exist at all. */
224 typedef struct ARMPACKey {
225 uint64_t lo, hi;
226 } ARMPACKey;
227 #endif
228
229 /* See the commentary above the TBFLAG field definitions. */
230 typedef struct CPUARMTBFlags {
231 uint32_t flags;
232 target_ulong flags2;
233 } CPUARMTBFlags;
234
235 typedef struct CPUArchState {
236 /* Regs for current mode. */
237 uint32_t regs[16];
238
239 /* 32/64 switch only happens when taking and returning from
240 * exceptions so the overlap semantics are taken care of then
241 * instead of having a complicated union.
242 */
243 /* Regs for A64 mode. */
244 uint64_t xregs[32];
245 uint64_t pc;
246 /* PSTATE isn't an architectural register for ARMv8. However, it is
247 * convenient for us to assemble the underlying state into a 32 bit format
248 * identical to the architectural format used for the SPSR. (This is also
249 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
250 * 'pstate' register are.) Of the PSTATE bits:
251 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
252 * semantics as for AArch32, as described in the comments on each field)
253 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
254 * DAIF (exception masks) are kept in env->daif
255 * BTYPE is kept in env->btype
256 * all other bits are stored in their correct places in env->pstate
257 */
258 uint32_t pstate;
259 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
260
261 /* Cached TBFLAGS state. See below for which bits are included. */
262 CPUARMTBFlags hflags;
263
264 /* Frequently accessed CPSR bits are stored separately for efficiency.
265 This contains all the other bits. Use cpsr_{read,write} to access
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
271 uint64_t banked_spsr[8];
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
274
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
278
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
284 uint32_t QF; /* 0 or 1 */
285 uint32_t GE; /* cpsr[19:16] */
286 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
287 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
288 uint32_t btype; /* BTI branch type. spsr[11:10]. */
289 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
290
291 uint64_t elr_el[4]; /* AArch64 exception link regs */
292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
293
294 /* System control coprocessor (cp15) */
295 struct {
296 uint32_t c0_cpuid;
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
315 uint64_t cpacr_el1; /* Architectural feature access control register */
316 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
317 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
318 uint64_t sder; /* Secure debug enable register. */
319 uint32_t nsacr; /* Non-secure access control register. */
320 union { /* MMU translation table base 0. */
321 struct {
322 uint64_t _unused_ttbr0_0;
323 uint64_t ttbr0_ns;
324 uint64_t _unused_ttbr0_1;
325 uint64_t ttbr0_s;
326 };
327 uint64_t ttbr0_el[4];
328 };
329 union { /* MMU translation table base 1. */
330 struct {
331 uint64_t _unused_ttbr1_0;
332 uint64_t ttbr1_ns;
333 uint64_t _unused_ttbr1_1;
334 uint64_t ttbr1_s;
335 };
336 uint64_t ttbr1_el[4];
337 };
338 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
339 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
340 /* MMU translation table base control. */
341 TCR tcr_el[4];
342 TCR vtcr_el2; /* Virtualization Translation Control. */
343 TCR vstcr_el2; /* Secure Virtualization Translation Control. */
344 uint32_t c2_data; /* MPU data cacheable bits. */
345 uint32_t c2_insn; /* MPU instruction cacheable bits. */
346 union { /* MMU domain access control register
347 * MPU write buffer control.
348 */
349 struct {
350 uint64_t dacr_ns;
351 uint64_t dacr_s;
352 };
353 struct {
354 uint64_t dacr32_el2;
355 };
356 };
357 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
358 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
359 uint64_t hcr_el2; /* Hypervisor configuration register */
360 uint64_t scr_el3; /* Secure configuration register. */
361 union { /* Fault status registers. */
362 struct {
363 uint64_t ifsr_ns;
364 uint64_t ifsr_s;
365 };
366 struct {
367 uint64_t ifsr32_el2;
368 };
369 };
370 union {
371 struct {
372 uint64_t _unused_dfsr;
373 uint64_t dfsr_ns;
374 uint64_t hsr;
375 uint64_t dfsr_s;
376 };
377 uint64_t esr_el[4];
378 };
379 uint32_t c6_region[8]; /* MPU base/size registers. */
380 union { /* Fault address registers. */
381 struct {
382 uint64_t _unused_far0;
383 #ifdef HOST_WORDS_BIGENDIAN
384 uint32_t ifar_ns;
385 uint32_t dfar_ns;
386 uint32_t ifar_s;
387 uint32_t dfar_s;
388 #else
389 uint32_t dfar_ns;
390 uint32_t ifar_ns;
391 uint32_t dfar_s;
392 uint32_t ifar_s;
393 #endif
394 uint64_t _unused_far3;
395 };
396 uint64_t far_el[4];
397 };
398 uint64_t hpfar_el2;
399 uint64_t hstr_el2;
400 union { /* Translation result. */
401 struct {
402 uint64_t _unused_par_0;
403 uint64_t par_ns;
404 uint64_t _unused_par_1;
405 uint64_t par_s;
406 };
407 uint64_t par_el[4];
408 };
409
410 uint32_t c9_insn; /* Cache lockdown registers. */
411 uint32_t c9_data;
412 uint64_t c9_pmcr; /* performance monitor control register */
413 uint64_t c9_pmcnten; /* perf monitor counter enables */
414 uint64_t c9_pmovsr; /* perf monitor overflow status */
415 uint64_t c9_pmuserenr; /* perf monitor user enable */
416 uint64_t c9_pmselr; /* perf monitor counter selection register */
417 uint64_t c9_pminten; /* perf monitor interrupt enables */
418 union { /* Memory attribute redirection */
419 struct {
420 #ifdef HOST_WORDS_BIGENDIAN
421 uint64_t _unused_mair_0;
422 uint32_t mair1_ns;
423 uint32_t mair0_ns;
424 uint64_t _unused_mair_1;
425 uint32_t mair1_s;
426 uint32_t mair0_s;
427 #else
428 uint64_t _unused_mair_0;
429 uint32_t mair0_ns;
430 uint32_t mair1_ns;
431 uint64_t _unused_mair_1;
432 uint32_t mair0_s;
433 uint32_t mair1_s;
434 #endif
435 };
436 uint64_t mair_el[4];
437 };
438 union { /* vector base address register */
439 struct {
440 uint64_t _unused_vbar;
441 uint64_t vbar_ns;
442 uint64_t hvbar;
443 uint64_t vbar_s;
444 };
445 uint64_t vbar_el[4];
446 };
447 uint32_t mvbar; /* (monitor) vector base address register */
448 struct { /* FCSE PID. */
449 uint32_t fcseidr_ns;
450 uint32_t fcseidr_s;
451 };
452 union { /* Context ID. */
453 struct {
454 uint64_t _unused_contextidr_0;
455 uint64_t contextidr_ns;
456 uint64_t _unused_contextidr_1;
457 uint64_t contextidr_s;
458 };
459 uint64_t contextidr_el[4];
460 };
461 union { /* User RW Thread register. */
462 struct {
463 uint64_t tpidrurw_ns;
464 uint64_t tpidrprw_ns;
465 uint64_t htpidr;
466 uint64_t _tpidr_el3;
467 };
468 uint64_t tpidr_el[4];
469 };
470 /* The secure banks of these registers don't map anywhere */
471 uint64_t tpidrurw_s;
472 uint64_t tpidrprw_s;
473 uint64_t tpidruro_s;
474
475 union { /* User RO Thread register. */
476 uint64_t tpidruro_ns;
477 uint64_t tpidrro_el[1];
478 };
479 uint64_t c14_cntfrq; /* Counter Frequency register */
480 uint64_t c14_cntkctl; /* Timer Control register */
481 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
482 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
483 ARMGenericTimer c14_timer[NUM_GTIMERS];
484 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
485 uint32_t c15_ticonfig; /* TI925T configuration byte. */
486 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
487 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
488 uint32_t c15_threadid; /* TI debugger thread-ID. */
489 uint32_t c15_config_base_address; /* SCU base address. */
490 uint32_t c15_diagnostic; /* diagnostic register */
491 uint32_t c15_power_diagnostic;
492 uint32_t c15_power_control; /* power control */
493 uint64_t dbgbvr[16]; /* breakpoint value registers */
494 uint64_t dbgbcr[16]; /* breakpoint control registers */
495 uint64_t dbgwvr[16]; /* watchpoint value registers */
496 uint64_t dbgwcr[16]; /* watchpoint control registers */
497 uint64_t mdscr_el1;
498 uint64_t oslsr_el1; /* OS Lock Status */
499 uint64_t mdcr_el2;
500 uint64_t mdcr_el3;
501 /* Stores the architectural value of the counter *the last time it was
502 * updated* by pmccntr_op_start. Accesses should always be surrounded
503 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
504 * architecturally-correct value is being read/set.
505 */
506 uint64_t c15_ccnt;
507 /* Stores the delta between the architectural value and the underlying
508 * cycle count during normal operation. It is used to update c15_ccnt
509 * to be the correct architectural value before accesses. During
510 * accesses, c15_ccnt_delta contains the underlying count being used
511 * for the access, after which it reverts to the delta value in
512 * pmccntr_op_finish.
513 */
514 uint64_t c15_ccnt_delta;
515 uint64_t c14_pmevcntr[31];
516 uint64_t c14_pmevcntr_delta[31];
517 uint64_t c14_pmevtyper[31];
518 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
519 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
520 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
521 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
522 uint64_t gcr_el1;
523 uint64_t rgsr_el1;
524 } cp15;
525
526 struct {
527 /* M profile has up to 4 stack pointers:
528 * a Main Stack Pointer and a Process Stack Pointer for each
529 * of the Secure and Non-Secure states. (If the CPU doesn't support
530 * the security extension then it has only two SPs.)
531 * In QEMU we always store the currently active SP in regs[13],
532 * and the non-active SP for the current security state in
533 * v7m.other_sp. The stack pointers for the inactive security state
534 * are stored in other_ss_msp and other_ss_psp.
535 * switch_v7m_security_state() is responsible for rearranging them
536 * when we change security state.
537 */
538 uint32_t other_sp;
539 uint32_t other_ss_msp;
540 uint32_t other_ss_psp;
541 uint32_t vecbase[M_REG_NUM_BANKS];
542 uint32_t basepri[M_REG_NUM_BANKS];
543 uint32_t control[M_REG_NUM_BANKS];
544 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
545 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
546 uint32_t hfsr; /* HardFault Status */
547 uint32_t dfsr; /* Debug Fault Status Register */
548 uint32_t sfsr; /* Secure Fault Status Register */
549 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
550 uint32_t bfar; /* BusFault Address */
551 uint32_t sfar; /* Secure Fault Address Register */
552 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
553 int exception;
554 uint32_t primask[M_REG_NUM_BANKS];
555 uint32_t faultmask[M_REG_NUM_BANKS];
556 uint32_t aircr; /* only holds r/w state if security extn implemented */
557 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
558 uint32_t csselr[M_REG_NUM_BANKS];
559 uint32_t scr[M_REG_NUM_BANKS];
560 uint32_t msplim[M_REG_NUM_BANKS];
561 uint32_t psplim[M_REG_NUM_BANKS];
562 uint32_t fpcar[M_REG_NUM_BANKS];
563 uint32_t fpccr[M_REG_NUM_BANKS];
564 uint32_t fpdscr[M_REG_NUM_BANKS];
565 uint32_t cpacr[M_REG_NUM_BANKS];
566 uint32_t nsacr;
567 uint32_t ltpsize;
568 uint32_t vpr;
569 } v7m;
570
571 /* Information associated with an exception about to be taken:
572 * code which raises an exception must set cs->exception_index and
573 * the relevant parts of this structure; the cpu_do_interrupt function
574 * will then set the guest-visible registers as part of the exception
575 * entry process.
576 */
577 struct {
578 uint32_t syndrome; /* AArch64 format syndrome register */
579 uint32_t fsr; /* AArch32 format fault status register info */
580 uint64_t vaddress; /* virtual addr associated with exception, if any */
581 uint32_t target_el; /* EL the exception should be targeted for */
582 /* If we implement EL2 we will also need to store information
583 * about the intermediate physical address for stage 2 faults.
584 */
585 } exception;
586
587 /* Information associated with an SError */
588 struct {
589 uint8_t pending;
590 uint8_t has_esr;
591 uint64_t esr;
592 } serror;
593
594 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
595
596 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
597 uint32_t irq_line_state;
598
599 /* Thumb-2 EE state. */
600 uint32_t teecr;
601 uint32_t teehbr;
602
603 /* VFP coprocessor state. */
604 struct {
605 ARMVectorReg zregs[32];
606
607 #ifdef TARGET_AARCH64
608 /* Store FFR as pregs[16] to make it easier to treat as any other. */
609 #define FFR_PRED_NUM 16
610 ARMPredicateReg pregs[17];
611 /* Scratch space for aa64 sve predicate temporary. */
612 ARMPredicateReg preg_tmp;
613 #endif
614
615 /* We store these fpcsr fields separately for convenience. */
616 uint32_t qc[4] QEMU_ALIGNED(16);
617 int vec_len;
618 int vec_stride;
619
620 uint32_t xregs[16];
621
622 /* Scratch space for aa32 neon expansion. */
623 uint32_t scratch[8];
624
625 /* There are a number of distinct float control structures:
626 *
627 * fp_status: is the "normal" fp status.
628 * fp_status_fp16: used for half-precision calculations
629 * standard_fp_status : the ARM "Standard FPSCR Value"
630 * standard_fp_status_fp16 : used for half-precision
631 * calculations with the ARM "Standard FPSCR Value"
632 *
633 * Half-precision operations are governed by a separate
634 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
635 * status structure to control this.
636 *
637 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
638 * round-to-nearest and is used by any operations (generally
639 * Neon) which the architecture defines as controlled by the
640 * standard FPSCR value rather than the FPSCR.
641 *
642 * The "standard FPSCR but for fp16 ops" is needed because
643 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
644 * using a fixed value for it.
645 *
646 * To avoid having to transfer exception bits around, we simply
647 * say that the FPSCR cumulative exception flags are the logical
648 * OR of the flags in the four fp statuses. This relies on the
649 * only thing which needs to read the exception flags being
650 * an explicit FPSCR read.
