]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu.h
Merge tag 'pull-target-arm-20230921' of https://git.linaro.org/people/pmaydell/qemu...
[mirror_qemu.git] / target / arm / cpu.h
1 /*
2 * ARM virtual CPU header
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO (0)
32
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36
37 #define EXCP_UDEF 1 /* undefined instruction */
38 #define EXCP_SWI 2 /* software interrupt */
39 #define EXCP_PREFETCH_ABORT 3
40 #define EXCP_DATA_ABORT 4
41 #define EXCP_IRQ 5
42 #define EXCP_FIQ 6
43 #define EXCP_BKPT 7
44 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
45 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
46 #define EXCP_HVC 11 /* HyperVisor Call */
47 #define EXCP_HYP_TRAP 12
48 #define EXCP_SMC 13 /* Secure Monitor Call */
49 #define EXCP_VIRQ 14
50 #define EXCP_VFIQ 15
51 #define EXCP_SEMIHOST 16 /* semihosting call */
52 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR 24
60 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SECURE 7
70 #define ARMV7M_EXCP_SVC 11
71 #define ARMV7M_EXCP_DEBUG 12
72 #define ARMV7M_EXCP_PENDSV 14
73 #define ARMV7M_EXCP_SYSTICK 15
74
75 /* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
83 */
84 enum {
85 M_REG_NS = 0,
86 M_REG_S = 1,
87 M_REG_NUM_BANKS = 2,
88 };
89
90 /* ARM-specific interrupt pending bits. */
91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
95
96 /* The usual mapping for an AArch64 system register to its AArch32
97 * counterpart is for the 32 bit world to have access to the lower
98 * half only (with writes leaving the upper half untouched). It's
99 * therefore useful to be able to pass TCG the offset of the least
100 * significant half of a uint64_t struct member.
101 */
102 #if HOST_BIG_ENDIAN
103 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
104 #define offsetofhigh32(S, M) offsetof(S, M)
105 #else
106 #define offsetoflow32(S, M) offsetof(S, M)
107 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
108 #endif
109
110 /* Meanings of the ARMCPU object's four inbound GPIO lines */
111 #define ARM_CPU_IRQ 0
112 #define ARM_CPU_FIQ 1
113 #define ARM_CPU_VIRQ 2
114 #define ARM_CPU_VFIQ 3
115
116 /* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
119 */
120 #define TARGET_INSN_START_EXTRA_WORDS 2
121
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
126 */
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
129
130 /* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
136 */
137
138 /**
139 * DynamicGDBXMLInfo:
140 * @desc: Contains the XML descriptions.
141 * @num: Number of the registers in this XML seen by GDB.
142 * @data: A union with data specific to the set of registers
143 * @cpregs_keys: Array that contains the corresponding Key of
144 * a given cpreg with the same order of the cpreg
145 * in the XML description.
146 */
147 typedef struct DynamicGDBXMLInfo {
148 char *desc;
149 int num;
150 union {
151 struct {
152 uint32_t *keys;
153 } cpregs;
154 } data;
155 } DynamicGDBXMLInfo;
156
157 /* CPU state for each instance of a generic timer (in cp15 c14) */
158 typedef struct ARMGenericTimer {
159 uint64_t cval; /* Timer CompareValue register */
160 uint64_t ctl; /* Timer Control register */
161 } ARMGenericTimer;
162
163 #define GTIMER_PHYS 0
164 #define GTIMER_VIRT 1
165 #define GTIMER_HYP 2
166 #define GTIMER_SEC 3
167 #define GTIMER_HYPVIRT 4
168 #define NUM_GTIMERS 5
169
170 #define VTCR_NSW (1u << 29)
171 #define VTCR_NSA (1u << 30)
172 #define VSTCR_SW VTCR_NSW
173 #define VSTCR_SA VTCR_NSA
174
175 /* Define a maximum sized vector register.
176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
177 * For 64-bit, this is a 2048-bit SVE register.
178 *
179 * Note that the mapping between S, D, and Q views of the register bank
180 * differs between AArch64 and AArch32.
181 * In AArch32:
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n / 2].d[n & 1]
184 * Sn = regs[n / 4].d[n % 4 / 2],
185 * bits 31..0 for even n, and bits 63..32 for odd n
186 * (and regs[16] to regs[31] are inaccessible)
187 * In AArch64:
188 * Zn = regs[n].d[*]
189 * Qn = regs[n].d[1]:regs[n].d[0]
190 * Dn = regs[n].d[0]
191 * Sn = regs[n].d[0] bits 31..0
192 * Hn = regs[n].d[0] bits 15..0
193 *
194 * This corresponds to the architecturally defined mapping between
195 * the two execution states, and means we do not need to explicitly
196 * map these registers when changing states.
197 *
198 * Align the data for use with TCG host vector operations.
199 */
200
201 #ifdef TARGET_AARCH64
202 # define ARM_MAX_VQ 16
203 #else
204 # define ARM_MAX_VQ 1
205 #endif
206
207 typedef struct ARMVectorReg {
208 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
209 } ARMVectorReg;
210
211 #ifdef TARGET_AARCH64
212 /* In AArch32 mode, predicate registers do not exist at all. */
213 typedef struct ARMPredicateReg {
214 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
215 } ARMPredicateReg;
216
217 /* In AArch32 mode, PAC keys do not exist at all. */
218 typedef struct ARMPACKey {
219 uint64_t lo, hi;
220 } ARMPACKey;
221 #endif
222
223 /* See the commentary above the TBFLAG field definitions. */
224 typedef struct CPUARMTBFlags {
225 uint32_t flags;
226 target_ulong flags2;
227 } CPUARMTBFlags;
228
229 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
230
231 typedef struct NVICState NVICState;
232
233 typedef struct CPUArchState {
234 /* Regs for current mode. */
235 uint32_t regs[16];
236
237 /* 32/64 switch only happens when taking and returning from
238 * exceptions so the overlap semantics are taken care of then
239 * instead of having a complicated union.
240 */
241 /* Regs for A64 mode. */
242 uint64_t xregs[32];
243 uint64_t pc;
244 /* PSTATE isn't an architectural register for ARMv8. However, it is
245 * convenient for us to assemble the underlying state into a 32 bit format
246 * identical to the architectural format used for the SPSR. (This is also
247 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
248 * 'pstate' register are.) Of the PSTATE bits:
249 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
250 * semantics as for AArch32, as described in the comments on each field)
251 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
252 * DAIF (exception masks) are kept in env->daif
253 * BTYPE is kept in env->btype
254 * SM and ZA are kept in env->svcr
255 * all other bits are stored in their correct places in env->pstate
256 */
257 uint32_t pstate;
258 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
259 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */
260
261 /* Cached TBFLAGS state. See below for which bits are included. */
262 CPUARMTBFlags hflags;
263
264 /* Frequently accessed CPSR bits are stored separately for efficiency.
265 This contains all the other bits. Use cpsr_{read,write} to access
266 the whole CPSR. */
267 uint32_t uncached_cpsr;
268 uint32_t spsr;
269
270 /* Banked registers. */
271 uint64_t banked_spsr[8];
272 uint32_t banked_r13[8];
273 uint32_t banked_r14[8];
274
275 /* These hold r8-r12. */
276 uint32_t usr_regs[5];
277 uint32_t fiq_regs[5];
278
279 /* cpsr flag cache for faster execution */
280 uint32_t CF; /* 0 or 1 */
281 uint32_t VF; /* V is the bit 31. All other bits are undefined */
282 uint32_t NF; /* N is bit 31. All other bits are undefined. */
283 uint32_t ZF; /* Z set if zero. */
284 uint32_t QF; /* 0 or 1 */
285 uint32_t GE; /* cpsr[19:16] */
286 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
287 uint32_t btype; /* BTI branch type. spsr[11:10]. */
288 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
289 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
290
291 uint64_t elr_el[4]; /* AArch64 exception link regs */
292 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
293
294 /* System control coprocessor (cp15) */
295 struct {
296 uint32_t c0_cpuid;
297 union { /* Cache size selection */
298 struct {
299 uint64_t _unused_csselr0;
300 uint64_t csselr_ns;
301 uint64_t _unused_csselr1;
302 uint64_t csselr_s;
303 };
304 uint64_t csselr_el[4];
305 };
306 union { /* System control register. */
307 struct {
308 uint64_t _unused_sctlr;
309 uint64_t sctlr_ns;
310 uint64_t hsctlr;
311 uint64_t sctlr_s;
312 };
313 uint64_t sctlr_el[4];
314 };
315 uint64_t vsctlr; /* Virtualization System control register. */
316 uint64_t cpacr_el1; /* Architectural feature access control register */
317 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
318 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
319 uint64_t sder; /* Secure debug enable register. */
320 uint32_t nsacr; /* Non-secure access control register. */
321 union { /* MMU translation table base 0. */
322 struct {
323 uint64_t _unused_ttbr0_0;
324 uint64_t ttbr0_ns;
325 uint64_t _unused_ttbr0_1;
326 uint64_t ttbr0_s;
327 };
328 uint64_t ttbr0_el[4];
329 };
330 union { /* MMU translation table base 1. */
331 struct {
332 uint64_t _unused_ttbr1_0;
333 uint64_t ttbr1_ns;
334 uint64_t _unused_ttbr1_1;
335 uint64_t ttbr1_s;
336 };
337 uint64_t ttbr1_el[4];
338 };
339 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
340 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
341 /* MMU translation table base control. */
342 uint64_t tcr_el[4];
343 uint64_t vtcr_el2; /* Virtualization Translation Control. */
344 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
345 uint32_t c2_data; /* MPU data cacheable bits. */
346 uint32_t c2_insn; /* MPU instruction cacheable bits. */
347 union { /* MMU domain access control register
348 * MPU write buffer control.
349 */
350 struct {
351 uint64_t dacr_ns;
352 uint64_t dacr_s;
353 };
354 struct {
355 uint64_t dacr32_el2;
356 };
357 };
358 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
359 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
360 uint64_t hcr_el2; /* Hypervisor configuration register */
361 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
362 uint64_t scr_el3; /* Secure configuration register. */
363 union { /* Fault status registers. */
364 struct {
365 uint64_t ifsr_ns;
366 uint64_t ifsr_s;
367 };
368 struct {
369 uint64_t ifsr32_el2;
370 };
371 };
372 union {
373 struct {
374 uint64_t _unused_dfsr;
375 uint64_t dfsr_ns;
376 uint64_t hsr;
377 uint64_t dfsr_s;
378 };
379 uint64_t esr_el[4];
380 };
381 uint32_t c6_region[8]; /* MPU base/size registers. */
382 union { /* Fault address registers. */
383 struct {
384 uint64_t _unused_far0;
385 #if HOST_BIG_ENDIAN
386 uint32_t ifar_ns;
387 uint32_t dfar_ns;
388 uint32_t ifar_s;
389 uint32_t dfar_s;
390 #else
391 uint32_t dfar_ns;
392 uint32_t ifar_ns;
393 uint32_t dfar_s;
394 uint32_t ifar_s;
395 #endif
396 uint64_t _unused_far3;
397 };
398 uint64_t far_el[4];
399 };
400 uint64_t hpfar_el2;
401 uint64_t hstr_el2;
402 union { /* Translation result. */
403 struct {
404 uint64_t _unused_par_0;
405 uint64_t par_ns;
406 uint64_t _unused_par_1;
407 uint64_t par_s;
408 };
409 uint64_t par_el[4];
410 };
411
412 uint32_t c9_insn; /* Cache lockdown registers. */
413 uint32_t c9_data;
414 uint64_t c9_pmcr; /* performance monitor control register */
415 uint64_t c9_pmcnten; /* perf monitor counter enables */
416 uint64_t c9_pmovsr; /* perf monitor overflow status */
417 uint64_t c9_pmuserenr; /* perf monitor user enable */
418 uint64_t c9_pmselr; /* perf monitor counter selection register */
419 uint64_t c9_pminten; /* perf monitor interrupt enables */
420 union { /* Memory attribute redirection */
421 struct {
422 #if HOST_BIG_ENDIAN
423 uint64_t _unused_mair_0;
424 uint32_t mair1_ns;
425 uint32_t mair0_ns;
426 uint64_t _unused_mair_1;
427 uint32_t mair1_s;
428 uint32_t mair0_s;
429 #else
430 uint64_t _unused_mair_0;
431 uint32_t mair0_ns;
432 uint32_t mair1_ns;
433 uint64_t _unused_mair_1;
434 uint32_t mair0_s;
435 uint32_t mair1_s;
436 #endif
437 };
438 uint64_t mair_el[4];
439 };
440 union { /* vector base address register */
441 struct {
442 uint64_t _unused_vbar;
443 uint64_t vbar_ns;
444 uint64_t hvbar;
445 uint64_t vbar_s;
446 };
447 uint64_t vbar_el[4];
448 };
449 uint32_t mvbar; /* (monitor) vector base address register */
450 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
451 struct { /* FCSE PID. */
452 uint32_t fcseidr_ns;
453 uint32_t fcseidr_s;
454 };
455 union { /* Context ID. */
456 struct {
457 uint64_t _unused_contextidr_0;
458 uint64_t contextidr_ns;
459 uint64_t _unused_contextidr_1;
460 uint64_t contextidr_s;
461 };
462 uint64_t contextidr_el[4];
463 };
464 union { /* User RW Thread register. */
465 struct {
466 uint64_t tpidrurw_ns;
467 uint64_t tpidrprw_ns;
468 uint64_t htpidr;
469 uint64_t _tpidr_el3;
470 };
471 uint64_t tpidr_el[4];
472 };
473 uint64_t tpidr2_el0;
474 /* The secure banks of these registers don't map anywhere */
475 uint64_t tpidrurw_s;
476 uint64_t tpidrprw_s;
477 uint64_t tpidruro_s;
478
479 union { /* User RO Thread register. */
480 uint64_t tpidruro_ns;
481 uint64_t tpidrro_el[1];
482 };
483 uint64_t c14_cntfrq; /* Counter Frequency register */
484 uint64_t c14_cntkctl; /* Timer Control register */
485 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
486 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
487 ARMGenericTimer c14_timer[NUM_GTIMERS];
488 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
489 uint32_t c15_ticonfig; /* TI925T configuration byte. */
490 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
491 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
492 uint32_t c15_threadid; /* TI debugger thread-ID. */
493 uint32_t c15_config_base_address; /* SCU base address. */
494 uint32_t c15_diagnostic; /* diagnostic register */
495 uint32_t c15_power_diagnostic;
496 uint32_t c15_power_control; /* power control */
497 uint64_t dbgbvr[16]; /* breakpoint value registers */
498 uint64_t dbgbcr[16]; /* breakpoint control registers */
499 uint64_t dbgwvr[16]; /* watchpoint value registers */
500 uint64_t dbgwcr[16]; /* watchpoint control registers */
501 uint64_t dbgclaim; /* DBGCLAIM bits */
502 uint64_t mdscr_el1;
503 uint64_t oslsr_el1; /* OS Lock Status */
504 uint64_t osdlr_el1; /* OS DoubleLock status */
505 uint64_t mdcr_el2;
506 uint64_t mdcr_el3;
507 /* Stores the architectural value of the counter *the last time it was
508 * updated* by pmccntr_op_start. Accesses should always be surrounded
509 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510 * architecturally-correct value is being read/set.
511 */
512 uint64_t c15_ccnt;
513 /* Stores the delta between the architectural value and the underlying
514 * cycle count during normal operation. It is used to update c15_ccnt
515 * to be the correct architectural value before accesses. During
516 * accesses, c15_ccnt_delta contains the underlying count being used
517 * for the access, after which it reverts to the delta value in
518 * pmccntr_op_finish.
