]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/cpu64.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20200213' into...
[mirror_qemu.git] / target / arm / cpu64.c
1 /*
2 * QEMU AArch64 CPU
3 *
4 * Copyright (c) 2013 Linaro Ltd
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
19 */
20
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31
32 static inline void set_feature(CPUARMState *env, int feature)
33 {
34 env->features |= 1ULL << feature;
35 }
36
37 static inline void unset_feature(CPUARMState *env, int feature)
38 {
39 env->features &= ~(1ULL << feature);
40 }
41
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
44 {
45 ARMCPU *cpu = env_archcpu(env);
46
47 /* Number of cores is in [25:24]; otherwise we RAZ */
48 return (cpu->core_count - 1) << 24;
49 }
50 #endif
51
52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
53 #ifndef CONFIG_USER_ONLY
54 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
55 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
56 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
57 .writefn = arm_cp_write_ignore },
58 { .name = "L2CTLR",
59 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
60 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
61 .writefn = arm_cp_write_ignore },
62 #endif
63 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
64 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
65 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66 { .name = "L2ECTLR",
67 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
68 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
70 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
71 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
73 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
74 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
75 { .name = "CPUACTLR",
76 .cp = 15, .opc1 = 0, .crm = 15,
77 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
78 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
79 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
80 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
81 { .name = "CPUECTLR",
82 .cp = 15, .opc1 = 1, .crm = 15,
83 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
84 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
85 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
86 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
87 { .name = "CPUMERRSR",
88 .cp = 15, .opc1 = 2, .crm = 15,
89 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
90 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
91 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
92 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
93 { .name = "L2MERRSR",
94 .cp = 15, .opc1 = 3, .crm = 15,
95 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
96 REGINFO_SENTINEL
97 };
98
99 static void aarch64_a57_initfn(Object *obj)
100 {
101 ARMCPU *cpu = ARM_CPU(obj);
102
103 cpu->dtb_compatible = "arm,cortex-a57";
104 set_feature(&cpu->env, ARM_FEATURE_V8);
105 set_feature(&cpu->env, ARM_FEATURE_VFP4);
106 set_feature(&cpu->env, ARM_FEATURE_NEON);
107 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
108 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
109 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
110 set_feature(&cpu->env, ARM_FEATURE_EL2);
111 set_feature(&cpu->env, ARM_FEATURE_EL3);
112 set_feature(&cpu->env, ARM_FEATURE_PMU);
113 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
114 cpu->midr = 0x411fd070;
115 cpu->revidr = 0x00000000;
116 cpu->reset_fpsid = 0x41034070;
117 cpu->isar.mvfr0 = 0x10110222;
118 cpu->isar.mvfr1 = 0x12111111;
119 cpu->isar.mvfr2 = 0x00000043;
120 cpu->ctr = 0x8444c004;
121 cpu->reset_sctlr = 0x00c50838;
122 cpu->id_pfr0 = 0x00000131;
123 cpu->id_pfr1 = 0x00011011;
124 cpu->id_dfr0 = 0x03010066;
125 cpu->id_afr0 = 0x00000000;
126 cpu->id_mmfr0 = 0x10101105;
127 cpu->id_mmfr1 = 0x40000000;
128 cpu->id_mmfr2 = 0x01260000;
129 cpu->id_mmfr3 = 0x02102211;
130 cpu->isar.id_isar0 = 0x02101110;
131 cpu->isar.id_isar1 = 0x13112111;
132 cpu->isar.id_isar2 = 0x21232042;
133 cpu->isar.id_isar3 = 0x01112131;
134 cpu->isar.id_isar4 = 0x00011142;
135 cpu->isar.id_isar5 = 0x00011121;
136 cpu->isar.id_isar6 = 0;
137 cpu->isar.id_aa64pfr0 = 0x00002222;
138 cpu->id_aa64dfr0 = 0x10305106;
139 cpu->isar.id_aa64isar0 = 0x00011120;
140 cpu->isar.id_aa64mmfr0 = 0x00001124;
141 cpu->dbgdidr = 0x3516d000;
142 cpu->clidr = 0x0a200023;
143 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
144 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
145 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
146 cpu->dcz_blocksize = 4; /* 64 bytes */
147 cpu->gic_num_lrs = 4;
148 cpu->gic_vpribits = 5;
149 cpu->gic_vprebits = 5;
