]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu64.c
target/arm: Enable FEAT_FGT on '-cpu max'
[mirror_qemu.git] / target / arm / cpu64.c
1 /*
2 * QEMU AArch64 CPU
3 *
4 * Copyright (c) 2013 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/hvf.h"
27 #include "kvm_arm.h"
28 #include "hvf_arm.h"
29 #include "qapi/visitor.h"
30 #include "hw/qdev-properties.h"
31 #include "internals.h"
32
33 static void aarch64_a35_initfn(Object *obj)
34 {
35 ARMCPU *cpu = ARM_CPU(obj);
36
37 cpu->dtb_compatible = "arm,cortex-a35";
38 set_feature(&cpu->env, ARM_FEATURE_V8);
39 set_feature(&cpu->env, ARM_FEATURE_NEON);
40 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
41 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
42 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
43 set_feature(&cpu->env, ARM_FEATURE_EL2);
44 set_feature(&cpu->env, ARM_FEATURE_EL3);
45 set_feature(&cpu->env, ARM_FEATURE_PMU);
46
47 /* From B2.2 AArch64 identification registers. */
48 cpu->midr = 0x411fd040;
49 cpu->revidr = 0;
50 cpu->ctr = 0x84448004;
51 cpu->isar.id_pfr0 = 0x00000131;
52 cpu->isar.id_pfr1 = 0x00011011;
53 cpu->isar.id_dfr0 = 0x03010066;
54 cpu->id_afr0 = 0;
55 cpu->isar.id_mmfr0 = 0x10201105;
56 cpu->isar.id_mmfr1 = 0x40000000;
57 cpu->isar.id_mmfr2 = 0x01260000;
58 cpu->isar.id_mmfr3 = 0x02102211;
59 cpu->isar.id_isar0 = 0x02101110;
60 cpu->isar.id_isar1 = 0x13112111;
61 cpu->isar.id_isar2 = 0x21232042;
62 cpu->isar.id_isar3 = 0x01112131;
63 cpu->isar.id_isar4 = 0x00011142;
64 cpu->isar.id_isar5 = 0x00011121;
65 cpu->isar.id_aa64pfr0 = 0x00002222;
66 cpu->isar.id_aa64pfr1 = 0;
67 cpu->isar.id_aa64dfr0 = 0x10305106;
68 cpu->isar.id_aa64dfr1 = 0;
69 cpu->isar.id_aa64isar0 = 0x00011120;
70 cpu->isar.id_aa64isar1 = 0;
71 cpu->isar.id_aa64mmfr0 = 0x00101122;
72 cpu->isar.id_aa64mmfr1 = 0;
73 cpu->clidr = 0x0a200023;
74 cpu->dcz_blocksize = 4;
75
76 /* From B2.4 AArch64 Virtual Memory control registers */
77 cpu->reset_sctlr = 0x00c50838;
78
79 /* From B2.10 AArch64 performance monitor registers */
80 cpu->isar.reset_pmcr_el0 = 0x410a3000;
81
82 /* From B2.29 Cache ID registers */
83 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
84 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
85 cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
86
87 /* From B3.5 VGIC Type register */
88 cpu->gic_num_lrs = 4;
89 cpu->gic_vpribits = 5;
90 cpu->gic_vprebits = 5;
91 cpu->gic_pribits = 5;
92
93 /* From C6.4 Debug ID Register */
94 cpu->isar.dbgdidr = 0x3516d000;
95 /* From C6.5 Debug Device ID Register */
96 cpu->isar.dbgdevid = 0x00110f13;
97 /* From C6.6 Debug Device ID Register 1 */
98 cpu->isar.dbgdevid1 = 0x2;
99
100 /* From Cortex-A35 SIMD and Floating-point Support r1p0 */
101 /* From 3.2 AArch32 register summary */
102 cpu->reset_fpsid = 0x41034043;
103
104 /* From 2.2 AArch64 register summary */
105 cpu->isar.mvfr0 = 0x10110222;
106 cpu->isar.mvfr1 = 0x12111111;
107 cpu->isar.mvfr2 = 0x00000043;
108
109 /* These values are the same with A53/A57/A72. */
110 define_cortex_a72_a57_a53_cp_reginfo(cpu);
111 }
112
113 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
114 {
115 /*
116 * If any vector lengths are explicitly enabled with sve<N> properties,
117 * then all other lengths are implicitly disabled. If sve-max-vq is
118 * specified then it is the same as explicitly enabling all lengths
119 * up to and including the specified maximum, which means all larger
120 * lengths will be implicitly disabled. If no sve<N> properties
121 * are enabled and sve-max-vq is not specified, then all lengths not
122 * explicitly disabled will be enabled. Additionally, all power-of-two
123 * vector lengths less than the maximum enabled length will be
124 * automatically enabled and all vector lengths larger than the largest
125 * disabled power-of-two vector length will be automatically disabled.
126 * Errors are generated if the user provided input that interferes with
127 * any of the above. Finally, if SVE is not disabled, then at least one
128 * vector length must be enabled.
129 */
130 uint32_t vq_map = cpu->sve_vq.map;
131 uint32_t vq_init = cpu->sve_vq.init;
132 uint32_t vq_supported;
133 uint32_t vq_mask = 0;
134 uint32_t tmp, vq, max_vq = 0;
135
136 /*
137 * CPU models specify a set of supported vector lengths which are
138 * enabled by default. Attempting to enable any vector length not set
139 * in the supported bitmap results in an error. When KVM is enabled we
140 * fetch the supported bitmap from the host.
141 */
142 if (kvm_enabled()) {
143 if (kvm_arm_sve_supported()) {
144 cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
145 vq_supported = cpu->sve_vq.supported;
146 } else {
147 assert(!cpu_isar_feature(aa64_sve, cpu));
148 vq_supported = 0;
149 }
150 } else {
151 vq_supported = cpu->sve_vq.supported;
152 }
153
154 /*
155 * Process explicit sve<N> properties.
156 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
157 * Check first for any sve<N> enabled.
158 */
159 if (vq_map != 0) {
160 max_vq = 32 - clz32(vq_map);
161 vq_mask = MAKE_64BIT_MASK(0, max_vq);
162
163 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
164 error_setg(errp, "cannot enable sve%d", max_vq * 128);
165 error_append_hint(errp, "sve%d is larger than the maximum vector "
166 "length, sve-max-vq=%d (%d bits)\n",
167 max_vq * 128, cpu->sve_max_vq,
168 cpu->sve_max_vq * 128);
169 return;
170 }
171
172 if (kvm_enabled()) {
173 /*
174 * For KVM we have to automatically enable all supported unitialized
175 * lengths, even when the smaller lengths are not all powers-of-two.
