]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/debug_helper.c
target/arm: Mark up sysregs for HDFGRTR bits 0..11
[mirror_qemu.git] / target / arm / debug_helper.c
1 /*
2 * ARM debug helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/log.h"
10 #include "cpu.h"
11 #include "internals.h"
12 #include "cpregs.h"
13 #include "exec/exec-all.h"
14 #include "exec/helper-proto.h"
15
16
17 /* Return the Exception Level targeted by debug exceptions. */
18 static int arm_debug_target_el(CPUARMState *env)
19 {
20 bool secure = arm_is_secure(env);
21 bool route_to_el2 = false;
22
23 if (arm_is_el2_enabled(env)) {
24 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
25 env->cp15.mdcr_el2 & MDCR_TDE;
26 }
27
28 if (route_to_el2) {
29 return 2;
30 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
31 !arm_el_is_aa64(env, 3) && secure) {
32 return 3;
33 } else {
34 return 1;
35 }
36 }
37
38 /*
39 * Raise an exception to the debug target el.
40 * Modify syndrome to indicate when origin and target EL are the same.
41 */
42 G_NORETURN static void
43 raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
44 {
45 int debug_el = arm_debug_target_el(env);
46 int cur_el = arm_current_el(env);
47
48 /*
49 * If singlestep is targeting a lower EL than the current one, then
50 * DisasContext.ss_active must be false and we can never get here.
51 * Similarly for watchpoint and breakpoint matches.
52 */
53 assert(debug_el >= cur_el);
54 syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
55 raise_exception(env, excp, syndrome, debug_el);
56 }
57
58 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
59 static bool aa64_generate_debug_exceptions(CPUARMState *env)
60 {
61 int cur_el = arm_current_el(env);
62 int debug_el;
63
64 if (cur_el == 3) {
65 return false;
66 }
67
68 /* MDCR_EL3.SDD disables debug events from Secure state */
69 if (arm_is_secure_below_el3(env)
70 && extract32(env->cp15.mdcr_el3, 16, 1)) {
71 return false;
72 }
73
74 /*
75 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
76 * while not masking the (D)ebug bit in DAIF.
77 */
78 debug_el = arm_debug_target_el(env);
79
80 if (cur_el == debug_el) {
81 return extract32(env->cp15.mdscr_el1, 13, 1)
82 && !(env->daif & PSTATE_D);
83 }
84
85 /* Otherwise the debug target needs to be a higher EL */
86 return debug_el > cur_el;
87 }
88
89 static bool aa32_generate_debug_exceptions(CPUARMState *env)
90 {
91 int el = arm_current_el(env);
92
93 if (el == 0 && arm_el_is_aa64(env, 1)) {
94 return aa64_generate_debug_exceptions(env);
95 }
96
97 if (arm_is_secure(env)) {
98 int spd;
99
100 if (el == 0 && (env->cp15.sder & 1)) {
101 /*
102 * SDER.SUIDEN means debug exceptions from Secure EL0
103 * are always enabled. Otherwise they are controlled by
104 * SDCR.SPD like those from other Secure ELs.
105 */
106 return true;
107 }
108
109 spd = extract32(env->cp15.mdcr_el3, 14, 2);
110 switch (spd) {
111 case 1:
112 /* SPD == 0b01 is reserved, but behaves as 0b00. */
113 case 0:
114 /*
115 * For 0b00 we return true if external secure invasive debug
116 * is enabled. On real hardware this is controlled by external
117 * signals to the core. QEMU always permits debug, and behaves
118 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
119 */
120 return true;
121 case 2:
122 return false;
123 case 3:
124 return true;
125 }
126 }
127
128 return el != 2;
129 }
130
131 /*
132 * Return true if debugging exceptions are currently enabled.
133 * This corresponds to what in ARM ARM pseudocode would be
134 * if UsingAArch32() then
135 * return AArch32.GenerateDebugExceptions()
136 * else
137 * return AArch64.GenerateDebugExceptions()
138 * We choose to push the if() down into this function for clarity,
139 * since the pseudocode has it at all callsites except for the one in
140 * CheckSoftwareStep(), where it is elided because both branches would
141 * always return the same value.
142 */
143 bool arm_generate_debug_exceptions(CPUARMState *env)
144 {
145 if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
146 return false;
147 }
148 if (is_a64(env)) {
149 return aa64_generate_debug_exceptions(env);
150 } else {
151 return aa32_generate_debug_exceptions(env);
152 }
153 }
154
155 /*
156 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
157 * implicitly means this always returns false in pre-v8 CPUs.)
