]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Merge tag 'hppa-boot-reboot-fixes-pull-request' of https://github.com/hdeller/qemu...
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34
35 static void switch_mode(CPUARMState *env, int mode);
36
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39 assert(ri->fieldoffset);
40 if (cpreg_field_is_64bit(ri)) {
41 return CPREG_FIELD64(env, ri);
42 } else {
43 return CPREG_FIELD32(env, ri);
44 }
45 }
46
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49 assert(ri->fieldoffset);
50 if (cpreg_field_is_64bit(ri)) {
51 CPREG_FIELD64(env, ri) = value;
52 } else {
53 CPREG_FIELD32(env, ri) = value;
54 }
55 }
56
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59 return (char *)env + ri->fieldoffset;
60 }
61
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64 /* Raw read of a coprocessor register (as needed for migration, etc). */
65 if (ri->type & ARM_CP_CONST) {
66 return ri->resetvalue;
67 } else if (ri->raw_readfn) {
68 return ri->raw_readfn(env, ri);
69 } else if (ri->readfn) {
70 return ri->readfn(env, ri);
71 } else {
72 return raw_read(env, ri);
73 }
74 }
75
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77 uint64_t v)
78 {
79 /*
80 * Raw write of a coprocessor register (as needed for migration, etc).
81 * Note that constant registers are treated as write-ignored; the
82 * caller should check for success by whether a readback gives the
83 * value written.
84 */
85 if (ri->type & ARM_CP_CONST) {
86 return;
87 } else if (ri->raw_writefn) {
88 ri->raw_writefn(env, ri, v);
89 } else if (ri->writefn) {
90 ri->writefn(env, ri, v);
91 } else {
92 raw_write(env, ri, v);
93 }
94 }
95
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98 /*
99 * Return true if the regdef would cause an assertion if you called
100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101 * program bug for it not to have the NO_RAW flag).
102 * NB that returning false here doesn't necessarily mean that calling
103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104 * read/write access functions which are safe for raw use" from "has
105 * read/write access functions which have side effects but has forgotten
106 * to provide raw access functions".
107 * The tests here line up with the conditions in read/write_raw_cp_reg()
108 * and assertions in raw_read()/raw_write().
109 */
110 if ((ri->type & ARM_CP_CONST) ||
111 ri->fieldoffset ||
112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113 return false;
114 }
115 return true;
116 }
117
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120 /* Write the coprocessor state from cpu->env to the (index,value) list. */
121 int i;
122 bool ok = true;
123
124 for (i = 0; i < cpu->cpreg_array_len; i++) {
125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126 const ARMCPRegInfo *ri;
127 uint64_t newval;
128
129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130 if (!ri) {
131 ok = false;
132 continue;
133 }
134 if (ri->type & ARM_CP_NO_RAW) {
135 continue;
136 }
137
138 newval = read_raw_cp_reg(&cpu->env, ri);
139 if (kvm_sync) {
140 /*
141 * Only sync if the previous list->cpustate sync succeeded.
142 * Rather than tracking the success/failure state for every
143 * item in the list, we just recheck "does the raw write we must
144 * have made in write_list_to_cpustate() read back OK" here.
145 */
146 uint64_t oldval = cpu->cpreg_values[i];
147
148 if (oldval == newval) {
149 continue;
150 }
151
152 write_raw_cp_reg(&cpu->env, ri, oldval);
153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154 continue;
155 }
156
157 write_raw_cp_reg(&cpu->env, ri, newval);
158 }
159 cpu->cpreg_values[i] = newval;
160 }
161 return ok;
162 }
163
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166 int i;
167 bool ok = true;
168
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 const ARMCPRegInfo *ri;
173
174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175 if (!ri) {
176 ok = false;
177 continue;
178 }
179 if (ri->type & ARM_CP_NO_RAW) {
180 continue;
181 }
182 /*
183 * Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
186 */
187 write_raw_cp_reg(&cpu->env, ri, v);
188 if (read_raw_cp_reg(&cpu->env, ri) != v) {
189 ok = false;
190 }
191 }
192 return ok;
193 }
194
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197 ARMCPU *cpu = opaque;
198 uint32_t regidx = (uintptr_t)key;
199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200
201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203 /* The value array need not be initialized at this point */
204 cpu->cpreg_array_len++;
205 }
206 }
207
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210 ARMCPU *cpu = opaque;
211 const ARMCPRegInfo *ri;
212
213 ri = g_hash_table_lookup(cpu->cp_regs, key);
214
215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216 cpu->cpreg_array_len++;
217 }
218 }
219
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224
225 if (aidx > bidx) {
226 return 1;
227 }
228 if (aidx < bidx) {
229 return -1;
230 }
231 return 0;
232 }
233
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236 /*
237 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238 * Note that we require cpreg_tuples[] to be sorted by key ID.
239 */
240 GList *keys;
241 int arraylen;
242
243 keys = g_hash_table_get_keys(cpu->cp_regs);
244 keys = g_list_sort(keys, cpreg_key_compare);
245
246 cpu->cpreg_array_len = 0;
247
248 g_list_foreach(keys, count_cpreg, cpu);
249
250 arraylen = cpu->cpreg_array_len;
251 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256 cpu->cpreg_array_len = 0;
257
258 g_list_foreach(keys, add_cpreg_to_list, cpu);
259
260 assert(cpu->cpreg_array_len == arraylen);
261
262 g_list_free(keys);
263 }
264
265 /*
266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267 */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269 const ARMCPRegInfo *ri,
270 bool isread)
271 {
272 if (!is_a64(env) && arm_current_el(env) == 3 &&
273 arm_is_secure_below_el3(env)) {
274 return CP_ACCESS_TRAP_UNCATEGORIZED;
275 }
276 return CP_ACCESS_OK;
277 }
278
279 /*
280 * Some secure-only AArch32 registers trap to EL3 if used from
281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283 * We assume that the .access field is set to PL1_RW.
284 */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286 const ARMCPRegInfo *ri,
287 bool isread)
288 {
289 if (arm_current_el(env) == 3) {
290 return CP_ACCESS_OK;
291 }
292 if (arm_is_secure_below_el3(env)) {
293 if (env->cp15.scr_el3 & SCR_EEL2) {
294 return CP_ACCESS_TRAP_EL2;
295 }
296 return CP_ACCESS_TRAP_EL3;
297 }
298 /* This will be EL1 NS and EL2 NS, which just UNDEF */
299 return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301
302 /*
303 * Check for traps to performance monitor registers, which are controlled
304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305 */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307 bool isread)
308 {
309 int el = arm_current_el(env);
310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311
312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313 return CP_ACCESS_TRAP_EL2;
314 }
315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316 return CP_ACCESS_TRAP_EL3;
317 }
318 return CP_ACCESS_OK;
319 }
320
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323 bool isread)
324 {
325 if (arm_current_el(env) == 1) {
326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327 if (arm_hcr_el2_eff(env) & trap) {
328 return CP_ACCESS_TRAP_EL2;
329 }
330 }
331 return CP_ACCESS_OK;
332 }
333
334 /* Check for traps from EL1 due to HCR_EL2.TSW. */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
337 {
338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339 return CP_ACCESS_TRAP_EL2;
340 }
341 return CP_ACCESS_OK;
342 }
343
344 /* Check for traps from EL1 due to HCR_EL2.TACR. */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346 bool isread)
347 {
348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349 return CP_ACCESS_TRAP_EL2;
350 }
351 return CP_ACCESS_OK;
352 }
353
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
357 {
358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359 return CP_ACCESS_TRAP_EL2;
360 }
361 return CP_ACCESS_OK;
362 }
363
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366 bool isread)
367 {
368 if (arm_current_el(env) == 1 &&
369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370 return CP_ACCESS_TRAP_EL2;
371 }
372 return CP_ACCESS_OK;
373 }
374
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378 bool isread)
379 {
380 if (arm_current_el(env) == 1 &&
381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382 return CP_ACCESS_TRAP_EL2;
383 }
384 return CP_ACCESS_OK;
385 }
386 #endif
387
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390 ARMCPU *cpu = env_archcpu(env);
391
392 raw_write(env, ri, value);
393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398 ARMCPU *cpu = env_archcpu(env);
399
400 if (raw_read(env, ri) != value) {
401 /*
402 * Unlike real hardware the qemu TLB uses virtual addresses,
403 * not modified virtual addresses, so this causes a TLB flush.
404 */
405 tlb_flush(CPU(cpu));
406 raw_write(env, ri, value);
407 }
408 }
409
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411 uint64_t value)
412 {
413 ARMCPU *cpu = env_archcpu(env);
414
415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416 && !extended_addresses_enabled(env)) {
417 /*
418 * For VMSA (when not using the LPAE long descriptor page table
419 * format) this register includes the ASID, so do a TLB flush.
420 * For PMSA it is purely a process ID and no action is needed.
421 */
422 tlb_flush(CPU(cpu));
423 }
424 raw_write(env, ri, value);
425 }
426
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429 /*
430 * Note that the 'ALL' scope must invalidate both stage 1 and
431 * stage 2 translations, whereas most other scopes only invalidate
432 * stage 1 translations.
433 */
434 return (ARMMMUIdxBit_E10_1 |
435 ARMMMUIdxBit_E10_1_PAN |
436 ARMMMUIdxBit_E10_0 |
437 ARMMMUIdxBit_Stage2 |
438 ARMMMUIdxBit_Stage2_S);
439 }
440
441
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 uint64_t value)
445 {
446 CPUState *cs = env_cpu(env);
447
448 tlb_flush_all_cpus_synced(cs);
449 }
450
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452 uint64_t value)
453 {
454 CPUState *cs = env_cpu(env);
455
456 tlb_flush_all_cpus_synced(cs);
457 }
458
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 uint64_t value)
461 {
462 CPUState *cs = env_cpu(env);
463
464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468 uint64_t value)
469 {
470 CPUState *cs = env_cpu(env);
471
472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474
475 /*
476 * Non-IS variants of TLB operations are upgraded to
477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478 * force broadcast of these operations.
479 */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
487 {
488 /* Invalidate all (TLBIALL) */
489 CPUState *cs = env_cpu(env);
490
491 if (tlb_force_broadcast(env)) {
492 tlb_flush_all_cpus_synced(cs);
493 } else {
494 tlb_flush(cs);
495 }
496 }
497
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
500 {
501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502 CPUState *cs = env_cpu(env);
503
504 value &= TARGET_PAGE_MASK;
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_page_all_cpus_synced(cs, value);
507 } else {
508 tlb_flush_page(cs, value);
509 }
510 }
511
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 /* Invalidate by ASID (TLBIASID) */
516 CPUState *cs = env_cpu(env);
517
518 if (tlb_force_broadcast(env)) {
519 tlb_flush_all_cpus_synced(cs);
520 } else {
521 tlb_flush(cs);
522 }
523 }
524
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
527 {
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 CPUState *cs = env_cpu(env);
530
531 value &= TARGET_PAGE_MASK;
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_page_all_cpus_synced(cs, value);
534 } else {
535 tlb_flush_page(cs, value);
536 }
537 }
538
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 CPUState *cs = env_cpu(env);
543
544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
549 {
550 CPUState *cs = env_cpu(env);
551
552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554
555
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = env_cpu(env);
560
561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = env_cpu(env);
568
569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574 {
575 CPUState *cs = env_cpu(env);
576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577
578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
583 {
584 CPUState *cs = env_cpu(env);
585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586
587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588 ARMMMUIdxBit_E2);
589 }
590
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
593 {
594 CPUState *cs = env_cpu(env);
595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596
597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
602 {
603 CPUState *cs = env_cpu(env);
604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605
606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608
609 static const ARMCPRegInfo cp_reginfo[] = {
610 /*
611 * Define the secure and non-secure FCSE identifier CP registers
612 * separately because there is no secure bank in V8 (no _EL3). This allows
613 * the secure register to be properly reset and migrated. There is also no
614 * v8 EL1 version of the register so the non-secure instance stands alone.
615 */
616 { .name = "FCSEIDR",
617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621 { .name = "FCSEIDR_S",
622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626 /*
627 * Define the secure and non-secure context identifier CP registers
628 * separately because there is no secure bank in V8 (no _EL3). This allows
629 * the secure register to be properly reset and migrated. In the
630 * non-secure case, the 32-bit register will have reset and migration
631 * disabled during registration as it is handled by the 64-bit instance.
632 */
633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635 .access = PL1_RW, .accessfn = access_tvm_trvm,
636 .fgt = FGT_CONTEXTIDR_EL1,
637 .secure = ARM_CP_SECSTATE_NS,
638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642 .access = PL1_RW, .accessfn = access_tvm_trvm,
643 .secure = ARM_CP_SECSTATE_S,
644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649 /*
650 * NB: Some of these registers exist in v8 but with more precise
651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652 */
653 /* MMU Domain access control / MPU write buffer control */
654 { .name = "DACR",
655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657 .writefn = dacr_write, .raw_writefn = raw_write,
658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660 /*
661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662 * For v6 and v5, these mappings are overly broad.
663 */
664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672 /* Cache maintenance ops; some of this space may be overridden later. */
673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679 /*
680 * Not all pre-v6 cores implemented this WFI, so this is slightly
681 * over-broad.
682 */
683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684 .access = PL1_W, .type = ARM_CP_WFI },
685 };
686
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688 /*
689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690 * is UNPREDICTABLE; we choose to NOP as most implementations do).
691 */
692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693 .access = PL1_W, .type = ARM_CP_WFI },
694 /*
695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697 * OMAPCP will override this space.
698 */
699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701 .resetvalue = 0 },
702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704 .resetvalue = 0 },
705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708 .resetvalue = 0 },
709 /*
710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711 * implementing it as RAZ means the "debug architecture version" bits
712 * will read as a reserved value, which should cause Linux to not try
713 * to use the debug hardware.
714 */
715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717 /*
718 * MMU TLB control. Note that the wildcarding means we cover not just
719 * the unified TLB ops but also the dside/iside/inner-shareable variants.
720 */
721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723 .type = ARM_CP_NO_RAW },
724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726 .type = ARM_CP_NO_RAW },
727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729 .type = ARM_CP_NO_RAW },
730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732 .type = ARM_CP_NO_RAW },
733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740 uint64_t value)
741 {
742 uint32_t mask = 0;
743
744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745 if (!arm_feature(env, ARM_FEATURE_V8)) {
746 /*
747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750 */
751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752 /* VFP coprocessor: cp10 & cp11 [23:20] */
753 mask |= R_CPACR_ASEDIS_MASK |
754 R_CPACR_D32DIS_MASK |
755 R_CPACR_CP11_MASK |
756 R_CPACR_CP10_MASK;
757
758 if (!arm_feature(env, ARM_FEATURE_NEON)) {
759 /* ASEDIS [31] bit is RAO/WI */
760 value |= R_CPACR_ASEDIS_MASK;
761 }
762
763 /*
764 * VFPv3 and upwards with NEON implement 32 double precision
765 * registers (D0-D31).
766 */
767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769 value |= R_CPACR_D32DIS_MASK;
770 }
771 }
772 value &= mask;
773 }
774
775 /*
776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778 */
779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783 }
784
785 env->cp15.cpacr_el1 = value;
786 }
787
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 uint64_t value = env->cp15.cpacr_el1;
795
796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799 }
800 return value;
801 }
802
803
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806 /*
807 * Call cpacr_write() so that we reset with the correct RAO bits set
808 * for our CPU features.
809 */
810 cpacr_write(env, ri, 0);
811 }
812
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814 bool isread)
815 {
816 if (arm_feature(env, ARM_FEATURE_V8)) {
817 /* Check if CPACR accesses are to be trapped to EL2 */
818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820 return CP_ACCESS_TRAP_EL2;
821 /* Check if CPACR accesses are to be trapped to EL3 */
822 } else if (arm_current_el(env) < 3 &&
823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824 return CP_ACCESS_TRAP_EL3;
825 }
826 }
827
828 return CP_ACCESS_OK;
829 }
830
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832 bool isread)
833 {
834 /* Check if CPTR accesses are set to trap to EL3 */
835 if (arm_current_el(env) == 2 &&
836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837 return CP_ACCESS_TRAP_EL3;
838 }
839
840 return CP_ACCESS_OK;
841 }
842
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844 /* prefetch by MVA in v6, NOP in v7 */
845 { .name = "MVA_prefetch",
846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847 .access = PL1_W, .type = ARM_CP_NOP },
848 /*
849 * We need to break the TB after ISB to execute self-modifying code
850 * correctly and also to take any pending interrupts immediately.
851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852 */
853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856 .access = PL0_W, .type = ARM_CP_NOP },
857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858 .access = PL0_W, .type = ARM_CP_NOP },
859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860 .access = PL1_RW, .accessfn = access_tvm_trvm,
861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862 offsetof(CPUARMState, cp15.ifar_ns) },
863 .resetvalue = 0, },
864 /*
865 * Watchpoint Fault Address Register : should actually only be present
866 * for 1136, 1176, 11MPCore.
867 */
868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872 .fgt = FGT_CPACR_EL1,
873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876
877 typedef struct pm_event {
878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880 bool (*supported)(CPUARMState *);
881 /*
882 * Retrieve the current count of the underlying event. The programmed
883 * counters hold a difference from the return value from this function
884 */
885 uint64_t (*get_count)(CPUARMState *);
886 /*
887 * Return how many nanoseconds it will take (at a minimum) for count events
888 * to occur. A negative value indicates the counter will never overflow, or
889 * that the counter has otherwise arranged for the overflow bit to be set
890 * and the PMU interrupt to be raised on overflow.
891 */
892 int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894
895 static bool event_always_supported(CPUARMState *env)
896 {
897 return true;
898 }
899
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902 /*
903 * SW_INCR events are written directly to the pmevcntr's by writes to
904 * PMSWINC, so there is no underlying count maintained by the PMU itself
905 */
906 return 0;
907 }
908
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911 return -1;
912 }
913
914 /*
915 * Return the underlying cycle count for the PMU cycle counters. If we're in
916 * usermode, simply return 0.
917 */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924 return cpu_get_host_ticks();
925 #endif
926 }
927
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933
934 static bool instructions_supported(CPUARMState *env)
935 {
936 return icount_enabled() == 1; /* Precise instruction counting */
937 }
938
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941 return (uint64_t)icount_get_raw();
942 }
943
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946 return icount_to_ns((int64_t)icount);
947 }
948 #endif
949
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952 /* For events which are supported in any v8.1 PMU */
953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958 /* For events which are supported in any v8.1 PMU */
959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964 /* For events which on QEMU never fire, so their count is always zero */
965 return 0;
966 }
967
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970 /* An event which never fires can never overflow */
971 return -1;
972 }
973
974 static const pm_event pm_events[] = {
975 { .number = 0x000, /* SW_INCR */
976 .supported = event_always_supported,
977 .get_count = swinc_get_count,
978 .ns_per_count = swinc_ns_per,
979 },
980 #ifndef CONFIG_USER_ONLY
981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982 .supported = instructions_supported,
983 .get_count = instructions_get_count,
984 .ns_per_count = instructions_ns_per,
985 },
986 { .number = 0x011, /* CPU_CYCLES, Cycle */
987 .supported = event_always_supported,
988 .get_count = cycles_get_count,
989 .ns_per_count = cycles_ns_per,
990 },
991 #endif
992 { .number = 0x023, /* STALL_FRONTEND */
993 .supported = pmuv3p1_events_supported,
994 .get_count = zero_event_get_count,
995 .ns_per_count = zero_event_ns_per,
996 },
997 { .number = 0x024, /* STALL_BACKEND */
998 .supported = pmuv3p1_events_supported,
999 .get_count = zero_event_get_count,
1000 .ns_per_count = zero_event_ns_per,
1001 },
1002 { .number = 0x03c, /* STALL */
1003 .supported = pmuv3p4_events_supported,
1004 .get_count = zero_event_get_count,
1005 .ns_per_count = zero_event_ns_per,
1006 },
1007 };
1008
1009 /*
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1014 */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018
1019 /*
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
1022 *
1023 * Note: Events in the 0x40XX range are not currently supported.
1024 */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027 unsigned int i;
1028
1029 /*
1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031 * events to them
1032 */
1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034 supported_event_map[i] = UNSUPPORTED_EVENT;
1035 }
1036 cpu->pmceid0 = 0;
1037 cpu->pmceid1 = 0;
1038
1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040 const pm_event *cnt = &pm_events[i];
1041 assert(cnt->number <= MAX_EVENT_ID);
1042 /* We do not currently support events in the 0x40xx range */
1043 assert(cnt->number <= 0x3f);
1044
1045 if (cnt->supported(&cpu->env)) {
1046 supported_event_map[cnt->number] = i;
1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048 if (cnt->number & 0x20) {
1049 cpu->pmceid1 |= event_mask;
1050 } else {
1051 cpu->pmceid0 |= event_mask;
1052 }
1053 }
1054 }
1055 }
1056
1057 /*
1058 * Check at runtime whether a PMU event is supported for the current machine
1059 */
1060 static bool event_supported(uint16_t number)
1061 {
1062 if (number > MAX_EVENT_ID) {
1063 return false;
1064 }
1065 return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069 bool isread)
1070 {
1071 /*
1072 * Performance monitor registers user accessibility is controlled
1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074 * trapping to EL2 or EL3 for other accesses.
1075 */
1076 int el = arm_current_el(env);
1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078
1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080 return CP_ACCESS_TRAP;
1081 }
1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083 return CP_ACCESS_TRAP_EL2;
1084 }
1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086 return CP_ACCESS_TRAP_EL3;
1087 }
1088
1089 return CP_ACCESS_OK;
1090 }
1091
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093 const ARMCPRegInfo *ri,
1094 bool isread)
1095 {
1096 /* ER: event counter read trap control */
1097 if (arm_feature(env, ARM_FEATURE_V8)
1098 && arm_current_el(env) == 0
1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100 && isread) {
1101 return CP_ACCESS_OK;
1102 }
1103
1104 return pmreg_access(env, ri, isread);
1105 }
1106
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108 const ARMCPRegInfo *ri,
1109 bool isread)
1110 {
1111 /* SW: software increment write trap control */
1112 if (arm_feature(env, ARM_FEATURE_V8)
1113 && arm_current_el(env) == 0
1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115 && !isread) {
1116 return CP_ACCESS_OK;
1117 }
1118
1119 return pmreg_access(env, ri, isread);
1120 }
1121
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123 const ARMCPRegInfo *ri,
1124 bool isread)
1125 {
1126 /* ER: event counter read trap control */
1127 if (arm_feature(env, ARM_FEATURE_V8)
1128 && arm_current_el(env) == 0
1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130 return CP_ACCESS_OK;
1131 }
1132
1133 return pmreg_access(env, ri, isread);
1134 }
1135
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137 const ARMCPRegInfo *ri,
1138 bool isread)
1139 {
1140 /* CR: cycle counter read trap control */
1141 if (arm_feature(env, ARM_FEATURE_V8)
1142 && arm_current_el(env) == 0
1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144 && isread) {
1145 return CP_ACCESS_OK;
1146 }
1147
1148 return pmreg_access(env, ri, isread);
1149 }
1150
1151 /*
1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153 * We use these to decide whether we need to wrap a write to MDCR_EL2
1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155 */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159
1160 /*
1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162 * the current EL, security state, and register configuration.
1163 */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166 uint64_t filter;
1167 bool e, p, u, nsk, nsu, nsh, m;
1168 bool enabled, prohibited = false, filtered;
1169 bool secure = arm_is_secure(env);
1170 int el = arm_current_el(env);
1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173
1174 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175 return false;
1176 }
1177
1178 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179 (counter < hpmn || counter == 31)) {
1180 e = env->cp15.c9_pmcr & PMCRE;
1181 } else {
1182 e = mdcr_el2 & MDCR_HPME;
1183 }
1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185
1186 /* Is event counting prohibited? */
1187 if (el == 2 && (counter < hpmn || counter == 31)) {
1188 prohibited = mdcr_el2 & MDCR_HPMD;
1189 }
1190 if (secure) {
1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192 }
1193
1194 if (counter == 31) {
1195 /*
1196 * The cycle counter defaults to running. PMCR.DP says "disable
1197 * the cycle counter when event counting is prohibited".