150 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
151 }
152
153 static void aarch64_a53_initfn(Object *obj)
154 {
155 ARMCPU *cpu = ARM_CPU(obj);
156
157 cpu->dtb_compatible = "arm,cortex-a53";
158 set_feature(&cpu->env, ARM_FEATURE_V8);
159 set_feature(&cpu->env, ARM_FEATURE_VFP4);
160 set_feature(&cpu->env, ARM_FEATURE_NEON);
161 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
162 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
163 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
164 set_feature(&cpu->env, ARM_FEATURE_EL2);
165 set_feature(&cpu->env, ARM_FEATURE_EL3);
166 set_feature(&cpu->env, ARM_FEATURE_PMU);
167 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
168 cpu->midr = 0x410fd034;
169 cpu->revidr = 0x00000000;
170 cpu->reset_fpsid = 0x41034070;
171 cpu->isar.mvfr0 = 0x10110222;
172 cpu->isar.mvfr1 = 0x12111111;
173 cpu->isar.mvfr2 = 0x00000043;
174 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
175 cpu->reset_sctlr = 0x00c50838;
176 cpu->id_pfr0 = 0x00000131;
177 cpu->id_pfr1 = 0x00011011;
178 cpu->id_dfr0 = 0x03010066;
179 cpu->id_afr0 = 0x00000000;
180 cpu->id_mmfr0 = 0x10101105;
181 cpu->id_mmfr1 = 0x40000000;
182 cpu->id_mmfr2 = 0x01260000;
183 cpu->id_mmfr3 = 0x02102211;
184 cpu->isar.id_isar0 = 0x02101110;
185 cpu->isar.id_isar1 = 0x13112111;
186 cpu->isar.id_isar2 = 0x21232042;
187 cpu->isar.id_isar3 = 0x01112131;
188 cpu->isar.id_isar4 = 0x00011142;
189 cpu->isar.id_isar5 = 0x00011121;
190 cpu->isar.id_isar6 = 0;
191 cpu->isar.id_aa64pfr0 = 0x00002222;
192 cpu->id_aa64dfr0 = 0x10305106;
193 cpu->isar.id_aa64isar0 = 0x00011120;
194 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
195 cpu->dbgdidr = 0x3516d000;
196 cpu->clidr = 0x0a200023;
197 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
198 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
199 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
200 cpu->dcz_blocksize = 4; /* 64 bytes */
201 cpu->gic_num_lrs = 4;
202 cpu->gic_vpribits = 5;
203 cpu->gic_vprebits = 5;
204 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
205 }
206
207 static void aarch64_a72_initfn(Object *obj)
208 {
209 ARMCPU *cpu = ARM_CPU(obj);
210
211 cpu->dtb_compatible = "arm,cortex-a72";
212 set_feature(&cpu->env, ARM_FEATURE_V8);
213 set_feature(&cpu->env, ARM_FEATURE_VFP4);
214 set_feature(&cpu->env, ARM_FEATURE_NEON);
215 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
216 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
217 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
218 set_feature(&cpu->env, ARM_FEATURE_EL2);
219 set_feature(&cpu->env, ARM_FEATURE_EL3);
220 set_feature(&cpu->env, ARM_FEATURE_PMU);
221 cpu->midr = 0x410fd083;
222 cpu->revidr = 0x00000000;
223 cpu->reset_fpsid = 0x41034080;
224 cpu->isar.mvfr0 = 0x10110222;
225 cpu->isar.mvfr1 = 0x12111111;
226 cpu->isar.mvfr2 = 0x00000043;
227 cpu->ctr = 0x8444c004;
228 cpu->reset_sctlr = 0x00c50838;
229 cpu->id_pfr0 = 0x00000131;
230 cpu->id_pfr1 = 0x00011011;
231 cpu->id_dfr0 = 0x03010066;
232 cpu->id_afr0 = 0x00000000;
233 cpu->id_mmfr0 = 0x10201105;
234 cpu->id_mmfr1 = 0x40000000;
235 cpu->id_mmfr2 = 0x01260000;
236 cpu->id_mmfr3 = 0x02102211;
237 cpu->isar.id_isar0 = 0x02101110;
238 cpu->isar.id_isar1 = 0x13112111;
239 cpu->isar.id_isar2 = 0x21232042;
240 cpu->isar.id_isar3 = 0x01112131;
241 cpu->isar.id_isar4 = 0x00011142;
242 cpu->isar.id_isar5 = 0x00011121;
243 cpu->isar.id_aa64pfr0 = 0x00002222;
244 cpu->id_aa64dfr0 = 0x10305106;
245 cpu->isar.id_aa64isar0 = 0x00011120;
246 cpu->isar.id_aa64mmfr0 = 0x00001124;
247 cpu->dbgdidr = 0x3516d000;
248 cpu->clidr = 0x0a200023;
249 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
250 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
251 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
252 cpu->dcz_blocksize = 4; /* 64 bytes */
253 cpu->gic_num_lrs = 4;
254 cpu->gic_vpribits = 5;
255 cpu->gic_vprebits = 5;
256 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
257 }
258
259 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
260 {
261 /*
262 * If any vector lengths are explicitly enabled with sve<N> properties,
263 * then all other lengths are implicitly disabled. If sve-max-vq is
264 * specified then it is the same as explicitly enabling all lengths
265 * up to and including the specified maximum, which means all larger
266 * lengths will be implicitly disabled. If no sve<N> properties
267 * are enabled and sve-max-vq is not specified, then all lengths not
268 * explicitly disabled will be enabled. Additionally, all power-of-two
269 * vector lengths less than the maximum enabled length will be
270 * automatically enabled and all vector lengths larger than the largest
271 * disabled power-of-two vector length will be automatically disabled.