158 */
159 bool arm_singlestep_active(CPUARMState *env)
160 {
161 return extract32(env->cp15.mdscr_el1, 0, 1)
162 && arm_el_is_aa64(env, arm_debug_target_el(env))
163 && arm_generate_debug_exceptions(env);
164 }
165
166 /* Return true if the linked breakpoint entry lbn passes its checks */
167 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
168 {
169 CPUARMState *env = &cpu->env;
170 uint64_t bcr = env->cp15.dbgbcr[lbn];
171 int brps = arm_num_brps(cpu);
172 int ctx_cmps = arm_num_ctx_cmps(cpu);
173 int bt;
174 uint32_t contextidr;
175 uint64_t hcr_el2;
176
177 /*
178 * Links to unimplemented or non-context aware breakpoints are
179 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
180 * as if linked to an UNKNOWN context-aware breakpoint (in which
181 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
182 * We choose the former.
183 */
184 if (lbn >= brps || lbn < (brps - ctx_cmps)) {
185 return false;
186 }
187
188 bcr = env->cp15.dbgbcr[lbn];
189
190 if (extract64(bcr, 0, 1) == 0) {
191 /* Linked breakpoint disabled : generate no events */
192 return false;
193 }
194
195 bt = extract64(bcr, 20, 4);
196 hcr_el2 = arm_hcr_el2_eff(env);
197
198 switch (bt) {
199 case 3: /* linked context ID match */
200 switch (arm_current_el(env)) {
201 default:
202 /* Context matches never fire in AArch64 EL3 */
203 return false;
204 case 2:
205 if (!(hcr_el2 & HCR_E2H)) {
206 /* Context matches never fire in EL2 without E2H enabled. */
207 return false;
208 }
209 contextidr = env->cp15.contextidr_el[2];
210 break;
211 case 1:
212 contextidr = env->cp15.contextidr_el[1];
213 break;
214 case 0:
215 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
216 contextidr = env->cp15.contextidr_el[2];
217 } else {
218 contextidr = env->cp15.contextidr_el[1];
219 }
220 break;
221 }
222 break;
223
224 case 7: /* linked contextidr_el1 match */
225 contextidr = env->cp15.contextidr_el[1];
226 break;
227 case 13: /* linked contextidr_el2 match */
228 contextidr = env->cp15.contextidr_el[2];
229 break;
230
231 case 9: /* linked VMID match (reserved if no EL2) */
232 case 11: /* linked context ID and VMID match (reserved if no EL2) */
233 case 15: /* linked full context ID match */
234 default:
235 /*
236 * Links to Unlinked context breakpoints must generate no
237 * events; we choose to do the same for reserved values too.
238 */
239 return false;
240 }
241
242 /*
243 * We match the whole register even if this is AArch32 using the
244 * short descriptor format (in which case it holds both PROCID and ASID),
245 * since we don't implement the optional v7 context ID masking.
246 */
247 return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
248 }
249
250 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
251 {
252 CPUARMState *env = &cpu->env;
253 uint64_t cr;
254 int pac, hmc, ssc, wt, lbn;
255 /*
256 * Note that for watchpoints the check is against the CPU security
257 * state, not the S/NS attribute on the offending data access.
258 */
259 bool is_secure = arm_is_secure(env);
260 int access_el = arm_current_el(env);
261
262 if (is_wp) {
263 CPUWatchpoint *wp = env->cpu_watchpoint[n];
264
265 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
266 return false;
267 }
268 cr = env->cp15.dbgwcr[n];
269 if (wp->hitattrs.user) {
270 /*
271 * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
272 * match watchpoints as if they were accesses done at EL0, even if
273 * the CPU is at EL1 or higher.
274 */
275 access_el = 0;
276 }
277 } else {
278 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
279
280 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
281 return false;
282 }
283 cr = env->cp15.dbgbcr[n];
284 }
285 /*
286 * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
287 * enabled and that the address and access type match; for breakpoints
288 * we know the address matched; check the remaining fields, including
289 * linked breakpoints. We rely on WCR and BCR having the same layout
290 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
291 * Note that some combinations of {PAC, HMC, SSC} are reserved and
292 * must act either like some valid combination or as if the watchpoint
293 * were disabled. We choose the former, and use this together with
294 * the fact that EL3 must always be Secure and EL2 must always be
295 * Non-Secure to simplify the code slightly compared to the full
296 * table in the ARM ARM.
