]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
arm: Use different ARMMMUIdx values for M profile
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
32
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
35
36 #define CPUArchState struct CPUARMState
37
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
41
42 #include "fpu/softfloat.h"
43
44 #define EXCP_UDEF 1 /* undefined instruction */
45 #define EXCP_SWI 2 /* software interrupt */
46 #define EXCP_PREFETCH_ABORT 3
47 #define EXCP_DATA_ABORT 4
48 #define EXCP_IRQ 5
49 #define EXCP_FIQ 6
50 #define EXCP_BKPT 7
51 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
52 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
53 #define EXCP_HVC 11 /* HyperVisor Call */
54 #define EXCP_HYP_TRAP 12
55 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_VIRQ 14
57 #define EXCP_VFIQ 15
58 #define EXCP_SEMIHOST 16 /* semihosting call */
59 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
60 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
73
74 /* ARM-specific interrupt pending bits. */
75 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
76 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
77 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
78
79 /* The usual mapping for an AArch64 system register to its AArch32
80 * counterpart is for the 32 bit world to have access to the lower
81 * half only (with writes leaving the upper half untouched). It's
82 * therefore useful to be able to pass TCG the offset of the least
83 * significant half of a uint64_t struct member.
84 */
85 #ifdef HOST_WORDS_BIGENDIAN
86 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
87 #define offsetofhigh32(S, M) offsetof(S, M)
88 #else
89 #define offsetoflow32(S, M) offsetof(S, M)
90 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
91 #endif
92
93 /* Meanings of the ARMCPU object's four inbound GPIO lines */
94 #define ARM_CPU_IRQ 0
95 #define ARM_CPU_FIQ 1
96 #define ARM_CPU_VIRQ 2
97 #define ARM_CPU_VFIQ 3
98
99 #define NB_MMU_MODES 7
100 /* ARM-specific extra insn start words:
101 * 1: Conditional execution bits
102 * 2: Partial exception syndrome for data aborts
103 */
104 #define TARGET_INSN_START_EXTRA_WORDS 2
105
106 /* The 2nd extra word holding syndrome info for data aborts does not use
107 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
108 * help the sleb128 encoder do a better job.
109 * When restoring the CPU state, we shift it back up.
110 */
111 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
112 #define ARM_INSN_START_WORD2_SHIFT 14
113
114 /* We currently assume float and double are IEEE single and double
115 precision respectively.
116 Doing runtime conversions is tricky because VFP registers may contain
117 integer values (eg. as the result of a FTOSI instruction).
118 s<2n> maps to the least significant half of d<n>
119 s<2n+1> maps to the most significant half of d<n>
120 */
121
122 /* CPU state for each instance of a generic timer (in cp15 c14) */
123 typedef struct ARMGenericTimer {
124 uint64_t cval; /* Timer CompareValue register */
125 uint64_t ctl; /* Timer Control register */
126 } ARMGenericTimer;
127
128 #define GTIMER_PHYS 0
129 #define GTIMER_VIRT 1
130 #define GTIMER_HYP 2
131 #define GTIMER_SEC 3
132 #define NUM_GTIMERS 4
133
134 typedef struct {
135 uint64_t raw_tcr;
136 uint32_t mask;
137 uint32_t base_mask;
138 } TCR;
139
140 typedef struct CPUARMState {
141 /* Regs for current mode. */
142 uint32_t regs[16];
143
144 /* 32/64 switch only happens when taking and returning from
145 * exceptions so the overlap semantics are taken care of then
146 * instead of having a complicated union.
147 */
148 /* Regs for A64 mode. */
149 uint64_t xregs[32];
150 uint64_t pc;
151 /* PSTATE isn't an architectural register for ARMv8. However, it is
152 * convenient for us to assemble the underlying state into a 32 bit format
153 * identical to the architectural format used for the SPSR. (This is also
154 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
155 * 'pstate' register are.) Of the PSTATE bits:
156 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
157 * semantics as for AArch32, as described in the comments on each field)
158 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
159 * DAIF (exception masks) are kept in env->daif
160 * all other bits are stored in their correct places in env->pstate
161 */
162 uint32_t pstate;
163 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
164
165 /* Frequently accessed CPSR bits are stored separately for efficiency.
166 This contains all the other bits. Use cpsr_{read,write} to access
167 the whole CPSR. */
168 uint32_t uncached_cpsr;
169 uint32_t spsr;
170
171 /* Banked registers. */
172 uint64_t banked_spsr[8];
173 uint32_t banked_r13[8];
174 uint32_t banked_r14[8];
175
176 /* These hold r8-r12. */
177 uint32_t usr_regs[5];
178 uint32_t fiq_regs[5];
179
180 /* cpsr flag cache for faster execution */
181 uint32_t CF; /* 0 or 1 */
182 uint32_t VF; /* V is the bit 31. All other bits are undefined */
183 uint32_t NF; /* N is bit 31. All other bits are undefined. */
184 uint32_t ZF; /* Z set if zero. */
185 uint32_t QF; /* 0 or 1 */
186 uint32_t GE; /* cpsr[19:16] */
187 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
188 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
189 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
190
191 uint64_t elr_el[4]; /* AArch64 exception link regs */
192 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
193
194 /* System control coprocessor (cp15) */
195 struct {
196 uint32_t c0_cpuid;
197 union { /* Cache size selection */
198 struct {
199 uint64_t _unused_csselr0;
200 uint64_t csselr_ns;
201 uint64_t _unused_csselr1;
202 uint64_t csselr_s;
203 };
204 uint64_t csselr_el[4];
205 };
206 union { /* System control register. */
207 struct {
208 uint64_t _unused_sctlr;
209 uint64_t sctlr_ns;
210 uint64_t hsctlr;
211 uint64_t sctlr_s;
212 };
213 uint64_t sctlr_el[4];
214 };
215 uint64_t cpacr_el1; /* Architectural feature access control register */
216 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
217 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
218 uint64_t sder; /* Secure debug enable register. */
219 uint32_t nsacr; /* Non-secure access control register. */
220 union { /* MMU translation table base 0. */
221 struct {
222 uint64_t _unused_ttbr0_0;
223 uint64_t ttbr0_ns;
224 uint64_t _unused_ttbr0_1;
225 uint64_t ttbr0_s;
226 };
227 uint64_t ttbr0_el[4];
228 };
229 union { /* MMU translation table base 1. */
230 struct {
231 uint64_t _unused_ttbr1_0;
232 uint64_t ttbr1_ns;
233 uint64_t _unused_ttbr1_1;
234 uint64_t ttbr1_s;
235 };
236 uint64_t ttbr1_el[4];
237 };
238 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
239 /* MMU translation table base control. */
240 TCR tcr_el[4];
241 TCR vtcr_el2; /* Virtualization Translation Control. */
242 uint32_t c2_data; /* MPU data cacheable bits. */
243 uint32_t c2_insn; /* MPU instruction cacheable bits. */
244 union { /* MMU domain access control register
245 * MPU write buffer control.
246 */
247 struct {
248 uint64_t dacr_ns;
249 uint64_t dacr_s;
250 };
251 struct {
252 uint64_t dacr32_el2;
253 };
254 };
255 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
256 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
257 uint64_t hcr_el2; /* Hypervisor configuration register */
258 uint64_t scr_el3; /* Secure configuration register. */
259 union { /* Fault status registers. */
260 struct {
261 uint64_t ifsr_ns;
262 uint64_t ifsr_s;
263 };
264 struct {
265 uint64_t ifsr32_el2;
266 };
267 };
268 union {
269 struct {
270 uint64_t _unused_dfsr;
271 uint64_t dfsr_ns;
272 uint64_t hsr;
273 uint64_t dfsr_s;
274 };
275 uint64_t esr_el[4];
276 };
277 uint32_t c6_region[8]; /* MPU base/size registers. */
278 union { /* Fault address registers. */
279 struct {
280 uint64_t _unused_far0;
281 #ifdef HOST_WORDS_BIGENDIAN
282 uint32_t ifar_ns;
283 uint32_t dfar_ns;
284 uint32_t ifar_s;
285 uint32_t dfar_s;
286 #else
287 uint32_t dfar_ns;
288 uint32_t ifar_ns;
289 uint32_t dfar_s;
290 uint32_t ifar_s;
291 #endif
292 uint64_t _unused_far3;
293 };
294 uint64_t far_el[4];
295 };
296 uint64_t hpfar_el2;
297 uint64_t hstr_el2;
298 union { /* Translation result. */
299 struct {
300 uint64_t _unused_par_0;
301 uint64_t par_ns;
302 uint64_t _unused_par_1;
303 uint64_t par_s;
304 };
305 uint64_t par_el[4];
306 };
307
308 uint32_t c6_rgnr;
309
310 uint32_t c9_insn; /* Cache lockdown registers. */
311 uint32_t c9_data;
312 uint64_t c9_pmcr; /* performance monitor control register */
313 uint64_t c9_pmcnten; /* perf monitor counter enables */
314 uint32_t c9_pmovsr; /* perf monitor overflow status */
315 uint32_t c9_pmuserenr; /* perf monitor user enable */
316 uint64_t c9_pmselr; /* perf monitor counter selection register */
317 uint64_t c9_pminten; /* perf monitor interrupt enables */
318 union { /* Memory attribute redirection */
319 struct {
320 #ifdef HOST_WORDS_BIGENDIAN
321 uint64_t _unused_mair_0;
322 uint32_t mair1_ns;
323 uint32_t mair0_ns;
324 uint64_t _unused_mair_1;
325 uint32_t mair1_s;
326 uint32_t mair0_s;
327 #else
328 uint64_t _unused_mair_0;
329 uint32_t mair0_ns;
330 uint32_t mair1_ns;
331 uint64_t _unused_mair_1;
332 uint32_t mair0_s;
333 uint32_t mair1_s;
334 #endif
335 };
336 uint64_t mair_el[4];
337 };
338 union { /* vector base address register */
339 struct {
340 uint64_t _unused_vbar;
341 uint64_t vbar_ns;
342 uint64_t hvbar;
343 uint64_t vbar_s;
344 };
345 uint64_t vbar_el[4];
346 };
347 uint32_t mvbar; /* (monitor) vector base address register */
348 struct { /* FCSE PID. */
349 uint32_t fcseidr_ns;
350 uint32_t fcseidr_s;
351 };
352 union { /* Context ID. */
353 struct {
354 uint64_t _unused_contextidr_0;
355 uint64_t contextidr_ns;
356 uint64_t _unused_contextidr_1;
357 uint64_t contextidr_s;
358 };
359 uint64_t contextidr_el[4];
360 };
361 union { /* User RW Thread register. */
362 struct {
363 uint64_t tpidrurw_ns;
364 uint64_t tpidrprw_ns;
365 uint64_t htpidr;
366 uint64_t _tpidr_el3;
367 };
368 uint64_t tpidr_el[4];
369 };
370 /* The secure banks of these registers don't map anywhere */
371 uint64_t tpidrurw_s;
372 uint64_t tpidrprw_s;
373 uint64_t tpidruro_s;
374
375 union { /* User RO Thread register. */
376 uint64_t tpidruro_ns;
377 uint64_t tpidrro_el[1];
378 };
379 uint64_t c14_cntfrq; /* Counter Frequency register */
380 uint64_t c14_cntkctl; /* Timer Control register */
381 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
382 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
383 ARMGenericTimer c14_timer[NUM_GTIMERS];
384 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
385 uint32_t c15_ticonfig; /* TI925T configuration byte. */
386 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
387 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
388 uint32_t c15_threadid; /* TI debugger thread-ID. */
389 uint32_t c15_config_base_address; /* SCU base address. */
390 uint32_t c15_diagnostic; /* diagnostic register */
391 uint32_t c15_power_diagnostic;
392 uint32_t c15_power_control; /* power control */
393 uint64_t dbgbvr[16]; /* breakpoint value registers */
394 uint64_t dbgbcr[16]; /* breakpoint control registers */
395 uint64_t dbgwvr[16]; /* watchpoint value registers */
396 uint64_t dbgwcr[16]; /* watchpoint control registers */
397 uint64_t mdscr_el1;
398 uint64_t oslsr_el1; /* OS Lock Status */
399 uint64_t mdcr_el2;
400 uint64_t mdcr_el3;
401 /* If the counter is enabled, this stores the last time the counter
402 * was reset. Otherwise it stores the counter value
403 */
404 uint64_t c15_ccnt;
405 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
406 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
407 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
408 } cp15;
409
410 struct {
411 uint32_t other_sp;
412 uint32_t vecbase;
413 uint32_t basepri;
414 uint32_t control;
415 uint32_t ccr; /* Configuration and Control */
416 uint32_t cfsr; /* Configurable Fault Status */
417 uint32_t hfsr; /* HardFault Status */
418 uint32_t dfsr; /* Debug Fault Status Register */
419 uint32_t mmfar; /* MemManage Fault Address */
420 uint32_t bfar; /* BusFault Address */
421 int exception;
422 } v7m;
423
424 /* Information associated with an exception about to be taken:
425 * code which raises an exception must set cs->exception_index and
426 * the relevant parts of this structure; the cpu_do_interrupt function
427 * will then set the guest-visible registers as part of the exception
428 * entry process.