176 */
177 vq_map |= vq_supported & ~vq_init & vq_mask;
178 } else {
179 /* Propagate enabled bits down through required powers-of-two. */
180 vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
181 }
182 } else if (cpu->sve_max_vq == 0) {
183 /*
184 * No explicit bits enabled, and no implicit bits from sve-max-vq.
185 */
186 if (!cpu_isar_feature(aa64_sve, cpu)) {
187 /* SVE is disabled and so are all vector lengths. Good. */
188 return;
189 }
190
191 if (kvm_enabled()) {
192 /* Disabling a supported length disables all larger lengths. */
193 tmp = vq_init & vq_supported;
194 } else {
195 /* Disabling a power-of-two disables all larger lengths. */
196 tmp = vq_init & SVE_VQ_POW2_MAP;
197 }
198 vq = ctz32(tmp) + 1;
199
200 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
201 vq_mask = MAKE_64BIT_MASK(0, max_vq);
202 vq_map = vq_supported & ~vq_init & vq_mask;
203
204 if (max_vq == 0 || vq_map == 0) {
205 error_setg(errp, "cannot disable sve%d", vq * 128);
206 error_append_hint(errp, "Disabling sve%d results in all "
207 "vector lengths being disabled.\n",
208 vq * 128);
209 error_append_hint(errp, "With SVE enabled, at least one "
210 "vector length must be enabled.\n");
211 return;
212 }
213
214 max_vq = 32 - clz32(vq_map);
215 vq_mask = MAKE_64BIT_MASK(0, max_vq);
216 }
217
218 /*
219 * Process the sve-max-vq property.
220 * Note that we know from the above that no bit above
221 * sve-max-vq is currently set.
222 */
223 if (cpu->sve_max_vq != 0) {
224 max_vq = cpu->sve_max_vq;
225 vq_mask = MAKE_64BIT_MASK(0, max_vq);
226
227 if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
228 error_setg(errp, "cannot disable sve%d", max_vq * 128);
229 error_append_hint(errp, "The maximum vector length must be "
230 "enabled, sve-max-vq=%d (%d bits)\n",
231 max_vq, max_vq * 128);
232 return;
233 }
234
235 /* Set all bits not explicitly set within sve-max-vq. */
236 vq_map |= ~vq_init & vq_mask;
237 }
238
239 /*
240 * We should know what max-vq is now. Also, as we're done
241 * manipulating sve-vq-map, we ensure any bits above max-vq
242 * are clear, just in case anybody looks.
243 */
244 assert(max_vq != 0);
245 assert(vq_mask != 0);
246 vq_map &= vq_mask;
247
248 /* Ensure the set of lengths matches what is supported. */
249 tmp = vq_map ^ (vq_supported & vq_mask);
250 if (tmp) {
251 vq = 32 - clz32(tmp);
252 if (vq_map & (1 << (vq - 1))) {
253 if (cpu->sve_max_vq) {
254 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
255 error_append_hint(errp, "This CPU does not support "
256 "the vector length %d-bits.\n", vq * 128);
257 error_append_hint(errp, "It may not be possible to use "
258 "sve-max-vq with this CPU. Try "
259 "using only sve<N> properties.\n");
260 } else {
261 error_setg(errp, "cannot enable sve%d", vq * 128);
262 if (vq_supported) {
263 error_append_hint(errp, "This CPU does not support "
264 "the vector length %d-bits.\n", vq * 128);
265 } else {
266 error_append_hint(errp, "SVE not supported by KVM "
267 "on this host\n");
268 }
269 }
270 return;
271 } else {
272 if (kvm_enabled()) {
273 error_setg(errp, "cannot disable sve%d", vq * 128);
274 error_append_hint(errp, "The KVM host requires all "
275 "supported vector lengths smaller "
276 "than %d bits to also be enabled.\n",
277 max_vq * 128);
278 return;
279 } else {
280 /* Ensure all required powers-of-two are enabled. */
281 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
282 if (tmp) {
283 vq = 32 - clz32(tmp);
284 error_setg(errp, "cannot disable sve%d", vq * 128);
285 error_append_hint(errp, "sve%d is required as it "
286 "is a power-of-two length smaller "
287 "than the maximum, sve%d\n",
288 vq * 128, max_vq * 128);
289 return;
290 }
291 }
292 }
293 }
294
295 /*
296 * Now that we validated all our vector lengths, the only question
297 * left to answer is if we even want SVE at all.
298 */
299 if (!cpu_isar_feature(aa64_sve, cpu)) {
300 error_setg(errp, "cannot enable sve%d", max_vq * 128);
301 error_append_hint(errp, "SVE must be enabled to enable vector "
302 "lengths.\n");
303 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
304 return;
305 }
306
307 /* From now on sve_max_vq is the actual maximum supported length. */
308 cpu->sve_max_vq = max_vq;
309 cpu->sve_vq.map = vq_map;
310 }
311
312 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
313 void *opaque, Error **errp)
314 {
315 ARMCPU *cpu = ARM_CPU(obj);
316 uint32_t value;
317
318 /* All vector lengths are disabled when SVE is off. */
319 if (!cpu_isar_feature(aa64_sve, cpu)) {
320 value = 0;
321 } else {
322 value = cpu->sve_max_vq;
323 }
324 visit_type_uint32(v, name, &value, errp);
325 }
326
327 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
328 void *opaque, Error **errp)
329 {
330 ARMCPU *cpu = ARM_CPU(obj);
331 uint32_t max_vq;
332
333 if (!visit_type_uint32(v, name, &max_vq, errp)) {
334 return;
335 }
336
337 if (kvm_enabled() && !kvm_arm_sve_supported()) {
338 error_setg(errp, "cannot set sve-max-vq");
339 error_append_hint(errp, "SVE not supported by KVM on this host\n");
340 return;
341 }
342
343 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
344 error_setg(errp, "unsupported SVE vector length");
345 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
346 ARM_MAX_VQ);
347 return;
348 }
349
350 cpu->sve_max_vq = max_vq;
351 }
352
353 /*
354 * Note that cpu_arm_{get,set}_vq cannot use the simpler
355 * object_property_add_bool interface because they make use of the
356 * contents of "name" to determine which bit on which to operate.