651 */
652 float_status fp_status;
653 float_status fp_status_f16;
654 float_status standard_fp_status;
655 float_status standard_fp_status_f16;
656
657 /* ZCR_EL[1-3] */
658 uint64_t zcr_el[4];
659 } vfp;
660 uint64_t exclusive_addr;
661 uint64_t exclusive_val;
662 uint64_t exclusive_high;
663
664 /* iwMMXt coprocessor state. */
665 struct {
666 uint64_t regs[16];
667 uint64_t val;
668
669 uint32_t cregs[16];
670 } iwmmxt;
671
672 #ifdef TARGET_AARCH64
673 struct {
674 ARMPACKey apia;
675 ARMPACKey apib;
676 ARMPACKey apda;
677 ARMPACKey apdb;
678 ARMPACKey apga;
679 } keys;
680 #endif
681
682 #if defined(CONFIG_USER_ONLY)
683 /* For usermode syscall translation. */
684 int eabi;
685 #endif
686
687 struct CPUBreakpoint *cpu_breakpoint[16];
688 struct CPUWatchpoint *cpu_watchpoint[16];
689
690 /* Fields up to this point are cleared by a CPU reset */
691 struct {} end_reset_fields;
692
693 /* Fields after this point are preserved across CPU reset. */
694
695 /* Internal CPU feature flags. */
696 uint64_t features;
697
698 /* PMSAv7 MPU */
699 struct {
700 uint32_t *drbar;
701 uint32_t *drsr;
702 uint32_t *dracr;
703 uint32_t rnr[M_REG_NUM_BANKS];
704 } pmsav7;
705
706 /* PMSAv8 MPU */
707 struct {
708 /* The PMSAv8 implementation also shares some PMSAv7 config
709 * and state:
710 * pmsav7.rnr (region number register)
711 * pmsav7_dregion (number of configured regions)
712 */
713 uint32_t *rbar[M_REG_NUM_BANKS];
714 uint32_t *rlar[M_REG_NUM_BANKS];
715 uint32_t mair0[M_REG_NUM_BANKS];
716 uint32_t mair1[M_REG_NUM_BANKS];
717 } pmsav8;
718
719 /* v8M SAU */
720 struct {
721 uint32_t *rbar;
722 uint32_t *rlar;
723 uint32_t rnr;
724 uint32_t ctrl;
725 } sau;
726
727 void *nvic;
728 const struct arm_boot_info *boot_info;
729 /* Store GICv3CPUState to access from this struct */
730 void *gicv3state;
731
732 #ifdef TARGET_TAGGED_ADDRESSES
733 /* Linux syscall tagged address support */
734 bool tagged_addr_enable;
735 #endif
736 } CPUARMState;
737
738 static inline void set_feature(CPUARMState *env, int feature)
739 {
740 env->features |= 1ULL << feature;
741 }
742
743 static inline void unset_feature(CPUARMState *env, int feature)
744 {
745 env->features &= ~(1ULL << feature);
746 }
747
748 /**
749 * ARMELChangeHookFn:
750 * type of a function which can be registered via arm_register_el_change_hook()
751 * to get callbacks when the CPU changes its exception level or mode.
752 */
753 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
754 typedef struct ARMELChangeHook ARMELChangeHook;
755 struct ARMELChangeHook {
756 ARMELChangeHookFn *hook;
757 void *opaque;
758 QLIST_ENTRY(ARMELChangeHook) node;
759 };
760
761 /* These values map onto the return values for
762 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
763 typedef enum ARMPSCIState {
764 PSCI_ON = 0,
765 PSCI_OFF = 1,
766 PSCI_ON_PENDING = 2
767 } ARMPSCIState;
768
769 typedef struct ARMISARegisters ARMISARegisters;
770
771 /**
772 * ARMCPU:
773 * @env: #CPUARMState
774 *
775 * An ARM CPU core.
776 */
777 struct ARMCPU {
778 /*< private >*/
779 CPUState parent_obj;
780 /*< public >*/
781
782 CPUNegativeOffsetState neg;
783 CPUARMState env;
784
785 /* Coprocessor information */
786 GHashTable *cp_regs;
787 /* For marshalling (mostly coprocessor) register state between the
788 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
789 * we use these arrays.
790 */
791 /* List of register indexes managed via these arrays; (full KVM style
792 * 64 bit indexes, not CPRegInfo 32 bit indexes)
793 */
794 uint64_t *cpreg_indexes;
795 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
796 uint64_t *cpreg_values;
797 /* Length of the indexes, values, reset_values arrays */
798 int32_t cpreg_array_len;
799 /* These are used only for migration: incoming data arrives in
800 * these fields and is sanity checked in post_load before copying
801 * to the working data structures above.
802 */
803 uint64_t *cpreg_vmstate_indexes;
804 uint64_t *cpreg_vmstate_values;
805 int32_t cpreg_vmstate_array_len;
806
807 DynamicGDBXMLInfo dyn_sysreg_xml;
808 DynamicGDBXMLInfo dyn_svereg_xml;
809
810 /* Timers used by the generic (architected) timer */
811 QEMUTimer *gt_timer[NUM_GTIMERS];
812 /*
813 * Timer used by the PMU. Its state is restored after migration by
814 * pmu_op_finish() - it does not need other handling during migration
815 */
816 QEMUTimer *pmu_timer;
817 /* GPIO outputs for generic timer */
818 qemu_irq gt_timer_outputs[NUM_GTIMERS];
819 /* GPIO output for GICv3 maintenance interrupt signal */
820 qemu_irq gicv3_maintenance_interrupt;
821 /* GPIO output for the PMU interrupt */
822 qemu_irq pmu_interrupt;
823
824 /* MemoryRegion to use for secure physical accesses */
825 MemoryRegion *secure_memory;
826
827 /* MemoryRegion to use for allocation tag accesses */
828 MemoryRegion *tag_memory;
829 MemoryRegion *secure_tag_memory;
830
831 /* For v8M, pointer to the IDAU interface provided by board/SoC */
832 Object *idau;
833
834 /* 'compatible' string for this CPU for Linux device trees */
835 const char *dtb_compatible;
836
837 /* PSCI version for this CPU
838 * Bits[31:16] = Major Version
839 * Bits[15:0] = Minor Version
840 */
841 uint32_t psci_version;
842
843 /* Current power state, access guarded by BQL */
844 ARMPSCIState power_state;
845
846 /* CPU has virtualization extension */
847 bool has_el2;
848 /* CPU has security extension */
849 bool has_el3;
850 /* CPU has PMU (Performance Monitor Unit) */
851 bool has_pmu;
852 /* CPU has VFP */
853 bool has_vfp;
854 /* CPU has Neon */
855 bool has_neon;
856 /* CPU has M-profile DSP extension */
857 bool has_dsp;
858
859 /* CPU has memory protection unit */
860 bool has_mpu;
861 /* PMSAv7 MPU number of supported regions */
862 uint32_t pmsav7_dregion;
863 /* v8M SAU number of supported regions */
864 uint32_t sau_sregion;
865
866 /* PSCI conduit used to invoke PSCI methods
867 * 0 - disabled, 1 - smc, 2 - hvc
868 */
869 uint32_t psci_conduit;
870
871 /* For v8M, initial value of the Secure VTOR */
872 uint32_t init_svtor;
873 /* For v8M, initial value of the Non-secure VTOR */
874 uint32_t init_nsvtor;
875
876 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
877 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
878 */
879 uint32_t kvm_target;
880
881 /* KVM init features for this CPU */
882 uint32_t kvm_init_features[7];
883
884 /* KVM CPU state */
885
886 /* KVM virtual time adjustment */
887 bool kvm_adjvtime;
888 bool kvm_vtime_dirty;
889 uint64_t kvm_vtime;
890
891 /* KVM steal time */
892 OnOffAuto kvm_steal_time;
893
894 /* Uniprocessor system with MP extensions */
895 bool mp_is_up;
896
897 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
898 * and the probe failed (so we need to report the error in realize)
899 */
900 bool host_cpu_probe_failed;
901
902 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
903 * register.
904 */
905 int32_t core_count;
906
907 /* The instance init functions for implementation-specific subclasses
908 * set these fields to specify the implementation-dependent values of
909 * various constant registers and reset values of non-constant
910 * registers.
911 * Some of these might become QOM properties eventually.
912 * Field names match the official register names as defined in the
913 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
914 * is used for reset values of non-constant registers; no reset_
915 * prefix means a constant register.
916 * Some of these registers are split out into a substructure that
917 * is shared with the translators to control the ISA.
918 *
919 * Note that if you add an ID register to the ARMISARegisters struct
920 * you need to also update the 32-bit and 64-bit versions of the
921 * kvm_arm_get_host_cpu_features() function to correctly populate the
922 * field by reading the value from the KVM vCPU.
923 */
924 struct ARMISARegisters {
925 uint32_t id_isar0;
926 uint32_t id_isar1;
927 uint32_t id_isar2;
928 uint32_t id_isar3;
929 uint32_t id_isar4;
930 uint32_t id_isar5;
931 uint32_t id_isar6;
932 uint32_t id_mmfr0;
933 uint32_t id_mmfr1;
934 uint32_t id_mmfr2;
935 uint32_t id_mmfr3;
936 uint32_t id_mmfr4;
937 uint32_t id_pfr0;
938 uint32_t id_pfr1;
939 uint32_t id_pfr2;
940 uint32_t mvfr0;
941 uint32_t mvfr1;
942 uint32_t mvfr2;
943 uint32_t id_dfr0;
944 uint32_t dbgdidr;
945 uint64_t id_aa64isar0;
946 uint64_t id_aa64isar1;
947 uint64_t id_aa64pfr0;
948 uint64_t id_aa64pfr1;
949 uint64_t id_aa64mmfr0;
950 uint64_t id_aa64mmfr1;
951 uint64_t id_aa64mmfr2;
952 uint64_t id_aa64dfr0;
953 uint64_t id_aa64dfr1;
954 uint64_t id_aa64zfr0;
955 } isar;
956 uint64_t midr;
957 uint32_t revidr;
958 uint32_t reset_fpsid;
959 uint64_t ctr;
960 uint32_t reset_sctlr;
961 uint64_t pmceid0;
962 uint64_t pmceid1;
963 uint32_t id_afr0;
964 uint64_t id_aa64afr0;
965 uint64_t id_aa64afr1;
966 uint64_t clidr;
967 uint64_t mp_affinity; /* MP ID without feature bits */
968 /* The elements of this array are the CCSIDR values for each cache,
969 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
970 */
971 uint64_t ccsidr[16];
972 uint64_t reset_cbar;
973 uint32_t reset_auxcr;
974 bool reset_hivecs;
975
976 /*
977 * Intermediate values used during property parsing.
978 * Once finalized, the values should be read from ID_AA64ISAR1.
979 */
980 bool prop_pauth;
981 bool prop_pauth_impdef;
982
983 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
984 uint32_t dcz_blocksize;
985 uint64_t rvbar;
986
987 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
988 int gic_num_lrs; /* number of list registers */
989 int gic_vpribits; /* number of virtual priority bits */
990 int gic_vprebits; /* number of virtual preemption bits */
991
992 /* Whether the cfgend input is high (i.e. this CPU should reset into
993 * big-endian mode). This setting isn't used directly: instead it modifies
994 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
995 * architecture version.
996 */
997 bool cfgend;
998
999 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1000 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1001
1002 int32_t node_id; /* NUMA node this CPU belongs to */
1003
1004 /* Used to synchronize KVM and QEMU in-kernel device levels */
1005 uint8_t device_irq_level;
1006
1007 /* Used to set the maximum vector length the cpu will support. */
1008 uint32_t sve_max_vq;
1009
1010 #ifdef CONFIG_USER_ONLY
1011 /* Used to set the default vector length at process start. */
1012 uint32_t sve_default_vq;
1013 #endif
1014
1015 /*
1016 * In sve_vq_map each set bit is a supported vector length of
1017 * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1018 * length in quadwords.
1019 *
1020 * While processing properties during initialization, corresponding
1021 * sve_vq_init bits are set for bits in sve_vq_map that have been
1022 * set by properties.
1023 *
1024 * Bits set in sve_vq_supported represent valid vector lengths for
1025 * the CPU type.
1026 */
1027 DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1028 DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1029 DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1030
1031 /* Generic timer counter frequency, in Hz */
1032 uint64_t gt_cntfrq_hz;
1033 };
1034
1035 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1036
1037 void arm_cpu_post_init(Object *obj);
1038
1039 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1040
1041 #ifndef CONFIG_USER_ONLY
1042 extern const VMStateDescription vmstate_arm_cpu;
1043
1044 void arm_cpu_do_interrupt(CPUState *cpu);
1045 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1046 #endif /* !CONFIG_USER_ONLY */
1047
1048 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1049 MemTxAttrs *attrs);
1050
1051 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1052 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1053
1054 /*
1055 * Helpers to dynamically generates XML descriptions of the sysregs
1056 * and SVE registers. Returns the number of registers in each set.
1057 */
1058 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1059 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1060
1061 /* Returns the dynamically generated XML for the gdb stub.
1062 * Returns a pointer to the XML contents for the specified XML file or NULL
1063 * if the XML name doesn't match the predefined one.
1064 */
1065 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1066
1067 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1068 int cpuid, void *opaque);
1069 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1070 int cpuid, void *opaque);
1071
1072 #ifdef TARGET_AARCH64
1073 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1074 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1075 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1076 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1077 int new_el, bool el0_a64);
1078 void aarch64_add_sve_properties(Object *obj);
1079 void aarch64_add_pauth_properties(Object *obj);
1080
1081 /*
1082 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1083 * The byte at offset i from the start of the in-memory representation contains
1084 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1085 * lowest offsets are stored in the lowest memory addresses, then that nearly
1086 * matches QEMU's representation, which is to use an array of host-endian
1087 * uint64_t's, where the lower offsets are at the lower indices. To complete
1088 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1089 */
1090 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1091 {
1092 #ifdef HOST_WORDS_BIGENDIAN
1093 int i;
1094
1095 for (i = 0; i < nr; ++i) {
1096 dst[i] = bswap64(src[i]);
1097 }
1098
1099 return dst;
1100 #else
1101 return src;
1102 #endif
1103 }
1104
1105 #else
1106 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1107 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1108 int n, bool a)
1109 { }
1110 static inline void aarch64_add_sve_properties(Object *obj) { }
1111 #endif
1112
1113 void aarch64_sync_32_to_64(CPUARMState *env);
1114 void aarch64_sync_64_to_32(CPUARMState *env);
1115
1116 int fp_exception_el(CPUARMState *env, int cur_el);
1117 int sve_exception_el(CPUARMState *env, int cur_el);
1118 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1119
1120 static inline bool is_a64(CPUARMState *env)
1121 {
1122 return env->aarch64;
1123 }
1124
1125 /**
1126 * pmu_op_start/finish
1127 * @env: CPUARMState
1128 *
1129 * Convert all PMU counters between their delta form (the typical mode when
1130 * they are enabled) and the guest-visible values. These two calls must
1131 * surround any action which might affect the counters.
1132 */
1133 void pmu_op_start(CPUARMState *env);
1134 void pmu_op_finish(CPUARMState *env);
1135
1136 /*
1137 * Called when a PMU counter is due to overflow
1138 */
1139 void arm_pmu_timer_cb(void *opaque);
1140
1141 /**
1142 * Functions to register as EL change hooks for PMU mode filtering
1143 */
1144 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1145 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1146
1147 /*
1148 * pmu_init
1149 * @cpu: ARMCPU
1150 *
1151 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1152 * for the current configuration
1153 */
1154 void pmu_init(ARMCPU *cpu);
1155
1156 /* SCTLR bit meanings. Several bits have been reused in newer
1157 * versions of the architecture; in that case we define constants
1158 * for both old and new bit meanings. Code which tests against those
1159 * bits should probably check or otherwise arrange that the CPU
1160 * is the architectural version it expects.