297 */
298 pac = FIELD_EX64(cr, DBGWCR, PAC);
299 hmc = FIELD_EX64(cr, DBGWCR, HMC);
300 ssc = FIELD_EX64(cr, DBGWCR, SSC);
301
302 switch (ssc) {
303 case 0:
304 break;
305 case 1:
306 case 3:
307 if (is_secure) {
308 return false;
309 }
310 break;
311 case 2:
312 if (!is_secure) {
313 return false;
314 }
315 break;
316 }
317
318 switch (access_el) {
319 case 3:
320 case 2:
321 if (!hmc) {
322 return false;
323 }
324 break;
325 case 1:
326 if (extract32(pac, 0, 1) == 0) {
327 return false;
328 }
329 break;
330 case 0:
331 if (extract32(pac, 1, 1) == 0) {
332 return false;
333 }
334 break;
335 default:
336 g_assert_not_reached();
337 }
338
339 wt = FIELD_EX64(cr, DBGWCR, WT);
340 lbn = FIELD_EX64(cr, DBGWCR, LBN);
341
342 if (wt && !linked_bp_matches(cpu, lbn)) {
343 return false;
344 }
345
346 return true;
347 }
348
349 static bool check_watchpoints(ARMCPU *cpu)
350 {
351 CPUARMState *env = &cpu->env;
352 int n;
353
354 /*
355 * If watchpoints are disabled globally or we can't take debug
356 * exceptions here then watchpoint firings are ignored.
357 */
358 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
359 || !arm_generate_debug_exceptions(env)) {
360 return false;
361 }
362
363 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
364 if (bp_wp_matches(cpu, n, true)) {
365 return true;
366 }
367 }
368 return false;
369 }
370
371 bool arm_debug_check_breakpoint(CPUState *cs)
372 {
373 ARMCPU *cpu = ARM_CPU(cs);
374 CPUARMState *env = &cpu->env;
375 target_ulong pc;
376 int n;
377
378 /*
379 * If breakpoints are disabled globally or we can't take debug
380 * exceptions here then breakpoint firings are ignored.
381 */
382 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
383 || !arm_generate_debug_exceptions(env)) {
384 return false;
385 }
386
387 /*
388 * Single-step exceptions have priority over breakpoint exceptions.
389 * If single-step state is active-pending, suppress the bp.
390 */
391 if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
392 return false;
393 }
394
395 /*
396 * PC alignment faults have priority over breakpoint exceptions.
397 */
398 pc = is_a64(env) ? env->pc : env->regs[15];
399 if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
400 return false;
401 }
402
403 /*
404 * Instruction aborts have priority over breakpoint exceptions.
405 * TODO: We would need to look up the page for PC and verify that
406 * it is present and executable.
407 */
408
409 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
410 if (bp_wp_matches(cpu, n, false)) {
411 return true;
412 }
413 }
414 return false;
415 }
416
417 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
418 {
419 /*
420 * Called by core code when a CPU watchpoint fires; need to check if this
421 * is also an architectural watchpoint match.
422 */
423 ARMCPU *cpu = ARM_CPU(cs);
424
425 return check_watchpoints(cpu);
426 }
427
428 /*
429 * Return the FSR value for a debug exception (watchpoint, hardware
430 * breakpoint or BKPT insn) targeting the specified exception level.
431 */
432 static uint32_t arm_debug_exception_fsr(CPUARMState *env)
433 {
434 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
435 int target_el = arm_debug_target_el(env);
436 bool using_lpae = false;
437
438 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
439 using_lpae = true;
440 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
441 arm_feature(env, ARM_FEATURE_V8)) {
442 using_lpae = true;
443 } else {
444 if (arm_feature(env, ARM_FEATURE_LPAE) &&
445 (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
446 using_lpae = true;
447 }
448 }
449
450 if (using_lpae) {
451 return arm_fi_to_lfsc(&fi);
452 } else {
453 return arm_fi_to_sfsc(&fi);
454 }
455 }
456
457 void arm_debug_excp_handler(CPUState *cs)
458 {
459 /*
460 * Called by core code when a watchpoint or breakpoint fires;
461 * need to check which one and raise the appropriate exception.