357 */
358 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
359 void *opaque, Error **errp)
360 {
361 ARMCPU *cpu = ARM_CPU(obj);
362 ARMVQMap *vq_map = opaque;
363 uint32_t vq = atoi(&name[3]) / 128;
364 bool sve = vq_map == &cpu->sve_vq;
365 bool value;
366
367 /* All vector lengths are disabled when feature is off. */
368 if (sve
369 ? !cpu_isar_feature(aa64_sve, cpu)
370 : !cpu_isar_feature(aa64_sme, cpu)) {
371 value = false;
372 } else {
373 value = extract32(vq_map->map, vq - 1, 1);
374 }
375 visit_type_bool(v, name, &value, errp);
376 }
377
378 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
379 void *opaque, Error **errp)
380 {
381 ARMVQMap *vq_map = opaque;
382 uint32_t vq = atoi(&name[3]) / 128;
383 bool value;
384
385 if (!visit_type_bool(v, name, &value, errp)) {
386 return;
387 }
388
389 vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
390 vq_map->init |= 1 << (vq - 1);
391 }
392
393 static bool cpu_arm_get_sve(Object *obj, Error **errp)
394 {
395 ARMCPU *cpu = ARM_CPU(obj);
396 return cpu_isar_feature(aa64_sve, cpu);
397 }
398
399 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
400 {
401 ARMCPU *cpu = ARM_CPU(obj);
402 uint64_t t;
403
404 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
405 error_setg(errp, "'sve' feature not supported by KVM on this host");
406 return;
407 }
408
409 t = cpu->isar.id_aa64pfr0;
410 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
411 cpu->isar.id_aa64pfr0 = t;
412 }
413
414 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
415 {
416 uint32_t vq_map = cpu->sme_vq.map;
417 uint32_t vq_init = cpu->sme_vq.init;
418 uint32_t vq_supported = cpu->sme_vq.supported;
419 uint32_t vq;
420
421 if (vq_map == 0) {
422 if (!cpu_isar_feature(aa64_sme, cpu)) {
423 cpu->isar.id_aa64smfr0 = 0;
424 return;
425 }
426
427 /* TODO: KVM will require limitations via SMCR_EL2. */
428 vq_map = vq_supported & ~vq_init;
429
430 if (vq_map == 0) {
431 vq = ctz32(vq_supported) + 1;
432 error_setg(errp, "cannot disable sme%d", vq * 128);
433 error_append_hint(errp, "All SME vector lengths are disabled.\n");
434 error_append_hint(errp, "With SME enabled, at least one "
435 "vector length must be enabled.\n");
436 return;
437 }
438 } else {
439 if (!cpu_isar_feature(aa64_sme, cpu)) {
440 vq = 32 - clz32(vq_map);
441 error_setg(errp, "cannot enable sme%d", vq * 128);
442 error_append_hint(errp, "SME must be enabled to enable "
443 "vector lengths.\n");
444 error_append_hint(errp, "Add sme=on to the CPU property list.\n");
445 return;
446 }
447 /* TODO: KVM will require limitations via SMCR_EL2. */
448 }
449
450 cpu->sme_vq.map = vq_map;
451 }
452
453 static bool cpu_arm_get_sme(Object *obj, Error **errp)
454 {
455 ARMCPU *cpu = ARM_CPU(obj);
456 return cpu_isar_feature(aa64_sme, cpu);
457 }
458
459 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
460 {
461 ARMCPU *cpu = ARM_CPU(obj);
462 uint64_t t;
463
464 t = cpu->isar.id_aa64pfr1;
465 t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
466 cpu->isar.id_aa64pfr1 = t;
467 }
468
469 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
470 {
471 ARMCPU *cpu = ARM_CPU(obj);
472 return cpu_isar_feature(aa64_sme, cpu) &&
473 cpu_isar_feature(aa64_sme_fa64, cpu);
474 }
475
476 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
477 {
478 ARMCPU *cpu = ARM_CPU(obj);
479 uint64_t t;
480
481 t = cpu->isar.id_aa64smfr0;
482 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
483 cpu->isar.id_aa64smfr0 = t;
484 }
485
486 #ifdef CONFIG_USER_ONLY
487 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
488 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
489 const char *name, void *opaque,
490 Error **errp)
491 {
492 uint32_t *ptr_default_vq = opaque;
493 int32_t default_len, default_vq, remainder;
494
495 if (!visit_type_int32(v, name, &default_len, errp)) {
496 return;
497 }
498
499 /* Undocumented, but the kernel allows -1 to indicate "maximum". */
500 if (default_len == -1) {
501 *ptr_default_vq = ARM_MAX_VQ;
502 return;
503 }
504
505 default_vq = default_len / 16;
506 remainder = default_len % 16;
507
508 /*
509 * Note that the 512 max comes from include/uapi/asm/sve_context.h
510 * and is the maximum architectural width of ZCR_ELx.LEN.