272 * Errors are generated if the user provided input that interferes with
273 * any of the above. Finally, if SVE is not disabled, then at least one
274 * vector length must be enabled.
275 */
276 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
277 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
278 uint32_t vq, max_vq = 0;
279
280 /* Collect the set of vector lengths supported by KVM. */
281 bitmap_zero(kvm_supported, ARM_MAX_VQ);
282 if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) {
283 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
284 } else if (kvm_enabled()) {
285 assert(!cpu_isar_feature(aa64_sve, cpu));
286 }
287
288 /*
289 * Process explicit sve<N> properties.
290 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
291 * Check first for any sve<N> enabled.
292 */
293 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
294 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
295
296 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
297 error_setg(errp, "cannot enable sve%d", max_vq * 128);
298 error_append_hint(errp, "sve%d is larger than the maximum vector "
299 "length, sve-max-vq=%d (%d bits)\n",
300 max_vq * 128, cpu->sve_max_vq,
301 cpu->sve_max_vq * 128);
302 return;
303 }
304
305 if (kvm_enabled()) {
306 /*
307 * For KVM we have to automatically enable all supported unitialized
308 * lengths, even when the smaller lengths are not all powers-of-two.
309 */
310 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
311 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
312 } else {
313 /* Propagate enabled bits down through required powers-of-two. */
314 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
315 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
316 set_bit(vq - 1, cpu->sve_vq_map);
317 }
318 }
319 }
320 } else if (cpu->sve_max_vq == 0) {
321 /*
322 * No explicit bits enabled, and no implicit bits from sve-max-vq.
323 */
324 if (!cpu_isar_feature(aa64_sve, cpu)) {
325 /* SVE is disabled and so are all vector lengths. Good. */
326 return;
327 }
328
329 if (kvm_enabled()) {
330 /* Disabling a supported length disables all larger lengths. */
331 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
332 if (test_bit(vq - 1, cpu->sve_vq_init) &&
333 test_bit(vq - 1, kvm_supported)) {
334 break;
335 }
336 }
337 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
338 bitmap_andnot(cpu->sve_vq_map, kvm_supported,
339 cpu->sve_vq_init, max_vq);
340 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
341 error_setg(errp, "cannot disable sve%d", vq * 128);
342 error_append_hint(errp, "Disabling sve%d results in all "
343 "vector lengths being disabled.\n",
344 vq * 128);
345 error_append_hint(errp, "With SVE enabled, at least one "
346 "vector length must be enabled.\n");
347 return;
348 }
349 } else {
350 /* Disabling a power-of-two disables all larger lengths. */
351 if (test_bit(0, cpu->sve_vq_init)) {
352 error_setg(errp, "cannot disable sve128");
353 error_append_hint(errp, "Disabling sve128 results in all "
354 "vector lengths being disabled.\n");
355 error_append_hint(errp, "With SVE enabled, at least one "
356 "vector length must be enabled.\n");
357 return;
358 }
359 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
360 if (test_bit(vq - 1, cpu->sve_vq_init)) {
361 break;
362 }
363 }
364 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
365 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
366 }
367
368 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
369 }
370
371 /*
372 * Process the sve-max-vq property.
373 * Note that we know from the above that no bit above
374 * sve-max-vq is currently set.