462 */
463 ARMCPU *cpu = ARM_CPU(cs);
464 CPUARMState *env = &cpu->env;
465 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
466
467 if (wp_hit) {
468 if (wp_hit->flags & BP_CPU) {
469 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
470
471 cs->watchpoint_hit = NULL;
472
473 env->exception.fsr = arm_debug_exception_fsr(env);
474 env->exception.vaddress = wp_hit->hitaddr;
475 raise_exception_debug(env, EXCP_DATA_ABORT,
476 syn_watchpoint(0, 0, wnr));
477 }
478 } else {
479 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
480
481 /*
482 * (1) GDB breakpoints should be handled first.
483 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
484 * since singlestep is also done by generating a debug internal
485 * exception.
486 */
487 if (cpu_breakpoint_test(cs, pc, BP_GDB)
488 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
489 return;
490 }
491
492 env->exception.fsr = arm_debug_exception_fsr(env);
493 /*
494 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
495 * values to the guest that it shouldn't be able to see at its
496 * exception/security level.
497 */
498 env->exception.vaddress = 0;
499 raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
500 }
501 }
502
503 /*
504 * Raise an EXCP_BKPT with the specified syndrome register value,
505 * targeting the correct exception level for debug exceptions.
506 */
507 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
508 {
509 int debug_el = arm_debug_target_el(env);
510 int cur_el = arm_current_el(env);
511
512 /* FSR will only be used if the debug target EL is AArch32. */
513 env->exception.fsr = arm_debug_exception_fsr(env);
514 /*
515 * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
516 * values to the guest that it shouldn't be able to see at its
517 * exception/security level.
518 */
519 env->exception.vaddress = 0;
520 /*
521 * Other kinds of architectural debug exception are ignored if
522 * they target an exception level below the current one (in QEMU
523 * this is checked by arm_generate_debug_exceptions()). Breakpoint
524 * instructions are special because they always generate an exception
525 * to somewhere: if they can't go to the configured debug exception
526 * level they are taken to the current exception level.
527 */
528 if (debug_el < cur_el) {
529 debug_el = cur_el;
530 }
531 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
532 }
533
534 void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
535 {
536 raise_exception_debug(env, EXCP_UDEF, syndrome);
537 }
538
539 /*
540 * Check for traps to "powerdown debug" registers, which are controlled
541 * by MDCR.TDOSA
542 */
543 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
544 bool isread)
545 {
546 int el = arm_current_el(env);
547 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
548 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
549 (arm_hcr_el2_eff(env) & HCR_TGE);
550
551 if (el < 2 && mdcr_el2_tdosa) {
552 return CP_ACCESS_TRAP_EL2;
553 }
554 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
555 return CP_ACCESS_TRAP_EL3;
556 }
557 return CP_ACCESS_OK;
558 }
559
560 /*
561 * Check for traps to "debug ROM" registers, which are controlled
562 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
563 */
564 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
565 bool isread)
566 {
567 int el = arm_current_el(env);
568 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
569 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
570 (arm_hcr_el2_eff(env) & HCR_TGE);
571
572 if (el < 2 && mdcr_el2_tdra) {
573 return CP_ACCESS_TRAP_EL2;
574 }
575 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
576 return CP_ACCESS_TRAP_EL3;
577 }
578 return CP_ACCESS_OK;
579 }
580
581 /*
582 * Check for traps to general debug registers, which are controlled
583 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
584 */
585 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
586 bool isread)
587 {
588 int el = arm_current_el(env);
589 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
590 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
591 (arm_hcr_el2_eff(env) & HCR_TGE);
592
593 if (el < 2 && mdcr_el2_tda) {
594 return CP_ACCESS_TRAP_EL2;
595 }
596 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
597 return CP_ACCESS_TRAP_EL3;
598 }
599 return CP_ACCESS_OK;
600 }
601
602 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
603 uint64_t value)
604 {
605 /*
606 * Writes to OSLAR_EL1 may update the OS lock status, which can be
607 * read via a bit in OSLSR_EL1.
608 */
609 int oslock;
610
611 if (ri->state == ARM_CP_STATE_AA32) {
612 oslock = (value == 0xC5ACCE55);
613 } else {
614 oslock = value & 1;
615 }
616
617 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
618 }
619
620 static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
621 uint64_t value)
622 {
623 ARMCPU *cpu = env_archcpu(env);
624 /*
625 * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
626 * implemented this is RAZ/WI.
