]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
Merge tag 'quick-fix-pull-request' of https://gitlab.com/bsdimp/qemu into staging
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO (0)
32
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36
37 #define EXCP_UDEF 1 /* undefined instruction */
38 #define EXCP_SWI 2 /* software interrupt */
39 #define EXCP_PREFETCH_ABORT 3
40 #define EXCP_DATA_ABORT 4
41 #define EXCP_IRQ 5
42 #define EXCP_FIQ 6
43 #define EXCP_BKPT 7
44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
46 #define EXCP_HVC 11 /* HyperVisor Call */
47 #define EXCP_HYP_TRAP 12
48 #define EXCP_SMC 13 /* Secure Monitor Call */
49 #define EXCP_VIRQ 14
50 #define EXCP_VFIQ 15
51 #define EXCP_SEMIHOST 16 /* semihosting call */
52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR 24
60 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SECURE 7
70 #define ARMV7M_EXCP_SVC 11
71 #define ARMV7M_EXCP_DEBUG 12
72 #define ARMV7M_EXCP_PENDSV 14
73 #define ARMV7M_EXCP_SYSTICK 15
74
75 /* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
84 enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88 };
89
90 /* ARM-specific interrupt pending bits. */
91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95
96 /* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
102 #if HOST_BIG_ENDIAN
103 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #define offsetofhigh32(S, M) offsetof(S, M)
105 #else
106 #define offsetoflow32(S, M) offsetof(S, M)
107 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
108 #endif
109
110 /* Meanings of the ARMCPU object's four inbound GPIO lines */
111 #define ARM_CPU_IRQ 0
112 #define ARM_CPU_FIQ 1
113 #define ARM_CPU_VIRQ 2
114 #define ARM_CPU_VFIQ 3
115
116 /* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129
130 /* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
137
138 /**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
146 */
147 typedef struct DynamicGDBXMLInfo {
148 char *desc;
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
155 } DynamicGDBXMLInfo;
156
157 /* CPU state for each instance of a generic timer (in cp15 c14) */
158 typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
160 uint64_t ctl; /* Timer Control register */
161 } ARMGenericTimer;
162
163 #define GTIMER_PHYS 0
164 #define GTIMER_VIRT 1
165 #define GTIMER_HYP 2
166 #define GTIMER_SEC 3
167 #define GTIMER_HYPVIRT 4
168 #define NUM_GTIMERS 5
169
170 #define VTCR_NSW (1u << 29)
171 #define VTCR_NSA (1u << 30)
172 #define VSTCR_SW VTCR_NSW
173 #define VSTCR_SA VTCR_NSA
174
175 /* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
192 * Hn = regs[n].d[0] bits 15..0
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201 #ifdef TARGET_AARCH64
202 # define ARM_MAX_VQ 16
203 #else
204 # define ARM_MAX_VQ 1
205 #endif
206
207 typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209 } ARMVectorReg;
210
211 #ifdef TARGET_AARCH64
212 /* In AArch32 mode, predicate registers do not exist at all. */
213 typedef struct ARMPredicateReg {
214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
215 } ARMPredicateReg;
216
217 /* In AArch32 mode, PAC keys do not exist at all. */
218 typedef struct ARMPACKey {
219 uint64_t lo, hi;
220 } ARMPACKey;
221 #endif
222
223 /* See the commentary above the TBFLAG field definitions. */
224 typedef struct CPUARMTBFlags {
225 uint32_t flags;
226 target_ulong flags2;
227 } CPUARMTBFlags;
228
229 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
231 typedef struct NVICState NVICState;
232
233 typedef struct CPUArchState {
234 /* Regs for current mode. */
235 uint32_t regs[16];
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
252 * DAIF (exception masks) are kept in env->daif
253 * BTYPE is kept in env->btype
254 * SM and ZA are kept in env->svcr
255 * all other bits are stored in their correct places in env->pstate
256 */
257 uint32_t pstate;
258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
260
261 /* Cached TBFLAGS state. See below for which bits are included. */
262 CPUARMTBFlags hflags;
263
264 /* Frequently accessed CPSR bits are stored separately for efficiency.
265 This contains all the other bits. Use cpsr_{read,write} to access
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
271 uint64_t banked_spsr[8];
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
274
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
278
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
284 uint32_t QF; /* 0 or 1 */
285 uint32_t GE; /* cpsr[19:16] */
286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
290
291 uint64_t elr_el[4]; /* AArch64 exception link regs */
292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
293
294 /* System control coprocessor (cp15) */
295 struct {
296 uint32_t c0_cpuid;
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
315 uint64_t vsctlr; /* Virtualization System control register. */
316 uint64_t cpacr_el1; /* Architectural feature access control register */
317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
319 uint64_t sder; /* Secure debug enable register. */
320 uint32_t nsacr; /* Non-secure access control register. */
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
341 /* MMU translation table base control. */
342 uint64_t tcr_el[4];
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
360 uint64_t hcr_el2; /* Hypervisor configuration register */
361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
362 uint64_t scr_el3; /* Secure configuration register. */
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
381 uint32_t c6_region[8]; /* MPU base/size registers. */
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
385 #if HOST_BIG_ENDIAN
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390 #else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395 #endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
400 uint64_t hpfar_el2;
401 uint64_t hstr_el2;
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
411
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
418 uint64_t c9_pmselr; /* perf monitor counter selection register */
419 uint64_t c9_pminten; /* perf monitor interrupt enables */
420 union { /* Memory attribute redirection */
421 struct {
422 #if HOST_BIG_ENDIAN
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429 #else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436 #endif
437 };
438 uint64_t mair_el[4];
439 };
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
449 uint32_t mvbar; /* (monitor) vector base address register */
450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
473 uint64_t tpidr2_el0;
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
487 ARMGenericTimer c14_timer[NUM_GTIMERS];
488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
501 uint64_t dbgclaim; /* DBGCLAIM bits */
502 uint64_t mdscr_el1;
503 uint64_t oslsr_el1; /* OS Lock Status */
504 uint64_t osdlr_el1; /* OS DoubleLock status */
505 uint64_t mdcr_el2;
506 uint64_t mdcr_el3;
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
511 */
512 uint64_t c15_ccnt;
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
550 } cp15;
551
552 struct {
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
564 uint32_t other_sp;
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
574 uint32_t sfsr; /* Secure Fault Status Register */
575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
576 uint32_t bfar; /* BusFault Address */
577 uint32_t sfar; /* Secure Fault Address Register */
578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
579 int exception;
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
582 uint32_t aircr; /* only holds r/w state if security extn implemented */
583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
584 uint32_t csselr[M_REG_NUM_BANKS];
585 uint32_t scr[M_REG_NUM_BANKS];
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
593 uint32_t ltpsize;
594 uint32_t vpr;
595 } v7m;
596
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
607 uint32_t target_el; /* EL the exception should be targeted for */
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
629 /* VFP coprocessor state. */
630 struct {
631 ARMVectorReg zregs[32];
632
633 #ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
635 #define FFR_PRED_NUM 16
636 ARMPredicateReg pregs[17];
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
639 #endif
640
641 /* We store these fpcsr fields separately for convenience. */
642 uint32_t qc[4] QEMU_ALIGNED(16);
643 int vec_len;
644 int vec_stride;
645
646 uint32_t xregs[16];
647
648 /* Scratch space for aa32 neon expansion. */
649 uint32_t scratch[8];
650
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
667 *
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
674 * OR of the flags in the four fp statuses. This relies on the
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
678 float_status fp_status;
679 float_status fp_status_f16;
680 float_status standard_fp_status;
681 float_status standard_fp_status_f16;
682
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
685 } vfp;
686
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
696 uint64_t exclusive_high;
697
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
706 #ifdef TARGET_AARCH64
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
714
715 uint64_t scxtnum_el[4];
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
738 #endif
739
740 struct CPUBreakpoint *cpu_breakpoint[16];
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
749 /* Fields after this point are preserved across CPU reset. */
750
751 /* Internal CPU feature flags. */
752 uint64_t features;
753
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
759 uint32_t rnr[M_REG_NUM_BANKS];
760 } pmsav7;
761
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
771 uint32_t *hprbar;
772 uint32_t *hprlar;
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
775 uint32_t hprselr;
776 } pmsav8;
777
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
786 #if !defined(CONFIG_USER_ONLY)
787 NVICState *nvic;
788 const struct arm_boot_info *boot_info;
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
791 #else /* CONFIG_USER_ONLY */
792 /* For usermode syscall translation. */
793 bool eabi;
794 #endif /* CONFIG_USER_ONLY */
795
796 #ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799 #endif
800 } CPUARMState;
801
802 static inline void set_feature(CPUARMState *env, int feature)
803 {
804 env->features |= 1ULL << feature;
805 }
806
807 static inline void unset_feature(CPUARMState *env, int feature)
808 {
809 env->features &= ~(1ULL << feature);
810 }
811
812 /**
813 * ARMELChangeHookFn:
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
817 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818 typedef struct ARMELChangeHook ARMELChangeHook;
819 struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823 };
824
825 /* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827 typedef enum ARMPSCIState {
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
830 PSCI_ON_PENDING = 2
831 } ARMPSCIState;
832
833 typedef struct ARMISARegisters ARMISARegisters;
834
835 /*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844 typedef struct {
845 uint32_t map, init, supported;
846 } ARMVQMap;
847
848 /**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
854 struct ArchCPU {
855 /*< private >*/
856 CPUState parent_obj;
857 /*< public >*/
858
859 CPUNegativeOffsetState neg;
860 CPUARMState env;
861
862 /* Coprocessor information */
863 GHashTable *cp_regs;
864 /* For marshalling (mostly coprocessor) register state between the
865 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
866 * we use these arrays.
867 */
868 /* List of register indexes managed via these arrays; (full KVM style
869 * 64 bit indexes, not CPRegInfo 32 bit indexes)
870 */
871 uint64_t *cpreg_indexes;
872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
873 uint64_t *cpreg_values;
874 /* Length of the indexes, values, reset_values arrays */
875 int32_t cpreg_array_len;
876 /* These are used only for migration: incoming data arrives in
877 * these fields and is sanity checked in post_load before copying
878 * to the working data structures above.
879 */
880 uint64_t *cpreg_vmstate_indexes;
881 uint64_t *cpreg_vmstate_values;
882 int32_t cpreg_vmstate_array_len;
883
884 DynamicGDBXMLInfo dyn_sysreg_xml;
885 DynamicGDBXMLInfo dyn_svereg_xml;
886 DynamicGDBXMLInfo dyn_m_systemreg_xml;
887 DynamicGDBXMLInfo dyn_m_secextreg_xml;
888
889 /* Timers used by the generic (architected) timer */
890 QEMUTimer *gt_timer[NUM_GTIMERS];
891 /*
892 * Timer used by the PMU. Its state is restored after migration by
893 * pmu_op_finish() - it does not need other handling during migration
894 */
895 QEMUTimer *pmu_timer;
896 /* GPIO outputs for generic timer */
897 qemu_irq gt_timer_outputs[NUM_GTIMERS];
898 /* GPIO output for GICv3 maintenance interrupt signal */
899 qemu_irq gicv3_maintenance_interrupt;
900 /* GPIO output for the PMU interrupt */
901 qemu_irq pmu_interrupt;
902
903 /* MemoryRegion to use for secure physical accesses */
904 MemoryRegion *secure_memory;
905
906 /* MemoryRegion to use for allocation tag accesses */
907 MemoryRegion *tag_memory;
908 MemoryRegion *secure_tag_memory;
909
910 /* For v8M, pointer to the IDAU interface provided by board/SoC */
911 Object *idau;
912
913 /* 'compatible' string for this CPU for Linux device trees */
914 const char *dtb_compatible;
915
916 /* PSCI version for this CPU
917 * Bits[31:16] = Major Version
918 * Bits[15:0] = Minor Version
919 */
920 uint32_t psci_version;
921
922 /* Current power state, access guarded by BQL */
923 ARMPSCIState power_state;
924
925 /* CPU has virtualization extension */
926 bool has_el2;
927 /* CPU has security extension */
928 bool has_el3;
929 /* CPU has PMU (Performance Monitor Unit) */
930 bool has_pmu;
931 /* CPU has VFP */
932 bool has_vfp;
933 /* CPU has 32 VFP registers */
934 bool has_vfp_d32;
935 /* CPU has Neon */
936 bool has_neon;
937 /* CPU has M-profile DSP extension */
938 bool has_dsp;
939
940 /* CPU has memory protection unit */
941 bool has_mpu;
942 /* PMSAv7 MPU number of supported regions */
943 uint32_t pmsav7_dregion;
944 /* PMSAv8 MPU number of supported hyp regions */
945 uint32_t pmsav8r_hdregion;
946 /* v8M SAU number of supported regions */
947 uint32_t sau_sregion;
948
949 /* PSCI conduit used to invoke PSCI methods
950 * 0 - disabled, 1 - smc, 2 - hvc
951 */
952 uint32_t psci_conduit;
953
954 /* For v8M, initial value of the Secure VTOR */
955 uint32_t init_svtor;
956 /* For v8M, initial value of the Non-secure VTOR */
957 uint32_t init_nsvtor;
958
959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
961 */
962 uint32_t kvm_target;
963
964 #ifdef CONFIG_KVM
965 /* KVM init features for this CPU */
966 uint32_t kvm_init_features[7];
967
968 /* KVM CPU state */
969
970 /* KVM virtual time adjustment */
971 bool kvm_adjvtime;
972 bool kvm_vtime_dirty;
973 uint64_t kvm_vtime;
974
975 /* KVM steal time */
976 OnOffAuto kvm_steal_time;
977 #endif /* CONFIG_KVM */
978
979 /* Uniprocessor system with MP extensions */
980 bool mp_is_up;
981
982 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
983 * and the probe failed (so we need to report the error in realize)
984 */
985 bool host_cpu_probe_failed;
986
987 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
988 * register.