519 */
520 uint64_t c15_ccnt_delta;
521 uint64_t c14_pmevcntr[31];
522 uint64_t c14_pmevcntr_delta[31];
523 uint64_t c14_pmevtyper[31];
524 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */
528 uint64_t gcr_el1;
529 uint64_t rgsr_el1;
530
531 /* Minimal RAS registers */
532 uint64_t disr_el1;
533 uint64_t vdisr_el2;
534 uint64_t vsesr_el2;
535
536 /*
537 * Fine-Grained Trap registers. We store these as arrays so the
538 * access checking code doesn't have to manually select
539 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
540 * FEAT_FGT2 will add more elements to these arrays.
541 */
542 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
543 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
544 uint64_t fgt_exec[1]; /* HFGITR */
545
546 /* RME registers */
547 uint64_t gpccr_el3;
548 uint64_t gptbr_el3;
549 uint64_t mfar_el3;
550 } cp15;
551
552 struct {
553 /* M profile has up to 4 stack pointers:
554 * a Main Stack Pointer and a Process Stack Pointer for each
555 * of the Secure and Non-Secure states. (If the CPU doesn't support
556 * the security extension then it has only two SPs.)
557 * In QEMU we always store the currently active SP in regs[13],
558 * and the non-active SP for the current security state in
559 * v7m.other_sp. The stack pointers for the inactive security state
560 * are stored in other_ss_msp and other_ss_psp.
561 * switch_v7m_security_state() is responsible for rearranging them
562 * when we change security state.
563 */
564 uint32_t other_sp;
565 uint32_t other_ss_msp;
566 uint32_t other_ss_psp;
567 uint32_t vecbase[M_REG_NUM_BANKS];
568 uint32_t basepri[M_REG_NUM_BANKS];
569 uint32_t control[M_REG_NUM_BANKS];
570 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
571 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
572 uint32_t hfsr; /* HardFault Status */
573 uint32_t dfsr; /* Debug Fault Status Register */
574 uint32_t sfsr; /* Secure Fault Status Register */
575 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
576 uint32_t bfar; /* BusFault Address */
577 uint32_t sfar; /* Secure Fault Address Register */
578 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
579 int exception;
580 uint32_t primask[M_REG_NUM_BANKS];
581 uint32_t faultmask[M_REG_NUM_BANKS];
582 uint32_t aircr; /* only holds r/w state if security extn implemented */
583 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
584 uint32_t csselr[M_REG_NUM_BANKS];
585 uint32_t scr[M_REG_NUM_BANKS];
586 uint32_t msplim[M_REG_NUM_BANKS];
587 uint32_t psplim[M_REG_NUM_BANKS];
588 uint32_t fpcar[M_REG_NUM_BANKS];
589 uint32_t fpccr[M_REG_NUM_BANKS];
590 uint32_t fpdscr[M_REG_NUM_BANKS];
591 uint32_t cpacr[M_REG_NUM_BANKS];
592 uint32_t nsacr;
593 uint32_t ltpsize;
594 uint32_t vpr;
595 } v7m;
596
597 /* Information associated with an exception about to be taken:
598 * code which raises an exception must set cs->exception_index and
599 * the relevant parts of this structure; the cpu_do_interrupt function
600 * will then set the guest-visible registers as part of the exception
601 * entry process.
602 */
603 struct {
604 uint32_t syndrome; /* AArch64 format syndrome register */
605 uint32_t fsr; /* AArch32 format fault status register info */
606 uint64_t vaddress; /* virtual addr associated with exception, if any */
607 uint32_t target_el; /* EL the exception should be targeted for */
608 /* If we implement EL2 we will also need to store information
609 * about the intermediate physical address for stage 2 faults.
610 */
611 } exception;
612
613 /* Information associated with an SError */
614 struct {
615 uint8_t pending;
616 uint8_t has_esr;
617 uint64_t esr;
618 } serror;
619
620 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
621
622 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
623 uint32_t irq_line_state;
624
625 /* Thumb-2 EE state. */
626 uint32_t teecr;
627 uint32_t teehbr;
628
629 /* VFP coprocessor state. */
630 struct {
631 ARMVectorReg zregs[32];
632
633 #ifdef TARGET_AARCH64
634 /* Store FFR as pregs[16] to make it easier to treat as any other. */
635 #define FFR_PRED_NUM 16
636 ARMPredicateReg pregs[17];
637 /* Scratch space for aa64 sve predicate temporary. */
638 ARMPredicateReg preg_tmp;
639 #endif
640
641 /* We store these fpcsr fields separately for convenience. */
642 uint32_t qc[4] QEMU_ALIGNED(16);
643 int vec_len;
644 int vec_stride;
645
646 uint32_t xregs[16];
647
648 /* Scratch space for aa32 neon expansion. */
649 uint32_t scratch[8];
650
651 /* There are a number of distinct float control structures:
652 *
653 * fp_status: is the "normal" fp status.
654 * fp_status_fp16: used for half-precision calculations
655 * standard_fp_status : the ARM "Standard FPSCR Value"
656 * standard_fp_status_fp16 : used for half-precision
657 * calculations with the ARM "Standard FPSCR Value"
658 *
659 * Half-precision operations are governed by a separate
660 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
661 * status structure to control this.
662 *
663 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
664 * round-to-nearest and is used by any operations (generally
665 * Neon) which the architecture defines as controlled by the
666 * standard FPSCR value rather than the FPSCR.
667 *
668 * The "standard FPSCR but for fp16 ops" is needed because
669 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
670 * using a fixed value for it.
671 *
672 * To avoid having to transfer exception bits around, we simply
673 * say that the FPSCR cumulative exception flags are the logical
674 * OR of the flags in the four fp statuses. This relies on the
675 * only thing which needs to read the exception flags being
676 * an explicit FPSCR read.
677 */
678 float_status fp_status;
679 float_status fp_status_f16;
680 float_status standard_fp_status;
681 float_status standard_fp_status_f16;
682
683 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */
684 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */
685 } vfp;
686
687 uint64_t exclusive_addr;
688 uint64_t exclusive_val;
689 /*
690 * Contains the 'val' for the second 64-bit register of LDXP, which comes
691 * from the higher address, not the high part of a complete 128-bit value.
692 * In some ways it might be more convenient to record the exclusive value
693 * as the low and high halves of a 128 bit data value, but the current
694 * semantics of these fields are baked into the migration format.
695 */
696 uint64_t exclusive_high;
697
698 /* iwMMXt coprocessor state. */
699 struct {
700 uint64_t regs[16];
701 uint64_t val;
702
703 uint32_t cregs[16];
704 } iwmmxt;
705
706 #ifdef TARGET_AARCH64
707 struct {
708 ARMPACKey apia;
709 ARMPACKey apib;
710 ARMPACKey apda;
711 ARMPACKey apdb;
712 ARMPACKey apga;
713 } keys;
714
715 uint64_t scxtnum_el[4];
716
717 /*
718 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
719 * as we do with vfp.zregs[]. This corresponds to the architectural ZA
720 * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
721 * When SVL is less than the architectural maximum, the accessible
722 * storage is restricted, such that if the SVL is X bytes the guest can
723 * see only the bottom X elements of zarray[], and only the least
724 * significant X bytes of each element of the array. (In other words,
725 * the observable part is always square.)
726 *
727 * The ZA storage can also be considered as a set of square tiles of
728 * elements of different sizes. The mapping from tiles to the ZA array
729 * is architecturally defined, such that for tiles of elements of esz
730 * bytes, the Nth row (or "horizontal slice") of tile T is in
731 * ZA[T + N * esz]. Note that this means that each tile is not contiguous
732 * in the ZA storage, because its rows are striped through the ZA array.
733 *
734 * Because this is so large, keep this toward the end of the reset area,
735 * to keep the offsets into the rest of the structure smaller.
736 */
737 ARMVectorReg zarray[ARM_MAX_VQ * 16];
738 #endif
739
740 struct CPUBreakpoint *cpu_breakpoint[16];
741 struct CPUWatchpoint *cpu_watchpoint[16];
742
743 /* Optional fault info across tlb lookup. */
744 ARMMMUFaultInfo *tlb_fi;
745
746 /* Fields up to this point are cleared by a CPU reset */
747 struct {} end_reset_fields;
748
749 /* Fields after this point are preserved across CPU reset. */
750
751 /* Internal CPU feature flags. */
752 uint64_t features;
753
754 /* PMSAv7 MPU */
755 struct {
756 uint32_t *drbar;
757 uint32_t *drsr;
758 uint32_t *dracr;
759 uint32_t rnr[M_REG_NUM_BANKS];
760 } pmsav7;
761
762 /* PMSAv8 MPU */
763 struct {
764 /* The PMSAv8 implementation also shares some PMSAv7 config
765 * and state:
766 * pmsav7.rnr (region number register)
767 * pmsav7_dregion (number of configured regions)
768 */
769 uint32_t *rbar[M_REG_NUM_BANKS];
770 uint32_t *rlar[M_REG_NUM_BANKS];
771 uint32_t *hprbar;
772 uint32_t *hprlar;
773 uint32_t mair0[M_REG_NUM_BANKS];
774 uint32_t mair1[M_REG_NUM_BANKS];
775 uint32_t hprselr;
776 } pmsav8;
777
778 /* v8M SAU */
779 struct {
780 uint32_t *rbar;
781 uint32_t *rlar;
782 uint32_t rnr;
783 uint32_t ctrl;
784 } sau;
785
786 #if !defined(CONFIG_USER_ONLY)
787 NVICState *nvic;
788 const struct arm_boot_info *boot_info;
789 /* Store GICv3CPUState to access from this struct */
790 void *gicv3state;
791 #else /* CONFIG_USER_ONLY */
792 /* For usermode syscall translation. */
793 bool eabi;
794 #endif /* CONFIG_USER_ONLY */
795
796 #ifdef TARGET_TAGGED_ADDRESSES
797 /* Linux syscall tagged address support */
798 bool tagged_addr_enable;
799 #endif
800 } CPUARMState;
801
802 static inline void set_feature(CPUARMState *env, int feature)
803 {
804 env->features |= 1ULL << feature;
805 }
806
807 static inline void unset_feature(CPUARMState *env, int feature)
808 {
809 env->features &= ~(1ULL << feature);
810 }
811
812 /**
813 * ARMELChangeHookFn:
814 * type of a function which can be registered via arm_register_el_change_hook()
815 * to get callbacks when the CPU changes its exception level or mode.
816 */
817 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
818 typedef struct ARMELChangeHook ARMELChangeHook;
819 struct ARMELChangeHook {
820 ARMELChangeHookFn *hook;
821 void *opaque;
822 QLIST_ENTRY(ARMELChangeHook) node;
823 };
824
825 /* These values map onto the return values for
826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
827 typedef enum ARMPSCIState {
828 PSCI_ON = 0,
829 PSCI_OFF = 1,
830 PSCI_ON_PENDING = 2
831 } ARMPSCIState;
832
833 typedef struct ARMISARegisters ARMISARegisters;
834
835 /*
836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
838 *
839 * While processing properties during initialization, corresponding init bits
840 * are set for bits in sve_vq_map that have been set by properties.
841 *
842 * Bits set in supported represent valid vector lengths for the CPU type.
843 */
844 typedef struct {
845 uint32_t map, init, supported;
846 } ARMVQMap;
847
848 /**
849 * ARMCPU:
850 * @env: #CPUARMState
851 *
852 * An ARM CPU core.
853 */
854 struct ArchCPU {
855 /*< private >*/
856 CPUState parent_obj;
857 /*< public >*/
858
859 CPUNegativeOffsetState neg;
860 CPUARMState env;
861
862 /* Coprocessor information */
863 GHashTable *cp_regs;
864 /* For marshalling (mostly coprocessor) register state between the
865 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
866 * we use these arrays.
867 */
868 /* List of register indexes managed via these arrays; (full KVM style
869 * 64 bit indexes, not CPRegInfo 32 bit indexes)
870 */
871 uint64_t *cpreg_indexes;
872 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
873 uint64_t *cpreg_values;
874 /* Length of the indexes, values, reset_values arrays */
875 int32_t cpreg_array_len;
876 /* These are used only for migration: incoming data arrives in
877 * these fields and is sanity checked in post_load before copying
878 * to the working data structures above.
879 */
880 uint64_t *cpreg_vmstate_indexes;
881 uint64_t *cpreg_vmstate_values;
882 int32_t cpreg_vmstate_array_len;
883
884 DynamicGDBXMLInfo dyn_sysreg_xml;
885 DynamicGDBXMLInfo dyn_svereg_xml;
886 DynamicGDBXMLInfo dyn_m_systemreg_xml;
887 DynamicGDBXMLInfo dyn_m_secextreg_xml;
888
889 /* Timers used by the generic (architected) timer */
890 QEMUTimer *gt_timer[NUM_GTIMERS];
891 /*
892 * Timer used by the PMU. Its state is restored after migration by
893 * pmu_op_finish() - it does not need other handling during migration
894 */
895 QEMUTimer *pmu_timer;
896 /* GPIO outputs for generic timer */
897 qemu_irq gt_timer_outputs[NUM_GTIMERS];
898 /* GPIO output for GICv3 maintenance interrupt signal */
899 qemu_irq gicv3_maintenance_interrupt;
900 /* GPIO output for the PMU interrupt */
901 qemu_irq pmu_interrupt;
902
903 /* MemoryRegion to use for secure physical accesses */
904 MemoryRegion *secure_memory;
905
906 /* MemoryRegion to use for allocation tag accesses */
907 MemoryRegion *tag_memory;
908 MemoryRegion *secure_tag_memory;
909
910 /* For v8M, pointer to the IDAU interface provided by board/SoC */
911 Object *idau;
912
913 /* 'compatible' string for this CPU for Linux device trees */
914 const char *dtb_compatible;
915
916 /* PSCI version for this CPU
917 * Bits[31:16] = Major Version
918 * Bits[15:0] = Minor Version
919 */
920 uint32_t psci_version;
921
922 /* Current power state, access guarded by BQL */
923 ARMPSCIState power_state;
924
925 /* CPU has virtualization extension */
926 bool has_el2;
927 /* CPU has security extension */
928 bool has_el3;
929 /* CPU has PMU (Performance Monitor Unit) */
930 bool has_pmu;
931 /* CPU has VFP */
932 bool has_vfp;
933 /* CPU has 32 VFP registers */
934 bool has_vfp_d32;
935 /* CPU has Neon */
936 bool has_neon;
937 /* CPU has M-profile DSP extension */
938 bool has_dsp;
939
940 /* CPU has memory protection unit */
941 bool has_mpu;
942 /* PMSAv7 MPU number of supported regions */
943 uint32_t pmsav7_dregion;
944 /* PMSAv8 MPU number of supported hyp regions */
945 uint32_t pmsav8r_hdregion;
946 /* v8M SAU number of supported regions */
947 uint32_t sau_sregion;
948
949 /* PSCI conduit used to invoke PSCI methods
950 * 0 - disabled, 1 - smc, 2 - hvc
951 */
952 uint32_t psci_conduit;
953
954 /* For v8M, initial value of the Secure VTOR */
955 uint32_t init_svtor;
956 /* For v8M, initial value of the Non-secure VTOR */
957 uint32_t init_nsvtor;
958
959 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
960 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
961 */
962 uint32_t kvm_target;
963
964 #ifdef CONFIG_KVM
965 /* KVM init features for this CPU */
966 uint32_t kvm_init_features[7];
967
968 /* KVM CPU state */
969
970 /* KVM virtual time adjustment */
971 bool kvm_adjvtime;
972 bool kvm_vtime_dirty;
973 uint64_t kvm_vtime;
974
975 /* KVM steal time */
976 OnOffAuto kvm_steal_time;
977 #endif /* CONFIG_KVM */
978
979 /* Uniprocessor system with MP extensions */
980 bool mp_is_up;
981
982 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
983 * and the probe failed (so we need to report the error in realize)
984 */
985 bool host_cpu_probe_failed;
986
987 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
988 * register.