627 */
628 if(arm_feature(env, ARM_FEATURE_AARCH64)
629 ? cpu_isar_feature(aa64_doublelock, cpu)
630 : cpu_isar_feature(aa32_doublelock, cpu)) {
631 env->cp15.osdlr_el1 = value & 1;
632 }
633 }
634
635 static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
637 {
638 env->cp15.dbgclaim |= (value & 0xFF);
639 }
640
641 static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
642 {
643 /* CLAIM bits are RAO */
644 return 0xFF;
645 }
646
647 static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 uint64_t value)
649 {
650 env->cp15.dbgclaim &= ~(value & 0xFF);
651 }
652
653 static const ARMCPRegInfo debug_cp_reginfo[] = {
654 /*
655 * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
656 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
657 * unlike DBGDRAR it is never accessible from EL0.
658 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
659 * accessor.
660 */
661 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
662 .access = PL0_R, .accessfn = access_tdra,
663 .type = ARM_CP_CONST, .resetvalue = 0 },
664 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
665 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
666 .access = PL1_R, .accessfn = access_tdra,
667 .type = ARM_CP_CONST, .resetvalue = 0 },
668 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
669 .access = PL0_R, .accessfn = access_tdra,
670 .type = ARM_CP_CONST, .resetvalue = 0 },
671 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
672 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
673 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
674 .access = PL1_RW, .accessfn = access_tda,
675 .fgt = FGT_MDSCR_EL1,
676 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
677 .resetvalue = 0 },
678 /*
679 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
680 * Debug Communication Channel is not implemented.
681 */
682 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
683 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
684 .access = PL0_R, .accessfn = access_tda,
685 .type = ARM_CP_CONST, .resetvalue = 0 },
686 /*
687 * OSDTRRX_EL1/OSDTRTX_EL1 are used for save and restore of DBGDTRRX_EL0.
688 * It is a component of the Debug Communications Channel, which is not implemented.
689 */
690 { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
691 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
692 .access = PL1_RW, .accessfn = access_tda,
693 .type = ARM_CP_CONST, .resetvalue = 0 },
694 { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
695 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
696 .access = PL1_RW, .accessfn = access_tda,
697 .type = ARM_CP_CONST, .resetvalue = 0 },
698 /*
699 * OSECCR_EL1 provides a mechanism for an operating system
700 * to access the contents of EDECCR. EDECCR is not implemented though,
701 * as is the rest of external device mechanism.
702 */
703 { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
704 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
705 .access = PL1_RW, .accessfn = access_tda,
706 .fgt = FGT_OSECCR_EL1,
707 .type = ARM_CP_CONST, .resetvalue = 0 },
708 /*
709 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
710 * it is unlikely a guest will care.
711 * We don't implement the configurable EL0 access.
712 */
713 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
714 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
715 .type = ARM_CP_ALIAS,
716 .access = PL1_R, .accessfn = access_tda,
717 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
718 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
719 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
720 .access = PL1_W, .type = ARM_CP_NO_RAW,
721 .accessfn = access_tdosa,
722 .fgt = FGT_OSLAR_EL1,
723 .writefn = oslar_write },
724 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
725 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
726 .access = PL1_R, .resetvalue = 10,
727 .accessfn = access_tdosa,
728 .fgt = FGT_OSLSR_EL1,
729 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
730 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
731 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
732 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
733 .access = PL1_RW, .accessfn = access_tdosa,
734 .fgt = FGT_OSDLR_EL1,
735 .writefn = osdlr_write,
736 .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
737 /*
738 * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
739 * implement vector catch debug events yet.
740 */
741 { .name = "DBGVCR",
742 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
743 .access = PL1_RW, .accessfn = access_tda,
744 .type = ARM_CP_NOP },
745 /*
746 * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
747 * to save and restore a 32-bit guest's DBGVCR)
748 */
749 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
750 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
751 .access = PL2_RW, .accessfn = access_tda,
752 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
753 /*
754 * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
755 * Channel but Linux may try to access this register. The 32-bit
756 * alias is DBGDCCINT.
757 */
758 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
759 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
760 .access = PL1_RW, .accessfn = access_tda,
761 .type = ARM_CP_NOP },
762 /*
763 * Dummy DBGCLAIM registers.