1198 * Some MDCR bits disable the cycle counter specifically.
1199 */
1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202 if (secure) {
1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204 }
1205 if (el == 2) {
1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207 }
1208 }
1209 }
1210
1211 if (counter == 31) {
1212 filter = env->cp15.pmccfiltr_el0;
1213 } else {
1214 filter = env->cp15.c14_pmevtyper[counter];
1215 }
1216
1217 p = filter & PMXEVTYPER_P;
1218 u = filter & PMXEVTYPER_U;
1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222 m = arm_el_is_aa64(env, 1) &&
1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224
1225 if (el == 0) {
1226 filtered = secure ? u : u != nsu;
1227 } else if (el == 1) {
1228 filtered = secure ? p : p != nsk;
1229 } else if (el == 2) {
1230 filtered = !nsh;
1231 } else { /* EL3 */
1232 filtered = m != p;
1233 }
1234
1235 if (counter != 31) {
1236 /*
1237 * If not checking PMCCNTR, ensure the counter is setup to an event we
1238 * support
1239 */
1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241 if (!event_supported(event)) {
1242 return false;
1243 }
1244 }
1245
1246 return enabled && !prohibited && !filtered;
1247 }
1248
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251 ARMCPU *cpu = env_archcpu(env);
1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258 /*
1259 * Return true if the clock divider is enabled and the cycle counter
1260 * is supposed to tick only once every 64 clock cycles. This is
1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262 * (64-bit) cycle counter PMCR.D has no effect.
1263 */
1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269 /* Return true if the specified event counter is configured to be 64 bit */
1270
1271 /* This isn't intended to be used with the cycle counter */
1272 assert(counter < 31);
1273
1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275 return false;
1276 }
1277
1278 if (arm_feature(env, ARM_FEATURE_EL2)) {
1279 /*
1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281 * current security state, so we don't use arm_mdcr_el2_eff() here.
1282 */
1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285
1286 if (hpmn != 0 && counter >= hpmn) {
1287 return hlp;
1288 }
1289 }
1290 return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292
1293 /*
1294 * Ensure c15_ccnt is the guest-visible count so that operations such as
1295 * enabling/disabling the counter or filtering, modifying the count itself,
1296 * etc. can be done logically. This is essentially a no-op if the counter is
1297 * not enabled at the time of the call.
1298 */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301 uint64_t cycles = cycles_get_count(env);
1302
1303 if (pmu_counter_enabled(env, 31)) {
1304 uint64_t eff_cycles = cycles;
1305 if (pmccntr_clockdiv_enabled(env)) {
1306 eff_cycles /= 64;
1307 }
1308
1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310
1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312 1ull << 63 : 1ull << 31;
1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314 env->cp15.c9_pmovsr |= (1ULL << 31);
1315 pmu_update_irq(env);
1316 }
1317
1318 env->cp15.c15_ccnt = new_pmccntr;
1319 }
1320 env->cp15.c15_ccnt_delta = cycles;
1321 }
1322
1323 /*
1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326 * pmccntr_op_start.
1327 */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330 if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332 /* Calculate when the counter will next overflow */
1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335 remaining_cycles = (uint32_t)remaining_cycles;
1336 }
1337 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338
1339 if (overflow_in > 0) {
1340 int64_t overflow_at;
1341
1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343 overflow_in, &overflow_at)) {
1344 ARMCPU *cpu = env_archcpu(env);
1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346 }
1347 }
1348 #endif
1349
1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351 if (pmccntr_clockdiv_enabled(env)) {
1352 prev_cycles /= 64;
1353 }
1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355 }
1356 }
1357
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360
1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362 uint64_t count = 0;
1363 if (event_supported(event)) {
1364 uint16_t event_idx = supported_event_map[event];
1365 count = pm_events[event_idx].get_count(env);
1366 }
1367
1368 if (pmu_counter_enabled(env, counter)) {
1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371 1ULL << 63 : 1ULL << 31;
1372
1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374 env->cp15.c9_pmovsr |= (1 << counter);
1375 pmu_update_irq(env);
1376 }
1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378 }
1379 env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384 if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387 uint16_t event_idx = supported_event_map[event];
1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389 int64_t overflow_in;
1390
1391 if (!pmevcntr_is_64_bit(env, counter)) {
1392 delta = (uint32_t)delta;
1393 }
1394 overflow_in = pm_events[event_idx].ns_per_count(delta);
1395
1396 if (overflow_in > 0) {
1397 int64_t overflow_at;
1398
1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400 overflow_in, &overflow_at)) {
1401 ARMCPU *cpu = env_archcpu(env);
1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403 }
1404 }
1405 #endif
1406
1407 env->cp15.c14_pmevcntr_delta[counter] -=
1408 env->cp15.c14_pmevcntr[counter];
1409 }
1410 }
1411
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414 unsigned int i;
1415 pmccntr_op_start(env);
1416 for (i = 0; i < pmu_num_counters(env); i++) {
1417 pmevcntr_op_start(env, i);
1418 }
1419 }
1420
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423 unsigned int i;
1424 pmccntr_op_finish(env);
1425 for (i = 0; i < pmu_num_counters(env); i++) {
1426 pmevcntr_op_finish(env, i);
1427 }
1428 }
1429
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432 pmu_op_start(&cpu->env);
1433 }
1434
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437 pmu_op_finish(&cpu->env);
1438 }
1439
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442 ARMCPU *cpu = opaque;
1443
1444 /*
1445 * Update all the counter values based on the current underlying counts,
1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448 * counter may expire.
1449 */
1450 pmu_op_start(&cpu->env);
1451 pmu_op_finish(&cpu->env);
1452 }
1453
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 uint64_t value)
1456 {
1457 pmu_op_start(env);
1458
1459 if (value & PMCRC) {
1460 /* The counter has been reset */
1461 env->cp15.c15_ccnt = 0;
1462 }
1463
1464 if (value & PMCRP) {
1465 unsigned int i;
1466 for (i = 0; i < pmu_num_counters(env); i++) {
1467 env->cp15.c14_pmevcntr[i] = 0;
1468 }
1469 }
1470
1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473
1474 pmu_op_finish(env);
1475 }
1476
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479 {
1480 unsigned int i;
1481 uint64_t overflow_mask, new_pmswinc;
1482
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 /* Increment a counter's count iff: */
1485 if ((value & (1 << i)) && /* counter's bit is set */
1486 /* counter is enabled and not filtered */
1487 pmu_counter_enabled(env, i) &&
1488 /* counter is SW_INCR */
1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490 pmevcntr_op_start(env, i);
1491
1492 /*
1493 * Detect if this write causes an overflow since we can't predict
1494 * PMSWINC overflows like we can for other events
1495 */
1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497
1498 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499 1ULL << 63 : 1ULL << 31;
1500
1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502 env->cp15.c9_pmovsr |= (1 << i);
1503 pmu_update_irq(env);
1504 }
1505
1506 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507
1508 pmevcntr_op_finish(env, i);
1509 }
1510 }
1511 }
1512
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515 uint64_t ret;
1516 pmccntr_op_start(env);
1517 ret = env->cp15.c15_ccnt;
1518 pmccntr_op_finish(env);
1519 return ret;
1520 }
1521
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1524 {
1525 /*
1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529 * accessed.
1530 */
1531 env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535 uint64_t value)
1536 {
1537 pmccntr_op_start(env);
1538 env->cp15.c15_ccnt = value;
1539 pmccntr_op_finish(env);
1540 }
1541
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543 uint64_t value)
1544 {
1545 uint64_t cur_val = pmccntr_read(env, NULL);
1546
1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551 uint64_t value)
1552 {
1553 pmccntr_op_start(env);
1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555 pmccntr_op_finish(env);
1556 }
1557
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559 uint64_t value)
1560 {
1561 pmccntr_op_start(env);
1562 /* M is not accessible from AArch32 */
1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564 (value & PMCCFILTR);
1565 pmccntr_op_finish(env);
1566 }
1567
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570 /* M is not visible in AArch32 */
1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575 uint64_t value)
1576 {
1577 pmu_op_start(env);
1578 value &= pmu_counter_mask(env);
1579 env->cp15.c9_pmcnten |= value;
1580 pmu_op_finish(env);
1581 }
1582
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584 uint64_t value)
1585 {
1586 pmu_op_start(env);
1587 value &= pmu_counter_mask(env);
1588 env->cp15.c9_pmcnten &= ~value;
1589 pmu_op_finish(env);
1590 }
1591
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
1594 {
1595 value &= pmu_counter_mask(env);
1596 env->cp15.c9_pmovsr &= ~value;
1597 pmu_update_irq(env);
1598 }
1599
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1602 {
1603 value &= pmu_counter_mask(env);
1604 env->cp15.c9_pmovsr |= value;
1605 pmu_update_irq(env);
1606 }
1607
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value, const uint8_t counter)
1610 {
1611 if (counter == 31) {
1612 pmccfiltr_write(env, ri, value);
1613 } else if (counter < pmu_num_counters(env)) {
1614 pmevcntr_op_start(env, counter);
1615
1616 /*
1617 * If this counter's event type is changing, store the current
1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619 * pmevcntr_op_finish has the correct baseline when it converts back to
1620 * a delta.
1621 */
1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623 PMXEVTYPER_EVTCOUNT;
1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625 if (old_event != new_event) {
1626 uint64_t count = 0;
1627 if (event_supported(new_event)) {
1628 uint16_t event_idx = supported_event_map[new_event];
1629 count = pm_events[event_idx].get_count(env);
1630 }
1631 env->cp15.c14_pmevcntr_delta[counter] = count;
1632 }
1633
1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635 pmevcntr_op_finish(env, counter);
1636 }
1637 /*
1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639 * PMSELR value is equal to or greater than the number of implemented
1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641 */
1642 }
1643
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645 const uint8_t counter)
1646 {
1647 if (counter == 31) {
1648 return env->cp15.pmccfiltr_el0;
1649 } else if (counter < pmu_num_counters(env)) {
1650 return env->cp15.c14_pmevtyper[counter];
1651 } else {
1652 /*
1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655 */
1656 return 0;
1657 }
1658 }
1659
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1662 {
1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664 pmevtyper_write(env, ri, value, counter);
1665 }
1666
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1669 {
1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671 env->cp15.c14_pmevtyper[counter] = value;
1672
1673 /*
1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675 * pmu_op_finish calls when loading saved state for a migration. Because
1676 * we're potentially updating the type of event here, the value written to
1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678 * different counter type. Therefore, we need to set this value to the
1679 * current count for the counter type we're writing so that pmu_op_finish
1680 * has the correct count for its calculation.
1681 */
1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683 if (event_supported(event)) {
1684 uint16_t event_idx = supported_event_map[event];
1685 env->cp15.c14_pmevcntr_delta[counter] =
1686 pm_events[event_idx].get_count(env);
1687 }
1688 }
1689
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693 return pmevtyper_read(env, ri, counter);
1694 }
1695
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 uint64_t value)
1698 {
1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value, uint8_t counter)
1709 {
1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712 value &= MAKE_64BIT_MASK(0, 32);
1713 }
1714 if (counter < pmu_num_counters(env)) {
1715 pmevcntr_op_start(env, counter);
1716 env->cp15.c14_pmevcntr[counter] = value;
1717 pmevcntr_op_finish(env, counter);
1718 }
1719 /*
1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721 * are CONSTRAINED UNPREDICTABLE.
1722 */
1723 }
1724
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint8_t counter)
1727 {
1728 if (counter < pmu_num_counters(env)) {
1729 uint64_t ret;
1730 pmevcntr_op_start(env, counter);
1731 ret = env->cp15.c14_pmevcntr[counter];
1732 pmevcntr_op_finish(env, counter);
1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735 ret &= MAKE_64BIT_MASK(0, 32);
1736 }
1737 return ret;
1738 } else {
1739 /*
1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741 * are CONSTRAINED UNPREDICTABLE.
1742 */
1743 return 0;
1744 }
1745 }
1746
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1749 {
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 pmevcntr_write(env, ri, value, counter);
1752 }
1753
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757 return pmevcntr_read(env, ri, counter);
1758 }
1759
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1762 {
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 assert(counter < pmu_num_counters(env));
1765 env->cp15.c14_pmevcntr[counter] = value;
1766 pmevcntr_write(env, ri, value, counter);
1767 }
1768
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772 assert(counter < pmu_num_counters(env));
1773 return env->cp15.c14_pmevcntr[counter];
1774 }
1775
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1778 {
1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788 uint64_t value)
1789 {
1790 if (arm_feature(env, ARM_FEATURE_V8)) {
1791 env->cp15.c9_pmuserenr = value & 0xf;
1792 } else {
1793 env->cp15.c9_pmuserenr = value & 1;
1794 }
1795 }
1796
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
1799 {
1800 /* We have no event counters so only the C bit can be changed */
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pminten |= value;
1803 pmu_update_irq(env);
1804 }
1805
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1808 {
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pminten &= ~value;
1811 pmu_update_irq(env);
1812 }
1813
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816 {
1817 /*
1818 * Note that even though the AArch64 view of this register has bits
1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820 * architectural requirements for bits which are RES0 only in some
1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823 */
1824 raw_write(env, ri, value & ~0x1FULL);
1825 }
1826
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829 /* Begin with base v8.0 state. */
1830 uint64_t valid_mask = 0x3fff;
1831 ARMCPU *cpu = env_archcpu(env);
1832 uint64_t changed;
1833
1834 /*
1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837 * Instead, choose the format based on the mode of EL3.
1838 */
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* RES1 */
1841 valid_mask &= ~SCR_NET; /* RES0 */
1842
1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845 value |= SCR_RW; /* RAO/WI */
1846 }
1847 if (cpu_isar_feature(aa64_ras, cpu)) {
1848 valid_mask |= SCR_TERR;
1849 }
1850 if (cpu_isar_feature(aa64_lor, cpu)) {
1851 valid_mask |= SCR_TLOR;
1852 }
1853 if (cpu_isar_feature(aa64_pauth, cpu)) {
1854 valid_mask |= SCR_API | SCR_APK;
1855 }
1856 if (cpu_isar_feature(aa64_sel2, cpu)) {
1857 valid_mask |= SCR_EEL2;
1858 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860 value |= SCR_NS;
1861 }
1862 if (cpu_isar_feature(aa64_mte, cpu)) {
1863 valid_mask |= SCR_ATA;
1864 }
1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866 valid_mask |= SCR_ENSCXT;
1867 }
1868 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869 valid_mask |= SCR_EASE | SCR_NMEA;
1870 }
1871 if (cpu_isar_feature(aa64_sme, cpu)) {
1872 valid_mask |= SCR_ENTP2;
1873 }
1874 if (cpu_isar_feature(aa64_hcx, cpu)) {
1875 valid_mask |= SCR_HXEN;
1876 }
1877 if (cpu_isar_feature(aa64_fgt, cpu)) {
1878 valid_mask |= SCR_FGTEN;
1879 }
1880 if (cpu_isar_feature(aa64_rme, cpu)) {
1881 valid_mask |= SCR_NSE | SCR_GPF;
1882 }
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1885 if (cpu_isar_feature(aa32_ras, cpu)) {
1886 valid_mask |= SCR_TERR;
1887 }
1888 }
1889
1890 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891 valid_mask &= ~SCR_HCE;
1892
1893 /*
1894 * On ARMv7, SMD (or SCD as it is called in v7) is only
1895 * supported if EL2 exists. The bit is UNK/SBZP when
1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897 * when EL2 is unavailable.
1898 * On ARMv8, this bit is always available.
1899 */
1900 if (arm_feature(env, ARM_FEATURE_V7) &&
1901 !arm_feature(env, ARM_FEATURE_V8)) {
1902 valid_mask &= ~SCR_SMD;
1903 }
1904 }
1905
1906 /* Clear all-context RES0 bits. */
1907 value &= valid_mask;
1908 changed = env->cp15.scr_el3 ^ value;
1909 env->cp15.scr_el3 = value;
1910
1911 /*
1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913 * we must invalidate all TLBs below EL3.
1914 */
1915 if (changed & (SCR_NS | SCR_NSE)) {
1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917 ARMMMUIdxBit_E20_0 |
1918 ARMMMUIdxBit_E10_1 |
1919 ARMMMUIdxBit_E20_2 |
1920 ARMMMUIdxBit_E10_1_PAN |
1921 ARMMMUIdxBit_E20_2_PAN |
1922 ARMMMUIdxBit_E2));
1923 }
1924 }
1925
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928 /*
1929 * scr_write will set the RES1 bits on an AArch64-only CPU.
1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931 */
1932 scr_write(env, ri, 0);
1933 }
1934
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936 const ARMCPRegInfo *ri,
1937 bool isread)
1938 {
1939 if (arm_current_el(env) == 1 &&
1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941 return CP_ACCESS_TRAP_EL2;
1942 }
1943
1944 return CP_ACCESS_OK;
1945 }
1946
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949 ARMCPU *cpu = env_archcpu(env);
1950
1951 /*
1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953 * bank
1954 */
1955 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956 ri->secure & ARM_CP_SECSTATE_S);
1957
1958 return cpu->ccsidr[index];
1959 }
1960
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962 uint64_t value)
1963 {
1964 raw_write(env, ri, value & 0xf);
1965 }
1966
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969 CPUState *cs = env_cpu(env);
1970 bool el1 = arm_current_el(env) == 1;
1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972 uint64_t ret = 0;
1973
1974 if (hcr_el2 & HCR_IMO) {
1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976 ret |= CPSR_I;
1977 }
1978 } else {
1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980 ret |= CPSR_I;
1981 }
1982 }
1983
1984 if (hcr_el2 & HCR_FMO) {
1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986 ret |= CPSR_F;
1987 }
1988 } else {
1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990 ret |= CPSR_F;
1991 }
1992 }
1993
1994 if (hcr_el2 & HCR_AMO) {
1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996 ret |= CPSR_A;
1997 }
1998 }
1999
2000 return ret;
2001 }
2002
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004 bool isread)
2005 {
2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007 return CP_ACCESS_TRAP_EL2;
2008 }
2009
2010 return CP_ACCESS_OK;
2011 }
2012
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014 bool isread)
2015 {
2016 if (arm_feature(env, ARM_FEATURE_V8)) {
2017 return access_aa64_tid1(env, ri, isread);
2018 }
2019
2020 return CP_ACCESS_OK;
2021 }
2022
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026 .access = PL1_W, .type = ARM_CP_NOP },
2027 /*
2028 * Performance monitors are implementation defined in v7,
2029 * but with an ARM recommended set of registers, which we
2030 * follow.
2031 *
2032 * Performance registers fall into three categories:
2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038 */
2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042 .writefn = pmcntenset_write,
2043 .accessfn = pmreg_access,
2044 .fgt = FGT_PMCNTEN,
2045 .raw_writefn = raw_write },
2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048 .access = PL0_RW, .accessfn = pmreg_access,
2049 .fgt = FGT_PMCNTEN,
2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053 .access = PL0_RW,
2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055 .accessfn = pmreg_access,
2056 .fgt = FGT_PMCNTEN,
2057 .writefn = pmcntenclr_write,
2058 .type = ARM_CP_ALIAS | ARM_CP_IO },
2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061 .access = PL0_RW, .accessfn = pmreg_access,
2062 .fgt = FGT_PMCNTEN,
2063 .type = ARM_CP_ALIAS | ARM_CP_IO,
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065 .writefn = pmcntenclr_write },
2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067 .access = PL0_RW, .type = ARM_CP_IO,
2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069 .accessfn = pmreg_access,
2070 .fgt = FGT_PMOVS,
2071 .writefn = pmovsr_write,
2072 .raw_writefn = raw_write },
2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075 .access = PL0_RW, .accessfn = pmreg_access,
2076 .fgt = FGT_PMOVS,
2077 .type = ARM_CP_ALIAS | ARM_CP_IO,
2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079 .writefn = pmovsr_write,
2080 .raw_writefn = raw_write },
2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082 .access = PL0_W, .accessfn = pmreg_access_swinc,
2083 .fgt = FGT_PMSWINC_EL0,
2084 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085 .writefn = pmswinc_write },
2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088 .access = PL0_W, .accessfn = pmreg_access_swinc,
2089 .fgt = FGT_PMSWINC_EL0,
2090 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091 .writefn = pmswinc_write },
2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093 .access = PL0_RW, .type = ARM_CP_ALIAS,
2094 .fgt = FGT_PMSELR_EL0,
2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097 .raw_writefn = raw_write},
2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100 .access = PL0_RW, .accessfn = pmreg_access_selr,
2101 .fgt = FGT_PMSELR_EL0,
2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103 .writefn = pmselr_write, .raw_writefn = raw_write, },
2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106 .fgt = FGT_PMCCNTR_EL0,
2107 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108 .accessfn = pmreg_access_ccntr },
2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112 .fgt = FGT_PMCCNTR_EL0,
2113 .type = ARM_CP_IO,
2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115 .readfn = pmccntr_read, .writefn = pmccntr_write,
2116 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119 .access = PL0_RW, .accessfn = pmreg_access,
2120 .fgt = FGT_PMCCFILTR_EL0,
2121 .type = ARM_CP_ALIAS | ARM_CP_IO,
2122 .resetvalue = 0, },
2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126 .access = PL0_RW, .accessfn = pmreg_access,
2127 .fgt = FGT_PMCCFILTR_EL0,
2128 .type = ARM_CP_IO,
2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130 .resetvalue = 0, },
2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133 .accessfn = pmreg_access,
2134 .fgt = FGT_PMEVTYPERN_EL0,
2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139 .accessfn = pmreg_access,
2140 .fgt = FGT_PMEVTYPERN_EL0,
2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .accessfn = pmreg_access_xevcntr,
2145 .fgt = FGT_PMEVCNTRN_EL0,
2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .accessfn = pmreg_access_xevcntr,
2151 .fgt = FGT_PMEVCNTRN_EL0,
2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156 .resetvalue = 0,
2157 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162 .resetvalue = 0,
2163 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165 .access = PL1_RW, .accessfn = access_tpm,
2166 .fgt = FGT_PMINTEN,
2167 .type = ARM_CP_ALIAS | ARM_CP_IO,
2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169 .resetvalue = 0,
2170 .writefn = pmintenset_write, .raw_writefn = raw_write },
2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173 .access = PL1_RW, .accessfn = access_tpm,
2174 .fgt = FGT_PMINTEN,
2175 .type = ARM_CP_IO,
2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177 .writefn = pmintenset_write, .raw_writefn = raw_write,
2178 .resetvalue = 0x0 },
2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180 .access = PL1_RW, .accessfn = access_tpm,
2181 .fgt = FGT_PMINTEN,
2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184 .writefn = pmintenclr_write, },
2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187 .access = PL1_RW, .accessfn = access_tpm,
2188 .fgt = FGT_PMINTEN,
2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191 .writefn = pmintenclr_write },
2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194 .access = PL1_R,
2195 .accessfn = access_tid4,
2196 .fgt = FGT_CCSIDR_EL1,
2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200 .access = PL1_RW,
2201 .accessfn = access_tid4,
2202 .fgt = FGT_CSSELR_EL1,
2203 .writefn = csselr_write, .resetvalue = 0,
2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205 offsetof(CPUARMState, cp15.csselr_ns) } },
2206 /*
2207 * Auxiliary ID register: this actually has an IMPDEF value but for now
2208 * just RAZ for all cores:
2209 */
2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212 .access = PL1_R, .type = ARM_CP_CONST,
2213 .accessfn = access_aa64_tid1,
2214 .fgt = FGT_AIDR_EL1,
2215 .resetvalue = 0 },
2216 /*
2217 * Auxiliary fault status registers: these also are IMPDEF, and we
2218 * choose to RAZ/WI for all cores.
2219 */
2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222 .access = PL1_RW, .accessfn = access_tvm_trvm,
2223 .fgt = FGT_AFSR0_EL1,
2224 .type = ARM_CP_CONST, .resetvalue = 0 },
2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227 .access = PL1_RW, .accessfn = access_tvm_trvm,
2228 .fgt = FGT_AFSR1_EL1,
2229 .type = ARM_CP_CONST, .resetvalue = 0 },
2230 /*
2231 * MAIR can just read-as-written because we don't implement caches
2232 * and so don't need to care about memory attributes.