989 */
990 int32_t core_count;
991
992 /* The instance init functions for implementation-specific subclasses
993 * set these fields to specify the implementation-dependent values of
994 * various constant registers and reset values of non-constant
995 * registers.
996 * Some of these might become QOM properties eventually.
997 * Field names match the official register names as defined in the
998 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
999 * is used for reset values of non-constant registers; no reset_
1000 * prefix means a constant register.
1001 * Some of these registers are split out into a substructure that
1002 * is shared with the translators to control the ISA.
1003 *
1004 * Note that if you add an ID register to the ARMISARegisters struct
1005 * you need to also update the 32-bit and 64-bit versions of the
1006 * kvm_arm_get_host_cpu_features() function to correctly populate the
1007 * field by reading the value from the KVM vCPU.
1008 */
1009 struct ARMISARegisters {
1010 uint32_t id_isar0;
1011 uint32_t id_isar1;
1012 uint32_t id_isar2;
1013 uint32_t id_isar3;
1014 uint32_t id_isar4;
1015 uint32_t id_isar5;
1016 uint32_t id_isar6;
1017 uint32_t id_mmfr0;
1018 uint32_t id_mmfr1;
1019 uint32_t id_mmfr2;
1020 uint32_t id_mmfr3;
1021 uint32_t id_mmfr4;
1022 uint32_t id_mmfr5;
1023 uint32_t id_pfr0;
1024 uint32_t id_pfr1;
1025 uint32_t id_pfr2;
1026 uint32_t mvfr0;
1027 uint32_t mvfr1;
1028 uint32_t mvfr2;
1029 uint32_t id_dfr0;
1030 uint32_t id_dfr1;
1031 uint32_t dbgdidr;
1032 uint32_t dbgdevid;
1033 uint32_t dbgdevid1;
1034 uint64_t id_aa64isar0;
1035 uint64_t id_aa64isar1;
1036 uint64_t id_aa64pfr0;
1037 uint64_t id_aa64pfr1;
1038 uint64_t id_aa64mmfr0;
1039 uint64_t id_aa64mmfr1;
1040 uint64_t id_aa64mmfr2;
1041 uint64_t id_aa64dfr0;
1042 uint64_t id_aa64dfr1;
1043 uint64_t id_aa64zfr0;
1044 uint64_t id_aa64smfr0;
1045 uint64_t reset_pmcr_el0;
1046 } isar;
1047 uint64_t midr;
1048 uint32_t revidr;
1049 uint32_t reset_fpsid;
1050 uint64_t ctr;
1051 uint32_t reset_sctlr;
1052 uint64_t pmceid0;
1053 uint64_t pmceid1;
1054 uint32_t id_afr0;
1055 uint64_t id_aa64afr0;
1056 uint64_t id_aa64afr1;
1057 uint64_t clidr;
1058 uint64_t mp_affinity; /* MP ID without feature bits */
1059 /* The elements of this array are the CCSIDR values for each cache,
1060 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1061 */
1062 uint64_t ccsidr[16];
1063 uint64_t reset_cbar;
1064 uint32_t reset_auxcr;
1065 bool reset_hivecs;
1066 uint8_t reset_l0gptsz;
1067
1068 /*
1069 * Intermediate values used during property parsing.
1070 * Once finalized, the values should be read from ID_AA64*.
1071 */
1072 bool prop_pauth;
1073 bool prop_pauth_impdef;
1074 bool prop_lpa2;
1075
1076 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1077 uint8_t dcz_blocksize;
1078 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1079 uint8_t gm_blocksize;
1080
1081 uint64_t rvbar_prop; /* Property/input signals. */
1082
1083 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1084 int gic_num_lrs; /* number of list registers */
1085 int gic_vpribits; /* number of virtual priority bits */
1086 int gic_vprebits; /* number of virtual preemption bits */
1087 int gic_pribits; /* number of physical priority bits */
1088
1089 /* Whether the cfgend input is high (i.e. this CPU should reset into
1090 * big-endian mode). This setting isn't used directly: instead it modifies
1091 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1092 * architecture version.
1093 */
1094 bool cfgend;
1095
1096 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1097 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1098
1099 int32_t node_id; /* NUMA node this CPU belongs to */
1100
1101 /* Used to synchronize KVM and QEMU in-kernel device levels */
1102 uint8_t device_irq_level;
1103
1104 /* Used to set the maximum vector length the cpu will support. */
1105 uint32_t sve_max_vq;
1106
1107 #ifdef CONFIG_USER_ONLY
1108 /* Used to set the default vector length at process start. */
1109 uint32_t sve_default_vq;
1110 uint32_t sme_default_vq;
1111 #endif
1112
1113 ARMVQMap sve_vq;
1114 ARMVQMap sme_vq;
1115
1116 /* Generic timer counter frequency, in Hz */
1117 uint64_t gt_cntfrq_hz;
1118 };
1119
1120 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1121 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1122
1123 void arm_cpu_post_init(Object *obj);
1124
1125 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1126
1127 #ifndef CONFIG_USER_ONLY
1128 extern const VMStateDescription vmstate_arm_cpu;
1129
1130 void arm_cpu_do_interrupt(CPUState *cpu);
1131 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1132
1133 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1134 MemTxAttrs *attrs);
1135 #endif /* !CONFIG_USER_ONLY */
1136
1137 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1138 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1139
1140 /* Returns the dynamically generated XML for the gdb stub.
1141 * Returns a pointer to the XML contents for the specified XML file or NULL
1142 * if the XML name doesn't match the predefined one.
1143 */
1144 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1145
1146 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1147 int cpuid, DumpState *s);
1148 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1149 int cpuid, DumpState *s);
1150
1151 #ifdef TARGET_AARCH64
1152 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1153 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1154 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1155 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1156 int new_el, bool el0_a64);
1157 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1158
1159 /*
1160 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1161 * The byte at offset i from the start of the in-memory representation contains
1162 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1163 * lowest offsets are stored in the lowest memory addresses, then that nearly
1164 * matches QEMU's representation, which is to use an array of host-endian
1165 * uint64_t's, where the lower offsets are at the lower indices. To complete
1166 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1167 */
1168 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1169 {
1170 #if HOST_BIG_ENDIAN
1171 int i;
1172
1173 for (i = 0; i < nr; ++i) {
1174 dst[i] = bswap64(src[i]);
1175 }
1176
1177 return dst;
1178 #else
1179 return src;
1180 #endif
1181 }
1182
1183 #else
1184 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1185 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1186 int n, bool a)
1187 { }
1188 #endif
1189
1190 void aarch64_sync_32_to_64(CPUARMState *env);
1191 void aarch64_sync_64_to_32(CPUARMState *env);
1192
1193 int fp_exception_el(CPUARMState *env, int cur_el);
1194 int sve_exception_el(CPUARMState *env, int cur_el);
1195 int sme_exception_el(CPUARMState *env, int cur_el);
1196
1197 /**
1198 * sve_vqm1_for_el_sm:
1199 * @env: CPUARMState
1200 * @el: exception level
1201 * @sm: streaming mode
1202 *
1203 * Compute the current vector length for @el & @sm, in units of
1204 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1205 * If @sm, compute for SVL, otherwise NVL.
1206 */
1207 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1208
1209 /* Likewise, but using @sm = PSTATE.SM. */
1210 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1211
1212 static inline bool is_a64(CPUARMState *env)
1213 {
1214 return env->aarch64;
1215 }
1216
1217 /**
1218 * pmu_op_start/finish
1219 * @env: CPUARMState
1220 *
1221 * Convert all PMU counters between their delta form (the typical mode when
1222 * they are enabled) and the guest-visible values. These two calls must
1223 * surround any action which might affect the counters.
1224 */
1225 void pmu_op_start(CPUARMState *env);
1226 void pmu_op_finish(CPUARMState *env);
1227
1228 /*
1229 * Called when a PMU counter is due to overflow
1230 */
1231 void arm_pmu_timer_cb(void *opaque);
1232
1233 /**
1234 * Functions to register as EL change hooks for PMU mode filtering
1235 */
1236 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1237 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1238
1239 /*
1240 * pmu_init
1241 * @cpu: ARMCPU
1242 *
1243 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1244 * for the current configuration
1245 */
1246 void pmu_init(ARMCPU *cpu);
1247
1248 /* SCTLR bit meanings. Several bits have been reused in newer
1249 * versions of the architecture; in that case we define constants
1250 * for both old and new bit meanings. Code which tests against those
1251 * bits should probably check or otherwise arrange that the CPU
1252 * is the architectural version it expects.
