]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu64.c
Merge remote-tracking branch 'remotes/kraxel/tags/usb-20181214-pull-request' into...
[mirror_qemu.git] / target / arm / cpu64.c
1 /*
2 * QEMU AArch64 CPU
3 *
4 * Copyright (c) 2013 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
32 #include "qapi/visitor.h"
33
34 static inline void set_feature(CPUARMState *env, int feature)
35 {
36 env->features |= 1ULL << feature;
37 }
38
39 static inline void unset_feature(CPUARMState *env, int feature)
40 {
41 env->features &= ~(1ULL << feature);
42 }
43
44 #ifndef CONFIG_USER_ONLY
45 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 {
47 ARMCPU *cpu = arm_env_get_cpu(env);
48
49 /* Number of cores is in [25:24]; otherwise we RAZ */
50 return (cpu->core_count - 1) << 24;
51 }
52 #endif
53
54 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
55 #ifndef CONFIG_USER_ONLY
56 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
57 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
58 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
59 .writefn = arm_cp_write_ignore },
60 { .name = "L2CTLR",
61 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
62 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
63 .writefn = arm_cp_write_ignore },
64 #endif
65 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
66 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
67 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68 { .name = "L2ECTLR",
69 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
70 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
71 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
72 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
73 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
74 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
75 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
76 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
77 { .name = "CPUACTLR",
78 .cp = 15, .opc1 = 0, .crm = 15,
79 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
80 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
81 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
82 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
83 { .name = "CPUECTLR",
84 .cp = 15, .opc1 = 1, .crm = 15,
85 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
86 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
87 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
88 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
89 { .name = "CPUMERRSR",
90 .cp = 15, .opc1 = 2, .crm = 15,
91 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
92 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
93 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
94 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95 { .name = "L2MERRSR",
96 .cp = 15, .opc1 = 3, .crm = 15,
97 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
98 REGINFO_SENTINEL
99 };
100
101 static void aarch64_a57_initfn(Object *obj)
102 {
103 ARMCPU *cpu = ARM_CPU(obj);
104
105 cpu->dtb_compatible = "arm,cortex-a57";
106 set_feature(&cpu->env, ARM_FEATURE_V8);
107 set_feature(&cpu->env, ARM_FEATURE_VFP4);
108 set_feature(&cpu->env, ARM_FEATURE_NEON);
109 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
110 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
111 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
112 set_feature(&cpu->env, ARM_FEATURE_EL2);
113 set_feature(&cpu->env, ARM_FEATURE_EL3);
114 set_feature(&cpu->env, ARM_FEATURE_PMU);
115 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
116 cpu->midr = 0x411fd070;
117 cpu->revidr = 0x00000000;
118 cpu->reset_fpsid = 0x41034070;
119 cpu->isar.mvfr0 = 0x10110222;
120 cpu->isar.mvfr1 = 0x12111111;
121 cpu->isar.mvfr2 = 0x00000043;
122 cpu->ctr = 0x8444c004;
123 cpu->reset_sctlr = 0x00c50838;
124 cpu->id_pfr0 = 0x00000131;
125 cpu->id_pfr1 = 0x00011011;
126 cpu->id_dfr0 = 0x03010066;
127 cpu->id_afr0 = 0x00000000;
128 cpu->id_mmfr0 = 0x10101105;
129 cpu->id_mmfr1 = 0x40000000;
130 cpu->id_mmfr2 = 0x01260000;