1161 */
1162 #define SCTLR_M (1U << 0)
1163 #define SCTLR_A (1U << 1)
1164 #define SCTLR_C (1U << 2)
1165 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1166 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1167 #define SCTLR_SA (1U << 3) /* AArch64 only */
1168 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1169 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1170 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1171 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1172 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1173 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1174 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1175 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1176 #define SCTLR_ITD (1U << 7) /* v8 onward */
1177 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1178 #define SCTLR_SED (1U << 8) /* v8 onward */
1179 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1180 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1181 #define SCTLR_F (1U << 10) /* up to v6 */
1182 #define SCTLR_SW (1U << 10) /* v7 */
1183 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1184 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1185 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1186 #define SCTLR_I (1U << 12)
1187 #define SCTLR_V (1U << 13) /* AArch32 only */
1188 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1189 #define SCTLR_RR (1U << 14) /* up to v7 */
1190 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1191 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1192 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1193 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1194 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1195 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1196 #define SCTLR_BR (1U << 17) /* PMSA only */
1197 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1198 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1199 #define SCTLR_WXN (1U << 19)
1200 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1201 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1202 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1203 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1204 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1205 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1206 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1207 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1208 #define SCTLR_VE (1U << 24) /* up to v7 */
1209 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1210 #define SCTLR_EE (1U << 25)
1211 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1212 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1213 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1214 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1215 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1216 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1217 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1218 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1219 #define SCTLR_TE (1U << 30) /* AArch32 only */
1220 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1221 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1222 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1223 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1224 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1225 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1226 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1227 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1228 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1229 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1230 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1231
1232 #define CPTR_TCPAC (1U << 31)
1233 #define CPTR_TTA (1U << 20)
1234 #define CPTR_TFP (1U << 10)
1235 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1236 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1237
1238 #define MDCR_EPMAD (1U << 21)
1239 #define MDCR_EDAD (1U << 20)
1240 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1241 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1242 #define MDCR_SDD (1U << 16)
1243 #define MDCR_SPD (3U << 14)
1244 #define MDCR_TDRA (1U << 11)
1245 #define MDCR_TDOSA (1U << 10)
1246 #define MDCR_TDA (1U << 9)
1247 #define MDCR_TDE (1U << 8)
1248 #define MDCR_HPME (1U << 7)
1249 #define MDCR_TPM (1U << 6)
1250 #define MDCR_TPMCR (1U << 5)
1251 #define MDCR_HPMN (0x1fU)
1252
1253 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1254 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1255
1256 #define CPSR_M (0x1fU)
1257 #define CPSR_T (1U << 5)
1258 #define CPSR_F (1U << 6)
1259 #define CPSR_I (1U << 7)
1260 #define CPSR_A (1U << 8)
1261 #define CPSR_E (1U << 9)
1262 #define CPSR_IT_2_7 (0xfc00U)
1263 #define CPSR_GE (0xfU << 16)
1264 #define CPSR_IL (1U << 20)
1265 #define CPSR_DIT (1U << 21)
1266 #define CPSR_PAN (1U << 22)
1267 #define CPSR_SSBS (1U << 23)
1268 #define CPSR_J (1U << 24)
1269 #define CPSR_IT_0_1 (3U << 25)
1270 #define CPSR_Q (1U << 27)
1271 #define CPSR_V (1U << 28)
1272 #define CPSR_C (1U << 29)
1273 #define CPSR_Z (1U << 30)
1274 #define CPSR_N (1U << 31)
1275 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1276 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1277
1278 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1279 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1280 | CPSR_NZCV)
1281 /* Bits writable in user mode. */
1282 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1283 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1284 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1285
1286 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1287 #define XPSR_EXCP 0x1ffU
1288 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1289 #define XPSR_IT_2_7 CPSR_IT_2_7
1290 #define XPSR_GE CPSR_GE
1291 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1292 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1293 #define XPSR_IT_0_1 CPSR_IT_0_1
1294 #define XPSR_Q CPSR_Q
1295 #define XPSR_V CPSR_V
1296 #define XPSR_C CPSR_C
1297 #define XPSR_Z CPSR_Z
1298 #define XPSR_N CPSR_N
1299 #define XPSR_NZCV CPSR_NZCV
1300 #define XPSR_IT CPSR_IT
1301
1302 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1303 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1304 #define TTBCR_PD0 (1U << 4)
1305 #define TTBCR_PD1 (1U << 5)
1306 #define TTBCR_EPD0 (1U << 7)
1307 #define TTBCR_IRGN0 (3U << 8)
1308 #define TTBCR_ORGN0 (3U << 10)
1309 #define TTBCR_SH0 (3U << 12)
1310 #define TTBCR_T1SZ (3U << 16)
1311 #define TTBCR_A1 (1U << 22)
1312 #define TTBCR_EPD1 (1U << 23)
1313 #define TTBCR_IRGN1 (3U << 24)
1314 #define TTBCR_ORGN1 (3U << 26)
1315 #define TTBCR_SH1 (1U << 28)
1316 #define TTBCR_EAE (1U << 31)
1317
1318 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1319 * Only these are valid when in AArch64 mode; in
1320 * AArch32 mode SPSRs are basically CPSR-format.
1321 */
1322 #define PSTATE_SP (1U)
1323 #define PSTATE_M (0xFU)
1324 #define PSTATE_nRW (1U << 4)
1325 #define PSTATE_F (1U << 6)
1326 #define PSTATE_I (1U << 7)
1327 #define PSTATE_A (1U << 8)
1328 #define PSTATE_D (1U << 9)
1329 #define PSTATE_BTYPE (3U << 10)
1330 #define PSTATE_SSBS (1U << 12)
1331 #define PSTATE_IL (1U << 20)
1332 #define PSTATE_SS (1U << 21)
1333 #define PSTATE_PAN (1U << 22)
1334 #define PSTATE_UAO (1U << 23)
1335 #define PSTATE_DIT (1U << 24)
1336 #define PSTATE_TCO (1U << 25)
1337 #define PSTATE_V (1U << 28)
1338 #define PSTATE_C (1U << 29)
1339 #define PSTATE_Z (1U << 30)
1340 #define PSTATE_N (1U << 31)
1341 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1342 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1343 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1344 /* Mode values for AArch64 */
1345 #define PSTATE_MODE_EL3h 13
1346 #define PSTATE_MODE_EL3t 12
1347 #define PSTATE_MODE_EL2h 9
1348 #define PSTATE_MODE_EL2t 8
1349 #define PSTATE_MODE_EL1h 5
1350 #define PSTATE_MODE_EL1t 4
1351 #define PSTATE_MODE_EL0t 0
1352
1353 /* Write a new value to v7m.exception, thus transitioning into or out
1354 * of Handler mode; this may result in a change of active stack pointer.
1355 */
1356 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1357
1358 /* Map EL and handler into a PSTATE_MODE. */
1359 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1360 {
1361 return (el << 2) | handler;
1362 }
1363
1364 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1365 * interprocessing, so we don't attempt to sync with the cpsr state used by
1366 * the 32 bit decoder.
1367 */
1368 static inline uint32_t pstate_read(CPUARMState *env)
1369 {
1370 int ZF;
1371
1372 ZF = (env->ZF == 0);
1373 return (env->NF & 0x80000000) | (ZF << 30)
1374 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1375 | env->pstate | env->daif | (env->btype << 10);
1376 }
1377
1378 static inline void pstate_write(CPUARMState *env, uint32_t val)
1379 {
1380 env->ZF = (~val) & PSTATE_Z;
1381 env->NF = val;
1382 env->CF = (val >> 29) & 1;
1383 env->VF = (val << 3) & 0x80000000;
1384 env->daif = val & PSTATE_DAIF;
1385 env->btype = (val >> 10) & 3;
1386 env->pstate = val & ~CACHED_PSTATE_BITS;
1387 }
1388
1389 /* Return the current CPSR value. */
1390 uint32_t cpsr_read(CPUARMState *env);
1391
1392 typedef enum CPSRWriteType {
1393 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1394 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1395 CPSRWriteRaw = 2,
1396 /* trust values, no reg bank switch, no hflags rebuild */
1397 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1398 } CPSRWriteType;
1399
1400 /*
1401 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1402 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1403 * correspond to TB flags bits cached in the hflags, unless @write_type
1404 * is CPSRWriteRaw.
1405 */
1406 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1407 CPSRWriteType write_type);
1408
1409 /* Return the current xPSR value. */
1410 static inline uint32_t xpsr_read(CPUARMState *env)
1411 {
1412 int ZF;
1413 ZF = (env->ZF == 0);
1414 return (env->NF & 0x80000000) | (ZF << 30)
1415 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1416 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1417 | ((env->condexec_bits & 0xfc) << 8)
1418 | (env->GE << 16)
1419 | env->v7m.exception;
1420 }
1421
1422 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1423 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1424 {
1425 if (mask & XPSR_NZCV) {
1426 env->ZF = (~val) & XPSR_Z;
1427 env->NF = val;
1428 env->CF = (val >> 29) & 1;
1429 env->VF = (val << 3) & 0x80000000;
1430 }
1431 if (mask & XPSR_Q) {
1432 env->QF = ((val & XPSR_Q) != 0);
1433 }
1434 if (mask & XPSR_GE) {
1435 env->GE = (val & XPSR_GE) >> 16;
1436 }
1437 #ifndef CONFIG_USER_ONLY
1438 if (mask & XPSR_T) {
1439 env->thumb = ((val & XPSR_T) != 0);
1440 }
1441 if (mask & XPSR_IT_0_1) {
1442 env->condexec_bits &= ~3;
1443 env->condexec_bits |= (val >> 25) & 3;
1444 }
1445 if (mask & XPSR_IT_2_7) {
1446 env->condexec_bits &= 3;
1447 env->condexec_bits |= (val >> 8) & 0xfc;
1448 }
1449 if (mask & XPSR_EXCP) {
1450 /* Note that this only happens on exception exit */
1451 write_v7m_exception(env, val & XPSR_EXCP);
1452 }
1453 #endif
1454 }
1455
1456 #define HCR_VM (1ULL << 0)
1457 #define HCR_SWIO (1ULL << 1)
1458 #define HCR_PTW (1ULL << 2)
1459 #define HCR_FMO (1ULL << 3)
1460 #define HCR_IMO (1ULL << 4)
1461 #define HCR_AMO (1ULL << 5)
1462 #define HCR_VF (1ULL << 6)
1463 #define HCR_VI (1ULL << 7)
1464 #define HCR_VSE (1ULL << 8)
1465 #define HCR_FB (1ULL << 9)
1466 #define HCR_BSU_MASK (3ULL << 10)
1467 #define HCR_DC (1ULL << 12)
1468 #define HCR_TWI (1ULL << 13)
1469 #define HCR_TWE (1ULL << 14)
1470 #define HCR_TID0 (1ULL << 15)
1471 #define HCR_TID1 (1ULL << 16)
1472 #define HCR_TID2 (1ULL << 17)
1473 #define HCR_TID3 (1ULL << 18)
1474 #define HCR_TSC (1ULL << 19)
1475 #define HCR_TIDCP (1ULL << 20)
1476 #define HCR_TACR (1ULL << 21)
1477 #define HCR_TSW (1ULL << 22)
1478 #define HCR_TPCP (1ULL << 23)
1479 #define HCR_TPU (1ULL << 24)
1480 #define HCR_TTLB (1ULL << 25)
1481 #define HCR_TVM (1ULL << 26)
1482 #define HCR_TGE (1ULL << 27)
1483 #define HCR_TDZ (1ULL << 28)
1484 #define HCR_HCD (1ULL << 29)
1485 #define HCR_TRVM (1ULL << 30)
1486 #define HCR_RW (1ULL << 31)
1487 #define HCR_CD (1ULL << 32)
1488 #define HCR_ID (1ULL << 33)
1489 #define HCR_E2H (1ULL << 34)
1490 #define HCR_TLOR (1ULL << 35)
1491 #define HCR_TERR (1ULL << 36)
1492 #define HCR_TEA (1ULL << 37)
1493 #define HCR_MIOCNCE (1ULL << 38)
1494 /* RES0 bit 39 */
1495 #define HCR_APK (1ULL << 40)
1496 #define HCR_API (1ULL << 41)
1497 #define HCR_NV (1ULL << 42)
1498 #define HCR_NV1 (1ULL << 43)
1499 #define HCR_AT (1ULL << 44)
1500 #define HCR_NV2 (1ULL << 45)
1501 #define HCR_FWB (1ULL << 46)
1502 #define HCR_FIEN (1ULL << 47)
1503 /* RES0 bit 48 */
1504 #define HCR_TID4 (1ULL << 49)
1505 #define HCR_TICAB (1ULL << 50)
1506 #define HCR_AMVOFFEN (1ULL << 51)
1507 #define HCR_TOCU (1ULL << 52)
1508 #define HCR_ENSCXT (1ULL << 53)
1509 #define HCR_TTLBIS (1ULL << 54)
1510 #define HCR_TTLBOS (1ULL << 55)
1511 #define HCR_ATA (1ULL << 56)
1512 #define HCR_DCT (1ULL << 57)
1513 #define HCR_TID5 (1ULL << 58)
1514 #define HCR_TWEDEN (1ULL << 59)
1515 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1516
1517 #define HPFAR_NS (1ULL << 63)
1518
1519 #define SCR_NS (1U << 0)
1520 #define SCR_IRQ (1U << 1)
1521 #define SCR_FIQ (1U << 2)
1522 #define SCR_EA (1U << 3)
1523 #define SCR_FW (1U << 4)
1524 #define SCR_AW (1U << 5)
1525 #define SCR_NET (1U << 6)
1526 #define SCR_SMD (1U << 7)
1527 #define SCR_HCE (1U << 8)
1528 #define SCR_SIF (1U << 9)
1529 #define SCR_RW (1U << 10)
1530 #define SCR_ST (1U << 11)
1531 #define SCR_TWI (1U << 12)
1532 #define SCR_TWE (1U << 13)
1533 #define SCR_TLOR (1U << 14)
1534 #define SCR_TERR (1U << 15)
1535 #define SCR_APK (1U << 16)
1536 #define SCR_API (1U << 17)
1537 #define SCR_EEL2 (1U << 18)
1538 #define SCR_EASE (1U << 19)
1539 #define SCR_NMEA (1U << 20)
1540 #define SCR_FIEN (1U << 21)
1541 #define SCR_ENSCXT (1U << 25)
1542 #define SCR_ATA (1U << 26)
1543
1544 #define HSTR_TTEE (1 << 16)
1545 #define HSTR_TJDBX (1 << 17)
1546
1547 /* Return the current FPSCR value. */
1548 uint32_t vfp_get_fpscr(CPUARMState *env);
1549 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1550
1551 /* FPCR, Floating Point Control Register
1552 * FPSR, Floating Poiht Status Register
1553 *
1554 * For A64 the FPSCR is split into two logically distinct registers,
1555 * FPCR and FPSR. However since they still use non-overlapping bits
1556 * we store the underlying state in fpscr and just mask on read/write.