764 * "The architecture does not define any functionality for the CLAIM tag bits.",
765 * so we only keep the raw bits
766 */
767 { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
768 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
769 .type = ARM_CP_ALIAS,
770 .access = PL1_RW, .accessfn = access_tda,
771 .fgt = FGT_DBGCLAIM,
772 .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
773 { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
774 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
775 .access = PL1_RW, .accessfn = access_tda,
776 .fgt = FGT_DBGCLAIM,
777 .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
778 .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
779 };
780
781 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
782 /* 64 bit access versions of the (dummy) debug registers */
783 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
784 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
785 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
786 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
787 };
788
789 void hw_watchpoint_update(ARMCPU *cpu, int n)
790 {
791 CPUARMState *env = &cpu->env;
792 vaddr len = 0;
793 vaddr wvr = env->cp15.dbgwvr[n];
794 uint64_t wcr = env->cp15.dbgwcr[n];
795 int mask;
796 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
797
798 if (env->cpu_watchpoint[n]) {
799 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
800 env->cpu_watchpoint[n] = NULL;
801 }
802
803 if (!FIELD_EX64(wcr, DBGWCR, E)) {
804 /* E bit clear : watchpoint disabled */
805 return;
806 }
807
808 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
809 case 0:
810 /* LSC 00 is reserved and must behave as if the wp is disabled */
811 return;
812 case 1:
813 flags |= BP_MEM_READ;
814 break;
815 case 2:
816 flags |= BP_MEM_WRITE;
817 break;
818 case 3:
819 flags |= BP_MEM_ACCESS;
820 break;
821 }
822
823 /*
824 * Attempts to use both MASK and BAS fields simultaneously are
825 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
826 * thus generating a watchpoint for every byte in the masked region.
827 */
828 mask = FIELD_EX64(wcr, DBGWCR, MASK);
829 if (mask == 1 || mask == 2) {
830 /*
831 * Reserved values of MASK; we must act as if the mask value was
832 * some non-reserved value, or as if the watchpoint were disabled.
833 * We choose the latter.
834 */
835 return;
836 } else if (mask) {
837 /* Watchpoint covers an aligned area up to 2GB in size */
838 len = 1ULL << mask;
839 /*
840 * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
841 * whether the watchpoint fires when the unmasked bits match; we opt
842 * to generate the exceptions.
843 */
844 wvr &= ~(len - 1);
845 } else {
846 /* Watchpoint covers bytes defined by the byte address select bits */
847 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
848 int basstart;
849
850 if (extract64(wvr, 2, 1)) {
851 /*
852 * Deprecated case of an only 4-aligned address. BAS[7:4] are
853 * ignored, and BAS[3:0] define which bytes to watch.
854 */
855 bas &= 0xf;
856 }
857
858 if (bas == 0) {
859 /* This must act as if the watchpoint is disabled */
860 return;
861 }
862
863 /*
864 * The BAS bits are supposed to be programmed to indicate a contiguous
865 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
866 * we fire for each byte in the word/doubleword addressed by the WVR.
867 * We choose to ignore any non-zero bits after the first range of 1s.
868 */
869 basstart = ctz32(bas);
870 len = cto32(bas >> basstart);
871 wvr += basstart;
872 }
873
874 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
875 &env->cpu_watchpoint[n]);
876 }
877
878 void hw_watchpoint_update_all(ARMCPU *cpu)
879 {
880 int i;
881 CPUARMState *env = &cpu->env;
882
883 /*
884 * Completely clear out existing QEMU watchpoints and our array, to
885 * avoid possible stale entries following migration load.
886 */
887 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
888 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
889
890 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
891 hw_watchpoint_update(cpu, i);
892 }
893 }
894
895 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
896 uint64_t value)
897 {
898 ARMCPU *cpu = env_archcpu(env);
899 int i = ri->crm;
900
901 /*
902 * Bits [1:0] are RES0.
903 *
904 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
905 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
906 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
907 * whether the RESS bits are ignored when comparing an address.
908 *
909 * Therefore we are allowed to compare the entire register, which lets
910 * us avoid considering whether or not FEAT_LVA is actually enabled.