131 cpu->id_mmfr3 = 0x02102211;
132 cpu->isar.id_isar0 = 0x02101110;
133 cpu->isar.id_isar1 = 0x13112111;
134 cpu->isar.id_isar2 = 0x21232042;
135 cpu->isar.id_isar3 = 0x01112131;
136 cpu->isar.id_isar4 = 0x00011142;
137 cpu->isar.id_isar5 = 0x00011121;
138 cpu->isar.id_isar6 = 0;
139 cpu->isar.id_aa64pfr0 = 0x00002222;
140 cpu->id_aa64dfr0 = 0x10305106;
141 cpu->pmceid0 = 0x00000000;
142 cpu->pmceid1 = 0x00000000;
143 cpu->isar.id_aa64isar0 = 0x00011120;
144 cpu->isar.id_aa64mmfr0 = 0x00001124;
145 cpu->dbgdidr = 0x3516d000;
146 cpu->clidr = 0x0a200023;
147 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
148 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
149 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
150 cpu->dcz_blocksize = 4; /* 64 bytes */
151 cpu->gic_num_lrs = 4;
152 cpu->gic_vpribits = 5;
153 cpu->gic_vprebits = 5;
154 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
155 }
156
157 static void aarch64_a53_initfn(Object *obj)
158 {
159 ARMCPU *cpu = ARM_CPU(obj);
160
161 cpu->dtb_compatible = "arm,cortex-a53";
162 set_feature(&cpu->env, ARM_FEATURE_V8);
163 set_feature(&cpu->env, ARM_FEATURE_VFP4);
164 set_feature(&cpu->env, ARM_FEATURE_NEON);
165 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
166 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
167 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
168 set_feature(&cpu->env, ARM_FEATURE_EL2);
169 set_feature(&cpu->env, ARM_FEATURE_EL3);
170 set_feature(&cpu->env, ARM_FEATURE_PMU);
171 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
172 cpu->midr = 0x410fd034;
173 cpu->revidr = 0x00000000;
174 cpu->reset_fpsid = 0x41034070;
175 cpu->isar.mvfr0 = 0x10110222;
176 cpu->isar.mvfr1 = 0x12111111;
177 cpu->isar.mvfr2 = 0x00000043;
178 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
179 cpu->reset_sctlr = 0x00c50838;
180 cpu->id_pfr0 = 0x00000131;
181 cpu->id_pfr1 = 0x00011011;
182 cpu->id_dfr0 = 0x03010066;
183 cpu->id_afr0 = 0x00000000;
184 cpu->id_mmfr0 = 0x10101105;
185 cpu->id_mmfr1 = 0x40000000;
186 cpu->id_mmfr2 = 0x01260000;
187 cpu->id_mmfr3 = 0x02102211;
188 cpu->isar.id_isar0 = 0x02101110;
189 cpu->isar.id_isar1 = 0x13112111;
190 cpu->isar.id_isar2 = 0x21232042;
191 cpu->isar.id_isar3 = 0x01112131;
192 cpu->isar.id_isar4 = 0x00011142;
193 cpu->isar.id_isar5 = 0x00011121;
194 cpu->isar.id_isar6 = 0;
195 cpu->isar.id_aa64pfr0 = 0x00002222;
196 cpu->id_aa64dfr0 = 0x10305106;
197 cpu->isar.id_aa64isar0 = 0x00011120;
198 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
199 cpu->dbgdidr = 0x3516d000;
200 cpu->clidr = 0x0a200023;
201 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
202 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
203 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
204 cpu->dcz_blocksize = 4; /* 64 bytes */
205 cpu->gic_num_lrs = 4;
206 cpu->gic_vpribits = 5;
207 cpu->gic_vprebits = 5;
208 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
209 }
210
211 static void aarch64_a72_initfn(Object *obj)
212 {
213 ARMCPU *cpu = ARM_CPU(obj);
214
215 cpu->dtb_compatible = "arm,cortex-a72";
216 set_feature(&cpu->env, ARM_FEATURE_V8);
217 set_feature(&cpu->env, ARM_FEATURE_VFP4);
218 set_feature(&cpu->env, ARM_FEATURE_NEON);
219 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
220 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
221 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
222 set_feature(&cpu->env, ARM_FEATURE_EL2);
223 set_feature(&cpu->env, ARM_FEATURE_EL3);
224 set_feature(&cpu->env, ARM_FEATURE_PMU);
225 cpu->midr = 0x410fd083;
226 cpu->revidr = 0x00000000;
227 cpu->reset_fpsid = 0x41034080;
228 cpu->isar.mvfr0 = 0x10110222;
229 cpu->isar.mvfr1 = 0x12111111;
230 cpu->isar.mvfr2 = 0x00000043;
231 cpu->ctr = 0x8444c004;
232 cpu->reset_sctlr = 0x00c50838;
233 cpu->id_pfr0 = 0x00000131;
234 cpu->id_pfr1 = 0x00011011;
235 cpu->id_dfr0 = 0x03010066;
236 cpu->id_afr0 = 0x00000000;
237 cpu->id_mmfr0 = 0x10201105;
238 cpu->id_mmfr1 = 0x40000000;
239 cpu->id_mmfr2 = 0x01260000;
240 cpu->id_mmfr3 = 0x02102211;
241 cpu->isar.id_isar0 = 0x02101110;