1253 */
1254 #define SCTLR_M (1U << 0)
1255 #define SCTLR_A (1U << 1)
1256 #define SCTLR_C (1U << 2)
1257 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1258 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1259 #define SCTLR_SA (1U << 3) /* AArch64 only */
1260 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1261 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1262 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1263 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1264 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1265 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1266 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
1267 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1268 #define SCTLR_ITD (1U << 7) /* v8 onward */
1269 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1270 #define SCTLR_SED (1U << 8) /* v8 onward */
1271 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1272 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1273 #define SCTLR_F (1U << 10) /* up to v6 */
1274 #define SCTLR_SW (1U << 10) /* v7 */
1275 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1276 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1277 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1278 #define SCTLR_I (1U << 12)
1279 #define SCTLR_V (1U << 13) /* AArch32 only */
1280 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1281 #define SCTLR_RR (1U << 14) /* up to v7 */
1282 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1283 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1284 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1285 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1286 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1287 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1288 #define SCTLR_BR (1U << 17) /* PMSA only */
1289 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1290 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1291 #define SCTLR_WXN (1U << 19)
1292 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1293 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1294 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1295 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1296 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1297 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1298 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1299 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1300 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1301 #define SCTLR_VE (1U << 24) /* up to v7 */
1302 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1303 #define SCTLR_EE (1U << 25)
1304 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1305 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1306 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1307 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1308 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1309 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1310 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1311 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1312 #define SCTLR_TE (1U << 30) /* AArch32 only */
1313 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1314 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1315 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1316 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1317 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1318 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1319 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1320 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1321 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1322 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1323 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1324 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1325 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1326 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1327 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1328 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1329 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1330 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1331 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1332 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1333 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1334 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1335 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1336 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1337 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1338
1339 /* Bit definitions for CPACR (AArch32 only) */
1340 FIELD(CPACR, CP10, 20, 2)
1341 FIELD(CPACR, CP11, 22, 2)
1342 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1343 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1344 FIELD(CPACR, ASEDIS, 31, 1)
1345
1346 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1347 FIELD(CPACR_EL1, ZEN, 16, 2)
1348 FIELD(CPACR_EL1, FPEN, 20, 2)
1349 FIELD(CPACR_EL1, SMEN, 24, 2)
1350 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1351
1352 /* Bit definitions for HCPTR (AArch32 only) */
1353 FIELD(HCPTR, TCP10, 10, 1)
1354 FIELD(HCPTR, TCP11, 11, 1)
1355 FIELD(HCPTR, TASE, 15, 1)
1356 FIELD(HCPTR, TTA, 20, 1)
1357 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1358 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1359
1360 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1361 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1362 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1363 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1364 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1365 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1366 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1367 FIELD(CPTR_EL2, TTA, 28, 1)
1368 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1369 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1370
1371 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1372 FIELD(CPTR_EL3, EZ, 8, 1)
1373 FIELD(CPTR_EL3, TFP, 10, 1)
1374 FIELD(CPTR_EL3, ESM, 12, 1)
1375 FIELD(CPTR_EL3, TTA, 20, 1)
1376 FIELD(CPTR_EL3, TAM, 30, 1)
1377 FIELD(CPTR_EL3, TCPAC, 31, 1)
1378
1379 #define MDCR_MTPME (1U << 28)
1380 #define MDCR_TDCC (1U << 27)
1381 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */
1382 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1383 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
1384 #define MDCR_EPMAD (1U << 21)
1385 #define MDCR_EDAD (1U << 20)
1386 #define MDCR_TTRF (1U << 19)
1387 #define MDCR_STE (1U << 18) /* MDCR_EL3 */
1388 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1389 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1390 #define MDCR_SDD (1U << 16)
1391 #define MDCR_SPD (3U << 14)
1392 #define MDCR_TDRA (1U << 11)
1393 #define MDCR_TDOSA (1U << 10)
1394 #define MDCR_TDA (1U << 9)
1395 #define MDCR_TDE (1U << 8)
1396 #define MDCR_HPME (1U << 7)
1397 #define MDCR_TPM (1U << 6)
1398 #define MDCR_TPMCR (1U << 5)
1399 #define MDCR_HPMN (0x1fU)
1400
1401 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1402 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1403 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1404 MDCR_STE | MDCR_SPME | MDCR_SPD)
1405
1406 #define CPSR_M (0x1fU)
1407 #define CPSR_T (1U << 5)
1408 #define CPSR_F (1U << 6)
1409 #define CPSR_I (1U << 7)
1410 #define CPSR_A (1U << 8)
1411 #define CPSR_E (1U << 9)
1412 #define CPSR_IT_2_7 (0xfc00U)
1413 #define CPSR_GE (0xfU << 16)
1414 #define CPSR_IL (1U << 20)
1415 #define CPSR_DIT (1U << 21)
1416 #define CPSR_PAN (1U << 22)
1417 #define CPSR_SSBS (1U << 23)
1418 #define CPSR_J (1U << 24)
1419 #define CPSR_IT_0_1 (3U << 25)
1420 #define CPSR_Q (1U << 27)
1421 #define CPSR_V (1U << 28)
1422 #define CPSR_C (1U << 29)
1423 #define CPSR_Z (1U << 30)
1424 #define CPSR_N (1U << 31)
1425 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1426 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1427
1428 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1429 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1430 | CPSR_NZCV)
1431 /* Bits writable in user mode. */
1432 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1433 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1434 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1435
1436 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1437 #define XPSR_EXCP 0x1ffU
1438 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1439 #define XPSR_IT_2_7 CPSR_IT_2_7
1440 #define XPSR_GE CPSR_GE
1441 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1442 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1443 #define XPSR_IT_0_1 CPSR_IT_0_1
1444 #define XPSR_Q CPSR_Q
1445 #define XPSR_V CPSR_V
1446 #define XPSR_C CPSR_C
1447 #define XPSR_Z CPSR_Z
1448 #define XPSR_N CPSR_N
1449 #define XPSR_NZCV CPSR_NZCV
1450 #define XPSR_IT CPSR_IT
1451
1452 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1453 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1454 #define TTBCR_PD0 (1U << 4)
1455 #define TTBCR_PD1 (1U << 5)
1456 #define TTBCR_EPD0 (1U << 7)
1457 #define TTBCR_IRGN0 (3U << 8)
1458 #define TTBCR_ORGN0 (3U << 10)
1459 #define TTBCR_SH0 (3U << 12)
1460 #define TTBCR_T1SZ (3U << 16)
1461 #define TTBCR_A1 (1U << 22)
1462 #define TTBCR_EPD1 (1U << 23)
1463 #define TTBCR_IRGN1 (3U << 24)
1464 #define TTBCR_ORGN1 (3U << 26)
1465 #define TTBCR_SH1 (1U << 28)
1466 #define TTBCR_EAE (1U << 31)
1467
1468 FIELD(VTCR, T0SZ, 0, 6)
1469 FIELD(VTCR, SL0, 6, 2)
1470 FIELD(VTCR, IRGN0, 8, 2)
1471 FIELD(VTCR, ORGN0, 10, 2)
1472 FIELD(VTCR, SH0, 12, 2)
1473 FIELD(VTCR, TG0, 14, 2)
1474 FIELD(VTCR, PS, 16, 3)
1475 FIELD(VTCR, VS, 19, 1)
1476 FIELD(VTCR, HA, 21, 1)
1477 FIELD(VTCR, HD, 22, 1)
1478 FIELD(VTCR, HWU59, 25, 1)
1479 FIELD(VTCR, HWU60, 26, 1)
1480 FIELD(VTCR, HWU61, 27, 1)
1481 FIELD(VTCR, HWU62, 28, 1)
1482 FIELD(VTCR, NSW, 29, 1)
1483 FIELD(VTCR, NSA, 30, 1)
1484 FIELD(VTCR, DS, 32, 1)
1485 FIELD(VTCR, SL2, 33, 1)
1486
1487 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1488 * Only these are valid when in AArch64 mode; in
1489 * AArch32 mode SPSRs are basically CPSR-format.
1490 */
1491 #define PSTATE_SP (1U)
1492 #define PSTATE_M (0xFU)
1493 #define PSTATE_nRW (1U << 4)
1494 #define PSTATE_F (1U << 6)
1495 #define PSTATE_I (1U << 7)
1496 #define PSTATE_A (1U << 8)
1497 #define PSTATE_D (1U << 9)
1498 #define PSTATE_BTYPE (3U << 10)
1499 #define PSTATE_SSBS (1U << 12)
1500 #define PSTATE_IL (1U << 20)
1501 #define PSTATE_SS (1U << 21)
1502 #define PSTATE_PAN (1U << 22)
1503 #define PSTATE_UAO (1U << 23)
1504 #define PSTATE_DIT (1U << 24)
1505 #define PSTATE_TCO (1U << 25)
1506 #define PSTATE_V (1U << 28)
1507 #define PSTATE_C (1U << 29)
1508 #define PSTATE_Z (1U << 30)
1509 #define PSTATE_N (1U << 31)
1510 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1511 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1512 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1513 /* Mode values for AArch64 */
1514 #define PSTATE_MODE_EL3h 13
1515 #define PSTATE_MODE_EL3t 12
1516 #define PSTATE_MODE_EL2h 9
1517 #define PSTATE_MODE_EL2t 8
1518 #define PSTATE_MODE_EL1h 5
1519 #define PSTATE_MODE_EL1t 4
1520 #define PSTATE_MODE_EL0t 0
1521
1522 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1523 FIELD(SVCR, SM, 0, 1)
1524 FIELD(SVCR, ZA, 1, 1)
1525
1526 /* Fields for SMCR_ELx. */
1527 FIELD(SMCR, LEN, 0, 4)
1528 FIELD(SMCR, FA64, 31, 1)
1529
1530 /* Write a new value to v7m.exception, thus transitioning into or out
1531 * of Handler mode; this may result in a change of active stack pointer.
1532 */
1533 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1534
1535 /* Map EL and handler into a PSTATE_MODE. */
1536 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1537 {
1538 return (el << 2) | handler;
1539 }
1540
1541 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1542 * interprocessing, so we don't attempt to sync with the cpsr state used by
1543 * the 32 bit decoder.
1544 */
1545 static inline uint32_t pstate_read(CPUARMState *env)
1546 {
1547 int ZF;
1548
1549 ZF = (env->ZF == 0);
1550 return (env->NF & 0x80000000) | (ZF << 30)
1551 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1552 | env->pstate | env->daif | (env->btype << 10);
1553 }
1554
1555 static inline void pstate_write(CPUARMState *env, uint32_t val)
1556 {
1557 env->ZF = (~val) & PSTATE_Z;
1558 env->NF = val;
1559 env->CF = (val >> 29) & 1;
1560 env->VF = (val << 3) & 0x80000000;
1561 env->daif = val & PSTATE_DAIF;
1562 env->btype = (val >> 10) & 3;
1563 env->pstate = val & ~CACHED_PSTATE_BITS;
1564 }
1565
1566 /* Return the current CPSR value. */
1567 uint32_t cpsr_read(CPUARMState *env);
1568
1569 typedef enum CPSRWriteType {
1570 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1571 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1572 CPSRWriteRaw = 2,
1573 /* trust values, no reg bank switch, no hflags rebuild */
1574 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1575 } CPSRWriteType;
1576
1577 /*
1578 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1579 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1580 * correspond to TB flags bits cached in the hflags, unless @write_type
1581 * is CPSRWriteRaw.
1582 */
1583 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1584 CPSRWriteType write_type);
1585
1586 /* Return the current xPSR value. */
1587 static inline uint32_t xpsr_read(CPUARMState *env)
1588 {
1589 int ZF;
1590 ZF = (env->ZF == 0);
1591 return (env->NF & 0x80000000) | (ZF << 30)
1592 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1593 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1594 | ((env->condexec_bits & 0xfc) << 8)
1595 | (env->GE << 16)
1596 | env->v7m.exception;
1597 }
1598
1599 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1600 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1601 {
1602 if (mask & XPSR_NZCV) {
1603 env->ZF = (~val) & XPSR_Z;
1604 env->NF = val;
1605 env->CF = (val >> 29) & 1;
1606 env->VF = (val << 3) & 0x80000000;
1607 }
1608 if (mask & XPSR_Q) {
1609 env->QF = ((val & XPSR_Q) != 0);
1610 }
1611 if (mask & XPSR_GE) {
1612 env->GE = (val & XPSR_GE) >> 16;
1613 }
1614 #ifndef CONFIG_USER_ONLY
1615 if (mask & XPSR_T) {
1616 env->thumb = ((val & XPSR_T) != 0);
1617 }
1618 if (mask & XPSR_IT_0_1) {
1619 env->condexec_bits &= ~3;
1620 env->condexec_bits |= (val >> 25) & 3;
1621 }
1622 if (mask & XPSR_IT_2_7) {
1623 env->condexec_bits &= 3;
1624 env->condexec_bits |= (val >> 8) & 0xfc;
1625 }
1626 if (mask & XPSR_EXCP) {
1627 /* Note that this only happens on exception exit */
1628 write_v7m_exception(env, val & XPSR_EXCP);
1629 }
1630 #endif
1631 }
1632
1633 #define HCR_VM (1ULL << 0)
1634 #define HCR_SWIO (1ULL << 1)
1635 #define HCR_PTW (1ULL << 2)
1636 #define HCR_FMO (1ULL << 3)
1637 #define HCR_IMO (1ULL << 4)
1638 #define HCR_AMO (1ULL << 5)
1639 #define HCR_VF (1ULL << 6)
1640 #define HCR_VI (1ULL << 7)
1641 #define HCR_VSE (1ULL << 8)
1642 #define HCR_FB (1ULL << 9)
1643 #define HCR_BSU_MASK (3ULL << 10)
1644 #define HCR_DC (1ULL << 12)
1645 #define HCR_TWI (1ULL << 13)
1646 #define HCR_TWE (1ULL << 14)
1647 #define HCR_TID0 (1ULL << 15)
1648 #define HCR_TID1 (1ULL << 16)
1649 #define HCR_TID2 (1ULL << 17)
1650 #define HCR_TID3 (1ULL << 18)
1651 #define HCR_TSC (1ULL << 19)
1652 #define HCR_TIDCP (1ULL << 20)
1653 #define HCR_TACR (1ULL << 21)
1654 #define HCR_TSW (1ULL << 22)
1655 #define HCR_TPCP (1ULL << 23)
1656 #define HCR_TPU (1ULL << 24)
1657 #define HCR_TTLB (1ULL << 25)
1658 #define HCR_TVM (1ULL << 26)
1659 #define HCR_TGE (1ULL << 27)
1660 #define HCR_TDZ (1ULL << 28)
1661 #define HCR_HCD (1ULL << 29)
1662 #define HCR_TRVM (1ULL << 30)
1663 #define HCR_RW (1ULL << 31)
1664 #define HCR_CD (1ULL << 32)
1665 #define HCR_ID (1ULL << 33)
1666 #define HCR_E2H (1ULL << 34)
1667 #define HCR_TLOR (1ULL << 35)
1668 #define HCR_TERR (1ULL << 36)
1669 #define HCR_TEA (1ULL << 37)
1670 #define HCR_MIOCNCE (1ULL << 38)
1671 #define HCR_TME (1ULL << 39)
1672 #define HCR_APK (1ULL << 40)
1673 #define HCR_API (1ULL << 41)
1674 #define HCR_NV (1ULL << 42)
1675 #define HCR_NV1 (1ULL << 43)
1676 #define HCR_AT (1ULL << 44)
1677 #define HCR_NV2 (1ULL << 45)
1678 #define HCR_FWB (1ULL << 46)
1679 #define HCR_FIEN (1ULL << 47)
1680 #define HCR_GPF (1ULL << 48)
1681 #define HCR_TID4 (1ULL << 49)
1682 #define HCR_TICAB (1ULL << 50)
1683 #define HCR_AMVOFFEN (1ULL << 51)
1684 #define HCR_TOCU (1ULL << 52)
1685 #define HCR_ENSCXT (1ULL << 53)
1686 #define HCR_TTLBIS (1ULL << 54)
1687 #define HCR_TTLBOS (1ULL << 55)
1688 #define HCR_ATA (1ULL << 56)
1689 #define HCR_DCT (1ULL << 57)
1690 #define HCR_TID5 (1ULL << 58)
1691 #define HCR_TWEDEN (1ULL << 59)
1692 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1693
1694 #define HCRX_ENAS0 (1ULL << 0)
1695 #define HCRX_ENALS (1ULL << 1)
1696 #define HCRX_ENASR (1ULL << 2)
1697 #define HCRX_FNXS (1ULL << 3)
1698 #define HCRX_FGTNXS (1ULL << 4)
1699 #define HCRX_SMPME (1ULL << 5)
1700 #define HCRX_TALLINT (1ULL << 6)
1701 #define HCRX_VINMI (1ULL << 7)
1702 #define HCRX_VFNMI (1ULL << 8)
1703 #define HCRX_CMOW (1ULL << 9)
1704 #define HCRX_MCE2 (1ULL << 10)
1705 #define HCRX_MSCEN (1ULL << 11)
1706
1707 #define HPFAR_NS (1ULL << 63)
1708
1709 #define SCR_NS (1ULL << 0)
1710 #define SCR_IRQ (1ULL << 1)
1711 #define SCR_FIQ (1ULL << 2)
1712 #define SCR_EA (1ULL << 3)
1713 #define SCR_FW (1ULL << 4)
1714 #define SCR_AW (1ULL << 5)
1715 #define SCR_NET (1ULL << 6)
1716 #define SCR_SMD (1ULL << 7)
1717 #define SCR_HCE (1ULL << 8)
1718 #define SCR_SIF (1ULL << 9)
1719 #define SCR_RW (1ULL << 10)
1720 #define SCR_ST (1ULL << 11)
1721 #define SCR_TWI (1ULL << 12)
1722 #define SCR_TWE (1ULL << 13)
1723 #define SCR_TLOR (1ULL << 14)
1724 #define SCR_TERR (1ULL << 15)
1725 #define SCR_APK (1ULL << 16)
1726 #define SCR_API (1ULL << 17)
1727 #define SCR_EEL2 (1ULL << 18)
1728 #define SCR_EASE (1ULL << 19)
1729 #define SCR_NMEA (1ULL << 20)
1730 #define SCR_FIEN (1ULL << 21)
1731 #define SCR_ENSCXT (1ULL << 25)
1732 #define SCR_ATA (1ULL << 26)
1733 #define SCR_FGTEN (1ULL << 27)
1734 #define SCR_ECVEN (1ULL << 28)
1735 #define SCR_TWEDEN (1ULL << 29)
1736 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1737 #define SCR_TME (1ULL << 34)
1738 #define SCR_AMVOFFEN (1ULL << 35)
1739 #define SCR_ENAS0 (1ULL << 36)
1740 #define SCR_ADEN (1ULL << 37)
1741 #define SCR_HXEN (1ULL << 38)
1742 #define SCR_TRNDR (1ULL << 40)
1743 #define SCR_ENTP2 (1ULL << 41)
1744 #define SCR_GPF (1ULL << 48)
1745 #define SCR_NSE (1ULL << 62)
1746
1747 #define HSTR_TTEE (1 << 16)
1748 #define HSTR_TJDBX (1 << 17)
1749
1750 #define CNTHCTL_CNTVMASK (1 << 18)
1751 #define CNTHCTL_CNTPMASK (1 << 19)
1752
1753 /* Return the current FPSCR value. */
1754 uint32_t vfp_get_fpscr(CPUARMState *env);
1755 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1756
1757 /* FPCR, Floating Point Control Register
1758 * FPSR, Floating Poiht Status Register
1759 *
1760 * For A64 the FPSCR is split into two logically distinct registers,
1761 * FPCR and FPSR. However since they still use non-overlapping bits
1762 * we store the underlying state in fpscr and just mask on read/write.