989 */
990 int32_t core_count;
991
992 /* The instance init functions for implementation-specific subclasses
993 * set these fields to specify the implementation-dependent values of
994 * various constant registers and reset values of non-constant
995 * registers.
996 * Some of these might become QOM properties eventually.
997 * Field names match the official register names as defined in the
998 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
999 * is used for reset values of non-constant registers; no reset_
1000 * prefix means a constant register.
1001 * Some of these registers are split out into a substructure that
1002 * is shared with the translators to control the ISA.
1003 *
1004 * Note that if you add an ID register to the ARMISARegisters struct
1005 * you need to also update the 32-bit and 64-bit versions of the
1006 * kvm_arm_get_host_cpu_features() function to correctly populate the
1007 * field by reading the value from the KVM vCPU.
1008 */
1009 struct ARMISARegisters {
1010 uint32_t id_isar0;
1011 uint32_t id_isar1;
1012 uint32_t id_isar2;
1013 uint32_t id_isar3;
1014 uint32_t id_isar4;
1015 uint32_t id_isar5;
1016 uint32_t id_isar6;
1017 uint32_t id_mmfr0;
1018 uint32_t id_mmfr1;
1019 uint32_t id_mmfr2;
1020 uint32_t id_mmfr3;
1021 uint32_t id_mmfr4;
1022 uint32_t id_mmfr5;
1023 uint32_t id_pfr0;
1024 uint32_t id_pfr1;
1025 uint32_t id_pfr2;
1026 uint32_t mvfr0;
1027 uint32_t mvfr1;
1028 uint32_t mvfr2;
1029 uint32_t id_dfr0;
1030 uint32_t id_dfr1;
1031 uint32_t dbgdidr;
1032 uint32_t dbgdevid;
1033 uint32_t dbgdevid1;
1034 uint64_t id_aa64isar0;
1035 uint64_t id_aa64isar1;
1036 uint64_t id_aa64isar2;
1037 uint64_t id_aa64pfr0;
1038 uint64_t id_aa64pfr1;
1039 uint64_t id_aa64mmfr0;
1040 uint64_t id_aa64mmfr1;
1041 uint64_t id_aa64mmfr2;
1042 uint64_t id_aa64dfr0;
1043 uint64_t id_aa64dfr1;
1044 uint64_t id_aa64zfr0;
1045 uint64_t id_aa64smfr0;
1046 uint64_t reset_pmcr_el0;
1047 } isar;
1048 uint64_t midr;
1049 uint32_t revidr;
1050 uint32_t reset_fpsid;
1051 uint64_t ctr;
1052 uint32_t reset_sctlr;
1053 uint64_t pmceid0;
1054 uint64_t pmceid1;
1055 uint32_t id_afr0;
1056 uint64_t id_aa64afr0;
1057 uint64_t id_aa64afr1;
1058 uint64_t clidr;
1059 uint64_t mp_affinity; /* MP ID without feature bits */
1060 /* The elements of this array are the CCSIDR values for each cache,
1061 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1062 */
1063 uint64_t ccsidr[16];
1064 uint64_t reset_cbar;
1065 uint32_t reset_auxcr;
1066 bool reset_hivecs;
1067 uint8_t reset_l0gptsz;
1068
1069 /*
1070 * Intermediate values used during property parsing.
1071 * Once finalized, the values should be read from ID_AA64*.
1072 */
1073 bool prop_pauth;
1074 bool prop_pauth_impdef;
1075 bool prop_pauth_qarma3;
1076 bool prop_lpa2;
1077
1078 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1079 uint8_t dcz_blocksize;
1080 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1081 uint8_t gm_blocksize;
1082
1083 uint64_t rvbar_prop; /* Property/input signals. */
1084
1085 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1086 int gic_num_lrs; /* number of list registers */
1087 int gic_vpribits; /* number of virtual priority bits */
1088 int gic_vprebits; /* number of virtual preemption bits */
1089 int gic_pribits; /* number of physical priority bits */
1090
1091 /* Whether the cfgend input is high (i.e. this CPU should reset into
1092 * big-endian mode). This setting isn't used directly: instead it modifies
1093 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1094 * architecture version.
1095 */
1096 bool cfgend;
1097
1098 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1099 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1100
1101 int32_t node_id; /* NUMA node this CPU belongs to */
1102
1103 /* Used to synchronize KVM and QEMU in-kernel device levels */
1104 uint8_t device_irq_level;
1105
1106 /* Used to set the maximum vector length the cpu will support. */
1107 uint32_t sve_max_vq;
1108
1109 #ifdef CONFIG_USER_ONLY
1110 /* Used to set the default vector length at process start. */
1111 uint32_t sve_default_vq;
1112 uint32_t sme_default_vq;
1113 #endif
1114
1115 ARMVQMap sve_vq;
1116 ARMVQMap sme_vq;
1117
1118 /* Generic timer counter frequency, in Hz */
1119 uint64_t gt_cntfrq_hz;
1120 };
1121
1122 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1123 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1124
1125 void arm_cpu_post_init(Object *obj);
1126
1127 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1128
1129 #ifndef CONFIG_USER_ONLY
1130 extern const VMStateDescription vmstate_arm_cpu;
1131
1132 void arm_cpu_do_interrupt(CPUState *cpu);
1133 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1134
1135 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1136 MemTxAttrs *attrs);
1137 #endif /* !CONFIG_USER_ONLY */
1138
1139 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1140 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1141
1142 /* Returns the dynamically generated XML for the gdb stub.
1143 * Returns a pointer to the XML contents for the specified XML file or NULL
1144 * if the XML name doesn't match the predefined one.
1145 */
1146 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1147
1148 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1149 int cpuid, DumpState *s);
1150 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1151 int cpuid, DumpState *s);
1152
1153 #ifdef TARGET_AARCH64
1154 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1155 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1156 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1157 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1158 int new_el, bool el0_a64);
1159 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1160
1161 /*
1162 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1163 * The byte at offset i from the start of the in-memory representation contains
1164 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1165 * lowest offsets are stored in the lowest memory addresses, then that nearly
1166 * matches QEMU's representation, which is to use an array of host-endian
1167 * uint64_t's, where the lower offsets are at the lower indices. To complete
1168 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1169 */
1170 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1171 {
1172 #if HOST_BIG_ENDIAN
1173 int i;
1174
1175 for (i = 0; i < nr; ++i) {
1176 dst[i] = bswap64(src[i]);
1177 }
1178
1179 return dst;
1180 #else
1181 return src;
1182 #endif
1183 }
1184
1185 #else
1186 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1187 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1188 int n, bool a)
1189 { }
1190 #endif
1191
1192 void aarch64_sync_32_to_64(CPUARMState *env);
1193 void aarch64_sync_64_to_32(CPUARMState *env);
1194
1195 int fp_exception_el(CPUARMState *env, int cur_el);
1196 int sve_exception_el(CPUARMState *env, int cur_el);
1197 int sme_exception_el(CPUARMState *env, int cur_el);
1198
1199 /**
1200 * sve_vqm1_for_el_sm:
1201 * @env: CPUARMState
1202 * @el: exception level
1203 * @sm: streaming mode
1204 *
1205 * Compute the current vector length for @el & @sm, in units of
1206 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1207 * If @sm, compute for SVL, otherwise NVL.
1208 */
1209 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1210
1211 /* Likewise, but using @sm = PSTATE.SM. */
1212 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1213
1214 static inline bool is_a64(CPUARMState *env)
1215 {
1216 return env->aarch64;
1217 }
1218
1219 /**
1220 * pmu_op_start/finish
1221 * @env: CPUARMState
1222 *
1223 * Convert all PMU counters between their delta form (the typical mode when
1224 * they are enabled) and the guest-visible values. These two calls must
1225 * surround any action which might affect the counters.
1226 */
1227 void pmu_op_start(CPUARMState *env);
1228 void pmu_op_finish(CPUARMState *env);
1229
1230 /*
1231 * Called when a PMU counter is due to overflow
1232 */
1233 void arm_pmu_timer_cb(void *opaque);
1234
1235 /**
1236 * Functions to register as EL change hooks for PMU mode filtering
1237 */
1238 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1239 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1240
1241 /*
1242 * pmu_init
1243 * @cpu: ARMCPU
1244 *
1245 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1246 * for the current configuration
1247 */
1248 void pmu_init(ARMCPU *cpu);
1249
1250 /* SCTLR bit meanings. Several bits have been reused in newer
1251 * versions of the architecture; in that case we define constants
1252 * for both old and new bit meanings. Code which tests against those
1253 * bits should probably check or otherwise arrange that the CPU
1254 * is the architectural version it expects.
1255 */
1256 #define SCTLR_M (1U << 0)
1257 #define SCTLR_A (1U << 1)
1258 #define SCTLR_C (1U << 2)
1259 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1260 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1261 #define SCTLR_SA (1U << 3) /* AArch64 only */
1262 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1263 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1264 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1265 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1266 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1267 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1268 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */
1269 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1270 #define SCTLR_ITD (1U << 7) /* v8 onward */
1271 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1272 #define SCTLR_SED (1U << 8) /* v8 onward */
1273 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1274 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1275 #define SCTLR_F (1U << 10) /* up to v6 */
1276 #define SCTLR_SW (1U << 10) /* v7 */
1277 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1278 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1279 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1280 #define SCTLR_I (1U << 12)
1281 #define SCTLR_V (1U << 13) /* AArch32 only */
1282 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1283 #define SCTLR_RR (1U << 14) /* up to v7 */
1284 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1285 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1286 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1287 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1288 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1289 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1290 #define SCTLR_BR (1U << 17) /* PMSA only */
1291 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1292 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1293 #define SCTLR_WXN (1U << 19)
1294 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1295 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1296 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1297 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1298 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1299 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1300 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1301 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1302 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1303 #define SCTLR_VE (1U << 24) /* up to v7 */
1304 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1305 #define SCTLR_EE (1U << 25)
1306 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1307 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1308 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1309 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1310 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1311 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1312 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1313 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1314 #define SCTLR_TE (1U << 30) /* AArch32 only */
1315 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1316 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1317 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1318 #define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */
1319 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1320 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1321 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1322 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1323 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1324 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1325 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1326 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1327 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */
1328 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */
1329 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */
1330 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */
1331 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */
1332 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */
1333 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */
1334 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */
1335 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */
1336 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */
1337 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */
1338 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */
1339 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1340 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */
1341
1342 /* Bit definitions for CPACR (AArch32 only) */
1343 FIELD(CPACR, CP10, 20, 2)
1344 FIELD(CPACR, CP11, 22, 2)
1345 FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
1346 FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
1347 FIELD(CPACR, ASEDIS, 31, 1)
1348
1349 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1350 FIELD(CPACR_EL1, ZEN, 16, 2)
1351 FIELD(CPACR_EL1, FPEN, 20, 2)
1352 FIELD(CPACR_EL1, SMEN, 24, 2)
1353 FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
1354
1355 /* Bit definitions for HCPTR (AArch32 only) */
1356 FIELD(HCPTR, TCP10, 10, 1)
1357 FIELD(HCPTR, TCP11, 11, 1)
1358 FIELD(HCPTR, TASE, 15, 1)
1359 FIELD(HCPTR, TTA, 20, 1)
1360 FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
1361 FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
1362
1363 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1364 FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
1365 FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
1366 FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
1367 FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
1368 FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
1369 FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
1370 FIELD(CPTR_EL2, TTA, 28, 1)
1371 FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
1372 FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
1373
1374 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1375 FIELD(CPTR_EL3, EZ, 8, 1)
1376 FIELD(CPTR_EL3, TFP, 10, 1)
1377 FIELD(CPTR_EL3, ESM, 12, 1)
1378 FIELD(CPTR_EL3, TTA, 20, 1)
1379 FIELD(CPTR_EL3, TAM, 30, 1)
1380 FIELD(CPTR_EL3, TCPAC, 31, 1)
1381
1382 #define MDCR_MTPME (1U << 28)
1383 #define MDCR_TDCC (1U << 27)
1384 #define MDCR_HLP (1U << 26) /* MDCR_EL2 */
1385 #define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
1386 #define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
1387 #define MDCR_EPMAD (1U << 21)
1388 #define MDCR_EDAD (1U << 20)
1389 #define MDCR_TTRF (1U << 19)
1390 #define MDCR_STE (1U << 18) /* MDCR_EL3 */
1391 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1392 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1393 #define MDCR_SDD (1U << 16)
1394 #define MDCR_SPD (3U << 14)
1395 #define MDCR_TDRA (1U << 11)
1396 #define MDCR_TDOSA (1U << 10)
1397 #define MDCR_TDA (1U << 9)
1398 #define MDCR_TDE (1U << 8)
1399 #define MDCR_HPME (1U << 7)
1400 #define MDCR_TPM (1U << 6)
1401 #define MDCR_TPMCR (1U << 5)
1402 #define MDCR_HPMN (0x1fU)
1403
1404 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1405 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1406 MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1407 MDCR_STE | MDCR_SPME | MDCR_SPD)
1408
1409 #define CPSR_M (0x1fU)
1410 #define CPSR_T (1U << 5)
1411 #define CPSR_F (1U << 6)
1412 #define CPSR_I (1U << 7)
1413 #define CPSR_A (1U << 8)
1414 #define CPSR_E (1U << 9)
1415 #define CPSR_IT_2_7 (0xfc00U)
1416 #define CPSR_GE (0xfU << 16)
1417 #define CPSR_IL (1U << 20)
1418 #define CPSR_DIT (1U << 21)
1419 #define CPSR_PAN (1U << 22)
1420 #define CPSR_SSBS (1U << 23)
1421 #define CPSR_J (1U << 24)
1422 #define CPSR_IT_0_1 (3U << 25)
1423 #define CPSR_Q (1U << 27)
1424 #define CPSR_V (1U << 28)
1425 #define CPSR_C (1U << 29)
1426 #define CPSR_Z (1U << 30)
1427 #define CPSR_N (1U << 31)
1428 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1429 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1430
1431 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1432 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1433 | CPSR_NZCV)
1434 /* Bits writable in user mode. */
1435 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1436 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1437 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1438
1439 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1440 #define XPSR_EXCP 0x1ffU
1441 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1442 #define XPSR_IT_2_7 CPSR_IT_2_7
1443 #define XPSR_GE CPSR_GE
1444 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1445 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1446 #define XPSR_IT_0_1 CPSR_IT_0_1
1447 #define XPSR_Q CPSR_Q
1448 #define XPSR_V CPSR_V
1449 #define XPSR_C CPSR_C
1450 #define XPSR_Z CPSR_Z
1451 #define XPSR_N CPSR_N
1452 #define XPSR_NZCV CPSR_NZCV
1453 #define XPSR_IT CPSR_IT
1454
1455 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1456 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1457 #define TTBCR_PD0 (1U << 4)
1458 #define TTBCR_PD1 (1U << 5)
1459 #define TTBCR_EPD0 (1U << 7)
1460 #define TTBCR_IRGN0 (3U << 8)
1461 #define TTBCR_ORGN0 (3U << 10)
1462 #define TTBCR_SH0 (3U << 12)
1463 #define TTBCR_T1SZ (3U << 16)
1464 #define TTBCR_A1 (1U << 22)
1465 #define TTBCR_EPD1 (1U << 23)
1466 #define TTBCR_IRGN1 (3U << 24)
1467 #define TTBCR_ORGN1 (3U << 26)
1468 #define TTBCR_SH1 (1U << 28)
1469 #define TTBCR_EAE (1U << 31)
1470
1471 FIELD(VTCR, T0SZ, 0, 6)
1472 FIELD(VTCR, SL0, 6, 2)
1473 FIELD(VTCR, IRGN0, 8, 2)
1474 FIELD(VTCR, ORGN0, 10, 2)
1475 FIELD(VTCR, SH0, 12, 2)
1476 FIELD(VTCR, TG0, 14, 2)
1477 FIELD(VTCR, PS, 16, 3)
1478 FIELD(VTCR, VS, 19, 1)
1479 FIELD(VTCR, HA, 21, 1)
1480 FIELD(VTCR, HD, 22, 1)
1481 FIELD(VTCR, HWU59, 25, 1)
1482 FIELD(VTCR, HWU60, 26, 1)
1483 FIELD(VTCR, HWU61, 27, 1)
1484 FIELD(VTCR, HWU62, 28, 1)
1485 FIELD(VTCR, NSW, 29, 1)
1486 FIELD(VTCR, NSA, 30, 1)
1487 FIELD(VTCR, DS, 32, 1)
1488 FIELD(VTCR, SL2, 33, 1)
1489
1490 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1491 * Only these are valid when in AArch64 mode; in
1492 * AArch32 mode SPSRs are basically CPSR-format.
