]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu64.c
target/arm: Prune a57 features from max
[mirror_qemu.git] / target / arm / cpu64.c
1 /*
2 * QEMU AArch64 CPU
3 *
4 * Copyright (c) 2013 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
32
33 static inline void set_feature(CPUARMState *env, int feature)
34 {
35 env->features |= 1ULL << feature;
36 }
37
38 static inline void unset_feature(CPUARMState *env, int feature)
39 {
40 env->features &= ~(1ULL << feature);
41 }
42
43 #ifndef CONFIG_USER_ONLY
44 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 {
46 ARMCPU *cpu = arm_env_get_cpu(env);
47
48 /* Number of cores is in [25:24]; otherwise we RAZ */
49 return (cpu->core_count - 1) << 24;
50 }
51 #endif
52
53 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
54 #ifndef CONFIG_USER_ONLY
55 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
56 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
57 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
58 .writefn = arm_cp_write_ignore },
59 { .name = "L2CTLR",
60 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
61 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
62 .writefn = arm_cp_write_ignore },
63 #endif
64 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
65 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67 { .name = "L2ECTLR",
68 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
69 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
71 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
72 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
73 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
74 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
75 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76 { .name = "CPUACTLR",
77 .cp = 15, .opc1 = 0, .crm = 15,
78 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
80 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
81 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82 { .name = "CPUECTLR",
83 .cp = 15, .opc1 = 1, .crm = 15,
84 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
86 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
87 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88 { .name = "CPUMERRSR",
89 .cp = 15, .opc1 = 2, .crm = 15,
90 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
92 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
93 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
94 { .name = "L2MERRSR",
95 .cp = 15, .opc1 = 3, .crm = 15,
96 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
97 REGINFO_SENTINEL
98 };
99
100 static void aarch64_a57_initfn(Object *obj)
101 {
102 ARMCPU *cpu = ARM_CPU(obj);
103
104 cpu->dtb_compatible = "arm,cortex-a57";
105 set_feature(&cpu->env, ARM_FEATURE_V8);
106 set_feature(&cpu->env, ARM_FEATURE_VFP4);
107 set_feature(&cpu->env, ARM_FEATURE_NEON);
108 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
109 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
110 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
111 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
112 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
113 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
114 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
115 set_feature(&cpu->env, ARM_FEATURE_CRC);
116 set_feature(&cpu->env, ARM_FEATURE_EL2);
117 set_feature(&cpu->env, ARM_FEATURE_EL3);
118 set_feature(&cpu->env, ARM_FEATURE_PMU);
119 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
120 cpu->midr = 0x411fd070;
121 cpu->revidr = 0x00000000;
122 cpu->reset_fpsid = 0x41034070;
123 cpu->mvfr0 = 0x10110222;
124 cpu->mvfr1 = 0x12111111;
125 cpu->mvfr2 = 0x00000043;
126 cpu->ctr = 0x8444c004;
127 cpu->reset_sctlr = 0x00c50838;
128 cpu->id_pfr0 = 0x00000131;
129 cpu->id_pfr1 = 0x00011011;
130 cpu->id_dfr0 = 0x03010066;
131 cpu->id_afr0 = 0x00000000;
132 cpu->id_mmfr0 = 0x10101105;
133 cpu->id_mmfr1 = 0x40000000;
134 cpu->id_mmfr2 = 0x01260000;
135 cpu->id_mmfr3 = 0x02102211;
136 cpu->id_isar0 = 0x02101110;
137 cpu->id_isar1 = 0x13112111;
138 cpu->id_isar2 = 0x21232042;
139 cpu->id_isar3 = 0x01112131;
140 cpu->id_isar4 = 0x00011142;
141 cpu->id_isar5 = 0x00011121;
142 cpu->id_aa64pfr0 = 0x00002222;
143 cpu->id_aa64dfr0 = 0x10305106;
144 cpu->pmceid0 = 0x00000000;
145 cpu->pmceid1 = 0x00000000;
146 cpu->id_aa64isar0 = 0x00011120;
147 cpu->id_aa64mmfr0 = 0x00001124;
148 cpu->dbgdidr = 0x3516d000;
149 cpu->clidr = 0x0a200023;
150 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
151 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
152 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
153 cpu->dcz_blocksize = 4; /* 64 bytes */
154 cpu->gic_num_lrs = 4;
155 cpu->gic_vpribits = 5;
156 cpu->gic_vprebits = 5;