2233 */
2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236 .access = PL1_RW, .accessfn = access_tvm_trvm,
2237 .fgt = FGT_MAIR_EL1,
2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239 .resetvalue = 0 },
2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243 .resetvalue = 0 },
2244 /*
2245 * For non-long-descriptor page tables these are PRRR and NMRR;
2246 * regardless they still act as reads-as-written for QEMU.
2247 */
2248 /*
2249 * MAIR0/1 are defined separately from their 64-bit counterpart which
2250 * allows them to assign the correct fieldoffset based on the endianness
2251 * handled in the field definitions.
2252 */
2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255 .access = PL1_RW, .accessfn = access_tvm_trvm,
2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257 offsetof(CPUARMState, cp15.mair0_ns) },
2258 .resetfn = arm_cp_reset_ignore },
2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261 .access = PL1_RW, .accessfn = access_tvm_trvm,
2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263 offsetof(CPUARMState, cp15.mair1_ns) },
2264 .resetfn = arm_cp_reset_ignore },
2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267 .fgt = FGT_ISR_EL1,
2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269 /* 32 bit ITLB invalidates */
2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272 .writefn = tlbiall_write },
2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275 .writefn = tlbimva_write },
2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278 .writefn = tlbiasid_write },
2279 /* 32 bit DTLB invalidates */
2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282 .writefn = tlbiall_write },
2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285 .writefn = tlbimva_write },
2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288 .writefn = tlbiasid_write },
2289 /* 32 bit TLB invalidates */
2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbiall_write },
2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbimva_write },
2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298 .writefn = tlbiasid_write },
2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301 .writefn = tlbimvaa_write },
2302 };
2303
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305 /* 32 bit TLB invalidates, Inner Shareable */
2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308 .writefn = tlbiall_is_write },
2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311 .writefn = tlbimva_is_write },
2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314 .writefn = tlbiasid_is_write },
2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317 .writefn = tlbimvaa_is_write },
2318 };
2319
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321 /* PMOVSSET is not implemented in v7 before v7ve */
2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323 .access = PL0_RW, .accessfn = pmreg_access,
2324 .fgt = FGT_PMOVS,
2325 .type = ARM_CP_ALIAS | ARM_CP_IO,
2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327 .writefn = pmovsset_write,
2328 .raw_writefn = raw_write },
2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331 .access = PL0_RW, .accessfn = pmreg_access,
2332 .fgt = FGT_PMOVS,
2333 .type = ARM_CP_ALIAS | ARM_CP_IO,
2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335 .writefn = pmovsset_write,
2336 .raw_writefn = raw_write },
2337 };
2338
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340 uint64_t value)
2341 {
2342 value &= 1;
2343 env->teecr = value;
2344 }
2345
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347 bool isread)
2348 {
2349 /*
2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351 * at all, so we don't need to check whether we're v8A.
2352 */
2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355 return CP_ACCESS_TRAP_EL2;
2356 }
2357 return CP_ACCESS_OK;
2358 }
2359
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361 bool isread)
2362 {
2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364 return CP_ACCESS_TRAP;
2365 }
2366 return teecr_access(env, ri, isread);
2367 }
2368
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372 .resetvalue = 0,
2373 .writefn = teecr_write, .accessfn = teecr_access },
2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376 .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382 .access = PL0_RW,
2383 .fgt = FGT_TPIDR_EL0,
2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386 .access = PL0_RW,
2387 .fgt = FGT_TPIDR_EL0,
2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390 .resetfn = arm_cp_reset_ignore },
2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393 .access = PL0_R | PL1_W,
2394 .fgt = FGT_TPIDRRO_EL0,
2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396 .resetvalue = 0},
2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398 .access = PL0_R | PL1_W,
2399 .fgt = FGT_TPIDRRO_EL0,
2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402 .resetfn = arm_cp_reset_ignore },
2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405 .access = PL1_RW,
2406 .fgt = FGT_TPIDR_EL1,
2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409 .access = PL1_RW,
2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412 .resetvalue = 0 },
2413 };
2414
2415 #ifndef CONFIG_USER_ONLY
2416
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418 bool isread)
2419 {
2420 /*
2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422 * Writable only at the highest implemented exception level.
2423 */
2424 int el = arm_current_el(env);
2425 uint64_t hcr;
2426 uint32_t cntkctl;
2427
2428 switch (el) {
2429 case 0:
2430 hcr = arm_hcr_el2_eff(env);
2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432 cntkctl = env->cp15.cnthctl_el2;
2433 } else {
2434 cntkctl = env->cp15.c14_cntkctl;
2435 }
2436 if (!extract32(cntkctl, 0, 2)) {
2437 return CP_ACCESS_TRAP;
2438 }
2439 break;
2440 case 1:
2441 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442 arm_is_secure_below_el3(env)) {
2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444 return CP_ACCESS_TRAP_UNCATEGORIZED;
2445 }
2446 break;
2447 case 2:
2448 case 3:
2449 break;
2450 }
2451
2452 if (!isread && el < arm_highest_el(env)) {
2453 return CP_ACCESS_TRAP_UNCATEGORIZED;
2454 }
2455
2456 return CP_ACCESS_OK;
2457 }
2458
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460 bool isread)
2461 {
2462 unsigned int cur_el = arm_current_el(env);
2463 bool has_el2 = arm_is_el2_enabled(env);
2464 uint64_t hcr = arm_hcr_el2_eff(env);
2465
2466 switch (cur_el) {
2467 case 0:
2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472 }
2473
2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476 return CP_ACCESS_TRAP;
2477 }
2478
2479 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2480 if (hcr & HCR_E2H) {
2481 if (timeridx == GTIMER_PHYS &&
2482 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2483 return CP_ACCESS_TRAP_EL2;
2484 }
2485 } else {
2486 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2487 if (has_el2 && timeridx == GTIMER_PHYS &&
2488 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2489 return CP_ACCESS_TRAP_EL2;
2490 }
2491 }
2492 break;
2493
2494 case 1:
2495 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2496 if (has_el2 && timeridx == GTIMER_PHYS &&
2497 (hcr & HCR_E2H
2498 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2499 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2500 return CP_ACCESS_TRAP_EL2;
2501 }
2502 break;
2503 }
2504 return CP_ACCESS_OK;
2505 }
2506
2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2508 bool isread)
2509 {
2510 unsigned int cur_el = arm_current_el(env);
2511 bool has_el2 = arm_is_el2_enabled(env);
2512 uint64_t hcr = arm_hcr_el2_eff(env);
2513
2514 switch (cur_el) {
2515 case 0:
2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2518 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2519 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520 }
2521
2522 /*
2523 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2524 * EL0 if EL0[PV]TEN is zero.
2525 */
2526 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2527 return CP_ACCESS_TRAP;
2528 }
2529 /* fall through */
2530
2531 case 1:
2532 if (has_el2 && timeridx == GTIMER_PHYS) {
2533 if (hcr & HCR_E2H) {
2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2535 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2536 return CP_ACCESS_TRAP_EL2;
2537 }
2538 } else {
2539 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2540 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2541 return CP_ACCESS_TRAP_EL2;
2542 }
2543 }
2544 }
2545 break;
2546 }
2547 return CP_ACCESS_OK;
2548 }
2549
2550 static CPAccessResult gt_pct_access(CPUARMState *env,
2551 const ARMCPRegInfo *ri,
2552 bool isread)
2553 {
2554 return gt_counter_access(env, GTIMER_PHYS, isread);
2555 }
2556
2557 static CPAccessResult gt_vct_access(CPUARMState *env,
2558 const ARMCPRegInfo *ri,
2559 bool isread)
2560 {
2561 return gt_counter_access(env, GTIMER_VIRT, isread);
2562 }
2563
2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565 bool isread)
2566 {
2567 return gt_timer_access(env, GTIMER_PHYS, isread);
2568 }
2569
2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2571 bool isread)
2572 {
2573 return gt_timer_access(env, GTIMER_VIRT, isread);
2574 }
2575
2576 static CPAccessResult gt_stimer_access(CPUARMState *env,
2577 const ARMCPRegInfo *ri,
2578 bool isread)
2579 {
2580 /*
2581 * The AArch64 register view of the secure physical timer is
2582 * always accessible from EL3, and configurably accessible from
2583 * Secure EL1.
2584 */
2585 switch (arm_current_el(env)) {
2586 case 1:
2587 if (!arm_is_secure(env)) {
2588 return CP_ACCESS_TRAP;
2589 }
2590 if (!(env->cp15.scr_el3 & SCR_ST)) {
2591 return CP_ACCESS_TRAP_EL3;
2592 }
2593 return CP_ACCESS_OK;
2594 case 0:
2595 case 2:
2596 return CP_ACCESS_TRAP;
2597 case 3:
2598 return CP_ACCESS_OK;
2599 default:
2600 g_assert_not_reached();
2601 }
2602 }
2603
2604 static uint64_t gt_get_countervalue(CPUARMState *env)
2605 {
2606 ARMCPU *cpu = env_archcpu(env);
2607
2608 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2609 }
2610
2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2612 {
2613 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2614
2615 if (gt->ctl & 1) {
2616 /*
2617 * Timer enabled: calculate and set current ISTATUS, irq, and
2618 * reset timer to when ISTATUS next has to change
2619 */
2620 uint64_t offset = timeridx == GTIMER_VIRT ?
2621 cpu->env.cp15.cntvoff_el2 : 0;
2622 uint64_t count = gt_get_countervalue(&cpu->env);
2623 /* Note that this must be unsigned 64 bit arithmetic: */
2624 int istatus = count - offset >= gt->cval;
2625 uint64_t nexttick;
2626 int irqstate;
2627
2628 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2629
2630 irqstate = (istatus && !(gt->ctl & 2));
2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632
2633 if (istatus) {
2634 /* Next transition is when count rolls back over to zero */
2635 nexttick = UINT64_MAX;
2636 } else {
2637 /* Next transition is when we hit cval */
2638 nexttick = gt->cval + offset;
2639 }
2640 /*
2641 * Note that the desired next expiry time might be beyond the
2642 * signed-64-bit range of a QEMUTimer -- in this case we just
2643 * set the timer for as far in the future as possible. When the
2644 * timer expires we will reset the timer for any remaining period.
2645 */
2646 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2647 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2648 } else {
2649 timer_mod(cpu->gt_timer[timeridx], nexttick);
2650 }
2651 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2652 } else {
2653 /* Timer disabled: ISTATUS and timer output always clear */
2654 gt->ctl &= ~4;
2655 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2656 timer_del(cpu->gt_timer[timeridx]);
2657 trace_arm_gt_recalc_disabled(timeridx);
2658 }
2659 }
2660
2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2662 int timeridx)
2663 {
2664 ARMCPU *cpu = env_archcpu(env);
2665
2666 timer_del(cpu->gt_timer[timeridx]);
2667 }
2668
2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2670 {
2671 return gt_get_countervalue(env);
2672 }
2673
2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2675 {
2676 uint64_t hcr;
2677
2678 switch (arm_current_el(env)) {
2679 case 2:
2680 hcr = arm_hcr_el2_eff(env);
2681 if (hcr & HCR_E2H) {
2682 return 0;
2683 }
2684 break;
2685 case 0:
2686 hcr = arm_hcr_el2_eff(env);
2687 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2688 return 0;
2689 }
2690 break;
2691 }
2692
2693 return env->cp15.cntvoff_el2;
2694 }
2695
2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2699 }
2700
2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702 int timeridx,
2703 uint64_t value)
2704 {
2705 trace_arm_gt_cval_write(timeridx, value);
2706 env->cp15.c14_timer[timeridx].cval = value;
2707 gt_recalc_timer(env_archcpu(env), timeridx);
2708 }
2709
2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2711 int timeridx)
2712 {
2713 uint64_t offset = 0;
2714
2715 switch (timeridx) {
2716 case GTIMER_VIRT:
2717 case GTIMER_HYPVIRT:
2718 offset = gt_virt_cnt_offset(env);
2719 break;
2720 }
2721
2722 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2723 (gt_get_countervalue(env) - offset));
2724 }
2725
2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727 int timeridx,
2728 uint64_t value)
2729 {
2730 uint64_t offset = 0;
2731
2732 switch (timeridx) {
2733 case GTIMER_VIRT:
2734 case GTIMER_HYPVIRT:
2735 offset = gt_virt_cnt_offset(env);
2736 break;
2737 }
2738
2739 trace_arm_gt_tval_write(timeridx, value);
2740 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2741 sextract64(value, 0, 32);
2742 gt_recalc_timer(env_archcpu(env), timeridx);
2743 }
2744
2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2746 int timeridx,
2747 uint64_t value)
2748 {
2749 ARMCPU *cpu = env_archcpu(env);
2750 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2751
2752 trace_arm_gt_ctl_write(timeridx, value);
2753 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2754 if ((oldval ^ value) & 1) {
2755 /* Enable toggled */
2756 gt_recalc_timer(cpu, timeridx);
2757 } else if ((oldval ^ value) & 2) {
2758 /*
2759 * IMASK toggled: don't need to recalculate,
2760 * just set the interrupt line based on ISTATUS
2761 */
2762 int irqstate = (oldval & 4) && !(value & 2);
2763
2764 trace_arm_gt_imask_toggle(timeridx, irqstate);
2765 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2766 }
2767 }
2768
2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2770 {
2771 gt_timer_reset(env, ri, GTIMER_PHYS);
2772 }
2773
2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775 uint64_t value)
2776 {
2777 gt_cval_write(env, ri, GTIMER_PHYS, value);
2778 }
2779
2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2781 {
2782 return gt_tval_read(env, ri, GTIMER_PHYS);
2783 }
2784
2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786 uint64_t value)
2787 {
2788 gt_tval_write(env, ri, GTIMER_PHYS, value);
2789 }
2790
2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792 uint64_t value)
2793 {
2794 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2795 }
2796
2797 static int gt_phys_redir_timeridx(CPUARMState *env)
2798 {
2799 switch (arm_mmu_idx(env)) {
2800 case ARMMMUIdx_E20_0:
2801 case ARMMMUIdx_E20_2:
2802 case ARMMMUIdx_E20_2_PAN:
2803 return GTIMER_HYP;
2804 default:
2805 return GTIMER_PHYS;
2806 }
2807 }
2808
2809 static int gt_virt_redir_timeridx(CPUARMState *env)
2810 {
2811 switch (arm_mmu_idx(env)) {
2812 case ARMMMUIdx_E20_0:
2813 case ARMMMUIdx_E20_2:
2814 case ARMMMUIdx_E20_2_PAN:
2815 return GTIMER_HYPVIRT;
2816 default:
2817 return GTIMER_VIRT;
2818 }
2819 }
2820
2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2822 const ARMCPRegInfo *ri)
2823 {
2824 int timeridx = gt_phys_redir_timeridx(env);
2825 return env->cp15.c14_timer[timeridx].cval;
2826 }
2827
2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829 uint64_t value)
2830 {
2831 int timeridx = gt_phys_redir_timeridx(env);
2832 gt_cval_write(env, ri, timeridx, value);
2833 }
2834
2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2836 const ARMCPRegInfo *ri)
2837 {
2838 int timeridx = gt_phys_redir_timeridx(env);
2839 return gt_tval_read(env, ri, timeridx);
2840 }
2841
2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843 uint64_t value)
2844 {
2845 int timeridx = gt_phys_redir_timeridx(env);
2846 gt_tval_write(env, ri, timeridx, value);
2847 }
2848
2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2850 const ARMCPRegInfo *ri)
2851 {
2852 int timeridx = gt_phys_redir_timeridx(env);
2853 return env->cp15.c14_timer[timeridx].ctl;
2854 }
2855
2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857 uint64_t value)
2858 {
2859 int timeridx = gt_phys_redir_timeridx(env);
2860 gt_ctl_write(env, ri, timeridx, value);
2861 }
2862
2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2864 {
2865 gt_timer_reset(env, ri, GTIMER_VIRT);
2866 }
2867
2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869 uint64_t value)
2870 {
2871 gt_cval_write(env, ri, GTIMER_VIRT, value);
2872 }
2873
2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876 return gt_tval_read(env, ri, GTIMER_VIRT);
2877 }
2878
2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880 uint64_t value)
2881 {
2882 gt_tval_write(env, ri, GTIMER_VIRT, value);
2883 }
2884
2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886 uint64_t value)
2887 {
2888 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2889 }
2890
2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892 uint64_t value)
2893 {
2894 ARMCPU *cpu = env_archcpu(env);
2895
2896 trace_arm_gt_cntvoff_write(value);
2897 raw_write(env, ri, value);
2898 gt_recalc_timer(cpu, GTIMER_VIRT);
2899 }
2900
2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2902 const ARMCPRegInfo *ri)
2903 {
2904 int timeridx = gt_virt_redir_timeridx(env);
2905 return env->cp15.c14_timer[timeridx].cval;
2906 }
2907
2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909 uint64_t value)
2910 {
2911 int timeridx = gt_virt_redir_timeridx(env);
2912 gt_cval_write(env, ri, timeridx, value);
2913 }
2914
2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2916 const ARMCPRegInfo *ri)
2917 {
2918 int timeridx = gt_virt_redir_timeridx(env);
2919 return gt_tval_read(env, ri, timeridx);
2920 }
2921
2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923 uint64_t value)
2924 {
2925 int timeridx = gt_virt_redir_timeridx(env);
2926 gt_tval_write(env, ri, timeridx, value);
2927 }
2928
2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2930 const ARMCPRegInfo *ri)
2931 {
2932 int timeridx = gt_virt_redir_timeridx(env);
2933 return env->cp15.c14_timer[timeridx].ctl;
2934 }
2935
2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2938 {
2939 int timeridx = gt_virt_redir_timeridx(env);
2940 gt_ctl_write(env, ri, timeridx, value);
2941 }
2942
2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2944 {
2945 gt_timer_reset(env, ri, GTIMER_HYP);
2946 }
2947
2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2950 {
2951 gt_cval_write(env, ri, GTIMER_HYP, value);
2952 }
2953
2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956 return gt_tval_read(env, ri, GTIMER_HYP);
2957 }
2958
2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2961 {
2962 gt_tval_write(env, ri, GTIMER_HYP, value);
2963 }
2964
2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
2967 {
2968 gt_ctl_write(env, ri, GTIMER_HYP, value);
2969 }
2970
2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973 gt_timer_reset(env, ri, GTIMER_SEC);
2974 }
2975
2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2978 {
2979 gt_cval_write(env, ri, GTIMER_SEC, value);
2980 }
2981
2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984 return gt_tval_read(env, ri, GTIMER_SEC);
2985 }
2986
2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2989 {
2990 gt_tval_write(env, ri, GTIMER_SEC, value);
2991 }
2992
2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2995 {
2996 gt_ctl_write(env, ri, GTIMER_SEC, value);
2997 }
2998
2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3002 }
3003
3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3008 }
3009
3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3013 }
3014
3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017 {
3018 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020
3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023 {
3024 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3025 }
3026
3027 void arm_gt_ptimer_cb(void *opaque)
3028 {
3029 ARMCPU *cpu = opaque;
3030
3031 gt_recalc_timer(cpu, GTIMER_PHYS);
3032 }
3033
3034 void arm_gt_vtimer_cb(void *opaque)
3035 {
3036 ARMCPU *cpu = opaque;
3037
3038 gt_recalc_timer(cpu, GTIMER_VIRT);
3039 }
3040
3041 void arm_gt_htimer_cb(void *opaque)
3042 {
3043 ARMCPU *cpu = opaque;
3044
3045 gt_recalc_timer(cpu, GTIMER_HYP);
3046 }
3047
3048 void arm_gt_stimer_cb(void *opaque)
3049 {
3050 ARMCPU *cpu = opaque;
3051
3052 gt_recalc_timer(cpu, GTIMER_SEC);
3053 }
3054
3055 void arm_gt_hvtimer_cb(void *opaque)
3056 {
3057 ARMCPU *cpu = opaque;
3058
3059 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3060 }
3061
3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3063 {
3064 ARMCPU *cpu = env_archcpu(env);
3065
3066 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3067 }
3068
3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3070 /*
3071 * Note that CNTFRQ is purely reads-as-written for the benefit
3072 * of software; writing it doesn't actually change the timer frequency.
3073 * Our reset value matches the fixed frequency we implement the timer at.
3074 */
3075 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3076 .type = ARM_CP_ALIAS,
3077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3079 },
3080 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3082 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3084 .resetfn = arm_gt_cntfrq_reset,
3085 },
3086 /* overall control: mostly access permissions */
3087 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3088 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3089 .access = PL1_RW,
3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3091 .resetvalue = 0,
3092 },
3093 /* per-timer control */
3094 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3095 .secure = ARM_CP_SECSTATE_NS,
3096 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3097 .accessfn = gt_ptimer_access,
3098 .fieldoffset = offsetoflow32(CPUARMState,
3099 cp15.c14_timer[GTIMER_PHYS].ctl),
3100 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3101 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3102 },
3103 { .name = "CNTP_CTL_S",
3104 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3105 .secure = ARM_CP_SECSTATE_S,
3106 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3107 .accessfn = gt_ptimer_access,
3108 .fieldoffset = offsetoflow32(CPUARMState,
3109 cp15.c14_timer[GTIMER_SEC].ctl),
3110 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3111 },
3112 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3113 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3114 .type = ARM_CP_IO, .access = PL0_RW,
3115 .accessfn = gt_ptimer_access,
3116 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3117 .resetvalue = 0,
3118 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3119 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3120 },
3121 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3122 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3123 .accessfn = gt_vtimer_access,
3124 .fieldoffset = offsetoflow32(CPUARMState,
3125 cp15.c14_timer[GTIMER_VIRT].ctl),
3126 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3127 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3128 },
3129 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3131 .type = ARM_CP_IO, .access = PL0_RW,
3132 .accessfn = gt_vtimer_access,
3133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3134 .resetvalue = 0,
3135 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3136 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3137 },
3138 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3139 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3140 .secure = ARM_CP_SECSTATE_NS,
3141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3142 .accessfn = gt_ptimer_access,
3143 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3144 },
3145 { .name = "CNTP_TVAL_S",
3146 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3147 .secure = ARM_CP_SECSTATE_S,
3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149 .accessfn = gt_ptimer_access,
3150 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3151 },
3152 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3153 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3154 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3155 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3156 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3157 },
3158 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160 .accessfn = gt_vtimer_access,
3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162 },
3163 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3164 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3165 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3166 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3167 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3168 },
3169 /* The counter itself */
3170 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3171 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3172 .accessfn = gt_pct_access,
3173 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3174 },
3175 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3176 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3177 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3178 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3179 },
3180 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3181 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3182 .accessfn = gt_vct_access,
3183 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3184 },
3185 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3187 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3188 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3189 },
3190 /* Comparison value, indicating when the timer goes off */
3191 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3192 .secure = ARM_CP_SECSTATE_NS,
3193 .access = PL0_RW,
3194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3196 .accessfn = gt_ptimer_access,
3197 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3198 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3199 },
3200 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3201 .secure = ARM_CP_SECSTATE_S,
3202 .access = PL0_RW,
3203 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3204 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3205 .accessfn = gt_ptimer_access,
3206 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3207 },
3208 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3210 .access = PL0_RW,
3211 .type = ARM_CP_IO,
3212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3213 .resetvalue = 0, .accessfn = gt_ptimer_access,
3214 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3215 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3216 },
3217 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3218 .access = PL0_RW,
3219 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3221 .accessfn = gt_vtimer_access,
3222 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3223 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3224 },
3225 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3227 .access = PL0_RW,
3228 .type = ARM_CP_IO,
3229 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3230 .resetvalue = 0, .accessfn = gt_vtimer_access,
3231 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3232 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3233 },
3234 /*
3235 * Secure timer -- this is actually restricted to only EL3
3236 * and configurably Secure-EL1 via the accessfn.