1493 */
1494 #define PSTATE_SP (1U)
1495 #define PSTATE_M (0xFU)
1496 #define PSTATE_nRW (1U << 4)
1497 #define PSTATE_F (1U << 6)
1498 #define PSTATE_I (1U << 7)
1499 #define PSTATE_A (1U << 8)
1500 #define PSTATE_D (1U << 9)
1501 #define PSTATE_BTYPE (3U << 10)
1502 #define PSTATE_SSBS (1U << 12)
1503 #define PSTATE_IL (1U << 20)
1504 #define PSTATE_SS (1U << 21)
1505 #define PSTATE_PAN (1U << 22)
1506 #define PSTATE_UAO (1U << 23)
1507 #define PSTATE_DIT (1U << 24)
1508 #define PSTATE_TCO (1U << 25)
1509 #define PSTATE_V (1U << 28)
1510 #define PSTATE_C (1U << 29)
1511 #define PSTATE_Z (1U << 30)
1512 #define PSTATE_N (1U << 31)
1513 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1514 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1515 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1516 /* Mode values for AArch64 */
1517 #define PSTATE_MODE_EL3h 13
1518 #define PSTATE_MODE_EL3t 12
1519 #define PSTATE_MODE_EL2h 9
1520 #define PSTATE_MODE_EL2t 8
1521 #define PSTATE_MODE_EL1h 5
1522 #define PSTATE_MODE_EL1t 4
1523 #define PSTATE_MODE_EL0t 0
1524
1525 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1526 FIELD(SVCR, SM, 0, 1)
1527 FIELD(SVCR, ZA, 1, 1)
1528
1529 /* Fields for SMCR_ELx. */
1530 FIELD(SMCR, LEN, 0, 4)
1531 FIELD(SMCR, FA64, 31, 1)
1532
1533 /* Write a new value to v7m.exception, thus transitioning into or out
1534 * of Handler mode; this may result in a change of active stack pointer.
1535 */
1536 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1537
1538 /* Map EL and handler into a PSTATE_MODE. */
1539 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1540 {
1541 return (el << 2) | handler;
1542 }
1543
1544 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1545 * interprocessing, so we don't attempt to sync with the cpsr state used by
1546 * the 32 bit decoder.
1547 */
1548 static inline uint32_t pstate_read(CPUARMState *env)
1549 {
1550 int ZF;
1551
1552 ZF = (env->ZF == 0);
1553 return (env->NF & 0x80000000) | (ZF << 30)
1554 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1555 | env->pstate | env->daif | (env->btype << 10);
1556 }
1557
1558 static inline void pstate_write(CPUARMState *env, uint32_t val)
1559 {
1560 env->ZF = (~val) & PSTATE_Z;
1561 env->NF = val;
1562 env->CF = (val >> 29) & 1;
1563 env->VF = (val << 3) & 0x80000000;
1564 env->daif = val & PSTATE_DAIF;
1565 env->btype = (val >> 10) & 3;
1566 env->pstate = val & ~CACHED_PSTATE_BITS;
1567 }
1568
1569 /* Return the current CPSR value. */
1570 uint32_t cpsr_read(CPUARMState *env);
1571
1572 typedef enum CPSRWriteType {
1573 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1574 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1575 CPSRWriteRaw = 2,
1576 /* trust values, no reg bank switch, no hflags rebuild */
1577 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1578 } CPSRWriteType;
1579
1580 /*
1581 * Set the CPSR. Note that some bits of mask must be all-set or all-clear.
1582 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1583 * correspond to TB flags bits cached in the hflags, unless @write_type
1584 * is CPSRWriteRaw.
1585 */
1586 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1587 CPSRWriteType write_type);
1588
1589 /* Return the current xPSR value. */
1590 static inline uint32_t xpsr_read(CPUARMState *env)
1591 {
1592 int ZF;
1593 ZF = (env->ZF == 0);
1594 return (env->NF & 0x80000000) | (ZF << 30)
1595 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1596 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1597 | ((env->condexec_bits & 0xfc) << 8)
1598 | (env->GE << 16)
1599 | env->v7m.exception;
1600 }
1601
1602 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1603 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1604 {
1605 if (mask & XPSR_NZCV) {
1606 env->ZF = (~val) & XPSR_Z;
1607 env->NF = val;
1608 env->CF = (val >> 29) & 1;
1609 env->VF = (val << 3) & 0x80000000;
1610 }
1611 if (mask & XPSR_Q) {
1612 env->QF = ((val & XPSR_Q) != 0);
1613 }
1614 if (mask & XPSR_GE) {
1615 env->GE = (val & XPSR_GE) >> 16;
1616 }
1617 #ifndef CONFIG_USER_ONLY
1618 if (mask & XPSR_T) {
1619 env->thumb = ((val & XPSR_T) != 0);
1620 }
1621 if (mask & XPSR_IT_0_1) {
1622 env->condexec_bits &= ~3;
1623 env->condexec_bits |= (val >> 25) & 3;
1624 }
1625 if (mask & XPSR_IT_2_7) {
1626 env->condexec_bits &= 3;
1627 env->condexec_bits |= (val >> 8) & 0xfc;
1628 }
1629 if (mask & XPSR_EXCP) {
1630 /* Note that this only happens on exception exit */
1631 write_v7m_exception(env, val & XPSR_EXCP);
1632 }
1633 #endif
1634 }
1635
1636 #define HCR_VM (1ULL << 0)
1637 #define HCR_SWIO (1ULL << 1)
1638 #define HCR_PTW (1ULL << 2)
1639 #define HCR_FMO (1ULL << 3)
1640 #define HCR_IMO (1ULL << 4)
1641 #define HCR_AMO (1ULL << 5)
1642 #define HCR_VF (1ULL << 6)
1643 #define HCR_VI (1ULL << 7)
1644 #define HCR_VSE (1ULL << 8)
1645 #define HCR_FB (1ULL << 9)
1646 #define HCR_BSU_MASK (3ULL << 10)
1647 #define HCR_DC (1ULL << 12)
1648 #define HCR_TWI (1ULL << 13)
1649 #define HCR_TWE (1ULL << 14)
1650 #define HCR_TID0 (1ULL << 15)
1651 #define HCR_TID1 (1ULL << 16)
1652 #define HCR_TID2 (1ULL << 17)
1653 #define HCR_TID3 (1ULL << 18)
1654 #define HCR_TSC (1ULL << 19)
1655 #define HCR_TIDCP (1ULL << 20)
1656 #define HCR_TACR (1ULL << 21)
1657 #define HCR_TSW (1ULL << 22)
1658 #define HCR_TPCP (1ULL << 23)
1659 #define HCR_TPU (1ULL << 24)
1660 #define HCR_TTLB (1ULL << 25)
1661 #define HCR_TVM (1ULL << 26)
1662 #define HCR_TGE (1ULL << 27)
1663 #define HCR_TDZ (1ULL << 28)
1664 #define HCR_HCD (1ULL << 29)
1665 #define HCR_TRVM (1ULL << 30)
1666 #define HCR_RW (1ULL << 31)
1667 #define HCR_CD (1ULL << 32)
1668 #define HCR_ID (1ULL << 33)
1669 #define HCR_E2H (1ULL << 34)
1670 #define HCR_TLOR (1ULL << 35)
1671 #define HCR_TERR (1ULL << 36)
1672 #define HCR_TEA (1ULL << 37)
1673 #define HCR_MIOCNCE (1ULL << 38)
1674 #define HCR_TME (1ULL << 39)
1675 #define HCR_APK (1ULL << 40)
1676 #define HCR_API (1ULL << 41)
1677 #define HCR_NV (1ULL << 42)
1678 #define HCR_NV1 (1ULL << 43)
1679 #define HCR_AT (1ULL << 44)
1680 #define HCR_NV2 (1ULL << 45)
1681 #define HCR_FWB (1ULL << 46)
1682 #define HCR_FIEN (1ULL << 47)
1683 #define HCR_GPF (1ULL << 48)
1684 #define HCR_TID4 (1ULL << 49)
1685 #define HCR_TICAB (1ULL << 50)
1686 #define HCR_AMVOFFEN (1ULL << 51)
1687 #define HCR_TOCU (1ULL << 52)
1688 #define HCR_ENSCXT (1ULL << 53)
1689 #define HCR_TTLBIS (1ULL << 54)
1690 #define HCR_TTLBOS (1ULL << 55)
1691 #define HCR_ATA (1ULL << 56)
1692 #define HCR_DCT (1ULL << 57)
1693 #define HCR_TID5 (1ULL << 58)
1694 #define HCR_TWEDEN (1ULL << 59)
1695 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4)
1696
1697 #define HCRX_ENAS0 (1ULL << 0)
1698 #define HCRX_ENALS (1ULL << 1)
1699 #define HCRX_ENASR (1ULL << 2)
1700 #define HCRX_FNXS (1ULL << 3)
1701 #define HCRX_FGTNXS (1ULL << 4)
1702 #define HCRX_SMPME (1ULL << 5)
1703 #define HCRX_TALLINT (1ULL << 6)
1704 #define HCRX_VINMI (1ULL << 7)
1705 #define HCRX_VFNMI (1ULL << 8)
1706 #define HCRX_CMOW (1ULL << 9)
1707 #define HCRX_MCE2 (1ULL << 10)
1708 #define HCRX_MSCEN (1ULL << 11)
1709
1710 #define HPFAR_NS (1ULL << 63)
1711
1712 #define SCR_NS (1ULL << 0)
1713 #define SCR_IRQ (1ULL << 1)
1714 #define SCR_FIQ (1ULL << 2)
1715 #define SCR_EA (1ULL << 3)
1716 #define SCR_FW (1ULL << 4)
1717 #define SCR_AW (1ULL << 5)
1718 #define SCR_NET (1ULL << 6)
1719 #define SCR_SMD (1ULL << 7)
1720 #define SCR_HCE (1ULL << 8)
1721 #define SCR_SIF (1ULL << 9)
1722 #define SCR_RW (1ULL << 10)
1723 #define SCR_ST (1ULL << 11)
1724 #define SCR_TWI (1ULL << 12)
1725 #define SCR_TWE (1ULL << 13)
1726 #define SCR_TLOR (1ULL << 14)
1727 #define SCR_TERR (1ULL << 15)
1728 #define SCR_APK (1ULL << 16)
1729 #define SCR_API (1ULL << 17)
1730 #define SCR_EEL2 (1ULL << 18)
1731 #define SCR_EASE (1ULL << 19)
1732 #define SCR_NMEA (1ULL << 20)
1733 #define SCR_FIEN (1ULL << 21)
1734 #define SCR_ENSCXT (1ULL << 25)
1735 #define SCR_ATA (1ULL << 26)
1736 #define SCR_FGTEN (1ULL << 27)
1737 #define SCR_ECVEN (1ULL << 28)
1738 #define SCR_TWEDEN (1ULL << 29)
1739 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4)
1740 #define SCR_TME (1ULL << 34)
1741 #define SCR_AMVOFFEN (1ULL << 35)
1742 #define SCR_ENAS0 (1ULL << 36)
1743 #define SCR_ADEN (1ULL << 37)
1744 #define SCR_HXEN (1ULL << 38)
1745 #define SCR_TRNDR (1ULL << 40)
1746 #define SCR_ENTP2 (1ULL << 41)
1747 #define SCR_GPF (1ULL << 48)
1748 #define SCR_NSE (1ULL << 62)
1749
1750 #define HSTR_TTEE (1 << 16)
1751 #define HSTR_TJDBX (1 << 17)
1752
1753 #define CNTHCTL_CNTVMASK (1 << 18)
1754 #define CNTHCTL_CNTPMASK (1 << 19)
1755
1756 /* Return the current FPSCR value. */
1757 uint32_t vfp_get_fpscr(CPUARMState *env);
1758 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1759
1760 /* FPCR, Floating Point Control Register
1761 * FPSR, Floating Poiht Status Register
1762 *
1763 * For A64 the FPSCR is split into two logically distinct registers,
1764 * FPCR and FPSR. However since they still use non-overlapping bits
1765 * we store the underlying state in fpscr and just mask on read/write.