375 */
376 if (cpu->sve_max_vq != 0) {
377 max_vq = cpu->sve_max_vq;
378
379 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
380 test_bit(max_vq - 1, cpu->sve_vq_init)) {
381 error_setg(errp, "cannot disable sve%d", max_vq * 128);
382 error_append_hint(errp, "The maximum vector length must be "
383 "enabled, sve-max-vq=%d (%d bits)\n",
384 max_vq, max_vq * 128);
385 return;
386 }
387
388 /* Set all bits not explicitly set within sve-max-vq. */
389 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
390 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
391 }
392
393 /*
394 * We should know what max-vq is now. Also, as we're done
395 * manipulating sve-vq-map, we ensure any bits above max-vq
396 * are clear, just in case anybody looks.
397 */
398 assert(max_vq != 0);
399 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
400
401 if (kvm_enabled()) {
402 /* Ensure the set of lengths matches what KVM supports. */
403 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
404 if (!bitmap_empty(tmp, max_vq)) {
405 vq = find_last_bit(tmp, max_vq) + 1;
406 if (test_bit(vq - 1, cpu->sve_vq_map)) {
407 if (cpu->sve_max_vq) {
408 error_setg(errp, "cannot set sve-max-vq=%d",
409 cpu->sve_max_vq);
410 error_append_hint(errp, "This KVM host does not support "
411 "the vector length %d-bits.\n",
412 vq * 128);
413 error_append_hint(errp, "It may not be possible to use "
414 "sve-max-vq with this KVM host. Try "
415 "using only sve<N> properties.\n");
416 } else {
417 error_setg(errp, "cannot enable sve%d", vq * 128);
418 error_append_hint(errp, "This KVM host does not support "
419 "the vector length %d-bits.\n",
420 vq * 128);
421 }
422 } else {
423 error_setg(errp, "cannot disable sve%d", vq * 128);
424 error_append_hint(errp, "The KVM host requires all "
425 "supported vector lengths smaller "
426 "than %d bits to also be enabled.\n",
427 max_vq * 128);
428 }
429 return;
430 }
431 } else {
432 /* Ensure all required powers-of-two are enabled. */
433 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
434 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
435 error_setg(errp, "cannot disable sve%d", vq * 128);
436 error_append_hint(errp, "sve%d is required as it "
437 "is a power-of-two length smaller than "
438 "the maximum, sve%d\n",
439 vq * 128, max_vq * 128);
440 return;
441 }
442 }
443 }
444
445 /*
446 * Now that we validated all our vector lengths, the only question
447 * left to answer is if we even want SVE at all.
448 */
449 if (!cpu_isar_feature(aa64_sve, cpu)) {
450 error_setg(errp, "cannot enable sve%d", max_vq * 128);
451 error_append_hint(errp, "SVE must be enabled to enable vector "
452 "lengths.\n");
453 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
454 return;
455 }
456
457 /* From now on sve_max_vq is the actual maximum supported length. */
458 cpu->sve_max_vq = max_vq;
459 }
460
461 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
462 void *opaque, Error **errp)
463 {
464 ARMCPU *cpu = ARM_CPU(obj);
465 uint32_t value;
466
467 /* All vector lengths are disabled when SVE is off. */
468 if (!cpu_isar_feature(aa64_sve, cpu)) {
469 value = 0;
470 } else {
471 value = cpu->sve_max_vq;
472 }
473 visit_type_uint32(v, name, &value, errp);
474 }
475
476 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
477 void *opaque, Error **errp)
478 {
479 ARMCPU *cpu = ARM_CPU(obj);
480 Error *err = NULL;
481 uint32_t max_vq;
482
483 visit_type_uint32(v, name, &max_vq, &err);
484 if (err) {
485 error_propagate(errp, err);
486 return;
487 }
488
489 if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
490 error_setg(errp, "cannot set sve-max-vq");
491 error_append_hint(errp, "SVE not supported by KVM on this host\n");
492 return;
493 }
494
495 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
496 error_setg(errp, "unsupported SVE vector length");
497 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
498 ARM_MAX_VQ);
499 return;
500 }
501
502 cpu->sve_max_vq = max_vq;
503 }
504
505 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
506 void *opaque, Error **errp)
507 {
508 ARMCPU *cpu = ARM_CPU(obj);
509 uint32_t vq = atoi(&name[3]) / 128;
510 bool value;
511
512 /* All vector lengths are disabled when SVE is off. */
513 if (!cpu_isar_feature(aa64_sve, cpu)) {
514 value = false;
515 } else {
516 value = test_bit(vq - 1, cpu->sve_vq_map);
517 }
518 visit_type_bool(v, name, &value, errp);
519 }
520
521 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
522 void *opaque, Error **errp)
523 {
524 ARMCPU *cpu = ARM_CPU(obj);
525 uint32_t vq = atoi(&name[3]) / 128;
526 Error *err = NULL;
527 bool value;
528
529 visit_type_bool(v, name, &value, &err);
530 if (err) {
531 error_propagate(errp, err);
532 return;
533 }
534
535 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
536 error_setg(errp, "cannot enable %s", name);
537 error_append_hint(errp, "SVE not supported by KVM on this host\n");
538 return;
539 }
540
541 if (value) {
542 set_bit(vq - 1, cpu->sve_vq_map);
543 } else {
544 clear_bit(vq - 1, cpu->sve_vq_map);
545 }
546 set_bit(vq - 1, cpu->sve_vq_init);
547 }
548
549 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
550 void *opaque, Error **errp)
551 {
552 ARMCPU *cpu = ARM_CPU(obj);
553 bool value = cpu_isar_feature(aa64_sve, cpu);
554
555 visit_type_bool(v, name, &value, errp);
556 }
557
558 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
559 void *opaque, Error **errp)
560 {
561 ARMCPU *cpu = ARM_CPU(obj);
562 Error *err = NULL;
563 bool value;
564 uint64_t t;
565
566 visit_type_bool(v, name, &value, &err);
567 if (err) {
568 error_propagate(errp, err);
569 return;
570 }
571
