]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
Merge tag 'for-upstream' of https://repo.or.cz/qemu/kevin into staging
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO (0)
32
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36
37 #define EXCP_UDEF 1 /* undefined instruction */
38 #define EXCP_SWI 2 /* software interrupt */
39 #define EXCP_PREFETCH_ABORT 3
40 #define EXCP_DATA_ABORT 4
41 #define EXCP_IRQ 5
42 #define EXCP_FIQ 6
43 #define EXCP_BKPT 7
44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
46 #define EXCP_HVC 11 /* HyperVisor Call */
47 #define EXCP_HYP_TRAP 12
48 #define EXCP_SMC 13 /* Secure Monitor Call */
49 #define EXCP_VIRQ 14
50 #define EXCP_VFIQ 15
51 #define EXCP_SEMIHOST 16 /* semihosting call */
52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR 24
60 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SECURE 7
70 #define ARMV7M_EXCP_SVC 11
71 #define ARMV7M_EXCP_DEBUG 12
72 #define ARMV7M_EXCP_PENDSV 14
73 #define ARMV7M_EXCP_SYSTICK 15
74
75 /* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
84 enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88 };
89
90 /* ARM-specific interrupt pending bits. */
91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95
96 /* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
102 #if HOST_BIG_ENDIAN
103 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #define offsetofhigh32(S, M) offsetof(S, M)
105 #else
106 #define offsetoflow32(S, M) offsetof(S, M)
107 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
108 #endif
109
110 /* Meanings of the ARMCPU object's four inbound GPIO lines */
111 #define ARM_CPU_IRQ 0
112 #define ARM_CPU_FIQ 1
113 #define ARM_CPU_VIRQ 2
114 #define ARM_CPU_VFIQ 3
115
116 /* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129
130 /* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
137
138 /**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
146 */
147 typedef struct DynamicGDBXMLInfo {
148 char *desc;
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
155 } DynamicGDBXMLInfo;
156
157 /* CPU state for each instance of a generic timer (in cp15 c14) */
158 typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
160 uint64_t ctl; /* Timer Control register */
161 } ARMGenericTimer;
162
163 #define GTIMER_PHYS 0
164 #define GTIMER_VIRT 1
165 #define GTIMER_HYP 2
166 #define GTIMER_SEC 3
167 #define GTIMER_HYPVIRT 4
168 #define NUM_GTIMERS 5
169
170 #define VTCR_NSW (1u << 29)
171 #define VTCR_NSA (1u << 30)
172 #define VSTCR_SW VTCR_NSW
173 #define VSTCR_SA VTCR_NSA
174
175 /* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
192 * Hn = regs[n].d[0] bits 15..0
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201 #ifdef TARGET_AARCH64
202 # define ARM_MAX_VQ 16
203 #else
204 # define ARM_MAX_VQ 1
205 #endif
206
207 typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209 } ARMVectorReg;
210
211 #ifdef TARGET_AARCH64
212 /* In AArch32 mode, predicate registers do not exist at all. */
213 typedef struct ARMPredicateReg {
214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
215 } ARMPredicateReg;
216
217 /* In AArch32 mode, PAC keys do not exist at all. */
218 typedef struct ARMPACKey {
219 uint64_t lo, hi;
220 } ARMPACKey;
221 #endif
222
223 /* See the commentary above the TBFLAG field definitions. */
224 typedef struct CPUARMTBFlags {
225 uint32_t flags;
226 target_ulong flags2;
227 } CPUARMTBFlags;
228
229 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
231 typedef struct NVICState NVICState;
232
233 typedef struct CPUArchState {
234 /* Regs for current mode. */
235 uint32_t regs[16];
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
252 * DAIF (exception masks) are kept in env->daif
253 * BTYPE is kept in env->btype
254 * SM and ZA are kept in env->svcr
255 * all other bits are stored in their correct places in env->pstate
256 */
257 uint32_t pstate;
258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
260
261 /* Cached TBFLAGS state. See below for which bits are included. */
262 CPUARMTBFlags hflags;
263
264 /* Frequently accessed CPSR bits are stored separately for efficiency.
265 This contains all the other bits. Use cpsr_{read,write} to access
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
271 uint64_t banked_spsr[8];
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
274
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
278
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
284 uint32_t QF; /* 0 or 1 */
285 uint32_t GE; /* cpsr[19:16] */
286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
290
291 uint64_t elr_el[4]; /* AArch64 exception link regs */
292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
293
294 /* System control coprocessor (cp15) */
295 struct {
296 uint32_t c0_cpuid;
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
315 uint64_t vsctlr; /* Virtualization System control register. */
316 uint64_t cpacr_el1; /* Architectural feature access control register */
317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
319 uint64_t sder; /* Secure debug enable register. */
320 uint32_t nsacr; /* Non-secure access control register. */
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
341 /* MMU translation table base control. */
342 uint64_t tcr_el[4];
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
360 uint64_t hcr_el2; /* Hypervisor configuration register */
361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
362 uint64_t scr_el3; /* Secure configuration register. */
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
381 uint32_t c6_region[8]; /* MPU base/size registers. */
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
385 #if HOST_BIG_ENDIAN
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390 #else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395 #endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
400 uint64_t hpfar_el2;
401 uint64_t hstr_el2;
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
411
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
418 uint64_t c9_pmselr; /* perf monitor counter selection register */
419 uint64_t c9_pminten; /* perf monitor interrupt enables */
420 union { /* Memory attribute redirection */
421 struct {
422 #if HOST_BIG_ENDIAN
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429 #else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436 #endif
437 };
438 uint64_t mair_el[4];
439 };
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
449 uint32_t mvbar; /* (monitor) vector base address register */
450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
473 uint64_t tpidr2_el0;
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
487 ARMGenericTimer c14_timer[NUM_GTIMERS];
488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
501 uint64_t dbgclaim; /* DBGCLAIM bits */
502 uint64_t mdscr_el1;
503 uint64_t oslsr_el1; /* OS Lock Status */
504 uint64_t osdlr_el1; /* OS DoubleLock status */
505 uint64_t mdcr_el2;
506 uint64_t mdcr_el3;
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
511 */
512 uint64_t c15_ccnt;
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
550 } cp15;
551
552 struct {
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
564 uint32_t other_sp;
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
574 uint32_t sfsr; /* Secure Fault Status Register */
575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
576 uint32_t bfar; /* BusFault Address */
577 uint32_t sfar; /* Secure Fault Address Register */
578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
579 int exception;
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
582 uint32_t aircr; /* only holds r/w state if security extn implemented */
583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
584 uint32_t csselr[M_REG_NUM_BANKS];
585 uint32_t scr[M_REG_NUM_BANKS];
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
593 uint32_t ltpsize;
594 uint32_t vpr;
595 } v7m;
596
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
607 uint32_t target_el; /* EL the exception should be targeted for */
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
629 /* VFP coprocessor state. */
630 struct {
631 ARMVectorReg zregs[32];
632
633 #ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
635 #define FFR_PRED_NUM 16
636 ARMPredicateReg pregs[17];
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
639 #endif
640
641 /* We store these fpcsr fields separately for convenience. */
642 uint32_t qc[4] QEMU_ALIGNED(16);
643 int vec_len;
644 int vec_stride;
645
646 uint32_t xregs[16];
647
648 /* Scratch space for aa32 neon expansion. */
649 uint32_t scratch[8];
650
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
667 *
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
674 * OR of the flags in the four fp statuses. This relies on the
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
678 float_status fp_status;
679 float_status fp_status_f16;
680 float_status standard_fp_status;
681 float_status standard_fp_status_f16;
682
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
685 } vfp;
686
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
696 uint64_t exclusive_high;
697
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
706 #ifdef TARGET_AARCH64
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
714
715 uint64_t scxtnum_el[4];
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
738 #endif
739
740 struct CPUBreakpoint *cpu_breakpoint[16];
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
749 /* Fields after this point are preserved across CPU reset. */
750
751 /* Internal CPU feature flags. */
752 uint64_t features;
753
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
759 uint32_t rnr[M_REG_NUM_BANKS];
760 } pmsav7;
761
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
771 uint32_t *hprbar;
772 uint32_t *hprlar;
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
775 uint32_t hprselr;
776 } pmsav8;
777
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
786 #if !defined(CONFIG_USER_ONLY)
787 NVICState *nvic;
788 const struct arm_boot_info *boot_info;
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
791 #else /* CONFIG_USER_ONLY */
792 /* For usermode syscall translation. */
793 bool eabi;
794 #endif /* CONFIG_USER_ONLY */
795
796 #ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799 #endif
800 } CPUARMState;
801
802 static inline void set_feature(CPUARMState *env, int feature)
803 {
804 env->features |= 1ULL << feature;
805 }
806
807 static inline void unset_feature(CPUARMState *env, int feature)
808 {
809 env->features &= ~(1ULL << feature);
810 }
811
812 /**
813 * ARMELChangeHookFn:
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
817 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818 typedef struct ARMELChangeHook ARMELChangeHook;
819 struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823 };
824
825 /* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827 typedef enum ARMPSCIState {
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
830 PSCI_ON_PENDING = 2
831 } ARMPSCIState;
832
833 typedef struct ARMISARegisters ARMISARegisters;
834
835 /*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844 typedef struct {
845 uint32_t map, init, supported;
846 } ARMVQMap;
847
848 /**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
854 struct ArchCPU {
855 CPUState parent_obj;
856
857 CPUARMState env;
858
859 /* Coprocessor information */
860 GHashTable *cp_regs;
861 /* For marshalling (mostly coprocessor) register state between the
862 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
863 * we use these arrays.
864 */
865 /* List of register indexes managed via these arrays; (full KVM style
866 * 64 bit indexes, not CPRegInfo 32 bit indexes)
867 */
868 uint64_t *cpreg_indexes;
869 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
870 uint64_t *cpreg_values;
871 /* Length of the indexes, values, reset_values arrays */
872 int32_t cpreg_array_len;
873 /* These are used only for migration: incoming data arrives in
874 * these fields and is sanity checked in post_load before copying
875 * to the working data structures above.