242 cpu->isar.id_isar1 = 0x13112111;
243 cpu->isar.id_isar2 = 0x21232042;
244 cpu->isar.id_isar3 = 0x01112131;
245 cpu->isar.id_isar4 = 0x00011142;
246 cpu->isar.id_isar5 = 0x00011121;
247 cpu->isar.id_aa64pfr0 = 0x00002222;
248 cpu->id_aa64dfr0 = 0x10305106;
249 cpu->pmceid0 = 0x00000000;
250 cpu->pmceid1 = 0x00000000;
251 cpu->isar.id_aa64isar0 = 0x00011120;
252 cpu->isar.id_aa64mmfr0 = 0x00001124;
253 cpu->dbgdidr = 0x3516d000;
254 cpu->clidr = 0x0a200023;
255 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
256 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
257 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
258 cpu->dcz_blocksize = 4; /* 64 bytes */
259 cpu->gic_num_lrs = 4;
260 cpu->gic_vpribits = 5;
261 cpu->gic_vprebits = 5;
262 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
263 }
264
265 static void cpu_max_get_sve_vq(Object *obj, Visitor *v, const char *name,
266 void *opaque, Error **errp)
267 {
268 ARMCPU *cpu = ARM_CPU(obj);
269 visit_type_uint32(v, name, &cpu->sve_max_vq, errp);
270 }
271
272 static void cpu_max_set_sve_vq(Object *obj, Visitor *v, const char *name,
273 void *opaque, Error **errp)
274 {
275 ARMCPU *cpu = ARM_CPU(obj);
276 Error *err = NULL;
277
278 visit_type_uint32(v, name, &cpu->sve_max_vq, &err);
279
280 if (!err && (cpu->sve_max_vq == 0 || cpu->sve_max_vq > ARM_MAX_VQ)) {
281 error_setg(&err, "unsupported SVE vector length");
282 error_append_hint(&err, "Valid sve-max-vq in range [1-%d]\n",
283 ARM_MAX_VQ);
284 }
285 error_propagate(errp, err);
286 }
287
288 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
289 * otherwise, a CPU with as many features enabled as our emulation supports.
290 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
291 * this only needs to handle 64 bits.
292 */
293 static void aarch64_max_initfn(Object *obj)
294 {
295 ARMCPU *cpu = ARM_CPU(obj);
296
297 if (kvm_enabled()) {
298 kvm_arm_set_cpu_features_from_host(cpu);
299 } else {
300 uint64_t t;
301 uint32_t u;
302 aarch64_a57_initfn(obj);
303
304 t = cpu->isar.id_aa64isar0;
305 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
306 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
307 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
308 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
309 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
310 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
311 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
312 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
313 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
314 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
315 cpu->isar.id_aa64isar0 = t;
316
317 t = cpu->isar.id_aa64isar1;
318 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
319 cpu->isar.id_aa64isar1 = t;
320
321 t = cpu->isar.id_aa64pfr0;
322 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
323 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
324 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
325 cpu->isar.id_aa64pfr0 = t;
326
327 t = cpu->isar.id_aa64mmfr1;
328 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
329 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
330 cpu->isar.id_aa64mmfr1 = t;
331
332 /* Replicate the same data to the 32-bit id registers. */
333 u = cpu->isar.id_isar5;
334 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
335 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
336 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
337 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
338 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
339 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
340 cpu->isar.id_isar5 = u;
341
342 u = cpu->isar.id_isar6;
343 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
344 cpu->isar.id_isar6 = u;
345
346 /*
347 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
348 * so do not set MVFR1.FPHP. Strictly speaking this is not legal,
349 * but it is also not legal to enable SVE without support for FP16,
350 * and enabling SVE in system mode is more useful in the short term.