3237 */
3238 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3241 .accessfn = gt_stimer_access,
3242 .readfn = gt_sec_tval_read,
3243 .writefn = gt_sec_tval_write,
3244 .resetfn = gt_sec_timer_reset,
3245 },
3246 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3248 .type = ARM_CP_IO, .access = PL1_RW,
3249 .accessfn = gt_stimer_access,
3250 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3251 .resetvalue = 0,
3252 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3253 },
3254 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3255 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3256 .type = ARM_CP_IO, .access = PL1_RW,
3257 .accessfn = gt_stimer_access,
3258 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3259 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3260 },
3261 };
3262
3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3264 bool isread)
3265 {
3266 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3267 return CP_ACCESS_TRAP;
3268 }
3269 return CP_ACCESS_OK;
3270 }
3271
3272 #else
3273
3274 /*
3275 * In user-mode most of the generic timer registers are inaccessible
3276 * however modern kernels (4.12+) allow access to cntvct_el0
3277 */
3278
3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3280 {
3281 ARMCPU *cpu = env_archcpu(env);
3282
3283 /*
3284 * Currently we have no support for QEMUTimer in linux-user so we
3285 * can't call gt_get_countervalue(env), instead we directly
3286 * call the lower level functions.
3287 */
3288 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3289 }
3290
3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3292 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3294 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3296 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3297 },
3298 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3300 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3301 .readfn = gt_virt_cnt_read,
3302 },
3303 };
3304
3305 #endif
3306
3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3308 {
3309 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3310 raw_write(env, ri, value);
3311 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3312 raw_write(env, ri, value & 0xfffff6ff);
3313 } else {
3314 raw_write(env, ri, value & 0xfffff1ff);
3315 }
3316 }
3317
3318 #ifndef CONFIG_USER_ONLY
3319 /* get_phys_addr() isn't present for user-mode-only targets */
3320
3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322 bool isread)
3323 {
3324 if (ri->opc2 & 4) {
3325 /*
3326 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3327 * Secure EL1 (which can only happen if EL3 is AArch64).
3328 * They are simply UNDEF if executed from NS EL1.
3329 * They function normally from EL2 or EL3.
3330 */
3331 if (arm_current_el(env) == 1) {
3332 if (arm_is_secure_below_el3(env)) {
3333 if (env->cp15.scr_el3 & SCR_EEL2) {
3334 return CP_ACCESS_TRAP_EL2;
3335 }
3336 return CP_ACCESS_TRAP_EL3;
3337 }
3338 return CP_ACCESS_TRAP_UNCATEGORIZED;
3339 }
3340 }
3341 return CP_ACCESS_OK;
3342 }
3343
3344 #ifdef CONFIG_TCG
3345 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3346 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3347 bool is_secure)
3348 {
3349 bool ret;
3350 uint64_t par64;
3351 bool format64 = false;
3352 ARMMMUFaultInfo fi = {};
3353 GetPhysAddrResult res = {};
3354
3355 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3356 is_secure, &res, &fi);
3357
3358 /*
3359 * ATS operations only do S1 or S1+S2 translations, so we never
3360 * have to deal with the ARMCacheAttrs format for S2 only.
3361 */
3362 assert(!res.cacheattrs.is_s2_format);
3363
3364 if (ret) {
3365 /*
3366 * Some kinds of translation fault must cause exceptions rather
3367 * than being reported in the PAR.
3368 */
3369 int current_el = arm_current_el(env);
3370 int target_el;
3371 uint32_t syn, fsr, fsc;
3372 bool take_exc = false;
3373
3374 if (fi.s1ptw && current_el == 1
3375 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3376 /*
3377 * Synchronous stage 2 fault on an access made as part of the
3378 * translation table walk for AT S1E0* or AT S1E1* insn
3379 * executed from NS EL1. If this is a synchronous external abort
3380 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3381 * to EL3. Otherwise the fault is taken as an exception to EL2,
3382 * and HPFAR_EL2 holds the faulting IPA.
3383 */
3384 if (fi.type == ARMFault_SyncExternalOnWalk &&
3385 (env->cp15.scr_el3 & SCR_EA)) {
3386 target_el = 3;
3387 } else {
3388 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3389 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3390 env->cp15.hpfar_el2 |= HPFAR_NS;
3391 }
3392 target_el = 2;
3393 }
3394 take_exc = true;
3395 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3396 /*
3397 * Synchronous external aborts during a translation table walk
3398 * are taken as Data Abort exceptions.
3399 */
3400 if (fi.stage2) {
3401 if (current_el == 3) {
3402 target_el = 3;
3403 } else {
3404 target_el = 2;
3405 }
3406 } else {
3407 target_el = exception_target_el(env);
3408 }
3409 take_exc = true;
3410 }
3411
3412 if (take_exc) {
3413 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3414 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3415 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3416 fsr = arm_fi_to_lfsc(&fi);
3417 fsc = extract32(fsr, 0, 6);
3418 } else {
3419 fsr = arm_fi_to_sfsc(&fi);
3420 fsc = 0x3f;
3421 }
3422 /*
3423 * Report exception with ESR indicating a fault due to a
3424 * translation table walk for a cache maintenance instruction.
3425 */
3426 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3427 fi.ea, 1, fi.s1ptw, 1, fsc);
3428 env->exception.vaddress = value;
3429 env->exception.fsr = fsr;
3430 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3431 }
3432 }
3433
3434 if (is_a64(env)) {
3435 format64 = true;
3436 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3437 /*
3438 * ATS1Cxx:
3439 * * TTBCR.EAE determines whether the result is returned using the
3440 * 32-bit or the 64-bit PAR format
3441 * * Instructions executed in Hyp mode always use the 64bit format
3442 *
3443 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3444 * * The Non-secure TTBCR.EAE bit is set to 1
3445 * * The implementation includes EL2, and the value of HCR.VM is 1
3446 *
3447 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3448 *
3449 * ATS1Hx always uses the 64bit format.
3450 */
3451 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3452
3453 if (arm_feature(env, ARM_FEATURE_EL2)) {
3454 if (mmu_idx == ARMMMUIdx_E10_0 ||
3455 mmu_idx == ARMMMUIdx_E10_1 ||
3456 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3457 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3458 } else {
3459 format64 |= arm_current_el(env) == 2;
3460 }
3461 }
3462 }
3463
3464 if (format64) {
3465 /* Create a 64-bit PAR */
3466 par64 = (1 << 11); /* LPAE bit always set */
3467 if (!ret) {
3468 par64 |= res.f.phys_addr & ~0xfffULL;
3469 if (!res.f.attrs.secure) {
3470 par64 |= (1 << 9); /* NS */
3471 }
3472 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3473 par64 |= res.cacheattrs.shareability << 7; /* SH */
3474 } else {
3475 uint32_t fsr = arm_fi_to_lfsc(&fi);
3476
3477 par64 |= 1; /* F */
3478 par64 |= (fsr & 0x3f) << 1; /* FS */
3479 if (fi.stage2) {
3480 par64 |= (1 << 9); /* S */
3481 }
3482 if (fi.s1ptw) {
3483 par64 |= (1 << 8); /* PTW */
3484 }
3485 }
3486 } else {
3487 /*
3488 * fsr is a DFSR/IFSR value for the short descriptor
3489 * translation table format (with WnR always clear).
3490 * Convert it to a 32-bit PAR.
3491 */
3492 if (!ret) {
3493 /* We do not set any attribute bits in the PAR */
3494 if (res.f.lg_page_size == 24
3495 && arm_feature(env, ARM_FEATURE_V7)) {
3496 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3497 } else {
3498 par64 = res.f.phys_addr & 0xfffff000;
3499 }
3500 if (!res.f.attrs.secure) {
3501 par64 |= (1 << 9); /* NS */
3502 }
3503 } else {
3504 uint32_t fsr = arm_fi_to_sfsc(&fi);
3505
3506 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3507 ((fsr & 0xf) << 1) | 1;
3508 }
3509 }
3510 return par64;
3511 }
3512 #endif /* CONFIG_TCG */
3513
3514 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3515 {
3516 #ifdef CONFIG_TCG
3517 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3518 uint64_t par64;
3519 ARMMMUIdx mmu_idx;
3520 int el = arm_current_el(env);
3521 bool secure = arm_is_secure_below_el3(env);
3522
3523 switch (ri->opc2 & 6) {
3524 case 0:
3525 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3526 switch (el) {
3527 case 3:
3528 mmu_idx = ARMMMUIdx_E3;
3529 secure = true;
3530 break;
3531 case 2:
3532 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3533 /* fall through */
3534 case 1:
3535 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3536 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3537 } else {
3538 mmu_idx = ARMMMUIdx_Stage1_E1;
3539 }
3540 break;
3541 default:
3542 g_assert_not_reached();
3543 }
3544 break;
3545 case 2:
3546 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3547 switch (el) {
3548 case 3:
3549 mmu_idx = ARMMMUIdx_E10_0;
3550 secure = true;
3551 break;
3552 case 2:
3553 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3554 mmu_idx = ARMMMUIdx_Stage1_E0;
3555 break;
3556 case 1:
3557 mmu_idx = ARMMMUIdx_Stage1_E0;
3558 break;
3559 default:
3560 g_assert_not_reached();
3561 }
3562 break;
3563 case 4:
3564 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3565 mmu_idx = ARMMMUIdx_E10_1;
3566 secure = false;
3567 break;
3568 case 6:
3569 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3570 mmu_idx = ARMMMUIdx_E10_0;
3571 secure = false;
3572 break;
3573 default:
3574 g_assert_not_reached();
3575 }
3576
3577 par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3578
3579 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3580 #else
3581 /* Handled by hardware accelerator. */
3582 g_assert_not_reached();
3583 #endif /* CONFIG_TCG */
3584 }
3585
3586 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3587 uint64_t value)
3588 {
3589 #ifdef CONFIG_TCG
3590 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3591 uint64_t par64;
3592
3593 /* There is no SecureEL2 for AArch32. */
3594 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3595
3596 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3597 #else
3598 /* Handled by hardware accelerator. */
3599 g_assert_not_reached();
3600 #endif /* CONFIG_TCG */
3601 }
3602
3603 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3604 bool isread)
3605 {
3606 if (arm_current_el(env) == 3 &&
3607 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3608 return CP_ACCESS_TRAP;
3609 }
3610 return CP_ACCESS_OK;
3611 }
3612
3613 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3614 uint64_t value)
3615 {
3616 #ifdef CONFIG_TCG
3617 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3618 ARMMMUIdx mmu_idx;
3619 int secure = arm_is_secure_below_el3(env);
3620 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3621 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3622
3623 switch (ri->opc2 & 6) {
3624 case 0:
3625 switch (ri->opc1) {
3626 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3627 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3628 mmu_idx = regime_e20 ?
3629 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3630 } else {
3631 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3632 }
3633 break;
3634 case 4: /* AT S1E2R, AT S1E2W */
3635 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3636 break;
3637 case 6: /* AT S1E3R, AT S1E3W */
3638 mmu_idx = ARMMMUIdx_E3;
3639 secure = true;
3640 break;
3641 default:
3642 g_assert_not_reached();
3643 }
3644 break;
3645 case 2: /* AT S1E0R, AT S1E0W */
3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3647 break;
3648 case 4: /* AT S12E1R, AT S12E1W */
3649 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3650 break;
3651 case 6: /* AT S12E0R, AT S12E0W */
3652 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3653 break;
3654 default:
3655 g_assert_not_reached();
3656 }
3657
3658 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3659 mmu_idx, secure);
3660 #else
3661 /* Handled by hardware accelerator. */
3662 g_assert_not_reached();
3663 #endif /* CONFIG_TCG */
3664 }
3665 #endif
3666
3667 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3668 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3669 .access = PL1_RW, .resetvalue = 0,
3670 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3671 offsetoflow32(CPUARMState, cp15.par_ns) },
3672 .writefn = par_write },
3673 #ifndef CONFIG_USER_ONLY
3674 /* This underdecoding is safe because the reginfo is NO_RAW. */
3675 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3676 .access = PL1_W, .accessfn = ats_access,
3677 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3678 #endif
3679 };
3680
3681 /* Return basic MPU access permission bits. */
3682 static uint32_t simple_mpu_ap_bits(uint32_t val)
3683 {
3684 uint32_t ret;
3685 uint32_t mask;
3686 int i;
3687 ret = 0;
3688 mask = 3;
3689 for (i = 0; i < 16; i += 2) {
3690 ret |= (val >> i) & mask;
3691 mask <<= 2;
3692 }
3693 return ret;
3694 }
3695
3696 /* Pad basic MPU access permission bits to extended format. */
3697 static uint32_t extended_mpu_ap_bits(uint32_t val)
3698 {
3699 uint32_t ret;
3700 uint32_t mask;
3701 int i;
3702 ret = 0;
3703 mask = 3;
3704 for (i = 0; i < 16; i += 2) {
3705 ret |= (val & mask) << i;
3706 mask <<= 2;
3707 }
3708 return ret;
3709 }
3710
3711 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3712 uint64_t value)
3713 {
3714 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3715 }
3716
3717 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3718 {
3719 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3720 }
3721
3722 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3723 uint64_t value)
3724 {
3725 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3726 }
3727
3728 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 {
3730 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3731 }
3732
3733 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3734 {
3735 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3736
3737 if (!u32p) {
3738 return 0;
3739 }
3740
3741 u32p += env->pmsav7.rnr[M_REG_NS];
3742 return *u32p;
3743 }
3744
3745 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3746 uint64_t value)
3747 {
3748 ARMCPU *cpu = env_archcpu(env);
3749 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3750
3751 if (!u32p) {
3752 return;
3753 }
3754
3755 u32p += env->pmsav7.rnr[M_REG_NS];
3756 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3757 *u32p = value;
3758 }
3759
3760 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761 uint64_t value)
3762 {
3763 ARMCPU *cpu = env_archcpu(env);
3764 uint32_t nrgs = cpu->pmsav7_dregion;
3765
3766 if (value >= nrgs) {
3767 qemu_log_mask(LOG_GUEST_ERROR,
3768 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3769 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3770 return;
3771 }
3772
3773 raw_write(env, ri, value);
3774 }
3775
3776 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3777 uint64_t value)
3778 {
3779 ARMCPU *cpu = env_archcpu(env);
3780
3781 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3782 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3783 }
3784
3785 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3786 {
3787 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3788 }
3789
3790 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791 uint64_t value)
3792 {
3793 ARMCPU *cpu = env_archcpu(env);
3794
3795 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3797 }
3798
3799 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3800 {
3801 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3802 }
3803
3804 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805 uint64_t value)
3806 {
3807 ARMCPU *cpu = env_archcpu(env);
3808
3809 /*
3810 * Ignore writes that would select not implemented region.
3811 * This is architecturally UNPREDICTABLE.
3812 */
3813 if (value >= cpu->pmsav7_dregion) {
3814 return;
3815 }
3816
3817 env->pmsav7.rnr[M_REG_NS] = value;
3818 }
3819
3820 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821 uint64_t value)
3822 {
3823 ARMCPU *cpu = env_archcpu(env);
3824
3825 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3827 }
3828
3829 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3832 }
3833
3834 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835 uint64_t value)
3836 {
3837 ARMCPU *cpu = env_archcpu(env);
3838
3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3841 }
3842
3843 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3844 {
3845 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3846 }
3847
3848 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3850 {
3851 uint32_t n;
3852 uint32_t bit;
3853 ARMCPU *cpu = env_archcpu(env);
3854
3855 /* Ignore writes to unimplemented regions */
3856 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3857 value &= MAKE_64BIT_MASK(0, rmax);
3858
3859 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3860
3861 /* Register alias is only valid for first 32 indexes */
3862 for (n = 0; n < rmax; ++n) {
3863 bit = extract32(value, n, 1);
3864 env->pmsav8.hprlar[n] = deposit32(
3865 env->pmsav8.hprlar[n], 0, 1, bit);
3866 }
3867 }
3868
3869 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3870 {
3871 uint32_t n;
3872 uint32_t result = 0x0;
3873 ARMCPU *cpu = env_archcpu(env);
3874
3875 /* Register alias is only valid for first 32 indexes */
3876 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3877 if (env->pmsav8.hprlar[n] & 0x1) {
3878 result |= (0x1 << n);
3879 }
3880 }
3881 return result;
3882 }
3883
3884 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885 uint64_t value)
3886 {
3887 ARMCPU *cpu = env_archcpu(env);
3888
3889 /*
3890 * Ignore writes that would select not implemented region.
3891 * This is architecturally UNPREDICTABLE.
3892 */
3893 if (value >= cpu->pmsav8r_hdregion) {
3894 return;
3895 }
3896
3897 env->pmsav8.hprselr = value;
3898 }
3899
3900 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901 uint64_t value)
3902 {
3903 ARMCPU *cpu = env_archcpu(env);
3904 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3905 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3906
3907 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3908
3909 if (ri->opc1 & 4) {
3910 if (index >= cpu->pmsav8r_hdregion) {
3911 return;
3912 }
3913 if (ri->opc2 & 0x1) {
3914 env->pmsav8.hprlar[index] = value;
3915 } else {
3916 env->pmsav8.hprbar[index] = value;
3917 }
3918 } else {
3919 if (index >= cpu->pmsav7_dregion) {
3920 return;
3921 }
3922 if (ri->opc2 & 0x1) {
3923 env->pmsav8.rlar[M_REG_NS][index] = value;
3924 } else {
3925 env->pmsav8.rbar[M_REG_NS][index] = value;
3926 }
3927 }
3928 }
3929
3930 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931 {
3932 ARMCPU *cpu = env_archcpu(env);
3933 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3934 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3935
3936 if (ri->opc1 & 4) {
3937 if (index >= cpu->pmsav8r_hdregion) {
3938 return 0x0;
3939 }
3940 if (ri->opc2 & 0x1) {
3941 return env->pmsav8.hprlar[index];
3942 } else {
3943 return env->pmsav8.hprbar[index];
3944 }
3945 } else {
3946 if (index >= cpu->pmsav7_dregion) {
3947 return 0x0;
3948 }
3949 if (ri->opc2 & 0x1) {
3950 return env->pmsav8.rlar[M_REG_NS][index];
3951 } else {
3952 return env->pmsav8.rbar[M_REG_NS][index];
3953 }
3954 }
3955 }
3956
3957 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3958 { .name = "PRBAR",
3959 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3960 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3961 .accessfn = access_tvm_trvm,
3962 .readfn = prbar_read, .writefn = prbar_write },
3963 { .name = "PRLAR",
3964 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3965 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3966 .accessfn = access_tvm_trvm,
3967 .readfn = prlar_read, .writefn = prlar_write },
3968 { .name = "PRSELR", .resetvalue = 0,
3969 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3970 .access = PL1_RW, .accessfn = access_tvm_trvm,
3971 .writefn = prselr_write,
3972 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3973 { .name = "HPRBAR", .resetvalue = 0,
3974 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3975 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3976 .readfn = hprbar_read, .writefn = hprbar_write },
3977 { .name = "HPRLAR",
3978 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3979 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3980 .readfn = hprlar_read, .writefn = hprlar_write },
3981 { .name = "HPRSELR", .resetvalue = 0,
3982 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3983 .access = PL2_RW,
3984 .writefn = hprselr_write,
3985 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3986 { .name = "HPRENR",
3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3988 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3989 .readfn = hprenr_read, .writefn = hprenr_write },
3990 };
3991
3992 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3993 /*
3994 * Reset for all these registers is handled in arm_cpu_reset(),
3995 * because the PMSAv7 is also used by M-profile CPUs, which do
3996 * not register cpregs but still need the state to be reset.
3997 */
3998 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3999 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4000 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4001 .readfn = pmsav7_read, .writefn = pmsav7_write,
4002 .resetfn = arm_cp_reset_ignore },
4003 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4004 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4006 .readfn = pmsav7_read, .writefn = pmsav7_write,
4007 .resetfn = arm_cp_reset_ignore },
4008 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4009 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4010 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4011 .readfn = pmsav7_read, .writefn = pmsav7_write,
4012 .resetfn = arm_cp_reset_ignore },
4013 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4014 .access = PL1_RW,
4015 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4016 .writefn = pmsav7_rgnr_write,
4017 .resetfn = arm_cp_reset_ignore },
4018 };
4019
4020 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4021 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4022 .access = PL1_RW, .type = ARM_CP_ALIAS,
4023 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4024 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4025 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4026 .access = PL1_RW, .type = ARM_CP_ALIAS,
4027 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4028 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4029 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4030 .access = PL1_RW,
4031 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4032 .resetvalue = 0, },
4033 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4034 .access = PL1_RW,
4035 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4036 .resetvalue = 0, },
4037 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4038 .access = PL1_RW,
4039 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4040 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4041 .access = PL1_RW,
4042 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4043 /* Protection region base and size registers */
4044 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4047 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4050 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4053 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4056 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4059 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4062 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4063 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4064 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4065 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4066 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4067 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4068 };
4069
4070 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4071 uint64_t value)
4072 {
4073 ARMCPU *cpu = env_archcpu(env);
4074
4075 if (!arm_feature(env, ARM_FEATURE_V8)) {
4076 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4077 /*
4078 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4079 * using Long-descriptor translation table format
4080 */
4081 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4082 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4083 /*
4084 * In an implementation that includes the Security Extensions
4085 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4086 * Short-descriptor translation table format.
4087 */
4088 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4089 } else {
4090 value &= TTBCR_N;
4091 }
4092 }
4093
4094 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4095 /*
4096 * With LPAE the TTBCR could result in a change of ASID
4097 * via the TTBCR.A1 bit, so do a TLB flush.
4098 */
4099 tlb_flush(CPU(cpu));
4100 }
4101 raw_write(env, ri, value);
4102 }
4103
4104 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4105 uint64_t value)
4106 {
4107 ARMCPU *cpu = env_archcpu(env);
4108
4109 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4110 tlb_flush(CPU(cpu));
4111 raw_write(env, ri, value);
4112 }
4113
4114 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4116 {
4117 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4118 if (cpreg_field_is_64bit(ri) &&
4119 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4120 ARMCPU *cpu = env_archcpu(env);
4121 tlb_flush(CPU(cpu));
4122 }
4123 raw_write(env, ri, value);
4124 }
4125
4126 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127 uint64_t value)
4128 {
4129 /*
4130 * If we are running with E2&0 regime, then an ASID is active.
4131 * Flush if that might be changing. Note we're not checking
4132 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4133 * holds the active ASID, only checking the field that might.
4134 */
4135 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4136 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4137 uint16_t mask = ARMMMUIdxBit_E20_2 |
4138 ARMMMUIdxBit_E20_2_PAN |
4139 ARMMMUIdxBit_E20_0;
4140 tlb_flush_by_mmuidx(env_cpu(env), mask);
4141 }
4142 raw_write(env, ri, value);
4143 }
4144
4145 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4146 uint64_t value)
4147 {
4148 ARMCPU *cpu = env_archcpu(env);
4149 CPUState *cs = CPU(cpu);
4150
4151 /*
4152 * A change in VMID to the stage2 page table (Stage2) invalidates
4153 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4154 */
4155 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4156 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4157 }
4158 raw_write(env, ri, value);
4159 }
4160
4161 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4162 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4163 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4164 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4165 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4166 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4167 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4168 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4169 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4170 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4171 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4172 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4173 offsetof(CPUARMState, cp15.dfar_ns) } },
4174 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4175 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4176 .access = PL1_RW, .accessfn = access_tvm_trvm,
4177 .fgt = FGT_FAR_EL1,
4178 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4179 .resetvalue = 0, },
4180 };
4181
4182 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4183 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4184 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4185 .access = PL1_RW, .accessfn = access_tvm_trvm,
4186 .fgt = FGT_ESR_EL1,
4187 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4188 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4189 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4190 .access = PL1_RW, .accessfn = access_tvm_trvm,
4191 .fgt = FGT_TTBR0_EL1,
4192 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4193 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4194 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4195 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4196 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4197 .access = PL1_RW, .accessfn = access_tvm_trvm,
4198 .fgt = FGT_TTBR1_EL1,
4199 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4200 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4201 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4202 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4203 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4204 .access = PL1_RW, .accessfn = access_tvm_trvm,
4205 .fgt = FGT_TCR_EL1,
4206 .writefn = vmsa_tcr_el12_write,
4207 .raw_writefn = raw_write,
4208 .resetvalue = 0,
4209 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4210 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4211 .access = PL1_RW, .accessfn = access_tvm_trvm,
4212 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4213 .raw_writefn = raw_write,
4214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4215 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4216 };
4217
4218 /*
4219 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4220 * qemu tlbs nor adjusting cached masks.