1763 */
1764 #define FPSR_MASK 0xf800009f
1765 #define FPCR_MASK 0x07ff9f00
1766
1767 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1768 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1769 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1770 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1771 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1772 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1773 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1774 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1775 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1776 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1777 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1778 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1779 #define FPCR_V (1 << 28) /* FP overflow flag */
1780 #define FPCR_C (1 << 29) /* FP carry flag */
1781 #define FPCR_Z (1 << 30) /* FP zero flag */
1782 #define FPCR_N (1 << 31) /* FP negative flag */
1783
1784 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1785 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1786 #define FPCR_LTPSIZE_LENGTH 3
1787
1788 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1789 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1790
1791 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1792 {
1793 return vfp_get_fpscr(env) & FPSR_MASK;
1794 }
1795
1796 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1797 {
1798 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1799 vfp_set_fpscr(env, new_fpscr);
1800 }
1801
1802 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1803 {
1804 return vfp_get_fpscr(env) & FPCR_MASK;
1805 }
1806
1807 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1808 {
1809 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1810 vfp_set_fpscr(env, new_fpscr);
1811 }
1812
1813 enum arm_cpu_mode {
1814 ARM_CPU_MODE_USR = 0x10,
1815 ARM_CPU_MODE_FIQ = 0x11,
1816 ARM_CPU_MODE_IRQ = 0x12,
1817 ARM_CPU_MODE_SVC = 0x13,
1818 ARM_CPU_MODE_MON = 0x16,
1819 ARM_CPU_MODE_ABT = 0x17,
1820 ARM_CPU_MODE_HYP = 0x1a,
1821 ARM_CPU_MODE_UND = 0x1b,
1822 ARM_CPU_MODE_SYS = 0x1f
1823 };
1824
1825 /* VFP system registers. */
1826 #define ARM_VFP_FPSID 0
1827 #define ARM_VFP_FPSCR 1
1828 #define ARM_VFP_MVFR2 5
1829 #define ARM_VFP_MVFR1 6
1830 #define ARM_VFP_MVFR0 7
1831 #define ARM_VFP_FPEXC 8
1832 #define ARM_VFP_FPINST 9
1833 #define ARM_VFP_FPINST2 10
1834 /* These ones are M-profile only */
1835 #define ARM_VFP_FPSCR_NZCVQC 2
1836 #define ARM_VFP_VPR 12
1837 #define ARM_VFP_P0 13
1838 #define ARM_VFP_FPCXT_NS 14
1839 #define ARM_VFP_FPCXT_S 15
1840
1841 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1842 #define QEMU_VFP_FPSCR_NZCV 0xffff
1843
1844 /* iwMMXt coprocessor control registers. */
1845 #define ARM_IWMMXT_wCID 0
1846 #define ARM_IWMMXT_wCon 1
1847 #define ARM_IWMMXT_wCSSF 2
1848 #define ARM_IWMMXT_wCASF 3
1849 #define ARM_IWMMXT_wCGR0 8
1850 #define ARM_IWMMXT_wCGR1 9
1851 #define ARM_IWMMXT_wCGR2 10
1852 #define ARM_IWMMXT_wCGR3 11
1853
1854 /* V7M CCR bits */
1855 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1856 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1857 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1858 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1859 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1860 FIELD(V7M_CCR, STKALIGN, 9, 1)
1861 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1862 FIELD(V7M_CCR, DC, 16, 1)
1863 FIELD(V7M_CCR, IC, 17, 1)
1864 FIELD(V7M_CCR, BP, 18, 1)
1865 FIELD(V7M_CCR, LOB, 19, 1)
1866 FIELD(V7M_CCR, TRD, 20, 1)
1867
1868 /* V7M SCR bits */
1869 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1870 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1871 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1872 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1873
1874 /* V7M AIRCR bits */
1875 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1876 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1877 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1878 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1879 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1880 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1881 FIELD(V7M_AIRCR, PRIS, 14, 1)
1882 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1883 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1884
1885 /* V7M CFSR bits for MMFSR */
1886 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1887 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1888 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1889 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1890 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1891 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1892
1893 /* V7M CFSR bits for BFSR */
1894 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1895 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1896 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1897 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1898 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1899 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1900 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1901
1902 /* V7M CFSR bits for UFSR */
1903 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1904 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1905 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1906 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1907 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1908 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1909 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1910
1911 /* V7M CFSR bit masks covering all of the subregister bits */
1912 FIELD(V7M_CFSR, MMFSR, 0, 8)
1913 FIELD(V7M_CFSR, BFSR, 8, 8)
1914 FIELD(V7M_CFSR, UFSR, 16, 16)
1915
1916 /* V7M HFSR bits */
1917 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1918 FIELD(V7M_HFSR, FORCED, 30, 1)
1919 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1920
1921 /* V7M DFSR bits */
1922 FIELD(V7M_DFSR, HALTED, 0, 1)
1923 FIELD(V7M_DFSR, BKPT, 1, 1)
1924 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1925 FIELD(V7M_DFSR, VCATCH, 3, 1)
1926 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1927
1928 /* V7M SFSR bits */
1929 FIELD(V7M_SFSR, INVEP, 0, 1)
1930 FIELD(V7M_SFSR, INVIS, 1, 1)
1931 FIELD(V7M_SFSR, INVER, 2, 1)
1932 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1933 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1934 FIELD(V7M_SFSR, LSPERR, 5, 1)
1935 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1936 FIELD(V7M_SFSR, LSERR, 7, 1)
1937
1938 /* v7M MPU_CTRL bits */
1939 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1940 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1941 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1942
1943 /* v7M CLIDR bits */
1944 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1945 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1946 FIELD(V7M_CLIDR, LOC, 24, 3)
1947 FIELD(V7M_CLIDR, LOUU, 27, 3)
1948 FIELD(V7M_CLIDR, ICB, 30, 2)
1949
1950 FIELD(V7M_CSSELR, IND, 0, 1)
1951 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1952 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1953 * define a mask for this and check that it doesn't permit running off
1954 * the end of the array.
1955 */
1956 FIELD(V7M_CSSELR, INDEX, 0, 4)
1957
1958 /* v7M FPCCR bits */
1959 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1960 FIELD(V7M_FPCCR, USER, 1, 1)
1961 FIELD(V7M_FPCCR, S, 2, 1)
1962 FIELD(V7M_FPCCR, THREAD, 3, 1)
1963 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1964 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1965 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1966 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1967 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1968 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1969 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1970 FIELD(V7M_FPCCR, RES0, 11, 15)
1971 FIELD(V7M_FPCCR, TS, 26, 1)
1972 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1973 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1974 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1975 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1976 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1977 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1978 #define R_V7M_FPCCR_BANKED_MASK \
1979 (R_V7M_FPCCR_LSPACT_MASK | \
1980 R_V7M_FPCCR_USER_MASK | \
1981 R_V7M_FPCCR_THREAD_MASK | \
1982 R_V7M_FPCCR_MMRDY_MASK | \
1983 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1984 R_V7M_FPCCR_UFRDY_MASK | \
1985 R_V7M_FPCCR_ASPEN_MASK)
1986
1987 /* v7M VPR bits */
1988 FIELD(V7M_VPR, P0, 0, 16)
1989 FIELD(V7M_VPR, MASK01, 16, 4)
1990 FIELD(V7M_VPR, MASK23, 20, 4)
1991
1992 /*
1993 * System register ID fields.