876 */
877 uint64_t *cpreg_vmstate_indexes;
878 uint64_t *cpreg_vmstate_values;
879 int32_t cpreg_vmstate_array_len;
880
881 DynamicGDBXMLInfo dyn_sysreg_xml;
882 DynamicGDBXMLInfo dyn_svereg_xml;
883 DynamicGDBXMLInfo dyn_m_systemreg_xml;
884 DynamicGDBXMLInfo dyn_m_secextreg_xml;
885
886 /* Timers used by the generic (architected) timer */
887 QEMUTimer *gt_timer[NUM_GTIMERS];
888 /*
889 * Timer used by the PMU. Its state is restored after migration by
890 * pmu_op_finish() - it does not need other handling during migration
891 */
892 QEMUTimer *pmu_timer;
893 /* GPIO outputs for generic timer */
894 qemu_irq gt_timer_outputs[NUM_GTIMERS];
895 /* GPIO output for GICv3 maintenance interrupt signal */
896 qemu_irq gicv3_maintenance_interrupt;
897 /* GPIO output for the PMU interrupt */
898 qemu_irq pmu_interrupt;
899
900 /* MemoryRegion to use for secure physical accesses */
901 MemoryRegion *secure_memory;
902
903 /* MemoryRegion to use for allocation tag accesses */
904 MemoryRegion *tag_memory;
905 MemoryRegion *secure_tag_memory;
906
907 /* For v8M, pointer to the IDAU interface provided by board/SoC */
908 Object *idau;
909
910 /* 'compatible' string for this CPU for Linux device trees */
911 const char *dtb_compatible;
912
913 /* PSCI version for this CPU
914 * Bits[31:16] = Major Version
915 * Bits[15:0] = Minor Version
916 */
917 uint32_t psci_version;
918
919 /* Current power state, access guarded by BQL */
920 ARMPSCIState power_state;
921
922 /* CPU has virtualization extension */
923 bool has_el2;
924 /* CPU has security extension */
925 bool has_el3;
926 /* CPU has PMU (Performance Monitor Unit) */
927 bool has_pmu;
928 /* CPU has VFP */
929 bool has_vfp;
930 /* CPU has 32 VFP registers */
931 bool has_vfp_d32;
932 /* CPU has Neon */
933 bool has_neon;
934 /* CPU has M-profile DSP extension */
935 bool has_dsp;
936
937 /* CPU has memory protection unit */
938 bool has_mpu;
939 /* PMSAv7 MPU number of supported regions */
940 uint32_t pmsav7_dregion;
941 /* PMSAv8 MPU number of supported hyp regions */
942 uint32_t pmsav8r_hdregion;
943 /* v8M SAU number of supported regions */
944 uint32_t sau_sregion;
945
946 /* PSCI conduit used to invoke PSCI methods
947 * 0 - disabled, 1 - smc, 2 - hvc
948 */
949 uint32_t psci_conduit;
950
951 /* For v8M, initial value of the Secure VTOR */
952 uint32_t init_svtor;
953 /* For v8M, initial value of the Non-secure VTOR */
954 uint32_t init_nsvtor;
955
956 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
957 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
958 */
959 uint32_t kvm_target;
960
961 #ifdef CONFIG_KVM
962 /* KVM init features for this CPU */
963 uint32_t kvm_init_features[7];
964
965 /* KVM CPU state */
966
967 /* KVM virtual time adjustment */
968 bool kvm_adjvtime;
969 bool kvm_vtime_dirty;
970 uint64_t kvm_vtime;
971
972 /* KVM steal time */
973 OnOffAuto kvm_steal_time;
974 #endif /* CONFIG_KVM */
975
976 /* Uniprocessor system with MP extensions */
977 bool mp_is_up;
978
979 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
980 * and the probe failed (so we need to report the error in realize)
981 */
982 bool host_cpu_probe_failed;
983
984 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
985 * register.
986 */
987 int32_t core_count;
988
989 /* The instance init functions for implementation-specific subclasses
990 * set these fields to specify the implementation-dependent values of
991 * various constant registers and reset values of non-constant
992 * registers.
993 * Some of these might become QOM properties eventually.
994 * Field names match the official register names as defined in the
995 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
996 * is used for reset values of non-constant registers; no reset_
997 * prefix means a constant register.
998 * Some of these registers are split out into a substructure that
999 * is shared with the translators to control the ISA.
1000 *
1001 * Note that if you add an ID register to the ARMISARegisters struct
1002 * you need to also update the 32-bit and 64-bit versions of the
1003 * kvm_arm_get_host_cpu_features() function to correctly populate the
1004 * field by reading the value from the KVM vCPU.
1005 */
1006 struct ARMISARegisters {
1007 uint32_t id_isar0;
1008 uint32_t id_isar1;
1009 uint32_t id_isar2;
1010 uint32_t id_isar3;
1011 uint32_t id_isar4;
1012 uint32_t id_isar5;
1013 uint32_t id_isar6;
1014 uint32_t id_mmfr0;
1015 uint32_t id_mmfr1;
1016 uint32_t id_mmfr2;
1017 uint32_t id_mmfr3;
1018 uint32_t id_mmfr4;
1019 uint32_t id_mmfr5;
1020 uint32_t id_pfr0;
1021 uint32_t id_pfr1;
1022 uint32_t id_pfr2;
1023 uint32_t mvfr0;
1024 uint32_t mvfr1;
1025 uint32_t mvfr2;
1026 uint32_t id_dfr0;
1027 uint32_t id_dfr1;
1028 uint32_t dbgdidr;
1029 uint32_t dbgdevid;
1030 uint32_t dbgdevid1;
1031 uint64_t id_aa64isar0;
1032 uint64_t id_aa64isar1;
1033 uint64_t id_aa64isar2;
1034 uint64_t id_aa64pfr0;
1035 uint64_t id_aa64pfr1;
1036 uint64_t id_aa64mmfr0;
1037 uint64_t id_aa64mmfr1;
1038 uint64_t id_aa64mmfr2;
1039 uint64_t id_aa64dfr0;
1040 uint64_t id_aa64dfr1;
1041 uint64_t id_aa64zfr0;
1042 uint64_t id_aa64smfr0;
1043 uint64_t reset_pmcr_el0;
1044 } isar;
1045 uint64_t midr;
1046 uint32_t revidr;
1047 uint32_t reset_fpsid;
1048 uint64_t ctr;
1049 uint32_t reset_sctlr;
1050 uint64_t pmceid0;
1051 uint64_t pmceid1;
1052 uint32_t id_afr0;
1053 uint64_t id_aa64afr0;
1054 uint64_t id_aa64afr1;
1055 uint64_t clidr;
1056 uint64_t mp_affinity; /* MP ID without feature bits */
1057 /* The elements of this array are the CCSIDR values for each cache,
1058 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1059 */
1060 uint64_t ccsidr[16];
1061 uint64_t reset_cbar;
1062 uint32_t reset_auxcr;
1063 bool reset_hivecs;
1064 uint8_t reset_l0gptsz;
1065
1066 /*
1067 * Intermediate values used during property parsing.
1068 * Once finalized, the values should be read from ID_AA64*.
1069 */
1070 bool prop_pauth;
1071 bool prop_pauth_impdef;
1072 bool prop_pauth_qarma3;
1073 bool prop_lpa2;
1074
1075 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1076 uint8_t dcz_blocksize;
1077 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1078 uint8_t gm_blocksize;
1079
1080 uint64_t rvbar_prop; /* Property/input signals. */
1081
1082 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1083 int gic_num_lrs; /* number of list registers */
1084 int gic_vpribits; /* number of virtual priority bits */
1085 int gic_vprebits; /* number of virtual preemption bits */
1086 int gic_pribits; /* number of physical priority bits */
1087
1088 /* Whether the cfgend input is high (i.e. this CPU should reset into
1089 * big-endian mode). This setting isn't used directly: instead it modifies
1090 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1091 * architecture version.
1092 */
1093 bool cfgend;
1094
1095 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1096 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1097
1098 int32_t node_id; /* NUMA node this CPU belongs to */
1099
1100 /* Used to synchronize KVM and QEMU in-kernel device levels */
1101 uint8_t device_irq_level;
1102
1103 /* Used to set the maximum vector length the cpu will support. */
1104 uint32_t sve_max_vq;
1105
1106 #ifdef CONFIG_USER_ONLY
1107 /* Used to set the default vector length at process start. */
1108 uint32_t sve_default_vq;
1109 uint32_t sme_default_vq;
1110 #endif
1111
1112 ARMVQMap sve_vq;
1113 ARMVQMap sme_vq;
1114
1115 /* Generic timer counter frequency, in Hz */
1116 uint64_t gt_cntfrq_hz;
1117 };
1118
1119 typedef struct ARMCPUInfo {
1120 const char *name;
1121 void (*initfn)(Object *obj);
1122 void (*class_init)(ObjectClass *oc, void *data);
1123 } ARMCPUInfo;
1124
1125 /**
1126 * ARMCPUClass:
1127 * @parent_realize: The parent class' realize handler.
1128 * @parent_phases: The parent class' reset phase handlers.
1129 *
1130 * An ARM CPU model.
1131 */
1132 struct ARMCPUClass {
1133 CPUClass parent_class;
1134
1135 const ARMCPUInfo *info;
1136 DeviceRealize parent_realize;
1137 ResettablePhases parent_phases;
1138 };
1139
1140 struct AArch64CPUClass {
1141 ARMCPUClass parent_class;
1142 };
1143
1144 /* Callback functions for the generic timer's timers. */
1145 void arm_gt_ptimer_cb(void *opaque);
1146 void arm_gt_vtimer_cb(void *opaque);
1147 void arm_gt_htimer_cb(void *opaque);
1148 void arm_gt_stimer_cb(void *opaque);
1149 void arm_gt_hvtimer_cb(void *opaque);
1150
1151 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1152 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1153
1154 void arm_cpu_post_init(Object *obj);
1155
1156 #define ARM_AFF0_SHIFT 0
1157 #define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT)
1158 #define ARM_AFF1_SHIFT 8
1159 #define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT)
1160 #define ARM_AFF2_SHIFT 16
1161 #define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT)
1162 #define ARM_AFF3_SHIFT 32
1163 #define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT)
1164 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1165
1166 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1167 #define ARM64_AFFINITY_MASK \
1168 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1169 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1170
1171 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1172
1173 #ifndef CONFIG_USER_ONLY
1174 extern const VMStateDescription vmstate_arm_cpu;
1175
1176 void arm_cpu_do_interrupt(CPUState *cpu);
1177 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1178
1179 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1180 MemTxAttrs *attrs);
1181 #endif /* !CONFIG_USER_ONLY */
1182
1183 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1184 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1185
1186 /* Returns the dynamically generated XML for the gdb stub.
1187 * Returns a pointer to the XML contents for the specified XML file or NULL
1188 * if the XML name doesn't match the predefined one.
1189 */
1190 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1191
1192 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1193 int cpuid, DumpState *s);
1194 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1195 int cpuid, DumpState *s);
1196
1197 /**
1198 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1199 * @cpu: CPU (which must have been freshly reset)
1200 * @target_el: exception level to put the CPU into
1201 * @secure: whether to put the CPU in secure state
1202 *
1203 * When QEMU is directly running a guest kernel at a lower level than
1204 * EL3 it implicitly emulates some aspects of the guest firmware.
1205 * This includes that on reset we need to configure the parts of the
1206 * CPU corresponding to EL3 so that the real guest code can run at its
1207 * lower exception level. This function does that post-reset CPU setup,
1208 * for when we do direct boot of a guest kernel, and for when we
1209 * emulate PSCI and similar firmware interfaces starting a CPU at a
1210 * lower exception level.
1211 *
1212 * @target_el must be an EL implemented by the CPU between 1 and 3.
1213 * We do not support dropping into a Secure EL other than 3.
1214 *
1215 * It is the responsibility of the caller to call arm_rebuild_hflags().
1216 */
1217 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1218
1219 #ifdef TARGET_AARCH64
1220 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1221 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1222 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1223 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1224 int new_el, bool el0_a64);
1225 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1226
1227 /*
1228 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1229 * The byte at offset i from the start of the in-memory representation contains
1230 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1231 * lowest offsets are stored in the lowest memory addresses, then that nearly
1232 * matches QEMU's representation, which is to use an array of host-endian
1233 * uint64_t's, where the lower offsets are at the lower indices. To complete
1234 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1235 */
1236 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1237 {
1238 #if HOST_BIG_ENDIAN
1239 int i;
1240
1241 for (i = 0; i < nr; ++i) {
1242 dst[i] = bswap64(src[i]);
1243 }
1244
1245 return dst;
1246 #else
1247 return src;
1248 #endif
1249 }
1250
1251 #else
1252 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1253 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1254 int n, bool a)
1255 { }
1256 #endif
1257
1258 void aarch64_sync_32_to_64(CPUARMState *env);
1259 void aarch64_sync_64_to_32(CPUARMState *env);
1260
1261 int fp_exception_el(CPUARMState *env, int cur_el);
1262 int sve_exception_el(CPUARMState *env, int cur_el);
1263 int sme_exception_el(CPUARMState *env, int cur_el);
1264
1265 /**
1266 * sve_vqm1_for_el_sm:
1267 * @env: CPUARMState
1268 * @el: exception level
1269 * @sm: streaming mode
1270 *
1271 * Compute the current vector length for @el & @sm, in units of
1272 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1273 * If @sm, compute for SVL, otherwise NVL.