4221 */
4222 static const ARMCPRegInfo ttbcr2_reginfo = {
4223 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4224 .access = PL1_RW, .accessfn = access_tvm_trvm,
4225 .type = ARM_CP_ALIAS,
4226 .bank_fieldoffsets = {
4227 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4228 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4229 },
4230 };
4231
4232 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4233 uint64_t value)
4234 {
4235 env->cp15.c15_ticonfig = value & 0xe7;
4236 /* The OS_TYPE bit in this register changes the reported CPUID! */
4237 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4238 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4239 }
4240
4241 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242 uint64_t value)
4243 {
4244 env->cp15.c15_threadid = value & 0xffff;
4245 }
4246
4247 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4248 uint64_t value)
4249 {
4250 /* Wait-for-interrupt (deprecated) */
4251 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4252 }
4253
4254 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255 uint64_t value)
4256 {
4257 /*
4258 * On OMAP there are registers indicating the max/min index of dcache lines
4259 * containing a dirty line; cache flush operations have to reset these.
4260 */
4261 env->cp15.c15_i_max = 0x000;
4262 env->cp15.c15_i_min = 0xff0;
4263 }
4264
4265 static const ARMCPRegInfo omap_cp_reginfo[] = {
4266 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4267 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4268 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4269 .resetvalue = 0, },
4270 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4271 .access = PL1_RW, .type = ARM_CP_NOP },
4272 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4273 .access = PL1_RW,
4274 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4275 .writefn = omap_ticonfig_write },
4276 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4277 .access = PL1_RW,
4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4279 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4280 .access = PL1_RW, .resetvalue = 0xff0,
4281 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4282 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4283 .access = PL1_RW,
4284 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4285 .writefn = omap_threadid_write },
4286 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4287 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4288 .type = ARM_CP_NO_RAW,
4289 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4290 /*
4291 * TODO: Peripheral port remap register:
4292 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4293 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4294 * when MMU is off.
4295 */
4296 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4297 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4298 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4299 .writefn = omap_cachemaint_write },
4300 { .name = "C9", .cp = 15, .crn = 9,
4301 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4302 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4303 };
4304
4305 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4306 uint64_t value)
4307 {
4308 env->cp15.c15_cpar = value & 0x3fff;
4309 }
4310
4311 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4312 { .name = "XSCALE_CPAR",
4313 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4314 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4315 .writefn = xscale_cpar_write, },
4316 { .name = "XSCALE_AUXCR",
4317 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4318 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4319 .resetvalue = 0, },
4320 /*
4321 * XScale specific cache-lockdown: since we have no cache we NOP these
4322 * and hope the guest does not really rely on cache behaviour.
4323 */
4324 { .name = "XSCALE_LOCK_ICACHE_LINE",
4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4326 .access = PL1_W, .type = ARM_CP_NOP },
4327 { .name = "XSCALE_UNLOCK_ICACHE",
4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4329 .access = PL1_W, .type = ARM_CP_NOP },
4330 { .name = "XSCALE_DCACHE_LOCK",
4331 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4332 .access = PL1_RW, .type = ARM_CP_NOP },
4333 { .name = "XSCALE_UNLOCK_DCACHE",
4334 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4335 .access = PL1_W, .type = ARM_CP_NOP },
4336 };
4337
4338 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4339 /*
4340 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4341 * implementation of this implementation-defined space.
4342 * Ideally this should eventually disappear in favour of actually
4343 * implementing the correct behaviour for all cores.
4344 */
4345 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4346 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4347 .access = PL1_RW,
4348 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4349 .resetvalue = 0 },
4350 };
4351
4352 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4353 /* Cache status: RAZ because we have no cache so it's always clean */
4354 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4355 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4356 .resetvalue = 0 },
4357 };
4358
4359 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4360 /* We never have a block transfer operation in progress */
4361 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4362 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4363 .resetvalue = 0 },
4364 /* The cache ops themselves: these all NOP for QEMU */
4365 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4366 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4368 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4370 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4372 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4373 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4374 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4375 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4376 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4377 };
4378
4379 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4380 /*
4381 * The cache test-and-clean instructions always return (1 << 30)
4382 * to indicate that there are no dirty cache lines.
4383 */
4384 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4385 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4386 .resetvalue = (1 << 30) },
4387 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4388 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4389 .resetvalue = (1 << 30) },
4390 };
4391
4392 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4393 /* Ignore ReadBuffer accesses */
4394 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4395 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4396 .access = PL1_RW, .resetvalue = 0,
4397 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4398 };
4399
4400 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4401 {
4402 unsigned int cur_el = arm_current_el(env);
4403
4404 if (arm_is_el2_enabled(env) && cur_el == 1) {
4405 return env->cp15.vpidr_el2;
4406 }
4407 return raw_read(env, ri);
4408 }
4409
4410 static uint64_t mpidr_read_val(CPUARMState *env)
4411 {
4412 ARMCPU *cpu = env_archcpu(env);
4413 uint64_t mpidr = cpu->mp_affinity;
4414
4415 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4416 mpidr |= (1U << 31);
4417 /*
4418 * Cores which are uniprocessor (non-coherent)
4419 * but still implement the MP extensions set
4420 * bit 30. (For instance, Cortex-R5).
4421 */
4422 if (cpu->mp_is_up) {
4423 mpidr |= (1u << 30);
4424 }
4425 }
4426 return mpidr;
4427 }
4428
4429 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4430 {
4431 unsigned int cur_el = arm_current_el(env);
4432
4433 if (arm_is_el2_enabled(env) && cur_el == 1) {
4434 return env->cp15.vmpidr_el2;
4435 }
4436 return mpidr_read_val(env);
4437 }
4438
4439 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4440 /* NOP AMAIR0/1 */
4441 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4442 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4443 .access = PL1_RW, .accessfn = access_tvm_trvm,
4444 .fgt = FGT_AMAIR_EL1,
4445 .type = ARM_CP_CONST, .resetvalue = 0 },
4446 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4447 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4448 .access = PL1_RW, .accessfn = access_tvm_trvm,
4449 .type = ARM_CP_CONST, .resetvalue = 0 },
4450 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4451 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4453 offsetof(CPUARMState, cp15.par_ns)} },
4454 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4455 .access = PL1_RW, .accessfn = access_tvm_trvm,
4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4458 offsetof(CPUARMState, cp15.ttbr0_ns) },
4459 .writefn = vmsa_ttbr_write, },
4460 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4461 .access = PL1_RW, .accessfn = access_tvm_trvm,
4462 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4463 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4464 offsetof(CPUARMState, cp15.ttbr1_ns) },
4465 .writefn = vmsa_ttbr_write, },
4466 };
4467
4468 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4469 {
4470 return vfp_get_fpcr(env);
4471 }
4472
4473 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4474 uint64_t value)
4475 {
4476 vfp_set_fpcr(env, value);
4477 }
4478
4479 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4480 {
4481 return vfp_get_fpsr(env);
4482 }
4483
4484 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4485 uint64_t value)
4486 {
4487 vfp_set_fpsr(env, value);
4488 }
4489
4490 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4491 bool isread)
4492 {
4493 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4494 return CP_ACCESS_TRAP;
4495 }
4496 return CP_ACCESS_OK;
4497 }
4498
4499 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4500 uint64_t value)
4501 {
4502 env->daif = value & PSTATE_DAIF;
4503 }
4504
4505 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4506 {
4507 return env->pstate & PSTATE_PAN;
4508 }
4509
4510 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4511 uint64_t value)
4512 {
4513 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4514 }
4515
4516 static const ARMCPRegInfo pan_reginfo = {
4517 .name = "PAN", .state = ARM_CP_STATE_AA64,
4518 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4519 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4520 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4521 };
4522
4523 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4524 {
4525 return env->pstate & PSTATE_UAO;
4526 }
4527
4528 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529 uint64_t value)
4530 {
4531 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4532 }
4533
4534 static const ARMCPRegInfo uao_reginfo = {
4535 .name = "UAO", .state = ARM_CP_STATE_AA64,
4536 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4537 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4538 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4539 };
4540
4541 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4542 {
4543 return env->pstate & PSTATE_DIT;
4544 }
4545
4546 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547 uint64_t value)
4548 {
4549 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4550 }
4551
4552 static const ARMCPRegInfo dit_reginfo = {
4553 .name = "DIT", .state = ARM_CP_STATE_AA64,
4554 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4555 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4556 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4557 };
4558
4559 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4560 {
4561 return env->pstate & PSTATE_SSBS;
4562 }
4563
4564 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565 uint64_t value)
4566 {
4567 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4568 }
4569
4570 static const ARMCPRegInfo ssbs_reginfo = {
4571 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4572 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4573 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4574 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4575 };
4576
4577 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4578 const ARMCPRegInfo *ri,
4579 bool isread)
4580 {
4581 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4582 switch (arm_current_el(env)) {
4583 case 0:
4584 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4585 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4586 return CP_ACCESS_TRAP;
4587 }
4588 /* fall through */
4589 case 1:
4590 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4591 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4592 return CP_ACCESS_TRAP_EL2;
4593 }
4594 break;
4595 }
4596 return CP_ACCESS_OK;
4597 }
4598
4599 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4600 {
4601 /* Cache invalidate/clean to Point of Unification... */
4602 switch (arm_current_el(env)) {
4603 case 0:
4604 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4605 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4606 return CP_ACCESS_TRAP;
4607 }
4608 /* fall through */
4609 case 1:
4610 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4611 if (arm_hcr_el2_eff(env) & hcrflags) {
4612 return CP_ACCESS_TRAP_EL2;
4613 }
4614 break;
4615 }
4616 return CP_ACCESS_OK;
4617 }
4618
4619 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4620 bool isread)
4621 {
4622 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4623 }
4624
4625 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4626 bool isread)
4627 {
4628 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4629 }
4630
4631 /*
4632 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4633 * Page D4-1736 (DDI0487A.b)
4634 */
4635
4636 static int vae1_tlbmask(CPUARMState *env)
4637 {
4638 uint64_t hcr = arm_hcr_el2_eff(env);
4639 uint16_t mask;
4640
4641 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4642 mask = ARMMMUIdxBit_E20_2 |
4643 ARMMMUIdxBit_E20_2_PAN |
4644 ARMMMUIdxBit_E20_0;
4645 } else {
4646 mask = ARMMMUIdxBit_E10_1 |
4647 ARMMMUIdxBit_E10_1_PAN |
4648 ARMMMUIdxBit_E10_0;
4649 }
4650 return mask;
4651 }
4652
4653 /* Return 56 if TBI is enabled, 64 otherwise. */
4654 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4655 uint64_t addr)
4656 {
4657 uint64_t tcr = regime_tcr(env, mmu_idx);
4658 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4659 int select = extract64(addr, 55, 1);
4660
4661 return (tbi >> select) & 1 ? 56 : 64;
4662 }
4663
4664 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4665 {
4666 uint64_t hcr = arm_hcr_el2_eff(env);
4667 ARMMMUIdx mmu_idx;
4668
4669 /* Only the regime of the mmu_idx below is significant. */
4670 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4671 mmu_idx = ARMMMUIdx_E20_0;
4672 } else {
4673 mmu_idx = ARMMMUIdx_E10_0;
4674 }
4675
4676 return tlbbits_for_regime(env, mmu_idx, addr);
4677 }
4678
4679 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680 uint64_t value)
4681 {
4682 CPUState *cs = env_cpu(env);
4683 int mask = vae1_tlbmask(env);
4684
4685 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4686 }
4687
4688 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689 uint64_t value)
4690 {
4691 CPUState *cs = env_cpu(env);
4692 int mask = vae1_tlbmask(env);
4693
4694 if (tlb_force_broadcast(env)) {
4695 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4696 } else {
4697 tlb_flush_by_mmuidx(cs, mask);
4698 }
4699 }
4700
4701 static int e2_tlbmask(CPUARMState *env)
4702 {
4703 return (ARMMMUIdxBit_E20_0 |
4704 ARMMMUIdxBit_E20_2 |
4705 ARMMMUIdxBit_E20_2_PAN |
4706 ARMMMUIdxBit_E2);
4707 }
4708
4709 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4710 uint64_t value)
4711 {
4712 CPUState *cs = env_cpu(env);
4713 int mask = alle1_tlbmask(env);
4714
4715 tlb_flush_by_mmuidx(cs, mask);
4716 }
4717
4718 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719 uint64_t value)
4720 {
4721 CPUState *cs = env_cpu(env);
4722 int mask = e2_tlbmask(env);
4723
4724 tlb_flush_by_mmuidx(cs, mask);
4725 }
4726
4727 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4728 uint64_t value)
4729 {
4730 ARMCPU *cpu = env_archcpu(env);
4731 CPUState *cs = CPU(cpu);
4732
4733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4734 }
4735
4736 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4737 uint64_t value)
4738 {
4739 CPUState *cs = env_cpu(env);
4740 int mask = alle1_tlbmask(env);
4741
4742 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4743 }
4744
4745 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4746 uint64_t value)
4747 {
4748 CPUState *cs = env_cpu(env);
4749 int mask = e2_tlbmask(env);
4750
4751 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4752 }
4753
4754 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755 uint64_t value)
4756 {
4757 CPUState *cs = env_cpu(env);
4758
4759 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4760 }
4761
4762 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4763 uint64_t value)
4764 {
4765 /*
4766 * Invalidate by VA, EL2
4767 * Currently handles both VAE2 and VALE2, since we don't support
4768 * flush-last-level-only.
4769 */
4770 CPUState *cs = env_cpu(env);
4771 int mask = e2_tlbmask(env);
4772 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773
4774 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4775 }
4776
4777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4778 uint64_t value)
4779 {
4780 /*
4781 * Invalidate by VA, EL3
4782 * Currently handles both VAE3 and VALE3, since we don't support
4783 * flush-last-level-only.
4784 */
4785 ARMCPU *cpu = env_archcpu(env);
4786 CPUState *cs = CPU(cpu);
4787 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4788
4789 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4790 }
4791
4792 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4793 uint64_t value)
4794 {
4795 CPUState *cs = env_cpu(env);
4796 int mask = vae1_tlbmask(env);
4797 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4798 int bits = vae1_tlbbits(env, pageaddr);
4799
4800 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4801 }
4802
4803 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4804 uint64_t value)
4805 {
4806 /*
4807 * Invalidate by VA, EL1&0 (AArch64 version).
4808 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4809 * since we don't support flush-for-specific-ASID-only or
4810 * flush-last-level-only.
4811 */
4812 CPUState *cs = env_cpu(env);
4813 int mask = vae1_tlbmask(env);
4814 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4815 int bits = vae1_tlbbits(env, pageaddr);
4816
4817 if (tlb_force_broadcast(env)) {
4818 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4819 } else {
4820 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4821 }
4822 }
4823
4824 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825 uint64_t value)
4826 {
4827 CPUState *cs = env_cpu(env);
4828 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4829 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4830
4831 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4832 ARMMMUIdxBit_E2, bits);
4833 }
4834
4835 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4836 uint64_t value)
4837 {
4838 CPUState *cs = env_cpu(env);
4839 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4840 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4841
4842 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4843 ARMMMUIdxBit_E3, bits);
4844 }
4845
4846 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4847 {
4848 /*
4849 * The MSB of value is the NS field, which only applies if SEL2
4850 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4851 */
4852 return (value >= 0
4853 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4854 && arm_is_secure_below_el3(env)
4855 ? ARMMMUIdxBit_Stage2_S
4856 : ARMMMUIdxBit_Stage2);
4857 }
4858
4859 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4860 uint64_t value)
4861 {
4862 CPUState *cs = env_cpu(env);
4863 int mask = ipas2e1_tlbmask(env, value);
4864 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4865
4866 if (tlb_force_broadcast(env)) {
4867 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4868 } else {
4869 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4870 }
4871 }
4872
4873 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874 uint64_t value)
4875 {
4876 CPUState *cs = env_cpu(env);
4877 int mask = ipas2e1_tlbmask(env, value);
4878 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4879
4880 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4881 }
4882
4883 #ifdef TARGET_AARCH64
4884 typedef struct {
4885 uint64_t base;
4886 uint64_t length;
4887 } TLBIRange;
4888
4889 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4890 {
4891 /*
4892 * Note that the TLBI range TG field encoding differs from both
4893 * TG0 and TG1 encodings.
4894 */
4895 switch (tg) {
4896 case 1:
4897 return Gran4K;
4898 case 2:
4899 return Gran16K;
4900 case 3:
4901 return Gran64K;
4902 default:
4903 return GranInvalid;
4904 }
4905 }
4906
4907 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4908 uint64_t value)
4909 {
4910 unsigned int page_size_granule, page_shift, num, scale, exponent;
4911 /* Extract one bit to represent the va selector in use. */
4912 uint64_t select = sextract64(value, 36, 1);
4913 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4914 TLBIRange ret = { };
4915 ARMGranuleSize gran;
4916
4917 page_size_granule = extract64(value, 46, 2);
4918 gran = tlbi_range_tg_to_gran_size(page_size_granule);
4919
4920 /* The granule encoded in value must match the granule in use. */
4921 if (gran != param.gran) {
4922 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4923 page_size_granule);
4924 return ret;
4925 }
4926
4927 page_shift = arm_granule_bits(gran);
4928 num = extract64(value, 39, 5);
4929 scale = extract64(value, 44, 2);
4930 exponent = (5 * scale) + 1;
4931
4932 ret.length = (num + 1) << (exponent + page_shift);
4933
4934 if (param.select) {
4935 ret.base = sextract64(value, 0, 37);
4936 } else {
4937 ret.base = extract64(value, 0, 37);
4938 }
4939 if (param.ds) {
4940 /*
4941 * With DS=1, BaseADDR is always shifted 16 so that it is able
4942 * to address all 52 va bits. The input address is perforce
4943 * aligned on a 64k boundary regardless of translation granule.
4944 */
4945 page_shift = 16;
4946 }
4947 ret.base <<= page_shift;
4948
4949 return ret;
4950 }
4951
4952 static void do_rvae_write(CPUARMState *env, uint64_t value,
4953 int idxmap, bool synced)
4954 {
4955 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4956 TLBIRange range;
4957 int bits;
4958
4959 range = tlbi_aa64_get_range(env, one_idx, value);
4960 bits = tlbbits_for_regime(env, one_idx, range.base);
4961
4962 if (synced) {
4963 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4964 range.base,
4965 range.length,
4966 idxmap,
4967 bits);
4968 } else {
4969 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4970 range.length, idxmap, bits);
4971 }
4972 }
4973
4974 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4975 const ARMCPRegInfo *ri,
4976 uint64_t value)
4977 {
4978 /*
4979 * Invalidate by VA range, EL1&0.
4980 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4981 * since we don't support flush-for-specific-ASID-only or
4982 * flush-last-level-only.
4983 */
4984
4985 do_rvae_write(env, value, vae1_tlbmask(env),
4986 tlb_force_broadcast(env));
4987 }
4988
4989 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4990 const ARMCPRegInfo *ri,
4991 uint64_t value)
4992 {
4993 /*
4994 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4995 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4996 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4997 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4998 * shareable specific flushes.
4999 */
5000
5001 do_rvae_write(env, value, vae1_tlbmask(env), true);
5002 }
5003
5004 static int vae2_tlbmask(CPUARMState *env)
5005 {
5006 return ARMMMUIdxBit_E2;
5007 }
5008
5009 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5010 const ARMCPRegInfo *ri,
5011 uint64_t value)
5012 {
5013 /*
5014 * Invalidate by VA range, EL2.
5015 * Currently handles all of RVAE2 and RVALE2,
5016 * since we don't support flush-for-specific-ASID-only or
5017 * flush-last-level-only.
5018 */
5019
5020 do_rvae_write(env, value, vae2_tlbmask(env),
5021 tlb_force_broadcast(env));
5022
5023
5024 }
5025
5026 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5027 const ARMCPRegInfo *ri,
5028 uint64_t value)
5029 {
5030 /*
5031 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5032 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5033 * since we don't support flush-for-specific-ASID-only,
5034 * flush-last-level-only or inner/outer shareable specific flushes.
5035 */
5036
5037 do_rvae_write(env, value, vae2_tlbmask(env), true);
5038
5039 }
5040
5041 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5042 const ARMCPRegInfo *ri,
5043 uint64_t value)
5044 {
5045 /*
5046 * Invalidate by VA range, EL3.
5047 * Currently handles all of RVAE3 and RVALE3,
5048 * since we don't support flush-for-specific-ASID-only or
5049 * flush-last-level-only.
5050 */
5051
5052 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5053 }
5054
5055 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5056 const ARMCPRegInfo *ri,
5057 uint64_t value)
5058 {
5059 /*
5060 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5061 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5062 * since we don't support flush-for-specific-ASID-only,
5063 * flush-last-level-only or inner/outer specific flushes.
5064 */
5065
5066 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5067 }
5068
5069 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5070 uint64_t value)
5071 {
5072 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5073 tlb_force_broadcast(env));
5074 }
5075
5076 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5077 const ARMCPRegInfo *ri,
5078 uint64_t value)
5079 {
5080 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5081 }
5082 #endif
5083
5084 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5085 bool isread)
5086 {
5087 int cur_el = arm_current_el(env);
5088
5089 if (cur_el < 2) {
5090 uint64_t hcr = arm_hcr_el2_eff(env);
5091
5092 if (cur_el == 0) {
5093 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5094 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5095 return CP_ACCESS_TRAP_EL2;
5096 }
5097 } else {
5098 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5099 return CP_ACCESS_TRAP;
5100 }
5101 if (hcr & HCR_TDZ) {
5102 return CP_ACCESS_TRAP_EL2;
5103 }
5104 }
5105 } else if (hcr & HCR_TDZ) {
5106 return CP_ACCESS_TRAP_EL2;
5107 }
5108 }
5109 return CP_ACCESS_OK;
5110 }
5111
5112 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5113 {
5114 ARMCPU *cpu = env_archcpu(env);
5115 int dzp_bit = 1 << 4;
5116
5117 /* DZP indicates whether DC ZVA access is allowed */
5118 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5119 dzp_bit = 0;
5120 }
5121 return cpu->dcz_blocksize | dzp_bit;
5122 }
5123
5124 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5125 bool isread)
5126 {
5127 if (!(env->pstate & PSTATE_SP)) {
5128 /*
5129 * Access to SP_EL0 is undefined if it's being used as
5130 * the stack pointer.
5131 */
5132 return CP_ACCESS_TRAP_UNCATEGORIZED;
5133 }
5134 return CP_ACCESS_OK;
5135 }
5136
5137 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5138 {
5139 return env->pstate & PSTATE_SP;
5140 }
5141
5142 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5143 {
5144 update_spsel(env, val);
5145 }
5146
5147 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5148 uint64_t value)
5149 {
5150 ARMCPU *cpu = env_archcpu(env);
5151
5152 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5153 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5154 value &= ~SCTLR_M;
5155 }
5156
5157 /* ??? Lots of these bits are not implemented. */
5158
5159 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5160 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5161 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5162 } else {
5163 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5164 SCTLR_ATA0 | SCTLR_ATA);
5165 }
5166 }
5167
5168 if (raw_read(env, ri) == value) {
5169 /*
5170 * Skip the TLB flush if nothing actually changed; Linux likes
5171 * to do a lot of pointless SCTLR writes.
5172 */
5173 return;
5174 }
5175
5176 raw_write(env, ri, value);
5177
5178 /* This may enable/disable the MMU, so do a TLB flush. */
5179 tlb_flush(CPU(cpu));
5180
5181 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5182 /*
5183 * Normally we would always end the TB on an SCTLR write; see the
5184 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5185 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5186 * of hflags from the translator, so do it here.
5187 */
5188 arm_rebuild_hflags(env);
5189 }
5190 }
5191
5192 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5193 uint64_t value)
5194 {
5195 /*
5196 * Some MDCR_EL3 bits affect whether PMU counters are running:
5197 * if we are trying to change any of those then we must
5198 * bracket this update with PMU start/finish calls.