1994 */
1995 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1996 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1997 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1998 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1999 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2000 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2001 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2002 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2003 FIELD(CLIDR_EL1, LOC, 24, 3)
2004 FIELD(CLIDR_EL1, LOUU, 27, 3)
2005 FIELD(CLIDR_EL1, ICB, 30, 3)
2006
2007 /* When FEAT_CCIDX is implemented */
2008 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2009 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2010 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2011
2012 /* When FEAT_CCIDX is not implemented */
2013 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2014 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2015 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2016
2017 FIELD(CTR_EL0, IMINLINE, 0, 4)
2018 FIELD(CTR_EL0, L1IP, 14, 2)
2019 FIELD(CTR_EL0, DMINLINE, 16, 4)
2020 FIELD(CTR_EL0, ERG, 20, 4)
2021 FIELD(CTR_EL0, CWG, 24, 4)
2022 FIELD(CTR_EL0, IDC, 28, 1)
2023 FIELD(CTR_EL0, DIC, 29, 1)
2024 FIELD(CTR_EL0, TMINLINE, 32, 6)
2025
2026 FIELD(MIDR_EL1, REVISION, 0, 4)
2027 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2028 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2029 FIELD(MIDR_EL1, VARIANT, 20, 4)
2030 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2031
2032 FIELD(ID_ISAR0, SWAP, 0, 4)
2033 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2034 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2035 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2036 FIELD(ID_ISAR0, COPROC, 16, 4)
2037 FIELD(ID_ISAR0, DEBUG, 20, 4)
2038 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2039
2040 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2041 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2042 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2043 FIELD(ID_ISAR1, EXTEND, 12, 4)
2044 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2045 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2046 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2047 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2048
2049 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2050 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2051 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2052 FIELD(ID_ISAR2, MULT, 12, 4)
2053 FIELD(ID_ISAR2, MULTS, 16, 4)
2054 FIELD(ID_ISAR2, MULTU, 20, 4)
2055 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2056 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2057
2058 FIELD(ID_ISAR3, SATURATE, 0, 4)
2059 FIELD(ID_ISAR3, SIMD, 4, 4)
2060 FIELD(ID_ISAR3, SVC, 8, 4)
2061 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2062 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2063 FIELD(ID_ISAR3, T32COPY, 20, 4)
2064 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2065 FIELD(ID_ISAR3, T32EE, 28, 4)
2066
2067 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2068 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2069 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2070 FIELD(ID_ISAR4, SMC, 12, 4)
2071 FIELD(ID_ISAR4, BARRIER, 16, 4)
2072 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2073 FIELD(ID_ISAR4, PSR_M, 24, 4)
2074 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2075
2076 FIELD(ID_ISAR5, SEVL, 0, 4)
2077 FIELD(ID_ISAR5, AES, 4, 4)
2078 FIELD(ID_ISAR5, SHA1, 8, 4)
2079 FIELD(ID_ISAR5, SHA2, 12, 4)
2080 FIELD(ID_ISAR5, CRC32, 16, 4)
2081 FIELD(ID_ISAR5, RDM, 24, 4)
2082 FIELD(ID_ISAR5, VCMA, 28, 4)
2083
2084 FIELD(ID_ISAR6, JSCVT, 0, 4)
2085 FIELD(ID_ISAR6, DP, 4, 4)
2086 FIELD(ID_ISAR6, FHM, 8, 4)
2087 FIELD(ID_ISAR6, SB, 12, 4)
2088 FIELD(ID_ISAR6, SPECRES, 16, 4)
2089 FIELD(ID_ISAR6, BF16, 20, 4)
2090 FIELD(ID_ISAR6, I8MM, 24, 4)
2091
2092 FIELD(ID_MMFR0, VMSA, 0, 4)
2093 FIELD(ID_MMFR0, PMSA, 4, 4)
2094 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2095 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2096 FIELD(ID_MMFR0, TCM, 16, 4)
2097 FIELD(ID_MMFR0, AUXREG, 20, 4)
2098 FIELD(ID_MMFR0, FCSE, 24, 4)
2099 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2100
2101 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2102 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2103 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2104 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2105 FIELD(ID_MMFR1, L1HVD, 16, 4)
2106 FIELD(ID_MMFR1, L1UNI, 20, 4)
2107 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2108 FIELD(ID_MMFR1, BPRED, 28, 4)
2109
2110 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2111 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2112 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2113 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2114 FIELD(ID_MMFR2, UNITLB, 16, 4)
2115 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2116 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2117 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2118
2119 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2120 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2121 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2122 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2123 FIELD(ID_MMFR3, PAN, 16, 4)
2124 FIELD(ID_MMFR3, COHWALK, 20, 4)
2125 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2126 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2127
2128 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2129 FIELD(ID_MMFR4, AC2, 4, 4)
2130 FIELD(ID_MMFR4, XNX, 8, 4)
2131 FIELD(ID_MMFR4, CNP, 12, 4)
2132 FIELD(ID_MMFR4, HPDS, 16, 4)
2133 FIELD(ID_MMFR4, LSM, 20, 4)
2134 FIELD(ID_MMFR4, CCIDX, 24, 4)
2135 FIELD(ID_MMFR4, EVT, 28, 4)
2136
2137 FIELD(ID_MMFR5, ETS, 0, 4)
2138 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2139
2140 FIELD(ID_PFR0, STATE0, 0, 4)
2141 FIELD(ID_PFR0, STATE1, 4, 4)
2142 FIELD(ID_PFR0, STATE2, 8, 4)
2143 FIELD(ID_PFR0, STATE3, 12, 4)
2144 FIELD(ID_PFR0, CSV2, 16, 4)
2145 FIELD(ID_PFR0, AMU, 20, 4)
2146 FIELD(ID_PFR0, DIT, 24, 4)
2147 FIELD(ID_PFR0, RAS, 28, 4)
2148
2149 FIELD(ID_PFR1, PROGMOD, 0, 4)
2150 FIELD(ID_PFR1, SECURITY, 4, 4)
2151 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2152 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2153 FIELD(ID_PFR1, GENTIMER, 16, 4)
2154 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2155 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2156 FIELD(ID_PFR1, GIC, 28, 4)
2157
2158 FIELD(ID_PFR2, CSV3, 0, 4)
2159 FIELD(ID_PFR2, SSBS, 4, 4)
2160 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2161
2162 FIELD(ID_AA64ISAR0, AES, 4, 4)
2163 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2164 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2165 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2166 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2167 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2168 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2169 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2170 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2171 FIELD(ID_AA64ISAR0, DP, 44, 4)
2172 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2173 FIELD(ID_AA64ISAR0, TS, 52, 4)
2174 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2175 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2176
2177 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2178 FIELD(ID_AA64ISAR1, APA, 4, 4)
2179 FIELD(ID_AA64ISAR1, API, 8, 4)
2180 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2181 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2182 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2183 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2184 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2185 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2186 FIELD(ID_AA64ISAR1, SB, 36, 4)
2187 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2188 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2189 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2190 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2191 FIELD(ID_AA64ISAR1, XS, 56, 4)
2192 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2193
2194 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2195 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2196 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2197 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2198 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2199 FIELD(ID_AA64ISAR2, BC, 20, 4)
2200 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2201
2202 FIELD(ID_AA64PFR0, EL0, 0, 4)
2203 FIELD(ID_AA64PFR0, EL1, 4, 4)
2204 FIELD(ID_AA64PFR0, EL2, 8, 4)
2205 FIELD(ID_AA64PFR0, EL3, 12, 4)
2206 FIELD(ID_AA64PFR0, FP, 16, 4)
2207 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2208 FIELD(ID_AA64PFR0, GIC, 24, 4)
2209 FIELD(ID_AA64PFR0, RAS, 28, 4)
2210 FIELD(ID_AA64PFR0, SVE, 32, 4)
2211 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2212 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2213 FIELD(ID_AA64PFR0, AMU, 44, 4)
2214 FIELD(ID_AA64PFR0, DIT, 48, 4)
2215 FIELD(ID_AA64PFR0, RME, 52, 4)
2216 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2217 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2218
2219 FIELD(ID_AA64PFR1, BT, 0, 4)
2220 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2221 FIELD(ID_AA64PFR1, MTE, 8, 4)
2222 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2223 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2224 FIELD(ID_AA64PFR1, SME, 24, 4)
2225 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2226 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2227 FIELD(ID_AA64PFR1, NMI, 36, 4)
2228
2229 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2230 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2231 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2232 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2233 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2234 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2235 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2236 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2237 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2238 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2239 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2240 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2241 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2242 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2243
2244 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2245 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2246 FIELD(ID_AA64MMFR1, VH, 8, 4)
2247 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2248 FIELD(ID_AA64MMFR1, LO, 16, 4)
2249 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2250 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2251 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2252 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2253 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2254 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2255 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2256 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2257 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2258 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2259
2260 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2261 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2262 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2263 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2264 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2265 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2266 FIELD(ID_AA64MMFR2, NV, 24, 4)
2267 FIELD(ID_AA64MMFR2, ST, 28, 4)
2268 FIELD(ID_AA64MMFR2, AT, 32, 4)
2269 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2270 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2271 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2272 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2273 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2274 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2275
2276 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2277 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2278 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2279 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2280 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2281 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2282 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2283 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2284 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2285 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2286 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2287 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2288 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2289
2290 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2291 FIELD(ID_AA64ZFR0, AES, 4, 4)
2292 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2293 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2294 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2295 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2296 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2297 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2298 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2299
2300 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2301 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2302 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2303 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2304 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2305 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2306 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2307 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2308
2309 FIELD(ID_DFR0, COPDBG, 0, 4)
2310 FIELD(ID_DFR0, COPSDBG, 4, 4)
2311 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2312 FIELD(ID_DFR0, COPTRC, 12, 4)
2313 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2314 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2315 FIELD(ID_DFR0, PERFMON, 24, 4)
2316 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2317
2318 FIELD(ID_DFR1, MTPMU, 0, 4)
2319 FIELD(ID_DFR1, HPMN0, 4, 4)
2320
2321 FIELD(DBGDIDR, SE_IMP, 12, 1)
2322 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2323 FIELD(DBGDIDR, VERSION, 16, 4)
2324 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2325 FIELD(DBGDIDR, BRPS, 24, 4)
2326 FIELD(DBGDIDR, WRPS, 28, 4)
2327
2328 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2329 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2330 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2331 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2332 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2333 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2334 FIELD(DBGDEVID, AUXREGS, 24, 4)
2335 FIELD(DBGDEVID, CIDMASK, 28, 4)
2336
2337 FIELD(MVFR0, SIMDREG, 0, 4)
2338 FIELD(MVFR0, FPSP, 4, 4)
2339 FIELD(MVFR0, FPDP, 8, 4)
2340 FIELD(MVFR0, FPTRAP, 12, 4)
2341 FIELD(MVFR0, FPDIVIDE, 16, 4)
2342 FIELD(MVFR0, FPSQRT, 20, 4)
2343 FIELD(MVFR0, FPSHVEC, 24, 4)
2344 FIELD(MVFR0, FPROUND, 28, 4)
2345
2346 FIELD(MVFR1, FPFTZ, 0, 4)
2347 FIELD(MVFR1, FPDNAN, 4, 4)
2348 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2349 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2350 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2351 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2352 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2353 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2354 FIELD(MVFR1, FPHP, 24, 4)
2355 FIELD(MVFR1, SIMDFMAC, 28, 4)
2356
2357 FIELD(MVFR2, SIMDMISC, 0, 4)
2358 FIELD(MVFR2, FPMISC, 4, 4)
2359
2360 FIELD(GPCCR, PPS, 0, 3)
2361 FIELD(GPCCR, IRGN, 8, 2)
2362 FIELD(GPCCR, ORGN, 10, 2)
2363 FIELD(GPCCR, SH, 12, 2)
2364 FIELD(GPCCR, PGS, 14, 2)
2365 FIELD(GPCCR, GPC, 16, 1)
2366 FIELD(GPCCR, GPCP, 17, 1)
2367 FIELD(GPCCR, L0GPTSZ, 20, 4)
2368
2369 FIELD(MFAR, FPA, 12, 40)
2370 FIELD(MFAR, NSE, 62, 1)
2371 FIELD(MFAR, NS, 63, 1)
2372
2373 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2374
2375 /* If adding a feature bit which corresponds to a Linux ELF
2376 * HWCAP bit, remember to update the feature-bit-to-hwcap
2377 * mapping in linux-user/elfload.c:get_elf_hwcap().
2378 */
2379 enum arm_features {
2380 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2381 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2382 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2383 ARM_FEATURE_V6,
2384 ARM_FEATURE_V6K,
2385 ARM_FEATURE_V7,
2386 ARM_FEATURE_THUMB2,
2387 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2388 ARM_FEATURE_NEON,
2389 ARM_FEATURE_M, /* Microcontroller profile. */
2390 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2391 ARM_FEATURE_THUMB2EE,
2392 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2393 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2394 ARM_FEATURE_V4T,
2395 ARM_FEATURE_V5,
2396 ARM_FEATURE_STRONGARM,
2397 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2398 ARM_FEATURE_GENERIC_TIMER,
2399 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2400 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2401 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2402 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2403 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2404 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2405 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2406 ARM_FEATURE_V8,
2407 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2408 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2409 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2410 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2411 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2412 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2413 ARM_FEATURE_PMU, /* has PMU support */
2414 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2415 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2416 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2417 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2418 };
2419
2420 static inline int arm_feature(CPUARMState *env, int feature)
2421 {
2422 return (env->features & (1ULL << feature)) != 0;
2423 }
2424
2425 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2426
2427 /*
2428 * ARM v9 security states.
2429 * The ordering of the enumeration corresponds to the low 2 bits
2430 * of the GPI value, and (except for Root) the concat of NSE:NS.
2431 */
2432
2433 typedef enum ARMSecuritySpace {
2434 ARMSS_Secure = 0,
2435 ARMSS_NonSecure = 1,
2436 ARMSS_Root = 2,
2437 ARMSS_Realm = 3,
2438 } ARMSecuritySpace;
2439
2440 /* Return true if @space is secure, in the pre-v9 sense. */
2441 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2442 {
2443 return space == ARMSS_Secure || space == ARMSS_Root;
2444 }
2445
2446 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2447 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2448 {
2449 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2450 }
2451
2452 #if !defined(CONFIG_USER_ONLY)
2453 /**
2454 * arm_security_space_below_el3:
2455 * @env: cpu context
2456 *
2457 * Return the security space of exception levels below EL3, following
2458 * an exception return to those levels. Unlike arm_security_space,
2459 * this doesn't care about the current EL.