157 define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
158 }
159
160 static void aarch64_a53_initfn(Object *obj)
161 {
162 ARMCPU *cpu = ARM_CPU(obj);
163
164 cpu->dtb_compatible = "arm,cortex-a53";
165 set_feature(&cpu->env, ARM_FEATURE_V8);
166 set_feature(&cpu->env, ARM_FEATURE_VFP4);
167 set_feature(&cpu->env, ARM_FEATURE_NEON);
168 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
169 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
170 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
171 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
172 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
173 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
174 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
175 set_feature(&cpu->env, ARM_FEATURE_CRC);
176 set_feature(&cpu->env, ARM_FEATURE_EL2);
177 set_feature(&cpu->env, ARM_FEATURE_EL3);
178 set_feature(&cpu->env, ARM_FEATURE_PMU);
179 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
180 cpu->midr = 0x410fd034;
181 cpu->revidr = 0x00000000;
182 cpu->reset_fpsid = 0x41034070;
183 cpu->mvfr0 = 0x10110222;
184 cpu->mvfr1 = 0x12111111;
185 cpu->mvfr2 = 0x00000043;
186 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
187 cpu->reset_sctlr = 0x00c50838;
188 cpu->id_pfr0 = 0x00000131;
189 cpu->id_pfr1 = 0x00011011;
190 cpu->id_dfr0 = 0x03010066;
191 cpu->id_afr0 = 0x00000000;
192 cpu->id_mmfr0 = 0x10101105;
193 cpu->id_mmfr1 = 0x40000000;
194 cpu->id_mmfr2 = 0x01260000;
195 cpu->id_mmfr3 = 0x02102211;
196 cpu->id_isar0 = 0x02101110;
197 cpu->id_isar1 = 0x13112111;
198 cpu->id_isar2 = 0x21232042;
199 cpu->id_isar3 = 0x01112131;
200 cpu->id_isar4 = 0x00011142;
201 cpu->id_isar5 = 0x00011121;
202 cpu->id_aa64pfr0 = 0x00002222;
203 cpu->id_aa64dfr0 = 0x10305106;
204 cpu->id_aa64isar0 = 0x00011120;
205 cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
206 cpu->dbgdidr = 0x3516d000;
207 cpu->clidr = 0x0a200023;
208 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
209 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
210 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
211 cpu->dcz_blocksize = 4; /* 64 bytes */
212 cpu->gic_num_lrs = 4;
213 cpu->gic_vpribits = 5;
214 cpu->gic_vprebits = 5;
215 define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
216 }
217
218 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
219 * otherwise, a CPU with as many features enabled as our emulation supports.
220 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
221 * this only needs to handle 64 bits.
222 */
223 static void aarch64_max_initfn(Object *obj)
224 {
225 ARMCPU *cpu = ARM_CPU(obj);
226
227 if (kvm_enabled()) {
228 kvm_arm_set_cpu_features_from_host(cpu);
229 } else {
230 aarch64_a57_initfn(obj);
231 #ifdef CONFIG_USER_ONLY
232 /* We don't set these in system emulation mode for the moment,
233 * since we don't correctly set the ID registers to advertise them,
234 * and in some cases they're only available in AArch64 and not AArch32,
235 * whereas the architecture requires them to be present in both if
236 * present in either.
237 */
238 set_feature(&cpu->env, ARM_FEATURE_V8_SHA512);
239 set_feature(&cpu->env, ARM_FEATURE_V8_SHA3);
240 set_feature(&cpu->env, ARM_FEATURE_V8_SM3);
241 set_feature(&cpu->env, ARM_FEATURE_V8_SM4);
242 set_feature(&cpu->env, ARM_FEATURE_V8_ATOMICS);
243 set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
244 set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
245 set_feature(&cpu->env, ARM_FEATURE_V8_FP16);
246 set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
247 set_feature(&cpu->env, ARM_FEATURE_SVE);
248 /* For usermode -cpu max we can use a larger and more efficient DCZ
249 * blocksize since we don't have to follow what the hardware does.
250 */
251 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
252 cpu->dcz_blocksize = 7; /* 512 bytes */
253 #endif
254 }
255 }
256
257 typedef struct ARMCPUInfo {
258 const char *name;
259 void (*initfn)(Object *obj);
260 void (*class_init)(ObjectClass *oc, void *data);
261 } ARMCPUInfo;
262
263 static const ARMCPUInfo aarch64_cpus[] = {
264 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
265 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
266 { .name = "max", .initfn = aarch64_max_initfn },
267 { .name = NULL }
268 };
269
270 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
271 {
272 ARMCPU *cpu = ARM_CPU(obj);
273
274 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
275 }
276
277 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
278 {
279 ARMCPU *cpu = ARM_CPU(obj);
280
281 /* At this time, this property is only allowed if KVM is enabled. This
282 * restriction allows us to avoid fixing up functionality that assumes a
283 * uniform execution state like do_interrupt.