1274 */
1275 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1276
1277 /* Likewise, but using @sm = PSTATE.SM. */
1278 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1279
1280 static inline bool is_a64(CPUARMState *env)
1281 {
1282 return env->aarch64;
1283 }
1284
1285 /**
1286 * pmu_op_start/finish
1287 * @env: CPUARMState
1288 *
1289 * Convert all PMU counters between their delta form (the typical mode when
1290 * they are enabled) and the guest-visible values. These two calls must
1291 * surround any action which might affect the counters.
1292 */
1293 void pmu_op_start(CPUARMState *env);
1294 void pmu_op_finish(CPUARMState *env);
1295
1296 /*
1297 * Called when a PMU counter is due to overflow
1298 */
1299 void arm_pmu_timer_cb(void *opaque);
1300
1301 /**
1302 * Functions to register as EL change hooks for PMU mode filtering
1303 */
1304 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1305 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1306
1307 /*
1308 * pmu_init
1309 * @cpu: ARMCPU
1310 *
1311 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1312 * for the current configuration
1313 */
1314 void pmu_init(ARMCPU *cpu);
1315
1316 /* SCTLR bit meanings. Several bits have been reused in newer
1317 * versions of the architecture; in that case we define constants
1318 * for both old and new bit meanings. Code which tests against those
1319 * bits should probably check or otherwise arrange that the CPU
1320 * is the architectural version it expects.
1321 */
1322 #define SCTLR_M (1U << 0)
1323 #define SCTLR_A (1U << 1)
1324 #define SCTLR_C (1U << 2)
1325 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1326 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1327 #define SCTLR_SA (1U << 3) /* AArch64 only */
1328 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1329 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1330 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1331 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1332 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1333 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1334 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
1335 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1336 #define SCTLR_ITD (1U << 7) /* v8 onward */
1337 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1338 #define SCTLR_SED (1U << 8) /* v8 onward */
1339 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1340 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1341 #define SCTLR_F (1U << 10) /* up to v6 */
1342 #define SCTLR_SW (1U << 10) /* v7 */
1343 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1344 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1345 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1346 #define SCTLR_I (1U << 12)
1347 #define SCTLR_V (1U << 13) /* AArch32 only */
1348 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1349 #define SCTLR_RR (1U << 14) /* up to v7 */
1350 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1351 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1352 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1353 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1354 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1355 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1356 #define SCTLR_BR (1U << 17) /* PMSA only */
1357 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1358 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1359 #define SCTLR_WXN (1U << 19)
1360 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1361 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1362 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1363 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1364 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1365 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1366 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1367 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1368 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1369 #define SCTLR_VE (1U << 24) /* up to v7 */
1370 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1371 #define SCTLR_EE (1U << 25)
1372 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1373 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1374 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1375 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1376 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1377 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1378 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1379 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1380 #define SCTLR_TE (1U << 30) /* AArch32 only */
1381 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1382 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1383 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1384 #define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
1385 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1386 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1387 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1388 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1389 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1390 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1391 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1392 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1393 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1394 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1395 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1396 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1397 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1398 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1399 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1400 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1401 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1402 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1403 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1404 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1405 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1406 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1407
1408 /* Bit definitions for CPACR (AArch32 only) */
1409 FIELD(CPACR, CP10, 20, 2)
1410 FIELD(CPACR, CP11, 22, 2)
1411 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1412 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1413 FIELD(CPACR, ASEDIS, 31, 1)
1414
1415 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1416 FIELD(CPACR_EL1, ZEN, 16, 2)
1417 FIELD(CPACR_EL1, FPEN, 20, 2)
1418 FIELD(CPACR_EL1, SMEN, 24, 2)
1419 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1420
1421 /* Bit definitions for HCPTR (AArch32 only) */
1422 FIELD(HCPTR, TCP10, 10, 1)
1423 FIELD(HCPTR, TCP11, 11, 1)
1424 FIELD(HCPTR, TASE, 15, 1)
1425 FIELD(HCPTR, TTA, 20, 1)
1426 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1427 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1428
1429 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1430 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1431 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1432 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1433 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1434 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1435 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1436 FIELD(CPTR_EL2, TTA, 28, 1)
1437 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1438 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1439
1440 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1441 FIELD(CPTR_EL3, EZ, 8, 1)
1442 FIELD(CPTR_EL3, TFP, 10, 1)
1443 FIELD(CPTR_EL3, ESM, 12, 1)
1444 FIELD(CPTR_EL3, TTA, 20, 1)
1445 FIELD(CPTR_EL3, TAM, 30, 1)
1446 FIELD(CPTR_EL3, TCPAC, 31, 1)
1447
1448 #define MDCR_MTPME (1U << 28)
1449 #define MDCR_TDCC (1U << 27)
1450 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */
1451 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1452 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
1453 #define MDCR_EPMAD (1U << 21)
1454 #define MDCR_EDAD (1U << 20)
1455 #define MDCR_TTRF (1U << 19)
1456 #define MDCR_STE (1U << 18) /* MDCR_EL3 */
1457 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1458 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1459 #define MDCR_SDD (1U << 16)
1460 #define MDCR_SPD (3U << 14)
1461 #define MDCR_TDRA (1U << 11)
1462 #define MDCR_TDOSA (1U << 10)
1463 #define MDCR_TDA (1U << 9)
1464 #define MDCR_TDE (1U << 8)
1465 #define MDCR_HPME (1U << 7)
1466 #define MDCR_TPM (1U << 6)
1467 #define MDCR_TPMCR (1U << 5)
1468 #define MDCR_HPMN (0x1fU)
1469
1470 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1471 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1472 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1473 MDCR_STE | MDCR_SPME | MDCR_SPD)
1474
1475 #define CPSR_M (0x1fU)
1476 #define CPSR_T (1U << 5)
1477 #define CPSR_F (1U << 6)
1478 #define CPSR_I (1U << 7)
1479 #define CPSR_A (1U << 8)
1480 #define CPSR_E (1U << 9)
1481 #define CPSR_IT_2_7 (0xfc00U)
1482 #define CPSR_GE (0xfU << 16)
1483 #define CPSR_IL (1U << 20)
1484 #define CPSR_DIT (1U << 21)
1485 #define CPSR_PAN (1U << 22)
1486 #define CPSR_SSBS (1U << 23)
1487 #define CPSR_J (1U << 24)
1488 #define CPSR_IT_0_1 (3U << 25)
1489 #define CPSR_Q (1U << 27)
1490 #define CPSR_V (1U << 28)
1491 #define CPSR_C (1U << 29)
1492 #define CPSR_Z (1U << 30)
1493 #define CPSR_N (1U << 31)
1494 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1495 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1496
1497 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1498 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1499 | CPSR_NZCV)
1500 /* Bits writable in user mode. */
1501 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1502 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1503 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1504
1505 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1506 #define XPSR_EXCP 0x1ffU
1507 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1508 #define XPSR_IT_2_7 CPSR_IT_2_7
1509 #define XPSR_GE CPSR_GE
1510 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1511 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1512 #define XPSR_IT_0_1 CPSR_IT_0_1
1513 #define XPSR_Q CPSR_Q
1514 #define XPSR_V CPSR_V
1515 #define XPSR_C CPSR_C
1516 #define XPSR_Z CPSR_Z
1517 #define XPSR_N CPSR_N
1518 #define XPSR_NZCV CPSR_NZCV
1519 #define XPSR_IT CPSR_IT
1520
1521 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1522 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1523 #define TTBCR_PD0 (1U << 4)
1524 #define TTBCR_PD1 (1U << 5)
1525 #define TTBCR_EPD0 (1U << 7)
1526 #define TTBCR_IRGN0 (3U << 8)
1527 #define TTBCR_ORGN0 (3U << 10)
1528 #define TTBCR_SH0 (3U << 12)
1529 #define TTBCR_T1SZ (3U << 16)
1530 #define TTBCR_A1 (1U << 22)
1531 #define TTBCR_EPD1 (1U << 23)
1532 #define TTBCR_IRGN1 (3U << 24)
1533 #define TTBCR_ORGN1 (3U << 26)
1534 #define TTBCR_SH1 (1U << 28)
1535 #define TTBCR_EAE (1U << 31)
1536
1537 FIELD(VTCR, T0SZ, 0, 6)
1538 FIELD(VTCR, SL0, 6, 2)
1539 FIELD(VTCR, IRGN0, 8, 2)
1540 FIELD(VTCR, ORGN0, 10, 2)
1541 FIELD(VTCR, SH0, 12, 2)
1542 FIELD(VTCR, TG0, 14, 2)
1543 FIELD(VTCR, PS, 16, 3)
1544 FIELD(VTCR, VS, 19, 1)
1545 FIELD(VTCR, HA, 21, 1)
1546 FIELD(VTCR, HD, 22, 1)
1547 FIELD(VTCR, HWU59, 25, 1)
1548 FIELD(VTCR, HWU60, 26, 1)
1549 FIELD(VTCR, HWU61, 27, 1)
1550 FIELD(VTCR, HWU62, 28, 1)
1551 FIELD(VTCR, NSW, 29, 1)
1552 FIELD(VTCR, NSA, 30, 1)
1553 FIELD(VTCR, DS, 32, 1)
1554 FIELD(VTCR, SL2, 33, 1)
1555
1556 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1557 * Only these are valid when in AArch64 mode; in
1558 * AArch32 mode SPSRs are basically CPSR-format.
1559 */
1560 #define PSTATE_SP (1U)
1561 #define PSTATE_M (0xFU)
1562 #define PSTATE_nRW (1U << 4)
1563 #define PSTATE_F (1U << 6)
1564 #define PSTATE_I (1U << 7)
1565 #define PSTATE_A (1U << 8)
1566 #define PSTATE_D (1U << 9)
1567 #define PSTATE_BTYPE (3U << 10)
1568 #define PSTATE_SSBS (1U << 12)
1569 #define PSTATE_IL (1U << 20)
1570 #define PSTATE_SS (1U << 21)
1571 #define PSTATE_PAN (1U << 22)
1572 #define PSTATE_UAO (1U << 23)
1573 #define PSTATE_DIT (1U << 24)
1574 #define PSTATE_TCO (1U << 25)
1575 #define PSTATE_V (1U << 28)
1576 #define PSTATE_C (1U << 29)
1577 #define PSTATE_Z (1U << 30)
1578 #define PSTATE_N (1U << 31)
1579 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1580 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1581 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1582 /* Mode values for AArch64 */
1583 #define PSTATE_MODE_EL3h 13
1584 #define PSTATE_MODE_EL3t 12
1585 #define PSTATE_MODE_EL2h 9
1586 #define PSTATE_MODE_EL2t 8
1587 #define PSTATE_MODE_EL1h 5
1588 #define PSTATE_MODE_EL1t 4
1589 #define PSTATE_MODE_EL0t 0
1590
1591 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1592 FIELD(SVCR, SM, 0, 1)
1593 FIELD(SVCR, ZA, 1, 1)
1594
1595 /* Fields for SMCR_ELx. */
1596 FIELD(SMCR, LEN, 0, 4)
1597 FIELD(SMCR, FA64, 31, 1)
1598
1599 /* Write a new value to v7m.exception, thus transitioning into or out
1600 * of Handler mode; this may result in a change of active stack pointer.
1601 */
1602 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1603
1604 /* Map EL and handler into a PSTATE_MODE. */
1605 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1606 {
1607 return (el << 2) | handler;
1608 }
1609
1610 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1611 * interprocessing, so we don't attempt to sync with the cpsr state used by
1612 * the 32 bit decoder.