5199 */
5200 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5201
5202 if (pmu_op) {
5203 pmu_op_start(env);
5204 }
5205 env->cp15.mdcr_el3 = value;
5206 if (pmu_op) {
5207 pmu_op_finish(env);
5208 }
5209 }
5210
5211 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5212 uint64_t value)
5213 {
5214 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5215 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5216 }
5217
5218 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5219 uint64_t value)
5220 {
5221 /*
5222 * Some MDCR_EL2 bits affect whether PMU counters are running:
5223 * if we are trying to change any of those then we must
5224 * bracket this update with PMU start/finish calls.
5225 */
5226 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5227
5228 if (pmu_op) {
5229 pmu_op_start(env);
5230 }
5231 env->cp15.mdcr_el2 = value;
5232 if (pmu_op) {
5233 pmu_op_finish(env);
5234 }
5235 }
5236
5237 static const ARMCPRegInfo v8_cp_reginfo[] = {
5238 /*
5239 * Minimal set of EL0-visible registers. This will need to be expanded
5240 * significantly for system emulation of AArch64 CPUs.
5241 */
5242 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5243 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5244 .access = PL0_RW, .type = ARM_CP_NZCV },
5245 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5246 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5247 .type = ARM_CP_NO_RAW,
5248 .access = PL0_RW, .accessfn = aa64_daif_access,
5249 .fieldoffset = offsetof(CPUARMState, daif),
5250 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5251 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5252 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5253 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5254 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5255 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5256 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5257 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5258 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5259 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5260 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5261 .access = PL0_R, .type = ARM_CP_NO_RAW,
5262 .fgt = FGT_DCZID_EL0,
5263 .readfn = aa64_dczid_read },
5264 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5265 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5266 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5267 #ifndef CONFIG_USER_ONLY
5268 /* Avoid overhead of an access check that always passes in user-mode */
5269 .accessfn = aa64_zva_access,
5270 .fgt = FGT_DCZVA,
5271 #endif
5272 },
5273 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5274 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5275 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5276 /* Cache ops: all NOPs since we don't emulate caches */
5277 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5279 .access = PL1_W, .type = ARM_CP_NOP,
5280 .fgt = FGT_ICIALLUIS,
5281 .accessfn = access_ticab },
5282 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5283 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5284 .access = PL1_W, .type = ARM_CP_NOP,
5285 .fgt = FGT_ICIALLU,
5286 .accessfn = access_tocu },
5287 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5288 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5289 .access = PL0_W, .type = ARM_CP_NOP,
5290 .fgt = FGT_ICIVAU,
5291 .accessfn = access_tocu },
5292 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5294 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5295 .fgt = FGT_DCIVAC,
5296 .type = ARM_CP_NOP },
5297 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5298 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5299 .fgt = FGT_DCISW,
5300 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5301 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5302 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5303 .access = PL0_W, .type = ARM_CP_NOP,
5304 .fgt = FGT_DCCVAC,
5305 .accessfn = aa64_cacheop_poc_access },
5306 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5307 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308 .fgt = FGT_DCCSW,
5309 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5310 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5312 .access = PL0_W, .type = ARM_CP_NOP,
5313 .fgt = FGT_DCCVAU,
5314 .accessfn = access_tocu },
5315 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5317 .access = PL0_W, .type = ARM_CP_NOP,
5318 .fgt = FGT_DCCIVAC,
5319 .accessfn = aa64_cacheop_poc_access },
5320 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5321 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5322 .fgt = FGT_DCCISW,
5323 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5324 /* TLBI operations */
5325 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5326 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5327 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5328 .fgt = FGT_TLBIVMALLE1IS,
5329 .writefn = tlbi_aa64_vmalle1is_write },
5330 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5331 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5332 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5333 .fgt = FGT_TLBIVAE1IS,
5334 .writefn = tlbi_aa64_vae1is_write },
5335 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5337 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5338 .fgt = FGT_TLBIASIDE1IS,
5339 .writefn = tlbi_aa64_vmalle1is_write },
5340 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5342 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5343 .fgt = FGT_TLBIVAAE1IS,
5344 .writefn = tlbi_aa64_vae1is_write },
5345 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5346 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5347 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5348 .fgt = FGT_TLBIVALE1IS,
5349 .writefn = tlbi_aa64_vae1is_write },
5350 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5351 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5352 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5353 .fgt = FGT_TLBIVAALE1IS,
5354 .writefn = tlbi_aa64_vae1is_write },
5355 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5357 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5358 .fgt = FGT_TLBIVMALLE1,
5359 .writefn = tlbi_aa64_vmalle1_write },
5360 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5362 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5363 .fgt = FGT_TLBIVAE1,
5364 .writefn = tlbi_aa64_vae1_write },
5365 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5366 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5367 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5368 .fgt = FGT_TLBIASIDE1,
5369 .writefn = tlbi_aa64_vmalle1_write },
5370 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5372 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5373 .fgt = FGT_TLBIVAAE1,
5374 .writefn = tlbi_aa64_vae1_write },
5375 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5377 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5378 .fgt = FGT_TLBIVALE1,
5379 .writefn = tlbi_aa64_vae1_write },
5380 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5382 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5383 .fgt = FGT_TLBIVAALE1,
5384 .writefn = tlbi_aa64_vae1_write },
5385 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5386 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5387 .access = PL2_W, .type = ARM_CP_NO_RAW,
5388 .writefn = tlbi_aa64_ipas2e1is_write },
5389 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5390 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5391 .access = PL2_W, .type = ARM_CP_NO_RAW,
5392 .writefn = tlbi_aa64_ipas2e1is_write },
5393 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5394 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5395 .access = PL2_W, .type = ARM_CP_NO_RAW,
5396 .writefn = tlbi_aa64_alle1is_write },
5397 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5398 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5399 .access = PL2_W, .type = ARM_CP_NO_RAW,
5400 .writefn = tlbi_aa64_alle1is_write },
5401 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5402 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5403 .access = PL2_W, .type = ARM_CP_NO_RAW,
5404 .writefn = tlbi_aa64_ipas2e1_write },
5405 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5406 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5407 .access = PL2_W, .type = ARM_CP_NO_RAW,
5408 .writefn = tlbi_aa64_ipas2e1_write },
5409 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5410 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5411 .access = PL2_W, .type = ARM_CP_NO_RAW,
5412 .writefn = tlbi_aa64_alle1_write },
5413 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5414 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5415 .access = PL2_W, .type = ARM_CP_NO_RAW,
5416 .writefn = tlbi_aa64_alle1is_write },
5417 #ifndef CONFIG_USER_ONLY
5418 /* 64 bit address translation operations */
5419 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5421 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5422 .fgt = FGT_ATS1E1R,
5423 .writefn = ats_write64 },
5424 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5427 .fgt = FGT_ATS1E1W,
5428 .writefn = ats_write64 },
5429 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5432 .fgt = FGT_ATS1E0R,
5433 .writefn = ats_write64 },
5434 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5435 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5436 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5437 .fgt = FGT_ATS1E0W,
5438 .writefn = ats_write64 },
5439 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5440 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5441 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5442 .writefn = ats_write64 },
5443 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5444 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5445 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5446 .writefn = ats_write64 },
5447 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5448 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5449 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5450 .writefn = ats_write64 },
5451 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5452 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5453 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5454 .writefn = ats_write64 },
5455 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5456 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5457 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5458 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5459 .writefn = ats_write64 },
5460 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5461 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5462 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5463 .writefn = ats_write64 },
5464 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5465 .type = ARM_CP_ALIAS,
5466 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5467 .access = PL1_RW, .resetvalue = 0,
5468 .fgt = FGT_PAR_EL1,
5469 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5470 .writefn = par_write },
5471 #endif
5472 /* TLB invalidate last level of translation table walk */
5473 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5474 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5475 .writefn = tlbimva_is_write },
5476 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5477 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5478 .writefn = tlbimvaa_is_write },
5479 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5480 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5481 .writefn = tlbimva_write },
5482 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5483 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5484 .writefn = tlbimvaa_write },
5485 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5486 .type = ARM_CP_NO_RAW, .access = PL2_W,
5487 .writefn = tlbimva_hyp_write },
5488 { .name = "TLBIMVALHIS",
5489 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5490 .type = ARM_CP_NO_RAW, .access = PL2_W,
5491 .writefn = tlbimva_hyp_is_write },
5492 { .name = "TLBIIPAS2",
5493 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5494 .type = ARM_CP_NO_RAW, .access = PL2_W,
5495 .writefn = tlbiipas2_hyp_write },
5496 { .name = "TLBIIPAS2IS",
5497 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5498 .type = ARM_CP_NO_RAW, .access = PL2_W,
5499 .writefn = tlbiipas2is_hyp_write },
5500 { .name = "TLBIIPAS2L",
5501 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5502 .type = ARM_CP_NO_RAW, .access = PL2_W,
5503 .writefn = tlbiipas2_hyp_write },
5504 { .name = "TLBIIPAS2LIS",
5505 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5506 .type = ARM_CP_NO_RAW, .access = PL2_W,
5507 .writefn = tlbiipas2is_hyp_write },
5508 /* 32 bit cache operations */
5509 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5510 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5511 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5512 .type = ARM_CP_NOP, .access = PL1_W },
5513 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5514 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5515 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5516 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5517 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5518 .type = ARM_CP_NOP, .access = PL1_W },
5519 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5520 .type = ARM_CP_NOP, .access = PL1_W },
5521 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5522 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5523 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5524 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5525 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5526 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5528 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5530 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5531 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5532 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5533 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5534 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5535 /* MMU Domain access control / MPU write buffer control */
5536 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5537 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5538 .writefn = dacr_write, .raw_writefn = raw_write,
5539 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5540 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5541 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5542 .type = ARM_CP_ALIAS,
5543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5544 .access = PL1_RW,
5545 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5546 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5547 .type = ARM_CP_ALIAS,
5548 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5549 .access = PL1_RW,
5550 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5551 /*
5552 * We rely on the access checks not allowing the guest to write to the
5553 * state field when SPSel indicates that it's being used as the stack
5554 * pointer.
5555 */
5556 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5557 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5558 .access = PL1_RW, .accessfn = sp_el0_access,
5559 .type = ARM_CP_ALIAS,
5560 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5561 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5563 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5564 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5565 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5567 .type = ARM_CP_NO_RAW,
5568 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5569 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5571 .access = PL2_RW,
5572 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5573 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5574 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5575 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5576 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5577 .writefn = dacr_write, .raw_writefn = raw_write,
5578 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5579 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5581 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5582 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5583 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5584 .type = ARM_CP_ALIAS,
5585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5586 .access = PL2_RW,
5587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5588 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5589 .type = ARM_CP_ALIAS,
5590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5591 .access = PL2_RW,
5592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5593 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5594 .type = ARM_CP_ALIAS,
5595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5596 .access = PL2_RW,
5597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5598 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5599 .type = ARM_CP_ALIAS,
5600 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5601 .access = PL2_RW,
5602 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5603 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5604 .type = ARM_CP_IO,
5605 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5606 .resetvalue = 0,
5607 .access = PL3_RW,
5608 .writefn = mdcr_el3_write,
5609 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5610 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5611 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5612 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5613 .writefn = sdcr_write,
5614 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5615 };
5616
5617 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5618 {
5619 ARMCPU *cpu = env_archcpu(env);
5620
5621 if (arm_feature(env, ARM_FEATURE_V8)) {
5622 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5623 } else {
5624 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5625 }
5626
5627 if (arm_feature(env, ARM_FEATURE_EL3)) {
5628 valid_mask &= ~HCR_HCD;
5629 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5630 /*
5631 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5632 * However, if we're using the SMC PSCI conduit then QEMU is
5633 * effectively acting like EL3 firmware and so the guest at
5634 * EL2 should retain the ability to prevent EL1 from being
5635 * able to make SMC calls into the ersatz firmware, so in
5636 * that case HCR.TSC should be read/write.
5637 */
5638 valid_mask &= ~HCR_TSC;
5639 }
5640
5641 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5642 if (cpu_isar_feature(aa64_vh, cpu)) {
5643 valid_mask |= HCR_E2H;
5644 }
5645 if (cpu_isar_feature(aa64_ras, cpu)) {
5646 valid_mask |= HCR_TERR | HCR_TEA;
5647 }
5648 if (cpu_isar_feature(aa64_lor, cpu)) {
5649 valid_mask |= HCR_TLOR;
5650 }
5651 if (cpu_isar_feature(aa64_pauth, cpu)) {
5652 valid_mask |= HCR_API | HCR_APK;
5653 }
5654 if (cpu_isar_feature(aa64_mte, cpu)) {
5655 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5656 }
5657 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5658 valid_mask |= HCR_ENSCXT;
5659 }
5660 if (cpu_isar_feature(aa64_fwb, cpu)) {
5661 valid_mask |= HCR_FWB;
5662 }
5663 if (cpu_isar_feature(aa64_rme, cpu)) {
5664 valid_mask |= HCR_GPF;
5665 }
5666 }
5667
5668 if (cpu_isar_feature(any_evt, cpu)) {
5669 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5670 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5671 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5672 }
5673
5674 /* Clear RES0 bits. */
5675 value &= valid_mask;
5676
5677 /*
5678 * These bits change the MMU setup:
5679 * HCR_VM enables stage 2 translation
5680 * HCR_PTW forbids certain page-table setups
5681 * HCR_DC disables stage1 and enables stage2 translation
5682 * HCR_DCT enables tagging on (disabled) stage1 translation
5683 * HCR_FWB changes the interpretation of stage2 descriptor bits
5684 */
5685 if ((env->cp15.hcr_el2 ^ value) &
5686 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5687 tlb_flush(CPU(cpu));
5688 }
5689 env->cp15.hcr_el2 = value;
5690
5691 /*
5692 * Updates to VI and VF require us to update the status of
5693 * virtual interrupts, which are the logical OR of these bits
5694 * and the state of the input lines from the GIC. (This requires
5695 * that we have the iothread lock, which is done by marking the
5696 * reginfo structs as ARM_CP_IO.)
5697 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5698 * possible for it to be taken immediately, because VIRQ and
5699 * VFIQ are masked unless running at EL0 or EL1, and HCR
5700 * can only be written at EL2.
5701 */
5702 g_assert(qemu_mutex_iothread_locked());
5703 arm_cpu_update_virq(cpu);
5704 arm_cpu_update_vfiq(cpu);
5705 arm_cpu_update_vserr(cpu);
5706 }
5707
5708 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5709 {
5710 do_hcr_write(env, value, 0);
5711 }
5712
5713 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5714 uint64_t value)
5715 {
5716 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5717 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5718 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5719 }
5720
5721 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5722 uint64_t value)
5723 {
5724 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5725 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5726 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5727 }
5728
5729 /*
5730 * Return the effective value of HCR_EL2, at the given security state.
5731 * Bits that are not included here:
5732 * RW (read from SCR_EL3.RW as needed)
5733 */
5734 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5735 {
5736 uint64_t ret = env->cp15.hcr_el2;
5737
5738 if (!arm_is_el2_enabled_secstate(env, secure)) {
5739 /*
5740 * "This register has no effect if EL2 is not enabled in the
5741 * current Security state". This is ARMv8.4-SecEL2 speak for
5742 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5743 *
5744 * Prior to that, the language was "In an implementation that
5745 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5746 * as if this field is 0 for all purposes other than a direct
5747 * read or write access of HCR_EL2". With lots of enumeration
5748 * on a per-field basis. In current QEMU, this is condition
5749 * is arm_is_secure_below_el3.
5750 *
5751 * Since the v8.4 language applies to the entire register, and
5752 * appears to be backward compatible, use that.
5753 */
5754 return 0;
5755 }
5756
5757 /*
5758 * For a cpu that supports both aarch64 and aarch32, we can set bits
5759 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5760 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5761 */
5762 if (!arm_el_is_aa64(env, 2)) {
5763 uint64_t aa32_valid;
5764
5765 /*
5766 * These bits are up-to-date as of ARMv8.6.
5767 * For HCR, it's easiest to list just the 2 bits that are invalid.
5768 * For HCR2, list those that are valid.
5769 */
5770 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5771 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5772 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5773 ret &= aa32_valid;
5774 }
5775
5776 if (ret & HCR_TGE) {
5777 /* These bits are up-to-date as of ARMv8.6. */
5778 if (ret & HCR_E2H) {
5779 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5780 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5781 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5782 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5783 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5784 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5785 } else {
5786 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5787 }
5788 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5789 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5790 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5791 HCR_TLOR);
5792 }
5793
5794 return ret;
5795 }
5796
5797 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5798 {
5799 if (arm_feature(env, ARM_FEATURE_M)) {
5800 return 0;
5801 }
5802 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5803 }
5804
5805 /*
5806 * Corresponds to ARM pseudocode function ELIsInHost().
5807 */
5808 bool el_is_in_host(CPUARMState *env, int el)
5809 {
5810 uint64_t mask;
5811
5812 /*
5813 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5814 * Perform the simplest bit tests first, and validate EL2 afterward.
5815 */
5816 if (el & 1) {
5817 return false; /* EL1 or EL3 */
5818 }
5819
5820 /*
5821 * Note that hcr_write() checks isar_feature_aa64_vh(),
5822 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5823 */
5824 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5825 if ((env->cp15.hcr_el2 & mask) != mask) {
5826 return false;
5827 }
5828
5829 /* TGE and/or E2H set: double check those bits are currently legal. */
5830 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5831 }
5832
5833 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5834 uint64_t value)
5835 {
5836 uint64_t valid_mask = 0;
5837
5838 /* No features adding bits to HCRX are implemented. */
5839
5840 /* Clear RES0 bits. */
5841 env->cp15.hcrx_el2 = value & valid_mask;
5842 }
5843
5844 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5845 bool isread)
5846 {
5847 if (arm_current_el(env) < 3
5848 && arm_feature(env, ARM_FEATURE_EL3)
5849 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5850 return CP_ACCESS_TRAP_EL3;
5851 }
5852 return CP_ACCESS_OK;
5853 }
5854
5855 static const ARMCPRegInfo hcrx_el2_reginfo = {
5856 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5857 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5858 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5859 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5860 };
5861
5862 /* Return the effective value of HCRX_EL2. */
5863 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5864 {
5865 /*
5866 * The bits in this register behave as 0 for all purposes other than
5867 * direct reads of the register if:
5868 * - EL2 is not enabled in the current security state,
5869 * - SCR_EL3.HXEn is 0.
5870 */
5871 if (!arm_is_el2_enabled(env)
5872 || (arm_feature(env, ARM_FEATURE_EL3)
5873 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5874 return 0;
5875 }
5876 return env->cp15.hcrx_el2;
5877 }
5878
5879 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5880 uint64_t value)
5881 {
5882 /*
5883 * For A-profile AArch32 EL3, if NSACR.CP10
5884 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5885 */
5886 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5887 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5888 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5889 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5890 }
5891 env->cp15.cptr_el[2] = value;
5892 }
5893
5894 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5895 {
5896 /*
5897 * For A-profile AArch32 EL3, if NSACR.CP10
5898 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5899 */
5900 uint64_t value = env->cp15.cptr_el[2];
5901
5902 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5903 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5904 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5905 }
5906 return value;
5907 }
5908
5909 static const ARMCPRegInfo el2_cp_reginfo[] = {
5910 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5911 .type = ARM_CP_IO,
5912 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5913 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5914 .writefn = hcr_write },
5915 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5916 .type = ARM_CP_ALIAS | ARM_CP_IO,
5917 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5918 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5919 .writefn = hcr_writelow },
5920 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5921 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5922 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5923 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5924 .type = ARM_CP_ALIAS,
5925 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5926 .access = PL2_RW,
5927 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5928 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5929 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5930 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5931 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5932 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5933 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5934 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5935 .type = ARM_CP_ALIAS,
5936 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5937 .access = PL2_RW,
5938 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5939 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5940 .type = ARM_CP_ALIAS,
5941 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5942 .access = PL2_RW,
5943 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5944 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5945 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5946 .access = PL2_RW, .writefn = vbar_write,
5947 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5948 .resetvalue = 0 },
5949 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5950 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5951 .access = PL3_RW, .type = ARM_CP_ALIAS,
5952 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5953 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5954 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5955 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5956 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5957 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5958 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5959 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5960 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5961 .resetvalue = 0 },
5962 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5963 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5964 .access = PL2_RW, .type = ARM_CP_ALIAS,
5965 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5966 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5967 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5968 .access = PL2_RW, .type = ARM_CP_CONST,
5969 .resetvalue = 0 },
5970 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5971 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5972 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5973 .access = PL2_RW, .type = ARM_CP_CONST,
5974 .resetvalue = 0 },
5975 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5976 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5977 .access = PL2_RW, .type = ARM_CP_CONST,
5978 .resetvalue = 0 },
5979 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5980 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5981 .access = PL2_RW, .type = ARM_CP_CONST,
5982 .resetvalue = 0 },
5983 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5984 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5985 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5986 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5987 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5988 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5989 .type = ARM_CP_ALIAS,
5990 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5991 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5992 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5993 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5994 .access = PL2_RW,
5995 /* no .writefn needed as this can't cause an ASID change */
5996 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5997 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5998 .cp = 15, .opc1 = 6, .crm = 2,
5999 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6000 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6001 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6002 .writefn = vttbr_write },
6003 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6004 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6005 .access = PL2_RW, .writefn = vttbr_write,
6006 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6007 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6008 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6009 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6010 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6011 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6012 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6013 .access = PL2_RW, .resetvalue = 0,
6014 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6015 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6016 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6017 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6018 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6019 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6020 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6021 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6022 { .name = "TLBIALLNSNH",
6023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6024 .type = ARM_CP_NO_RAW, .access = PL2_W,
6025 .writefn = tlbiall_nsnh_write },
6026 { .name = "TLBIALLNSNHIS",
6027 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6028 .type = ARM_CP_NO_RAW, .access = PL2_W,
6029 .writefn = tlbiall_nsnh_is_write },
6030 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6031 .type = ARM_CP_NO_RAW, .access = PL2_W,
6032 .writefn = tlbiall_hyp_write },
6033 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6034 .type = ARM_CP_NO_RAW, .access = PL2_W,
6035 .writefn = tlbiall_hyp_is_write },
6036 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6037 .type = ARM_CP_NO_RAW, .access = PL2_W,
6038 .writefn = tlbimva_hyp_write },
6039 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6040 .type = ARM_CP_NO_RAW, .access = PL2_W,
6041 .writefn = tlbimva_hyp_is_write },
6042 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6043 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6044 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6045 .writefn = tlbi_aa64_alle2_write },
6046 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6047 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6048 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6049 .writefn = tlbi_aa64_vae2_write },
6050 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6051 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6052 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6053 .writefn = tlbi_aa64_vae2_write },
6054 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6055 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6056 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6057 .writefn = tlbi_aa64_alle2is_write },
6058 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6059 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6060 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6061 .writefn = tlbi_aa64_vae2is_write },
6062 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6063 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6064 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6065 .writefn = tlbi_aa64_vae2is_write },
6066 #ifndef CONFIG_USER_ONLY
6067 /*
6068 * Unlike the other EL2-related AT operations, these must
6069 * UNDEF from EL3 if EL2 is not implemented, which is why we
6070 * define them here rather than with the rest of the AT ops.
6071 */
6072 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6073 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6074 .access = PL2_W, .accessfn = at_s1e2_access,
6075 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6076 .writefn = ats_write64 },
6077 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6078 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6079 .access = PL2_W, .accessfn = at_s1e2_access,
6080 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6081 .writefn = ats_write64 },
6082 /*
6083 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6084 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6085 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6086 * to behave as if SCR.NS was 1.
6087 */
6088 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6089 .access = PL2_W,
6090 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6091 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6092 .access = PL2_W,
6093 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6094 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6095 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6096 /*
6097 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6098 * reset values as IMPDEF. We choose to reset to 3 to comply with
6099 * both ARMv7 and ARMv8.