911 */
912 value &= ~3ULL;
913
914 raw_write(env, ri, value);
915 hw_watchpoint_update(cpu, i);
916 }
917
918 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
919 uint64_t value)
920 {
921 ARMCPU *cpu = env_archcpu(env);
922 int i = ri->crm;
923
924 raw_write(env, ri, value);
925 hw_watchpoint_update(cpu, i);
926 }
927
928 void hw_breakpoint_update(ARMCPU *cpu, int n)
929 {
930 CPUARMState *env = &cpu->env;
931 uint64_t bvr = env->cp15.dbgbvr[n];
932 uint64_t bcr = env->cp15.dbgbcr[n];
933 vaddr addr;
934 int bt;
935 int flags = BP_CPU;
936
937 if (env->cpu_breakpoint[n]) {
938 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
939 env->cpu_breakpoint[n] = NULL;
940 }
941
942 if (!extract64(bcr, 0, 1)) {
943 /* E bit clear : watchpoint disabled */
944 return;
945 }
946
947 bt = extract64(bcr, 20, 4);
948
949 switch (bt) {
950 case 4: /* unlinked address mismatch (reserved if AArch64) */
951 case 5: /* linked address mismatch (reserved if AArch64) */
952 qemu_log_mask(LOG_UNIMP,
953 "arm: address mismatch breakpoint types not implemented\n");
954 return;
955 case 0: /* unlinked address match */
956 case 1: /* linked address match */
957 {
958 /*
959 * Bits [1:0] are RES0.
960 *
961 * It is IMPLEMENTATION DEFINED whether bits [63:49]
962 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
963 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
964 * value is read as written. It is CONSTRAINED UNPREDICTABLE
965 * whether the RESS bits are ignored when comparing an address.
966 * Therefore we are allowed to compare the entire register, which
967 * lets us avoid considering whether FEAT_LVA is actually enabled.
968 *
969 * The BAS field is used to allow setting breakpoints on 16-bit
970 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
971 * a bp will fire if the addresses covered by the bp and the addresses
972 * covered by the insn overlap but the insn doesn't start at the
973 * start of the bp address range. We choose to require the insn and
974 * the bp to have the same address. The constraints on writing to
975 * BAS enforced in dbgbcr_write mean we have only four cases:
976 * 0b0000 => no breakpoint
977 * 0b0011 => breakpoint on addr
978 * 0b1100 => breakpoint on addr + 2
979 * 0b1111 => breakpoint on addr
980 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
981 */
982 int bas = extract64(bcr, 5, 4);
983 addr = bvr & ~3ULL;
984 if (bas == 0) {
985 return;
986 }
987 if (bas == 0xc) {
988 addr += 2;
989 }
990 break;
991 }
992 case 2: /* unlinked context ID match */
993 case 8: /* unlinked VMID match (reserved if no EL2) */
994 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
995 qemu_log_mask(LOG_UNIMP,
996 "arm: unlinked context breakpoint types not implemented\n");
997 return;
998 case 9: /* linked VMID match (reserved if no EL2) */
999 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1000 case 3: /* linked context ID match */
1001 default:
1002 /*
1003 * We must generate no events for Linked context matches (unless
1004 * they are linked to by some other bp/wp, which is handled in
1005 * updates for the linking bp/wp). We choose to also generate no events
1006 * for reserved values.
1007 */
1008 return;
1009 }
1010
1011 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
1012 }
1013
1014 void hw_breakpoint_update_all(ARMCPU *cpu)
1015 {
1016 int i;
1017 CPUARMState *env = &cpu->env;
1018
1019 /*
1020 * Completely clear out existing QEMU breakpoints and our array, to
1021 * avoid possible stale entries following migration load.
1022 */
1023 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
1024 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
1025
1026 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
1027 hw_breakpoint_update(cpu, i);
1028 }
1029 }
1030
1031 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1032 uint64_t value)
1033 {
1034 ARMCPU *cpu = env_archcpu(env);
1035 int i = ri->crm;
1036
1037 raw_write(env, ri, value);
1038 hw_breakpoint_update(cpu, i);
1039 }
1040
1041 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1042 uint64_t value)
1043 {
1044 ARMCPU *cpu = env_archcpu(env);
1045 int i = ri->crm;
1046
1047 /*
1048 * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
1049 * copy of BAS[0].
1050 */
1051 value = deposit64(value, 6, 1, extract64(value, 5, 1));
1052 value = deposit64(value, 8, 1, extract64(value, 7, 1));
1053
1054 raw_write(env, ri, value);
1055 hw_breakpoint_update(cpu, i);
1056 }
1057
1058 void define_debug_regs(ARMCPU *cpu)
1059 {
1060 /*
1061 * Define v7 and v8 architectural debug registers.
1062 * These are just dummy implementations for now.
1063 */
1064 int i;
1065 int wrps, brps, ctx_cmps;
1066
1067 /*
1068 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
1069 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
1070 * the register must not exist for this cpu.