1766 */
1767 #define FPSR_MASK 0xf800009f
1768 #define FPCR_MASK 0x07ff9f00
1769
1770 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1771 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1772 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1773 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1774 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1775 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1776 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1777 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1778 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1779 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1780 #define FPCR_AHP (1 << 26) /* Alternative half-precision */
1781 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1782 #define FPCR_V (1 << 28) /* FP overflow flag */
1783 #define FPCR_C (1 << 29) /* FP carry flag */
1784 #define FPCR_Z (1 << 30) /* FP zero flag */
1785 #define FPCR_N (1 << 31) /* FP negative flag */
1786
1787 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */
1788 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1789 #define FPCR_LTPSIZE_LENGTH 3
1790
1791 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1792 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1793
1794 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1795 {
1796 return vfp_get_fpscr(env) & FPSR_MASK;
1797 }
1798
1799 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1800 {
1801 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1802 vfp_set_fpscr(env, new_fpscr);
1803 }
1804
1805 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1806 {
1807 return vfp_get_fpscr(env) & FPCR_MASK;
1808 }
1809
1810 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1811 {
1812 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1813 vfp_set_fpscr(env, new_fpscr);
1814 }
1815
1816 enum arm_cpu_mode {
1817 ARM_CPU_MODE_USR = 0x10,
1818 ARM_CPU_MODE_FIQ = 0x11,
1819 ARM_CPU_MODE_IRQ = 0x12,
1820 ARM_CPU_MODE_SVC = 0x13,
1821 ARM_CPU_MODE_MON = 0x16,
1822 ARM_CPU_MODE_ABT = 0x17,
1823 ARM_CPU_MODE_HYP = 0x1a,
1824 ARM_CPU_MODE_UND = 0x1b,
1825 ARM_CPU_MODE_SYS = 0x1f
1826 };
1827
1828 /* VFP system registers. */
1829 #define ARM_VFP_FPSID 0
1830 #define ARM_VFP_FPSCR 1
1831 #define ARM_VFP_MVFR2 5
1832 #define ARM_VFP_MVFR1 6
1833 #define ARM_VFP_MVFR0 7
1834 #define ARM_VFP_FPEXC 8
1835 #define ARM_VFP_FPINST 9
1836 #define ARM_VFP_FPINST2 10
1837 /* These ones are M-profile only */
1838 #define ARM_VFP_FPSCR_NZCVQC 2
1839 #define ARM_VFP_VPR 12
1840 #define ARM_VFP_P0 13
1841 #define ARM_VFP_FPCXT_NS 14
1842 #define ARM_VFP_FPCXT_S 15
1843
1844 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1845 #define QEMU_VFP_FPSCR_NZCV 0xffff
1846
1847 /* iwMMXt coprocessor control registers. */
1848 #define ARM_IWMMXT_wCID 0
1849 #define ARM_IWMMXT_wCon 1
1850 #define ARM_IWMMXT_wCSSF 2
1851 #define ARM_IWMMXT_wCASF 3
1852 #define ARM_IWMMXT_wCGR0 8
1853 #define ARM_IWMMXT_wCGR1 9
1854 #define ARM_IWMMXT_wCGR2 10
1855 #define ARM_IWMMXT_wCGR3 11
1856
1857 /* V7M CCR bits */
1858 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1859 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1860 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1861 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1862 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1863 FIELD(V7M_CCR, STKALIGN, 9, 1)
1864 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1865 FIELD(V7M_CCR, DC, 16, 1)
1866 FIELD(V7M_CCR, IC, 17, 1)
1867 FIELD(V7M_CCR, BP, 18, 1)
1868 FIELD(V7M_CCR, LOB, 19, 1)
1869 FIELD(V7M_CCR, TRD, 20, 1)
1870
1871 /* V7M SCR bits */
1872 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1873 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1874 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1875 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1876
1877 /* V7M AIRCR bits */
1878 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1879 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1880 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1881 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1882 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1883 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1884 FIELD(V7M_AIRCR, PRIS, 14, 1)
1885 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1886 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1887
1888 /* V7M CFSR bits for MMFSR */
1889 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1890 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1891 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1892 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1893 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1894 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1895
1896 /* V7M CFSR bits for BFSR */
1897 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1898 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1899 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1900 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1901 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1902 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1903 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1904
1905 /* V7M CFSR bits for UFSR */
1906 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1907 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1908 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1909 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1910 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1911 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1912 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1913
1914 /* V7M CFSR bit masks covering all of the subregister bits */
1915 FIELD(V7M_CFSR, MMFSR, 0, 8)
1916 FIELD(V7M_CFSR, BFSR, 8, 8)
1917 FIELD(V7M_CFSR, UFSR, 16, 16)
1918
1919 /* V7M HFSR bits */
1920 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1921 FIELD(V7M_HFSR, FORCED, 30, 1)
1922 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1923
1924 /* V7M DFSR bits */
1925 FIELD(V7M_DFSR, HALTED, 0, 1)
1926 FIELD(V7M_DFSR, BKPT, 1, 1)
1927 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1928 FIELD(V7M_DFSR, VCATCH, 3, 1)
1929 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1930
1931 /* V7M SFSR bits */
1932 FIELD(V7M_SFSR, INVEP, 0, 1)
1933 FIELD(V7M_SFSR, INVIS, 1, 1)
1934 FIELD(V7M_SFSR, INVER, 2, 1)
1935 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1936 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1937 FIELD(V7M_SFSR, LSPERR, 5, 1)
1938 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1939 FIELD(V7M_SFSR, LSERR, 7, 1)
1940
1941 /* v7M MPU_CTRL bits */
1942 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1943 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1944 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1945
1946 /* v7M CLIDR bits */
1947 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1948 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1949 FIELD(V7M_CLIDR, LOC, 24, 3)
1950 FIELD(V7M_CLIDR, LOUU, 27, 3)
1951 FIELD(V7M_CLIDR, ICB, 30, 2)
1952
1953 FIELD(V7M_CSSELR, IND, 0, 1)
1954 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1955 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1956 * define a mask for this and check that it doesn't permit running off
1957 * the end of the array.
1958 */
1959 FIELD(V7M_CSSELR, INDEX, 0, 4)
1960
1961 /* v7M FPCCR bits */
1962 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1963 FIELD(V7M_FPCCR, USER, 1, 1)
1964 FIELD(V7M_FPCCR, S, 2, 1)
1965 FIELD(V7M_FPCCR, THREAD, 3, 1)
1966 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1967 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1968 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1969 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1970 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1971 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1972 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1973 FIELD(V7M_FPCCR, RES0, 11, 15)
1974 FIELD(V7M_FPCCR, TS, 26, 1)
1975 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1976 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1977 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1978 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1979 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1980 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1981 #define R_V7M_FPCCR_BANKED_MASK \
1982 (R_V7M_FPCCR_LSPACT_MASK | \
1983 R_V7M_FPCCR_USER_MASK | \
1984 R_V7M_FPCCR_THREAD_MASK | \
1985 R_V7M_FPCCR_MMRDY_MASK | \
1986 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1987 R_V7M_FPCCR_UFRDY_MASK | \
1988 R_V7M_FPCCR_ASPEN_MASK)
1989
1990 /* v7M VPR bits */
1991 FIELD(V7M_VPR, P0, 0, 16)
1992 FIELD(V7M_VPR, MASK01, 16, 4)
1993 FIELD(V7M_VPR, MASK23, 20, 4)
1994
1995 /*
1996 * System register ID fields.
1997 */
1998 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1999 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2000 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2001 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2002 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2003 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2004 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2005 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2006 FIELD(CLIDR_EL1, LOC, 24, 3)
2007 FIELD(CLIDR_EL1, LOUU, 27, 3)
2008 FIELD(CLIDR_EL1, ICB, 30, 3)
2009
2010 /* When FEAT_CCIDX is implemented */
2011 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2012 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2013 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2014
2015 /* When FEAT_CCIDX is not implemented */
2016 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2017 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2018 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2019
2020 FIELD(CTR_EL0, IMINLINE, 0, 4)
2021 FIELD(CTR_EL0, L1IP, 14, 2)
2022 FIELD(CTR_EL0, DMINLINE, 16, 4)
2023 FIELD(CTR_EL0, ERG, 20, 4)
2024 FIELD(CTR_EL0, CWG, 24, 4)
2025 FIELD(CTR_EL0, IDC, 28, 1)
2026 FIELD(CTR_EL0, DIC, 29, 1)
2027 FIELD(CTR_EL0, TMINLINE, 32, 6)
2028
2029 FIELD(MIDR_EL1, REVISION, 0, 4)
2030 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2031 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2032 FIELD(MIDR_EL1, VARIANT, 20, 4)
2033 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2034
2035 FIELD(ID_ISAR0, SWAP, 0, 4)
2036 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2037 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2038 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2039 FIELD(ID_ISAR0, COPROC, 16, 4)
2040 FIELD(ID_ISAR0, DEBUG, 20, 4)
2041 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2042
2043 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2044 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2045 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2046 FIELD(ID_ISAR1, EXTEND, 12, 4)
2047 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2048 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2049 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2050 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2051
2052 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2053 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2054 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2055 FIELD(ID_ISAR2, MULT, 12, 4)
2056 FIELD(ID_ISAR2, MULTS, 16, 4)
2057 FIELD(ID_ISAR2, MULTU, 20, 4)
2058 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2059 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2060
2061 FIELD(ID_ISAR3, SATURATE, 0, 4)
2062 FIELD(ID_ISAR3, SIMD, 4, 4)
2063 FIELD(ID_ISAR3, SVC, 8, 4)
2064 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2065 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2066 FIELD(ID_ISAR3, T32COPY, 20, 4)
2067 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2068 FIELD(ID_ISAR3, T32EE, 28, 4)
2069
2070 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2071 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2072 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2073 FIELD(ID_ISAR4, SMC, 12, 4)
2074 FIELD(ID_ISAR4, BARRIER, 16, 4)
2075 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2076 FIELD(ID_ISAR4, PSR_M, 24, 4)
2077 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2078
2079 FIELD(ID_ISAR5, SEVL, 0, 4)
2080 FIELD(ID_ISAR5, AES, 4, 4)
2081 FIELD(ID_ISAR5, SHA1, 8, 4)
2082 FIELD(ID_ISAR5, SHA2, 12, 4)
2083 FIELD(ID_ISAR5, CRC32, 16, 4)
2084 FIELD(ID_ISAR5, RDM, 24, 4)
2085 FIELD(ID_ISAR5, VCMA, 28, 4)
2086
2087 FIELD(ID_ISAR6, JSCVT, 0, 4)
2088 FIELD(ID_ISAR6, DP, 4, 4)
2089 FIELD(ID_ISAR6, FHM, 8, 4)
2090 FIELD(ID_ISAR6, SB, 12, 4)
2091 FIELD(ID_ISAR6, SPECRES, 16, 4)
2092 FIELD(ID_ISAR6, BF16, 20, 4)
2093 FIELD(ID_ISAR6, I8MM, 24, 4)
2094
2095 FIELD(ID_MMFR0, VMSA, 0, 4)
2096 FIELD(ID_MMFR0, PMSA, 4, 4)
2097 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2098 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2099 FIELD(ID_MMFR0, TCM, 16, 4)
2100 FIELD(ID_MMFR0, AUXREG, 20, 4)
2101 FIELD(ID_MMFR0, FCSE, 24, 4)
2102 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2103
2104 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2105 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2106 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2107 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2108 FIELD(ID_MMFR1, L1HVD, 16, 4)
2109 FIELD(ID_MMFR1, L1UNI, 20, 4)
2110 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2111 FIELD(ID_MMFR1, BPRED, 28, 4)
2112
2113 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2114 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2115 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2116 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2117 FIELD(ID_MMFR2, UNITLB, 16, 4)
2118 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2119 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2120 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2121
2122 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2123 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2124 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2125 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2126 FIELD(ID_MMFR3, PAN, 16, 4)
2127 FIELD(ID_MMFR3, COHWALK, 20, 4)
2128 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2129 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2130
2131 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2132 FIELD(ID_MMFR4, AC2, 4, 4)
2133 FIELD(ID_MMFR4, XNX, 8, 4)
2134 FIELD(ID_MMFR4, CNP, 12, 4)
2135 FIELD(ID_MMFR4, HPDS, 16, 4)
2136 FIELD(ID_MMFR4, LSM, 20, 4)
2137 FIELD(ID_MMFR4, CCIDX, 24, 4)
2138 FIELD(ID_MMFR4, EVT, 28, 4)
2139
2140 FIELD(ID_MMFR5, ETS, 0, 4)
2141 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2142
2143 FIELD(ID_PFR0, STATE0, 0, 4)
2144 FIELD(ID_PFR0, STATE1, 4, 4)
2145 FIELD(ID_PFR0, STATE2, 8, 4)
2146 FIELD(ID_PFR0, STATE3, 12, 4)
2147 FIELD(ID_PFR0, CSV2, 16, 4)
2148 FIELD(ID_PFR0, AMU, 20, 4)
2149 FIELD(ID_PFR0, DIT, 24, 4)
2150 FIELD(ID_PFR0, RAS, 28, 4)
2151
2152 FIELD(ID_PFR1, PROGMOD, 0, 4)
2153 FIELD(ID_PFR1, SECURITY, 4, 4)
2154 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2155 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2156 FIELD(ID_PFR1, GENTIMER, 16, 4)
2157 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2158 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2159 FIELD(ID_PFR1, GIC, 28, 4)
2160
2161 FIELD(ID_PFR2, CSV3, 0, 4)
2162 FIELD(ID_PFR2, SSBS, 4, 4)
2163 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2164
2165 FIELD(ID_AA64ISAR0, AES, 4, 4)
2166 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2167 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2168 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2169 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2170 FIELD(ID_AA64ISAR0, TME, 24, 4)
2171 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2172 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2173 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2174 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2175 FIELD(ID_AA64ISAR0, DP, 44, 4)
2176 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2177 FIELD(ID_AA64ISAR0, TS, 52, 4)
2178 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2179 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2180
2181 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2182 FIELD(ID_AA64ISAR1, APA, 4, 4)
2183 FIELD(ID_AA64ISAR1, API, 8, 4)
2184 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2185 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2186 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2187 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2188 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2189 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2190 FIELD(ID_AA64ISAR1, SB, 36, 4)
2191 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2192 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2193 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2194 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2195 FIELD(ID_AA64ISAR1, XS, 56, 4)
2196 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2197
2198 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2199 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2200 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2201 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2202 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2203 FIELD(ID_AA64ISAR2, BC, 20, 4)
2204 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2205 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2206 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2207 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2208 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2209 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2210 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2211 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2212
2213 FIELD(ID_AA64PFR0, EL0, 0, 4)
2214 FIELD(ID_AA64PFR0, EL1, 4, 4)
2215 FIELD(ID_AA64PFR0, EL2, 8, 4)
2216 FIELD(ID_AA64PFR0, EL3, 12, 4)
2217 FIELD(ID_AA64PFR0, FP, 16, 4)
2218 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2219 FIELD(ID_AA64PFR0, GIC, 24, 4)
2220 FIELD(ID_AA64PFR0, RAS, 28, 4)
2221 FIELD(ID_AA64PFR0, SVE, 32, 4)
2222 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2223 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2224 FIELD(ID_AA64PFR0, AMU, 44, 4)
2225 FIELD(ID_AA64PFR0, DIT, 48, 4)
2226 FIELD(ID_AA64PFR0, RME, 52, 4)
2227 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2228 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2229
2230 FIELD(ID_AA64PFR1, BT, 0, 4)
2231 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2232 FIELD(ID_AA64PFR1, MTE, 8, 4)
2233 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2234 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2235 FIELD(ID_AA64PFR1, SME, 24, 4)
2236 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2237 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2238 FIELD(ID_AA64PFR1, NMI, 36, 4)
2239 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2240 FIELD(ID_AA64PFR1, GCS, 44, 4)
2241 FIELD(ID_AA64PFR1, THE, 48, 4)
2242 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2243 FIELD(ID_AA64PFR1, DF2, 56, 4)
2244 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2245
2246 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2247 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2248 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2249 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2250 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2251 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2252 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2253 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2254 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2255 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2256 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2257 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2258 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2259 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2260
2261 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2262 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2263 FIELD(ID_AA64MMFR1, VH, 8, 4)
2264 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2265 FIELD(ID_AA64MMFR1, LO, 16, 4)
2266 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2267 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2268 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2269 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2270 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2271 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2272 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2273 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2274 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2275 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2276 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2277
2278 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2279 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2280 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2281 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2282 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2283 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2284 FIELD(ID_AA64MMFR2, NV, 24, 4)
2285 FIELD(ID_AA64MMFR2, ST, 28, 4)
2286 FIELD(ID_AA64MMFR2, AT, 32, 4)
2287 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2288 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2289 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2290 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2291 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2292 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2293
2294 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2295 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2296 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2297 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2298 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2299 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2300 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2301 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2302 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2303 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2304 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2305 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2306 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2307 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2308 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2309 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2310
2311 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2312 FIELD(ID_AA64ZFR0, AES, 4, 4)
2313 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2314 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2315 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2316 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2317 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2318 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2319 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2320 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2321
2322 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2323 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2324 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2325 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2326 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2327 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2328 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2329 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2330 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2331 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2332 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2333 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2334
2335 FIELD(ID_DFR0, COPDBG, 0, 4)
2336 FIELD(ID_DFR0, COPSDBG, 4, 4)
2337 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2338 FIELD(ID_DFR0, COPTRC, 12, 4)
2339 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2340 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2341 FIELD(ID_DFR0, PERFMON, 24, 4)
2342 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2343
2344 FIELD(ID_DFR1, MTPMU, 0, 4)
2345 FIELD(ID_DFR1, HPMN0, 4, 4)
2346
2347 FIELD(DBGDIDR, SE_IMP, 12, 1)
2348 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2349 FIELD(DBGDIDR, VERSION, 16, 4)
2350 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2351 FIELD(DBGDIDR, BRPS, 24, 4)
2352 FIELD(DBGDIDR, WRPS, 28, 4)
2353
2354 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2355 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2356 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2357 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2358 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2359 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2360 FIELD(DBGDEVID, AUXREGS, 24, 4)
2361 FIELD(DBGDEVID, CIDMASK, 28, 4)
2362
2363 FIELD(MVFR0, SIMDREG, 0, 4)
2364 FIELD(MVFR0, FPSP, 4, 4)
2365 FIELD(MVFR0, FPDP, 8, 4)
2366 FIELD(MVFR0, FPTRAP, 12, 4)
2367 FIELD(MVFR0, FPDIVIDE, 16, 4)
2368 FIELD(MVFR0, FPSQRT, 20, 4)
2369 FIELD(MVFR0, FPSHVEC, 24, 4)
2370 FIELD(MVFR0, FPROUND, 28, 4)
2371
2372 FIELD(MVFR1, FPFTZ, 0, 4)
2373 FIELD(MVFR1, FPDNAN, 4, 4)
2374 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2375 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2376 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2377 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2378 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2379 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2380 FIELD(MVFR1, FPHP, 24, 4)
2381 FIELD(MVFR1, SIMDFMAC, 28, 4)
2382
2383 FIELD(MVFR2, SIMDMISC, 0, 4)
2384 FIELD(MVFR2, FPMISC, 4, 4)
2385
2386 FIELD(GPCCR, PPS, 0, 3)
2387 FIELD(GPCCR, IRGN, 8, 2)
2388 FIELD(GPCCR, ORGN, 10, 2)
2389 FIELD(GPCCR, SH, 12, 2)
2390 FIELD(GPCCR, PGS, 14, 2)
2391 FIELD(GPCCR, GPC, 16, 1)
2392 FIELD(GPCCR, GPCP, 17, 1)
2393 FIELD(GPCCR, L0GPTSZ, 20, 4)
2394
2395 FIELD(MFAR, FPA, 12, 40)
2396 FIELD(MFAR, NSE, 62, 1)
2397 FIELD(MFAR, NS, 63, 1)
2398
2399 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2400
2401 /* If adding a feature bit which corresponds to a Linux ELF
2402 * HWCAP bit, remember to update the feature-bit-to-hwcap
2403 * mapping in linux-user/elfload.c:get_elf_hwcap().