6100 */
6101 .access = PL2_RW, .resetvalue = 3,
6102 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6103 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6104 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6105 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6106 .writefn = gt_cntvoff_write,
6107 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6108 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6109 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6110 .writefn = gt_cntvoff_write,
6111 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6112 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6113 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6114 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6115 .type = ARM_CP_IO, .access = PL2_RW,
6116 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6117 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6119 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6120 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6121 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6122 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6123 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6124 .resetfn = gt_hyp_timer_reset,
6125 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6126 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6127 .type = ARM_CP_IO,
6128 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6129 .access = PL2_RW,
6130 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6131 .resetvalue = 0,
6132 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6133 #endif
6134 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6135 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6136 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6137 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6138 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6139 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6140 .access = PL2_RW,
6141 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6142 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6143 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6144 .access = PL2_RW,
6145 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6146 };
6147
6148 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6149 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6150 .type = ARM_CP_ALIAS | ARM_CP_IO,
6151 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6152 .access = PL2_RW,
6153 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6154 .writefn = hcr_writehigh },
6155 };
6156
6157 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6158 bool isread)
6159 {
6160 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6161 return CP_ACCESS_OK;
6162 }
6163 return CP_ACCESS_TRAP_UNCATEGORIZED;
6164 }
6165
6166 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6167 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6168 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6169 .access = PL2_RW, .accessfn = sel2_access,
6170 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6171 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6172 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6173 .access = PL2_RW, .accessfn = sel2_access,
6174 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6175 };
6176
6177 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6178 bool isread)
6179 {
6180 /*
6181 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6182 * At Secure EL1 it traps to EL3 or EL2.
6183 */
6184 if (arm_current_el(env) == 3) {
6185 return CP_ACCESS_OK;
6186 }
6187 if (arm_is_secure_below_el3(env)) {
6188 if (env->cp15.scr_el3 & SCR_EEL2) {
6189 return CP_ACCESS_TRAP_EL2;
6190 }
6191 return CP_ACCESS_TRAP_EL3;
6192 }
6193 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6194 if (isread) {
6195 return CP_ACCESS_OK;
6196 }
6197 return CP_ACCESS_TRAP_UNCATEGORIZED;
6198 }
6199
6200 static const ARMCPRegInfo el3_cp_reginfo[] = {
6201 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6202 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6203 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6204 .resetfn = scr_reset, .writefn = scr_write },
6205 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6206 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6207 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6208 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6209 .writefn = scr_write },
6210 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6211 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6212 .access = PL3_RW, .resetvalue = 0,
6213 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6214 { .name = "SDER",
6215 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6216 .access = PL3_RW, .resetvalue = 0,
6217 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6218 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6219 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6220 .writefn = vbar_write, .resetvalue = 0,
6221 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6222 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6223 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6224 .access = PL3_RW, .resetvalue = 0,
6225 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6226 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6227 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6228 .access = PL3_RW,
6229 /* no .writefn needed as this can't cause an ASID change */
6230 .resetvalue = 0,
6231 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6232 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6233 .type = ARM_CP_ALIAS,
6234 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6235 .access = PL3_RW,
6236 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6237 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6238 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6239 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6240 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6241 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6243 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6244 .type = ARM_CP_ALIAS,
6245 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6246 .access = PL3_RW,
6247 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6248 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6249 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6250 .access = PL3_RW, .writefn = vbar_write,
6251 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6252 .resetvalue = 0 },
6253 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6254 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6255 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6256 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6257 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6258 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6259 .access = PL3_RW, .resetvalue = 0,
6260 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6261 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6262 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6263 .access = PL3_RW, .type = ARM_CP_CONST,
6264 .resetvalue = 0 },
6265 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6266 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6267 .access = PL3_RW, .type = ARM_CP_CONST,
6268 .resetvalue = 0 },
6269 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6270 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6271 .access = PL3_RW, .type = ARM_CP_CONST,
6272 .resetvalue = 0 },
6273 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6274 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6275 .access = PL3_W, .type = ARM_CP_NO_RAW,
6276 .writefn = tlbi_aa64_alle3is_write },
6277 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6278 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6279 .access = PL3_W, .type = ARM_CP_NO_RAW,
6280 .writefn = tlbi_aa64_vae3is_write },
6281 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6282 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6283 .access = PL3_W, .type = ARM_CP_NO_RAW,
6284 .writefn = tlbi_aa64_vae3is_write },
6285 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6286 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6287 .access = PL3_W, .type = ARM_CP_NO_RAW,
6288 .writefn = tlbi_aa64_alle3_write },
6289 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6290 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6291 .access = PL3_W, .type = ARM_CP_NO_RAW,
6292 .writefn = tlbi_aa64_vae3_write },
6293 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6294 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6295 .access = PL3_W, .type = ARM_CP_NO_RAW,
6296 .writefn = tlbi_aa64_vae3_write },
6297 };
6298
6299 #ifndef CONFIG_USER_ONLY
6300 /* Test if system register redirection is to occur in the current state. */
6301 static bool redirect_for_e2h(CPUARMState *env)
6302 {
6303 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6304 }
6305
6306 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6307 {
6308 CPReadFn *readfn;
6309
6310 if (redirect_for_e2h(env)) {
6311 /* Switch to the saved EL2 version of the register. */
6312 ri = ri->opaque;
6313 readfn = ri->readfn;
6314 } else {
6315 readfn = ri->orig_readfn;
6316 }
6317 if (readfn == NULL) {
6318 readfn = raw_read;
6319 }
6320 return readfn(env, ri);
6321 }
6322
6323 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6324 uint64_t value)
6325 {
6326 CPWriteFn *writefn;
6327
6328 if (redirect_for_e2h(env)) {
6329 /* Switch to the saved EL2 version of the register. */
6330 ri = ri->opaque;
6331 writefn = ri->writefn;
6332 } else {
6333 writefn = ri->orig_writefn;
6334 }
6335 if (writefn == NULL) {
6336 writefn = raw_write;
6337 }
6338 writefn(env, ri, value);
6339 }
6340
6341 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6342 {
6343 struct E2HAlias {
6344 uint32_t src_key, dst_key, new_key;
6345 const char *src_name, *dst_name, *new_name;
6346 bool (*feature)(const ARMISARegisters *id);
6347 };
6348
6349 #define K(op0, op1, crn, crm, op2) \
6350 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6351
6352 static const struct E2HAlias aliases[] = {
6353 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6354 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6355 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6356 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6357 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6358 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6359 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6360 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6361 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6362 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6363 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6364 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6365 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6366 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6367 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6368 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6369 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6370 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6371 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6372 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6373 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6374 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6375 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6376 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6377 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6378 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6379 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6380 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6381 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6382 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6383 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6384 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6385
6386 /*
6387 * Note that redirection of ZCR is mentioned in the description
6388 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6389 * not in the summary table.
6390 */
6391 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6392 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6393 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6394 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6395
6396 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6397 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6398
6399 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6400 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6401 isar_feature_aa64_scxtnum },
6402
6403 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6404 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6405 };
6406 #undef K
6407
6408 size_t i;
6409
6410 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6411 const struct E2HAlias *a = &aliases[i];
6412 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6413 bool ok;
6414
6415 if (a->feature && !a->feature(&cpu->isar)) {
6416 continue;
6417 }
6418
6419 src_reg = g_hash_table_lookup(cpu->cp_regs,
6420 (gpointer)(uintptr_t)a->src_key);
6421 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6422 (gpointer)(uintptr_t)a->dst_key);
6423 g_assert(src_reg != NULL);
6424 g_assert(dst_reg != NULL);
6425
6426 /* Cross-compare names to detect typos in the keys. */
6427 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6428 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6429
6430 /* None of the core system registers use opaque; we will. */
6431 g_assert(src_reg->opaque == NULL);
6432
6433 /* Create alias before redirection so we dup the right data. */
6434 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6435
6436 new_reg->name = a->new_name;
6437 new_reg->type |= ARM_CP_ALIAS;
6438 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6439 new_reg->access &= PL2_RW | PL3_RW;
6440
6441 ok = g_hash_table_insert(cpu->cp_regs,
6442 (gpointer)(uintptr_t)a->new_key, new_reg);
6443 g_assert(ok);
6444
6445 src_reg->opaque = dst_reg;
6446 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6447 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6448 if (!src_reg->raw_readfn) {
6449 src_reg->raw_readfn = raw_read;
6450 }
6451 if (!src_reg->raw_writefn) {
6452 src_reg->raw_writefn = raw_write;
6453 }
6454 src_reg->readfn = el2_e2h_read;
6455 src_reg->writefn = el2_e2h_write;
6456 }
6457 }
6458 #endif
6459
6460 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6461 bool isread)
6462 {
6463 int cur_el = arm_current_el(env);
6464
6465 if (cur_el < 2) {
6466 uint64_t hcr = arm_hcr_el2_eff(env);
6467
6468 if (cur_el == 0) {
6469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6470 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6471 return CP_ACCESS_TRAP_EL2;
6472 }
6473 } else {
6474 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6475 return CP_ACCESS_TRAP;
6476 }
6477 if (hcr & HCR_TID2) {
6478 return CP_ACCESS_TRAP_EL2;
6479 }
6480 }
6481 } else if (hcr & HCR_TID2) {
6482 return CP_ACCESS_TRAP_EL2;
6483 }
6484 }
6485
6486 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6487 return CP_ACCESS_TRAP_EL2;
6488 }
6489
6490 return CP_ACCESS_OK;
6491 }
6492
6493 /*
6494 * Check for traps to RAS registers, which are controlled
6495 * by HCR_EL2.TERR and SCR_EL3.TERR.
6496 */
6497 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6498 bool isread)
6499 {
6500 int el = arm_current_el(env);
6501
6502 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6503 return CP_ACCESS_TRAP_EL2;
6504 }
6505 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6506 return CP_ACCESS_TRAP_EL3;
6507 }
6508 return CP_ACCESS_OK;
6509 }
6510
6511 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6512 {
6513 int el = arm_current_el(env);
6514
6515 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6516 return env->cp15.vdisr_el2;
6517 }
6518 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6519 return 0; /* RAZ/WI */
6520 }
6521 return env->cp15.disr_el1;
6522 }
6523
6524 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6525 {
6526 int el = arm_current_el(env);
6527
6528 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6529 env->cp15.vdisr_el2 = val;
6530 return;
6531 }
6532 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6533 return; /* RAZ/WI */
6534 }
6535 env->cp15.disr_el1 = val;
6536 }
6537
6538 /*
6539 * Minimal RAS implementation with no Error Records.
6540 * Which means that all of the Error Record registers:
6541 * ERXADDR_EL1
6542 * ERXCTLR_EL1
6543 * ERXFR_EL1
6544 * ERXMISC0_EL1
6545 * ERXMISC1_EL1
6546 * ERXMISC2_EL1
6547 * ERXMISC3_EL1
6548 * ERXPFGCDN_EL1 (RASv1p1)
6549 * ERXPFGCTL_EL1 (RASv1p1)
6550 * ERXPFGF_EL1 (RASv1p1)
6551 * ERXSTATUS_EL1
6552 * and
6553 * ERRSELR_EL1
6554 * may generate UNDEFINED, which is the effect we get by not
6555 * listing them at all.
6556 *
6557 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6558 * is higher priority than FGT-to-EL2 so we do not need to list them
6559 * in order to check for an FGT.
6560 */
6561 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6562 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6563 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6564 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6565 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6566 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6567 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6568 .access = PL1_R, .accessfn = access_terr,
6569 .fgt = FGT_ERRIDR_EL1,
6570 .type = ARM_CP_CONST, .resetvalue = 0 },
6571 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6572 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6573 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6574 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6575 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6576 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6577 };
6578
6579 /*
6580 * Return the exception level to which exceptions should be taken
6581 * via SVEAccessTrap. This excludes the check for whether the exception
6582 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6583 * be found by testing 0 < fp_exception_el < sve_exception_el.
6584 *
6585 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6586 * pseudocode does *not* separate out the FP trap checks, but has them
6587 * all in one function.
6588 */
6589 int sve_exception_el(CPUARMState *env, int el)
6590 {
6591 #ifndef CONFIG_USER_ONLY
6592 if (el <= 1 && !el_is_in_host(env, el)) {
6593 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6594 case 1:
6595 if (el != 0) {
6596 break;
6597 }
6598 /* fall through */
6599 case 0:
6600 case 2:
6601 return 1;
6602 }
6603 }
6604
6605 if (el <= 2 && arm_is_el2_enabled(env)) {
6606 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6607 if (env->cp15.hcr_el2 & HCR_E2H) {
6608 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6609 case 1:
6610 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6611 break;
6612 }
6613 /* fall through */
6614 case 0:
6615 case 2:
6616 return 2;
6617 }
6618 } else {
6619 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6620 return 2;
6621 }
6622 }
6623 }
6624
6625 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6626 if (arm_feature(env, ARM_FEATURE_EL3)
6627 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6628 return 3;
6629 }
6630 #endif
6631 return 0;
6632 }
6633
6634 /*
6635 * Return the exception level to which exceptions should be taken for SME.
6636 * C.f. the ARM pseudocode function CheckSMEAccess.
6637 */
6638 int sme_exception_el(CPUARMState *env, int el)
6639 {
6640 #ifndef CONFIG_USER_ONLY
6641 if (el <= 1 && !el_is_in_host(env, el)) {
6642 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6643 case 1:
6644 if (el != 0) {
6645 break;
6646 }
6647 /* fall through */
6648 case 0:
6649 case 2:
6650 return 1;
6651 }
6652 }
6653
6654 if (el <= 2 && arm_is_el2_enabled(env)) {
6655 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6656 if (env->cp15.hcr_el2 & HCR_E2H) {
6657 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6658 case 1:
6659 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6660 break;
6661 }
6662 /* fall through */
6663 case 0:
6664 case 2:
6665 return 2;
6666 }
6667 } else {
6668 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6669 return 2;
6670 }
6671 }
6672 }
6673
6674 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6675 if (arm_feature(env, ARM_FEATURE_EL3)
6676 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6677 return 3;
6678 }
6679 #endif
6680 return 0;
6681 }
6682
6683 /*
6684 * Given that SVE is enabled, return the vector length for EL.
6685 */
6686 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6687 {
6688 ARMCPU *cpu = env_archcpu(env);
6689 uint64_t *cr = env->vfp.zcr_el;
6690 uint32_t map = cpu->sve_vq.map;
6691 uint32_t len = ARM_MAX_VQ - 1;
6692
6693 if (sm) {
6694 cr = env->vfp.smcr_el;
6695 map = cpu->sme_vq.map;
6696 }
6697
6698 if (el <= 1 && !el_is_in_host(env, el)) {
6699 len = MIN(len, 0xf & (uint32_t)cr[1]);
6700 }
6701 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6702 len = MIN(len, 0xf & (uint32_t)cr[2]);
6703 }
6704 if (arm_feature(env, ARM_FEATURE_EL3)) {
6705 len = MIN(len, 0xf & (uint32_t)cr[3]);
6706 }
6707
6708 map &= MAKE_64BIT_MASK(0, len + 1);
6709 if (map != 0) {
6710 return 31 - clz32(map);
6711 }
6712
6713 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6714 assert(sm);
6715 return ctz32(cpu->sme_vq.map);
6716 }
6717
6718 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6719 {
6720 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6721 }
6722
6723 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6724 uint64_t value)
6725 {
6726 int cur_el = arm_current_el(env);
6727 int old_len = sve_vqm1_for_el(env, cur_el);
6728 int new_len;
6729
6730 /* Bits other than [3:0] are RAZ/WI. */
6731 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6732 raw_write(env, ri, value & 0xf);
6733
6734 /*
6735 * Because we arrived here, we know both FP and SVE are enabled;
6736 * otherwise we would have trapped access to the ZCR_ELn register.
6737 */
6738 new_len = sve_vqm1_for_el(env, cur_el);
6739 if (new_len < old_len) {
6740 aarch64_sve_narrow_vq(env, new_len + 1);
6741 }
6742 }
6743
6744 static const ARMCPRegInfo zcr_reginfo[] = {
6745 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6746 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6747 .access = PL1_RW, .type = ARM_CP_SVE,
6748 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6749 .writefn = zcr_write, .raw_writefn = raw_write },
6750 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6751 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6752 .access = PL2_RW, .type = ARM_CP_SVE,
6753 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6754 .writefn = zcr_write, .raw_writefn = raw_write },
6755 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6756 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6757 .access = PL3_RW, .type = ARM_CP_SVE,
6758 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6759 .writefn = zcr_write, .raw_writefn = raw_write },
6760 };
6761
6762 #ifdef TARGET_AARCH64
6763 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6764 bool isread)
6765 {
6766 int el = arm_current_el(env);
6767
6768 if (el == 0) {
6769 uint64_t sctlr = arm_sctlr(env, el);
6770 if (!(sctlr & SCTLR_EnTP2)) {
6771 return CP_ACCESS_TRAP;
6772 }
6773 }
6774 /* TODO: FEAT_FGT */
6775 if (el < 3
6776 && arm_feature(env, ARM_FEATURE_EL3)
6777 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6778 return CP_ACCESS_TRAP_EL3;
6779 }
6780 return CP_ACCESS_OK;
6781 }
6782
6783 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6784 bool isread)
6785 {
6786 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6787 if (arm_current_el(env) < 3
6788 && arm_feature(env, ARM_FEATURE_EL3)
6789 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6790 return CP_ACCESS_TRAP_EL3;
6791 }
6792 return CP_ACCESS_OK;
6793 }
6794
6795 /* ResetSVEState */
6796 static void arm_reset_sve_state(CPUARMState *env)
6797 {
6798 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6799 /* Recall that FFR is stored as pregs[16]. */
6800 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6801 vfp_set_fpcr(env, 0x0800009f);
6802 }
6803
6804 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6805 {
6806 uint64_t change = (env->svcr ^ new) & mask;
6807
6808 if (change == 0) {
6809 return;
6810 }
6811 env->svcr ^= change;
6812
6813 if (change & R_SVCR_SM_MASK) {
6814 arm_reset_sve_state(env);
6815 }
6816
6817 /*
6818 * ResetSMEState.
6819 *
6820 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6821 * on enable: while disabled, the storage is inaccessible and the
6822 * value does not matter. We're not saving the storage in vmstate
6823 * when disabled either.
6824 */
6825 if (change & new & R_SVCR_ZA_MASK) {
6826 memset(env->zarray, 0, sizeof(env->zarray));
6827 }
6828
6829 if (tcg_enabled()) {
6830 arm_rebuild_hflags(env);
6831 }
6832 }
6833
6834 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6835 uint64_t value)
6836 {
6837 aarch64_set_svcr(env, value, -1);
6838 }
6839
6840 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6841 uint64_t value)
6842 {
6843 int cur_el = arm_current_el(env);
6844 int old_len = sve_vqm1_for_el(env, cur_el);
6845 int new_len;
6846
6847 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6848 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6849 raw_write(env, ri, value);
6850
6851 /*
6852 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6853 * when SVL is widened (old values kept, or zeros). Choose to keep the
6854 * current values for simplicity. But for QEMU internals, we must still
6855 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6856 * above aarch64_sve_narrow_vq.
6857 */
6858 new_len = sve_vqm1_for_el(env, cur_el);
6859 if (new_len < old_len) {
6860 aarch64_sve_narrow_vq(env, new_len + 1);
6861 }
6862 }
6863
6864 static const ARMCPRegInfo sme_reginfo[] = {
6865 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6866 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6867 .access = PL0_RW, .accessfn = access_tpidr2,
6868 .fgt = FGT_NTPIDR2_EL0,
6869 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6870 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6871 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6872 .access = PL0_RW, .type = ARM_CP_SME,
6873 .fieldoffset = offsetof(CPUARMState, svcr),
6874 .writefn = svcr_write, .raw_writefn = raw_write },
6875 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6876 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6877 .access = PL1_RW, .type = ARM_CP_SME,
6878 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6879 .writefn = smcr_write, .raw_writefn = raw_write },
6880 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6881 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6882 .access = PL2_RW, .type = ARM_CP_SME,
6883 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6884 .writefn = smcr_write, .raw_writefn = raw_write },
6885 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6886 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6887 .access = PL3_RW, .type = ARM_CP_SME,
6888 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6889 .writefn = smcr_write, .raw_writefn = raw_write },
6890 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6891 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6892 .access = PL1_R, .accessfn = access_aa64_tid1,
6893 /*
6894 * IMPLEMENTOR = 0 (software)
6895 * REVISION = 0 (implementation defined)
6896 * SMPS = 0 (no streaming execution priority in QEMU)
6897 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6898 */
6899 .type = ARM_CP_CONST, .resetvalue = 0, },
6900 /*
6901 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6902 */
6903 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6904 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6905 .access = PL1_RW, .accessfn = access_esm,
6906 .fgt = FGT_NSMPRI_EL1,
6907 .type = ARM_CP_CONST, .resetvalue = 0 },
6908 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6909 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6910 .access = PL2_RW, .accessfn = access_esm,
6911 .type = ARM_CP_CONST, .resetvalue = 0 },
6912 };
6913
6914 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
6915 uint64_t value)
6916 {
6917 CPUState *cs = env_cpu(env);
6918
6919 tlb_flush(cs);
6920 }
6921
6922 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6923 uint64_t value)
6924 {
6925 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
6926 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
6927 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
6928 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
6929
6930 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
6931 }
6932
6933 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
6934 {
6935 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
6936 env_archcpu(env)->reset_l0gptsz);
6937 }
6938
6939 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
6940 uint64_t value)
6941 {
6942 CPUState *cs = env_cpu(env);
6943
6944 tlb_flush_all_cpus_synced(cs);
6945 }
6946
6947 static const ARMCPRegInfo rme_reginfo[] = {
6948 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
6949 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
6950 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
6951 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
6952 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
6953 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
6954 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
6955 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
6956 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
6957 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
6958 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
6959 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
6960 .access = PL3_W, .type = ARM_CP_NO_RAW,
6961 .writefn = tlbi_aa64_paall_write },
6962 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
6964 .access = PL3_W, .type = ARM_CP_NO_RAW,
6965 .writefn = tlbi_aa64_paallos_write },
6966 /*
6967 * QEMU does not have a way to invalidate by physical address, thus
6968 * invalidating a range of physical addresses is accomplished by
6969 * flushing all tlb entries in the outer sharable domain,
6970 * just like PAALLOS.
6971 */
6972 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
6973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
6974 .access = PL3_W, .type = ARM_CP_NO_RAW,
6975 .writefn = tlbi_aa64_paallos_write },
6976 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
6977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
6978 .access = PL3_W, .type = ARM_CP_NO_RAW,
6979 .writefn = tlbi_aa64_paallos_write },
6980 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
6981 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
6982 .access = PL3_W, .type = ARM_CP_NOP },
6983 };
6984
6985 static const ARMCPRegInfo rme_mte_reginfo[] = {
6986 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
6987 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
6988 .access = PL3_W, .type = ARM_CP_NOP },
6989 };
6990 #endif /* TARGET_AARCH64 */
6991
6992 static void define_pmu_regs(ARMCPU *cpu)
6993 {
6994 /*
6995 * v7 performance monitor control register: same implementor
6996 * field as main ID register, and we implement four counters in
6997 * addition to the cycle count register.