429 */
430 struct {
431 uint32_t syndrome; /* AArch64 format syndrome register */
432 uint32_t fsr; /* AArch32 format fault status register info */
433 uint64_t vaddress; /* virtual addr associated with exception, if any */
434 uint32_t target_el; /* EL the exception should be targeted for */
435 /* If we implement EL2 we will also need to store information
436 * about the intermediate physical address for stage 2 faults.
437 */
438 } exception;
439
440 /* Thumb-2 EE state. */
441 uint32_t teecr;
442 uint32_t teehbr;
443
444 /* VFP coprocessor state. */
445 struct {
446 /* VFP/Neon register state. Note that the mapping between S, D and Q
447 * views of the register bank differs between AArch64 and AArch32:
448 * In AArch32:
449 * Qn = regs[2n+1]:regs[2n]
450 * Dn = regs[n]
451 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
452 * (and regs[32] to regs[63] are inaccessible)
453 * In AArch64:
454 * Qn = regs[2n+1]:regs[2n]
455 * Dn = regs[2n]
456 * Sn = regs[2n] bits 31..0
457 * This corresponds to the architecturally defined mapping between
458 * the two execution states, and means we do not need to explicitly
459 * map these registers when changing states.
460 */
461 float64 regs[64];
462
463 uint32_t xregs[16];
464 /* We store these fpcsr fields separately for convenience. */
465 int vec_len;
466 int vec_stride;
467
468 /* scratch space when Tn are not sufficient. */
469 uint32_t scratch[8];
470
471 /* fp_status is the "normal" fp status. standard_fp_status retains
472 * values corresponding to the ARM "Standard FPSCR Value", ie
473 * default-NaN, flush-to-zero, round-to-nearest and is used by
474 * any operations (generally Neon) which the architecture defines
475 * as controlled by the standard FPSCR value rather than the FPSCR.
476 *
477 * To avoid having to transfer exception bits around, we simply
478 * say that the FPSCR cumulative exception flags are the logical
479 * OR of the flags in the two fp statuses. This relies on the
480 * only thing which needs to read the exception flags being
481 * an explicit FPSCR read.
482 */
483 float_status fp_status;
484 float_status standard_fp_status;
485 } vfp;
486 uint64_t exclusive_addr;
487 uint64_t exclusive_val;
488 uint64_t exclusive_high;
489
490 /* iwMMXt coprocessor state. */
491 struct {
492 uint64_t regs[16];
493 uint64_t val;
494
495 uint32_t cregs[16];
496 } iwmmxt;
497
498 #if defined(CONFIG_USER_ONLY)
499 /* For usermode syscall translation. */
500 int eabi;
501 #endif
502
503 struct CPUBreakpoint *cpu_breakpoint[16];
504 struct CPUWatchpoint *cpu_watchpoint[16];
505
506 /* Fields up to this point are cleared by a CPU reset */
507 struct {} end_reset_fields;
508
509 CPU_COMMON
510
511 /* Fields after CPU_COMMON are preserved across CPU reset. */
512
513 /* Internal CPU feature flags. */
514 uint64_t features;
515
516 /* PMSAv7 MPU */
517 struct {
518 uint32_t *drbar;
519 uint32_t *drsr;
520 uint32_t *dracr;
521 } pmsav7;
522
523 void *nvic;
524 const struct arm_boot_info *boot_info;
525 /* Store GICv3CPUState to access from this struct */
526 void *gicv3state;
527 } CPUARMState;
528
529 /**
530 * ARMELChangeHook:
531 * type of a function which can be registered via arm_register_el_change_hook()
532 * to get callbacks when the CPU changes its exception level or mode.
533 */
534 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
535
536
537 /* These values map onto the return values for
538 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
539 typedef enum ARMPSCIState {
540 PSCI_ON = 0,
541 PSCI_OFF = 1,
542 PSCI_ON_PENDING = 2
543 } ARMPSCIState;
544
545 /**
546 * ARMCPU:
547 * @env: #CPUARMState
548 *
549 * An ARM CPU core.
550 */
551 struct ARMCPU {
552 /*< private >*/
553 CPUState parent_obj;
554 /*< public >*/
555
556 CPUARMState env;
557
558 /* Coprocessor information */
559 GHashTable *cp_regs;
560 /* For marshalling (mostly coprocessor) register state between the
561 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
562 * we use these arrays.
563 */
564 /* List of register indexes managed via these arrays; (full KVM style
565 * 64 bit indexes, not CPRegInfo 32 bit indexes)
566 */
567 uint64_t *cpreg_indexes;
568 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
569 uint64_t *cpreg_values;
570 /* Length of the indexes, values, reset_values arrays */
571 int32_t cpreg_array_len;
572 /* These are used only for migration: incoming data arrives in
573 * these fields and is sanity checked in post_load before copying
574 * to the working data structures above.
575 */
576 uint64_t *cpreg_vmstate_indexes;
577 uint64_t *cpreg_vmstate_values;
578 int32_t cpreg_vmstate_array_len;
579
580 /* Timers used by the generic (architected) timer */
581 QEMUTimer *gt_timer[NUM_GTIMERS];
582 /* GPIO outputs for generic timer */
583 qemu_irq gt_timer_outputs[NUM_GTIMERS];
584 /* GPIO output for GICv3 maintenance interrupt signal */
585 qemu_irq gicv3_maintenance_interrupt;
586
587 /* MemoryRegion to use for secure physical accesses */
588 MemoryRegion *secure_memory;
589
590 /* 'compatible' string for this CPU for Linux device trees */
591 const char *dtb_compatible;
592
593 /* PSCI version for this CPU
594 * Bits[31:16] = Major Version
595 * Bits[15:0] = Minor Version
596 */
597 uint32_t psci_version;
598
599 /* Should CPU start in PSCI powered-off state? */
600 bool start_powered_off;
601
602 /* Current power state, access guarded by BQL */
603 ARMPSCIState power_state;
604
605 /* CPU has virtualization extension */
606 bool has_el2;
607 /* CPU has security extension */
608 bool has_el3;
609 /* CPU has PMU (Performance Monitor Unit) */
610 bool has_pmu;
611
612 /* CPU has memory protection unit */
613 bool has_mpu;
614 /* PMSAv7 MPU number of supported regions */
615 uint32_t pmsav7_dregion;
616
617 /* PSCI conduit used to invoke PSCI methods
618 * 0 - disabled, 1 - smc, 2 - hvc
619 */
620 uint32_t psci_conduit;
621
622 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
623 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
624 */
625 uint32_t kvm_target;
626
627 /* KVM init features for this CPU */
628 uint32_t kvm_init_features[7];
629
630 /* Uniprocessor system with MP extensions */
631 bool mp_is_up;
632
633 /* The instance init functions for implementation-specific subclasses
634 * set these fields to specify the implementation-dependent values of
635 * various constant registers and reset values of non-constant
636 * registers.
637 * Some of these might become QOM properties eventually.
638 * Field names match the official register names as defined in the
639 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
640 * is used for reset values of non-constant registers; no reset_
641 * prefix means a constant register.