1613 */
1614 static inline uint32_t pstate_read(CPUARMState *env)
1615 {
1616 int ZF;
1617
1618 ZF = (env->ZF == 0);
1619 return (env->NF & 0x80000000) | (ZF << 30)
1620 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1621 | env->pstate | env->daif | (env->btype << 10);
1622 }
1623
1624 static inline void pstate_write(CPUARMState *env, uint32_t val)
1625 {
1626 env->ZF = (~val) & PSTATE_Z;
1627 env->NF = val;
1628 env->CF = (val >> 29) & 1;
1629 env->VF = (val << 3) & 0x80000000;
1630 env->daif = val & PSTATE_DAIF;
1631 env->btype = (val >> 10) & 3;
1632 env->pstate = val & ~CACHED_PSTATE_BITS;
1633 }
1634
1635 /* Return the current CPSR value. */
1636 uint32_t cpsr_read(CPUARMState *env);
1637
1638 typedef enum CPSRWriteType {
1639 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1640 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1641 CPSRWriteRaw = 2,
1642 /* trust values, no reg bank switch, no hflags rebuild */
1643 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1644 } CPSRWriteType;
1645
1646 /*
1647 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1648 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1649 * correspond to TB flags bits cached in the hflags, unless @write_type
1650 * is CPSRWriteRaw.
1651 */
1652 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1653 CPSRWriteType write_type);
1654
1655 /* Return the current xPSR value. */
1656 static inline uint32_t xpsr_read(CPUARMState *env)
1657 {
1658 int ZF;
1659 ZF = (env->ZF == 0);
1660 return (env->NF & 0x80000000) | (ZF << 30)
1661 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1662 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1663 | ((env->condexec_bits & 0xfc) << 8)
1664 | (env->GE << 16)
1665 | env->v7m.exception;
1666 }
1667
1668 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1669 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1670 {
1671 if (mask & XPSR_NZCV) {
1672 env->ZF = (~val) & XPSR_Z;
1673 env->NF = val;
1674 env->CF = (val >> 29) & 1;
1675 env->VF = (val << 3) & 0x80000000;
1676 }
1677 if (mask & XPSR_Q) {
1678 env->QF = ((val & XPSR_Q) != 0);
1679 }
1680 if (mask & XPSR_GE) {
1681 env->GE = (val & XPSR_GE) >> 16;
1682 }
1683 #ifndef CONFIG_USER_ONLY
1684 if (mask & XPSR_T) {
1685 env->thumb = ((val & XPSR_T) != 0);
1686 }
1687 if (mask & XPSR_IT_0_1) {
1688 env->condexec_bits &= ~3;
1689 env->condexec_bits |= (val >> 25) & 3;
1690 }
1691 if (mask & XPSR_IT_2_7) {
1692 env->condexec_bits &= 3;
1693 env->condexec_bits |= (val >> 8) & 0xfc;
1694 }
1695 if (mask & XPSR_EXCP) {
1696 /* Note that this only happens on exception exit */
1697 write_v7m_exception(env, val & XPSR_EXCP);
1698 }
1699 #endif
1700 }
1701
1702 #define HCR_VM (1ULL << 0)
1703 #define HCR_SWIO (1ULL << 1)
1704 #define HCR_PTW (1ULL << 2)
1705 #define HCR_FMO (1ULL << 3)
1706 #define HCR_IMO (1ULL << 4)
1707 #define HCR_AMO (1ULL << 5)
1708 #define HCR_VF (1ULL << 6)
1709 #define HCR_VI (1ULL << 7)
1710 #define HCR_VSE (1ULL << 8)
1711 #define HCR_FB (1ULL << 9)
1712 #define HCR_BSU_MASK (3ULL << 10)
1713 #define HCR_DC (1ULL << 12)
1714 #define HCR_TWI (1ULL << 13)
1715 #define HCR_TWE (1ULL << 14)
1716 #define HCR_TID0 (1ULL << 15)
1717 #define HCR_TID1 (1ULL << 16)
1718 #define HCR_TID2 (1ULL << 17)
1719 #define HCR_TID3 (1ULL << 18)
1720 #define HCR_TSC (1ULL << 19)
1721 #define HCR_TIDCP (1ULL << 20)
1722 #define HCR_TACR (1ULL << 21)
1723 #define HCR_TSW (1ULL << 22)
1724 #define HCR_TPCP (1ULL << 23)
1725 #define HCR_TPU (1ULL << 24)
1726 #define HCR_TTLB (1ULL << 25)
1727 #define HCR_TVM (1ULL << 26)
1728 #define HCR_TGE (1ULL << 27)
1729 #define HCR_TDZ (1ULL << 28)
1730 #define HCR_HCD (1ULL << 29)
1731 #define HCR_TRVM (1ULL << 30)
1732 #define HCR_RW (1ULL << 31)
1733 #define HCR_CD (1ULL << 32)
1734 #define HCR_ID (1ULL << 33)
1735 #define HCR_E2H (1ULL << 34)
1736 #define HCR_TLOR (1ULL << 35)
1737 #define HCR_TERR (1ULL << 36)
1738 #define HCR_TEA (1ULL << 37)
1739 #define HCR_MIOCNCE (1ULL << 38)
1740 #define HCR_TME (1ULL << 39)
1741 #define HCR_APK (1ULL << 40)
1742 #define HCR_API (1ULL << 41)
1743 #define HCR_NV (1ULL << 42)
1744 #define HCR_NV1 (1ULL << 43)
1745 #define HCR_AT (1ULL << 44)
1746 #define HCR_NV2 (1ULL << 45)
1747 #define HCR_FWB (1ULL << 46)
1748 #define HCR_FIEN (1ULL << 47)
1749 #define HCR_GPF (1ULL << 48)
1750 #define HCR_TID4 (1ULL << 49)
1751 #define HCR_TICAB (1ULL << 50)
1752 #define HCR_AMVOFFEN (1ULL << 51)
1753 #define HCR_TOCU (1ULL << 52)
1754 #define HCR_ENSCXT (1ULL << 53)
1755 #define HCR_TTLBIS (1ULL << 54)
1756 #define HCR_TTLBOS (1ULL << 55)
1757 #define HCR_ATA (1ULL << 56)
1758 #define HCR_DCT (1ULL << 57)
1759 #define HCR_TID5 (1ULL << 58)
1760 #define HCR_TWEDEN (1ULL << 59)
1761 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1762
1763 #define HCRX_ENAS0 (1ULL << 0)
1764 #define HCRX_ENALS (1ULL << 1)
1765 #define HCRX_ENASR (1ULL << 2)
1766 #define HCRX_FNXS (1ULL << 3)
1767 #define HCRX_FGTNXS (1ULL << 4)
1768 #define HCRX_SMPME (1ULL << 5)
1769 #define HCRX_TALLINT (1ULL << 6)
1770 #define HCRX_VINMI (1ULL << 7)
1771 #define HCRX_VFNMI (1ULL << 8)
1772 #define HCRX_CMOW (1ULL << 9)
1773 #define HCRX_MCE2 (1ULL << 10)
1774 #define HCRX_MSCEN (1ULL << 11)
1775
1776 #define HPFAR_NS (1ULL << 63)
1777
1778 #define SCR_NS (1ULL << 0)
1779 #define SCR_IRQ (1ULL << 1)
1780 #define SCR_FIQ (1ULL << 2)
1781 #define SCR_EA (1ULL << 3)
1782 #define SCR_FW (1ULL << 4)
1783 #define SCR_AW (1ULL << 5)
1784 #define SCR_NET (1ULL << 6)
1785 #define SCR_SMD (1ULL << 7)
1786 #define SCR_HCE (1ULL << 8)
1787 #define SCR_SIF (1ULL << 9)
1788 #define SCR_RW (1ULL << 10)
1789 #define SCR_ST (1ULL << 11)
1790 #define SCR_TWI (1ULL << 12)
1791 #define SCR_TWE (1ULL << 13)
1792 #define SCR_TLOR (1ULL << 14)
1793 #define SCR_TERR (1ULL << 15)
1794 #define SCR_APK (1ULL << 16)
1795 #define SCR_API (1ULL << 17)
1796 #define SCR_EEL2 (1ULL << 18)
1797 #define SCR_EASE (1ULL << 19)
1798 #define SCR_NMEA (1ULL << 20)
1799 #define SCR_FIEN (1ULL << 21)
1800 #define SCR_ENSCXT (1ULL << 25)
1801 #define SCR_ATA (1ULL << 26)
1802 #define SCR_FGTEN (1ULL << 27)
1803 #define SCR_ECVEN (1ULL << 28)
1804 #define SCR_TWEDEN (1ULL << 29)
1805 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1806 #define SCR_TME (1ULL << 34)
1807 #define SCR_AMVOFFEN (1ULL << 35)
1808 #define SCR_ENAS0 (1ULL << 36)
1809 #define SCR_ADEN (1ULL << 37)
1810 #define SCR_HXEN (1ULL << 38)
1811 #define SCR_TRNDR (1ULL << 40)
1812 #define SCR_ENTP2 (1ULL << 41)
1813 #define SCR_GPF (1ULL << 48)
1814 #define SCR_NSE (1ULL << 62)
1815
1816 #define HSTR_TTEE (1 << 16)
1817 #define HSTR_TJDBX (1 << 17)
1818
1819 #define CNTHCTL_CNTVMASK (1 << 18)
1820 #define CNTHCTL_CNTPMASK (1 << 19)
1821
1822 /* Return the current FPSCR value. */
1823 uint32_t vfp_get_fpscr(CPUARMState *env);
1824 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1825
1826 /* FPCR, Floating Point Control Register
1827 * FPSR, Floating Poiht Status Register
1828 *
1829 * For A64 the FPSCR is split into two logically distinct registers,
1830 * FPCR and FPSR. However since they still use non-overlapping bits
1831 * we store the underlying state in fpscr and just mask on read/write.