1557 */
1558 #define FPSR_MASK 0xf800009f
1559 #define FPCR_MASK 0x07ff9f00
1560
1561 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1562 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1563 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1564 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1565 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1566 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1567 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1568 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1569 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1570 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1571 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1572 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1573 #define FPCR_V (1 << 28) /* FP overflow flag */
1574 #define FPCR_C (1 << 29) /* FP carry flag */
1575 #define FPCR_Z (1 << 30) /* FP zero flag */
1576 #define FPCR_N (1 << 31) /* FP negative flag */
1577
1578 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1579 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1580 #define FPCR_LTPSIZE_LENGTH 3
1581
1582 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1583 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1584
1585 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1586 {
1587 return vfp_get_fpscr(env) & FPSR_MASK;
1588 }
1589
1590 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1591 {
1592 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1593 vfp_set_fpscr(env, new_fpscr);
1594 }
1595
1596 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1597 {
1598 return vfp_get_fpscr(env) & FPCR_MASK;
1599 }
1600
1601 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1602 {
1603 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1604 vfp_set_fpscr(env, new_fpscr);
1605 }
1606
1607 enum arm_cpu_mode {
1608 ARM_CPU_MODE_USR = 0x10,
1609 ARM_CPU_MODE_FIQ = 0x11,
1610 ARM_CPU_MODE_IRQ = 0x12,
1611 ARM_CPU_MODE_SVC = 0x13,
1612 ARM_CPU_MODE_MON = 0x16,
1613 ARM_CPU_MODE_ABT = 0x17,
1614 ARM_CPU_MODE_HYP = 0x1a,
1615 ARM_CPU_MODE_UND = 0x1b,
1616 ARM_CPU_MODE_SYS = 0x1f
1617 };
1618
1619 /* VFP system registers. */
1620 #define ARM_VFP_FPSID 0
1621 #define ARM_VFP_FPSCR 1
1622 #define ARM_VFP_MVFR2 5
1623 #define ARM_VFP_MVFR1 6
1624 #define ARM_VFP_MVFR0 7
1625 #define ARM_VFP_FPEXC 8
1626 #define ARM_VFP_FPINST 9
1627 #define ARM_VFP_FPINST2 10
1628 /* These ones are M-profile only */
1629 #define ARM_VFP_FPSCR_NZCVQC 2
1630 #define ARM_VFP_VPR 12
1631 #define ARM_VFP_P0 13
1632 #define ARM_VFP_FPCXT_NS 14
1633 #define ARM_VFP_FPCXT_S 15
1634
1635 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1636 #define QEMU_VFP_FPSCR_NZCV 0xffff
1637
1638 /* iwMMXt coprocessor control registers. */
1639 #define ARM_IWMMXT_wCID 0
1640 #define ARM_IWMMXT_wCon 1
1641 #define ARM_IWMMXT_wCSSF 2
1642 #define ARM_IWMMXT_wCASF 3
1643 #define ARM_IWMMXT_wCGR0 8
1644 #define ARM_IWMMXT_wCGR1 9
1645 #define ARM_IWMMXT_wCGR2 10
1646 #define ARM_IWMMXT_wCGR3 11
1647
1648 /* V7M CCR bits */
1649 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1650 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1651 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1652 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1653 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1654 FIELD(V7M_CCR, STKALIGN, 9, 1)
1655 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1656 FIELD(V7M_CCR, DC, 16, 1)
1657 FIELD(V7M_CCR, IC, 17, 1)
1658 FIELD(V7M_CCR, BP, 18, 1)
1659 FIELD(V7M_CCR, LOB, 19, 1)
1660 FIELD(V7M_CCR, TRD, 20, 1)
1661
1662 /* V7M SCR bits */
1663 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1664 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1665 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1666 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1667
1668 /* V7M AIRCR bits */
1669 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1670 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1671 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1672 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1673 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1674 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1675 FIELD(V7M_AIRCR, PRIS, 14, 1)
1676 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1677 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1678
1679 /* V7M CFSR bits for MMFSR */
1680 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1681 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1682 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1683 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1684 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1685 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1686
1687 /* V7M CFSR bits for BFSR */
1688 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1689 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1690 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1691 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1692 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1693 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1694 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1695
1696 /* V7M CFSR bits for UFSR */
1697 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1698 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1699 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1700 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1701 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1702 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1703 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1704
1705 /* V7M CFSR bit masks covering all of the subregister bits */
1706 FIELD(V7M_CFSR, MMFSR, 0, 8)
1707 FIELD(V7M_CFSR, BFSR, 8, 8)
1708 FIELD(V7M_CFSR, UFSR, 16, 16)
1709
1710 /* V7M HFSR bits */
1711 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1712 FIELD(V7M_HFSR, FORCED, 30, 1)
1713 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1714
1715 /* V7M DFSR bits */
1716 FIELD(V7M_DFSR, HALTED, 0, 1)
1717 FIELD(V7M_DFSR, BKPT, 1, 1)
1718 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1719 FIELD(V7M_DFSR, VCATCH, 3, 1)
1720 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1721
1722 /* V7M SFSR bits */
1723 FIELD(V7M_SFSR, INVEP, 0, 1)
1724 FIELD(V7M_SFSR, INVIS, 1, 1)
1725 FIELD(V7M_SFSR, INVER, 2, 1)
1726 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1727 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1728 FIELD(V7M_SFSR, LSPERR, 5, 1)
1729 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1730 FIELD(V7M_SFSR, LSERR, 7, 1)
1731
1732 /* v7M MPU_CTRL bits */
1733 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1734 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1735 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1736
1737 /* v7M CLIDR bits */
1738 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1739 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1740 FIELD(V7M_CLIDR, LOC, 24, 3)
1741 FIELD(V7M_CLIDR, LOUU, 27, 3)
1742 FIELD(V7M_CLIDR, ICB, 30, 2)
1743
1744 FIELD(V7M_CSSELR, IND, 0, 1)
1745 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1746 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1747 * define a mask for this and check that it doesn't permit running off
1748 * the end of the array.
1749 */
1750 FIELD(V7M_CSSELR, INDEX, 0, 4)
1751
1752 /* v7M FPCCR bits */
1753 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1754 FIELD(V7M_FPCCR, USER, 1, 1)
1755 FIELD(V7M_FPCCR, S, 2, 1)
1756 FIELD(V7M_FPCCR, THREAD, 3, 1)
1757 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1758 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1759 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1760 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1761 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1762 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1763 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1764 FIELD(V7M_FPCCR, RES0, 11, 15)
1765 FIELD(V7M_FPCCR, TS, 26, 1)
1766 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1767 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1768 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1769 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1770 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1771 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1772 #define R_V7M_FPCCR_BANKED_MASK \
1773 (R_V7M_FPCCR_LSPACT_MASK | \
1774 R_V7M_FPCCR_USER_MASK | \
1775 R_V7M_FPCCR_THREAD_MASK | \
1776 R_V7M_FPCCR_MMRDY_MASK | \
1777 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1778 R_V7M_FPCCR_UFRDY_MASK | \
1779 R_V7M_FPCCR_ASPEN_MASK)
1780
1781 /* v7M VPR bits */
1782 FIELD(V7M_VPR, P0, 0, 16)
1783 FIELD(V7M_VPR, MASK01, 16, 4)
1784 FIELD(V7M_VPR, MASK23, 20, 4)
1785
1786 /*
1787 * System register ID fields.
1788 */
1789 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1790 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1791 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1792 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1793 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1794 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1795 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1796 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1797 FIELD(CLIDR_EL1, LOC, 24, 3)
1798 FIELD(CLIDR_EL1, LOUU, 27, 3)
1799 FIELD(CLIDR_EL1, ICB, 30, 3)
1800
1801 /* When FEAT_CCIDX is implemented */
1802 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1803 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1804 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1805
1806 /* When FEAT_CCIDX is not implemented */
1807 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1808 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1809 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1810
1811 FIELD(CTR_EL0, IMINLINE, 0, 4)
1812 FIELD(CTR_EL0, L1IP, 14, 2)
1813 FIELD(CTR_EL0, DMINLINE, 16, 4)
1814 FIELD(CTR_EL0, ERG, 20, 4)
1815 FIELD(CTR_EL0, CWG, 24, 4)
1816 FIELD(CTR_EL0, IDC, 28, 1)
1817 FIELD(CTR_EL0, DIC, 29, 1)
1818 FIELD(CTR_EL0, TMINLINE, 32, 6)
1819
1820 FIELD(MIDR_EL1, REVISION, 0, 4)
1821 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1822 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1823 FIELD(MIDR_EL1, VARIANT, 20, 4)
1824 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1825
1826 FIELD(ID_ISAR0, SWAP, 0, 4)
1827 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1828 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1829 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1830 FIELD(ID_ISAR0, COPROC, 16, 4)
1831 FIELD(ID_ISAR0, DEBUG, 20, 4)
1832 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1833
1834 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1835 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1836 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1837 FIELD(ID_ISAR1, EXTEND, 12, 4)
1838 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1839 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1840 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1841 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1842
1843 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1844 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1845 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1846 FIELD(ID_ISAR2, MULT, 12, 4)
1847 FIELD(ID_ISAR2, MULTS, 16, 4)
1848 FIELD(ID_ISAR2, MULTU, 20, 4)
1849 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1850 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1851
1852 FIELD(ID_ISAR3, SATURATE, 0, 4)
1853 FIELD(ID_ISAR3, SIMD, 4, 4)
1854 FIELD(ID_ISAR3, SVC, 8, 4)
1855 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1856 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1857 FIELD(ID_ISAR3, T32COPY, 20, 4)
1858 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1859 FIELD(ID_ISAR3, T32EE, 28, 4)
1860
1861 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1862 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1863 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1864 FIELD(ID_ISAR4, SMC, 12, 4)
1865 FIELD(ID_ISAR4, BARRIER, 16, 4)
1866 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1867 FIELD(ID_ISAR4, PSR_M, 24, 4)
1868 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1869
1870 FIELD(ID_ISAR5, SEVL, 0, 4)
1871 FIELD(ID_ISAR5, AES, 4, 4)
1872 FIELD(ID_ISAR5, SHA1, 8, 4)
1873 FIELD(ID_ISAR5, SHA2, 12, 4)
1874 FIELD(ID_ISAR5, CRC32, 16, 4)
1875 FIELD(ID_ISAR5, RDM, 24, 4)
1876 FIELD(ID_ISAR5, VCMA, 28, 4)
1877
1878 FIELD(ID_ISAR6, JSCVT, 0, 4)
1879 FIELD(ID_ISAR6, DP, 4, 4)
1880 FIELD(ID_ISAR6, FHM, 8, 4)
1881 FIELD(ID_ISAR6, SB, 12, 4)
1882 FIELD(ID_ISAR6, SPECRES, 16, 4)
1883 FIELD(ID_ISAR6, BF16, 20, 4)
1884 FIELD(ID_ISAR6, I8MM, 24, 4)
1885
1886 FIELD(ID_MMFR0, VMSA, 0, 4)
1887 FIELD(ID_MMFR0, PMSA, 4, 4)
1888 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1889 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1890 FIELD(ID_MMFR0, TCM, 16, 4)
1891 FIELD(ID_MMFR0, AUXREG, 20, 4)
1892 FIELD(ID_MMFR0, FCSE, 24, 4)
1893 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1894
1895 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1896 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1897 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1898 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1899 FIELD(ID_MMFR1, L1HVD, 16, 4)
1900 FIELD(ID_MMFR1, L1UNI, 20, 4)
1901 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1902 FIELD(ID_MMFR1, BPRED, 28, 4)
1903
1904 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1905 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1906 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1907 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1908 FIELD(ID_MMFR2, UNITLB, 16, 4)
1909 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1910 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1911 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1912
1913 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1914 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1915 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1916 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1917 FIELD(ID_MMFR3, PAN, 16, 4)
1918 FIELD(ID_MMFR3, COHWALK, 20, 4)
1919 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1920 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1921
1922 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1923 FIELD(ID_MMFR4, AC2, 4, 4)
1924 FIELD(ID_MMFR4, XNX, 8, 4)
1925 FIELD(ID_MMFR4, CNP, 12, 4)
1926 FIELD(ID_MMFR4, HPDS, 16, 4)
1927 FIELD(ID_MMFR4, LSM, 20, 4)
1928 FIELD(ID_MMFR4, CCIDX, 24, 4)
1929 FIELD(ID_MMFR4, EVT, 28, 4)
1930
1931 FIELD(ID_MMFR5, ETS, 0, 4)
1932
1933 FIELD(ID_PFR0, STATE0, 0, 4)
1934 FIELD(ID_PFR0, STATE1, 4, 4)
1935 FIELD(ID_PFR0, STATE2, 8, 4)
1936 FIELD(ID_PFR0, STATE3, 12, 4)
1937 FIELD(ID_PFR0, CSV2, 16, 4)
1938 FIELD(ID_PFR0, AMU, 20, 4)
1939 FIELD(ID_PFR0, DIT, 24, 4)
1940 FIELD(ID_PFR0, RAS, 28, 4)
1941
1942 FIELD(ID_PFR1, PROGMOD, 0, 4)
1943 FIELD(ID_PFR1, SECURITY, 4, 4)
1944 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1945 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1946 FIELD(ID_PFR1, GENTIMER, 16, 4)
1947 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1948 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1949 FIELD(ID_PFR1, GIC, 28, 4)
1950
1951 FIELD(ID_PFR2, CSV3, 0, 4)
1952 FIELD(ID_PFR2, SSBS, 4, 4)
1953 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1954
1955 FIELD(ID_AA64ISAR0, AES, 4, 4)
1956 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1957 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1958 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1959 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1960 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1961 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1962 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1963 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1964 FIELD(ID_AA64ISAR0, DP, 44, 4)
1965 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1966 FIELD(ID_AA64ISAR0, TS, 52, 4)
1967 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1968 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1969
1970 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1971 FIELD(ID_AA64ISAR1, APA, 4, 4)
1972 FIELD(ID_AA64ISAR1, API, 8, 4)
1973 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1974 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1975 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1976 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1977 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1978 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1979 FIELD(ID_AA64ISAR1, SB, 36, 4)
1980 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1981 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1982 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1983 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1984
1985 FIELD(ID_AA64PFR0, EL0, 0, 4)
1986 FIELD(ID_AA64PFR0, EL1, 4, 4)
1987 FIELD(ID_AA64PFR0, EL2, 8, 4)
1988 FIELD(ID_AA64PFR0, EL3, 12, 4)
1989 FIELD(ID_AA64PFR0, FP, 16, 4)
1990 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1991 FIELD(ID_AA64PFR0, GIC, 24, 4)
1992 FIELD(ID_AA64PFR0, RAS, 28, 4)
1993 FIELD(ID_AA64PFR0, SVE, 32, 4)
1994 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1995 FIELD(ID_AA64PFR0, MPAM, 40, 4)
1996 FIELD(ID_AA64PFR0, AMU, 44, 4)
1997 FIELD(ID_AA64PFR0, DIT, 48, 4)
1998 FIELD(ID_AA64PFR0, CSV2, 56, 4)
1999 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2000
2001 FIELD(ID_AA64PFR1, BT, 0, 4)
2002 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2003 FIELD(ID_AA64PFR1, MTE, 8, 4)
2004 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2005 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2006
2007 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2008 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2009 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2010 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2011 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2012 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2013 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2014 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2015 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2016 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2017 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2018 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2019 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2020 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2021
2022 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2023 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2024 FIELD(ID_AA64MMFR1, VH, 8, 4)
2025 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2026 FIELD(ID_AA64MMFR1, LO, 16, 4)
2027 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2028 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2029 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2030 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2031 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2032
2033 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2034 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2035 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2036 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2037 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2038 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2039 FIELD(ID_AA64MMFR2, NV, 24, 4)
2040 FIELD(ID_AA64MMFR2, ST, 28, 4)
2041 FIELD(ID_AA64MMFR2, AT, 32, 4)
2042 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2043 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2044 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2045 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2046 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2047 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2048
2049 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2050 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2051 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2052 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2053 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2054 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2055 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2056 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2057 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2058 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2059
2060 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2061 FIELD(ID_AA64ZFR0, AES, 4, 4)
2062 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2063 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2064 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2065 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2066 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2067 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2068 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2069
2070 FIELD(ID_DFR0, COPDBG, 0, 4)
2071 FIELD(ID_DFR0, COPSDBG, 4, 4)
2072 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2073 FIELD(ID_DFR0, COPTRC, 12, 4)
2074 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2075 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2076 FIELD(ID_DFR0, PERFMON, 24, 4)
2077 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2078
2079 FIELD(ID_DFR1, MTPMU, 0, 4)
2080
2081 FIELD(DBGDIDR, SE_IMP, 12, 1)
2082 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2083 FIELD(DBGDIDR, VERSION, 16, 4)
2084 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2085 FIELD(DBGDIDR, BRPS, 24, 4)
2086 FIELD(DBGDIDR, WRPS, 28, 4)
2087
2088 FIELD(MVFR0, SIMDREG, 0, 4)
2089 FIELD(MVFR0, FPSP, 4, 4)
2090 FIELD(MVFR0, FPDP, 8, 4)
2091 FIELD(MVFR0, FPTRAP, 12, 4)
2092 FIELD(MVFR0, FPDIVIDE, 16, 4)
2093 FIELD(MVFR0, FPSQRT, 20, 4)
2094 FIELD(MVFR0, FPSHVEC, 24, 4)
2095 FIELD(MVFR0, FPROUND, 28, 4)
2096
2097 FIELD(MVFR1, FPFTZ, 0, 4)
2098 FIELD(MVFR1, FPDNAN, 4, 4)
2099 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2100 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2101 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2102 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2103 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2104 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2105 FIELD(MVFR1, FPHP, 24, 4)
2106 FIELD(MVFR1, SIMDFMAC, 28, 4)
2107
2108 FIELD(MVFR2, SIMDMISC, 0, 4)
2109 FIELD(MVFR2, FPMISC, 4, 4)
2110
2111 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2112
2113 /* If adding a feature bit which corresponds to a Linux ELF
2114 * HWCAP bit, remember to update the feature-bit-to-hwcap
2115 * mapping in linux-user/elfload.c:get_elf_hwcap().