642 */
643 uint32_t midr;
644 uint32_t revidr;
645 uint32_t reset_fpsid;
646 uint32_t mvfr0;
647 uint32_t mvfr1;
648 uint32_t mvfr2;
649 uint32_t ctr;
650 uint32_t reset_sctlr;
651 uint32_t id_pfr0;
652 uint32_t id_pfr1;
653 uint32_t id_dfr0;
654 uint32_t pmceid0;
655 uint32_t pmceid1;
656 uint32_t id_afr0;
657 uint32_t id_mmfr0;
658 uint32_t id_mmfr1;
659 uint32_t id_mmfr2;
660 uint32_t id_mmfr3;
661 uint32_t id_mmfr4;
662 uint32_t id_isar0;
663 uint32_t id_isar1;
664 uint32_t id_isar2;
665 uint32_t id_isar3;
666 uint32_t id_isar4;
667 uint32_t id_isar5;
668 uint64_t id_aa64pfr0;
669 uint64_t id_aa64pfr1;
670 uint64_t id_aa64dfr0;
671 uint64_t id_aa64dfr1;
672 uint64_t id_aa64afr0;
673 uint64_t id_aa64afr1;
674 uint64_t id_aa64isar0;
675 uint64_t id_aa64isar1;
676 uint64_t id_aa64mmfr0;
677 uint64_t id_aa64mmfr1;
678 uint32_t dbgdidr;
679 uint32_t clidr;
680 uint64_t mp_affinity; /* MP ID without feature bits */
681 /* The elements of this array are the CCSIDR values for each cache,
682 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
683 */
684 uint32_t ccsidr[16];
685 uint64_t reset_cbar;
686 uint32_t reset_auxcr;
687 bool reset_hivecs;
688 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
689 uint32_t dcz_blocksize;
690 uint64_t rvbar;
691
692 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
693 int gic_num_lrs; /* number of list registers */
694 int gic_vpribits; /* number of virtual priority bits */
695 int gic_vprebits; /* number of virtual preemption bits */
696
697 /* Whether the cfgend input is high (i.e. this CPU should reset into
698 * big-endian mode). This setting isn't used directly: instead it modifies
699 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
700 * architecture version.
701 */
702 bool cfgend;
703
704 ARMELChangeHook *el_change_hook;
705 void *el_change_hook_opaque;
706 };
707
708 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
709 {
710 return container_of(env, ARMCPU, env);
711 }
712
713 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
714
715 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
716
717 #define ENV_OFFSET offsetof(ARMCPU, env)
718
719 #ifndef CONFIG_USER_ONLY
720 extern const struct VMStateDescription vmstate_arm_cpu;
721 #endif
722
723 void arm_cpu_do_interrupt(CPUState *cpu);
724 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
725 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
726
727 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
728 int flags);
729
730 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
731 MemTxAttrs *attrs);
732
733 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
734 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
735
736 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
737 int cpuid, void *opaque);
738 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
739 int cpuid, void *opaque);
740
741 #ifdef TARGET_AARCH64
742 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
743 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
744 #endif
745
746 ARMCPU *cpu_arm_init(const char *cpu_model);
747 target_ulong do_arm_semihosting(CPUARMState *env);
748 void aarch64_sync_32_to_64(CPUARMState *env);
749 void aarch64_sync_64_to_32(CPUARMState *env);
750
751 static inline bool is_a64(CPUARMState *env)
752 {
753 return env->aarch64;
754 }
755
756 /* you can call this signal handler from your SIGBUS and SIGSEGV
757 signal handlers to inform the virtual CPU of exceptions. non zero
758 is returned if the signal was handled by the virtual CPU. */
759 int cpu_arm_signal_handler(int host_signum, void *pinfo,
760 void *puc);
761
762 /**
763 * pmccntr_sync
764 * @env: CPUARMState
765 *
766 * Synchronises the counter in the PMCCNTR. This must always be called twice,
767 * once before any action that might affect the timer and again afterwards.
768 * The function is used to swap the state of the register if required.
769 * This only happens when not in user mode (!CONFIG_USER_ONLY)
770 */
771 void pmccntr_sync(CPUARMState *env);
772
773 /* SCTLR bit meanings. Several bits have been reused in newer
774 * versions of the architecture; in that case we define constants
775 * for both old and new bit meanings. Code which tests against those
776 * bits should probably check or otherwise arrange that the CPU
777 * is the architectural version it expects.
778 */
779 #define SCTLR_M (1U << 0)
780 #define SCTLR_A (1U << 1)
781 #define SCTLR_C (1U << 2)
782 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
783 #define SCTLR_SA (1U << 3)
784 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
785 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
786 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
787 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
788 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
789 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
790 #define SCTLR_ITD (1U << 7) /* v8 onward */
791 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
792 #define SCTLR_SED (1U << 8) /* v8 onward */
793 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
794 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
795 #define SCTLR_F (1U << 10) /* up to v6 */
796 #define SCTLR_SW (1U << 10) /* v7 onward */
797 #define SCTLR_Z (1U << 11)
798 #define SCTLR_I (1U << 12)
799 #define SCTLR_V (1U << 13)
800 #define SCTLR_RR (1U << 14) /* up to v7 */
801 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
802 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
803 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
804 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
805 #define SCTLR_nTWI (1U << 16) /* v8 onward */
806 #define SCTLR_HA (1U << 17)
807 #define SCTLR_BR (1U << 17) /* PMSA only */
808 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
809 #define SCTLR_nTWE (1U << 18) /* v8 onward */
810 #define SCTLR_WXN (1U << 19)
811 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
812 #define SCTLR_UWXN (1U << 20) /* v7 onward */
813 #define SCTLR_FI (1U << 21)
814 #define SCTLR_U (1U << 22)
815 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
816 #define SCTLR_VE (1U << 24) /* up to v7 */
817 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
818 #define SCTLR_EE (1U << 25)
819 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
820 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
821 #define SCTLR_NMFI (1U << 27)
822 #define SCTLR_TRE (1U << 28)
823 #define SCTLR_AFE (1U << 29)
824 #define SCTLR_TE (1U << 30)
825
826 #define CPTR_TCPAC (1U << 31)
827 #define CPTR_TTA (1U << 20)
828 #define CPTR_TFP (1U << 10)
829
830 #define MDCR_EPMAD (1U << 21)
831 #define MDCR_EDAD (1U << 20)
832 #define MDCR_SPME (1U << 17)
833 #define MDCR_SDD (1U << 16)
834 #define MDCR_SPD (3U << 14)
835 #define MDCR_TDRA (1U << 11)
836 #define MDCR_TDOSA (1U << 10)
837 #define MDCR_TDA (1U << 9)
838 #define MDCR_TDE (1U << 8)
839 #define MDCR_HPME (1U << 7)
840 #define MDCR_TPM (1U << 6)
841 #define MDCR_TPMCR (1U << 5)
842
843 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
844 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
845
846 #define CPSR_M (0x1fU)
847 #define CPSR_T (1U << 5)
848 #define CPSR_F (1U << 6)
849 #define CPSR_I (1U << 7)
850 #define CPSR_A (1U << 8)
851 #define CPSR_E (1U << 9)
852 #define CPSR_IT_2_7 (0xfc00U)
853 #define CPSR_GE (0xfU << 16)
854 #define CPSR_IL (1U << 20)
855 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
856 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
857 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
858 * where it is live state but not accessible to the AArch32 code.
859 */
860 #define CPSR_RESERVED (0x7U << 21)
861 #define CPSR_J (1U << 24)
862 #define CPSR_IT_0_1 (3U << 25)
863 #define CPSR_Q (1U << 27)
864 #define CPSR_V (1U << 28)
865 #define CPSR_C (1U << 29)
866 #define CPSR_Z (1U << 30)
867 #define CPSR_N (1U << 31)
868 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
869 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
870
871 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
872 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
873 | CPSR_NZCV)
874 /* Bits writable in user mode. */
875 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
876 /* Execution state bits. MRS read as zero, MSR writes ignored. */
877 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
878 /* Mask of bits which may be set by exception return copying them from SPSR */
879 #define CPSR_ERET_MASK (~CPSR_RESERVED)
880
881 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
882 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
883 #define TTBCR_PD0 (1U << 4)
884 #define TTBCR_PD1 (1U << 5)
885 #define TTBCR_EPD0 (1U << 7)
886 #define TTBCR_IRGN0 (3U << 8)
887 #define TTBCR_ORGN0 (3U << 10)
888 #define TTBCR_SH0 (3U << 12)
889 #define TTBCR_T1SZ (3U << 16)
890 #define TTBCR_A1 (1U << 22)
891 #define TTBCR_EPD1 (1U << 23)
892 #define TTBCR_IRGN1 (3U << 24)
893 #define TTBCR_ORGN1 (3U << 26)
894 #define TTBCR_SH1 (1U << 28)
895 #define TTBCR_EAE (1U << 31)
896
897 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
898 * Only these are valid when in AArch64 mode; in
899 * AArch32 mode SPSRs are basically CPSR-format.
900 */
901 #define PSTATE_SP (1U)
902 #define PSTATE_M (0xFU)
903 #define PSTATE_nRW (1U << 4)
904 #define PSTATE_F (1U << 6)
905 #define PSTATE_I (1U << 7)
906 #define PSTATE_A (1U << 8)
907 #define PSTATE_D (1U << 9)
908 #define PSTATE_IL (1U << 20)
909 #define PSTATE_SS (1U << 21)
910 #define PSTATE_V (1U << 28)
911 #define PSTATE_C (1U << 29)
912 #define PSTATE_Z (1U << 30)
913 #define PSTATE_N (1U << 31)
914 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
915 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
916 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
917 /* Mode values for AArch64 */
918 #define PSTATE_MODE_EL3h 13
919 #define PSTATE_MODE_EL3t 12
920 #define PSTATE_MODE_EL2h 9
921 #define PSTATE_MODE_EL2t 8
922 #define PSTATE_MODE_EL1h 5
923 #define PSTATE_MODE_EL1t 4
924 #define PSTATE_MODE_EL0t 0
925
926 /* Map EL and handler into a PSTATE_MODE. */
927 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
928 {
929 return (el << 2) | handler;
930 }
931
932 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
933 * interprocessing, so we don't attempt to sync with the cpsr state used by
934 * the 32 bit decoder.