1832 */
1833 #define FPSR_MASK 0xf800009f
1834 #define FPCR_MASK 0x07ff9f00
1835
1836 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1837 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1838 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1839 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1840 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1841 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1842 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1843 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1844 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1845 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1846 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1847 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1848 #define FPCR_V (1 << 28) /* FP overflow flag */
1849 #define FPCR_C (1 << 29) /* FP carry flag */
1850 #define FPCR_Z (1 << 30) /* FP zero flag */
1851 #define FPCR_N (1 << 31) /* FP negative flag */
1852
1853 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1854 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1855 #define FPCR_LTPSIZE_LENGTH 3
1856
1857 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1858 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1859
1860 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1861 {
1862 return vfp_get_fpscr(env) & FPSR_MASK;
1863 }
1864
1865 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1866 {
1867 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1868 vfp_set_fpscr(env, new_fpscr);
1869 }
1870
1871 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1872 {
1873 return vfp_get_fpscr(env) & FPCR_MASK;
1874 }
1875
1876 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1877 {
1878 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1879 vfp_set_fpscr(env, new_fpscr);
1880 }
1881
1882 enum arm_cpu_mode {
1883 ARM_CPU_MODE_USR = 0x10,
1884 ARM_CPU_MODE_FIQ = 0x11,
1885 ARM_CPU_MODE_IRQ = 0x12,
1886 ARM_CPU_MODE_SVC = 0x13,
1887 ARM_CPU_MODE_MON = 0x16,
1888 ARM_CPU_MODE_ABT = 0x17,
1889 ARM_CPU_MODE_HYP = 0x1a,
1890 ARM_CPU_MODE_UND = 0x1b,
1891 ARM_CPU_MODE_SYS = 0x1f
1892 };
1893
1894 /* VFP system registers. */
1895 #define ARM_VFP_FPSID 0
1896 #define ARM_VFP_FPSCR 1
1897 #define ARM_VFP_MVFR2 5
1898 #define ARM_VFP_MVFR1 6
1899 #define ARM_VFP_MVFR0 7
1900 #define ARM_VFP_FPEXC 8
1901 #define ARM_VFP_FPINST 9
1902 #define ARM_VFP_FPINST2 10
1903 /* These ones are M-profile only */
1904 #define ARM_VFP_FPSCR_NZCVQC 2
1905 #define ARM_VFP_VPR 12
1906 #define ARM_VFP_P0 13
1907 #define ARM_VFP_FPCXT_NS 14
1908 #define ARM_VFP_FPCXT_S 15
1909
1910 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1911 #define QEMU_VFP_FPSCR_NZCV 0xffff
1912
1913 /* iwMMXt coprocessor control registers. */
1914 #define ARM_IWMMXT_wCID 0
1915 #define ARM_IWMMXT_wCon 1
1916 #define ARM_IWMMXT_wCSSF 2
1917 #define ARM_IWMMXT_wCASF 3
1918 #define ARM_IWMMXT_wCGR0 8
1919 #define ARM_IWMMXT_wCGR1 9
1920 #define ARM_IWMMXT_wCGR2 10
1921 #define ARM_IWMMXT_wCGR3 11
1922
1923 /* V7M CCR bits */
1924 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1925 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1926 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1927 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1928 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1929 FIELD(V7M_CCR, STKALIGN, 9, 1)
1930 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1931 FIELD(V7M_CCR, DC, 16, 1)
1932 FIELD(V7M_CCR, IC, 17, 1)
1933 FIELD(V7M_CCR, BP, 18, 1)
1934 FIELD(V7M_CCR, LOB, 19, 1)
1935 FIELD(V7M_CCR, TRD, 20, 1)
1936
1937 /* V7M SCR bits */
1938 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1939 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1940 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1941 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1942
1943 /* V7M AIRCR bits */
1944 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1945 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1946 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1947 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1948 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1949 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1950 FIELD(V7M_AIRCR, PRIS, 14, 1)
1951 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1952 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1953
1954 /* V7M CFSR bits for MMFSR */
1955 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1956 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1957 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1958 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1959 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1960 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1961
1962 /* V7M CFSR bits for BFSR */
1963 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1964 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1965 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1966 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1967 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1968 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1969 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1970
1971 /* V7M CFSR bits for UFSR */
1972 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1973 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1974 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1975 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1976 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1977 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1978 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1979
1980 /* V7M CFSR bit masks covering all of the subregister bits */
1981 FIELD(V7M_CFSR, MMFSR, 0, 8)
1982 FIELD(V7M_CFSR, BFSR, 8, 8)
1983 FIELD(V7M_CFSR, UFSR, 16, 16)
1984
1985 /* V7M HFSR bits */
1986 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1987 FIELD(V7M_HFSR, FORCED, 30, 1)
1988 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1989
1990 /* V7M DFSR bits */
1991 FIELD(V7M_DFSR, HALTED, 0, 1)
1992 FIELD(V7M_DFSR, BKPT, 1, 1)
1993 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1994 FIELD(V7M_DFSR, VCATCH, 3, 1)
1995 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1996
1997 /* V7M SFSR bits */
1998 FIELD(V7M_SFSR, INVEP, 0, 1)
1999 FIELD(V7M_SFSR, INVIS, 1, 1)
2000 FIELD(V7M_SFSR, INVER, 2, 1)
2001 FIELD(V7M_SFSR, AUVIOL, 3, 1)
2002 FIELD(V7M_SFSR, INVTRAN, 4, 1)
2003 FIELD(V7M_SFSR, LSPERR, 5, 1)
2004 FIELD(V7M_SFSR, SFARVALID, 6, 1)
2005 FIELD(V7M_SFSR, LSERR, 7, 1)
2006
2007 /* v7M MPU_CTRL bits */
2008 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
2009 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
2010 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
2011
2012 /* v7M CLIDR bits */
2013 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
2014 FIELD(V7M_CLIDR, LOUIS, 21, 3)
2015 FIELD(V7M_CLIDR, LOC, 24, 3)
2016 FIELD(V7M_CLIDR, LOUU, 27, 3)
2017 FIELD(V7M_CLIDR, ICB, 30, 2)
2018
2019 FIELD(V7M_CSSELR, IND, 0, 1)
2020 FIELD(V7M_CSSELR, LEVEL, 1, 3)
2021 /* We use the combination of InD and Level to index into cpu->ccsidr[];
2022 * define a mask for this and check that it doesn't permit running off
2023 * the end of the array.
2024 */
2025 FIELD(V7M_CSSELR, INDEX, 0, 4)
2026
2027 /* v7M FPCCR bits */
2028 FIELD(V7M_FPCCR, LSPACT, 0, 1)
2029 FIELD(V7M_FPCCR, USER, 1, 1)
2030 FIELD(V7M_FPCCR, S, 2, 1)
2031 FIELD(V7M_FPCCR, THREAD, 3, 1)
2032 FIELD(V7M_FPCCR, HFRDY, 4, 1)
2033 FIELD(V7M_FPCCR, MMRDY, 5, 1)
2034 FIELD(V7M_FPCCR, BFRDY, 6, 1)
2035 FIELD(V7M_FPCCR, SFRDY, 7, 1)
2036 FIELD(V7M_FPCCR, MONRDY, 8, 1)
2037 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
2038 FIELD(V7M_FPCCR, UFRDY, 10, 1)
2039 FIELD(V7M_FPCCR, RES0, 11, 15)
2040 FIELD(V7M_FPCCR, TS, 26, 1)
2041 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
2042 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
2043 FIELD(V7M_FPCCR, LSPENS, 29, 1)
2044 FIELD(V7M_FPCCR, LSPEN, 30, 1)
2045 FIELD(V7M_FPCCR, ASPEN, 31, 1)
2046 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
2047 #define R_V7M_FPCCR_BANKED_MASK \
2048 (R_V7M_FPCCR_LSPACT_MASK | \
2049 R_V7M_FPCCR_USER_MASK | \
2050 R_V7M_FPCCR_THREAD_MASK | \
2051 R_V7M_FPCCR_MMRDY_MASK | \
2052 R_V7M_FPCCR_SPLIMVIOL_MASK | \
2053 R_V7M_FPCCR_UFRDY_MASK | \
2054 R_V7M_FPCCR_ASPEN_MASK)
2055
2056 /* v7M VPR bits */
2057 FIELD(V7M_VPR, P0, 0, 16)
2058 FIELD(V7M_VPR, MASK01, 16, 4)
2059 FIELD(V7M_VPR, MASK23, 20, 4)
2060
2061 /*
2062 * System register ID fields.
2063 */
2064 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2065 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2066 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2067 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2068 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2069 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2070 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2071 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2072 FIELD(CLIDR_EL1, LOC, 24, 3)
2073 FIELD(CLIDR_EL1, LOUU, 27, 3)
2074 FIELD(CLIDR_EL1, ICB, 30, 3)
2075
2076 /* When FEAT_CCIDX is implemented */
2077 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2078 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2079 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2080
2081 /* When FEAT_CCIDX is not implemented */
2082 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2083 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2084 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2085
2086 FIELD(CTR_EL0, IMINLINE, 0, 4)
2087 FIELD(CTR_EL0, L1IP, 14, 2)
2088 FIELD(CTR_EL0, DMINLINE, 16, 4)
2089 FIELD(CTR_EL0, ERG, 20, 4)
2090 FIELD(CTR_EL0, CWG, 24, 4)
2091 FIELD(CTR_EL0, IDC, 28, 1)
2092 FIELD(CTR_EL0, DIC, 29, 1)
2093 FIELD(CTR_EL0, TMINLINE, 32, 6)
2094
2095 FIELD(MIDR_EL1, REVISION, 0, 4)
2096 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2097 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2098 FIELD(MIDR_EL1, VARIANT, 20, 4)
2099 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2100
2101 FIELD(ID_ISAR0, SWAP, 0, 4)
2102 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2103 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2104 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2105 FIELD(ID_ISAR0, COPROC, 16, 4)
2106 FIELD(ID_ISAR0, DEBUG, 20, 4)
2107 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2108
2109 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2110 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2111 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2112 FIELD(ID_ISAR1, EXTEND, 12, 4)
2113 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2114 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2115 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2116 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2117
2118 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2119 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2120 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2121 FIELD(ID_ISAR2, MULT, 12, 4)
2122 FIELD(ID_ISAR2, MULTS, 16, 4)
2123 FIELD(ID_ISAR2, MULTU, 20, 4)
2124 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2125 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2126
2127 FIELD(ID_ISAR3, SATURATE, 0, 4)
2128 FIELD(ID_ISAR3, SIMD, 4, 4)
2129 FIELD(ID_ISAR3, SVC, 8, 4)
2130 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2131 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2132 FIELD(ID_ISAR3, T32COPY, 20, 4)
2133 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2134 FIELD(ID_ISAR3, T32EE, 28, 4)
2135
2136 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2137 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2138 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2139 FIELD(ID_ISAR4, SMC, 12, 4)
2140 FIELD(ID_ISAR4, BARRIER, 16, 4)
2141 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2142 FIELD(ID_ISAR4, PSR_M, 24, 4)
2143 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2144
2145 FIELD(ID_ISAR5, SEVL, 0, 4)
2146 FIELD(ID_ISAR5, AES, 4, 4)
2147 FIELD(ID_ISAR5, SHA1, 8, 4)
2148 FIELD(ID_ISAR5, SHA2, 12, 4)
2149 FIELD(ID_ISAR5, CRC32, 16, 4)
2150 FIELD(ID_ISAR5, RDM, 24, 4)
2151 FIELD(ID_ISAR5, VCMA, 28, 4)
2152
2153 FIELD(ID_ISAR6, JSCVT, 0, 4)
2154 FIELD(ID_ISAR6, DP, 4, 4)
2155 FIELD(ID_ISAR6, FHM, 8, 4)
2156 FIELD(ID_ISAR6, SB, 12, 4)
2157 FIELD(ID_ISAR6, SPECRES, 16, 4)
2158 FIELD(ID_ISAR6, BF16, 20, 4)
2159 FIELD(ID_ISAR6, I8MM, 24, 4)
2160
2161 FIELD(ID_MMFR0, VMSA, 0, 4)
2162 FIELD(ID_MMFR0, PMSA, 4, 4)
2163 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2164 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2165 FIELD(ID_MMFR0, TCM, 16, 4)
2166 FIELD(ID_MMFR0, AUXREG, 20, 4)
2167 FIELD(ID_MMFR0, FCSE, 24, 4)
2168 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2169
2170 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2171 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2172 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2173 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2174 FIELD(ID_MMFR1, L1HVD, 16, 4)
2175 FIELD(ID_MMFR1, L1UNI, 20, 4)
2176 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2177 FIELD(ID_MMFR1, BPRED, 28, 4)
2178
2179 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2180 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2181 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2182 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2183 FIELD(ID_MMFR2, UNITLB, 16, 4)
2184 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2185 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2186 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2187
2188 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2189 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2190 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2191 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2192 FIELD(ID_MMFR3, PAN, 16, 4)
2193 FIELD(ID_MMFR3, COHWALK, 20, 4)
2194 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2195 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2196
2197 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2198 FIELD(ID_MMFR4, AC2, 4, 4)
2199 FIELD(ID_MMFR4, XNX, 8, 4)
2200 FIELD(ID_MMFR4, CNP, 12, 4)
2201 FIELD(ID_MMFR4, HPDS, 16, 4)
2202 FIELD(ID_MMFR4, LSM, 20, 4)
2203 FIELD(ID_MMFR4, CCIDX, 24, 4)
2204 FIELD(ID_MMFR4, EVT, 28, 4)
2205
2206 FIELD(ID_MMFR5, ETS, 0, 4)
2207 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2208
2209 FIELD(ID_PFR0, STATE0, 0, 4)
2210 FIELD(ID_PFR0, STATE1, 4, 4)
2211 FIELD(ID_PFR0, STATE2, 8, 4)
2212 FIELD(ID_PFR0, STATE3, 12, 4)
2213 FIELD(ID_PFR0, CSV2, 16, 4)
2214 FIELD(ID_PFR0, AMU, 20, 4)
2215 FIELD(ID_PFR0, DIT, 24, 4)
2216 FIELD(ID_PFR0, RAS, 28, 4)
2217
2218 FIELD(ID_PFR1, PROGMOD, 0, 4)
2219 FIELD(ID_PFR1, SECURITY, 4, 4)
2220 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2221 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2222 FIELD(ID_PFR1, GENTIMER, 16, 4)
2223 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2224 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2225 FIELD(ID_PFR1, GIC, 28, 4)
2226
2227 FIELD(ID_PFR2, CSV3, 0, 4)
2228 FIELD(ID_PFR2, SSBS, 4, 4)
2229 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2230
2231 FIELD(ID_AA64ISAR0, AES, 4, 4)
2232 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2233 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2234 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2235 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2236 FIELD(ID_AA64ISAR0, TME, 24, 4)
2237 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2238 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2239 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2240 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2241 FIELD(ID_AA64ISAR0, DP, 44, 4)
2242 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2243 FIELD(ID_AA64ISAR0, TS, 52, 4)
2244 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2245 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2246
2247 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2248 FIELD(ID_AA64ISAR1, APA, 4, 4)