2116 */
2117 enum arm_features {
2118 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2119 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2120 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2121 ARM_FEATURE_V6,
2122 ARM_FEATURE_V6K,
2123 ARM_FEATURE_V7,
2124 ARM_FEATURE_THUMB2,
2125 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2126 ARM_FEATURE_NEON,
2127 ARM_FEATURE_M, /* Microcontroller profile. */
2128 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2129 ARM_FEATURE_THUMB2EE,
2130 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2131 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2132 ARM_FEATURE_V4T,
2133 ARM_FEATURE_V5,
2134 ARM_FEATURE_STRONGARM,
2135 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2136 ARM_FEATURE_GENERIC_TIMER,
2137 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2138 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2139 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2140 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2141 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2142 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2143 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2144 ARM_FEATURE_V8,
2145 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2146 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2147 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2148 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2149 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2150 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2151 ARM_FEATURE_PMU, /* has PMU support */
2152 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2153 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2154 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2155 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2156 };
2157
2158 static inline int arm_feature(CPUARMState *env, int feature)
2159 {
2160 return (env->features & (1ULL << feature)) != 0;
2161 }
2162
2163 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2164
2165 #if !defined(CONFIG_USER_ONLY)
2166 /* Return true if exception levels below EL3 are in secure state,
2167 * or would be following an exception return to that level.
2168 * Unlike arm_is_secure() (which is always a question about the
2169 * _current_ state of the CPU) this doesn't care about the current
2170 * EL or mode.
2171 */
2172 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2173 {
2174 if (arm_feature(env, ARM_FEATURE_EL3)) {
2175 return !(env->cp15.scr_el3 & SCR_NS);
2176 } else {
2177 /* If EL3 is not supported then the secure state is implementation
2178 * defined, in which case QEMU defaults to non-secure.
2179 */
2180 return false;
2181 }
2182 }
2183
2184 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2185 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2186 {
2187 if (arm_feature(env, ARM_FEATURE_EL3)) {
2188 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2189 /* CPU currently in AArch64 state and EL3 */
2190 return true;
2191 } else if (!is_a64(env) &&
2192 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2193 /* CPU currently in AArch32 state and monitor mode */
2194 return true;
2195 }
2196 }
2197 return false;
2198 }
2199
2200 /* Return true if the processor is in secure state */
2201 static inline bool arm_is_secure(CPUARMState *env)
2202 {
2203 if (arm_is_el3_or_mon(env)) {
2204 return true;
2205 }
2206 return arm_is_secure_below_el3(env);
2207 }
2208
2209 /*
2210 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2211 * This corresponds to the pseudocode EL2Enabled()
2212 */
2213 static inline bool arm_is_el2_enabled(CPUARMState *env)
2214 {
2215 if (arm_feature(env, ARM_FEATURE_EL2)) {
2216 if (arm_is_secure_below_el3(env)) {
2217 return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2218 }
2219 return true;
2220 }
2221 return false;
2222 }
2223
2224 #else
2225 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2226 {
2227 return false;
2228 }
2229
2230 static inline bool arm_is_secure(CPUARMState *env)
2231 {
2232 return false;
2233 }
2234
2235 static inline bool arm_is_el2_enabled(CPUARMState *env)
2236 {
2237 return false;
2238 }
2239 #endif
2240
2241 /**
2242 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2243 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2244 * "for all purposes other than a direct read or write access of HCR_EL2."
2245 * Not included here is HCR_RW.
2246 */
2247 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2248
2249 /* Return true if the specified exception level is running in AArch64 state. */
2250 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2251 {
2252 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2253 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2254 */
2255 assert(el >= 1 && el <= 3);
2256 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2257
2258 /* The highest exception level is always at the maximum supported
2259 * register width, and then lower levels have a register width controlled
2260 * by bits in the SCR or HCR registers.
2261 */
2262 if (el == 3) {
2263 return aa64;
2264 }
2265
2266 if (arm_feature(env, ARM_FEATURE_EL3) &&
2267 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2268 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2269 }
2270
2271 if (el == 2) {
2272 return aa64;
2273 }
2274
2275 if (arm_is_el2_enabled(env)) {
2276 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2277 }
2278
2279 return aa64;
2280 }
2281
2282 /* Function for determing whether guest cp register reads and writes should
2283 * access the secure or non-secure bank of a cp register. When EL3 is
2284 * operating in AArch32 state, the NS-bit determines whether the secure
2285 * instance of a cp register should be used. When EL3 is AArch64 (or if
2286 * it doesn't exist at all) then there is no register banking, and all
2287 * accesses are to the non-secure version.
2288 */
2289 static inline bool access_secure_reg(CPUARMState *env)
2290 {
2291 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2292 !arm_el_is_aa64(env, 3) &&
2293 !(env->cp15.scr_el3 & SCR_NS));
2294
2295 return ret;
2296 }
2297
2298 /* Macros for accessing a specified CP register bank */
2299 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2300 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2301
2302 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2303 do { \
2304 if (_secure) { \
2305 (_env)->cp15._regname##_s = (_val); \
2306 } else { \
2307 (_env)->cp15._regname##_ns = (_val); \
2308 } \
2309 } while (0)
2310
2311 /* Macros for automatically accessing a specific CP register bank depending on
2312 * the current secure state of the system. These macros are not intended for
2313 * supporting instruction translation reads/writes as these are dependent
2314 * solely on the SCR.NS bit and not the mode.
2315 */
2316 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2317 A32_BANKED_REG_GET((_env), _regname, \
2318 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2319
2320 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2321 A32_BANKED_REG_SET((_env), _regname, \
2322 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2323 (_val))
2324
2325 void arm_cpu_list(void);
2326 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2327 uint32_t cur_el, bool secure);
2328
2329 /* Interface between CPU and Interrupt controller. */
2330 #ifndef CONFIG_USER_ONLY
2331 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2332 #else
2333 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2334 {
2335 return true;
2336 }
2337 #endif
2338 /**
2339 * armv7m_nvic_set_pending: mark the specified exception as pending
2340 * @opaque: the NVIC
2341 * @irq: the exception number to mark pending
2342 * @secure: false for non-banked exceptions or for the nonsecure
2343 * version of a banked exception, true for the secure version of a banked
2344 * exception.
2345 *
2346 * Marks the specified exception as pending. Note that we will assert()
2347 * if @secure is true and @irq does not specify one of the fixed set
2348 * of architecturally banked exceptions.
2349 */
2350 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2351 /**
2352 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2353 * @opaque: the NVIC
2354 * @irq: the exception number to mark pending
2355 * @secure: false for non-banked exceptions or for the nonsecure
2356 * version of a banked exception, true for the secure version of a banked
2357 * exception.
2358 *
2359 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2360 * exceptions (exceptions generated in the course of trying to take
2361 * a different exception).
2362 */
2363 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2364 /**
2365 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2366 * @opaque: the NVIC
2367 * @irq: the exception number to mark pending
2368 * @secure: false for non-banked exceptions or for the nonsecure
2369 * version of a banked exception, true for the secure version of a banked
2370 * exception.
2371 *
2372 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2373 * generated in the course of lazy stacking of FP registers.
2374 */
2375 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2376 /**
2377 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2378 * exception, and whether it targets Secure state
2379 * @opaque: the NVIC
2380 * @pirq: set to pending exception number
2381 * @ptargets_secure: set to whether pending exception targets Secure
2382 *
2383 * This function writes the number of the highest priority pending
2384 * exception (the one which would be made active by
2385 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2386 * to true if the current highest priority pending exception should
2387 * be taken to Secure state, false for NS.
2388 */
2389 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2390 bool *ptargets_secure);
2391 /**
2392 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2393 * @opaque: the NVIC
2394 *
2395 * Move the current highest priority pending exception from the pending
2396 * state to the active state, and update v7m.exception to indicate that
2397 * it is the exception currently being handled.
2398 */
2399 void armv7m_nvic_acknowledge_irq(void *opaque);
2400 /**
2401 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2402 * @opaque: the NVIC
2403 * @irq: the exception number to complete
2404 * @secure: true if this exception was secure
2405 *
2406 * Returns: -1 if the irq was not active
2407 * 1 if completing this irq brought us back to base (no active irqs)
2408 * 0 if there is still an irq active after this one was completed
2409 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2410 */
2411 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2412 /**
2413 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2414 * @opaque: the NVIC
2415 * @irq: the exception number to mark pending
2416 * @secure: false for non-banked exceptions or for the nonsecure
2417 * version of a banked exception, true for the secure version of a banked
2418 * exception.
2419 *
2420 * Return whether an exception is "ready", i.e. whether the exception is
2421 * enabled and is configured at a priority which would allow it to
2422 * interrupt the current execution priority. This controls whether the
2423 * RDY bit for it in the FPCCR is set.
2424 */
2425 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2426 /**
2427 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2428 * @opaque: the NVIC
2429 *
2430 * Returns: the raw execution priority as defined by the v8M architecture.
2431 * This is the execution priority minus the effects of AIRCR.PRIS,
2432 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2433 * (v8M ARM ARM I_PKLD.)
2434 */
2435 int armv7m_nvic_raw_execution_priority(void *opaque);
2436 /**
2437 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2438 * priority is negative for the specified security state.
2439 * @opaque: the NVIC
2440 * @secure: the security state to test
2441 * This corresponds to the pseudocode IsReqExecPriNeg().
2442 */
2443 #ifndef CONFIG_USER_ONLY
2444 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2445 #else
2446 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2447 {
2448 return false;
2449 }
2450 #endif
2451
2452 /* Interface for defining coprocessor registers.
2453 * Registers are defined in tables of arm_cp_reginfo structs
2454 * which are passed to define_arm_cp_regs().
2455 */
2456
2457 /* When looking up a coprocessor register we look for it
2458 * via an integer which encodes all of:
2459 * coprocessor number
2460 * Crn, Crm, opc1, opc2 fields
2461 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2462 * or via MRRC/MCRR?)
2463 * non-secure/secure bank (AArch32 only)
2464 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2465 * (In this case crn and opc2 should be zero.)
2466 * For AArch64, there is no 32/64 bit size distinction;
2467 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2468 * and 4 bit CRn and CRm. The encoding patterns are chosen
2469 * to be easy to convert to and from the KVM encodings, and also
2470 * so that the hashtable can contain both AArch32 and AArch64
2471 * registers (to allow for interprocessing where we might run
2472 * 32 bit code on a 64 bit core).
2473 */
2474 /* This bit is private to our hashtable cpreg; in KVM register
2475 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2476 * in the upper bits of the 64 bit ID.
2477 */
2478 #define CP_REG_AA64_SHIFT 28
2479 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2480
2481 /* To enable banking of coprocessor registers depending on ns-bit we
2482 * add a bit to distinguish between secure and non-secure cpregs in the
2483 * hashtable.
2484 */
2485 #define CP_REG_NS_SHIFT 29
2486 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2487
2488 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2489 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2490 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2491
2492 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2493 (CP_REG_AA64_MASK | \
2494 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2495 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2496 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2497 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2498 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2499 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2500
2501 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2502 * version used as a key for the coprocessor register hashtable
2503 */
2504 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2505 {
2506 uint32_t cpregid = kvmid;
2507 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2508 cpregid |= CP_REG_AA64_MASK;
2509 } else {
2510 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2511 cpregid |= (1 << 15);
2512 }
2513
2514 /* KVM is always non-secure so add the NS flag on AArch32 register
2515 * entries.
2516 */
2517 cpregid |= 1 << CP_REG_NS_SHIFT;
2518 }
2519 return cpregid;
2520 }
2521
2522 /* Convert a truncated 32 bit hashtable key into the full
2523 * 64 bit KVM register ID.
2524 */
2525 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2526 {
2527 uint64_t kvmid;
2528
2529 if (cpregid & CP_REG_AA64_MASK) {
2530 kvmid = cpregid & ~CP_REG_AA64_MASK;
2531 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2532 } else {
2533 kvmid = cpregid & ~(1 << 15);
2534 if (cpregid & (1 << 15)) {
2535 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2536 } else {
2537 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2538 }
2539 }
2540 return kvmid;
2541 }
2542
2543 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2544 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2545 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2546 * TCG can assume the value to be constant (ie load at translate time)
2547 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2548 * indicates that the TB should not be ended after a write to this register
2549 * (the default is that the TB ends after cp writes). OVERRIDE permits
2550 * a register definition to override a previous definition for the
2551 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2552 * old must have the OVERRIDE bit set.
2553 * ALIAS indicates that this register is an alias view of some underlying
2554 * state which is also visible via another register, and that the other
2555 * register is handling migration and reset; registers marked ALIAS will not be
2556 * migrated but may have their state set by syncing of register state from KVM.
2557 * NO_RAW indicates that this register has no underlying state and does not
2558 * support raw access for state saving/loading; it will not be used for either
2559 * migration or KVM state synchronization. (Typically this is for "registers"
2560 * which are actually used as instructions for cache maintenance and so on.)
2561 * IO indicates that this register does I/O and therefore its accesses
2562 * need to be marked with gen_io_start() and also end the TB. In particular,
2563 * registers which implement clocks or timers require this.
2564 * RAISES_EXC is for when the read or write hook might raise an exception;
2565 * the generated code will synchronize the CPU state before calling the hook
2566 * so that it is safe for the hook to call raise_exception().
2567 * NEWEL is for writes to registers that might change the exception
2568 * level - typically on older ARM chips. For those cases we need to
2569 * re-read the new el when recomputing the translation flags.
2570 */
2571 #define ARM_CP_SPECIAL 0x0001
2572 #define ARM_CP_CONST 0x0002
2573 #define ARM_CP_64BIT 0x0004
2574 #define ARM_CP_SUPPRESS_TB_END 0x0008
2575 #define ARM_CP_OVERRIDE 0x0010
2576 #define ARM_CP_ALIAS 0x0020
2577 #define ARM_CP_IO 0x0040
2578 #define ARM_CP_NO_RAW 0x0080
2579 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2580 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2581 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2582 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2583 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2584 #define ARM_CP_DC_GVA (ARM_CP_SPECIAL | 0x0600)
2585 #define ARM_CP_DC_GZVA (ARM_CP_SPECIAL | 0x0700)
2586 #define ARM_LAST_SPECIAL ARM_CP_DC_GZVA
2587 #define ARM_CP_FPU 0x1000
2588 #define ARM_CP_SVE 0x2000
2589 #define ARM_CP_NO_GDB 0x4000
2590 #define ARM_CP_RAISES_EXC 0x8000
2591 #define ARM_CP_NEWEL 0x10000
2592 /* Used only as a terminator for ARMCPRegInfo lists */
2593 #define ARM_CP_SENTINEL 0xfffff
2594 /* Mask of only the flag bits in a type field */
2595 #define ARM_CP_FLAG_MASK 0x1f0ff
2596
2597 /* Valid values for ARMCPRegInfo state field, indicating which of
2598 * the AArch32 and AArch64 execution states this register is visible in.