351 */
352
353 #ifdef CONFIG_USER_ONLY
354 /* For usermode -cpu max we can use a larger and more efficient DCZ
355 * blocksize since we don't have to follow what the hardware does.
356 */
357 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
358 cpu->dcz_blocksize = 7; /* 512 bytes */
359 #endif
360
361 cpu->sve_max_vq = ARM_MAX_VQ;
362 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_vq,
363 cpu_max_set_sve_vq, NULL, NULL, &error_fatal);
364 }
365 }
366
367 typedef struct ARMCPUInfo {
368 const char *name;
369 void (*initfn)(Object *obj);
370 void (*class_init)(ObjectClass *oc, void *data);
371 } ARMCPUInfo;
372
373 static const ARMCPUInfo aarch64_cpus[] = {
374 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
375 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
376 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
377 { .name = "max", .initfn = aarch64_max_initfn },
378 { .name = NULL }
379 };
380
381 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
382 {
383 ARMCPU *cpu = ARM_CPU(obj);
384
385 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
386 }
387
388 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
389 {
390 ARMCPU *cpu = ARM_CPU(obj);
391
392 /* At this time, this property is only allowed if KVM is enabled. This
393 * restriction allows us to avoid fixing up functionality that assumes a
394 * uniform execution state like do_interrupt.
395 */
396 if (!kvm_enabled()) {
397 error_setg(errp, "'aarch64' feature cannot be disabled "
398 "unless KVM is enabled");
399 return;
400 }
401
402 if (value == false) {
403 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
404 } else {
405 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
406 }
407 }
408
409 static void aarch64_cpu_initfn(Object *obj)
410 {
411 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
412 aarch64_cpu_set_aarch64, NULL);
413 object_property_set_description(obj, "aarch64",
414 "Set on/off to enable/disable aarch64 "
415 "execution state ",
416 NULL);
417 }
418
419 static void aarch64_cpu_finalizefn(Object *obj)
420 {
421 }
422
423 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
424 {
425 ARMCPU *cpu = ARM_CPU(cs);
426 /* It's OK to look at env for the current mode here, because it's
427 * never possible for an AArch64 TB to chain to an AArch32 TB.
428 * (Otherwise we would need to use synchronize_from_tb instead.)
429 */
430 if (is_a64(&cpu->env)) {
431 cpu->env.pc = value;
432 } else {
433 cpu->env.regs[15] = value;
434 }
435 }
436
437 static gchar *aarch64_gdb_arch_name(CPUState *cs)
438 {
439 return g_strdup("aarch64");
440 }
441
442 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
443 {
444 CPUClass *cc = CPU_CLASS(oc);
445
446 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
447 cc->set_pc = aarch64_cpu_set_pc;
448 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
449 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
450 cc->gdb_num_core_regs = 34;
451 cc->gdb_core_xml_file = "aarch64-core.xml";
452 cc->gdb_arch_name = aarch64_gdb_arch_name;
453 }
454
455 static void aarch64_cpu_register(const ARMCPUInfo *info)
456 {
457 TypeInfo type_info = {
458 .parent = TYPE_AARCH64_CPU,
459 .instance_size = sizeof(ARMCPU),
460 .instance_init = info->initfn,
461 .class_size = sizeof(ARMCPUClass),
462 .class_init = info->class_init,
463 };
464
465 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
466 type_register(&type_info);
467 g_free((void *)type_info.name);
468 }
469
470 static const TypeInfo aarch64_cpu_type_info = {
471 .name = TYPE_AARCH64_CPU,
472 .parent = TYPE_ARM_CPU,
473 .instance_size = sizeof(ARMCPU),
474 .instance_init = aarch64_cpu_initfn,
475 .instance_finalize = aarch64_cpu_finalizefn,
476 .abstract = true,
477 .class_size = sizeof(AArch64CPUClass),
478 .class_init = aarch64_cpu_class_init,
479 };
480
481 static void aarch64_cpu_register_types(void)
482 {
483 const ARMCPUInfo *info = aarch64_cpus;
484
485 type_register_static(&aarch64_cpu_type_info);
486
487 while (info->name) {
488 aarch64_cpu_register(info);
489 info++;
490 }
491 }
492
493 type_init(aarch64_cpu_register_types)