572 if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
573 error_setg(errp, "'sve' feature not supported by KVM on this host");
574 return;
575 }
576
577 t = cpu->isar.id_aa64pfr0;
578 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
579 cpu->isar.id_aa64pfr0 = t;
580 }
581
582 void aarch64_add_sve_properties(Object *obj)
583 {
584 uint32_t vq;
585
586 object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
587 cpu_arm_set_sve, NULL, NULL, &error_fatal);
588
589 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
590 char name[8];
591 sprintf(name, "sve%d", vq * 128);
592 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
593 cpu_arm_set_sve_vq, NULL, NULL, &error_fatal);
594 }
595 }
596
597 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
598 * otherwise, a CPU with as many features enabled as our emulation supports.
599 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
600 * this only needs to handle 64 bits.
601 */
602 static void aarch64_max_initfn(Object *obj)
603 {
604 ARMCPU *cpu = ARM_CPU(obj);
605
606 if (kvm_enabled()) {
607 kvm_arm_set_cpu_features_from_host(cpu);
608 kvm_arm_add_vcpu_properties(obj);
609 } else {
610 uint64_t t;
611 uint32_t u;
612 aarch64_a57_initfn(obj);
613
614 /*
615 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
616 * one and try to apply errata workarounds or use impdef features we
617 * don't provide.
618 * An IMPLEMENTER field of 0 means "reserved for software use";
619 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
620 * to see which features are present";
621 * the VARIANT, PARTNUM and REVISION fields are all implementation
622 * defined and we choose to define PARTNUM just in case guest
623 * code needs to distinguish this QEMU CPU from other software
624 * implementations, though this shouldn't be needed.
625 */
626 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
627 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
628 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
629 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
630 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
631 cpu->midr = t;
632
633 t = cpu->isar.id_aa64isar0;
634 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
635 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
636 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
637 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
638 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
639 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
640 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
641 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
642 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
643 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
644 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
645 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
646 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
647 cpu->isar.id_aa64isar0 = t;
648
649 t = cpu->isar.id_aa64isar1;
650 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
651 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
652 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
653 t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
654 t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
655 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
656 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
657 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
658 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
659 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
660 cpu->isar.id_aa64isar1 = t;
661
662 t = cpu->isar.id_aa64pfr0;
663 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
664 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
665 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
666 cpu->isar.id_aa64pfr0 = t;
667
668 t = cpu->isar.id_aa64pfr1;
669 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
670 cpu->isar.id_aa64pfr1 = t;
671
672 t = cpu->isar.id_aa64mmfr1;
673 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
674 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
675 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
676 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
677 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
678 cpu->isar.id_aa64mmfr1 = t;
679
680 t = cpu->isar.id_aa64mmfr2;
681 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
682 cpu->isar.id_aa64mmfr2 = t;
683
684 /* Replicate the same data to the 32-bit id registers. */
685 u = cpu->isar.id_isar5;
686 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
687 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
688 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
689 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
690 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
691 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
692 cpu->isar.id_isar5 = u;
693
694 u = cpu->isar.id_isar6;
695 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
696 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
697 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
698 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
699 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
700 cpu->isar.id_isar6 = u;
701
702 u = cpu->id_mmfr3;
703 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
704 cpu->id_mmfr3 = u;
705
706 /*
707 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
708 * so do not set MVFR1.FPHP. Strictly speaking this is not legal,
709 * but it is also not legal to enable SVE without support for FP16,
710 * and enabling SVE in system mode is more useful in the short term.