2404 */
2405 enum arm_features {
2406 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
2407 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
2408 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
2409 ARM_FEATURE_V6,
2410 ARM_FEATURE_V6K,
2411 ARM_FEATURE_V7,
2412 ARM_FEATURE_THUMB2,
2413 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
2414 ARM_FEATURE_NEON,
2415 ARM_FEATURE_M, /* Microcontroller profile. */
2416 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
2417 ARM_FEATURE_THUMB2EE,
2418 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
2419 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2420 ARM_FEATURE_V4T,
2421 ARM_FEATURE_V5,
2422 ARM_FEATURE_STRONGARM,
2423 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2424 ARM_FEATURE_GENERIC_TIMER,
2425 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2426 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2427 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2428 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2429 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2430 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2431 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2432 ARM_FEATURE_V8,
2433 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2434 ARM_FEATURE_CBAR, /* has cp15 CBAR */
2435 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2436 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2437 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2438 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2439 ARM_FEATURE_PMU, /* has PMU support */
2440 ARM_FEATURE_VBAR, /* has cp15 VBAR */
2441 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2442 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2443 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2444 };
2445
2446 static inline int arm_feature(CPUARMState *env, int feature)
2447 {
2448 return (env->features & (1ULL << feature)) != 0;
2449 }
2450
2451 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2452
2453 /*
2454 * ARM v9 security states.
2455 * The ordering of the enumeration corresponds to the low 2 bits
2456 * of the GPI value, and (except for Root) the concat of NSE:NS.
2457 */
2458
2459 typedef enum ARMSecuritySpace {
2460 ARMSS_Secure = 0,
2461 ARMSS_NonSecure = 1,
2462 ARMSS_Root = 2,
2463 ARMSS_Realm = 3,
2464 } ARMSecuritySpace;
2465
2466 /* Return true if @space is secure, in the pre-v9 sense. */
2467 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2468 {
2469 return space == ARMSS_Secure || space == ARMSS_Root;
2470 }
2471
2472 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2473 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2474 {
2475 return secure ? ARMSS_Secure : ARMSS_NonSecure;
2476 }
2477
2478 #if !defined(CONFIG_USER_ONLY)
2479 /**
2480 * arm_security_space_below_el3:
2481 * @env: cpu context
2482 *
2483 * Return the security space of exception levels below EL3, following
2484 * an exception return to those levels. Unlike arm_security_space,
2485 * this doesn't care about the current EL.
2486 */
2487 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2488
2489 /**
2490 * arm_is_secure_below_el3:
2491 * @env: cpu context
2492 *
2493 * Return true if exception levels below EL3 are in secure state,
2494 * or would be following an exception return to those levels.
2495 */
2496 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2497 {
2498 ARMSecuritySpace ss = arm_security_space_below_el3(env);
2499 return ss == ARMSS_Secure;
2500 }
2501
2502 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2503 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2504 {
2505 assert(!arm_feature(env, ARM_FEATURE_M));
2506 if (arm_feature(env, ARM_FEATURE_EL3)) {
2507 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2508 /* CPU currently in AArch64 state and EL3 */
2509 return true;
2510 } else if (!is_a64(env) &&
2511 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2512 /* CPU currently in AArch32 state and monitor mode */
2513 return true;
2514 }
2515 }
2516 return false;
2517 }
2518
2519 /**
2520 * arm_security_space:
2521 * @env: cpu context
2522 *
2523 * Return the current security space of the cpu.
2524 */
2525 ARMSecuritySpace arm_security_space(CPUARMState *env);
2526
2527 /**
2528 * arm_is_secure:
2529 * @env: cpu context
2530 *
2531 * Return true if the processor is in secure state.
2532 */
2533 static inline bool arm_is_secure(CPUARMState *env)
2534 {
2535 return arm_space_is_secure(arm_security_space(env));
2536 }
2537
2538 /*
2539 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2540 * This corresponds to the pseudocode EL2Enabled().
2541 */
2542 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2543 ARMSecuritySpace space)
2544 {
2545 assert(space != ARMSS_Root);
2546 return arm_feature(env, ARM_FEATURE_EL2)
2547 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2548 }
2549
2550 static inline bool arm_is_el2_enabled(CPUARMState *env)
2551 {
2552 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2553 }
2554
2555 #else
2556 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2557 {
2558 return ARMSS_NonSecure;
2559 }
2560
2561 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2562 {
2563 return false;
2564 }
2565
2566 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2567 {
2568 return ARMSS_NonSecure;
2569 }
2570
2571 static inline bool arm_is_secure(CPUARMState *env)
2572 {
2573 return false;
2574 }
2575
2576 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2577 ARMSecuritySpace space)
2578 {
2579 return false;
2580 }
2581
2582 static inline bool arm_is_el2_enabled(CPUARMState *env)
2583 {
2584 return false;
2585 }
2586 #endif
2587
2588 /**
2589 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2590 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2591 * "for all purposes other than a direct read or write access of HCR_EL2."
2592 * Not included here is HCR_RW.
2593 */
2594 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2595 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2596 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2597
2598 /* Return true if the specified exception level is running in AArch64 state. */
2599 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2600 {
2601 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2602 * and if we're not in EL0 then the state of EL0 isn't well defined.)
2603 */
2604 assert(el >= 1 && el <= 3);
2605 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2606
2607 /* The highest exception level is always at the maximum supported
2608 * register width, and then lower levels have a register width controlled
2609 * by bits in the SCR or HCR registers.
2610 */
2611 if (el == 3) {
2612 return aa64;
2613 }
2614
2615 if (arm_feature(env, ARM_FEATURE_EL3) &&
2616 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2617 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2618 }
2619
2620 if (el == 2) {
2621 return aa64;
2622 }
2623
2624 if (arm_is_el2_enabled(env)) {
2625 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2626 }
2627
2628 return aa64;
2629 }
2630
2631 /* Function for determining whether guest cp register reads and writes should
2632 * access the secure or non-secure bank of a cp register. When EL3 is
2633 * operating in AArch32 state, the NS-bit determines whether the secure
2634 * instance of a cp register should be used. When EL3 is AArch64 (or if
2635 * it doesn't exist at all) then there is no register banking, and all
2636 * accesses are to the non-secure version.
2637 */
2638 static inline bool access_secure_reg(CPUARMState *env)
2639 {
2640 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2641 !arm_el_is_aa64(env, 3) &&
2642 !(env->cp15.scr_el3 & SCR_NS));
2643
2644 return ret;
2645 }
2646
2647 /* Macros for accessing a specified CP register bank */
2648 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
2649 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2650
2651 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
2652 do { \
2653 if (_secure) { \
2654 (_env)->cp15._regname##_s = (_val); \
2655 } else { \
2656 (_env)->cp15._regname##_ns = (_val); \
2657 } \
2658 } while (0)
2659
2660 /* Macros for automatically accessing a specific CP register bank depending on
2661 * the current secure state of the system. These macros are not intended for
2662 * supporting instruction translation reads/writes as these are dependent
2663 * solely on the SCR.NS bit and not the mode.
2664 */
2665 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
2666 A32_BANKED_REG_GET((_env), _regname, \
2667 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2668
2669 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
2670 A32_BANKED_REG_SET((_env), _regname, \
2671 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2672 (_val))
2673
2674 void arm_cpu_list(void);
2675 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2676 uint32_t cur_el, bool secure);
2677
2678 /* Return the highest implemented Exception Level */
2679 static inline int arm_highest_el(CPUARMState *env)
2680 {
2681 if (arm_feature(env, ARM_FEATURE_EL3)) {
2682 return 3;
2683 }
2684 if (arm_feature(env, ARM_FEATURE_EL2)) {
2685 return 2;
2686 }
2687 return 1;
2688 }
2689
2690 /* Return true if a v7M CPU is in Handler mode */
2691 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2692 {
2693 return env->v7m.exception != 0;
2694 }
2695
2696 /* Return the current Exception Level (as per ARMv8; note that this differs
2697 * from the ARMv7 Privilege Level).
2698 */
2699 static inline int arm_current_el(CPUARMState *env)
2700 {
2701 if (arm_feature(env, ARM_FEATURE_M)) {
2702 return arm_v7m_is_handler_mode(env) ||
2703 !(env->v7m.control[env->v7m.secure] & 1);
2704 }
2705
2706 if (is_a64(env)) {
2707 return extract32(env->pstate, 2, 2);
2708 }
2709
2710 switch (env->uncached_cpsr & 0x1f) {
2711 case ARM_CPU_MODE_USR:
2712 return 0;
2713 case ARM_CPU_MODE_HYP:
2714 return 2;
2715 case ARM_CPU_MODE_MON:
2716 return 3;
2717 default:
2718 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2719 /* If EL3 is 32-bit then all secure privileged modes run in
2720 * EL3
2721 */
2722 return 3;
2723 }
2724
2725 return 1;
2726 }
2727 }
2728
2729 /**
2730 * write_list_to_cpustate
2731 * @cpu: ARMCPU
2732 *
2733 * For each register listed in the ARMCPU cpreg_indexes list, write
2734 * its value from the cpreg_values list into the ARMCPUState structure.
2735 * This updates TCG's working data structures from KVM data or
2736 * from incoming migration state.
2737 *
2738 * Returns: true if all register values were updated correctly,
2739 * false if some register was unknown or could not be written.
2740 * Note that we do not stop early on failure -- we will attempt
2741 * writing all registers in the list.
2742 */
2743 bool write_list_to_cpustate(ARMCPU *cpu);
2744
2745 /**
2746 * write_cpustate_to_list:
2747 * @cpu: ARMCPU
2748 * @kvm_sync: true if this is for syncing back to KVM
2749 *
2750 * For each register listed in the ARMCPU cpreg_indexes list, write
2751 * its value from the ARMCPUState structure into the cpreg_values list.
2752 * This is used to copy info from TCG's working data structures into
2753 * KVM or for outbound migration.
2754 *
2755 * @kvm_sync is true if we are doing this in order to sync the
2756 * register state back to KVM. In this case we will only update
2757 * values in the list if the previous list->cpustate sync actually
2758 * successfully wrote the CPU state. Otherwise we will keep the value
2759 * that is in the list.
2760 *
2761 * Returns: true if all register values were read correctly,
2762 * false if some register was unknown or could not be read.
2763 * Note that we do not stop early on failure -- we will attempt
2764 * reading all registers in the list.
2765 */
2766 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2767
2768 #define ARM_CPUID_TI915T 0x54029152
2769 #define ARM_CPUID_TI925T 0x54029252
2770
2771 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2772 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2773 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2774
2775 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2776
2777 #define cpu_list arm_cpu_list
2778
2779 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2780 *
2781 * If EL3 is 64-bit:
2782 * + NonSecure EL1 & 0 stage 1
2783 * + NonSecure EL1 & 0 stage 2
2784 * + NonSecure EL2
2785 * + NonSecure EL2 & 0 (ARMv8.1-VHE)
2786 * + Secure EL1 & 0
2787 * + Secure EL3
2788 * If EL3 is 32-bit:
2789 * + NonSecure PL1 & 0 stage 1
2790 * + NonSecure PL1 & 0 stage 2
2791 * + NonSecure PL2
2792 * + Secure PL0
2793 * + Secure PL1
2794 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2795 *
2796 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2797 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2798 * because they may differ in access permissions even if the VA->PA map is
2799 * the same
2800 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2801 * translation, which means that we have one mmu_idx that deals with two
2802 * concatenated translation regimes [this sort of combined s1+2 TLB is
2803 * architecturally permitted]
2804 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2805 * handling via the TLB. The only way to do a stage 1 translation without
2806 * the immediate stage 2 translation is via the ATS or AT system insns,
2807 * which can be slow-pathed and always do a page table walk.
2808 * The only use of stage 2 translations is either as part of an s1+2
2809 * lookup or when loading the descriptors during a stage 1 page table walk,
2810 * and in both those cases we don't use the TLB.
2811 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2812 * translation regimes, because they map reasonably well to each other
2813 * and they can't both be active at the same time.
2814 * 5. we want to be able to use the TLB for accesses done as part of a
2815 * stage1 page table walk, rather than having to walk the stage2 page
2816 * table over and over.
2817 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2818 * Never (PAN) bit within PSTATE.