935 */
936 static inline uint32_t pstate_read(CPUARMState *env)
937 {
938 int ZF;
939
940 ZF = (env->ZF == 0);
941 return (env->NF & 0x80000000) | (ZF << 30)
942 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
943 | env->pstate | env->daif;
944 }
945
946 static inline void pstate_write(CPUARMState *env, uint32_t val)
947 {
948 env->ZF = (~val) & PSTATE_Z;
949 env->NF = val;
950 env->CF = (val >> 29) & 1;
951 env->VF = (val << 3) & 0x80000000;
952 env->daif = val & PSTATE_DAIF;
953 env->pstate = val & ~CACHED_PSTATE_BITS;
954 }
955
956 /* Return the current CPSR value. */
957 uint32_t cpsr_read(CPUARMState *env);
958
959 typedef enum CPSRWriteType {
960 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
961 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
962 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
963 CPSRWriteByGDBStub = 3, /* from the GDB stub */
964 } CPSRWriteType;
965
966 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
967 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
968 CPSRWriteType write_type);
969
970 /* Return the current xPSR value. */
971 static inline uint32_t xpsr_read(CPUARMState *env)
972 {
973 int ZF;
974 ZF = (env->ZF == 0);
975 return (env->NF & 0x80000000) | (ZF << 30)
976 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
977 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
978 | ((env->condexec_bits & 0xfc) << 8)
979 | env->v7m.exception;
980 }
981
982 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
983 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
984 {
985 if (mask & CPSR_NZCV) {
986 env->ZF = (~val) & CPSR_Z;
987 env->NF = val;
988 env->CF = (val >> 29) & 1;
989 env->VF = (val << 3) & 0x80000000;
990 }
991 if (mask & CPSR_Q)
992 env->QF = ((val & CPSR_Q) != 0);
993 if (mask & (1 << 24))
994 env->thumb = ((val & (1 << 24)) != 0);
995 if (mask & CPSR_IT_0_1) {
996 env->condexec_bits &= ~3;
997 env->condexec_bits |= (val >> 25) & 3;
998 }
999 if (mask & CPSR_IT_2_7) {
1000 env->condexec_bits &= 3;
1001 env->condexec_bits |= (val >> 8) & 0xfc;
1002 }
1003 if (mask & 0x1ff) {
1004 env->v7m.exception = val & 0x1ff;
1005 }
1006 }
1007
1008 #define HCR_VM (1ULL << 0)
1009 #define HCR_SWIO (1ULL << 1)
1010 #define HCR_PTW (1ULL << 2)
1011 #define HCR_FMO (1ULL << 3)
1012 #define HCR_IMO (1ULL << 4)
1013 #define HCR_AMO (1ULL << 5)
1014 #define HCR_VF (1ULL << 6)
1015 #define HCR_VI (1ULL << 7)
1016 #define HCR_VSE (1ULL << 8)
1017 #define HCR_FB (1ULL << 9)
1018 #define HCR_BSU_MASK (3ULL << 10)
1019 #define HCR_DC (1ULL << 12)
1020 #define HCR_TWI (1ULL << 13)
1021 #define HCR_TWE (1ULL << 14)
1022 #define HCR_TID0 (1ULL << 15)
1023 #define HCR_TID1 (1ULL << 16)
1024 #define HCR_TID2 (1ULL << 17)
1025 #define HCR_TID3 (1ULL << 18)
1026 #define HCR_TSC (1ULL << 19)
1027 #define HCR_TIDCP (1ULL << 20)
1028 #define HCR_TACR (1ULL << 21)
1029 #define HCR_TSW (1ULL << 22)
1030 #define HCR_TPC (1ULL << 23)
1031 #define HCR_TPU (1ULL << 24)
1032 #define HCR_TTLB (1ULL << 25)
1033 #define HCR_TVM (1ULL << 26)
1034 #define HCR_TGE (1ULL << 27)
1035 #define HCR_TDZ (1ULL << 28)
1036 #define HCR_HCD (1ULL << 29)
1037 #define HCR_TRVM (1ULL << 30)
1038 #define HCR_RW (1ULL << 31)
1039 #define HCR_CD (1ULL << 32)
1040 #define HCR_ID (1ULL << 33)
1041 #define HCR_MASK ((1ULL << 34) - 1)
1042
1043 #define SCR_NS (1U << 0)
1044 #define SCR_IRQ (1U << 1)
1045 #define SCR_FIQ (1U << 2)
1046 #define SCR_EA (1U << 3)
1047 #define SCR_FW (1U << 4)
1048 #define SCR_AW (1U << 5)
1049 #define SCR_NET (1U << 6)
1050 #define SCR_SMD (1U << 7)
1051 #define SCR_HCE (1U << 8)
1052 #define SCR_SIF (1U << 9)
1053 #define SCR_RW (1U << 10)
1054 #define SCR_ST (1U << 11)
1055 #define SCR_TWI (1U << 12)
1056 #define SCR_TWE (1U << 13)
1057 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1058 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1059
1060 /* Return the current FPSCR value. */
1061 uint32_t vfp_get_fpscr(CPUARMState *env);
1062 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1063
1064 /* For A64 the FPSCR is split into two logically distinct registers,
1065 * FPCR and FPSR. However since they still use non-overlapping bits
1066 * we store the underlying state in fpscr and just mask on read/write.
1067 */
1068 #define FPSR_MASK 0xf800009f
1069 #define FPCR_MASK 0x07f79f00
1070 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1071 {
1072 return vfp_get_fpscr(env) & FPSR_MASK;
1073 }
1074
1075 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1076 {
1077 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1078 vfp_set_fpscr(env, new_fpscr);
1079 }
1080
1081 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1082 {
1083 return vfp_get_fpscr(env) & FPCR_MASK;
1084 }
1085
1086 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1087 {
1088 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1089 vfp_set_fpscr(env, new_fpscr);
1090 }
1091
1092 enum arm_cpu_mode {
1093 ARM_CPU_MODE_USR = 0x10,
1094 ARM_CPU_MODE_FIQ = 0x11,
1095 ARM_CPU_MODE_IRQ = 0x12,
1096 ARM_CPU_MODE_SVC = 0x13,
1097 ARM_CPU_MODE_MON = 0x16,
1098 ARM_CPU_MODE_ABT = 0x17,
1099 ARM_CPU_MODE_HYP = 0x1a,
1100 ARM_CPU_MODE_UND = 0x1b,
1101 ARM_CPU_MODE_SYS = 0x1f
1102 };
1103
1104 /* VFP system registers. */
1105 #define ARM_VFP_FPSID 0
1106 #define ARM_VFP_FPSCR 1
1107 #define ARM_VFP_MVFR2 5
1108 #define ARM_VFP_MVFR1 6
1109 #define ARM_VFP_MVFR0 7
1110 #define ARM_VFP_FPEXC 8
1111 #define ARM_VFP_FPINST 9
1112 #define ARM_VFP_FPINST2 10
1113
1114 /* iwMMXt coprocessor control registers. */
1115 #define ARM_IWMMXT_wCID 0
1116 #define ARM_IWMMXT_wCon 1
1117 #define ARM_IWMMXT_wCSSF 2
1118 #define ARM_IWMMXT_wCASF 3
1119 #define ARM_IWMMXT_wCGR0 8
1120 #define ARM_IWMMXT_wCGR1 9
1121 #define ARM_IWMMXT_wCGR2 10
1122 #define ARM_IWMMXT_wCGR3 11
1123
1124 /* V7M CCR bits */
1125 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1126 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1127 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1128 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1129 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1130 FIELD(V7M_CCR, STKALIGN, 9, 1)
1131 FIELD(V7M_CCR, DC, 16, 1)
1132 FIELD(V7M_CCR, IC, 17, 1)
1133
1134 /* V7M CFSR bits for MMFSR */
1135 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1136 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1137 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1138 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1139 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1140 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1141
1142 /* V7M CFSR bits for BFSR */
1143 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1144 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1145 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1146 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1147 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1148 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1149 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1150
1151 /* V7M CFSR bits for UFSR */
1152 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1153 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1154 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1155 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1156 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1157 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1158
1159 /* V7M HFSR bits */
1160 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1161 FIELD(V7M_HFSR, FORCED, 30, 1)
1162 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1163
1164 /* V7M DFSR bits */
1165 FIELD(V7M_DFSR, HALTED, 0, 1)
1166 FIELD(V7M_DFSR, BKPT, 1, 1)
1167 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1168 FIELD(V7M_DFSR, VCATCH, 3, 1)
1169 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1170
1171 /* If adding a feature bit which corresponds to a Linux ELF
1172 * HWCAP bit, remember to update the feature-bit-to-hwcap
1173 * mapping in linux-user/elfload.c:get_elf_hwcap().
1174 */
1175 enum arm_features {
1176 ARM_FEATURE_VFP,
1177 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1178 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1179 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1180 ARM_FEATURE_V6,
1181 ARM_FEATURE_V6K,
1182 ARM_FEATURE_V7,
1183 ARM_FEATURE_THUMB2,
1184 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
1185 ARM_FEATURE_VFP3,
1186 ARM_FEATURE_VFP_FP16,
1187 ARM_FEATURE_NEON,
1188 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1189 ARM_FEATURE_M, /* Microcontroller profile. */
1190 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1191 ARM_FEATURE_THUMB2EE,
1192 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1193 ARM_FEATURE_V4T,
1194 ARM_FEATURE_V5,
1195 ARM_FEATURE_STRONGARM,
1196 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1197 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1198 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1199 ARM_FEATURE_GENERIC_TIMER,
1200 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1201 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1202 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1203 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1204 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1205 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1206 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1207 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1208 ARM_FEATURE_V8,
1209 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1210 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1211 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1212 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1213 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1214 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1215 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1216 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1217 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1218 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1219 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1220 ARM_FEATURE_PMU, /* has PMU support */
1221 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1222 };
1223
1224 static inline int arm_feature(CPUARMState *env, int feature)
1225 {
1226 return (env->features & (1ULL << feature)) != 0;
1227 }
1228
1229 #if !defined(CONFIG_USER_ONLY)
1230 /* Return true if exception levels below EL3 are in secure state,
1231 * or would be following an exception return to that level.
1232 * Unlike arm_is_secure() (which is always a question about the
1233 * _current_ state of the CPU) this doesn't care about the current
1234 * EL or mode.
1235 */
1236 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1237 {
1238 if (arm_feature(env, ARM_FEATURE_EL3)) {
1239 return !(env->cp15.scr_el3 & SCR_NS);
1240 } else {
1241 /* If EL3 is not supported then the secure state is implementation
1242 * defined, in which case QEMU defaults to non-secure.
1243 */
1244 return false;
1245 }
1246 }
1247
1248 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1249 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1250 {
1251 if (arm_feature(env, ARM_FEATURE_EL3)) {
1252 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1253 /* CPU currently in AArch64 state and EL3 */
1254 return true;
1255 } else if (!is_a64(env) &&
1256 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1257 /* CPU currently in AArch32 state and monitor mode */
1258 return true;
1259 }
1260 }
1261 return false;
1262 }
1263
1264 /* Return true if the processor is in secure state */
1265 static inline bool arm_is_secure(CPUARMState *env)
1266 {
1267 if (arm_is_el3_or_mon(env)) {
1268 return true;
1269 }
1270 return arm_is_secure_below_el3(env);
1271 }
1272
1273 #else
1274 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1275 {
1276 return false;
1277 }
1278
1279 static inline bool arm_is_secure(CPUARMState *env)
1280 {
1281 return false;
1282 }
1283 #endif
1284
1285 /* Return true if the specified exception level is running in AArch64 state. */
1286 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1287 {
1288 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1289 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1290 */
1291 assert(el >= 1 && el <= 3);
1292 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1293
1294 /* The highest exception level is always at the maximum supported
1295 * register width, and then lower levels have a register width controlled
1296 * by bits in the SCR or HCR registers.