2460 */
2461 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2462
2463 /**
2464 * arm_is_secure_below_el3:
2465 * @env: cpu context
2466 *
2467 * Return true if exception levels below EL3 are in secure state,
2468 * or would be following an exception return to those levels.
2469 */
2470 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2471 {
2472 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2473 return ss == ARMSS_Secure;
2474 }
2475
2476 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2477 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2478 {
2479 assert(!arm_feature(env, ARM_FEATURE_M));
2480 if (arm_feature(env, ARM_FEATURE_EL3)) {
2481 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2482 /* CPU currently in AArch64 state and EL3 */
2483 return true;
2484 } else if (!is_a64(env) &&
2485 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2486 /* CPU currently in AArch32 state and monitor mode */
2487 return true;
2488 }
2489 }
2490 return false;
2491 }
2492
2493 /**
2494 * arm_security_space:
2495 * @env: cpu context
2496 *
2497 * Return the current security space of the cpu.
2498 */
2499 ARMSecuritySpace arm_security_space(CPUARMState *env);
2500
2501 /**
2502 * arm_is_secure:
2503 * @env: cpu context
2504 *
2505 * Return true if the processor is in secure state.
2506 */
2507 static inline bool arm_is_secure(CPUARMState *env)
2508 {
2509 return arm_space_is_secure(arm_security_space(env));
2510 }
2511
2512 /*
2513 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2514 * This corresponds to the pseudocode EL2Enabled().
2515 */
2516 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2517 ARMSecuritySpace space)
2518 {
2519 assert(space != ARMSS_Root);
2520 return arm_feature(env, ARM_FEATURE_EL2)
2521 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2522 }
2523
2524 static inline bool arm_is_el2_enabled(CPUARMState *env)
2525 {
2526 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2527 }
2528
2529 #else
2530 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2531 {
2532 return ARMSS_NonSecure;
2533 }
2534
2535 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2536 {
2537 return false;
2538 }
2539
2540 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2541 {
2542 return ARMSS_NonSecure;
2543 }
2544
2545 static inline bool arm_is_secure(CPUARMState *env)
2546 {
2547 return false;
2548 }
2549
2550 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2551 ARMSecuritySpace space)
2552 {
2553 return false;
2554 }
2555
2556 static inline bool arm_is_el2_enabled(CPUARMState *env)
2557 {
2558 return false;
2559 }
2560 #endif
2561
2562 /**
2563 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2564 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2565 * "for all purposes other than a direct read or write access of HCR_EL2."
2566 * Not included here is HCR_RW.
2567 */
2568 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2569 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2570 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2571
2572 /* Return true if the specified exception level is running in AArch64 state. */
2573 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2574 {
2575 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2576 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2577 */
2578 assert(el >= 1 && el <= 3);
2579 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2580
2581 /* The highest exception level is always at the maximum supported
2582 * register width, and then lower levels have a register width controlled
2583 * by bits in the SCR or HCR registers.
2584 */
2585 if (el == 3) {
2586 return aa64;
2587 }
2588
2589 if (arm_feature(env, ARM_FEATURE_EL3) &&
2590 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2591 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2592 }
2593
2594 if (el == 2) {
2595 return aa64;
2596 }
2597
2598 if (arm_is_el2_enabled(env)) {
2599 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2600 }
2601
2602 return aa64;
2603 }
2604
2605 /* Function for determining whether guest cp register reads and writes should
2606 * access the secure or non-secure bank of a cp register. When EL3 is
2607 * operating in AArch32 state, the NS-bit determines whether the secure
2608 * instance of a cp register should be used. When EL3 is AArch64 (or if
2609 * it doesn't exist at all) then there is no register banking, and all
2610 * accesses are to the non-secure version.
2611 */
2612 static inline bool access_secure_reg(CPUARMState *env)
2613 {
2614 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2615 !arm_el_is_aa64(env, 3) &&
2616 !(env->cp15.scr_el3 & SCR_NS));
2617
2618 return ret;
2619 }
2620
2621 /* Macros for accessing a specified CP register bank */
2622 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2623 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2624
2625 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2626 do { \
2627 if (_secure) { \
2628 (_env)->cp15._regname##_s = (_val); \
2629 } else { \
2630 (_env)->cp15._regname##_ns = (_val); \
2631 } \
2632 } while (0)
2633
2634 /* Macros for automatically accessing a specific CP register bank depending on
2635 * the current secure state of the system. These macros are not intended for
2636 * supporting instruction translation reads/writes as these are dependent
2637 * solely on the SCR.NS bit and not the mode.
2638 */
2639 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2640 A32_BANKED_REG_GET((_env), _regname, \
2641 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2642
2643 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2644 A32_BANKED_REG_SET((_env), _regname, \
2645 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2646 (_val))
2647
2648 void arm_cpu_list(void);
2649 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2650 uint32_t cur_el, bool secure);
2651
2652 /* Return the highest implemented Exception Level */
2653 static inline int arm_highest_el(CPUARMState *env)
2654 {
2655 if (arm_feature(env, ARM_FEATURE_EL3)) {
2656 return 3;
2657 }
2658 if (arm_feature(env, ARM_FEATURE_EL2)) {
2659 return 2;
2660 }
2661 return 1;
2662 }
2663
2664 /* Return true if a v7M CPU is in Handler mode */
2665 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2666 {
2667 return env->v7m.exception != 0;
2668 }
2669
2670 /* Return the current Exception Level (as per ARMv8; note that this differs
2671 * from the ARMv7 Privilege Level).
2672 */
2673 static inline int arm_current_el(CPUARMState *env)
2674 {
2675 if (arm_feature(env, ARM_FEATURE_M)) {
2676 return arm_v7m_is_handler_mode(env) ||
2677 !(env->v7m.control[env->v7m.secure] & 1);
2678 }
2679
2680 if (is_a64(env)) {
2681 return extract32(env->pstate, 2, 2);
2682 }
2683
2684 switch (env->uncached_cpsr & 0x1f) {
2685 case ARM_CPU_MODE_USR:
2686 return 0;
2687 case ARM_CPU_MODE_HYP:
2688 return 2;
2689 case ARM_CPU_MODE_MON:
2690 return 3;
2691 default:
2692 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2693 /* If EL3 is 32-bit then all secure privileged modes run in
2694 * EL3
2695 */
2696 return 3;
2697 }
2698
2699 return 1;
2700 }
2701 }
2702
2703 /**
2704 * write_list_to_cpustate
2705 * @cpu: ARMCPU
2706 *
2707 * For each register listed in the ARMCPU cpreg_indexes list, write
2708 * its value from the cpreg_values list into the ARMCPUState structure.
2709 * This updates TCG's working data structures from KVM data or
2710 * from incoming migration state.
2711 *
2712 * Returns: true if all register values were updated correctly,
2713 * false if some register was unknown or could not be written.
2714 * Note that we do not stop early on failure -- we will attempt
2715 * writing all registers in the list.
2716 */
2717 bool write_list_to_cpustate(ARMCPU *cpu);
2718
2719 /**
2720 * write_cpustate_to_list:
2721 * @cpu: ARMCPU
2722 * @kvm_sync: true if this is for syncing back to KVM
2723 *
2724 * For each register listed in the ARMCPU cpreg_indexes list, write
2725 * its value from the ARMCPUState structure into the cpreg_values list.
2726 * This is used to copy info from TCG's working data structures into
2727 * KVM or for outbound migration.
2728 *
2729 * @kvm_sync is true if we are doing this in order to sync the
2730 * register state back to KVM. In this case we will only update
2731 * values in the list if the previous list->cpustate sync actually
2732 * successfully wrote the CPU state. Otherwise we will keep the value
2733 * that is in the list.
2734 *
2735 * Returns: true if all register values were read correctly,
2736 * false if some register was unknown or could not be read.
2737 * Note that we do not stop early on failure -- we will attempt
2738 * reading all registers in the list.
2739 */
2740 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2741
2742 #define ARM_CPUID_TI915T 0x54029152
2743 #define ARM_CPUID_TI925T 0x54029252
2744
2745 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2746 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2747 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2748
2749 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2750
2751 #define cpu_list arm_cpu_list
2752
2753 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2754 *
2755 * If EL3 is 64-bit:
2756 * + NonSecure EL1 & 0 stage 1
2757 * + NonSecure EL1 & 0 stage 2
2758 * + NonSecure EL2
2759 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2760 * + Secure EL1 & 0
2761 * + Secure EL3
2762 * If EL3 is 32-bit:
2763 * + NonSecure PL1 & 0 stage 1
2764 * + NonSecure PL1 & 0 stage 2
2765 * + NonSecure PL2
2766 * + Secure PL0
2767 * + Secure PL1
2768 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2769 *
2770 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2771 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2772 * because they may differ in access permissions even if the VA->PA map is
2773 * the same
2774 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2775 * translation, which means that we have one mmu_idx that deals with two
2776 * concatenated translation regimes [this sort of combined s1+2 TLB is
2777 * architecturally permitted]
2778 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2779 * handling via the TLB. The only way to do a stage 1 translation without
2780 * the immediate stage 2 translation is via the ATS or AT system insns,
2781 * which can be slow-pathed and always do a page table walk.
2782 * The only use of stage 2 translations is either as part of an s1+2
2783 * lookup or when loading the descriptors during a stage 1 page table walk,
2784 * and in both those cases we don't use the TLB.
2785 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2786 * translation regimes, because they map reasonably well to each other
2787 * and they can't both be active at the same time.
2788 * 5. we want to be able to use the TLB for accesses done as part of a
2789 * stage1 page table walk, rather than having to walk the stage2 page
2790 * table over and over.
2791 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2792 * Never (PAN) bit within PSTATE.
2793 * 7. we fold together the secure and non-secure regimes for A-profile,
2794 * because there are no banked system registers for aarch64, so the
2795 * process of switching between secure and non-secure is
2796 * already heavyweight.
2797 *
2798 * This gives us the following list of cases:
2799 *
2800 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2801 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2802 * EL1 EL1&0 stage 1+2 +PAN
2803 * EL0 EL2&0
2804 * EL2 EL2&0
2805 * EL2 EL2&0 +PAN
2806 * EL2 (aka NS PL2)
2807 * EL3 (aka S PL1)
2808 * Physical (NS & S)
2809 * Stage2 (NS & S)
2810 *
2811 * for a total of 12 different mmu_idx.
2812 *
2813 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2814 * as A profile. They only need to distinguish EL0 and EL1 (and
2815 * EL2 if we ever model a Cortex-R52).
2816 *
2817 * M profile CPUs are rather different as they do not have a true MMU.
2818 * They have the following different MMU indexes:
2819 * User
2820 * Privileged
2821 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2822 * Privileged, execution priority negative (ditto)
2823 * If the CPU supports the v8M Security Extension then there are also:
2824 * Secure User
2825 * Secure Privileged
2826 * Secure User, execution priority negative
2827 * Secure Privileged, execution priority negative
2828 *
2829 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2830 * are not quite the same -- different CPU types (most notably M profile
2831 * vs A/R profile) would like to use MMU indexes with different semantics,
2832 * but since we don't ever need to use all of those in a single CPU we
2833 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2834 * modes + total number of M profile MMU modes". The lower bits of
2835 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2836 * the same for any particular CPU.
2837 * Variables of type ARMMUIdx are always full values, and the core
2838 * index values are in variables of type 'int'.
2839 *
2840 * Our enumeration includes at the end some entries which are not "true"
2841 * mmu_idx values in that they don't have corresponding TLBs and are only
2842 * valid for doing slow path page table walks.
2843 *
2844 * The constant names here are patterned after the general style of the names
2845 * of the AT/ATS operations.
2846 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2847 * For M profile we arrange them to have a bit for priv, a bit for negpri
2848 * and a bit for secure.
2849 */
2850 #define ARM_MMU_IDX_A 0x10 /* A profile */
2851 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2852 #define ARM_MMU_IDX_M 0x40 /* M profile */
2853
2854 /* Meanings of the bits for M profile mmu idx values */
2855 #define ARM_MMU_IDX_M_PRIV 0x1
2856 #define ARM_MMU_IDX_M_NEGPRI 0x2
2857 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2858
2859 #define ARM_MMU_IDX_TYPE_MASK \
2860 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2861 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2862
2863 typedef enum ARMMMUIdx {
2864 /*
2865 * A-profile.
2866 */
2867 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2868 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2869 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2870 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2871 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2872 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2873 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2874 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
2875
2876 /*
2877 * Used for second stage of an S12 page table walk, or for descriptor
2878 * loads during first stage of an S1 page table walk. Note that both
2879 * are in use simultaneously for SecureEL2: the security state for
2880 * the S2 ptw is selected by the NS bit from the S1 ptw.
2881 */
2882 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2883 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2884
2885 /* TLBs with 1-1 mapping to the physical address spaces. */
2886 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2887 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2888 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2889 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2890
2891 /*
2892 * These are not allocated TLBs and are used only for AT system
2893 * instructions or for the first stage of an S12 page table walk.