2819 * 7. we fold together the secure and non-secure regimes for A-profile,
2820 * because there are no banked system registers for aarch64, so the
2821 * process of switching between secure and non-secure is
2822 * already heavyweight.
2823 *
2824 * This gives us the following list of cases:
2825 *
2826 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2827 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2828 * EL1 EL1&0 stage 1+2 +PAN
2829 * EL0 EL2&0
2830 * EL2 EL2&0
2831 * EL2 EL2&0 +PAN
2832 * EL2 (aka NS PL2)
2833 * EL3 (aka S PL1)
2834 * Physical (NS & S)
2835 * Stage2 (NS & S)
2836 *
2837 * for a total of 12 different mmu_idx.
2838 *
2839 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2840 * as A profile. They only need to distinguish EL0 and EL1 (and
2841 * EL2 if we ever model a Cortex-R52).
2842 *
2843 * M profile CPUs are rather different as they do not have a true MMU.
2844 * They have the following different MMU indexes:
2845 * User
2846 * Privileged
2847 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2848 * Privileged, execution priority negative (ditto)
2849 * If the CPU supports the v8M Security Extension then there are also:
2850 * Secure User
2851 * Secure Privileged
2852 * Secure User, execution priority negative
2853 * Secure Privileged, execution priority negative
2854 *
2855 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2856 * are not quite the same -- different CPU types (most notably M profile
2857 * vs A/R profile) would like to use MMU indexes with different semantics,
2858 * but since we don't ever need to use all of those in a single CPU we
2859 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2860 * modes + total number of M profile MMU modes". The lower bits of
2861 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2862 * the same for any particular CPU.
2863 * Variables of type ARMMUIdx are always full values, and the core
2864 * index values are in variables of type 'int'.
2865 *
2866 * Our enumeration includes at the end some entries which are not "true"
2867 * mmu_idx values in that they don't have corresponding TLBs and are only
2868 * valid for doing slow path page table walks.
2869 *
2870 * The constant names here are patterned after the general style of the names
2871 * of the AT/ATS operations.
2872 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2873 * For M profile we arrange them to have a bit for priv, a bit for negpri
2874 * and a bit for secure.
2875 */
2876 #define ARM_MMU_IDX_A 0x10 /* A profile */
2877 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2878 #define ARM_MMU_IDX_M 0x40 /* M profile */
2879
2880 /* Meanings of the bits for M profile mmu idx values */
2881 #define ARM_MMU_IDX_M_PRIV 0x1
2882 #define ARM_MMU_IDX_M_NEGPRI 0x2
2883 #define ARM_MMU_IDX_M_S 0x4 /* Secure */
2884
2885 #define ARM_MMU_IDX_TYPE_MASK \
2886 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2887 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2888
2889 typedef enum ARMMMUIdx {
2890 /*
2891 * A-profile.
2892 */
2893 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A,
2894 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A,
2895 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A,
2896 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A,
2897 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2898 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2899 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
2900 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
2901
2902 /*
2903 * Used for second stage of an S12 page table walk, or for descriptor
2904 * loads during first stage of an S1 page table walk. Note that both
2905 * are in use simultaneously for SecureEL2: the security state for
2906 * the S2 ptw is selected by the NS bit from the S1 ptw.
2907 */
2908 ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
2909 ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
2910
2911 /* TLBs with 1-1 mapping to the physical address spaces. */
2912 ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
2913 ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
2914 ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
2915 ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2916
2917 /*
2918 * These are not allocated TLBs and are used only for AT system
2919 * instructions or for the first stage of an S12 page table walk.
2920 */
2921 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2922 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2923 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2924
2925 /*
2926 * M-profile.
2927 */
2928 ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2929 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2930 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2931 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2932 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2933 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2934 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2935 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2936 } ARMMMUIdx;
2937
2938 /*
2939 * Bit macros for the core-mmu-index values for each index,
2940 * for use when calling tlb_flush_by_mmuidx() and friends.
2941 */
2942 #define TO_CORE_BIT(NAME) \
2943 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2944
2945 typedef enum ARMMMUIdxBit {
2946 TO_CORE_BIT(E10_0),
2947 TO_CORE_BIT(E20_0),
2948 TO_CORE_BIT(E10_1),
2949 TO_CORE_BIT(E10_1_PAN),
2950 TO_CORE_BIT(E2),
2951 TO_CORE_BIT(E20_2),
2952 TO_CORE_BIT(E20_2_PAN),
2953 TO_CORE_BIT(E3),
2954 TO_CORE_BIT(Stage2),
2955 TO_CORE_BIT(Stage2_S),
2956
2957 TO_CORE_BIT(MUser),
2958 TO_CORE_BIT(MPriv),
2959 TO_CORE_BIT(MUserNegPri),
2960 TO_CORE_BIT(MPrivNegPri),
2961 TO_CORE_BIT(MSUser),
2962 TO_CORE_BIT(MSPriv),
2963 TO_CORE_BIT(MSUserNegPri),
2964 TO_CORE_BIT(MSPrivNegPri),
2965 } ARMMMUIdxBit;
2966
2967 #undef TO_CORE_BIT
2968
2969 #define MMU_USER_IDX 0
2970
2971 /* Indexes used when registering address spaces with cpu_address_space_init */
2972 typedef enum ARMASIdx {
2973 ARMASIdx_NS = 0,
2974 ARMASIdx_S = 1,
2975 ARMASIdx_TagNS = 2,
2976 ARMASIdx_TagS = 3,
2977 } ARMASIdx;
2978
2979 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2980 {
2981 /* Assert the relative order of the physical mmu indexes. */
2982 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2983 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2984 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2985 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2986
2987 return ARMMMUIdx_Phys_S + space;
2988 }
2989
2990 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2991 {
2992 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2993 return idx - ARMMMUIdx_Phys_S;
2994 }
2995
2996 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2997 {
2998 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2999 * CSSELR is RAZ/WI.
3000 */
3001 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3002 }
3003
3004 static inline bool arm_sctlr_b(CPUARMState *env)
3005 {
3006 return
3007 /* We need not implement SCTLR.ITD in user-mode emulation, so
3008 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3009 * This lets people run BE32 binaries with "-cpu any".
3010 */
3011 #ifndef CONFIG_USER_ONLY
3012 !arm_feature(env, ARM_FEATURE_V7) &&
3013 #endif
3014 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3015 }
3016
3017 uint64_t arm_sctlr(CPUARMState *env, int el);
3018
3019 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3020 bool sctlr_b)
3021 {
3022 #ifdef CONFIG_USER_ONLY
3023 /*
3024 * In system mode, BE32 is modelled in line with the
3025 * architecture (as word-invariant big-endianness), where loads
3026 * and stores are done little endian but from addresses which
3027 * are adjusted by XORing with the appropriate constant. So the
3028 * endianness to use for the raw data access is not affected by
3029 * SCTLR.B.
3030 * In user mode, however, we model BE32 as byte-invariant
3031 * big-endianness (because user-only code cannot tell the
3032 * difference), and so we need to use a data access endianness
3033 * that depends on SCTLR.B.
3034 */
3035 if (sctlr_b) {
3036 return true;
3037 }
3038 #endif
3039 /* In 32bit endianness is determined by looking at CPSR's E bit */
3040 return env->uncached_cpsr & CPSR_E;
3041 }
3042
3043 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3044 {
3045 return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3046 }
3047
3048 /* Return true if the processor is in big-endian mode. */
3049 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3050 {
3051 if (!is_a64(env)) {
3052 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3053 } else {
3054 int cur_el = arm_current_el(env);
3055 uint64_t sctlr = arm_sctlr(env, cur_el);
3056 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3057 }
3058 }
3059
3060 #include "exec/cpu-all.h"
3061
3062 /*
3063 * We have more than 32-bits worth of state per TB, so we split the data
3064 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3065 * We collect these two parts in CPUARMTBFlags where they are named
3066 * flags and flags2 respectively.
3067 *
3068 * The flags that are shared between all execution modes, TBFLAG_ANY,
3069 * are stored in flags. The flags that are specific to a given mode
3070 * are stores in flags2. Since cs_base is sized on the configured
3071 * address size, flags2 always has 64-bits for A64, and a minimum of
3072 * 32-bits for A32 and M32.
3073 *
3074 * The bits for 32-bit A-profile and M-profile partially overlap:
3075 *
3076 * 31 23 11 10 0
3077 * +-------------+----------+----------------+
3078 * | | | TBFLAG_A32 |
3079 * | TBFLAG_AM32 | +-----+----------+
3080 * | | |TBFLAG_M32|
3081 * +-------------+----------------+----------+
3082 * 31 23 6 5 0
3083 *
3084 * Unless otherwise noted, these bits are cached in env->hflags.
3085 */
3086 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3087 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3088 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */
3089 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3090 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3091 /* Target EL if we take a floating-point-disabled exception */
3092 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3093 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3094 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3095 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3096 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3097 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3098
3099 /*
3100 * Bit usage when in AArch32 state, both A- and M-profile.
3101 */
3102 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */
3103 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */
3104
3105 /*
3106 * Bit usage when in AArch32 state, for A-profile only.
3107 */
3108 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */
3109 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */
3110 /*
3111 * We store the bottom two bits of the CPAR as TB flags and handle
3112 * checks on the other bits at runtime. This shares the same bits as
3113 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3114 * Not cached, because VECLEN+VECSTRIDE are not cached.
3115 */
3116 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3117 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */
3118 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */
3119 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3120 /*
3121 * Indicates whether cp register reads and writes by guest code should access
3122 * the secure or nonsecure bank of banked registers; note that this is not
3123 * the same thing as the current security state of the processor!
3124 */
3125 FIELD(TBFLAG_A32, NS, 10, 1)
3126 /*
3127 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3128 * This requires an SME trap from AArch32 mode when using NEON.
3129 */
3130 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3131
3132 /*
3133 * Bit usage when in AArch32 state, for M-profile only.
3134 */
3135 /* Handler (ie not Thread) mode */
3136 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3137 /* Whether we should generate stack-limit checks */
3138 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3139 /* Set if FPCCR.LSPACT is set */
3140 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */
3141 /* Set if we must create a new FP context */
3142 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */
3143 /* Set if FPCCR.S does not match current security state */
3144 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */
3145 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3146 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */
3147 /* Set if in secure mode */
3148 FIELD(TBFLAG_M32, SECURE, 6, 1)
3149
3150 /*
3151 * Bit usage when in AArch64 state
3152 */
3153 FIELD(TBFLAG_A64, TBII, 0, 2)
3154 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3155 /* The current vector length, either NVL or SVL. */
3156 FIELD(TBFLAG_A64, VL, 4, 4)
3157 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3158 FIELD(TBFLAG_A64, BT, 9, 1)
3159 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */
3160 FIELD(TBFLAG_A64, TBID, 12, 2)
3161 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3162 FIELD(TBFLAG_A64, ATA, 15, 1)
3163 FIELD(TBFLAG_A64, TCMA, 16, 2)
3164 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3165 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3166 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3167 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3168 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3169 FIELD(TBFLAG_A64, SVL, 24, 4)
3170 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3171 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3172 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3173 FIELD(TBFLAG_A64, NAA, 30, 1)
3174 FIELD(TBFLAG_A64, ATA0, 31, 1)
3175
3176 /*
3177 * Helpers for using the above.
3178 */
3179 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3180 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3181 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3182 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3183 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3184 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3185 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3186 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3187 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3188 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3189
3190 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3191 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3192 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3193 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3194 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3195
3196 /**
3197 * cpu_mmu_index:
3198 * @env: The cpu environment
3199 * @ifetch: True for code access, false for data access.
3200 *
3201 * Return the core mmu index for the current translation regime.
3202 * This function is used by generic TCG code paths.
3203 */
3204 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3205 {
3206 return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3207 }
3208
3209 /**
3210 * sve_vq
3211 * @env: the cpu context
3212 *
3213 * Return the VL cached within env->hflags, in units of quadwords.
3214 */
3215 static inline int sve_vq(CPUARMState *env)
3216 {
3217 return EX_TBFLAG_A64(env->hflags, VL) + 1;
3218 }
3219
3220 /**
3221 * sme_vq
3222 * @env: the cpu context
3223 *
3224 * Return the SVL cached within env->hflags, in units of quadwords.
3225 */
3226 static inline int sme_vq(CPUARMState *env)
3227 {
3228 return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3229 }
3230
3231 static inline bool bswap_code(bool sctlr_b)
3232 {
3233 #ifdef CONFIG_USER_ONLY
3234 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3235 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3236 * would also end up as a mixed-endian mode with BE code, LE data.
3237 */
3238 return TARGET_BIG_ENDIAN ^ sctlr_b;
3239 #else
3240 /* All code access in ARM is little endian, and there are no loaders
3241 * doing swaps that need to be reversed
3242 */
3243 return 0;
3244 #endif
3245 }
3246
3247 #ifdef CONFIG_USER_ONLY
3248 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3249 {
3250 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3251 }
3252 #endif
3253
3254 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3255 uint64_t *cs_base, uint32_t *flags);
3256
3257 enum {
3258 QEMU_PSCI_CONDUIT_DISABLED = 0,
3259 QEMU_PSCI_CONDUIT_SMC = 1,
3260 QEMU_PSCI_CONDUIT_HVC = 2,
3261 };
3262
3263 #ifndef CONFIG_USER_ONLY
3264 /* Return the address space index to use for a memory access */
3265 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3266 {
3267 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3268 }
3269
3270 /* Return the AddressSpace to use for a memory access
3271 * (which depends on whether the access is S or NS, and whether
3272 * the board gave us a separate AddressSpace for S accesses).
3273 */
3274 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3275 {
3276 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3277 }
3278 #endif
3279
3280 /**
3281 * arm_register_pre_el_change_hook:
3282 * Register a hook function which will be called immediately before this
3283 * CPU changes exception level or mode. The hook function will be
3284 * passed a pointer to the ARMCPU and the opaque data pointer passed
3285 * to this function when the hook was registered.
3286 *
3287 * Note that if a pre-change hook is called, any registered post-change hooks
3288 * are guaranteed to subsequently be called.
3289 */
3290 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3291 void *opaque);
3292 /**
3293 * arm_register_el_change_hook:
3294 * Register a hook function which will be called immediately after this
3295 * CPU changes exception level or mode. The hook function will be
3296 * passed a pointer to the ARMCPU and the opaque data pointer passed
3297 * to this function when the hook was registered.
3298 *
3299 * Note that any registered hooks registered here are guaranteed to be called
3300 * if pre-change hooks have been.
3301 */
3302 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3303 *opaque);
3304
3305 /**
3306 * arm_rebuild_hflags:
3307 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3308 */
3309 void arm_rebuild_hflags(CPUARMState *env);
3310
3311 /**
3312 * aa32_vfp_dreg:
3313 * Return a pointer to the Dn register within env in 32-bit mode.
3314 */
3315 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3316 {
3317 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3318 }
3319
3320 /**
3321 * aa32_vfp_qreg:
3322 * Return a pointer to the Qn register within env in 32-bit mode.
3323 */
3324 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3325 {
3326 return &env->vfp.zregs[regno].d[0];
3327 }
3328
3329 /**
3330 * aa64_vfp_qreg:
3331 * Return a pointer to the Qn register within env in 64-bit mode.
3332 */
3333 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3334 {
3335 return &env->vfp.zregs[regno].d[0];
3336 }
3337
3338 /* Shared between translate-sve.c and sve_helper.c. */
3339 extern const uint64_t pred_esz_masks[5];
3340
3341 /*
3342 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3343 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3344 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR.