284 */
285 if (!kvm_enabled()) {
286 error_setg(errp, "'aarch64' feature cannot be disabled "
287 "unless KVM is enabled");
288 return;
289 }
290
291 if (value == false) {
292 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
293 } else {
294 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
295 }
296 }
297
298 static void aarch64_cpu_initfn(Object *obj)
299 {
300 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
301 aarch64_cpu_set_aarch64, NULL);
302 object_property_set_description(obj, "aarch64",
303 "Set on/off to enable/disable aarch64 "
304 "execution state ",
305 NULL);
306 }
307
308 static void aarch64_cpu_finalizefn(Object *obj)
309 {
310 }
311
312 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
313 {
314 ARMCPU *cpu = ARM_CPU(cs);
315 /* It's OK to look at env for the current mode here, because it's
316 * never possible for an AArch64 TB to chain to an AArch32 TB.
317 * (Otherwise we would need to use synchronize_from_tb instead.)
318 */
319 if (is_a64(&cpu->env)) {
320 cpu->env.pc = value;
321 } else {
322 cpu->env.regs[15] = value;
323 }
324 }
325
326 static gchar *aarch64_gdb_arch_name(CPUState *cs)
327 {
328 return g_strdup("aarch64");
329 }
330
331 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
332 {
333 CPUClass *cc = CPU_CLASS(oc);
334
335 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
336 cc->set_pc = aarch64_cpu_set_pc;
337 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
338 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
339 cc->gdb_num_core_regs = 34;
340 cc->gdb_core_xml_file = "aarch64-core.xml";
341 cc->gdb_arch_name = aarch64_gdb_arch_name;
342 }
343
344 static void aarch64_cpu_register(const ARMCPUInfo *info)
345 {
346 TypeInfo type_info = {
347 .parent = TYPE_AARCH64_CPU,
348 .instance_size = sizeof(ARMCPU),
349 .instance_init = info->initfn,
350 .class_size = sizeof(ARMCPUClass),
351 .class_init = info->class_init,
352 };
353
354 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
355 type_register(&type_info);
356 g_free((void *)type_info.name);
357 }
358
359 static const TypeInfo aarch64_cpu_type_info = {
360 .name = TYPE_AARCH64_CPU,
361 .parent = TYPE_ARM_CPU,
362 .instance_size = sizeof(ARMCPU),
363 .instance_init = aarch64_cpu_initfn,
364 .instance_finalize = aarch64_cpu_finalizefn,
365 .abstract = true,
366 .class_size = sizeof(AArch64CPUClass),
367 .class_init = aarch64_cpu_class_init,
368 };
369
370 static void aarch64_cpu_register_types(void)
371 {
372 const ARMCPUInfo *info = aarch64_cpus;
373
374 type_register_static(&aarch64_cpu_type_info);
375
376 while (info->name) {
377 aarch64_cpu_register(info);
378 info++;
379 }
380 }
381
382 type_init(aarch64_cpu_register_types)
383
384 /* The manual says that when SVE is enabled and VQ is widened the
385 * implementation is allowed to zero the previously inaccessible
386 * portion of the registers. The corollary to that is that when
387 * SVE is enabled and VQ is narrowed we are also allowed to zero
388 * the now inaccessible portion of the registers.
389 *
390 * The intent of this is that no predicate bit beyond VQ is ever set.
391 * Which means that some operations on predicate registers themselves
392 * may operate on full uint64_t or even unrolled across the maximum
393 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
394 * may well be cheaper than conditionals to restrict the operation
395 * to the relevant portion of a uint16_t[16].
396 *
397 * TODO: Need to call this for changes to the real system registers
398 * and EL state changes.
399 */
400 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
401 {
402 int i, j;
403 uint64_t pmask;
404
405 assert(vq >= 1 && vq <= ARM_MAX_VQ);
406
407 /* Zap the high bits of the zregs. */
408 for (i = 0; i < 32; i++) {
409 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
410 }
411
412 /* Zap the high bits of the pregs and ffr. */
413 pmask = 0;
414 if (vq & 3) {
415 pmask = ~(-1ULL << (16 * (vq & 3)));
416 }
417 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
418 for (i = 0; i < 17; ++i) {
419 env->vfp.pregs[i].p[j] &= pmask;
420 }
421 pmask = 0;
422 }
423 }