2894 */
2895 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2896 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2897 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2898
2899 /*
2900 * M-profile.
2901 */
2902 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2903 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2904 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2905 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2906 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2907 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2908 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2909 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2910 } ARMMMUIdx;
2911
2912 /*
2913 * Bit macros for the core-mmu-index values for each index,
2914 * for use when calling tlb_flush_by_mmuidx() and friends.
2915 */
2916 #define TO_CORE_BIT(NAME) \
2917 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2918
2919 typedef enum ARMMMUIdxBit {
2920 TO_CORE_BIT(E10_0),
2921 TO_CORE_BIT(E20_0),
2922 TO_CORE_BIT(E10_1),
2923 TO_CORE_BIT(E10_1_PAN),
2924 TO_CORE_BIT(E2),
2925 TO_CORE_BIT(E20_2),
2926 TO_CORE_BIT(E20_2_PAN),
2927 TO_CORE_BIT(E3),
2928 TO_CORE_BIT(Stage2),
2929 TO_CORE_BIT(Stage2_S),
2930
2931 TO_CORE_BIT(MUser),
2932 TO_CORE_BIT(MPriv),
2933 TO_CORE_BIT(MUserNegPri),
2934 TO_CORE_BIT(MPrivNegPri),
2935 TO_CORE_BIT(MSUser),
2936 TO_CORE_BIT(MSPriv),
2937 TO_CORE_BIT(MSUserNegPri),
2938 TO_CORE_BIT(MSPrivNegPri),
2939 } ARMMMUIdxBit;
2940
2941 #undef TO_CORE_BIT
2942
2943 #define MMU_USER_IDX 0
2944
2945 /* Indexes used when registering address spaces with cpu_address_space_init */
2946 typedef enum ARMASIdx {
2947 ARMASIdx_NS = 0,
2948 ARMASIdx_S = 1,
2949 ARMASIdx_TagNS = 2,
2950 ARMASIdx_TagS = 3,
2951 } ARMASIdx;
2952
2953 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2954 {
2955 /* Assert the relative order of the physical mmu indexes. */
2956 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2957 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2958 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2959 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2960
2961 return ARMMMUIdx_Phys_S + space;
2962 }
2963
2964 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2965 {
2966 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2967 return idx - ARMMMUIdx_Phys_S;
2968 }
2969
2970 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2971 {
2972 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2973 * CSSELR is RAZ/WI.
2974 */
2975 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2976 }
2977
2978 static inline bool arm_sctlr_b(CPUARMState *env)
2979 {
2980 return
2981 /* We need not implement SCTLR.ITD in user-mode emulation, so
2982 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2983 * This lets people run BE32 binaries with "-cpu any".
2984 */
2985 #ifndef CONFIG_USER_ONLY
2986 !arm_feature(env, ARM_FEATURE_V7) &&
2987 #endif
2988 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2989 }
2990
2991 uint64_t arm_sctlr(CPUARMState *env, int el);
2992
2993 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2994 bool sctlr_b)
2995 {
2996 #ifdef CONFIG_USER_ONLY
2997 /*
2998 * In system mode, BE32 is modelled in line with the
2999 * architecture (as word-invariant big-endianness), where loads
3000 * and stores are done little endian but from addresses which
3001 * are adjusted by XORing with the appropriate constant. So the
3002 * endianness to use for the raw data access is not affected by
3003 * SCTLR.B.
3004 * In user mode, however, we model BE32 as byte-invariant
3005 * big-endianness (because user-only code cannot tell the
3006 * difference), and so we need to use a data access endianness
3007 * that depends on SCTLR.B.
3008 */
3009 if (sctlr_b) {
3010 return true;
3011 }
3012 #endif
3013 /* In 32bit endianness is determined by looking at CPSR's E bit */
3014 return env->uncached_cpsr & CPSR_E;
3015 }
3016
3017 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3018 {
3019 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3020 }
3021
3022 /* Return true if the processor is in big-endian mode. */
3023 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3024 {
3025 if (!is_a64(env)) {
3026 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3027 } else {
3028 int cur_el = arm_current_el(env);
3029 uint64_t sctlr = arm_sctlr(env, cur_el);
3030 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3031 }
3032 }
3033
3034 #include "exec/cpu-all.h"
3035
3036 /*
3037 * We have more than 32-bits worth of state per TB, so we split the data
3038 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3039 * We collect these two parts in CPUARMTBFlags where they are named
3040 * flags and flags2 respectively.
3041 *
3042 * The flags that are shared between all execution modes, TBFLAG_ANY,
3043 * are stored in flags. The flags that are specific to a given mode
3044 * are stores in flags2. Since cs_base is sized on the configured
3045 * address size, flags2 always has 64-bits for A64, and a minimum of
3046 * 32-bits for A32 and M32.
3047 *
3048 * The bits for 32-bit A-profile and M-profile partially overlap:
3049 *
3050 * 31 23 11 10 0
3051 * +-------------+----------+----------------+
3052 * | | | TBFLAG_A32 |
3053 * | TBFLAG_AM32 | +-----+----------+
3054 * | | |TBFLAG_M32|
3055 * +-------------+----------------+----------+
3056 * 31 23 6 5 0
3057 *
3058 * Unless otherwise noted, these bits are cached in env->hflags.
3059 */
3060 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3061 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3062 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3063 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3064 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3065 /* Target EL if we take a floating-point-disabled exception */
3066 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3067 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3068 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3069 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3070 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3071 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3072
3073 /*
3074 * Bit usage when in AArch32 state, both A- and M-profile.
3075 */
3076 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3077 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3078
3079 /*
3080 * Bit usage when in AArch32 state, for A-profile only.
3081 */
3082 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3083 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3084 /*
3085 * We store the bottom two bits of the CPAR as TB flags and handle
3086 * checks on the other bits at runtime. This shares the same bits as
3087 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3088 * Not cached, because VECLEN+VECSTRIDE are not cached.
3089 */
3090 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3091 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3092 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3093 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3094 /*
3095 * Indicates whether cp register reads and writes by guest code should access
3096 * the secure or nonsecure bank of banked registers; note that this is not
3097 * the same thing as the current security state of the processor!
3098 */
3099 FIELD(TBFLAG_A32, NS, 10, 1)
3100 /*
3101 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3102 * This requires an SME trap from AArch32 mode when using NEON.
3103 */
3104 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3105
3106 /*
3107 * Bit usage when in AArch32 state, for M-profile only.
3108 */
3109 /* Handler (ie not Thread) mode */
3110 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3111 /* Whether we should generate stack-limit checks */
3112 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3113 /* Set if FPCCR.LSPACT is set */
3114 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3115 /* Set if we must create a new FP context */
3116 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3117 /* Set if FPCCR.S does not match current security state */
3118 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3119 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3120 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3121 /* Set if in secure mode */
3122 FIELD(TBFLAG_M32, SECURE, 6, 1)
3123
3124 /*
3125 * Bit usage when in AArch64 state
3126 */
3127 FIELD(TBFLAG_A64, TBII, 0, 2)
3128 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3129 /* The current vector length, either NVL or SVL. */
3130 FIELD(TBFLAG_A64, VL, 4, 4)
3131 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3132 FIELD(TBFLAG_A64, BT, 9, 1)
3133 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3134 FIELD(TBFLAG_A64, TBID, 12, 2)
3135 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3136 FIELD(TBFLAG_A64, ATA, 15, 1)
3137 FIELD(TBFLAG_A64, TCMA, 16, 2)
3138 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3139 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3140 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3141 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3142 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3143 FIELD(TBFLAG_A64, SVL, 24, 4)
3144 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3145 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3146 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3147 FIELD(TBFLAG_A64, NAA, 30, 1)
3148
3149 /*
3150 * Helpers for using the above.
3151 */
3152 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3153 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3154 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3155 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3156 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3157 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3158 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3159 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3160 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3161 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3162
3163 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3164 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3165 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3166 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3167 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3168
3169 /**
3170 * cpu_mmu_index:
3171 * @env: The cpu environment
3172 * @ifetch: True for code access, false for data access.
3173 *
3174 * Return the core mmu index for the current translation regime.
3175 * This function is used by generic TCG code paths.
3176 */
3177 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3178 {
3179 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3180 }
3181
3182 /**
3183 * sve_vq
3184 * @env: the cpu context
3185 *
3186 * Return the VL cached within env->hflags, in units of quadwords.
3187 */
3188 static inline int sve_vq(CPUARMState *env)
3189 {
3190 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3191 }
3192
3193 /**
3194 * sme_vq
3195 * @env: the cpu context
3196 *
3197 * Return the SVL cached within env->hflags, in units of quadwords.
3198 */
3199 static inline int sme_vq(CPUARMState *env)
3200 {
3201 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3202 }
3203
3204 static inline bool bswap_code(bool sctlr_b)
3205 {
3206 #ifdef CONFIG_USER_ONLY
3207 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3208 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3209 * would also end up as a mixed-endian mode with BE code, LE data.
3210 */
3211 return
3212 #if TARGET_BIG_ENDIAN
3213 1 ^
3214 #endif
3215 sctlr_b;
3216 #else
3217 /* All code access in ARM is little endian, and there are no loaders
3218 * doing swaps that need to be reversed
3219 */
3220 return 0;
3221 #endif
3222 }
3223
3224 #ifdef CONFIG_USER_ONLY
3225 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3226 {
3227 return
3228 #if TARGET_BIG_ENDIAN
3229 1 ^
3230 #endif
3231 arm_cpu_data_is_big_endian(env);
3232 }
3233 #endif
3234
3235 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3236 uint64_t *cs_base, uint32_t *flags);
3237
3238 enum {
3239 QEMU_PSCI_CONDUIT_DISABLED = 0,
3240 QEMU_PSCI_CONDUIT_SMC = 1,
3241 QEMU_PSCI_CONDUIT_HVC = 2,
3242 };
3243
3244 #ifndef CONFIG_USER_ONLY
3245 /* Return the address space index to use for a memory access */
3246 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3247 {
3248 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3249 }
3250
3251 /* Return the AddressSpace to use for a memory access
3252 * (which depends on whether the access is S or NS, and whether
3253 * the board gave us a separate AddressSpace for S accesses).
3254 */
3255 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3256 {
3257 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3258 }
3259 #endif
3260
3261 /**
3262 * arm_register_pre_el_change_hook:
3263 * Register a hook function which will be called immediately before this
3264 * CPU changes exception level or mode. The hook function will be
3265 * passed a pointer to the ARMCPU and the opaque data pointer passed
3266 * to this function when the hook was registered.
3267 *
3268 * Note that if a pre-change hook is called, any registered post-change hooks
3269 * are guaranteed to subsequently be called.
3270 */
3271 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3272 void *opaque);
3273 /**
3274 * arm_register_el_change_hook:
3275 * Register a hook function which will be called immediately after this
3276 * CPU changes exception level or mode. The hook function will be
3277 * passed a pointer to the ARMCPU and the opaque data pointer passed
3278 * to this function when the hook was registered.
3279 *
3280 * Note that any registered hooks registered here are guaranteed to be called
3281 * if pre-change hooks have been.
3282 */
3283 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3284 *opaque);
3285
3286 /**
3287 * arm_rebuild_hflags:
3288 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3289 */
3290 void arm_rebuild_hflags(CPUARMState *env);
3291
3292 /**
3293 * aa32_vfp_dreg:
3294 * Return a pointer to the Dn register within env in 32-bit mode.
3295 */
3296 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3297 {
3298 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3299 }
3300
3301 /**
3302 * aa32_vfp_qreg:
3303 * Return a pointer to the Qn register within env in 32-bit mode.
3304 */
3305 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3306 {
3307 return &env->vfp.zregs[regno].d[0];
3308 }
3309
3310 /**
3311 * aa64_vfp_qreg:
3312 * Return a pointer to the Qn register within env in 64-bit mode.
3313 */
3314 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3315 {
3316 return &env->vfp.zregs[regno].d[0];
3317 }
3318
3319 /* Shared between translate-sve.c and sve_helper.c. */
3320 extern const uint64_t pred_esz_masks[5];
3321
3322 /*
3323 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3324 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3325 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
3326 */
3327 #define PAGE_BTI PAGE_TARGET_1
3328 #define PAGE_MTE PAGE_TARGET_2
3329 #define PAGE_TARGET_STICKY PAGE_MTE
3330
3331 /* We associate one allocation tag per 16 bytes, the minimum. */
3332 #define LOG2_TAG_GRANULE 4
3333 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3334
3335 #ifdef CONFIG_USER_ONLY
3336 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3337 #endif
3338
3339 #ifdef TARGET_TAGGED_ADDRESSES
3340 /**
3341 * cpu_untagged_addr:
3342 * @cs: CPU context
3343 * @x: tagged address
3344 *
3345 * Remove any address tag from @x. This is explicitly related to the
3346 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3347 *
3348 * There should be a better place to put this, but we need this in
3349 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3350 */
3351 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3352 {
3353 ARMCPU *cpu = ARM_CPU(cs);
3354 if (cpu->env.tagged_addr_enable) {
3355 /*
3356 * TBI is enabled for userspace but not kernelspace addresses.