3345 */
3346 #define PAGE_BTI PAGE_TARGET_1
3347 #define PAGE_MTE PAGE_TARGET_2
3348 #define PAGE_TARGET_STICKY PAGE_MTE
3349
3350 /* We associate one allocation tag per 16 bytes, the minimum. */
3351 #define LOG2_TAG_GRANULE 4
3352 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE)
3353
3354 #ifdef CONFIG_USER_ONLY
3355 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3356 #endif
3357
3358 #ifdef TARGET_TAGGED_ADDRESSES
3359 /**
3360 * cpu_untagged_addr:
3361 * @cs: CPU context
3362 * @x: tagged address
3363 *
3364 * Remove any address tag from @x. This is explicitly related to the
3365 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3366 *
3367 * There should be a better place to put this, but we need this in
3368 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3369 */
3370 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3371 {
3372 ARMCPU *cpu = ARM_CPU(cs);
3373 if (cpu->env.tagged_addr_enable) {
3374 /*
3375 * TBI is enabled for userspace but not kernelspace addresses.
3376 * Only clear the tag if bit 55 is clear.
3377 */
3378 x &= sextract64(x, 0, 56);
3379 }
3380 return x;
3381 }
3382 #endif
3383
3384 /*
3385 * Naming convention for isar_feature functions:
3386 * Functions which test 32-bit ID registers should have _aa32_ in
3387 * their name. Functions which test 64-bit ID registers should have
3388 * _aa64_ in their name. These must only be used in code where we
3389 * know for certain that the CPU has AArch32 or AArch64 respectively
3390 * or where the correct answer for a CPU which doesn't implement that
3391 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3392 * system registers that are specific to that CPU state, for "should
3393 * we let this system register bit be set" tests where the 32-bit
3394 * flavour of the register doesn't have the bit, and so on).
3395 * Functions which simply ask "does this feature exist at all" have
3396 * _any_ in their name, and always return the logical OR of the _aa64_
3397 * and the _aa32_ function.
3398 */
3399
3400 /*
3401 * 32-bit feature tests via id registers.
3402 */
3403 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3404 {
3405 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3406 }
3407
3408 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3409 {
3410 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3411 }
3412
3413 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3414 {
3415 /* (M-profile) low-overhead loops and branch future */
3416 return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3417 }
3418
3419 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3420 {
3421 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3422 }
3423
3424 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3425 {
3426 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3427 }
3428
3429 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3430 {
3431 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3432 }
3433
3434 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3435 {
3436 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3437 }
3438
3439 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3440 {
3441 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3442 }
3443
3444 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3445 {
3446 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3447 }
3448
3449 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3450 {
3451 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3452 }
3453
3454 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3455 {
3456 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3457 }
3458
3459 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3460 {
3461 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3462 }
3463
3464 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3465 {
3466 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3467 }
3468
3469 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3470 {
3471 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3472 }
3473
3474 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3475 {
3476 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3477 }
3478
3479 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3480 {
3481 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3482 }
3483
3484 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3485 {
3486 return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3487 }
3488
3489 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3490 {
3491 return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3492 }
3493
3494 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3495 {
3496 return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3497 }
3498
3499 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3500 {
3501 return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3502 }
3503
3504 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3505 {
3506 /*
3507 * Return true if M-profile state handling insns
3508 * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3509 */
3510 return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3511 }
3512
3513 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3514 {
3515 /* Sadly this is encoded differently for A-profile and M-profile */
3516 if (isar_feature_aa32_mprofile(id)) {
3517 return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3518 } else {
3519 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3520 }
3521 }
3522
3523 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3524 {
3525 /*
3526 * Return true if MVE is supported (either integer or floating point).
3527 * We must check for M-profile as the MVFR1 field means something
3528 * else for A-profile.
3529 */
3530 return isar_feature_aa32_mprofile(id) &&
3531 FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3532 }
3533
3534 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3535 {
3536 /*
3537 * Return true if MVE is supported (either integer or floating point).
3538 * We must check for M-profile as the MVFR1 field means something
3539 * else for A-profile.
3540 */
3541 return isar_feature_aa32_mprofile(id) &&
3542 FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3543 }
3544
3545 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3546 {
3547 /*
3548 * Return true if either VFP or SIMD is implemented.
3549 * In this case, a minimum of VFP w/ D0-D15.
3550 */
3551 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3552 }
3553
3554 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3555 {
3556 /* Return true if D16-D31 are implemented */
3557 return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3558 }
3559
3560 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3561 {
3562 return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3563 }
3564
3565 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3566 {
3567 /* Return true if CPU supports single precision floating point, VFPv2 */
3568 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3569 }
3570
3571 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3572 {
3573 /* Return true if CPU supports single precision floating point, VFPv3 */
3574 return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3575 }
3576
3577 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3578 {
3579 /* Return true if CPU supports double precision floating point, VFPv2 */
3580 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3581 }
3582
3583 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3584 {
3585 /* Return true if CPU supports double precision floating point, VFPv3 */
3586 return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3587 }
3588
3589 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3590 {
3591 return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3592 }
3593
3594 /*
3595 * We always set the FP and SIMD FP16 fields to indicate identical
3596 * levels of support (assuming SIMD is implemented at all), so
3597 * we only need one set of accessors.
3598 */
3599 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3600 {
3601 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3602 }
3603
3604 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3605 {
3606 return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3607 }
3608
3609 /*
3610 * Note that this ID register field covers both VFP and Neon FMAC,
3611 * so should usually be tested in combination with some other
3612 * check that confirms the presence of whichever of VFP or Neon is
3613 * relevant, to avoid accidentally enabling a Neon feature on
3614 * a VFP-no-Neon core or vice-versa.
3615 */
3616 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3617 {
3618 return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3619 }
3620
3621 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3622 {
3623 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3624 }
3625
3626 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3627 {
3628 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3629 }
3630
3631 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3632 {
3633 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3634 }
3635
3636 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3637 {
3638 return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3639 }
3640
3641 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3642 {
3643 return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3644 }
3645
3646 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3647 {
3648 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3649 }
3650
3651 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3652 {
3653 return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3654 }
3655
3656 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3657 {
3658 /* 0xf means "non-standard IMPDEF PMU" */
3659 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3660 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3661 }
3662
3663 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3664 {
3665 /* 0xf means "non-standard IMPDEF PMU" */
3666 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3667 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3668 }
3669
3670 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3671 {
3672 /* 0xf means "non-standard IMPDEF PMU" */
3673 return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3674 FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3675 }
3676
3677 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3678 {
3679 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3680 }
3681
3682 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3683 {
3684 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3685 }
3686
3687 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3688 {
3689 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3690 }
3691
3692 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3693 {
3694 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3695 }
3696
3697 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3698 {
3699 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3700 }
3701
3702 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3703 {
3704 return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3705 }
3706
3707 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3708 {
3709 return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3710 }
3711
3712 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3713 {
3714 return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3715 }
3716
3717 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3718 {
3719 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3720 }
3721
3722 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3723 {
3724 return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3725 }
3726
3727 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3728 {
3729 return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3730 }
3731
3732 /*
3733 * 64-bit feature tests via id registers.
3734 */
3735 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3736 {
3737 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3738 }
3739
3740 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3741 {
3742 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3743 }
3744
3745 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3746 {
3747 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3748 }
3749
3750 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3751 {
3752 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3753 }
3754
3755 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3756 {
3757 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3758 }
3759
3760 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3761 {
3762 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3763 }
3764
3765 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3766 {
3767 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3768 }
3769
3770 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3771 {
3772 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3773 }
3774
3775 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3776 {
3777 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3778 }
3779
3780 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3781 {
3782 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3783 }
3784
3785 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3786 {
3787 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3788 }
3789
3790 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3791 {
3792 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3793 }
3794
3795 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3796 {
3797 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3798 }
3799
3800 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3801 {
3802 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3803 }
3804
3805 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3806 {
3807 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3808 }
3809
3810 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3811 {
3812 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3813 }
3814
3815 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3816 {
3817 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3818 }
3819
3820 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3821 {
3822 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3823 }
3824
3825 /*
3826 * These are the values from APA/API/APA3.
3827 * In general these must be compared '>=', per the normal Arm ARM
3828 * treatment of fields in ID registers.
3829 */
3830 typedef enum {
3831 PauthFeat_None = 0,
3832 PauthFeat_1 = 1,
3833 PauthFeat_EPAC = 2,
3834 PauthFeat_2 = 3,
3835 PauthFeat_FPAC = 4,
3836 PauthFeat_FPACCOMBINED = 5,
3837 } ARMPauthFeature;
3838
3839 static inline ARMPauthFeature
3840 isar_feature_pauth_feature(const ARMISARegisters *id)
3841 {
3842 /*
3843 * Architecturally, only one of {APA,API,APA3} may be active (non-zero)
3844 * and the other two must be zero. Thus we may avoid conditionals.
3845 */
3846 return (FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) |
3847 FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, API) |
3848 FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, APA3));
3849 }
3850
3851 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3852 {
3853 /*
3854 * Return true if any form of pauth is enabled, as this
3855 * predicate controls migration of the 128-bit keys.
3856 */
3857 return isar_feature_pauth_feature(id) != PauthFeat_None;
3858 }
3859
3860 static inline bool isar_feature_aa64_pauth_qarma5(const ARMISARegisters *id)
3861 {
3862 /*
3863 * Return true if pauth is enabled with the architected QARMA5 algorithm.
3864 * QEMU will always enable or disable both APA and GPA.
3865 */
3866 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3867 }
3868
3869 static inline bool isar_feature_aa64_pauth_qarma3(const ARMISARegisters *id)
3870 {
3871 /*
3872 * Return true if pauth is enabled with the architected QARMA3 algorithm.
3873 * QEMU will always enable or disable both APA3 and GPA3.
3874 */
3875 return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, APA3) != 0;
3876 }
3877
3878 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3879 {
3880 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3881 }
3882
3883 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3884 {
3885 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3886 }
3887
3888 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3889 {
3890 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3891 }
3892
3893 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3894 {
3895 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3896 }
3897
3898 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3899 {
3900 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3901 }
3902
3903 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3904 {
3905 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3906 }
3907
3908 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3909 {
3910 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3911 }
3912
3913 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3914 {
3915 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3916 }
3917
3918 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3919 {
3920 /* We always set the AdvSIMD and FP fields identically. */
3921 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3922 }
3923
3924 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3925 {
3926 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3927 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3928 }
3929
3930 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3931 {
3932 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3933 }
3934
3935 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3936 {
3937 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3938 }
3939
3940 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3941 {
3942 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3943 }
3944
3945 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3946 {
3947 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3948 }
3949
3950 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3951 {
3952 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3953 }
3954
3955 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3956 {
3957 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3958 }
3959
3960 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3961 {
3962 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3963 }
3964
3965 static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3966 {
3967 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3968 }
3969
3970 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3971 {
3972 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3973 }
3974
3975 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3976 {
3977 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3978 }
3979
3980 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3981 {
3982 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3983 }
3984
3985 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3986 {
3987 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3988 }
3989
3990 static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3991 {
3992 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3993 }
3994
3995 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3996 {
3997 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3998 }
3999
4000 static inline bool isar_feature_aa64_tidcp1(const ARMISARegisters *id)
4001 {
4002 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR1, TIDCP1) != 0;
4003 }
4004
4005 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4006 {
4007 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4008 }
4009
4010 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4011 {
4012 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4013 }
4014
4015 static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
4016 {
4017 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
4018 }
4019
4020 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4021 {
4022 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4023 }
4024
4025 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4026 {
4027 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4028 }
4029
4030 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
4031 {
4032 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
4033 }
4034
4035 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
4036 {
4037 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
4038 }
4039
4040 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4041 {
4042 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4043 }
4044
4045 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4046 {
4047 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4048 }
4049
4050 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4051 {
4052 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4053 }
4054
4055 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4056 {
4057 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4058 }
4059
4060 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
4061 {
4062 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4063 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4064 }
4065
4066 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4067 {
4068 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4069 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4070 }
4071
4072 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4073 {
4074 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4075 FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4076 }
4077
4078 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4079 {
4080 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4081 }
4082
4083 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4084 {
4085 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4086 }
4087
4088 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4089 {
4090 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4091 }
4092
4093 static inline bool isar_feature_aa64_hbc(const ARMISARegisters *id)
4094 {
4095 return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, BC) != 0;
4096 }
4097
4098 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4099 {
4100 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4101 }
4102
4103 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4104 {
4105 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4106 return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4107 }
4108
4109 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4110 {
4111 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4112 }
4113
4114 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4115 {
4116 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4117 return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4118 }
4119
4120 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4121 {
4122 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4123 }
4124
4125 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4126 {
4127 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4128 }
4129
4130 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4131 {
4132 return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4133 }
4134
4135 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4136 {
4137 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4138 return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4139 }
4140
4141 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4142 {
4143 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4144 return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4145 }
4146
4147 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4148 {
4149 unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4150 return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4151 }
4152
4153 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4154 {
4155 return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4156 }
4157
4158 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4159 {
4160 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4161 }
4162
4163 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4164 {
4165 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4166 }
4167
4168 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4169 {
4170 return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4171 }
4172
4173 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4174 {
4175 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4176 }
4177
4178 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4179 {
4180 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4181 }
4182
4183 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4184 {
4185 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4186 }
4187
4188 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4189 {
4190 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4191 }
4192
4193 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4194 {
4195 int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4196 if (key >= 2) {
4197 return true; /* FEAT_CSV2_2 */
4198 }
4199 if (key == 1) {
4200 key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4201 return key >= 2; /* FEAT_CSV2_1p2 */
4202 }
4203 return false;
4204 }
4205
4206 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4207 {
4208 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4209 }
4210
4211 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4212 {
4213 return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4214 }
4215
4216 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4217 {
4218 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4219 }
4220
4221 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4222 {
4223 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4224 }
4225
4226 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4227 {
4228 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4229 }
4230
4231 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4232 {
4233 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4234 }
4235
4236 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4237 {
4238 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4239 }
4240
4241 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4242 {
4243 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4244 }
4245
4246 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4247 {
4248 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4249 }
4250
4251 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4252 {
4253 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4254 }
4255
4256 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4257 {
4258 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4259 }
4260
4261 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4262 {
4263 return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4264 }
4265
4266 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4267 {
4268 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4269 }
4270
4271 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4272 {
4273 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4274 }
4275
4276 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4277 {
4278 return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4279 }
4280
4281 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4282 {
4283 return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4284 }
4285
4286 static inline bool isar_feature_aa64_mops(const ARMISARegisters *id)
4287 {
4288 return FIELD_EX64(id->id_aa64isar2, ID_AA64ISAR2, MOPS);
4289 }
4290
4291 /*
4292 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4293 */
4294 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4295 {
4296 return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4297 }
4298
4299 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4300 {
4301 return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4302 }
4303
4304 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4305 {
4306 return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4307 }
4308
4309 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4310 {
4311 return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4312 }
4313
4314 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4315 {
4316 return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4317 }
4318
4319 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4320 {
4321 return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4322 }
4323
4324 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4325 {
4326 return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4327 }
4328
4329 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4330 {
4331 return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4332 }
4333
4334 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4335 {
4336 return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4337 }
4338
4339 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4340 {
4341 return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4342 }
4343
4344 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4345 {
4346 return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4347 }
4348
4349 /*
4350 * Forward to the above feature tests given an ARMCPU pointer.
4351 */
4352 #define cpu_isar_feature(name, cpu) \
4353 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4354
4355 #endif