2599 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2600 * If the reginfo is declared to be visible in both states then a second
2601 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2602 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2603 * Note that we rely on the values of these enums as we iterate through
2604 * the various states in some places.
2605 */
2606 enum {
2607 ARM_CP_STATE_AA32 = 0,
2608 ARM_CP_STATE_AA64 = 1,
2609 ARM_CP_STATE_BOTH = 2,
2610 };
2611
2612 /* ARM CP register secure state flags. These flags identify security state
2613 * attributes for a given CP register entry.
2614 * The existence of both or neither secure and non-secure flags indicates that
2615 * the register has both a secure and non-secure hash entry. A single one of
2616 * these flags causes the register to only be hashed for the specified
2617 * security state.
2618 * Although definitions may have any combination of the S/NS bits, each
2619 * registered entry will only have one to identify whether the entry is secure
2620 * or non-secure.
2621 */
2622 enum {
2623 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2624 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2625 };
2626
2627 /* Return true if cptype is a valid type field. This is used to try to
2628 * catch errors where the sentinel has been accidentally left off the end
2629 * of a list of registers.
2630 */
2631 static inline bool cptype_valid(int cptype)
2632 {
2633 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2634 || ((cptype & ARM_CP_SPECIAL) &&
2635 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2636 }
2637
2638 /* Access rights:
2639 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2640 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2641 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2642 * (ie any of the privileged modes in Secure state, or Monitor mode).
2643 * If a register is accessible in one privilege level it's always accessible
2644 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2645 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2646 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2647 * terminology a little and call this PL3.
2648 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2649 * with the ELx exception levels.
2650 *
2651 * If access permissions for a register are more complex than can be
2652 * described with these bits, then use a laxer set of restrictions, and
2653 * do the more restrictive/complex check inside a helper function.
2654 */
2655 #define PL3_R 0x80
2656 #define PL3_W 0x40
2657 #define PL2_R (0x20 | PL3_R)
2658 #define PL2_W (0x10 | PL3_W)
2659 #define PL1_R (0x08 | PL2_R)
2660 #define PL1_W (0x04 | PL2_W)
2661 #define PL0_R (0x02 | PL1_R)
2662 #define PL0_W (0x01 | PL1_W)
2663
2664 /*
2665 * For user-mode some registers are accessible to EL0 via a kernel
2666 * trap-and-emulate ABI. In this case we define the read permissions
2667 * as actually being PL0_R. However some bits of any given register
2668 * may still be masked.
2669 */
2670 #ifdef CONFIG_USER_ONLY
2671 #define PL0U_R PL0_R
2672 #else
2673 #define PL0U_R PL1_R
2674 #endif
2675
2676 #define PL3_RW (PL3_R | PL3_W)
2677 #define PL2_RW (PL2_R | PL2_W)
2678 #define PL1_RW (PL1_R | PL1_W)
2679 #define PL0_RW (PL0_R | PL0_W)
2680
2681 /* Return the highest implemented Exception Level */
2682 static inline int arm_highest_el(CPUARMState *env)
2683 {
2684 if (arm_feature(env, ARM_FEATURE_EL3)) {
2685 return 3;
2686 }
2687 if (arm_feature(env, ARM_FEATURE_EL2)) {
2688 return 2;
2689 }
2690 return 1;
2691 }
2692
2693 /* Return true if a v7M CPU is in Handler mode */
2694 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2695 {
2696 return env->v7m.exception != 0;
2697 }
2698
2699 /* Return the current Exception Level (as per ARMv8; note that this differs
2700 * from the ARMv7 Privilege Level).
2701 */
2702 static inline int arm_current_el(CPUARMState *env)
2703 {
2704 if (arm_feature(env, ARM_FEATURE_M)) {
2705 return arm_v7m_is_handler_mode(env) ||
2706 !(env->v7m.control[env->v7m.secure] & 1);
2707 }
2708
2709 if (is_a64(env)) {
2710 return extract32(env->pstate, 2, 2);
2711 }
2712
2713 switch (env->uncached_cpsr & 0x1f) {
2714 case ARM_CPU_MODE_USR:
2715 return 0;
2716 case ARM_CPU_MODE_HYP:
2717 return 2;
2718 case ARM_CPU_MODE_MON:
2719 return 3;
2720 default:
2721 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2722 /* If EL3 is 32-bit then all secure privileged modes run in
2723 * EL3
2724 */
2725 return 3;
2726 }
2727
2728 return 1;
2729 }
2730 }
2731
2732 typedef struct ARMCPRegInfo ARMCPRegInfo;
2733
2734 typedef enum CPAccessResult {
2735 /* Access is permitted */
2736 CP_ACCESS_OK = 0,
2737 /* Access fails due to a configurable trap or enable which would
2738 * result in a categorized exception syndrome giving information about
2739 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2740 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2741 * PL1 if in EL0, otherwise to the current EL).
2742 */
2743 CP_ACCESS_TRAP = 1,
2744 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2745 * Note that this is not a catch-all case -- the set of cases which may
2746 * result in this failure is specifically defined by the architecture.
2747 */
2748 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2749 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2750 CP_ACCESS_TRAP_EL2 = 3,
2751 CP_ACCESS_TRAP_EL3 = 4,
2752 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2753 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2754 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2755 /* Access fails and results in an exception syndrome for an FP access,
2756 * trapped directly to EL2 or EL3
2757 */
2758 CP_ACCESS_TRAP_FP_EL2 = 7,
2759 CP_ACCESS_TRAP_FP_EL3 = 8,
2760 } CPAccessResult;
2761
2762 /* Access functions for coprocessor registers. These cannot fail and
2763 * may not raise exceptions.
2764 */
2765 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2766 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2767 uint64_t value);
2768 /* Access permission check functions for coprocessor registers. */
2769 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2770 const ARMCPRegInfo *opaque,
2771 bool isread);
2772 /* Hook function for register reset */
2773 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2774
2775 #define CP_ANY 0xff
2776
2777 /* Definition of an ARM coprocessor register */
2778 struct ARMCPRegInfo {
2779 /* Name of register (useful mainly for debugging, need not be unique) */
2780 const char *name;
2781 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2782 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2783 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2784 * will be decoded to this register. The register read and write
2785 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2786 * used by the program, so it is possible to register a wildcard and
2787 * then behave differently on read/write if necessary.
2788 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2789 * must both be zero.
2790 * For AArch64-visible registers, opc0 is also used.
2791 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2792 * way to distinguish (for KVM's benefit) guest-visible system registers
2793 * from demuxed ones provided to preserve the "no side effects on
2794 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2795 * visible (to match KVM's encoding); cp==0 will be converted to
2796 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2797 */
2798 uint8_t cp;
2799 uint8_t crn;
2800 uint8_t crm;
2801 uint8_t opc0;
2802 uint8_t opc1;
2803 uint8_t opc2;
2804 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2805 int state;
2806 /* Register type: ARM_CP_* bits/values */
2807 int type;
2808 /* Access rights: PL*_[RW] */
2809 int access;
2810 /* Security state: ARM_CP_SECSTATE_* bits/values */
2811 int secure;
2812 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2813 * this register was defined: can be used to hand data through to the
2814 * register read/write functions, since they are passed the ARMCPRegInfo*.
2815 */
2816 void *opaque;
2817 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2818 * fieldoffset is non-zero, the reset value of the register.
2819 */
2820 uint64_t resetvalue;
2821 /* Offset of the field in CPUARMState for this register.
2822 *
2823 * This is not needed if either:
2824 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2825 * 2. both readfn and writefn are specified
2826 */
2827 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2828
2829 /* Offsets of the secure and non-secure fields in CPUARMState for the
2830 * register if it is banked. These fields are only used during the static
2831 * registration of a register. During hashing the bank associated
2832 * with a given security state is copied to fieldoffset which is used from
2833 * there on out.
2834 *
2835 * It is expected that register definitions use either fieldoffset or
2836 * bank_fieldoffsets in the definition but not both. It is also expected
2837 * that both bank offsets are set when defining a banked register. This
2838 * use indicates that a register is banked.
2839 */
2840 ptrdiff_t bank_fieldoffsets[2];
2841
2842 /* Function for making any access checks for this register in addition to
2843 * those specified by the 'access' permissions bits. If NULL, no extra
2844 * checks required. The access check is performed at runtime, not at
2845 * translate time.
2846 */
2847 CPAccessFn *accessfn;
2848 /* Function for handling reads of this register. If NULL, then reads
2849 * will be done by loading from the offset into CPUARMState specified
2850 * by fieldoffset.
2851 */
2852 CPReadFn *readfn;
2853 /* Function for handling writes of this register. If NULL, then writes
2854 * will be done by writing to the offset into CPUARMState specified
2855 * by fieldoffset.
2856 */
2857 CPWriteFn *writefn;
2858 /* Function for doing a "raw" read; used when we need to copy
2859 * coprocessor state to the kernel for KVM or out for
2860 * migration. This only needs to be provided if there is also a
2861 * readfn and it has side effects (for instance clear-on-read bits).
2862 */
2863 CPReadFn *raw_readfn;
2864 /* Function for doing a "raw" write; used when we need to copy KVM
2865 * kernel coprocessor state into userspace, or for inbound
2866 * migration. This only needs to be provided if there is also a
2867 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2868 * or similar behaviour.
2869 */
2870 CPWriteFn *raw_writefn;
2871 /* Function for resetting the register. If NULL, then reset will be done
2872 * by writing resetvalue to the field specified in fieldoffset. If
2873 * fieldoffset is 0 then no reset will be done.
2874 */
2875 CPResetFn *resetfn;
2876
2877 /*
2878 * "Original" writefn and readfn.
2879 * For ARMv8.1-VHE register aliases, we overwrite the read/write
2880 * accessor functions of various EL1/EL0 to perform the runtime
2881 * check for which sysreg should actually be modified, and then
2882 * forwards the operation. Before overwriting the accessors,
2883 * the original function is copied here, so that accesses that
2884 * really do go to the EL1/EL0 version proceed normally.
2885 * (The corresponding EL2 register is linked via opaque.)
2886 */
2887 CPReadFn *orig_readfn;
2888 CPWriteFn *orig_writefn;
2889 };
2890
2891 /* Macros which are lvalues for the field in CPUARMState for the
2892 * ARMCPRegInfo *ri.
2893 */
2894 #define CPREG_FIELD32(env, ri) \
2895 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2896 #define CPREG_FIELD64(env, ri) \
2897 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2898
2899 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2900
2901 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2902 const ARMCPRegInfo *regs, void *opaque);
2903 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2904 const ARMCPRegInfo *regs, void *opaque);
2905 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2906 {
2907 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2908 }
2909 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2910 {
2911 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2912 }
2913 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2914
2915 /*
2916 * Definition of an ARM co-processor register as viewed from
2917 * userspace. This is used for presenting sanitised versions of
2918 * registers to userspace when emulating the Linux AArch64 CPU
2919 * ID/feature ABI (advertised as HWCAP_CPUID).
2920 */
2921 typedef struct ARMCPRegUserSpaceInfo {
2922 /* Name of register */
2923 const char *name;
2924
2925 /* Is the name actually a glob pattern */
2926 bool is_glob;
2927
2928 /* Only some bits are exported to user space */
2929 uint64_t exported_bits;
2930
2931 /* Fixed bits are applied after the mask */
2932 uint64_t fixed_bits;
2933 } ARMCPRegUserSpaceInfo;
2934
2935 #define REGUSERINFO_SENTINEL { .name = NULL }
2936
2937 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2938
2939 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2940 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2941 uint64_t value);
2942 /* CPReadFn that can be used for read-as-zero behaviour */
2943 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2944
2945 /* CPResetFn that does nothing, for use if no reset is required even
2946 * if fieldoffset is non zero.
2947 */
2948 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2949
2950 /* Return true if this reginfo struct's field in the cpu state struct
2951 * is 64 bits wide.
2952 */
2953 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2954 {
2955 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2956 }
2957
2958 static inline bool cp_access_ok(int current_el,
2959 const ARMCPRegInfo *ri, int isread)
2960 {
2961 return (ri->access >> ((current_el * 2) + isread)) & 1;
2962 }
2963
2964 /* Raw read of a coprocessor register (as needed for migration, etc) */
2965 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2966
2967 /**
2968 * write_list_to_cpustate
2969 * @cpu: ARMCPU
2970 *
2971 * For each register listed in the ARMCPU cpreg_indexes list, write
2972 * its value from the cpreg_values list into the ARMCPUState structure.
2973 * This updates TCG's working data structures from KVM data or
2974 * from incoming migration state.
2975 *
2976 * Returns: true if all register values were updated correctly,
2977 * false if some register was unknown or could not be written.
2978 * Note that we do not stop early on failure -- we will attempt
2979 * writing all registers in the list.
2980 */
2981 bool write_list_to_cpustate(ARMCPU *cpu);
2982
2983 /**
2984 * write_cpustate_to_list:
2985 * @cpu: ARMCPU
2986 * @kvm_sync: true if this is for syncing back to KVM
2987 *
2988 * For each register listed in the ARMCPU cpreg_indexes list, write
2989 * its value from the ARMCPUState structure into the cpreg_values list.
2990 * This is used to copy info from TCG's working data structures into
2991 * KVM or for outbound migration.
2992 *
2993 * @kvm_sync is true if we are doing this in order to sync the
2994 * register state back to KVM. In this case we will only update
2995 * values in the list if the previous list->cpustate sync actually
2996 * successfully wrote the CPU state. Otherwise we will keep the value
2997 * that is in the list.
2998 *
2999 * Returns: true if all register values were read correctly,
3000 * false if some register was unknown or could not be read.
3001 * Note that we do not stop early on failure -- we will attempt
3002 * reading all registers in the list.
3003 */
3004 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
3005
3006 #define ARM_CPUID_TI915T 0x54029152
3007 #define ARM_CPUID_TI925T 0x54029252
3008
3009 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
3010 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
3011 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
3012
3013 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
3014
3015 #define cpu_list arm_cpu_list
3016
3017 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
3018 *
3019 * If EL3 is 64-bit:
3020 * + NonSecure EL1 & 0 stage 1
3021 * + NonSecure EL1 & 0 stage 2
3022 * + NonSecure EL2
3023 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
3024 * + Secure EL1 & 0
3025 * + Secure EL3
3026 * If EL3 is 32-bit:
3027 * + NonSecure PL1 & 0 stage 1
3028 * + NonSecure PL1 & 0 stage 2
3029 * + NonSecure PL2
3030 * + Secure PL0
3031 * + Secure PL1
3032 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
3033 *
3034 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3035 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3036 * because they may differ in access permissions even if the VA->PA map is
3037 * the same
3038 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3039 * translation, which means that we have one mmu_idx that deals with two
3040 * concatenated translation regimes [this sort of combined s1+2 TLB is
3041 * architecturally permitted]
3042 * 3. we don't need to allocate an mmu_idx to translations that we won't be
3043 * handling via the TLB. The only way to do a stage 1 translation without
3044 * the immediate stage 2 translation is via the ATS or AT system insns,
3045 * which can be slow-pathed and always do a page table walk.