511 */
512 if (remainder || default_vq < 1 || default_vq > 512) {
513 ARMCPU *cpu = ARM_CPU(obj);
514 const char *which =
515 (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
516
517 error_setg(errp, "cannot set %s-default-vector-length", which);
518 if (remainder) {
519 error_append_hint(errp, "Vector length not a multiple of 16\n");
520 } else if (default_vq < 1) {
521 error_append_hint(errp, "Vector length smaller than 16\n");
522 } else {
523 error_append_hint(errp, "Vector length larger than %d\n",
524 512 * 16);
525 }
526 return;
527 }
528
529 *ptr_default_vq = default_vq;
530 }
531
532 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
533 const char *name, void *opaque,
534 Error **errp)
535 {
536 uint32_t *ptr_default_vq = opaque;
537 int32_t value = *ptr_default_vq * 16;
538
539 visit_type_int32(v, name, &value, errp);
540 }
541 #endif
542
543 static void aarch64_add_sve_properties(Object *obj)
544 {
545 ARMCPU *cpu = ARM_CPU(obj);
546 uint32_t vq;
547
548 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
549
550 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
551 char name[8];
552 sprintf(name, "sve%d", vq * 128);
553 object_property_add(obj, name, "bool", cpu_arm_get_vq,
554 cpu_arm_set_vq, NULL, &cpu->sve_vq);
555 }
556
557 #ifdef CONFIG_USER_ONLY
558 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
559 object_property_add(obj, "sve-default-vector-length", "int32",
560 cpu_arm_get_default_vec_len,
561 cpu_arm_set_default_vec_len, NULL,
562 &cpu->sve_default_vq);
563 #endif
564 }
565
566 static void aarch64_add_sme_properties(Object *obj)
567 {
568 ARMCPU *cpu = ARM_CPU(obj);
569 uint32_t vq;
570
571 object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
572 object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
573 cpu_arm_set_sme_fa64);
574
575 for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
576 char name[8];
577 sprintf(name, "sme%d", vq * 128);
578 object_property_add(obj, name, "bool", cpu_arm_get_vq,
579 cpu_arm_set_vq, NULL, &cpu->sme_vq);
580 }
581
582 #ifdef CONFIG_USER_ONLY
583 /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
584 object_property_add(obj, "sme-default-vector-length", "int32",
585 cpu_arm_get_default_vec_len,
586 cpu_arm_set_default_vec_len, NULL,
587 &cpu->sme_default_vq);
588 #endif
589 }
590
591 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
592 {
593 int arch_val = 0, impdef_val = 0;
594 uint64_t t;
595
596 /* Exit early if PAuth is enabled, and fall through to disable it */
597 if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
598 if (!cpu_isar_feature(aa64_pauth, cpu)) {
599 error_setg(errp, "'pauth' feature not supported by %s on this host",
600 kvm_enabled() ? "KVM" : "hvf");
601 }
602
603 return;
604 }
605
606 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
607 if (cpu->prop_pauth) {
608 if (cpu->prop_pauth_impdef) {
609 impdef_val = 1;
610 } else {
611 arch_val = 1;
612 }
613 } else if (cpu->prop_pauth_impdef) {
614 error_setg(errp, "cannot enable pauth-impdef without pauth");
615 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
616 }
617
618 t = cpu->isar.id_aa64isar1;
619 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
620 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
621 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
622 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
623 cpu->isar.id_aa64isar1 = t;
624 }
625
626 static Property arm_cpu_pauth_property =
627 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
628 static Property arm_cpu_pauth_impdef_property =
629 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
630
631 static void aarch64_add_pauth_properties(Object *obj)
632 {
633 ARMCPU *cpu = ARM_CPU(obj);
634
635 /* Default to PAUTH on, with the architected algorithm on TCG. */
636 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
637 if (kvm_enabled() || hvf_enabled()) {
638 /*
639 * Mirror PAuth support from the probed sysregs back into the
640 * property for KVM or hvf. Is it just a bit backward? Yes it is!
641 * Note that prop_pauth is true whether the host CPU supports the
642 * architected QARMA5 algorithm or the IMPDEF one. We don't
643 * provide the separate pauth-impdef property for KVM or hvf,
644 * only for TCG.
645 */
646 cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
647 } else {
648 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
649 }
650 }
651
652 static Property arm_cpu_lpa2_property =
653 DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
654
655 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
656 {
657 uint64_t t;
658
659 /*
660 * We only install the property for tcg -cpu max; this is the
661 * only situation in which the cpu field can be true.
662 */
663 if (!cpu->prop_lpa2) {
664 return;
665 }
666
667 t = cpu->isar.id_aa64mmfr0;
668 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2); /* 16k pages w/ LPA2 */
669 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1); /* 4k pages w/ LPA2 */
670 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
671 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3); /* 4k stage2 w/ LPA2 */
672 cpu->isar.id_aa64mmfr0 = t;
673 }
674
675 static void aarch64_a57_initfn(Object *obj)
676 {
677 ARMCPU *cpu = ARM_CPU(obj);
678
679 cpu->dtb_compatible = "arm,cortex-a57";
680 set_feature(&cpu->env, ARM_FEATURE_V8);
681 set_feature(&cpu->env, ARM_FEATURE_NEON);
682 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
683 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
684 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
685 set_feature(&cpu->env, ARM_FEATURE_EL2);
686 set_feature(&cpu->env, ARM_FEATURE_EL3);
687 set_feature(&cpu->env, ARM_FEATURE_PMU);
688 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
689 cpu->midr = 0x411fd070;
690 cpu->revidr = 0x00000000;
691 cpu->reset_fpsid = 0x41034070;
692 cpu->isar.mvfr0 = 0x10110222;
693 cpu->isar.mvfr1 = 0x12111111;
694 cpu->isar.mvfr2 = 0x00000043;
695 cpu->ctr = 0x8444c004;
696 cpu->reset_sctlr = 0x00c50838;
697 cpu->isar.id_pfr0 = 0x00000131;
698 cpu->isar.id_pfr1 = 0x00011011;
699 cpu->isar.id_dfr0 = 0x03010066;
700 cpu->id_afr0 = 0x00000000;
701 cpu->isar.id_mmfr0 = 0x10101105;
702 cpu->isar.id_mmfr1 = 0x40000000;
703 cpu->isar.id_mmfr2 = 0x01260000;
704 cpu->isar.id_mmfr3 = 0x02102211;
705 cpu->isar.id_isar0 = 0x02101110;
706 cpu->isar.id_isar1 = 0x13112111;
707 cpu->isar.id_isar2 = 0x21232042;
708 cpu->isar.id_isar3 = 0x01112131;