2249 FIELD(ID_AA64ISAR1, API, 8, 4)
2250 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2251 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2252 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2253 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2254 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2255 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2256 FIELD(ID_AA64ISAR1, SB, 36, 4)
2257 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2258 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2259 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2260 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2261 FIELD(ID_AA64ISAR1, XS, 56, 4)
2262 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2263
2264 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2265 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2266 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2267 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2268 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2269 FIELD(ID_AA64ISAR2, BC, 20, 4)
2270 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2271 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2272 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2273 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2274 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2275 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2276 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2277 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2278
2279 FIELD(ID_AA64PFR0, EL0, 0, 4)
2280 FIELD(ID_AA64PFR0, EL1, 4, 4)
2281 FIELD(ID_AA64PFR0, EL2, 8, 4)
2282 FIELD(ID_AA64PFR0, EL3, 12, 4)
2283 FIELD(ID_AA64PFR0, FP, 16, 4)
2284 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2285 FIELD(ID_AA64PFR0, GIC, 24, 4)
2286 FIELD(ID_AA64PFR0, RAS, 28, 4)
2287 FIELD(ID_AA64PFR0, SVE, 32, 4)
2288 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2289 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2290 FIELD(ID_AA64PFR0, AMU, 44, 4)
2291 FIELD(ID_AA64PFR0, DIT, 48, 4)
2292 FIELD(ID_AA64PFR0, RME, 52, 4)
2293 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2294 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2295
2296 FIELD(ID_AA64PFR1, BT, 0, 4)
2297 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2298 FIELD(ID_AA64PFR1, MTE, 8, 4)
2299 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2300 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2301 FIELD(ID_AA64PFR1, SME, 24, 4)
2302 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2303 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2304 FIELD(ID_AA64PFR1, NMI, 36, 4)
2305 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2306 FIELD(ID_AA64PFR1, GCS, 44, 4)
2307 FIELD(ID_AA64PFR1, THE, 48, 4)
2308 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2309 FIELD(ID_AA64PFR1, DF2, 56, 4)
2310 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2311
2312 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2313 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2314 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2315 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2316 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2317 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2318 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2319 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2320 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2321 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2322 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2323 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2324 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2325 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2326
2327 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2328 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2329 FIELD(ID_AA64MMFR1, VH, 8, 4)
2330 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2331 FIELD(ID_AA64MMFR1, LO, 16, 4)
2332 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2333 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2334 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2335 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2336 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2337 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2338 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2339 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2340 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2341 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2342 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2343
2344 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2345 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2346 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2347 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2348 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2349 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2350 FIELD(ID_AA64MMFR2, NV, 24, 4)
2351 FIELD(ID_AA64MMFR2, ST, 28, 4)
2352 FIELD(ID_AA64MMFR2, AT, 32, 4)
2353 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2354 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2355 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2356 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2357 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2358 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2359
2360 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2361 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2362 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2363 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2364 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2365 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2366 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2367 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2368 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2369 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2370 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2371 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2372 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2373 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2374 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2375 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2376
2377 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2378 FIELD(ID_AA64ZFR0, AES, 4, 4)
2379 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2380 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2381 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2382 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2383 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2384 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2385 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2386 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2387
2388 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2389 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2390 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2391 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2392 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2393 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2394 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2395 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2396 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2397 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2398 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2399 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2400
2401 FIELD(ID_DFR0, COPDBG, 0, 4)
2402 FIELD(ID_DFR0, COPSDBG, 4, 4)
2403 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2404 FIELD(ID_DFR0, COPTRC, 12, 4)
2405 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2406 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2407 FIELD(ID_DFR0, PERFMON, 24, 4)
2408 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2409
2410 FIELD(ID_DFR1, MTPMU, 0, 4)
2411 FIELD(ID_DFR1, HPMN0, 4, 4)
2412
2413 FIELD(DBGDIDR, SE_IMP, 12, 1)
2414 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2415 FIELD(DBGDIDR, VERSION, 16, 4)
2416 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2417 FIELD(DBGDIDR, BRPS, 24, 4)
2418 FIELD(DBGDIDR, WRPS, 28, 4)
2419
2420 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2421 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2422 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2423 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2424 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2425 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2426 FIELD(DBGDEVID, AUXREGS, 24, 4)
2427 FIELD(DBGDEVID, CIDMASK, 28, 4)
2428
2429 FIELD(MVFR0, SIMDREG, 0, 4)
2430 FIELD(MVFR0, FPSP, 4, 4)
2431 FIELD(MVFR0, FPDP, 8, 4)
2432 FIELD(MVFR0, FPTRAP, 12, 4)
2433 FIELD(MVFR0, FPDIVIDE, 16, 4)
2434 FIELD(MVFR0, FPSQRT, 20, 4)
2435 FIELD(MVFR0, FPSHVEC, 24, 4)
2436 FIELD(MVFR0, FPROUND, 28, 4)
2437
2438 FIELD(MVFR1, FPFTZ, 0, 4)
2439 FIELD(MVFR1, FPDNAN, 4, 4)
2440 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2441 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2442 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2443 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2444 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2445 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2446 FIELD(MVFR1, FPHP, 24, 4)
2447 FIELD(MVFR1, SIMDFMAC, 28, 4)
2448
2449 FIELD(MVFR2, SIMDMISC, 0, 4)
2450 FIELD(MVFR2, FPMISC, 4, 4)
2451
2452 FIELD(GPCCR, PPS, 0, 3)
2453 FIELD(GPCCR, IRGN, 8, 2)
2454 FIELD(GPCCR, ORGN, 10, 2)
2455 FIELD(GPCCR, SH, 12, 2)
2456 FIELD(GPCCR, PGS, 14, 2)
2457 FIELD(GPCCR, GPC, 16, 1)
2458 FIELD(GPCCR, GPCP, 17, 1)
2459 FIELD(GPCCR, L0GPTSZ, 20, 4)
2460
2461 FIELD(MFAR, FPA, 12, 40)
2462 FIELD(MFAR, NSE, 62, 1)
2463 FIELD(MFAR, NS, 63, 1)
2464
2465 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2466
2467 /* If adding a feature bit which corresponds to a Linux ELF
2468 * HWCAP bit, remember to update the feature-bit-to-hwcap
2469 * mapping in linux-user/elfload.c:get_elf_hwcap().
2470 */
2471 enum arm_features {
2472 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2473 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2474 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2475 ARM_FEATURE_V6,
2476 ARM_FEATURE_V6K,
2477 ARM_FEATURE_V7,
2478 ARM_FEATURE_THUMB2,
2479 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2480 ARM_FEATURE_NEON,
2481 ARM_FEATURE_M, /* Microcontroller profile. */
2482 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2483 ARM_FEATURE_THUMB2EE,
2484 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2485 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2486 ARM_FEATURE_V4T,
2487 ARM_FEATURE_V5,
2488 ARM_FEATURE_STRONGARM,
2489 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2490 ARM_FEATURE_GENERIC_TIMER,
2491 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2492 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2493 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2494 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2495 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2496 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2497 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2498 ARM_FEATURE_V8,
2499 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2500 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2501 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2502 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2503 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2504 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2505 ARM_FEATURE_PMU, /* has PMU support */
2506 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2507 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2508 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2509 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2510 };
2511
2512 static inline int arm_feature(CPUARMState *env, int feature)
2513 {
2514 return (env->features & (1ULL << feature)) != 0;
2515 }
2516
2517 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2518
2519 /*
2520 * ARM v9 security states.
2521 * The ordering of the enumeration corresponds to the low 2 bits
2522 * of the GPI value, and (except for Root) the concat of NSE:NS.
2523 */
2524
2525 typedef enum ARMSecuritySpace {
2526 ARMSS_Secure = 0,
2527 ARMSS_NonSecure = 1,
2528 ARMSS_Root = 2,
2529 ARMSS_Realm = 3,
2530 } ARMSecuritySpace;
2531
2532 /* Return true if @space is secure, in the pre-v9 sense. */
2533 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2534 {
2535 return space == ARMSS_Secure || space == ARMSS_Root;
2536 }
2537
2538 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2539 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2540 {
2541 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2542 }
2543
2544 #if !defined(CONFIG_USER_ONLY)
2545 /**
2546 * arm_security_space_below_el3:
2547 * @env: cpu context
2548 *
2549 * Return the security space of exception levels below EL3, following
2550 * an exception return to those levels. Unlike arm_security_space,
2551 * this doesn't care about the current EL.
2552 */
2553 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2554
2555 /**
2556 * arm_is_secure_below_el3:
2557 * @env: cpu context
2558 *
2559 * Return true if exception levels below EL3 are in secure state,
2560 * or would be following an exception return to those levels.
2561 */
2562 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2563 {
2564 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2565 return ss == ARMSS_Secure;
2566 }
2567
2568 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2569 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2570 {
2571 assert(!arm_feature(env, ARM_FEATURE_M));
2572 if (arm_feature(env, ARM_FEATURE_EL3)) {
2573 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2574 /* CPU currently in AArch64 state and EL3 */
2575 return true;
2576 } else if (!is_a64(env) &&
2577 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2578 /* CPU currently in AArch32 state and monitor mode */
2579 return true;
2580 }
2581 }
2582 return false;
2583 }
2584
2585 /**
2586 * arm_security_space:
2587 * @env: cpu context
2588 *
2589 * Return the current security space of the cpu.
2590 */
2591 ARMSecuritySpace arm_security_space(CPUARMState *env);
2592
2593 /**
2594 * arm_is_secure:
2595 * @env: cpu context
2596 *
2597 * Return true if the processor is in secure state.
2598 */
2599 static inline bool arm_is_secure(CPUARMState *env)
2600 {
2601 return arm_space_is_secure(arm_security_space(env));
2602 }
2603
2604 /*
2605 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2606 * This corresponds to the pseudocode EL2Enabled().
2607 */
2608 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2609 ARMSecuritySpace space)
2610 {
2611 assert(space != ARMSS_Root);
2612 return arm_feature(env, ARM_FEATURE_EL2)
2613 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2614 }
2615
2616 static inline bool arm_is_el2_enabled(CPUARMState *env)
2617 {
2618 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2619 }
2620
2621 #else
2622 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2623 {
2624 return ARMSS_NonSecure;
2625 }
2626
2627 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2628 {
2629 return false;
2630 }
2631
2632 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2633 {
2634 return ARMSS_NonSecure;
2635 }
2636
2637 static inline bool arm_is_secure(CPUARMState *env)
2638 {
2639 return false;
2640 }
2641
2642 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2643 ARMSecuritySpace space)
2644 {
2645 return false;
2646 }
2647
2648 static inline bool arm_is_el2_enabled(CPUARMState *env)
2649 {
2650 return false;
2651 }
2652 #endif
2653
2654 /**
2655 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2656 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2657 * "for all purposes other than a direct read or write access of HCR_EL2."
2658 * Not included here is HCR_RW.