3046 * The only use of stage 2 translations is either as part of an s1+2
3047 * lookup or when loading the descriptors during a stage 1 page table walk,
3048 * and in both those cases we don't use the TLB.
3049 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3050 * translation regimes, because they map reasonably well to each other
3051 * and they can't both be active at the same time.
3052 * 5. we want to be able to use the TLB for accesses done as part of a
3053 * stage1 page table walk, rather than having to walk the stage2 page
3054 * table over and over.
3055 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3056 * Never (PAN) bit within PSTATE.
3057 *
3058 * This gives us the following list of cases:
3059 *
3060 * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3061 * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3062 * NS EL1 EL1&0 stage 1+2 +PAN
3063 * NS EL0 EL2&0
3064 * NS EL2 EL2&0
3065 * NS EL2 EL2&0 +PAN
3066 * NS EL2 (aka NS PL2)
3067 * S EL0 EL1&0 (aka S PL0)
3068 * S EL1 EL1&0 (not used if EL3 is 32 bit)
3069 * S EL1 EL1&0 +PAN
3070 * S EL3 (aka S PL1)
3071 *
3072 * for a total of 11 different mmu_idx.
3073 *
3074 * R profile CPUs have an MPU, but can use the same set of MMU indexes
3075 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3076 * NS EL2 if we ever model a Cortex-R52).
3077 *
3078 * M profile CPUs are rather different as they do not have a true MMU.
3079 * They have the following different MMU indexes:
3080 * User
3081 * Privileged
3082 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3083 * Privileged, execution priority negative (ditto)
3084 * If the CPU supports the v8M Security Extension then there are also:
3085 * Secure User
3086 * Secure Privileged
3087 * Secure User, execution priority negative
3088 * Secure Privileged, execution priority negative
3089 *
3090 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3091 * are not quite the same -- different CPU types (most notably M profile
3092 * vs A/R profile) would like to use MMU indexes with different semantics,
3093 * but since we don't ever need to use all of those in a single CPU we
3094 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3095 * modes + total number of M profile MMU modes". The lower bits of
3096 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3097 * the same for any particular CPU.
3098 * Variables of type ARMMUIdx are always full values, and the core
3099 * index values are in variables of type 'int'.
3100 *
3101 * Our enumeration includes at the end some entries which are not "true"
3102 * mmu_idx values in that they don't have corresponding TLBs and are only
3103 * valid for doing slow path page table walks.
3104 *
3105 * The constant names here are patterned after the general style of the names
3106 * of the AT/ATS operations.
3107 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3108 * For M profile we arrange them to have a bit for priv, a bit for negpri
3109 * and a bit for secure.
3110 */
3111 #define ARM_MMU_IDX_A 0x10 /* A profile */
3112 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
3113 #define ARM_MMU_IDX_M 0x40 /* M profile */
3114
3115 /* Meanings of the bits for A profile mmu idx values */
3116 #define ARM_MMU_IDX_A_NS 0x8
3117
3118 /* Meanings of the bits for M profile mmu idx values */
3119 #define ARM_MMU_IDX_M_PRIV 0x1
3120 #define ARM_MMU_IDX_M_NEGPRI 0x2
3121 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
3122
3123 #define ARM_MMU_IDX_TYPE_MASK \
3124 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3125 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3126
3127 typedef enum ARMMMUIdx {
3128 /*
3129 * A-profile.
3130 */
3131 ARMMMUIdx_SE10_0 = 0 | ARM_MMU_IDX_A,
3132 ARMMMUIdx_SE20_0 = 1 | ARM_MMU_IDX_A,
3133 ARMMMUIdx_SE10_1 = 2 | ARM_MMU_IDX_A,
3134 ARMMMUIdx_SE20_2 = 3 | ARM_MMU_IDX_A,
3135 ARMMMUIdx_SE10_1_PAN = 4 | ARM_MMU_IDX_A,
3136 ARMMMUIdx_SE20_2_PAN = 5 | ARM_MMU_IDX_A,
3137 ARMMMUIdx_SE2 = 6 | ARM_MMU_IDX_A,
3138 ARMMMUIdx_SE3 = 7 | ARM_MMU_IDX_A,
3139
3140 ARMMMUIdx_E10_0 = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3141 ARMMMUIdx_E20_0 = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3142 ARMMMUIdx_E10_1 = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3143 ARMMMUIdx_E20_2 = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3144 ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3145 ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3146 ARMMMUIdx_E2 = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3147
3148 /*
3149 * These are not allocated TLBs and are used only for AT system
3150 * instructions or for the first stage of an S12 page table walk.
3151 */
3152 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3153 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3154 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3155 ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3156 ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3157 ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3158 /*
3159 * Not allocated a TLB: used only for second stage of an S12 page
3160 * table walk, or for descriptor loads during first stage of an S1
3161 * page table walk. Note that if we ever want to have a TLB for this
3162 * then various TLB flush insns which currently are no-ops or flush
3163 * only stage 1 MMU indexes will need to change to flush stage 2.
3164 */
3165 ARMMMUIdx_Stage2 = 6 | ARM_MMU_IDX_NOTLB,
3166 ARMMMUIdx_Stage2_S = 7 | ARM_MMU_IDX_NOTLB,
3167
3168 /*
3169 * M-profile.
3170 */
3171 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3172 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3173 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3174 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3175 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3176 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3177 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3178 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3179 } ARMMMUIdx;
3180
3181 /*
3182 * Bit macros for the core-mmu-index values for each index,
3183 * for use when calling tlb_flush_by_mmuidx() and friends.
3184 */
3185 #define TO_CORE_BIT(NAME) \
3186 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3187
3188 typedef enum ARMMMUIdxBit {
3189 TO_CORE_BIT(E10_0),
3190 TO_CORE_BIT(E20_0),
3191 TO_CORE_BIT(E10_1),
3192 TO_CORE_BIT(E10_1_PAN),
3193 TO_CORE_BIT(E2),
3194 TO_CORE_BIT(E20_2),
3195 TO_CORE_BIT(E20_2_PAN),
3196 TO_CORE_BIT(SE10_0),
3197 TO_CORE_BIT(SE20_0),
3198 TO_CORE_BIT(SE10_1),
3199 TO_CORE_BIT(SE20_2),
3200 TO_CORE_BIT(SE10_1_PAN),
3201 TO_CORE_BIT(SE20_2_PAN),
3202 TO_CORE_BIT(SE2),
3203 TO_CORE_BIT(SE3),
3204
3205 TO_CORE_BIT(MUser),
3206 TO_CORE_BIT(MPriv),
3207 TO_CORE_BIT(MUserNegPri),
3208 TO_CORE_BIT(MPrivNegPri),
3209 TO_CORE_BIT(MSUser),
3210 TO_CORE_BIT(MSPriv),
3211 TO_CORE_BIT(MSUserNegPri),
3212 TO_CORE_BIT(MSPrivNegPri),
3213 } ARMMMUIdxBit;
3214
3215 #undef TO_CORE_BIT
3216
3217 #define MMU_USER_IDX 0
3218
3219 /* Indexes used when registering address spaces with cpu_address_space_init */
3220 typedef enum ARMASIdx {
3221 ARMASIdx_NS = 0,
3222 ARMASIdx_S = 1,
3223 ARMASIdx_TagNS = 2,
3224 ARMASIdx_TagS = 3,
3225 } ARMASIdx;
3226
3227 /* Return the Exception Level targeted by debug exceptions. */
3228 static inline int arm_debug_target_el(CPUARMState *env)
3229 {
3230 bool secure = arm_is_secure(env);
3231 bool route_to_el2 = false;
3232
3233 if (arm_is_el2_enabled(env)) {
3234 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3235 env->cp15.mdcr_el2 & MDCR_TDE;
3236 }
3237
3238 if (route_to_el2) {
3239 return 2;
3240 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3241 !arm_el_is_aa64(env, 3) && secure) {
3242 return 3;
3243 } else {
3244 return 1;
3245 }
3246 }
3247
3248 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3249 {
3250 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3251 * CSSELR is RAZ/WI.
3252 */
3253 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3254 }
3255
3256 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3257 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3258 {
3259 int cur_el = arm_current_el(env);
3260 int debug_el;
3261
3262 if (cur_el == 3) {
3263 return false;
3264 }
3265
3266 /* MDCR_EL3.SDD disables debug events from Secure state */
3267 if (arm_is_secure_below_el3(env)
3268 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3269 return false;
3270 }
3271
3272 /*
3273 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3274 * while not masking the (D)ebug bit in DAIF.
3275 */
3276 debug_el = arm_debug_target_el(env);
3277
3278 if (cur_el == debug_el) {
3279 return extract32(env->cp15.mdscr_el1, 13, 1)
3280 && !(env->daif & PSTATE_D);
3281 }
3282
3283 /* Otherwise the debug target needs to be a higher EL */
3284 return debug_el > cur_el;
3285 }
3286
3287 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3288 {
3289 int el = arm_current_el(env);
3290
3291 if (el == 0 && arm_el_is_aa64(env, 1)) {
3292 return aa64_generate_debug_exceptions(env);
3293 }
3294
3295 if (arm_is_secure(env)) {
3296 int spd;
3297
3298 if (el == 0 && (env->cp15.sder & 1)) {
3299 /* SDER.SUIDEN means debug exceptions from Secure EL0
3300 * are always enabled. Otherwise they are controlled by
3301 * SDCR.SPD like those from other Secure ELs.
3302 */
3303 return true;
3304 }
3305
3306 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3307 switch (spd) {
3308 case 1:
3309 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3310 case 0:
3311 /* For 0b00 we return true if external secure invasive debug
3312 * is enabled. On real hardware this is controlled by external
3313 * signals to the core. QEMU always permits debug, and behaves
3314 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3315 */
3316 return true;
3317 case 2:
3318 return false;
3319 case 3:
3320 return true;
3321 }
3322 }
3323
3324 return el != 2;
3325 }
3326
3327 /* Return true if debugging exceptions are currently enabled.
3328 * This corresponds to what in ARM ARM pseudocode would be
3329 * if UsingAArch32() then
3330 * return AArch32.GenerateDebugExceptions()
3331 * else
3332 * return AArch64.GenerateDebugExceptions()
3333 * We choose to push the if() down into this function for clarity,
3334 * since the pseudocode has it at all callsites except for the one in
3335 * CheckSoftwareStep(), where it is elided because both branches would
3336 * always return the same value.
3337 */
3338 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3339 {
3340 if (env->aarch64) {
3341 return aa64_generate_debug_exceptions(env);
3342 } else {
3343 return aa32_generate_debug_exceptions(env);
3344 }
3345 }
3346
3347 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3348 * implicitly means this always returns false in pre-v8 CPUs.)
3349 */
3350 static inline bool arm_singlestep_active(CPUARMState *env)
3351 {
3352 return extract32(env->cp15.mdscr_el1, 0, 1)
3353 && arm_el_is_aa64(env, arm_debug_target_el(env))
3354 && arm_generate_debug_exceptions(env);
3355 }
3356
3357 static inline bool arm_sctlr_b(CPUARMState *env)
3358 {
3359 return
3360 /* We need not implement SCTLR.ITD in user-mode emulation, so
3361 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3362 * This lets people run BE32 binaries with "-cpu any".
3363 */
3364 #ifndef CONFIG_USER_ONLY
3365 !arm_feature(env, ARM_FEATURE_V7) &&
3366 #endif
3367 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3368 }
3369
3370 uint64_t arm_sctlr(CPUARMState *env, int el);
3371
3372 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3373 bool sctlr_b)
3374 {
3375 #ifdef CONFIG_USER_ONLY
3376 /*
3377 * In system mode, BE32 is modelled in line with the
3378 * architecture (as word-invariant big-endianness), where loads
3379 * and stores are done little endian but from addresses which
3380 * are adjusted by XORing with the appropriate constant. So the
3381 * endianness to use for the raw data access is not affected by
3382 * SCTLR.B.
3383 * In user mode, however, we model BE32 as byte-invariant
3384 * big-endianness (because user-only code cannot tell the
3385 * difference), and so we need to use a data access endianness
3386 * that depends on SCTLR.B.
3387 */
3388 if (sctlr_b) {
3389 return true;
3390 }
3391 #endif
3392 /* In 32bit endianness is determined by looking at CPSR's E bit */
3393 return env->uncached_cpsr & CPSR_E;
3394 }
3395
3396 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3397 {
3398 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3399 }
3400
3401 /* Return true if the processor is in big-endian mode. */
3402 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3403 {
3404 if (!is_a64(env)) {
3405 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3406 } else {
3407 int cur_el = arm_current_el(env);
3408 uint64_t sctlr = arm_sctlr(env, cur_el);
3409 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3410 }
3411 }
3412
3413 #include "exec/cpu-all.h"
3414
3415 /*
3416 * We have more than 32-bits worth of state per TB, so we split the data
3417 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3418 * We collect these two parts in CPUARMTBFlags where they are named
3419 * flags and flags2 respectively.
3420 *
3421 * The flags that are shared between all execution modes, TBFLAG_ANY,
3422 * are stored in flags. The flags that are specific to a given mode
3423 * are stores in flags2. Since cs_base is sized on the configured
3424 * address size, flags2 always has 64-bits for A64, and a minimum of
3425 * 32-bits for A32 and M32.
3426 *
3427 * The bits for 32-bit A-profile and M-profile partially overlap:
3428 *
3429 * 31 23 11 10 0
3430 * +-------------+----------+----------------+
3431 * | | | TBFLAG_A32 |
3432 * | TBFLAG_AM32 | +-----+----------+
3433 * | | |TBFLAG_M32|
3434 * +-------------+----------------+----------+
3435 * 31 23 6 5 0
3436 *
3437 * Unless otherwise noted, these bits are cached in env->hflags.
3438 */
3439 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3440 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3441 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3442 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3443 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3444 /* Target EL if we take a floating-point-disabled exception */
3445 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3446 /* For A-profile only, target EL for debug exceptions. */
3447 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3448 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3449 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3450 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3451
3452 /*
3453 * Bit usage when in AArch32 state, both A- and M-profile.
3454 */
3455 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3456 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3457
3458 /*
3459 * Bit usage when in AArch32 state, for A-profile only.
3460 */
3461 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3462 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3463 /*
3464 * We store the bottom two bits of the CPAR as TB flags and handle
3465 * checks on the other bits at runtime. This shares the same bits as
3466 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3467 * Not cached, because VECLEN+VECSTRIDE are not cached.
3468 */
3469 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3470 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3471 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3472 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3473 /*
3474 * Indicates whether cp register reads and writes by guest code should access
3475 * the secure or nonsecure bank of banked registers; note that this is not
3476 * the same thing as the current security state of the processor!
3477 */
3478 FIELD(TBFLAG_A32, NS, 10, 1)
3479
3480 /*
3481 * Bit usage when in AArch32 state, for M-profile only.