709 cpu->isar.id_isar4 = 0x00011142;
710 cpu->isar.id_isar5 = 0x00011121;
711 cpu->isar.id_isar6 = 0;
712 cpu->isar.id_aa64pfr0 = 0x00002222;
713 cpu->isar.id_aa64dfr0 = 0x10305106;
714 cpu->isar.id_aa64isar0 = 0x00011120;
715 cpu->isar.id_aa64mmfr0 = 0x00001124;
716 cpu->isar.dbgdidr = 0x3516d000;
717 cpu->isar.dbgdevid = 0x01110f13;
718 cpu->isar.dbgdevid1 = 0x2;
719 cpu->isar.reset_pmcr_el0 = 0x41013000;
720 cpu->clidr = 0x0a200023;
721 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
722 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
723 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
724 cpu->dcz_blocksize = 4; /* 64 bytes */
725 cpu->gic_num_lrs = 4;
726 cpu->gic_vpribits = 5;
727 cpu->gic_vprebits = 5;
728 cpu->gic_pribits = 5;
729 define_cortex_a72_a57_a53_cp_reginfo(cpu);
730 }
731
732 static void aarch64_a53_initfn(Object *obj)
733 {
734 ARMCPU *cpu = ARM_CPU(obj);
735
736 cpu->dtb_compatible = "arm,cortex-a53";
737 set_feature(&cpu->env, ARM_FEATURE_V8);
738 set_feature(&cpu->env, ARM_FEATURE_NEON);
739 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
740 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
741 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
742 set_feature(&cpu->env, ARM_FEATURE_EL2);
743 set_feature(&cpu->env, ARM_FEATURE_EL3);
744 set_feature(&cpu->env, ARM_FEATURE_PMU);
745 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
746 cpu->midr = 0x410fd034;
747 cpu->revidr = 0x00000000;
748 cpu->reset_fpsid = 0x41034070;
749 cpu->isar.mvfr0 = 0x10110222;
750 cpu->isar.mvfr1 = 0x12111111;
751 cpu->isar.mvfr2 = 0x00000043;
752 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
753 cpu->reset_sctlr = 0x00c50838;
754 cpu->isar.id_pfr0 = 0x00000131;
755 cpu->isar.id_pfr1 = 0x00011011;
756 cpu->isar.id_dfr0 = 0x03010066;
757 cpu->id_afr0 = 0x00000000;
758 cpu->isar.id_mmfr0 = 0x10101105;
759 cpu->isar.id_mmfr1 = 0x40000000;
760 cpu->isar.id_mmfr2 = 0x01260000;
761 cpu->isar.id_mmfr3 = 0x02102211;
762 cpu->isar.id_isar0 = 0x02101110;
763 cpu->isar.id_isar1 = 0x13112111;
764 cpu->isar.id_isar2 = 0x21232042;
765 cpu->isar.id_isar3 = 0x01112131;
766 cpu->isar.id_isar4 = 0x00011142;
767 cpu->isar.id_isar5 = 0x00011121;
768 cpu->isar.id_isar6 = 0;
769 cpu->isar.id_aa64pfr0 = 0x00002222;
770 cpu->isar.id_aa64dfr0 = 0x10305106;
771 cpu->isar.id_aa64isar0 = 0x00011120;
772 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
773 cpu->isar.dbgdidr = 0x3516d000;
774 cpu->isar.dbgdevid = 0x00110f13;
775 cpu->isar.dbgdevid1 = 0x1;
776 cpu->isar.reset_pmcr_el0 = 0x41033000;
777 cpu->clidr = 0x0a200023;
778 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
779 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
780 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
781 cpu->dcz_blocksize = 4; /* 64 bytes */
782 cpu->gic_num_lrs = 4;
783 cpu->gic_vpribits = 5;
784 cpu->gic_vprebits = 5;
785 cpu->gic_pribits = 5;
786 define_cortex_a72_a57_a53_cp_reginfo(cpu);
787 }
788
789 static void aarch64_a55_initfn(Object *obj)
790 {
791 ARMCPU *cpu = ARM_CPU(obj);
792
793 cpu->dtb_compatible = "arm,cortex-a55";
794 set_feature(&cpu->env, ARM_FEATURE_V8);
795 set_feature(&cpu->env, ARM_FEATURE_NEON);
796 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
797 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
798 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
799 set_feature(&cpu->env, ARM_FEATURE_EL2);
800 set_feature(&cpu->env, ARM_FEATURE_EL3);
801 set_feature(&cpu->env, ARM_FEATURE_PMU);
802
803 /* Ordered by B2.4 AArch64 registers by functional group */
804 cpu->clidr = 0x82000023;
805 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
806 cpu->dcz_blocksize = 4; /* 64 bytes */
807 cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
808 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
809 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
810 cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
811 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
812 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
813 cpu->isar.id_aa64pfr0 = 0x0000000010112222ull;
814 cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
815 cpu->id_afr0 = 0x00000000;
816 cpu->isar.id_dfr0 = 0x04010088;
817 cpu->isar.id_isar0 = 0x02101110;
818 cpu->isar.id_isar1 = 0x13112111;
819 cpu->isar.id_isar2 = 0x21232042;
820 cpu->isar.id_isar3 = 0x01112131;
821 cpu->isar.id_isar4 = 0x00011142;
822 cpu->isar.id_isar5 = 0x01011121;
823 cpu->isar.id_isar6 = 0x00000010;
824 cpu->isar.id_mmfr0 = 0x10201105;
825 cpu->isar.id_mmfr1 = 0x40000000;
826 cpu->isar.id_mmfr2 = 0x01260000;
827 cpu->isar.id_mmfr3 = 0x02122211;
828 cpu->isar.id_mmfr4 = 0x00021110;
829 cpu->isar.id_pfr0 = 0x10010131;
830 cpu->isar.id_pfr1 = 0x00011011;
831 cpu->isar.id_pfr2 = 0x00000011;
832 cpu->midr = 0x412FD050; /* r2p0 */
833 cpu->revidr = 0;
834
835 /* From B2.23 CCSIDR_EL1 */
836 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
837 cpu->ccsidr[1] = 0x200fe01a; /* 32KB L1 icache */
838 cpu->ccsidr[2] = 0x703fe07a; /* 512KB L2 cache */
839
840 /* From B2.96 SCTLR_EL3 */
841 cpu->reset_sctlr = 0x30c50838;
842
843 /* From B4.45 ICH_VTR_EL2 */
844 cpu->gic_num_lrs = 4;
845 cpu->gic_vpribits = 5;
846 cpu->gic_vprebits = 5;
847 cpu->gic_pribits = 5;
848
849 cpu->isar.mvfr0 = 0x10110222;
850 cpu->isar.mvfr1 = 0x13211111;
851 cpu->isar.mvfr2 = 0x00000043;
852
853 /* From D5.4 AArch64 PMU register summary */
854 cpu->isar.reset_pmcr_el0 = 0x410b3000;
855 }
856
857 static void aarch64_a72_initfn(Object *obj)
858 {
859 ARMCPU *cpu = ARM_CPU(obj);
860
861 cpu->dtb_compatible = "arm,cortex-a72";
862 set_feature(&cpu->env, ARM_FEATURE_V8);
863 set_feature(&cpu->env, ARM_FEATURE_NEON);
864 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
865 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
866 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
867 set_feature(&cpu->env, ARM_FEATURE_EL2);
868 set_feature(&cpu->env, ARM_FEATURE_EL3);
869 set_feature(&cpu->env, ARM_FEATURE_PMU);
870 cpu->midr = 0x410fd083;
871 cpu->revidr = 0x00000000;
872 cpu->reset_fpsid = 0x41034080;
873 cpu->isar.mvfr0 = 0x10110222;
874 cpu->isar.mvfr1 = 0x12111111;
875 cpu->isar.mvfr2 = 0x00000043;
876 cpu->ctr = 0x8444c004;
877 cpu->reset_sctlr = 0x00c50838;
878 cpu->isar.id_pfr0 = 0x00000131;
879 cpu->isar.id_pfr1 = 0x00011011;
880 cpu->isar.id_dfr0 = 0x03010066;
881 cpu->id_afr0 = 0x00000000;
882 cpu->isar.id_mmfr0 = 0x10201105;
883 cpu->isar.id_mmfr1 = 0x40000000;
884 cpu->isar.id_mmfr2 = 0x01260000;