3357 * Only clear the tag if bit 55 is clear.
3358 */
3359 x &= sextract64(x, 0, 56);
3360 }
3361 return x;
3362 }
3363 #endif
3364
3365 /*
3366 * Naming convention for isar_feature functions:
3367 * Functions which test 32-bit ID registers should have _aa32_ in
3368 * their name. Functions which test 64-bit ID registers should have
3369 * _aa64_ in their name. These must only be used in code where we
3370 * know for certain that the CPU has AArch32 or AArch64 respectively
3371 * or where the correct answer for a CPU which doesn't implement that
3372 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3373 * system registers that are specific to that CPU state, for "should
3374 * we let this system register bit be set" tests where the 32-bit
3375 * flavour of the register doesn't have the bit, and so on).
3376 * Functions which simply ask "does this feature exist at all" have
3377 * _any_ in their name, and always return the logical OR of the _aa64_
3378 * and the _aa32_ function.
3379 */
3380
3381 /*
3382 * 32-bit feature tests via id registers.
3383 */
3384 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3385 {
3386 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3387 }
3388
3389 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3390 {
3391 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3392 }
3393
3394 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3395 {
3396 /* (M-profile) low-overhead loops and branch future */
3397 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3398 }
3399
3400 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3401 {
3402 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3403 }
3404
3405 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3406 {
3407 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3408 }
3409
3410 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3411 {
3412 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3413 }
3414
3415 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3416 {
3417 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3418 }
3419
3420 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3421 {
3422 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3423 }
3424
3425 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3426 {
3427 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3428 }
3429
3430 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3431 {
3432 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3433 }
3434
3435 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3436 {
3437 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3438 }
3439
3440 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3441 {
3442 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3443 }
3444
3445 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3446 {
3447 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3448 }
3449
3450 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3451 {
3452 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3453 }
3454
3455 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3456 {
3457 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3458 }
3459
3460 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3461 {
3462 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3463 }
3464
3465 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3466 {
3467 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3468 }
3469
3470 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3471 {
3472 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3473 }
3474
3475 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3476 {
3477 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3478 }
3479
3480 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3481 {
3482 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3483 }
3484
3485 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3486 {
3487 /*
3488 * Return true if M-profile state handling insns
3489 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3490 */
3491 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3492 }
3493
3494 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3495 {
3496 /* Sadly this is encoded differently for A-profile and M-profile */
3497 if (isar_feature_aa32_mprofile(id)) {
3498 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3499 } else {
3500 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3501 }
3502 }
3503
3504 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3505 {
3506 /*
3507 * Return true if MVE is supported (either integer or floating point).
3508 * We must check for M-profile as the MVFR1 field means something
3509 * else for A-profile.
3510 */
3511 return isar_feature_aa32_mprofile(id) &&
3512 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3513 }
3514
3515 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3516 {
3517 /*
3518 * Return true if MVE is supported (either integer or floating point).
3519 * We must check for M-profile as the MVFR1 field means something
3520 * else for A-profile.
3521 */
3522 return isar_feature_aa32_mprofile(id) &&
3523 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3524 }
3525
3526 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3527 {
3528 /*
3529 * Return true if either VFP or SIMD is implemented.
3530 * In this case, a minimum of VFP w/ D0-D15.
3531 */
3532 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3533 }
3534
3535 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3536 {
3537 /* Return true if D16-D31 are implemented */
3538 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3539 }
3540
3541 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3542 {
3543 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3544 }
3545
3546 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3547 {
3548 /* Return true if CPU supports single precision floating point, VFPv2 */
3549 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3550 }
3551
3552 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3553 {
3554 /* Return true if CPU supports single precision floating point, VFPv3 */
3555 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3556 }
3557
3558 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3559 {
3560 /* Return true if CPU supports double precision floating point, VFPv2 */
3561 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3562 }
3563
3564 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3565 {
3566 /* Return true if CPU supports double precision floating point, VFPv3 */
3567 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3568 }
3569
3570 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3571 {
3572 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3573 }
3574
3575 /*
3576 * We always set the FP and SIMD FP16 fields to indicate identical
3577 * levels of support (assuming SIMD is implemented at all), so
3578 * we only need one set of accessors.
3579 */
3580 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3581 {
3582 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3583 }
3584
3585 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3586 {
3587 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3588 }
3589
3590 /*
3591 * Note that this ID register field covers both VFP and Neon FMAC,
3592 * so should usually be tested in combination with some other
3593 * check that confirms the presence of whichever of VFP or Neon is
3594 * relevant, to avoid accidentally enabling a Neon feature on
3595 * a VFP-no-Neon core or vice-versa.
3596 */
3597 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3598 {
3599 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3600 }
3601
3602 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3603 {
3604 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3605 }
3606
3607 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3608 {
3609 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3610 }
3611
3612 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3613 {
3614 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3615 }
3616
3617 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3618 {
3619 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3620 }
3621
3622 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3623 {
3624 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3625 }
3626
3627 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3628 {
3629 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3630 }
3631
3632 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3633 {
3634 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3635 }
3636
3637 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3638 {
3639 /* 0xf means "non-standard IMPDEF PMU" */
3640 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3641 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3642 }
3643
3644 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3645 {
3646 /* 0xf means "non-standard IMPDEF PMU" */
3647 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3648 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3649 }
3650
3651 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3652 {
3653 /* 0xf means "non-standard IMPDEF PMU" */
3654 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3655 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3656 }
3657
3658 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3659 {
3660 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3661 }
3662
3663 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3664 {
3665 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3666 }
3667
3668 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3669 {
3670 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3671 }
3672
3673 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3674 {
3675 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3676 }
3677
3678 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3679 {
3680 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3681 }
3682
3683 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3684 {
3685 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3686 }
3687
3688 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3689 {
3690 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3691 }
3692
3693 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3694 {
3695 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3696 }
3697
3698 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3699 {
3700 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3701 }
3702
3703 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3704 {
3705 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3706 }
3707
3708 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3709 {
3710 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3711 }
3712
3713 /*
3714 * 64-bit feature tests via id registers.
3715 */
3716 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3717 {
3718 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3719 }
3720
3721 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3722 {
3723 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3724 }
3725
3726 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3727 {
3728 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3729 }
3730
3731 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3732 {
3733 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3734 }
3735
3736 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3737 {
3738 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3739 }
3740
3741 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3742 {
3743 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3744 }
3745
3746 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3747 {
3748 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3749 }
3750
3751 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3752 {
3753 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3754 }
3755
3756 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3757 {
3758 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3759 }
3760
3761 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3762 {
3763 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3764 }
3765
3766 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3767 {
3768 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3769 }
3770
3771 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3772 {
3773 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3774 }
3775
3776 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3777 {
3778 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3779 }
3780
3781 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3782 {
3783 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3784 }
3785
3786 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3787 {
3788 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3789 }
3790
3791 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3792 {
3793 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3794 }
3795
3796 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3797 {
3798 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3799 }
3800
3801 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3802 {
3803 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3804 }
3805
3806 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3807 {
3808 /*
3809 * Return true if any form of pauth is enabled, as this
3810 * predicate controls migration of the 128-bit keys.
3811 */
3812 return (id->id_aa64isar1 &
3813 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3814 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3815 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3816 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3817 }
3818
3819 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3820 {
3821 /*
3822 * Return true if pauth is enabled with the architected QARMA algorithm.
3823 * QEMU will always set APA+GPA to the same value.
3824 */
3825 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3826 }
3827
3828 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3829 {
3830 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3831 }
3832
3833 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3834 {
3835 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3836 }
3837
3838 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3839 {
3840 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3841 }
3842
3843 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3844 {
3845 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3846 }
3847
3848 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3849 {
3850 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3851 }
3852
3853 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3854 {
3855 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3856 }
3857
3858 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3859 {
3860 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3861 }
3862
3863 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3864 {
3865 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3866 }
3867
3868 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3869 {
3870 /* We always set the AdvSIMD and FP fields identically. */
3871 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3872 }
3873
3874 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3875 {
3876 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3877 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3878 }
3879
3880 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3881 {
3882 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3883 }
3884
3885 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3886 {
3887 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3888 }
3889
3890 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3891 {
3892 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3893 }
3894
3895 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3896 {
3897 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3898 }
3899
3900 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3901 {
3902 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3903 }
3904
3905 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3906 {
3907 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3908 }
3909
3910 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3911 {
3912 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3913 }
3914
3915 static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3916 {
3917 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3918 }
3919
3920 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3921 {
3922 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3923 }
3924
3925 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3926 {
3927 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3928 }
3929
3930 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3931 {
3932 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3933 }
3934
3935 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3936 {
3937 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3938 }
3939
3940 static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3941 {
3942 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3943 }
3944
3945 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3946 {
3947 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3948 }
3949
3950 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3951 {
3952 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3953 }
3954
3955 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3956 {
3957 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3958 }
3959
3960 static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3961 {
3962 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3963 }
3964
3965 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3966 {
3967 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3968 }
3969
3970 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3971 {
3972 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3973 }
3974
3975 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3976 {
3977 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3978 }
3979
3980 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3981 {
3982 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3983 }
3984
3985 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3986 {
3987 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3988 }
3989
3990 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3991 {
3992 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3993 }
3994
3995 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3996 {
3997 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3998 }
3999
4000 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4001 {
4002 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4003 }
4004
4005 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
4006 {
4007 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4008 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4009 }
4010
4011 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4012 {
4013 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4014 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4015 }
4016
4017 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4018 {
4019 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4020 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4021 }
4022
4023 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4024 {
4025 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4026 }
4027
4028 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4029 {
4030 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4031 }
4032
4033 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4034 {
4035 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4036 }
4037
4038 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4039 {
4040 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4041 }
4042
4043 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4044 {
4045 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4046 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4047 }
4048
4049 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4050 {
4051 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4052 }
4053
4054 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4055 {
4056 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4057 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4058 }
4059
4060 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4061 {
4062 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4063 }
4064
4065 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4066 {
4067 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4068 }
4069
4070 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4071 {
4072 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4073 }
4074
4075 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4076 {
4077 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4078 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4079 }
4080
4081 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4082 {
4083 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4084 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4085 }
4086
4087 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4088 {
4089 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4090 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4091 }
4092
4093 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4094 {
4095 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4096 }
4097
4098 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4099 {
4100 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4101 }
4102
4103 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4104 {
4105 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4106 }
4107
4108 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4109 {
4110 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4111 }
4112
4113 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4114 {
4115 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4116 }
4117
4118 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4119 {
4120 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4121 }
4122
4123 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4124 {
4125 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4126 }
4127
4128 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4129 {
4130 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4131 }
4132
4133 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4134 {
4135 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4136 if (key >= 2) {
4137 return true; /* FEAT_CSV2_2 */
4138 }
4139 if (key == 1) {
4140 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4141 return key >= 2; /* FEAT_CSV2_1p2 */
4142 }
4143 return false;
4144 }
4145
4146 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4147 {
4148 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4149 }
4150
4151 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4152 {
4153 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4154 }
4155
4156 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4157 {
4158 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4159 }
4160
4161 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4162 {
4163 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4164 }
4165
4166 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4167 {
4168 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4169 }
4170
4171 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4172 {
4173 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4174 }
4175
4176 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4177 {
4178 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4179 }
4180
4181 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4182 {
4183 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4184 }
4185
4186 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4187 {
4188 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4189 }
4190
4191 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4192 {
4193 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4194 }
4195
4196 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4197 {
4198 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4199 }
4200
4201 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4202 {
4203 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4204 }
4205
4206 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4207 {
4208 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4209 }
4210
4211 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4212 {
4213 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4214 }
4215
4216 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4217 {
4218 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4219 }
4220
4221 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4222 {
4223 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4224 }
4225
4226 /*
4227 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4228 */
4229 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4230 {
4231 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4232 }
4233
4234 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4235 {
4236 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4237 }
4238
4239 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4240 {
4241 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4242 }
4243
4244 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4245 {
4246 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4247 }
4248
4249 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4250 {
4251 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4252 }
4253
4254 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4255 {
4256 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4257 }
4258
4259 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4260 {
4261 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4262 }
4263
4264 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4265 {
4266 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4267 }
4268
4269 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4270 {
4271 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4272 }
4273
4274 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4275 {
4276 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4277 }
4278
4279 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4280 {
4281 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4282 }
4283
4284 /*
4285 * Forward to the above feature tests given an ARMCPU pointer.
4286 */
4287 #define cpu_isar_feature(name, cpu) \
4288 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4289
4290 #endif