2659 */
2660 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2661 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2662 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2663
2664 /* Return true if the specified exception level is running in AArch64 state. */
2665 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2666 {
2667 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2668 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2669 */
2670 assert(el >= 1 && el <= 3);
2671 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2672
2673 /* The highest exception level is always at the maximum supported
2674 * register width, and then lower levels have a register width controlled
2675 * by bits in the SCR or HCR registers.
2676 */
2677 if (el == 3) {
2678 return aa64;
2679 }
2680
2681 if (arm_feature(env, ARM_FEATURE_EL3) &&
2682 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2683 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2684 }
2685
2686 if (el == 2) {
2687 return aa64;
2688 }
2689
2690 if (arm_is_el2_enabled(env)) {
2691 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2692 }
2693
2694 return aa64;
2695 }
2696
2697 /* Function for determining whether guest cp register reads and writes should
2698 * access the secure or non-secure bank of a cp register. When EL3 is
2699 * operating in AArch32 state, the NS-bit determines whether the secure
2700 * instance of a cp register should be used. When EL3 is AArch64 (or if
2701 * it doesn't exist at all) then there is no register banking, and all
2702 * accesses are to the non-secure version.
2703 */
2704 static inline bool access_secure_reg(CPUARMState *env)
2705 {
2706 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2707 !arm_el_is_aa64(env, 3) &&
2708 !(env->cp15.scr_el3 & SCR_NS));
2709
2710 return ret;
2711 }
2712
2713 /* Macros for accessing a specified CP register bank */
2714 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2715 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2716
2717 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2718 do { \
2719 if (_secure) { \
2720 (_env)->cp15._regname##_s = (_val); \
2721 } else { \
2722 (_env)->cp15._regname##_ns = (_val); \
2723 } \
2724 } while (0)
2725
2726 /* Macros for automatically accessing a specific CP register bank depending on
2727 * the current secure state of the system. These macros are not intended for
2728 * supporting instruction translation reads/writes as these are dependent
2729 * solely on the SCR.NS bit and not the mode.
2730 */
2731 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2732 A32_BANKED_REG_GET((_env), _regname, \
2733 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2734
2735 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2736 A32_BANKED_REG_SET((_env), _regname, \
2737 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2738 (_val))
2739
2740 void arm_cpu_list(void);
2741 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2742 uint32_t cur_el, bool secure);
2743
2744 /* Return the highest implemented Exception Level */
2745 static inline int arm_highest_el(CPUARMState *env)
2746 {
2747 if (arm_feature(env, ARM_FEATURE_EL3)) {
2748 return 3;
2749 }
2750 if (arm_feature(env, ARM_FEATURE_EL2)) {
2751 return 2;
2752 }
2753 return 1;
2754 }
2755
2756 /* Return true if a v7M CPU is in Handler mode */
2757 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2758 {
2759 return env->v7m.exception != 0;
2760 }
2761
2762 /* Return the current Exception Level (as per ARMv8; note that this differs
2763 * from the ARMv7 Privilege Level).
2764 */
2765 static inline int arm_current_el(CPUARMState *env)
2766 {
2767 if (arm_feature(env, ARM_FEATURE_M)) {
2768 return arm_v7m_is_handler_mode(env) ||
2769 !(env->v7m.control[env->v7m.secure] & 1);
2770 }
2771
2772 if (is_a64(env)) {
2773 return extract32(env->pstate, 2, 2);
2774 }
2775
2776 switch (env->uncached_cpsr & 0x1f) {
2777 case ARM_CPU_MODE_USR:
2778 return 0;
2779 case ARM_CPU_MODE_HYP:
2780 return 2;
2781 case ARM_CPU_MODE_MON:
2782 return 3;
2783 default:
2784 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2785 /* If EL3 is 32-bit then all secure privileged modes run in
2786 * EL3
2787 */
2788 return 3;
2789 }
2790
2791 return 1;
2792 }
2793 }
2794
2795 /**
2796 * write_list_to_cpustate
2797 * @cpu: ARMCPU
2798 *
2799 * For each register listed in the ARMCPU cpreg_indexes list, write
2800 * its value from the cpreg_values list into the ARMCPUState structure.
2801 * This updates TCG's working data structures from KVM data or
2802 * from incoming migration state.
2803 *
2804 * Returns: true if all register values were updated correctly,
2805 * false if some register was unknown or could not be written.
2806 * Note that we do not stop early on failure -- we will attempt
2807 * writing all registers in the list.
2808 */
2809 bool write_list_to_cpustate(ARMCPU *cpu);
2810
2811 /**
2812 * write_cpustate_to_list:
2813 * @cpu: ARMCPU
2814 * @kvm_sync: true if this is for syncing back to KVM
2815 *
2816 * For each register listed in the ARMCPU cpreg_indexes list, write
2817 * its value from the ARMCPUState structure into the cpreg_values list.
2818 * This is used to copy info from TCG's working data structures into
2819 * KVM or for outbound migration.
2820 *
2821 * @kvm_sync is true if we are doing this in order to sync the
2822 * register state back to KVM. In this case we will only update
2823 * values in the list if the previous list->cpustate sync actually
2824 * successfully wrote the CPU state. Otherwise we will keep the value
2825 * that is in the list.
2826 *
2827 * Returns: true if all register values were read correctly,
2828 * false if some register was unknown or could not be read.
2829 * Note that we do not stop early on failure -- we will attempt
2830 * reading all registers in the list.
2831 */
2832 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2833
2834 #define ARM_CPUID_TI915T 0x54029152
2835 #define ARM_CPUID_TI925T 0x54029252
2836
2837 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2838 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2839 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2840
2841 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2842
2843 #define cpu_list arm_cpu_list
2844
2845 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2846 *
2847 * If EL3 is 64-bit:
2848 * + NonSecure EL1 & 0 stage 1
2849 * + NonSecure EL1 & 0 stage 2
2850 * + NonSecure EL2
2851 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2852 * + Secure EL1 & 0
2853 * + Secure EL3
2854 * If EL3 is 32-bit:
2855 * + NonSecure PL1 & 0 stage 1
2856 * + NonSecure PL1 & 0 stage 2
2857 * + NonSecure PL2
2858 * + Secure PL0
2859 * + Secure PL1
2860 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2861 *
2862 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2863 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2864 * because they may differ in access permissions even if the VA->PA map is
2865 * the same
2866 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2867 * translation, which means that we have one mmu_idx that deals with two
2868 * concatenated translation regimes [this sort of combined s1+2 TLB is
2869 * architecturally permitted]
2870 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2871 * handling via the TLB. The only way to do a stage 1 translation without
2872 * the immediate stage 2 translation is via the ATS or AT system insns,
2873 * which can be slow-pathed and always do a page table walk.
2874 * The only use of stage 2 translations is either as part of an s1+2
2875 * lookup or when loading the descriptors during a stage 1 page table walk,
2876 * and in both those cases we don't use the TLB.
2877 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2878 * translation regimes, because they map reasonably well to each other
2879 * and they can't both be active at the same time.
2880 * 5. we want to be able to use the TLB for accesses done as part of a
2881 * stage1 page table walk, rather than having to walk the stage2 page
2882 * table over and over.
2883 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2884 * Never (PAN) bit within PSTATE.
2885 * 7. we fold together the secure and non-secure regimes for A-profile,
2886 * because there are no banked system registers for aarch64, so the
2887 * process of switching between secure and non-secure is
2888 * already heavyweight.
2889 *
2890 * This gives us the following list of cases:
2891 *
2892 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2893 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2894 * EL1 EL1&0 stage 1+2 +PAN
2895 * EL0 EL2&0
2896 * EL2 EL2&0
2897 * EL2 EL2&0 +PAN
2898 * EL2 (aka NS PL2)
2899 * EL3 (aka S PL1)
2900 * Physical (NS & S)
2901 * Stage2 (NS & S)
2902 *
2903 * for a total of 12 different mmu_idx.
2904 *
2905 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2906 * as A profile. They only need to distinguish EL0 and EL1 (and
2907 * EL2 if we ever model a Cortex-R52).
2908 *
2909 * M profile CPUs are rather different as they do not have a true MMU.
2910 * They have the following different MMU indexes:
2911 * User
2912 * Privileged
2913 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2914 * Privileged, execution priority negative (ditto)
2915 * If the CPU supports the v8M Security Extension then there are also:
2916 * Secure User
2917 * Secure Privileged
2918 * Secure User, execution priority negative
2919 * Secure Privileged, execution priority negative
2920 *
2921 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2922 * are not quite the same -- different CPU types (most notably M profile
2923 * vs A/R profile) would like to use MMU indexes with different semantics,
2924 * but since we don't ever need to use all of those in a single CPU we
2925 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2926 * modes + total number of M profile MMU modes". The lower bits of
2927 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2928 * the same for any particular CPU.
2929 * Variables of type ARMMUIdx are always full values, and the core
2930 * index values are in variables of type 'int'.
2931 *
2932 * Our enumeration includes at the end some entries which are not "true"
2933 * mmu_idx values in that they don't have corresponding TLBs and are only
2934 * valid for doing slow path page table walks.
2935 *
2936 * The constant names here are patterned after the general style of the names
2937 * of the AT/ATS operations.
2938 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2939 * For M profile we arrange them to have a bit for priv, a bit for negpri
2940 * and a bit for secure.
2941 */
2942 #define ARM_MMU_IDX_A 0x10 /* A profile */
2943 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2944 #define ARM_MMU_IDX_M 0x40 /* M profile */
2945
2946 /* Meanings of the bits for M profile mmu idx values */
2947 #define ARM_MMU_IDX_M_PRIV 0x1
2948 #define ARM_MMU_IDX_M_NEGPRI 0x2
2949 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2950
2951 #define ARM_MMU_IDX_TYPE_MASK \
2952 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2953 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2954
2955 typedef enum ARMMMUIdx {
2956 /*
2957 * A-profile.
2958 */
2959 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2960 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2961 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2962 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2963 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2964 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2965 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2966 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
2967
2968 /*
2969 * Used for second stage of an S12 page table walk, or for descriptor
2970 * loads during first stage of an S1 page table walk. Note that both
2971 * are in use simultaneously for SecureEL2: the security state for
2972 * the S2 ptw is selected by the NS bit from the S1 ptw.
2973 */
2974 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2975 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2976
2977 /* TLBs with 1-1 mapping to the physical address spaces. */
2978 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2979 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2980 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2981 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2982
2983 /*
2984 * These are not allocated TLBs and are used only for AT system
2985 * instructions or for the first stage of an S12 page table walk.
2986 */
2987 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2988 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2989 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2990
2991 /*
2992 * M-profile.
2993 */
2994 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2995 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2996 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2997 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2998 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2999 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3000 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3001 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3002 } ARMMMUIdx;
3003
3004 /*
3005 * Bit macros for the core-mmu-index values for each index,
3006 * for use when calling tlb_flush_by_mmuidx() and friends.
3007 */
3008 #define TO_CORE_BIT(NAME) \
3009 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3010
3011 typedef enum ARMMMUIdxBit {
3012 TO_CORE_BIT(E10_0),
3013 TO_CORE_BIT(E20_0),
3014 TO_CORE_BIT(E10_1),
3015 TO_CORE_BIT(E10_1_PAN),
3016 TO_CORE_BIT(E2),
3017 TO_CORE_BIT(E20_2),
3018 TO_CORE_BIT(E20_2_PAN),
3019 TO_CORE_BIT(E3),
3020 TO_CORE_BIT(Stage2),
3021 TO_CORE_BIT(Stage2_S),
3022
3023 TO_CORE_BIT(MUser),
3024 TO_CORE_BIT(MPriv),
3025 TO_CORE_BIT(MUserNegPri),
3026 TO_CORE_BIT(MPrivNegPri),
3027 TO_CORE_BIT(MSUser),
3028 TO_CORE_BIT(MSPriv),
3029 TO_CORE_BIT(MSUserNegPri),
3030 TO_CORE_BIT(MSPrivNegPri),
3031 } ARMMMUIdxBit;
3032
3033 #undef TO_CORE_BIT
3034
3035 #define MMU_USER_IDX 0
3036
3037 /* Indexes used when registering address spaces with cpu_address_space_init */
3038 typedef enum ARMASIdx {
3039 ARMASIdx_NS = 0,
3040 ARMASIdx_S = 1,
3041 ARMASIdx_TagNS = 2,
3042 ARMASIdx_TagS = 3,
3043 } ARMASIdx;
3044
3045 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3046 {
3047 /* Assert the relative order of the physical mmu indexes. */
3048 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3049 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3050 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3051 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3052
3053 return ARMMMUIdx_Phys_S + space;
3054 }
3055
3056 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3057 {
3058 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3059 return idx - ARMMMUIdx_Phys_S;
3060 }
3061
3062 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3063 {
3064 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3065 * CSSELR is RAZ/WI.