1297 */
1298 if (el == 3) {
1299 return aa64;
1300 }
1301
1302 if (arm_feature(env, ARM_FEATURE_EL3)) {
1303 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1304 }
1305
1306 if (el == 2) {
1307 return aa64;
1308 }
1309
1310 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1311 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1312 }
1313
1314 return aa64;
1315 }
1316
1317 /* Function for determing whether guest cp register reads and writes should
1318 * access the secure or non-secure bank of a cp register. When EL3 is
1319 * operating in AArch32 state, the NS-bit determines whether the secure
1320 * instance of a cp register should be used. When EL3 is AArch64 (or if
1321 * it doesn't exist at all) then there is no register banking, and all
1322 * accesses are to the non-secure version.
1323 */
1324 static inline bool access_secure_reg(CPUARMState *env)
1325 {
1326 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1327 !arm_el_is_aa64(env, 3) &&
1328 !(env->cp15.scr_el3 & SCR_NS));
1329
1330 return ret;
1331 }
1332
1333 /* Macros for accessing a specified CP register bank */
1334 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1335 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1336
1337 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1338 do { \
1339 if (_secure) { \
1340 (_env)->cp15._regname##_s = (_val); \
1341 } else { \
1342 (_env)->cp15._regname##_ns = (_val); \
1343 } \
1344 } while (0)
1345
1346 /* Macros for automatically accessing a specific CP register bank depending on
1347 * the current secure state of the system. These macros are not intended for
1348 * supporting instruction translation reads/writes as these are dependent
1349 * solely on the SCR.NS bit and not the mode.
1350 */
1351 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1352 A32_BANKED_REG_GET((_env), _regname, \
1353 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1354
1355 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1356 A32_BANKED_REG_SET((_env), _regname, \
1357 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1358 (_val))
1359
1360 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1361 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1362 uint32_t cur_el, bool secure);
1363
1364 /* Interface between CPU and Interrupt controller. */
1365 #ifndef CONFIG_USER_ONLY
1366 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1367 #else
1368 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1369 {
1370 return true;
1371 }
1372 #endif
1373 void armv7m_nvic_set_pending(void *opaque, int irq);
1374 void armv7m_nvic_acknowledge_irq(void *opaque);
1375 /**
1376 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1377 * @opaque: the NVIC
1378 * @irq: the exception number to complete
1379 *
1380 * Returns: -1 if the irq was not active
1381 * 1 if completing this irq brought us back to base (no active irqs)
1382 * 0 if there is still an irq active after this one was completed
1383 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1384 */
1385 int armv7m_nvic_complete_irq(void *opaque, int irq);
1386
1387 /* Interface for defining coprocessor registers.
1388 * Registers are defined in tables of arm_cp_reginfo structs
1389 * which are passed to define_arm_cp_regs().
1390 */
1391
1392 /* When looking up a coprocessor register we look for it
1393 * via an integer which encodes all of:
1394 * coprocessor number
1395 * Crn, Crm, opc1, opc2 fields
1396 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1397 * or via MRRC/MCRR?)
1398 * non-secure/secure bank (AArch32 only)
1399 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1400 * (In this case crn and opc2 should be zero.)
1401 * For AArch64, there is no 32/64 bit size distinction;
1402 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1403 * and 4 bit CRn and CRm. The encoding patterns are chosen
1404 * to be easy to convert to and from the KVM encodings, and also
1405 * so that the hashtable can contain both AArch32 and AArch64
1406 * registers (to allow for interprocessing where we might run
1407 * 32 bit code on a 64 bit core).
1408 */
1409 /* This bit is private to our hashtable cpreg; in KVM register
1410 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1411 * in the upper bits of the 64 bit ID.
1412 */
1413 #define CP_REG_AA64_SHIFT 28
1414 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1415
1416 /* To enable banking of coprocessor registers depending on ns-bit we
1417 * add a bit to distinguish between secure and non-secure cpregs in the
1418 * hashtable.
1419 */
1420 #define CP_REG_NS_SHIFT 29
1421 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1422
1423 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1424 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1425 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1426
1427 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1428 (CP_REG_AA64_MASK | \
1429 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1430 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1431 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1432 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1433 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1434 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1435
1436 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1437 * version used as a key for the coprocessor register hashtable
1438 */
1439 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1440 {
1441 uint32_t cpregid = kvmid;
1442 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1443 cpregid |= CP_REG_AA64_MASK;
1444 } else {
1445 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1446 cpregid |= (1 << 15);
1447 }
1448
1449 /* KVM is always non-secure so add the NS flag on AArch32 register
1450 * entries.
1451 */
1452 cpregid |= 1 << CP_REG_NS_SHIFT;
1453 }
1454 return cpregid;
1455 }
1456
1457 /* Convert a truncated 32 bit hashtable key into the full
1458 * 64 bit KVM register ID.
1459 */
1460 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1461 {
1462 uint64_t kvmid;
1463
1464 if (cpregid & CP_REG_AA64_MASK) {
1465 kvmid = cpregid & ~CP_REG_AA64_MASK;
1466 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1467 } else {
1468 kvmid = cpregid & ~(1 << 15);
1469 if (cpregid & (1 << 15)) {
1470 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1471 } else {
1472 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1473 }
1474 }
1475 return kvmid;
1476 }
1477
1478 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1479 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1480 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1481 * TCG can assume the value to be constant (ie load at translate time)
1482 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1483 * indicates that the TB should not be ended after a write to this register
1484 * (the default is that the TB ends after cp writes). OVERRIDE permits
1485 * a register definition to override a previous definition for the
1486 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1487 * old must have the OVERRIDE bit set.
1488 * ALIAS indicates that this register is an alias view of some underlying
1489 * state which is also visible via another register, and that the other
1490 * register is handling migration and reset; registers marked ALIAS will not be
1491 * migrated but may have their state set by syncing of register state from KVM.
1492 * NO_RAW indicates that this register has no underlying state and does not
1493 * support raw access for state saving/loading; it will not be used for either
1494 * migration or KVM state synchronization. (Typically this is for "registers"
1495 * which are actually used as instructions for cache maintenance and so on.)
1496 * IO indicates that this register does I/O and therefore its accesses
1497 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1498 * registers which implement clocks or timers require this.
1499 */
1500 #define ARM_CP_SPECIAL 1
1501 #define ARM_CP_CONST 2
1502 #define ARM_CP_64BIT 4
1503 #define ARM_CP_SUPPRESS_TB_END 8
1504 #define ARM_CP_OVERRIDE 16
1505 #define ARM_CP_ALIAS 32
1506 #define ARM_CP_IO 64
1507 #define ARM_CP_NO_RAW 128
1508 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1509 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1510 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1511 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1512 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1513 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1514 /* Used only as a terminator for ARMCPRegInfo lists */
1515 #define ARM_CP_SENTINEL 0xffff
1516 /* Mask of only the flag bits in a type field */
1517 #define ARM_CP_FLAG_MASK 0xff
1518
1519 /* Valid values for ARMCPRegInfo state field, indicating which of
1520 * the AArch32 and AArch64 execution states this register is visible in.
1521 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1522 * If the reginfo is declared to be visible in both states then a second
1523 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1524 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1525 * Note that we rely on the values of these enums as we iterate through
1526 * the various states in some places.
1527 */
1528 enum {
1529 ARM_CP_STATE_AA32 = 0,
1530 ARM_CP_STATE_AA64 = 1,
1531 ARM_CP_STATE_BOTH = 2,
1532 };
1533
1534 /* ARM CP register secure state flags. These flags identify security state
1535 * attributes for a given CP register entry.
1536 * The existence of both or neither secure and non-secure flags indicates that
1537 * the register has both a secure and non-secure hash entry. A single one of
1538 * these flags causes the register to only be hashed for the specified
1539 * security state.
1540 * Although definitions may have any combination of the S/NS bits, each
1541 * registered entry will only have one to identify whether the entry is secure
1542 * or non-secure.
1543 */
1544 enum {
1545 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1546 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1547 };
1548
1549 /* Return true if cptype is a valid type field. This is used to try to
1550 * catch errors where the sentinel has been accidentally left off the end
1551 * of a list of registers.
1552 */
1553 static inline bool cptype_valid(int cptype)
1554 {
1555 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1556 || ((cptype & ARM_CP_SPECIAL) &&
1557 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1558 }
1559
1560 /* Access rights:
1561 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1562 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1563 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1564 * (ie any of the privileged modes in Secure state, or Monitor mode).
1565 * If a register is accessible in one privilege level it's always accessible
1566 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1567 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1568 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1569 * terminology a little and call this PL3.
1570 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1571 * with the ELx exception levels.
1572 *
1573 * If access permissions for a register are more complex than can be
1574 * described with these bits, then use a laxer set of restrictions, and
1575 * do the more restrictive/complex check inside a helper function.
1576 */
1577 #define PL3_R 0x80
1578 #define PL3_W 0x40
1579 #define PL2_R (0x20 | PL3_R)
1580 #define PL2_W (0x10 | PL3_W)
1581 #define PL1_R (0x08 | PL2_R)
1582 #define PL1_W (0x04 | PL2_W)
1583 #define PL0_R (0x02 | PL1_R)
1584 #define PL0_W (0x01 | PL1_W)
1585
1586 #define PL3_RW (PL3_R | PL3_W)
1587 #define PL2_RW (PL2_R | PL2_W)
1588 #define PL1_RW (PL1_R | PL1_W)
1589 #define PL0_RW (PL0_R | PL0_W)
1590
1591 /* Return the highest implemented Exception Level */
1592 static inline int arm_highest_el(CPUARMState *env)
1593 {
1594 if (arm_feature(env, ARM_FEATURE_EL3)) {
1595 return 3;
1596 }
1597 if (arm_feature(env, ARM_FEATURE_EL2)) {
1598 return 2;
1599 }
1600 return 1;
1601 }
1602
1603 /* Return the current Exception Level (as per ARMv8; note that this differs
1604 * from the ARMv7 Privilege Level).