711 */
712
713 #ifdef CONFIG_USER_ONLY
714 /* For usermode -cpu max we can use a larger and more efficient DCZ
715 * blocksize since we don't have to follow what the hardware does.
716 */
717 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
718 cpu->dcz_blocksize = 7; /* 512 bytes */
719 #endif
720 }
721
722 aarch64_add_sve_properties(obj);
723 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
724 cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
725 }
726
727 struct ARMCPUInfo {
728 const char *name;
729 void (*initfn)(Object *obj);
730 void (*class_init)(ObjectClass *oc, void *data);
731 };
732
733 static const ARMCPUInfo aarch64_cpus[] = {
734 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
735 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
736 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
737 { .name = "max", .initfn = aarch64_max_initfn },
738 { .name = NULL }
739 };
740
741 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
742 {
743 ARMCPU *cpu = ARM_CPU(obj);
744
745 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
746 }
747
748 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
749 {
750 ARMCPU *cpu = ARM_CPU(obj);
751
752 /* At this time, this property is only allowed if KVM is enabled. This
753 * restriction allows us to avoid fixing up functionality that assumes a
754 * uniform execution state like do_interrupt.
755 */
756 if (value == false) {
757 if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) {
758 error_setg(errp, "'aarch64' feature cannot be disabled "
759 "unless KVM is enabled and 32-bit EL1 "
760 "is supported");
761 return;
762 }
763 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
764 } else {
765 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
766 }
767 }
768
769 static void aarch64_cpu_initfn(Object *obj)
770 {
771 object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
772 aarch64_cpu_set_aarch64, NULL);
773 object_property_set_description(obj, "aarch64",
774 "Set on/off to enable/disable aarch64 "
775 "execution state ",
776 NULL);
777 }
778
779 static void aarch64_cpu_finalizefn(Object *obj)
780 {
781 }
782
783 static gchar *aarch64_gdb_arch_name(CPUState *cs)
784 {
785 return g_strdup("aarch64");
786 }
787
788 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
789 {
790 CPUClass *cc = CPU_CLASS(oc);
791
792 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
793 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
794 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
795 cc->gdb_num_core_regs = 34;
796 cc->gdb_core_xml_file = "aarch64-core.xml";
797 cc->gdb_arch_name = aarch64_gdb_arch_name;
798 }
799
800 static void aarch64_cpu_instance_init(Object *obj)
801 {
802 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
803
804 acc->info->initfn(obj);
805 arm_cpu_post_init(obj);
806 }
807
808 static void cpu_register_class_init(ObjectClass *oc, void *data)
809 {
810 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
811
812 acc->info = data;
813 }
814
815 static void aarch64_cpu_register(const ARMCPUInfo *info)
816 {
817 TypeInfo type_info = {
818 .parent = TYPE_AARCH64_CPU,
819 .instance_size = sizeof(ARMCPU),
820 .instance_init = aarch64_cpu_instance_init,
821 .class_size = sizeof(ARMCPUClass),
822 .class_init = info->class_init ?: cpu_register_class_init,
823 .class_data = (void *)info,
824 };
825
826 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
827 type_register(&type_info);
828 g_free((void *)type_info.name);
829 }
830
831 static const TypeInfo aarch64_cpu_type_info = {
832 .name = TYPE_AARCH64_CPU,
833 .parent = TYPE_ARM_CPU,
834 .instance_size = sizeof(ARMCPU),
835 .instance_init = aarch64_cpu_initfn,
836 .instance_finalize = aarch64_cpu_finalizefn,
837 .abstract = true,
838 .class_size = sizeof(AArch64CPUClass),
839 .class_init = aarch64_cpu_class_init,
840 };
841
842 static void aarch64_cpu_register_types(void)
843 {
844 const ARMCPUInfo *info = aarch64_cpus;
845
846 type_register_static(&aarch64_cpu_type_info);
847
848 while (info->name) {
849 aarch64_cpu_register(info);
850 info++;
851 }
852 }
853
854 type_init(aarch64_cpu_register_types)