3066 */
3067 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3068 }
3069
3070 static inline bool arm_sctlr_b(CPUARMState *env)
3071 {
3072 return
3073 /* We need not implement SCTLR.ITD in user-mode emulation, so
3074 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3075 * This lets people run BE32 binaries with "-cpu any".
3076 */
3077 #ifndef CONFIG_USER_ONLY
3078 !arm_feature(env, ARM_FEATURE_V7) &&
3079 #endif
3080 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3081 }
3082
3083 uint64_t arm_sctlr(CPUARMState *env, int el);
3084
3085 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3086 bool sctlr_b)
3087 {
3088 #ifdef CONFIG_USER_ONLY
3089 /*
3090 * In system mode, BE32 is modelled in line with the
3091 * architecture (as word-invariant big-endianness), where loads
3092 * and stores are done little endian but from addresses which
3093 * are adjusted by XORing with the appropriate constant. So the
3094 * endianness to use for the raw data access is not affected by
3095 * SCTLR.B.
3096 * In user mode, however, we model BE32 as byte-invariant
3097 * big-endianness (because user-only code cannot tell the
3098 * difference), and so we need to use a data access endianness
3099 * that depends on SCTLR.B.
3100 */
3101 if (sctlr_b) {
3102 return true;
3103 }
3104 #endif
3105 /* In 32bit endianness is determined by looking at CPSR's E bit */
3106 return env->uncached_cpsr & CPSR_E;
3107 }
3108
3109 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3110 {
3111 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3112 }
3113
3114 /* Return true if the processor is in big-endian mode. */
3115 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3116 {
3117 if (!is_a64(env)) {
3118 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3119 } else {
3120 int cur_el = arm_current_el(env);
3121 uint64_t sctlr = arm_sctlr(env, cur_el);
3122 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3123 }
3124 }
3125
3126 #include "exec/cpu-all.h"
3127
3128 /*
3129 * We have more than 32-bits worth of state per TB, so we split the data
3130 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3131 * We collect these two parts in CPUARMTBFlags where they are named
3132 * flags and flags2 respectively.
3133 *
3134 * The flags that are shared between all execution modes, TBFLAG_ANY,
3135 * are stored in flags. The flags that are specific to a given mode
3136 * are stores in flags2. Since cs_base is sized on the configured
3137 * address size, flags2 always has 64-bits for A64, and a minimum of
3138 * 32-bits for A32 and M32.
3139 *
3140 * The bits for 32-bit A-profile and M-profile partially overlap:
3141 *
3142 * 31 23 11 10 0
3143 * +-------------+----------+----------------+
3144 * | | | TBFLAG_A32 |
3145 * | TBFLAG_AM32 | +-----+----------+
3146 * | | |TBFLAG_M32|
3147 * +-------------+----------------+----------+
3148 * 31 23 6 5 0
3149 *
3150 * Unless otherwise noted, these bits are cached in env->hflags.
3151 */
3152 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3153 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3154 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3155 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3156 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3157 /* Target EL if we take a floating-point-disabled exception */
3158 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3159 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3160 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3161 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3162 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3163 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3164
3165 /*
3166 * Bit usage when in AArch32 state, both A- and M-profile.
3167 */
3168 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3169 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3170
3171 /*
3172 * Bit usage when in AArch32 state, for A-profile only.
3173 */
3174 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3175 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3176 /*
3177 * We store the bottom two bits of the CPAR as TB flags and handle
3178 * checks on the other bits at runtime. This shares the same bits as
3179 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3180 * Not cached, because VECLEN+VECSTRIDE are not cached.
3181 */
3182 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3183 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3184 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3185 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3186 /*
3187 * Indicates whether cp register reads and writes by guest code should access
3188 * the secure or nonsecure bank of banked registers; note that this is not
3189 * the same thing as the current security state of the processor!
3190 */
3191 FIELD(TBFLAG_A32, NS, 10, 1)
3192 /*
3193 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3194 * This requires an SME trap from AArch32 mode when using NEON.
3195 */
3196 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3197
3198 /*
3199 * Bit usage when in AArch32 state, for M-profile only.
3200 */
3201 /* Handler (ie not Thread) mode */
3202 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3203 /* Whether we should generate stack-limit checks */
3204 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3205 /* Set if FPCCR.LSPACT is set */
3206 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3207 /* Set if we must create a new FP context */
3208 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3209 /* Set if FPCCR.S does not match current security state */
3210 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3211 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3212 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3213 /* Set if in secure mode */
3214 FIELD(TBFLAG_M32, SECURE, 6, 1)
3215
3216 /*
3217 * Bit usage when in AArch64 state
3218 */
3219 FIELD(TBFLAG_A64, TBII, 0, 2)
3220 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3221 /* The current vector length, either NVL or SVL. */
3222 FIELD(TBFLAG_A64, VL, 4, 4)
3223 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3224 FIELD(TBFLAG_A64, BT, 9, 1)
3225 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3226 FIELD(TBFLAG_A64, TBID, 12, 2)
3227 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3228 FIELD(TBFLAG_A64, ATA, 15, 1)
3229 FIELD(TBFLAG_A64, TCMA, 16, 2)
3230 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3231 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3232 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3233 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3234 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3235 FIELD(TBFLAG_A64, SVL, 24, 4)
3236 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3237 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3238 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3239 FIELD(TBFLAG_A64, NAA, 30, 1)
3240 FIELD(TBFLAG_A64, ATA0, 31, 1)
3241
3242 /*
3243 * Helpers for using the above.
3244 */
3245 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3246 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3247 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3248 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3249 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3250 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3251 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3252 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3253 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3254 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3255
3256 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3257 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3258 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3259 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3260 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3261
3262 /**
3263 * cpu_mmu_index:
3264 * @env: The cpu environment
3265 * @ifetch: True for code access, false for data access.
3266 *
3267 * Return the core mmu index for the current translation regime.
3268 * This function is used by generic TCG code paths.
3269 */
3270 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3271 {
3272 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3273 }
3274
3275 /**
3276 * sve_vq
3277 * @env: the cpu context
3278 *
3279 * Return the VL cached within env->hflags, in units of quadwords.
3280 */
3281 static inline int sve_vq(CPUARMState *env)
3282 {
3283 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3284 }
3285
3286 /**
3287 * sme_vq
3288 * @env: the cpu context
3289 *
3290 * Return the SVL cached within env->hflags, in units of quadwords.
3291 */
3292 static inline int sme_vq(CPUARMState *env)
3293 {
3294 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3295 }
3296
3297 static inline bool bswap_code(bool sctlr_b)
3298 {
3299 #ifdef CONFIG_USER_ONLY
3300 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3301 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3302 * would also end up as a mixed-endian mode with BE code, LE data.
3303 */
3304 return TARGET_BIG_ENDIAN ^ sctlr_b;
3305 #else
3306 /* All code access in ARM is little endian, and there are no loaders
3307 * doing swaps that need to be reversed
3308 */
3309 return 0;
3310 #endif
3311 }
3312
3313 #ifdef CONFIG_USER_ONLY
3314 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3315 {
3316 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3317 }
3318 #endif
3319
3320 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3321 uint64_t *cs_base, uint32_t *flags);
3322
3323 enum {
3324 QEMU_PSCI_CONDUIT_DISABLED = 0,
3325 QEMU_PSCI_CONDUIT_SMC = 1,
3326 QEMU_PSCI_CONDUIT_HVC = 2,
3327 };
3328
3329 #ifndef CONFIG_USER_ONLY
3330 /* Return the address space index to use for a memory access */
3331 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3332 {
3333 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3334 }
3335
3336 /* Return the AddressSpace to use for a memory access
3337 * (which depends on whether the access is S or NS, and whether
3338 * the board gave us a separate AddressSpace for S accesses).
3339 */
3340 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3341 {
3342 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3343 }
3344 #endif
3345
3346 /**
3347 * arm_register_pre_el_change_hook:
3348 * Register a hook function which will be called immediately before this
3349 * CPU changes exception level or mode. The hook function will be
3350 * passed a pointer to the ARMCPU and the opaque data pointer passed
3351 * to this function when the hook was registered.
3352 *
3353 * Note that if a pre-change hook is called, any registered post-change hooks
3354 * are guaranteed to subsequently be called.
3355 */
3356 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3357 void *opaque);
3358 /**
3359 * arm_register_el_change_hook:
3360 * Register a hook function which will be called immediately after this
3361 * CPU changes exception level or mode. The hook function will be
3362 * passed a pointer to the ARMCPU and the opaque data pointer passed
3363 * to this function when the hook was registered.
3364 *
3365 * Note that any registered hooks registered here are guaranteed to be called
3366 * if pre-change hooks have been.
3367 */
3368 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3369 *opaque);
3370
3371 /**
3372 * arm_rebuild_hflags:
3373 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3374 */
3375 void arm_rebuild_hflags(CPUARMState *env);
3376
3377 /**
3378 * aa32_vfp_dreg:
3379 * Return a pointer to the Dn register within env in 32-bit mode.
3380 */
3381 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3382 {
3383 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3384 }
3385
3386 /**
3387 * aa32_vfp_qreg:
3388 * Return a pointer to the Qn register within env in 32-bit mode.
3389 */
3390 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3391 {
3392 return &env->vfp.zregs[regno].d[0];
3393 }
3394
3395 /**
3396 * aa64_vfp_qreg:
3397 * Return a pointer to the Qn register within env in 64-bit mode.
3398 */
3399 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3400 {
3401 return &env->vfp.zregs[regno].d[0];
3402 }
3403
3404 /* Shared between translate-sve.c and sve_helper.c. */
3405 extern const uint64_t pred_esz_masks[5];
3406
3407 /*
3408 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3409 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3410 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
3411 */
3412 #define PAGE_BTI PAGE_TARGET_1
3413 #define PAGE_MTE PAGE_TARGET_2
3414 #define PAGE_TARGET_STICKY PAGE_MTE
3415
3416 /* We associate one allocation tag per 16 bytes, the minimum. */
3417 #define LOG2_TAG_GRANULE 4
3418 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3419
3420 #ifdef CONFIG_USER_ONLY
3421 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3422 #endif
3423
3424 #ifdef TARGET_TAGGED_ADDRESSES
3425 /**
3426 * cpu_untagged_addr:
3427 * @cs: CPU context
3428 * @x: tagged address
3429 *
3430 * Remove any address tag from @x. This is explicitly related to the
3431 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3432 *
3433 * There should be a better place to put this, but we need this in
3434 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3435 */
3436 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3437 {
3438 ARMCPU *cpu = ARM_CPU(cs);
3439 if (cpu->env.tagged_addr_enable) {
3440 /*
3441 * TBI is enabled for userspace but not kernelspace addresses.
3442 * Only clear the tag if bit 55 is clear.
3443 */
3444 x &= sextract64(x, 0, 56);
3445 }
3446 return x;
3447 }
3448 #endif
3449
3450 #endif