885 cpu->isar.id_mmfr3 = 0x02102211;
886 cpu->isar.id_isar0 = 0x02101110;
887 cpu->isar.id_isar1 = 0x13112111;
888 cpu->isar.id_isar2 = 0x21232042;
889 cpu->isar.id_isar3 = 0x01112131;
890 cpu->isar.id_isar4 = 0x00011142;
891 cpu->isar.id_isar5 = 0x00011121;
892 cpu->isar.id_aa64pfr0 = 0x00002222;
893 cpu->isar.id_aa64dfr0 = 0x10305106;
894 cpu->isar.id_aa64isar0 = 0x00011120;
895 cpu->isar.id_aa64mmfr0 = 0x00001124;
896 cpu->isar.dbgdidr = 0x3516d000;
897 cpu->isar.dbgdevid = 0x01110f13;
898 cpu->isar.dbgdevid1 = 0x2;
899 cpu->isar.reset_pmcr_el0 = 0x41023000;
900 cpu->clidr = 0x0a200023;
901 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
902 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
903 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
904 cpu->dcz_blocksize = 4; /* 64 bytes */
905 cpu->gic_num_lrs = 4;
906 cpu->gic_vpribits = 5;
907 cpu->gic_vprebits = 5;
908 cpu->gic_pribits = 5;
909 define_cortex_a72_a57_a53_cp_reginfo(cpu);
910 }
911
912 static void aarch64_a76_initfn(Object *obj)
913 {
914 ARMCPU *cpu = ARM_CPU(obj);
915
916 cpu->dtb_compatible = "arm,cortex-a76";
917 set_feature(&cpu->env, ARM_FEATURE_V8);
918 set_feature(&cpu->env, ARM_FEATURE_NEON);
919 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
920 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
921 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
922 set_feature(&cpu->env, ARM_FEATURE_EL2);
923 set_feature(&cpu->env, ARM_FEATURE_EL3);
924 set_feature(&cpu->env, ARM_FEATURE_PMU);
925
926 /* Ordered by B2.4 AArch64 registers by functional group */
927 cpu->clidr = 0x82000023;
928 cpu->ctr = 0x8444C004;
929 cpu->dcz_blocksize = 4;
930 cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
931 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
932 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
933 cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
934 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
935 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
936 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
937 cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
938 cpu->id_afr0 = 0x00000000;
939 cpu->isar.id_dfr0 = 0x04010088;
940 cpu->isar.id_isar0 = 0x02101110;
941 cpu->isar.id_isar1 = 0x13112111;
942 cpu->isar.id_isar2 = 0x21232042;
943 cpu->isar.id_isar3 = 0x01112131;
944 cpu->isar.id_isar4 = 0x00010142;
945 cpu->isar.id_isar5 = 0x01011121;
946 cpu->isar.id_isar6 = 0x00000010;
947 cpu->isar.id_mmfr0 = 0x10201105;
948 cpu->isar.id_mmfr1 = 0x40000000;
949 cpu->isar.id_mmfr2 = 0x01260000;
950 cpu->isar.id_mmfr3 = 0x02122211;
951 cpu->isar.id_mmfr4 = 0x00021110;
952 cpu->isar.id_pfr0 = 0x10010131;
953 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
954 cpu->isar.id_pfr2 = 0x00000011;
955 cpu->midr = 0x414fd0b1; /* r4p1 */
956 cpu->revidr = 0;
957
958 /* From B2.18 CCSIDR_EL1 */
959 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
960 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
961 cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
962
963 /* From B2.93 SCTLR_EL3 */
964 cpu->reset_sctlr = 0x30c50838;
965
966 /* From B4.23 ICH_VTR_EL2 */
967 cpu->gic_num_lrs = 4;
968 cpu->gic_vpribits = 5;
969 cpu->gic_vprebits = 5;
970 cpu->gic_pribits = 5;
971
972 /* From B5.1 AdvSIMD AArch64 register summary */
973 cpu->isar.mvfr0 = 0x10110222;
974 cpu->isar.mvfr1 = 0x13211111;
975 cpu->isar.mvfr2 = 0x00000043;
976
977 /* From D5.1 AArch64 PMU register summary */
978 cpu->isar.reset_pmcr_el0 = 0x410b3000;
979 }
980
981 static void aarch64_a64fx_initfn(Object *obj)
982 {
983 ARMCPU *cpu = ARM_CPU(obj);
984
985 cpu->dtb_compatible = "arm,a64fx";
986 set_feature(&cpu->env, ARM_FEATURE_V8);
987 set_feature(&cpu->env, ARM_FEATURE_NEON);
988 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
989 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
990 set_feature(&cpu->env, ARM_FEATURE_EL2);
991 set_feature(&cpu->env, ARM_FEATURE_EL3);
992 set_feature(&cpu->env, ARM_FEATURE_PMU);
993 cpu->midr = 0x461f0010;
994 cpu->revidr = 0x00000000;
995 cpu->ctr = 0x86668006;
996 cpu->reset_sctlr = 0x30000180;
997 cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
998 cpu->isar.id_aa64pfr1 = 0x0000000000000000;
999 cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1000 cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1001 cpu->id_aa64afr0 = 0x0000000000000000;
1002 cpu->id_aa64afr1 = 0x0000000000000000;
1003 cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1004 cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1005 cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1006 cpu->isar.id_aa64isar0 = 0x0000000010211120;
1007 cpu->isar.id_aa64isar1 = 0x0000000000010001;
1008 cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1009 cpu->clidr = 0x0000000080000023;
1010 cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1011 cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1012 cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1013 cpu->dcz_blocksize = 6; /* 256 bytes */
1014 cpu->gic_num_lrs = 4;
1015 cpu->gic_vpribits = 5;
1016 cpu->gic_vprebits = 5;
1017 cpu->gic_pribits = 5;
1018
1019 /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1020 aarch64_add_sve_properties(obj);
1021 cpu->sve_vq.supported = (1 << 0) /* 128bit */
1022 | (1 << 1) /* 256bit */
1023 | (1 << 3); /* 512bit */
1024
1025 cpu->isar.reset_pmcr_el0 = 0x46014040;
1026
1027 /* TODO: Add A64FX specific HPC extension registers */
1028 }
1029
1030 static void aarch64_neoverse_n1_initfn(Object *obj)
1031 {
1032 ARMCPU *cpu = ARM_CPU(obj);
1033
1034 cpu->dtb_compatible = "arm,neoverse-n1";
1035 set_feature(&cpu->env, ARM_FEATURE_V8);
1036 set_feature(&cpu->env, ARM_FEATURE_NEON);
1037 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1038 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1039 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1040 set_feature(&cpu->env, ARM_FEATURE_EL2);
1041 set_feature(&cpu->env, ARM_FEATURE_EL3);
1042 set_feature(&cpu->env, ARM_FEATURE_PMU);
1043
1044 /* Ordered by B2.4 AArch64 registers by functional group */
1045 cpu->clidr = 0x82000023;
1046 cpu->ctr = 0x8444c004;
1047 cpu->dcz_blocksize = 4;
1048 cpu->isar.id_aa64dfr0 = 0x0000000110305408ull;
1049 cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
1050 cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
1051 cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
1052 cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