1071 */
1072 if (cpu->isar.dbgdidr != 0) {
1073 ARMCPRegInfo dbgdidr = {
1074 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
1075 .opc1 = 0, .opc2 = 0,
1076 .access = PL0_R, .accessfn = access_tda,
1077 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
1078 };
1079 define_one_arm_cp_reg(cpu, &dbgdidr);
1080 }
1081
1082 /*
1083 * DBGDEVID is present in the v7 debug architecture if
1084 * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
1085 * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
1086 * from v7.1 of the debug architecture. Because no fields have yet
1087 * been defined in DBGDEVID2 (and quite possibly none will ever
1088 * be) we don't define an ARMISARegisters field for it.
1089 * These registers exist only if EL1 can use AArch32, but that
1090 * happens naturally because they are only PL1 accessible anyway.
1091 */
1092 if (extract32(cpu->isar.dbgdidr, 15, 1)) {
1093 ARMCPRegInfo dbgdevid = {
1094 .name = "DBGDEVID",
1095 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
1096 .access = PL1_R, .accessfn = access_tda,
1097 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
1098 };
1099 define_one_arm_cp_reg(cpu, &dbgdevid);
1100 }
1101 if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
1102 ARMCPRegInfo dbgdevid12[] = {
1103 {
1104 .name = "DBGDEVID1",
1105 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
1106 .access = PL1_R, .accessfn = access_tda,
1107 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
1108 }, {
1109 .name = "DBGDEVID2",
1110 .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
1111 .access = PL1_R, .accessfn = access_tda,
1112 .type = ARM_CP_CONST, .resetvalue = 0,
1113 },
1114 };
1115 define_arm_cp_regs(cpu, dbgdevid12);
1116 }
1117
1118 brps = arm_num_brps(cpu);
1119 wrps = arm_num_wrps(cpu);
1120 ctx_cmps = arm_num_ctx_cmps(cpu);
1121
1122 assert(ctx_cmps <= brps);
1123
1124 define_arm_cp_regs(cpu, debug_cp_reginfo);
1125
1126 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
1127 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
1128 }
1129
1130 for (i = 0; i < brps; i++) {
1131 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
1132 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
1133 ARMCPRegInfo dbgregs[] = {
1134 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
1135 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1136 .access = PL1_RW, .accessfn = access_tda,
1137 .fgt = FGT_DBGBVRN_EL1,
1138 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
1139 .writefn = dbgbvr_write, .raw_writefn = raw_write
1140 },
1141 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
1142 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1143 .access = PL1_RW, .accessfn = access_tda,
1144 .fgt = FGT_DBGBCRN_EL1,
1145 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
1146 .writefn = dbgbcr_write, .raw_writefn = raw_write
1147 },
1148 };
1149 define_arm_cp_regs(cpu, dbgregs);
1150 g_free(dbgbvr_el1_name);
1151 g_free(dbgbcr_el1_name);
1152 }
1153
1154 for (i = 0; i < wrps; i++) {
1155 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
1156 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
1157 ARMCPRegInfo dbgregs[] = {
1158 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
1159 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1160 .access = PL1_RW, .accessfn = access_tda,
1161 .fgt = FGT_DBGWVRN_EL1,
1162 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
1163 .writefn = dbgwvr_write, .raw_writefn = raw_write
1164 },
1165 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
1166 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1167 .access = PL1_RW, .accessfn = access_tda,
1168 .fgt = FGT_DBGWCRN_EL1,
1169 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
1170 .writefn = dbgwcr_write, .raw_writefn = raw_write
1171 },
1172 };
1173 define_arm_cp_regs(cpu, dbgregs);
1174 g_free(dbgwvr_el1_name);
1175 g_free(dbgwcr_el1_name);
1176 }
1177 }
1178
1179 #if !defined(CONFIG_USER_ONLY)
1180
1181 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1182 {
1183 ARMCPU *cpu = ARM_CPU(cs);
1184 CPUARMState *env = &cpu->env;
1185
1186 /*
1187 * In BE32 system mode, target memory is stored byteswapped (on a
1188 * little-endian host system), and by the time we reach here (via an
1189 * opcode helper) the addresses of subword accesses have been adjusted
1190 * to account for that, which means that watchpoints will not match.
1191 * Undo the adjustment here.
1192 */
1193 if (arm_sctlr_b(env)) {
1194 if (len == 1) {
1195 addr ^= 3;
1196 } else if (len == 2) {
1197 addr ^= 2;
1198 }
1199 }
1200
1201 return addr;
1202 }
1203
1204 #endif