1605 */
1606 static inline int arm_current_el(CPUARMState *env)
1607 {
1608 if (arm_feature(env, ARM_FEATURE_M)) {
1609 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1610 }
1611
1612 if (is_a64(env)) {
1613 return extract32(env->pstate, 2, 2);
1614 }
1615
1616 switch (env->uncached_cpsr & 0x1f) {
1617 case ARM_CPU_MODE_USR:
1618 return 0;
1619 case ARM_CPU_MODE_HYP:
1620 return 2;
1621 case ARM_CPU_MODE_MON:
1622 return 3;
1623 default:
1624 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1625 /* If EL3 is 32-bit then all secure privileged modes run in
1626 * EL3
1627 */
1628 return 3;
1629 }
1630
1631 return 1;
1632 }
1633 }
1634
1635 typedef struct ARMCPRegInfo ARMCPRegInfo;
1636
1637 typedef enum CPAccessResult {
1638 /* Access is permitted */
1639 CP_ACCESS_OK = 0,
1640 /* Access fails due to a configurable trap or enable which would
1641 * result in a categorized exception syndrome giving information about
1642 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1643 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1644 * PL1 if in EL0, otherwise to the current EL).
1645 */
1646 CP_ACCESS_TRAP = 1,
1647 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1648 * Note that this is not a catch-all case -- the set of cases which may
1649 * result in this failure is specifically defined by the architecture.
1650 */
1651 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1652 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1653 CP_ACCESS_TRAP_EL2 = 3,
1654 CP_ACCESS_TRAP_EL3 = 4,
1655 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1656 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1657 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1658 /* Access fails and results in an exception syndrome for an FP access,
1659 * trapped directly to EL2 or EL3
1660 */
1661 CP_ACCESS_TRAP_FP_EL2 = 7,
1662 CP_ACCESS_TRAP_FP_EL3 = 8,
1663 } CPAccessResult;
1664
1665 /* Access functions for coprocessor registers. These cannot fail and
1666 * may not raise exceptions.
1667 */
1668 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1669 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1670 uint64_t value);
1671 /* Access permission check functions for coprocessor registers. */
1672 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1673 const ARMCPRegInfo *opaque,
1674 bool isread);
1675 /* Hook function for register reset */
1676 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1677
1678 #define CP_ANY 0xff
1679
1680 /* Definition of an ARM coprocessor register */
1681 struct ARMCPRegInfo {
1682 /* Name of register (useful mainly for debugging, need not be unique) */
1683 const char *name;
1684 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1685 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1686 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1687 * will be decoded to this register. The register read and write
1688 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1689 * used by the program, so it is possible to register a wildcard and
1690 * then behave differently on read/write if necessary.
1691 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1692 * must both be zero.
1693 * For AArch64-visible registers, opc0 is also used.
1694 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1695 * way to distinguish (for KVM's benefit) guest-visible system registers
1696 * from demuxed ones provided to preserve the "no side effects on
1697 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1698 * visible (to match KVM's encoding); cp==0 will be converted to
1699 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1700 */
1701 uint8_t cp;
1702 uint8_t crn;
1703 uint8_t crm;
1704 uint8_t opc0;
1705 uint8_t opc1;
1706 uint8_t opc2;
1707 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1708 int state;
1709 /* Register type: ARM_CP_* bits/values */
1710 int type;
1711 /* Access rights: PL*_[RW] */
1712 int access;
1713 /* Security state: ARM_CP_SECSTATE_* bits/values */
1714 int secure;
1715 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1716 * this register was defined: can be used to hand data through to the
1717 * register read/write functions, since they are passed the ARMCPRegInfo*.
1718 */
1719 void *opaque;
1720 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1721 * fieldoffset is non-zero, the reset value of the register.
1722 */
1723 uint64_t resetvalue;
1724 /* Offset of the field in CPUARMState for this register.
1725 *
1726 * This is not needed if either:
1727 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1728 * 2. both readfn and writefn are specified
1729 */
1730 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1731
1732 /* Offsets of the secure and non-secure fields in CPUARMState for the
1733 * register if it is banked. These fields are only used during the static
1734 * registration of a register. During hashing the bank associated
1735 * with a given security state is copied to fieldoffset which is used from
1736 * there on out.
1737 *
1738 * It is expected that register definitions use either fieldoffset or
1739 * bank_fieldoffsets in the definition but not both. It is also expected
1740 * that both bank offsets are set when defining a banked register. This
1741 * use indicates that a register is banked.
1742 */
1743 ptrdiff_t bank_fieldoffsets[2];
1744
1745 /* Function for making any access checks for this register in addition to
1746 * those specified by the 'access' permissions bits. If NULL, no extra
1747 * checks required. The access check is performed at runtime, not at
1748 * translate time.
1749 */
1750 CPAccessFn *accessfn;
1751 /* Function for handling reads of this register. If NULL, then reads
1752 * will be done by loading from the offset into CPUARMState specified
1753 * by fieldoffset.
1754 */
1755 CPReadFn *readfn;
1756 /* Function for handling writes of this register. If NULL, then writes
1757 * will be done by writing to the offset into CPUARMState specified
1758 * by fieldoffset.
1759 */
1760 CPWriteFn *writefn;
1761 /* Function for doing a "raw" read; used when we need to copy
1762 * coprocessor state to the kernel for KVM or out for
1763 * migration. This only needs to be provided if there is also a
1764 * readfn and it has side effects (for instance clear-on-read bits).
1765 */
1766 CPReadFn *raw_readfn;
1767 /* Function for doing a "raw" write; used when we need to copy KVM
1768 * kernel coprocessor state into userspace, or for inbound
1769 * migration. This only needs to be provided if there is also a
1770 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1771 * or similar behaviour.
1772 */
1773 CPWriteFn *raw_writefn;
1774 /* Function for resetting the register. If NULL, then reset will be done
1775 * by writing resetvalue to the field specified in fieldoffset. If
1776 * fieldoffset is 0 then no reset will be done.
1777 */
1778 CPResetFn *resetfn;
1779 };
1780
1781 /* Macros which are lvalues for the field in CPUARMState for the
1782 * ARMCPRegInfo *ri.
1783 */
1784 #define CPREG_FIELD32(env, ri) \
1785 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1786 #define CPREG_FIELD64(env, ri) \
1787 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1788
1789 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1790
1791 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1792 const ARMCPRegInfo *regs, void *opaque);
1793 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1794 const ARMCPRegInfo *regs, void *opaque);
1795 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1796 {
1797 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1798 }
1799 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1800 {
1801 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1802 }
1803 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1804
1805 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1806 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value);
1808 /* CPReadFn that can be used for read-as-zero behaviour */
1809 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1810
1811 /* CPResetFn that does nothing, for use if no reset is required even
1812 * if fieldoffset is non zero.
1813 */
1814 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1815
1816 /* Return true if this reginfo struct's field in the cpu state struct
1817 * is 64 bits wide.
1818 */
1819 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1820 {
1821 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1822 }
1823
1824 static inline bool cp_access_ok(int current_el,
1825 const ARMCPRegInfo *ri, int isread)
1826 {
1827 return (ri->access >> ((current_el * 2) + isread)) & 1;
1828 }
1829
1830 /* Raw read of a coprocessor register (as needed for migration, etc) */
1831 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1832
1833 /**
1834 * write_list_to_cpustate
1835 * @cpu: ARMCPU
1836 *
1837 * For each register listed in the ARMCPU cpreg_indexes list, write
1838 * its value from the cpreg_values list into the ARMCPUState structure.
1839 * This updates TCG's working data structures from KVM data or
1840 * from incoming migration state.
1841 *
1842 * Returns: true if all register values were updated correctly,
1843 * false if some register was unknown or could not be written.
1844 * Note that we do not stop early on failure -- we will attempt
1845 * writing all registers in the list.
1846 */
1847 bool write_list_to_cpustate(ARMCPU *cpu);
1848
1849 /**
1850 * write_cpustate_to_list:
1851 * @cpu: ARMCPU
1852 *
1853 * For each register listed in the ARMCPU cpreg_indexes list, write
1854 * its value from the ARMCPUState structure into the cpreg_values list.
1855 * This is used to copy info from TCG's working data structures into
1856 * KVM or for outbound migration.
1857 *
1858 * Returns: true if all register values were read correctly,
1859 * false if some register was unknown or could not be read.
1860 * Note that we do not stop early on failure -- we will attempt
1861 * reading all registers in the list.
1862 */
1863 bool write_cpustate_to_list(ARMCPU *cpu);
1864
1865 #define ARM_CPUID_TI915T 0x54029152
1866 #define ARM_CPUID_TI925T 0x54029252
1867
1868 #if defined(CONFIG_USER_ONLY)
1869 #define TARGET_PAGE_BITS 12
1870 #else
1871 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1872 * have to support 1K tiny pages.
1873 */
1874 #define TARGET_PAGE_BITS_VARY
1875 #define TARGET_PAGE_BITS_MIN 10
1876 #endif
1877
1878 #if defined(TARGET_AARCH64)
1879 # define TARGET_PHYS_ADDR_SPACE_BITS 48
1880 # define TARGET_VIRT_ADDR_SPACE_BITS 64
1881 #else
1882 # define TARGET_PHYS_ADDR_SPACE_BITS 40
1883 # define TARGET_VIRT_ADDR_SPACE_BITS 32
1884 #endif
1885
1886 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1887 unsigned int target_el)
1888 {
1889 CPUARMState *env = cs->env_ptr;
1890 unsigned int cur_el = arm_current_el(env);
1891 bool secure = arm_is_secure(env);
1892 bool pstate_unmasked;
1893 int8_t unmasked = 0;
1894
1895 /* Don't take exceptions if they target a lower EL.
1896 * This check should catch any exceptions that would not be taken but left
1897 * pending.
1898 */
1899 if (cur_el > target_el) {
1900 return false;
1901 }
1902
1903 switch (excp_idx) {
1904 case EXCP_FIQ:
1905 pstate_unmasked = !(env->daif & PSTATE_F);
1906 break;
1907
1908 case EXCP_IRQ:
1909 pstate_unmasked = !(env->daif & PSTATE_I);
1910 break;
1911
1912 case EXCP_VFIQ:
1913 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1914 /* VFIQs are only taken when hypervized and non-secure. */
1915 return false;
1916 }
1917 return !(env->daif & PSTATE_F);
1918 case EXCP_VIRQ:
1919 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1920 /* VIRQs are only taken when hypervized and non-secure. */
1921 return false;
1922 }
1923 return !(env->daif & PSTATE_I);
1924 default:
1925 g_assert_not_reached();
1926 }
1927
1928 /* Use the target EL, current execution state and SCR/HCR settings to
1929 * determine whether the corresponding CPSR bit is used to mask the
1930 * interrupt.
1931 */
1932 if ((target_el > cur_el) && (target_el != 1)) {
1933 /* Exceptions targeting a higher EL may not be maskable */
1934 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1935 /* 64-bit masking rules are simple: exceptions to EL3
1936 * can't be masked, and exceptions to EL2 can only be
1937 * masked from Secure state. The HCR and SCR settings
1938 * don't affect the masking logic, only the interrupt routing.