1053 cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
1054 cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
1055 cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
1056 cpu->id_afr0 = 0x00000000;
1057 cpu->isar.id_dfr0 = 0x04010088;
1058 cpu->isar.id_isar0 = 0x02101110;
1059 cpu->isar.id_isar1 = 0x13112111;
1060 cpu->isar.id_isar2 = 0x21232042;
1061 cpu->isar.id_isar3 = 0x01112131;
1062 cpu->isar.id_isar4 = 0x00010142;
1063 cpu->isar.id_isar5 = 0x01011121;
1064 cpu->isar.id_isar6 = 0x00000010;
1065 cpu->isar.id_mmfr0 = 0x10201105;
1066 cpu->isar.id_mmfr1 = 0x40000000;
1067 cpu->isar.id_mmfr2 = 0x01260000;
1068 cpu->isar.id_mmfr3 = 0x02122211;
1069 cpu->isar.id_mmfr4 = 0x00021110;
1070 cpu->isar.id_pfr0 = 0x10010131;
1071 cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
1072 cpu->isar.id_pfr2 = 0x00000011;
1073 cpu->midr = 0x414fd0c1; /* r4p1 */
1074 cpu->revidr = 0;
1075
1076 /* From B2.23 CCSIDR_EL1 */
1077 cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
1078 cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
1079 cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
1080
1081 /* From B2.98 SCTLR_EL3 */
1082 cpu->reset_sctlr = 0x30c50838;
1083
1084 /* From B4.23 ICH_VTR_EL2 */
1085 cpu->gic_num_lrs = 4;
1086 cpu->gic_vpribits = 5;
1087 cpu->gic_vprebits = 5;
1088 cpu->gic_pribits = 5;
1089
1090 /* From B5.1 AdvSIMD AArch64 register summary */
1091 cpu->isar.mvfr0 = 0x10110222;
1092 cpu->isar.mvfr1 = 0x13211111;
1093 cpu->isar.mvfr2 = 0x00000043;
1094
1095 /* From D5.1 AArch64 PMU register summary */
1096 cpu->isar.reset_pmcr_el0 = 0x410c3000;
1097 }
1098
1099 static void aarch64_host_initfn(Object *obj)
1100 {
1101 #if defined(CONFIG_KVM)
1102 ARMCPU *cpu = ARM_CPU(obj);
1103 kvm_arm_set_cpu_features_from_host(cpu);
1104 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1105 aarch64_add_sve_properties(obj);
1106 aarch64_add_pauth_properties(obj);
1107 }
1108 #elif defined(CONFIG_HVF)
1109 ARMCPU *cpu = ARM_CPU(obj);
1110 hvf_arm_set_cpu_features_from_host(cpu);
1111 aarch64_add_pauth_properties(obj);
1112 #else
1113 g_assert_not_reached();
1114 #endif
1115 }
1116
1117 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1118 * otherwise, a CPU with as many features enabled as our emulation supports.
1119 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
1120 * this only needs to handle 64 bits.
1121 */
1122 static void aarch64_max_initfn(Object *obj)
1123 {
1124 ARMCPU *cpu = ARM_CPU(obj);
1125 uint64_t t;
1126 uint32_t u;
1127
1128 if (kvm_enabled() || hvf_enabled()) {
1129 /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
1130 aarch64_host_initfn(obj);
1131 return;
1132 }
1133
1134 /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
1135
1136 aarch64_a57_initfn(obj);
1137
1138 /*
1139 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
1140 * one and try to apply errata workarounds or use impdef features we
1141 * don't provide.
1142 * An IMPLEMENTER field of 0 means "reserved for software use";
1143 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
1144 * to see which features are present";
1145 * the VARIANT, PARTNUM and REVISION fields are all implementation
1146 * defined and we choose to define PARTNUM just in case guest
1147 * code needs to distinguish this QEMU CPU from other software
1148 * implementations, though this shouldn't be needed.
1149 */
1150 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
1151 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
1152 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
1153 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
1154 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
1155 cpu->midr = t;
1156
1157 /*
1158 * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
1159 * are zero.
1160 */
1161 u = cpu->clidr;
1162 u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
1163 u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
1164 cpu->clidr = u;
1165
1166 t = cpu->isar.id_aa64isar0;
1167 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */
1168 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */
1169 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */
1170 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
1171 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */
1172 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */
1173 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */
1174 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */
1175 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */
1176 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */
1177 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */
1178 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */
1179 t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
1180 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */
1181 cpu->isar.id_aa64isar0 = t;
1182
1183 t = cpu->isar.id_aa64isar1;
1184 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */
1185 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */
1186 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */
1187 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */
1188 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */
1189 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */
1190 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */
1191 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */
1192 t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */
1193 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */
1194 cpu->isar.id_aa64isar1 = t;
1195
1196 t = cpu->isar.id_aa64pfr0;
1197 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */
1198 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */
1199 t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */
1200 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1201 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */
1202 t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */
1203 t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */
1204 t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */
1205 cpu->isar.id_aa64pfr0 = t;
1206
1207 t = cpu->isar.id_aa64pfr1;
1208 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */
1209 t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */
1210 /*
1211 * Begin with full support for MTE. This will be downgraded to MTE=0
1212 * during realize if the board provides no tag memory, much like
1213 * we do for EL2 with the virtualization=on property.