3482 */
3483 /* Handler (ie not Thread) mode */
3484 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3485 /* Whether we should generate stack-limit checks */
3486 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3487 /* Set if FPCCR.LSPACT is set */
3488 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3489 /* Set if we must create a new FP context */
3490 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3491 /* Set if FPCCR.S does not match current security state */
3492 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3493 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3494 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3495
3496 /*
3497 * Bit usage when in AArch64 state
3498 */
3499 FIELD(TBFLAG_A64, TBII, 0, 2)
3500 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3501 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3502 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3503 FIELD(TBFLAG_A64, BT, 9, 1)
3504 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3505 FIELD(TBFLAG_A64, TBID, 12, 2)
3506 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3507 FIELD(TBFLAG_A64, ATA, 15, 1)
3508 FIELD(TBFLAG_A64, TCMA, 16, 2)
3509 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3510 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3511
3512 /*
3513 * Helpers for using the above.
3514 */
3515 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3516 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3517 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3518 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3519 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3520 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3521 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3522 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3523 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3524 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3525
3526 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3527 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3528 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3529 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3530 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3531
3532 /**
3533 * cpu_mmu_index:
3534 * @env: The cpu environment
3535 * @ifetch: True for code access, false for data access.
3536 *
3537 * Return the core mmu index for the current translation regime.
3538 * This function is used by generic TCG code paths.
3539 */
3540 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3541 {
3542 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3543 }
3544
3545 static inline bool bswap_code(bool sctlr_b)
3546 {
3547 #ifdef CONFIG_USER_ONLY
3548 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3549 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3550 * would also end up as a mixed-endian mode with BE code, LE data.
3551 */
3552 return
3553 #ifdef TARGET_WORDS_BIGENDIAN
3554 1 ^
3555 #endif
3556 sctlr_b;
3557 #else
3558 /* All code access in ARM is little endian, and there are no loaders
3559 * doing swaps that need to be reversed
3560 */
3561 return 0;
3562 #endif
3563 }
3564
3565 #ifdef CONFIG_USER_ONLY
3566 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3567 {
3568 return
3569 #ifdef TARGET_WORDS_BIGENDIAN
3570 1 ^
3571 #endif
3572 arm_cpu_data_is_big_endian(env);
3573 }
3574 #endif
3575
3576 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3577 target_ulong *cs_base, uint32_t *flags);
3578
3579 enum {
3580 QEMU_PSCI_CONDUIT_DISABLED = 0,
3581 QEMU_PSCI_CONDUIT_SMC = 1,
3582 QEMU_PSCI_CONDUIT_HVC = 2,
3583 };
3584
3585 #ifndef CONFIG_USER_ONLY
3586 /* Return the address space index to use for a memory access */
3587 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3588 {
3589 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3590 }
3591
3592 /* Return the AddressSpace to use for a memory access
3593 * (which depends on whether the access is S or NS, and whether
3594 * the board gave us a separate AddressSpace for S accesses).
3595 */
3596 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3597 {
3598 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3599 }
3600 #endif
3601
3602 /**
3603 * arm_register_pre_el_change_hook:
3604 * Register a hook function which will be called immediately before this
3605 * CPU changes exception level or mode. The hook function will be
3606 * passed a pointer to the ARMCPU and the opaque data pointer passed
3607 * to this function when the hook was registered.
3608 *
3609 * Note that if a pre-change hook is called, any registered post-change hooks
3610 * are guaranteed to subsequently be called.
3611 */
3612 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3613 void *opaque);
3614 /**
3615 * arm_register_el_change_hook:
3616 * Register a hook function which will be called immediately after this
3617 * CPU changes exception level or mode. The hook function will be
3618 * passed a pointer to the ARMCPU and the opaque data pointer passed
3619 * to this function when the hook was registered.
3620 *
3621 * Note that any registered hooks registered here are guaranteed to be called
3622 * if pre-change hooks have been.
3623 */
3624 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3625 *opaque);
3626
3627 /**
3628 * arm_rebuild_hflags:
3629 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3630 */
3631 void arm_rebuild_hflags(CPUARMState *env);
3632
3633 /**
3634 * aa32_vfp_dreg:
3635 * Return a pointer to the Dn register within env in 32-bit mode.
3636 */
3637 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3638 {
3639 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3640 }
3641
3642 /**
3643 * aa32_vfp_qreg:
3644 * Return a pointer to the Qn register within env in 32-bit mode.
3645 */
3646 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3647 {
3648 return &env->vfp.zregs[regno].d[0];
3649 }
3650
3651 /**
3652 * aa64_vfp_qreg:
3653 * Return a pointer to the Qn register within env in 64-bit mode.
3654 */
3655 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3656 {
3657 return &env->vfp.zregs[regno].d[0];
3658 }
3659
3660 /* Shared between translate-sve.c and sve_helper.c. */
3661 extern const uint64_t pred_esz_masks[4];
3662
3663 /* Helper for the macros below, validating the argument type. */
3664 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3665 {
3666 return x;
3667 }
3668
3669 /*
3670 * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3671 * Using these should be a bit more self-documenting than using the
3672 * generic target bits directly.
3673 */
3674 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3675 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3676
3677 /*
3678 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3679 */
3680 #define PAGE_BTI PAGE_TARGET_1
3681 #define PAGE_MTE PAGE_TARGET_2
3682
3683 #ifdef TARGET_TAGGED_ADDRESSES
3684 /**
3685 * cpu_untagged_addr:
3686 * @cs: CPU context
3687 * @x: tagged address
3688 *
3689 * Remove any address tag from @x. This is explicitly related to the
3690 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3691 *
3692 * There should be a better place to put this, but we need this in
3693 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3694 */
3695 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3696 {
3697 ARMCPU *cpu = ARM_CPU(cs);
3698 if (cpu->env.tagged_addr_enable) {
3699 /*
3700 * TBI is enabled for userspace but not kernelspace addresses.
3701 * Only clear the tag if bit 55 is clear.
3702 */
3703 x &= sextract64(x, 0, 56);
3704 }
3705 return x;
3706 }
3707 #endif
3708
3709 /*
3710 * Naming convention for isar_feature functions:
3711 * Functions which test 32-bit ID registers should have _aa32_ in
3712 * their name. Functions which test 64-bit ID registers should have
3713 * _aa64_ in their name. These must only be used in code where we
3714 * know for certain that the CPU has AArch32 or AArch64 respectively
3715 * or where the correct answer for a CPU which doesn't implement that
3716 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3717 * system registers that are specific to that CPU state, for "should
3718 * we let this system register bit be set" tests where the 32-bit
3719 * flavour of the register doesn't have the bit, and so on).
3720 * Functions which simply ask "does this feature exist at all" have
3721 * _any_ in their name, and always return the logical OR of the _aa64_
3722 * and the _aa32_ function.
3723 */
3724
3725 /*
3726 * 32-bit feature tests via id registers.
3727 */
3728 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3729 {
3730 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3731 }
3732
3733 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3734 {
3735 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3736 }
3737
3738 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3739 {
3740 /* (M-profile) low-overhead loops and branch future */
3741 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3742 }
3743
3744 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3745 {
3746 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3747 }
3748
3749 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3750 {
3751 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3752 }
3753
3754 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3755 {
3756 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3757 }
3758
3759 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3760 {
3761 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3762 }
3763
3764 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3765 {
3766 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3767 }
3768
3769 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3770 {
3771 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3772 }
3773
3774 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3775 {
3776 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3777 }
3778
3779 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3780 {
3781 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3782 }
3783
3784 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3785 {
3786 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3787 }
3788
3789 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3790 {
3791 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3792 }
3793
3794 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3795 {
3796 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3797 }
3798
3799 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3800 {
3801 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3802 }
3803
3804 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3805 {
3806 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3807 }
3808
3809 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3810 {
3811 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3812 }
3813
3814 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3815 {
3816 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3817 }
3818
3819 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3820 {
3821 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3822 }
3823
3824 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3825 {
3826 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3827 }
3828
3829 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3830 {
3831 /*
3832 * Return true if M-profile state handling insns
3833 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3834 */
3835 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3836 }
3837
3838 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3839 {
3840 /* Sadly this is encoded differently for A-profile and M-profile */
3841 if (isar_feature_aa32_mprofile(id)) {
3842 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3843 } else {
3844 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3845 }
3846 }
3847
3848 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3849 {
3850 /*
3851 * Return true if MVE is supported (either integer or floating point).
3852 * We must check for M-profile as the MVFR1 field means something
3853 * else for A-profile.
3854 */
3855 return isar_feature_aa32_mprofile(id) &&
3856 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3857 }
3858
3859 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3860 {
3861 /*
3862 * Return true if MVE is supported (either integer or floating point).
3863 * We must check for M-profile as the MVFR1 field means something
3864 * else for A-profile.
3865 */
3866 return isar_feature_aa32_mprofile(id) &&
3867 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3868 }
3869
3870 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3871 {
3872 /*
3873 * Return true if either VFP or SIMD is implemented.
3874 * In this case, a minimum of VFP w/ D0-D15.
3875 */
3876 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3877 }
3878
3879 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3880 {
3881 /* Return true if D16-D31 are implemented */
3882 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3883 }
3884
3885 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3886 {
3887 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3888 }
3889
3890 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3891 {
3892 /* Return true if CPU supports single precision floating point, VFPv2 */
3893 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3894 }
3895
3896 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3897 {
3898 /* Return true if CPU supports single precision floating point, VFPv3 */
3899 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3900 }
3901
3902 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3903 {
3904 /* Return true if CPU supports double precision floating point, VFPv2 */
3905 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3906 }
3907
3908 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3909 {
3910 /* Return true if CPU supports double precision floating point, VFPv3 */
3911 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3912 }
3913
3914 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3915 {
3916 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3917 }
3918
3919 /*
3920 * We always set the FP and SIMD FP16 fields to indicate identical
3921 * levels of support (assuming SIMD is implemented at all), so
3922 * we only need one set of accessors.
3923 */
3924 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3925 {
3926 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3927 }
3928
3929 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3930 {
3931 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3932 }
3933
3934 /*
3935 * Note that this ID register field covers both VFP and Neon FMAC,
3936 * so should usually be tested in combination with some other
3937 * check that confirms the presence of whichever of VFP or Neon is
3938 * relevant, to avoid accidentally enabling a Neon feature on
3939 * a VFP-no-Neon core or vice-versa.
3940 */
3941 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3942 {
3943 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3944 }
3945
3946 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3947 {
3948 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3949 }
3950
3951 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3952 {
3953 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3954 }
3955
3956 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3957 {
3958 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3959 }
3960
3961 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3962 {
3963 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3964 }
3965
3966 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3967 {
3968 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3969 }
3970
3971 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3972 {
3973 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3974 }
3975
3976 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3977 {
3978 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3979 }
3980
3981 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3982 {
3983 /* 0xf means "non-standard IMPDEF PMU" */
3984 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3985 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3986 }
3987
3988 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3989 {
3990 /* 0xf means "non-standard IMPDEF PMU" */
3991 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3992 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3993 }
3994
3995 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3996 {
3997 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3998 }
3999
4000 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
4001 {
4002 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
4003 }
4004
4005 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
4006 {
4007 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
4008 }
4009
4010 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
4011 {
4012 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
4013 }
4014
4015 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
4016 {
4017 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
4018 }
4019
4020 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
4021 {
4022 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
4023 }
4024
4025 /*
4026 * 64-bit feature tests via id registers.
4027 */
4028 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
4029 {
4030 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
4031 }
4032
4033 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
4034 {
4035 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
4036 }
4037
4038 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
4039 {
4040 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
4041 }
4042
4043 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
4044 {
4045 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
4046 }
4047
4048 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
4049 {
4050 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
4051 }
4052
4053 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
4054 {
4055 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
4056 }
4057
4058 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
4059 {
4060 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
4061 }
4062
4063 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
4064 {
4065 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4066 }
4067
4068 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4069 {
4070 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4071 }
4072
4073 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4074 {
4075 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4076 }
4077
4078 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4079 {
4080 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4081 }
4082
4083 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4084 {
4085 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4086 }
4087
4088 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4089 {
4090 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4091 }
4092
4093 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4094 {
4095 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4096 }
4097
4098 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4099 {
4100 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4101 }
4102
4103 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4104 {
4105 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4106 }
4107
4108 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4109 {
4110 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4111 }
4112
4113 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4114 {
4115 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4116 }
4117
4118 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4119 {
4120 /*
4121 * Return true if any form of pauth is enabled, as this
4122 * predicate controls migration of the 128-bit keys.
4123 */
4124 return (id->id_aa64isar1 &
4125 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4126 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4127 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4128 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4129 }
4130
4131 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4132 {
4133 /*
4134 * Return true if pauth is enabled with the architected QARMA algorithm.
4135 * QEMU will always set APA+GPA to the same value.
4136 */
4137 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4138 }
4139
4140 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
4141 {
4142 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
4143 }
4144
4145 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
4146 {
4147 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
4148 }
4149
4150 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4151 {
4152 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4153 }
4154
4155 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4156 {
4157 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4158 }
4159
4160 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4161 {
4162 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4163 }
4164
4165 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4166 {
4167 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4168 }
4169
4170 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4171 {
4172 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4173 }
4174
4175 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
4176 {
4177 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
4178 }
4179
4180 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4181 {
4182 /* We always set the AdvSIMD and FP fields identically. */
4183 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4184 }
4185
4186 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4187 {
4188 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
4189 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4190 }
4191
4192 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4193 {
4194 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4195 }
4196
4197 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4198 {
4199 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4200 }
4201
4202 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4203 {
4204 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4205 }
4206
4207 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4208 {
4209 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4210 }
4211
4212 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4213 {
4214 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4215 }
4216
4217 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4218 {
4219 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4220 }
4221
4222 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4223 {
4224 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4225 }
4226
4227 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4228 {
4229 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4230 }
4231
4232 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4233 {
4234 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4235 }
4236
4237 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4238 {
4239 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4240 }
4241
4242 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4243 {
4244 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4245 }
4246
4247 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4248 {
4249 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4250 }
4251
4252 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4253 {
4254 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4255 }
4256
4257 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4258 {
4259 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4260 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4261 }
4262
4263 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4264 {
4265 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4266 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4267 }
4268
4269 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4270 {
4271 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4272 }
4273
4274 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4275 {
4276 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4277 }
4278
4279 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4280 {
4281 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4282 }
4283
4284 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4285 {
4286 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4287 }
4288
4289 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4290 {
4291 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4292 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4293 }
4294
4295 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4296 {
4297 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4298 }
4299
4300 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4301 {
4302 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4303 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4304 }
4305
4306 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4307 {
4308 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4309 }
4310
4311 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4312 {
4313 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4314 }
4315
4316 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4317 {
4318 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4319 }
4320
4321 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4322 {
4323 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4324 }
4325
4326 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4327 {
4328 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4329 }
4330
4331 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4332 {
4333 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4334 }
4335
4336 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4337 {
4338 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4339 }
4340
4341 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4342 {
4343 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4344 }
4345
4346 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4347 {
4348 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4349 }
4350
4351 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4352 {
4353 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4354 }
4355
4356 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4357 {
4358 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4359 }
4360
4361 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4362 {
4363 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4364 }
4365
4366 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4367 {
4368 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4369 }
4370
4371 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4372 {
4373 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4374 }
4375
4376 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4377 {
4378 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4379 }
4380
4381 /*
4382 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4383 */
4384 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4385 {
4386 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4387 }
4388
4389 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4390 {
4391 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4392 }
4393
4394 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4395 {
4396 return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4397 }
4398
4399 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4400 {
4401 return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4402 }
4403
4404 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4405 {
4406 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4407 }
4408
4409 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4410 {
4411 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4412 }
4413
4414 /*
4415 * Forward to the above feature tests given an ARMCPU pointer.
4416 */
4417 #define cpu_isar_feature(name, cpu) \
4418 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4419
4420 #endif