1939 */
1940 if (target_el == 3 || !secure) {
1941 unmasked = 1;
1942 }
1943 } else {
1944 /* The old 32-bit-only environment has a more complicated
1945 * masking setup. HCR and SCR bits not only affect interrupt
1946 * routing but also change the behaviour of masking.
1947 */
1948 bool hcr, scr;
1949
1950 switch (excp_idx) {
1951 case EXCP_FIQ:
1952 /* If FIQs are routed to EL3 or EL2 then there are cases where
1953 * we override the CPSR.F in determining if the exception is
1954 * masked or not. If neither of these are set then we fall back
1955 * to the CPSR.F setting otherwise we further assess the state
1956 * below.
1957 */
1958 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1959 scr = (env->cp15.scr_el3 & SCR_FIQ);
1960
1961 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1962 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1963 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1964 * when non-secure but only when FIQs are only routed to EL3.
1965 */
1966 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1967 break;
1968 case EXCP_IRQ:
1969 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1970 * we may override the CPSR.I masking when in non-secure state.
1971 * The SCR.IRQ setting has already been taken into consideration
1972 * when setting the target EL, so it does not have a further
1973 * affect here.
1974 */
1975 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1976 scr = false;
1977 break;
1978 default:
1979 g_assert_not_reached();
1980 }
1981
1982 if ((scr || hcr) && !secure) {
1983 unmasked = 1;
1984 }
1985 }
1986 }
1987
1988 /* The PSTATE bits only mask the interrupt if we have not overriden the
1989 * ability above.
1990 */
1991 return unmasked || pstate_unmasked;
1992 }
1993
1994 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1995
1996 #define cpu_signal_handler cpu_arm_signal_handler
1997 #define cpu_list arm_cpu_list
1998
1999 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2000 *
2001 * If EL3 is 64-bit:
2002 * + NonSecure EL1 & 0 stage 1
2003 * + NonSecure EL1 & 0 stage 2
2004 * + NonSecure EL2
2005 * + Secure EL1 & EL0
2006 * + Secure EL3
2007 * If EL3 is 32-bit:
2008 * + NonSecure PL1 & 0 stage 1
2009 * + NonSecure PL1 & 0 stage 2
2010 * + NonSecure PL2
2011 * + Secure PL0 & PL1
2012 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2013 *
2014 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2015 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2016 * may differ in access permissions even if the VA->PA map is the same
2017 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2018 * translation, which means that we have one mmu_idx that deals with two
2019 * concatenated translation regimes [this sort of combined s1+2 TLB is
2020 * architecturally permitted]
2021 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2022 * handling via the TLB. The only way to do a stage 1 translation without
2023 * the immediate stage 2 translation is via the ATS or AT system insns,
2024 * which can be slow-pathed and always do a page table walk.
2025 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2026 * translation regimes, because they map reasonably well to each other
2027 * and they can't both be active at the same time.
2028 * This gives us the following list of mmu_idx values:
2029 *
2030 * NS EL0 (aka NS PL0) stage 1+2
2031 * NS EL1 (aka NS PL1) stage 1+2
2032 * NS EL2 (aka NS PL2)
2033 * S EL3 (aka S PL1)
2034 * S EL0 (aka S PL0)
2035 * S EL1 (not used if EL3 is 32 bit)
2036 * NS EL0+1 stage 2
2037 *
2038 * (The last of these is an mmu_idx because we want to be able to use the TLB
2039 * for the accesses done as part of a stage 1 page table walk, rather than
2040 * having to walk the stage 2 page table over and over.)
2041 *
2042 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2043 * are not quite the same -- different CPU types (most notably M profile
2044 * vs A/R profile) would like to use MMU indexes with different semantics,
2045 * but since we don't ever need to use all of those in a single CPU we
2046 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2047 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2048 * the same for any particular CPU.
2049 * Variables of type ARMMUIdx are always full values, and the core
2050 * index values are in variables of type 'int'.
2051 *
2052 * Our enumeration includes at the end some entries which are not "true"
2053 * mmu_idx values in that they don't have corresponding TLBs and are only
2054 * valid for doing slow path page table walks.
2055 *
2056 * The constant names here are patterned after the general style of the names
2057 * of the AT/ATS operations.
2058 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2059 */
2060 #define ARM_MMU_IDX_A 0x10 /* A profile */
2061 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2062 #define ARM_MMU_IDX_M 0x40 /* M profile */
2063
2064 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2065 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2066
2067 typedef enum ARMMMUIdx {
2068 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2069 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2070 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2071 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2072 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2073 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2074 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2075 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2076 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2077 /* Indexes below here don't have TLBs and are used only for AT system
2078 * instructions or for the first stage of an S12 page table walk.
2079 */
2080 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2081 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2082 } ARMMMUIdx;
2083
2084 /* Bit macros for the core-mmu-index values for each index,
2085 * for use when calling tlb_flush_by_mmuidx() and friends.
2086 */
2087 typedef enum ARMMMUIdxBit {
2088 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2089 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2090 ARMMMUIdxBit_S1E2 = 1 << 2,
2091 ARMMMUIdxBit_S1E3 = 1 << 3,
2092 ARMMMUIdxBit_S1SE0 = 1 << 4,
2093 ARMMMUIdxBit_S1SE1 = 1 << 5,
2094 ARMMMUIdxBit_S2NS = 1 << 6,
2095 ARMMMUIdxBit_MUser = 1 << 0,
2096 ARMMMUIdxBit_MPriv = 1 << 1,
2097 } ARMMMUIdxBit;
2098
2099 #define MMU_USER_IDX 0
2100
2101 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2102 {
2103 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2104 }
2105
2106 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2107 {
2108 if (arm_feature(env, ARM_FEATURE_M)) {
2109 return mmu_idx | ARM_MMU_IDX_M;
2110 } else {
2111 return mmu_idx | ARM_MMU_IDX_A;
2112 }
2113 }
2114
2115 /* Return the exception level we're running at if this is our mmu_idx */
2116 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2117 {
2118 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2119 case ARM_MMU_IDX_A:
2120 return mmu_idx & 3;
2121 case ARM_MMU_IDX_M:
2122 return mmu_idx & 1;
2123 default:
2124 g_assert_not_reached();
2125 }
2126 }
2127
2128 /* Determine the current mmu_idx to use for normal loads/stores */
2129 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2130 {
2131 int el = arm_current_el(env);
2132
2133 if (arm_feature(env, ARM_FEATURE_M)) {
2134 ARMMMUIdx mmu_idx = el == 0 ? ARMMMUIdx_MUser : ARMMMUIdx_MPriv;
2135
2136 return arm_to_core_mmu_idx(mmu_idx);
2137 }
2138
2139 if (el < 2 && arm_is_secure_below_el3(env)) {
2140 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2141 }
2142 return el;
2143 }
2144
2145 /* Indexes used when registering address spaces with cpu_address_space_init */
2146 typedef enum ARMASIdx {
2147 ARMASIdx_NS = 0,
2148 ARMASIdx_S = 1,
2149 } ARMASIdx;
2150
2151 /* Return the Exception Level targeted by debug exceptions. */
2152 static inline int arm_debug_target_el(CPUARMState *env)
2153 {
2154 bool secure = arm_is_secure(env);
2155 bool route_to_el2 = false;
2156
2157 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2158 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2159 env->cp15.mdcr_el2 & (1 << 8);
2160 }
2161
2162 if (route_to_el2) {
2163 return 2;
2164 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2165 !arm_el_is_aa64(env, 3) && secure) {
2166 return 3;
2167 } else {
2168 return 1;
2169 }
2170 }
2171
2172 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2173 {
2174 if (arm_is_secure(env)) {
2175 /* MDCR_EL3.SDD disables debug events from Secure state */
2176 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2177 || arm_current_el(env) == 3) {
2178 return false;
2179 }
2180 }
2181
2182 if (arm_current_el(env) == arm_debug_target_el(env)) {
2183 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2184 || (env->daif & PSTATE_D)) {
2185 return false;
2186 }
2187 }
2188 return true;
2189 }
2190
2191 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2192 {
2193 int el = arm_current_el(env);
2194
2195 if (el == 0 && arm_el_is_aa64(env, 1)) {
2196 return aa64_generate_debug_exceptions(env);
2197 }
2198
2199 if (arm_is_secure(env)) {
2200 int spd;
2201
2202 if (el == 0 && (env->cp15.sder & 1)) {
2203 /* SDER.SUIDEN means debug exceptions from Secure EL0
2204 * are always enabled. Otherwise they are controlled by
2205 * SDCR.SPD like those from other Secure ELs.
2206 */
2207 return true;
2208 }
2209
2210 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2211 switch (spd) {
2212 case 1:
2213 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2214 case 0:
2215 /* For 0b00 we return true if external secure invasive debug
2216 * is enabled. On real hardware this is controlled by external
2217 * signals to the core. QEMU always permits debug, and behaves
2218 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2219 */
2220 return true;
2221 case 2:
2222 return false;
2223 case 3:
2224 return true;
2225 }
2226 }
2227
2228 return el != 2;
2229 }
2230
2231 /* Return true if debugging exceptions are currently enabled.
2232 * This corresponds to what in ARM ARM pseudocode would be
2233 * if UsingAArch32() then
2234 * return AArch32.GenerateDebugExceptions()
2235 * else
2236 * return AArch64.GenerateDebugExceptions()
2237 * We choose to push the if() down into this function for clarity,
2238 * since the pseudocode has it at all callsites except for the one in
2239 * CheckSoftwareStep(), where it is elided because both branches would
2240 * always return the same value.
2241 *
2242 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2243 * don't yet implement those exception levels or their associated trap bits.
2244 */
2245 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2246 {
2247 if (env->aarch64) {
2248 return aa64_generate_debug_exceptions(env);
2249 } else {
2250 return aa32_generate_debug_exceptions(env);
2251 }
2252 }
2253
2254 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2255 * implicitly means this always returns false in pre-v8 CPUs.)
2256 */
2257 static inline bool arm_singlestep_active(CPUARMState *env)
2258 {
2259 return extract32(env->cp15.mdscr_el1, 0, 1)
2260 && arm_el_is_aa64(env, arm_debug_target_el(env))
2261 && arm_generate_debug_exceptions(env);
2262 }
2263
2264 static inline bool arm_sctlr_b(CPUARMState *env)
2265 {
2266 return
2267 /* We need not implement SCTLR.ITD in user-mode emulation, so
2268 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2269 * This lets people run BE32 binaries with "-cpu any".