1214 */
1215 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */
1216 t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */
1217 t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */
1218 t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1219 cpu->isar.id_aa64pfr1 = t;
1220
1221 t = cpu->isar.id_aa64mmfr0;
1222 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1223 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */
1224 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1225 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1226 t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */
1227 t = FIELD_DP64(t, ID_AA64MMFR0, FGT, 1); /* FEAT_FGT */
1228 cpu->isar.id_aa64mmfr0 = t;
1229
1230 t = cpu->isar.id_aa64mmfr1;
1231 t = FIELD_DP64(t, ID_AA64MMFR1, HAFDBS, 2); /* FEAT_HAFDBS */
1232 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1233 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */
1234 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* FEAT_HPDS */
1235 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */
1236 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* FEAT_PAN2 */
1237 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */
1238 t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */
1239 t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */
1240 cpu->isar.id_aa64mmfr1 = t;
1241
1242 t = cpu->isar.id_aa64mmfr2;
1243 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */
1244 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */
1245 t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */
1246 t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
1247 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */
1248 t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */
1249 t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */
1250 t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */
1251 t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */
1252 t = FIELD_DP64(t, ID_AA64MMFR2, EVT, 2); /* FEAT_EVT */
1253 t = FIELD_DP64(t, ID_AA64MMFR2, E0PD, 1); /* FEAT_E0PD */
1254 cpu->isar.id_aa64mmfr2 = t;
1255
1256 t = cpu->isar.id_aa64zfr0;
1257 t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1258 t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */
1259 t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */
1260 t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */
1261 t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */
1262 t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */
1263 t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */
1264 t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */
1265 t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */
1266 cpu->isar.id_aa64zfr0 = t;
1267
1268 t = cpu->isar.id_aa64dfr0;
1269 t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */
1270 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */
1271 cpu->isar.id_aa64dfr0 = t;
1272
1273 t = cpu->isar.id_aa64smfr0;
1274 t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */
1275 t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */
1276 t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */
1277 t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */
1278 t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */
1279 t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1280 t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */
1281 cpu->isar.id_aa64smfr0 = t;
1282
1283 /* Replicate the same data to the 32-bit id registers. */
1284 aa32_max_features(cpu);
1285
1286 #ifdef CONFIG_USER_ONLY
1287 /*
1288 * For usermode -cpu max we can use a larger and more efficient DCZ
1289 * blocksize since we don't have to follow what the hardware does.
1290 */
1291 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1292 cpu->dcz_blocksize = 7; /* 512 bytes */
1293 #endif
1294
1295 cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1296 cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1297
1298 aarch64_add_pauth_properties(obj);
1299 aarch64_add_sve_properties(obj);
1300 aarch64_add_sme_properties(obj);
1301 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1302 cpu_max_set_sve_max_vq, NULL, NULL);
1303 qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1304 }
1305
1306 static const ARMCPUInfo aarch64_cpus[] = {
1307 { .name = "cortex-a35", .initfn = aarch64_a35_initfn },
1308 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
1309 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
1310 { .name = "cortex-a55", .initfn = aarch64_a55_initfn },
1311 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
1312 { .name = "cortex-a76", .initfn = aarch64_a76_initfn },
1313 { .name = "a64fx", .initfn = aarch64_a64fx_initfn },
1314 { .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn },
1315 { .name = "max", .initfn = aarch64_max_initfn },
1316 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1317 { .name = "host", .initfn = aarch64_host_initfn },
1318 #endif
1319 };
1320
1321 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1322 {
1323 ARMCPU *cpu = ARM_CPU(obj);
1324
1325 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1326 }
1327
1328 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1329 {
1330 ARMCPU *cpu = ARM_CPU(obj);
1331
1332 /* At this time, this property is only allowed if KVM is enabled. This
1333 * restriction allows us to avoid fixing up functionality that assumes a
1334 * uniform execution state like do_interrupt.
1335 */
1336 if (value == false) {
1337 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1338 error_setg(errp, "'aarch64' feature cannot be disabled "
1339 "unless KVM is enabled and 32-bit EL1 "
1340 "is supported");
1341 return;
1342 }
1343 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1344 } else {
1345 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1346 }
1347 }
1348
1349 static void aarch64_cpu_finalizefn(Object *obj)
1350 {
1351 }
1352
1353 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1354 {
1355 return g_strdup("aarch64");
1356 }
1357
1358 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1359 {
1360 CPUClass *cc = CPU_CLASS(oc);
1361
1362 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1363 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1364 cc->gdb_num_core_regs = 34;
1365 cc->gdb_core_xml_file = "aarch64-core.xml";
1366 cc->gdb_arch_name = aarch64_gdb_arch_name;
1367
1368 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1369 aarch64_cpu_set_aarch64);
1370 object_class_property_set_description(oc, "aarch64",
1371 "Set on/off to enable/disable aarch64 "
1372 "execution state ");
1373 }
1374
1375 static void aarch64_cpu_instance_init(Object *obj)
1376 {
1377 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1378
1379 acc->info->initfn(obj);
1380 arm_cpu_post_init(obj);
1381 }
1382
1383 static void cpu_register_class_init(ObjectClass *oc, void *data)
1384 {
1385 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1386
1387 acc->info = data;
1388 }
1389
1390 void aarch64_cpu_register(const ARMCPUInfo *info)
1391 {
1392 TypeInfo type_info = {
1393 .parent = TYPE_AARCH64_CPU,
1394 .instance_size = sizeof(ARMCPU),
1395 .instance_init = aarch64_cpu_instance_init,
1396 .class_size = sizeof(ARMCPUClass),
1397 .class_init = info->class_init ?: cpu_register_class_init,
1398 .class_data = (void *)info,
1399 };
1400
1401 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1402 type_register(&type_info);
1403 g_free((void *)type_info.name);
1404 }
1405
1406 static const TypeInfo aarch64_cpu_type_info = {
1407 .name = TYPE_AARCH64_CPU,
1408 .parent = TYPE_ARM_CPU,
1409 .instance_size = sizeof(ARMCPU),
1410 .instance_finalize = aarch64_cpu_finalizefn,
1411 .abstract = true,
1412 .class_size = sizeof(AArch64CPUClass),
1413 .class_init = aarch64_cpu_class_init,
1414 };
1415
1416 static void aarch64_cpu_register_types(void)
1417 {
1418 size_t i;
1419
1420 type_register_static(&aarch64_cpu_type_info);
1421
1422 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1423 aarch64_cpu_register(&aarch64_cpus[i]);
1424 }
1425 }
1426
1427 type_init(aarch64_cpu_register_types)