2270 */
2271 #ifndef CONFIG_USER_ONLY
2272 !arm_feature(env, ARM_FEATURE_V7) &&
2273 #endif
2274 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2275 }
2276
2277 /* Return true if the processor is in big-endian mode. */
2278 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2279 {
2280 int cur_el;
2281
2282 /* In 32bit endianness is determined by looking at CPSR's E bit */
2283 if (!is_a64(env)) {
2284 return
2285 #ifdef CONFIG_USER_ONLY
2286 /* In system mode, BE32 is modelled in line with the
2287 * architecture (as word-invariant big-endianness), where loads
2288 * and stores are done little endian but from addresses which
2289 * are adjusted by XORing with the appropriate constant. So the
2290 * endianness to use for the raw data access is not affected by
2291 * SCTLR.B.
2292 * In user mode, however, we model BE32 as byte-invariant
2293 * big-endianness (because user-only code cannot tell the
2294 * difference), and so we need to use a data access endianness
2295 * that depends on SCTLR.B.
2296 */
2297 arm_sctlr_b(env) ||
2298 #endif
2299 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2300 }
2301
2302 cur_el = arm_current_el(env);
2303
2304 if (cur_el == 0) {
2305 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2306 }
2307
2308 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2309 }
2310
2311 #include "exec/cpu-all.h"
2312
2313 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2314 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2315 * We put flags which are shared between 32 and 64 bit mode at the top
2316 * of the word, and flags which apply to only one mode at the bottom.
2317 */
2318 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2319 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2320 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2321 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2322 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2323 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2324 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2325 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2326 /* Target EL if we take a floating-point-disabled exception */
2327 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2328 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2329
2330 /* Bit usage when in AArch32 state: */
2331 #define ARM_TBFLAG_THUMB_SHIFT 0
2332 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2333 #define ARM_TBFLAG_VECLEN_SHIFT 1
2334 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2335 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2336 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2337 #define ARM_TBFLAG_VFPEN_SHIFT 7
2338 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2339 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2340 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2341 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2342 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2343 /* We store the bottom two bits of the CPAR as TB flags and handle
2344 * checks on the other bits at runtime
2345 */
2346 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2347 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2348 /* Indicates whether cp register reads and writes by guest code should access
2349 * the secure or nonsecure bank of banked registers; note that this is not
2350 * the same thing as the current security state of the processor!
2351 */
2352 #define ARM_TBFLAG_NS_SHIFT 19
2353 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2354 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2355 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2356 /* For M profile only, Handler (ie not Thread) mode */
2357 #define ARM_TBFLAG_HANDLER_SHIFT 21
2358 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2359
2360 /* Bit usage when in AArch64 state */
2361 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2362 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2363 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2364 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2365
2366 /* some convenience accessor macros */
2367 #define ARM_TBFLAG_AARCH64_STATE(F) \
2368 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2369 #define ARM_TBFLAG_MMUIDX(F) \
2370 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2371 #define ARM_TBFLAG_SS_ACTIVE(F) \
2372 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2373 #define ARM_TBFLAG_PSTATE_SS(F) \
2374 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2375 #define ARM_TBFLAG_FPEXC_EL(F) \
2376 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2377 #define ARM_TBFLAG_THUMB(F) \
2378 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2379 #define ARM_TBFLAG_VECLEN(F) \
2380 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2381 #define ARM_TBFLAG_VECSTRIDE(F) \
2382 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2383 #define ARM_TBFLAG_VFPEN(F) \
2384 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2385 #define ARM_TBFLAG_CONDEXEC(F) \
2386 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2387 #define ARM_TBFLAG_SCTLR_B(F) \
2388 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2389 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2390 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2391 #define ARM_TBFLAG_NS(F) \
2392 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2393 #define ARM_TBFLAG_BE_DATA(F) \
2394 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2395 #define ARM_TBFLAG_HANDLER(F) \
2396 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2397 #define ARM_TBFLAG_TBI0(F) \
2398 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2399 #define ARM_TBFLAG_TBI1(F) \
2400 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2401
2402 static inline bool bswap_code(bool sctlr_b)
2403 {
2404 #ifdef CONFIG_USER_ONLY
2405 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2406 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2407 * would also end up as a mixed-endian mode with BE code, LE data.
2408 */
2409 return
2410 #ifdef TARGET_WORDS_BIGENDIAN
2411 1 ^
2412 #endif
2413 sctlr_b;
2414 #else
2415 /* All code access in ARM is little endian, and there are no loaders
2416 * doing swaps that need to be reversed
2417 */
2418 return 0;
2419 #endif
2420 }
2421
2422 /* Return the exception level to which FP-disabled exceptions should
2423 * be taken, or 0 if FP is enabled.
2424 */
2425 static inline int fp_exception_el(CPUARMState *env)
2426 {
2427 int fpen;
2428 int cur_el = arm_current_el(env);
2429
2430 /* CPACR and the CPTR registers don't exist before v6, so FP is
2431 * always accessible
2432 */
2433 if (!arm_feature(env, ARM_FEATURE_V6)) {
2434 return 0;
2435 }
2436
2437 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2438 * 0, 2 : trap EL0 and EL1/PL1 accesses
2439 * 1 : trap only EL0 accesses
2440 * 3 : trap no accesses
2441 */
2442 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2443 switch (fpen) {
2444 case 0:
2445 case 2:
2446 if (cur_el == 0 || cur_el == 1) {
2447 /* Trap to PL1, which might be EL1 or EL3 */
2448 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2449 return 3;
2450 }
2451 return 1;
2452 }
2453 if (cur_el == 3 && !is_a64(env)) {
2454 /* Secure PL1 running at EL3 */
2455 return 3;
2456 }
2457 break;
2458 case 1:
2459 if (cur_el == 0) {
2460 return 1;
2461 }
2462 break;
2463 case 3:
2464 break;
2465 }
2466
2467 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2468 * check because zero bits in the registers mean "don't trap".
2469 */
2470
2471 /* CPTR_EL2 : present in v7VE or v8 */
2472 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2473 && !arm_is_secure_below_el3(env)) {
2474 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2475 return 2;
2476 }
2477
2478 /* CPTR_EL3 : present in v8 */
2479 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2480 /* Trap all FP ops to EL3 */
2481 return 3;
2482 }
2483
2484 return 0;
2485 }
2486
2487 #ifdef CONFIG_USER_ONLY
2488 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2489 {
2490 return
2491 #ifdef TARGET_WORDS_BIGENDIAN
2492 1 ^
2493 #endif
2494 arm_cpu_data_is_big_endian(env);
2495 }
2496 #endif
2497
2498 #ifndef CONFIG_USER_ONLY
2499 /**
2500 * arm_regime_tbi0:
2501 * @env: CPUARMState
2502 * @mmu_idx: MMU index indicating required translation regime
2503 *
2504 * Extracts the TBI0 value from the appropriate TCR for the current EL
2505 *
2506 * Returns: the TBI0 value.
2507 */
2508 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2509
2510 /**
2511 * arm_regime_tbi1:
2512 * @env: CPUARMState
2513 * @mmu_idx: MMU index indicating required translation regime
2514 *
2515 * Extracts the TBI1 value from the appropriate TCR for the current EL
2516 *
2517 * Returns: the TBI1 value.
2518 */
2519 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2520 #else
2521 /* We can't handle tagged addresses properly in user-only mode */
2522 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2523 {
2524 return 0;
2525 }
2526
2527 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2528 {
2529 return 0;
2530 }
2531 #endif
2532
2533 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2534 target_ulong *cs_base, uint32_t *flags)
2535 {
2536 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
2537 if (is_a64(env)) {
2538 *pc = env->pc;
2539 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2540 /* Get control bits for tagged addresses */
2541 *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2542 *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2543 } else {
2544 *pc = env->regs[15];
2545 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2546 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2547 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2548 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2549 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2550 if (!(access_secure_reg(env))) {
2551 *flags |= ARM_TBFLAG_NS_MASK;
2552 }
2553 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2554 || arm_el_is_aa64(env, 1)) {
2555 *flags |= ARM_TBFLAG_VFPEN_MASK;
2556 }
2557 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2558 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2559 }
2560
2561 *flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
2562
2563 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2564 * states defined in the ARM ARM for software singlestep:
2565 * SS_ACTIVE PSTATE.SS State
2566 * 0 x Inactive (the TB flag for SS is always 0)
2567 * 1 0 Active-pending
2568 * 1 1 Active-not-pending
2569 */
2570 if (arm_singlestep_active(env)) {
2571 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2572 if (is_a64(env)) {
2573 if (env->pstate & PSTATE_SS) {
2574 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2575 }
2576 } else {
2577 if (env->uncached_cpsr & PSTATE_SS) {
2578 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2579 }
2580 }
2581 }
2582 if (arm_cpu_data_is_big_endian(env)) {
2583 *flags |= ARM_TBFLAG_BE_DATA_MASK;
2584 }
2585 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2586
2587 if (env->v7m.exception != 0) {
2588 *flags |= ARM_TBFLAG_HANDLER_MASK;
2589 }
2590
2591 *cs_base = 0;
2592 }
2593
2594 enum {
2595 QEMU_PSCI_CONDUIT_DISABLED = 0,
2596 QEMU_PSCI_CONDUIT_SMC = 1,
2597 QEMU_PSCI_CONDUIT_HVC = 2,
2598 };
2599
2600 #ifndef CONFIG_USER_ONLY
2601 /* Return the address space index to use for a memory access */
2602 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2603 {
2604 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2605 }
2606
2607 /* Return the AddressSpace to use for a memory access
2608 * (which depends on whether the access is S or NS, and whether
2609 * the board gave us a separate AddressSpace for S accesses).
2610 */
2611 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2612 {
2613 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2614 }
2615 #endif
2616
2617 /**
2618 * arm_register_el_change_hook:
2619 * Register a hook function which will be called back whenever this
2620 * CPU changes exception level or mode. The hook function will be
2621 * passed a pointer to the ARMCPU and the opaque data pointer passed
2622 * to this function when the hook was registered.
2623 *
2624 * Note that we currently only support registering a single hook function,
2625 * and will assert if this function is called twice.
2626 * This facility is intended for the use of the GICv3 emulation.
2627 */
2628 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2629 void *opaque);
2630
2631 /**
2632 * arm_get_el_change_hook_opaque:
2633 * Return the opaque data that will be used by the el_change_hook
2634 * for this CPU.
2635 */
2636 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2637 {
2638 return cpu->el_change_hook_opaque;
2639 }
2640
2641 #endif