6998 */
6999 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7000 ARMCPRegInfo pmcr = {
7001 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7002 .access = PL0_RW,
7003 .fgt = FGT_PMCR_EL0,
7004 .type = ARM_CP_IO | ARM_CP_ALIAS,
7005 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7006 .accessfn = pmreg_access, .writefn = pmcr_write,
7007 .raw_writefn = raw_write,
7008 };
7009 ARMCPRegInfo pmcr64 = {
7010 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7012 .access = PL0_RW, .accessfn = pmreg_access,
7013 .fgt = FGT_PMCR_EL0,
7014 .type = ARM_CP_IO,
7015 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7016 .resetvalue = cpu->isar.reset_pmcr_el0,
7017 .writefn = pmcr_write, .raw_writefn = raw_write,
7018 };
7019
7020 define_one_arm_cp_reg(cpu, &pmcr);
7021 define_one_arm_cp_reg(cpu, &pmcr64);
7022 for (i = 0; i < pmcrn; i++) {
7023 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7024 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7025 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7026 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7027 ARMCPRegInfo pmev_regs[] = {
7028 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7029 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7030 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7031 .fgt = FGT_PMEVCNTRN_EL0,
7032 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7033 .accessfn = pmreg_access_xevcntr },
7034 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7035 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7036 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7037 .type = ARM_CP_IO,
7038 .fgt = FGT_PMEVCNTRN_EL0,
7039 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7040 .raw_readfn = pmevcntr_rawread,
7041 .raw_writefn = pmevcntr_rawwrite },
7042 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7043 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7044 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7045 .fgt = FGT_PMEVTYPERN_EL0,
7046 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7047 .accessfn = pmreg_access },
7048 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7050 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7051 .fgt = FGT_PMEVTYPERN_EL0,
7052 .type = ARM_CP_IO,
7053 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7054 .raw_writefn = pmevtyper_rawwrite },
7055 };
7056 define_arm_cp_regs(cpu, pmev_regs);
7057 g_free(pmevcntr_name);
7058 g_free(pmevcntr_el0_name);
7059 g_free(pmevtyper_name);
7060 g_free(pmevtyper_el0_name);
7061 }
7062 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7063 ARMCPRegInfo v81_pmu_regs[] = {
7064 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7065 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7066 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7067 .fgt = FGT_PMCEIDN_EL0,
7068 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7069 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7070 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7071 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7072 .fgt = FGT_PMCEIDN_EL0,
7073 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7074 };
7075 define_arm_cp_regs(cpu, v81_pmu_regs);
7076 }
7077 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7078 static const ARMCPRegInfo v84_pmmir = {
7079 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7080 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7081 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7082 .fgt = FGT_PMMIR_EL1,
7083 .resetvalue = 0
7084 };
7085 define_one_arm_cp_reg(cpu, &v84_pmmir);
7086 }
7087 }
7088
7089 #ifndef CONFIG_USER_ONLY
7090 /*
7091 * We don't know until after realize whether there's a GICv3
7092 * attached, and that is what registers the gicv3 sysregs.
7093 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7094 * at runtime.
7095 */
7096 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7097 {
7098 ARMCPU *cpu = env_archcpu(env);
7099 uint64_t pfr1 = cpu->isar.id_pfr1;
7100
7101 if (env->gicv3state) {
7102 pfr1 |= 1 << 28;
7103 }
7104 return pfr1;
7105 }
7106
7107 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7108 {
7109 ARMCPU *cpu = env_archcpu(env);
7110 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7111
7112 if (env->gicv3state) {
7113 pfr0 |= 1 << 24;
7114 }
7115 return pfr0;
7116 }
7117 #endif
7118
7119 /*
7120 * Shared logic between LORID and the rest of the LOR* registers.
7121 * Secure state exclusion has already been dealt with.
7122 */
7123 static CPAccessResult access_lor_ns(CPUARMState *env,
7124 const ARMCPRegInfo *ri, bool isread)
7125 {
7126 int el = arm_current_el(env);
7127
7128 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7129 return CP_ACCESS_TRAP_EL2;
7130 }
7131 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7132 return CP_ACCESS_TRAP_EL3;
7133 }
7134 return CP_ACCESS_OK;
7135 }
7136
7137 static CPAccessResult access_lor_other(CPUARMState *env,
7138 const ARMCPRegInfo *ri, bool isread)
7139 {
7140 if (arm_is_secure_below_el3(env)) {
7141 /* Access denied in secure mode. */
7142 return CP_ACCESS_TRAP;
7143 }
7144 return access_lor_ns(env, ri, isread);
7145 }
7146
7147 /*
7148 * A trivial implementation of ARMv8.1-LOR leaves all of these
7149 * registers fixed at 0, which indicates that there are zero
7150 * supported Limited Ordering regions.
7151 */
7152 static const ARMCPRegInfo lor_reginfo[] = {
7153 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7154 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7155 .access = PL1_RW, .accessfn = access_lor_other,
7156 .fgt = FGT_LORSA_EL1,
7157 .type = ARM_CP_CONST, .resetvalue = 0 },
7158 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7159 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7160 .access = PL1_RW, .accessfn = access_lor_other,
7161 .fgt = FGT_LOREA_EL1,
7162 .type = ARM_CP_CONST, .resetvalue = 0 },
7163 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7164 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7165 .access = PL1_RW, .accessfn = access_lor_other,
7166 .fgt = FGT_LORN_EL1,
7167 .type = ARM_CP_CONST, .resetvalue = 0 },
7168 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7169 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7170 .access = PL1_RW, .accessfn = access_lor_other,
7171 .fgt = FGT_LORC_EL1,
7172 .type = ARM_CP_CONST, .resetvalue = 0 },
7173 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7174 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7175 .access = PL1_R, .accessfn = access_lor_ns,
7176 .fgt = FGT_LORID_EL1,
7177 .type = ARM_CP_CONST, .resetvalue = 0 },
7178 };
7179
7180 #ifdef TARGET_AARCH64
7181 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7182 bool isread)
7183 {
7184 int el = arm_current_el(env);
7185
7186 if (el < 2 &&
7187 arm_is_el2_enabled(env) &&
7188 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7189 return CP_ACCESS_TRAP_EL2;
7190 }
7191 if (el < 3 &&
7192 arm_feature(env, ARM_FEATURE_EL3) &&
7193 !(env->cp15.scr_el3 & SCR_APK)) {
7194 return CP_ACCESS_TRAP_EL3;
7195 }
7196 return CP_ACCESS_OK;
7197 }
7198
7199 static const ARMCPRegInfo pauth_reginfo[] = {
7200 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7201 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7202 .access = PL1_RW, .accessfn = access_pauth,
7203 .fgt = FGT_APDAKEY,
7204 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7205 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7206 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7207 .access = PL1_RW, .accessfn = access_pauth,
7208 .fgt = FGT_APDAKEY,
7209 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7210 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7211 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7212 .access = PL1_RW, .accessfn = access_pauth,
7213 .fgt = FGT_APDBKEY,
7214 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7215 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7217 .access = PL1_RW, .accessfn = access_pauth,
7218 .fgt = FGT_APDBKEY,
7219 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7220 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7221 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7222 .access = PL1_RW, .accessfn = access_pauth,
7223 .fgt = FGT_APGAKEY,
7224 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7225 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7226 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7227 .access = PL1_RW, .accessfn = access_pauth,
7228 .fgt = FGT_APGAKEY,
7229 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7230 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7231 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7232 .access = PL1_RW, .accessfn = access_pauth,
7233 .fgt = FGT_APIAKEY,
7234 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7235 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7237 .access = PL1_RW, .accessfn = access_pauth,
7238 .fgt = FGT_APIAKEY,
7239 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7240 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7241 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7242 .access = PL1_RW, .accessfn = access_pauth,
7243 .fgt = FGT_APIBKEY,
7244 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7245 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7246 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7247 .access = PL1_RW, .accessfn = access_pauth,
7248 .fgt = FGT_APIBKEY,
7249 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7250 };
7251
7252 static const ARMCPRegInfo tlbirange_reginfo[] = {
7253 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7254 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7255 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7256 .fgt = FGT_TLBIRVAE1IS,
7257 .writefn = tlbi_aa64_rvae1is_write },
7258 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7259 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7260 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7261 .fgt = FGT_TLBIRVAAE1IS,
7262 .writefn = tlbi_aa64_rvae1is_write },
7263 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7264 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7265 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7266 .fgt = FGT_TLBIRVALE1IS,
7267 .writefn = tlbi_aa64_rvae1is_write },
7268 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7269 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7270 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7271 .fgt = FGT_TLBIRVAALE1IS,
7272 .writefn = tlbi_aa64_rvae1is_write },
7273 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7274 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7275 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7276 .fgt = FGT_TLBIRVAE1OS,
7277 .writefn = tlbi_aa64_rvae1is_write },
7278 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7279 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7280 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7281 .fgt = FGT_TLBIRVAAE1OS,
7282 .writefn = tlbi_aa64_rvae1is_write },
7283 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7284 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7285 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7286 .fgt = FGT_TLBIRVALE1OS,
7287 .writefn = tlbi_aa64_rvae1is_write },
7288 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7290 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7291 .fgt = FGT_TLBIRVAALE1OS,
7292 .writefn = tlbi_aa64_rvae1is_write },
7293 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7294 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7295 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7296 .fgt = FGT_TLBIRVAE1,
7297 .writefn = tlbi_aa64_rvae1_write },
7298 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7299 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7300 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7301 .fgt = FGT_TLBIRVAAE1,
7302 .writefn = tlbi_aa64_rvae1_write },
7303 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7305 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7306 .fgt = FGT_TLBIRVALE1,
7307 .writefn = tlbi_aa64_rvae1_write },
7308 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7310 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7311 .fgt = FGT_TLBIRVAALE1,
7312 .writefn = tlbi_aa64_rvae1_write },
7313 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7314 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7315 .access = PL2_W, .type = ARM_CP_NO_RAW,
7316 .writefn = tlbi_aa64_ripas2e1is_write },
7317 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7319 .access = PL2_W, .type = ARM_CP_NO_RAW,
7320 .writefn = tlbi_aa64_ripas2e1is_write },
7321 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7322 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7323 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7324 .writefn = tlbi_aa64_rvae2is_write },
7325 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7326 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7327 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7328 .writefn = tlbi_aa64_rvae2is_write },
7329 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7330 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7331 .access = PL2_W, .type = ARM_CP_NO_RAW,
7332 .writefn = tlbi_aa64_ripas2e1_write },
7333 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7334 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7335 .access = PL2_W, .type = ARM_CP_NO_RAW,
7336 .writefn = tlbi_aa64_ripas2e1_write },
7337 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7338 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7339 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7340 .writefn = tlbi_aa64_rvae2is_write },
7341 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7342 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7343 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7344 .writefn = tlbi_aa64_rvae2is_write },
7345 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7346 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7347 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7348 .writefn = tlbi_aa64_rvae2_write },
7349 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7350 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7351 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7352 .writefn = tlbi_aa64_rvae2_write },
7353 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7354 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7355 .access = PL3_W, .type = ARM_CP_NO_RAW,
7356 .writefn = tlbi_aa64_rvae3is_write },
7357 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7359 .access = PL3_W, .type = ARM_CP_NO_RAW,
7360 .writefn = tlbi_aa64_rvae3is_write },
7361 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7362 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7363 .access = PL3_W, .type = ARM_CP_NO_RAW,
7364 .writefn = tlbi_aa64_rvae3is_write },
7365 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7366 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7367 .access = PL3_W, .type = ARM_CP_NO_RAW,
7368 .writefn = tlbi_aa64_rvae3is_write },
7369 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7370 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7371 .access = PL3_W, .type = ARM_CP_NO_RAW,
7372 .writefn = tlbi_aa64_rvae3_write },
7373 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7374 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7375 .access = PL3_W, .type = ARM_CP_NO_RAW,
7376 .writefn = tlbi_aa64_rvae3_write },
7377 };
7378
7379 static const ARMCPRegInfo tlbios_reginfo[] = {
7380 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7382 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7383 .fgt = FGT_TLBIVMALLE1OS,
7384 .writefn = tlbi_aa64_vmalle1is_write },
7385 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7387 .fgt = FGT_TLBIVAE1OS,
7388 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7389 .writefn = tlbi_aa64_vae1is_write },
7390 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7392 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7393 .fgt = FGT_TLBIASIDE1OS,
7394 .writefn = tlbi_aa64_vmalle1is_write },
7395 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7397 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7398 .fgt = FGT_TLBIVAAE1OS,
7399 .writefn = tlbi_aa64_vae1is_write },
7400 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7402 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7403 .fgt = FGT_TLBIVALE1OS,
7404 .writefn = tlbi_aa64_vae1is_write },
7405 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7406 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7407 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7408 .fgt = FGT_TLBIVAALE1OS,
7409 .writefn = tlbi_aa64_vae1is_write },
7410 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7411 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7412 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7413 .writefn = tlbi_aa64_alle2is_write },
7414 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7416 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7417 .writefn = tlbi_aa64_vae2is_write },
7418 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7419 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7420 .access = PL2_W, .type = ARM_CP_NO_RAW,
7421 .writefn = tlbi_aa64_alle1is_write },
7422 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7423 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7424 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7425 .writefn = tlbi_aa64_vae2is_write },
7426 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7428 .access = PL2_W, .type = ARM_CP_NO_RAW,
7429 .writefn = tlbi_aa64_alle1is_write },
7430 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7432 .access = PL2_W, .type = ARM_CP_NOP },
7433 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7435 .access = PL2_W, .type = ARM_CP_NOP },
7436 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7437 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7438 .access = PL2_W, .type = ARM_CP_NOP },
7439 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7440 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7441 .access = PL2_W, .type = ARM_CP_NOP },
7442 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7443 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7444 .access = PL3_W, .type = ARM_CP_NO_RAW,
7445 .writefn = tlbi_aa64_alle3is_write },
7446 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7448 .access = PL3_W, .type = ARM_CP_NO_RAW,
7449 .writefn = tlbi_aa64_vae3is_write },
7450 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7452 .access = PL3_W, .type = ARM_CP_NO_RAW,
7453 .writefn = tlbi_aa64_vae3is_write },
7454 };
7455
7456 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7457 {
7458 Error *err = NULL;
7459 uint64_t ret;
7460
7461 /* Success sets NZCV = 0000. */
7462 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7463
7464 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7465 /*
7466 * ??? Failed, for unknown reasons in the crypto subsystem.
7467 * The best we can do is log the reason and return the
7468 * timed-out indication to the guest. There is no reason
7469 * we know to expect this failure to be transitory, so the
7470 * guest may well hang retrying the operation.
7471 */
7472 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7473 ri->name, error_get_pretty(err));
7474 error_free(err);
7475
7476 env->ZF = 0; /* NZCF = 0100 */
7477 return 0;
7478 }
7479 return ret;
7480 }
7481
7482 /* We do not support re-seeding, so the two registers operate the same. */
7483 static const ARMCPRegInfo rndr_reginfo[] = {
7484 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7485 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7486 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7487 .access = PL0_R, .readfn = rndr_readfn },
7488 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7489 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7490 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7491 .access = PL0_R, .readfn = rndr_readfn },
7492 };
7493
7494 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7495 uint64_t value)
7496 {
7497 ARMCPU *cpu = env_archcpu(env);
7498 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7499 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7500 uint64_t vaddr_in = (uint64_t) value;
7501 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7502 void *haddr;
7503 int mem_idx = cpu_mmu_index(env, false);
7504
7505 /* This won't be crossing page boundaries */
7506 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7507 if (haddr) {
7508 #ifndef CONFIG_USER_ONLY
7509
7510 ram_addr_t offset;
7511 MemoryRegion *mr;
7512
7513 /* RCU lock is already being held */
7514 mr = memory_region_from_host(haddr, &offset);
7515
7516 if (mr) {
7517 memory_region_writeback(mr, offset, dline_size);
7518 }
7519 #endif /*CONFIG_USER_ONLY*/
7520 }
7521 }
7522
7523 static const ARMCPRegInfo dcpop_reg[] = {
7524 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7526 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7527 .fgt = FGT_DCCVAP,
7528 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7529 };
7530
7531 static const ARMCPRegInfo dcpodp_reg[] = {
7532 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7533 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7534 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7535 .fgt = FGT_DCCVADP,
7536 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7537 };
7538
7539 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7540 bool isread)
7541 {
7542 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7543 return CP_ACCESS_TRAP_EL2;
7544 }
7545
7546 return CP_ACCESS_OK;
7547 }
7548
7549 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7550 bool isread)
7551 {
7552 int el = arm_current_el(env);
7553
7554 if (el < 2 && arm_is_el2_enabled(env)) {
7555 uint64_t hcr = arm_hcr_el2_eff(env);
7556 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7557 return CP_ACCESS_TRAP_EL2;
7558 }
7559 }
7560 if (el < 3 &&
7561 arm_feature(env, ARM_FEATURE_EL3) &&
7562 !(env->cp15.scr_el3 & SCR_ATA)) {
7563 return CP_ACCESS_TRAP_EL3;
7564 }
7565 return CP_ACCESS_OK;
7566 }
7567
7568 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7569 {
7570 return env->pstate & PSTATE_TCO;
7571 }
7572
7573 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7574 {
7575 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7576 }
7577
7578 static const ARMCPRegInfo mte_reginfo[] = {
7579 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7580 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7581 .access = PL1_RW, .accessfn = access_mte,
7582 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7583 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7585 .access = PL1_RW, .accessfn = access_mte,
7586 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7587 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7588 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7589 .access = PL2_RW, .accessfn = access_mte,
7590 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7591 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7592 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7593 .access = PL3_RW,
7594 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7595 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7596 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7597 .access = PL1_RW, .accessfn = access_mte,
7598 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7599 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7600 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7601 .access = PL1_RW, .accessfn = access_mte,
7602 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7603 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7604 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7605 .access = PL1_R, .accessfn = access_aa64_tid5,
7606 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7607 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7608 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7609 .type = ARM_CP_NO_RAW,
7610 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7611 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7612 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7613 .type = ARM_CP_NOP, .access = PL1_W,
7614 .fgt = FGT_DCIVAC,
7615 .accessfn = aa64_cacheop_poc_access },
7616 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7617 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7618 .fgt = FGT_DCISW,
7619 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7620 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7621 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7622 .type = ARM_CP_NOP, .access = PL1_W,
7623 .fgt = FGT_DCIVAC,
7624 .accessfn = aa64_cacheop_poc_access },
7625 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7626 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7627 .fgt = FGT_DCISW,
7628 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7629 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7630 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7631 .fgt = FGT_DCCSW,
7632 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7633 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7634 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7635 .fgt = FGT_DCCSW,
7636 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7637 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7638 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7639 .fgt = FGT_DCCISW,
7640 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7641 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7642 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7643 .fgt = FGT_DCCISW,
7644 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7645 };
7646
7647 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7648 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7649 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7650 .type = ARM_CP_CONST, .access = PL0_RW, },
7651 };
7652
7653 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7654 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7655 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7656 .type = ARM_CP_NOP, .access = PL0_W,
7657 .fgt = FGT_DCCVAC,
7658 .accessfn = aa64_cacheop_poc_access },
7659 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7660 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7661 .type = ARM_CP_NOP, .access = PL0_W,
7662 .fgt = FGT_DCCVAC,
7663 .accessfn = aa64_cacheop_poc_access },
7664 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7665 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7666 .type = ARM_CP_NOP, .access = PL0_W,
7667 .fgt = FGT_DCCVAP,
7668 .accessfn = aa64_cacheop_poc_access },
7669 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7670 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7671 .type = ARM_CP_NOP, .access = PL0_W,
7672 .fgt = FGT_DCCVAP,
7673 .accessfn = aa64_cacheop_poc_access },
7674 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7675 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7676 .type = ARM_CP_NOP, .access = PL0_W,
7677 .fgt = FGT_DCCVADP,
7678 .accessfn = aa64_cacheop_poc_access },
7679 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7681 .type = ARM_CP_NOP, .access = PL0_W,
7682 .fgt = FGT_DCCVADP,
7683 .accessfn = aa64_cacheop_poc_access },
7684 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7685 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7686 .type = ARM_CP_NOP, .access = PL0_W,
7687 .fgt = FGT_DCCIVAC,
7688 .accessfn = aa64_cacheop_poc_access },
7689 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7690 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7691 .type = ARM_CP_NOP, .access = PL0_W,
7692 .fgt = FGT_DCCIVAC,
7693 .accessfn = aa64_cacheop_poc_access },
7694 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7695 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7696 .access = PL0_W, .type = ARM_CP_DC_GVA,
7697 #ifndef CONFIG_USER_ONLY
7698 /* Avoid overhead of an access check that always passes in user-mode */
7699 .accessfn = aa64_zva_access,
7700 .fgt = FGT_DCZVA,
7701 #endif
7702 },
7703 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7704 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7705 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7706 #ifndef CONFIG_USER_ONLY
7707 /* Avoid overhead of an access check that always passes in user-mode */
7708 .accessfn = aa64_zva_access,
7709 .fgt = FGT_DCZVA,
7710 #endif
7711 },
7712 };
7713
7714 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7715 bool isread)
7716 {
7717 uint64_t hcr = arm_hcr_el2_eff(env);
7718 int el = arm_current_el(env);
7719
7720 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7721 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7722 if (hcr & HCR_TGE) {
7723 return CP_ACCESS_TRAP_EL2;
7724 }
7725 return CP_ACCESS_TRAP;
7726 }
7727 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7728 return CP_ACCESS_TRAP_EL2;
7729 }
7730 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7731 return CP_ACCESS_TRAP_EL2;
7732 }
7733 if (el < 3
7734 && arm_feature(env, ARM_FEATURE_EL3)
7735 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7736 return CP_ACCESS_TRAP_EL3;
7737 }
7738 return CP_ACCESS_OK;
7739 }
7740
7741 static const ARMCPRegInfo scxtnum_reginfo[] = {
7742 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7743 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7744 .access = PL0_RW, .accessfn = access_scxtnum,
7745 .fgt = FGT_SCXTNUM_EL0,
7746 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7747 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7748 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7749 .access = PL1_RW, .accessfn = access_scxtnum,
7750 .fgt = FGT_SCXTNUM_EL1,
7751 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7752 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7753 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7754 .access = PL2_RW, .accessfn = access_scxtnum,
7755 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7756 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7757 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7758 .access = PL3_RW,
7759 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7760 };
7761
7762 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7763 bool isread)
7764 {
7765 if (arm_current_el(env) == 2 &&
7766 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7767 return CP_ACCESS_TRAP_EL3;
7768 }
7769 return CP_ACCESS_OK;
7770 }
7771
7772 static const ARMCPRegInfo fgt_reginfo[] = {
7773 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7774 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7775 .access = PL2_RW, .accessfn = access_fgt,
7776 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7777 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7778 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7779 .access = PL2_RW, .accessfn = access_fgt,
7780 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7781 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7783 .access = PL2_RW, .accessfn = access_fgt,
7784 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7785 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7786 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7787 .access = PL2_RW, .accessfn = access_fgt,
7788 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7789 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7790 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7791 .access = PL2_RW, .accessfn = access_fgt,
7792 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7793 };
7794 #endif /* TARGET_AARCH64 */
7795
7796 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7797 bool isread)
7798 {
7799 int el = arm_current_el(env);
7800
7801 if (el == 0) {
7802 uint64_t sctlr = arm_sctlr(env, el);
7803 if (!(sctlr & SCTLR_EnRCTX)) {
7804 return CP_ACCESS_TRAP;
7805 }
7806 } else if (el == 1) {
7807 uint64_t hcr = arm_hcr_el2_eff(env);
7808 if (hcr & HCR_NV) {
7809 return CP_ACCESS_TRAP_EL2;
7810 }
7811 }
7812 return CP_ACCESS_OK;
7813 }
7814
7815 static const ARMCPRegInfo predinv_reginfo[] = {
7816 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7817 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7818 .fgt = FGT_CFPRCTX,
7819 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7820 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7822 .fgt = FGT_DVPRCTX,
7823 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7824 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7825 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7826 .fgt = FGT_CPPRCTX,
7827 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7828 /*
7829 * Note the AArch32 opcodes have a different OPC1.
7830 */
7831 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7832 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7833 .fgt = FGT_CFPRCTX,
7834 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7835 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7836 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7837 .fgt = FGT_DVPRCTX,
7838 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7839 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7840 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7841 .fgt = FGT_CPPRCTX,
7842 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7843 };
7844
7845 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7846 {
7847 /* Read the high 32 bits of the current CCSIDR */
7848 return extract64(ccsidr_read(env, ri), 32, 32);
7849 }
7850
7851 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7852 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7853 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7854 .access = PL1_R,
7855 .accessfn = access_tid4,
7856 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7857 };
7858
7859 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7860 bool isread)
7861 {
7862 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7863 return CP_ACCESS_TRAP_EL2;
7864 }
7865
7866 return CP_ACCESS_OK;
7867 }
7868
7869 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7870 bool isread)
7871 {
7872 if (arm_feature(env, ARM_FEATURE_V8)) {
7873 return access_aa64_tid3(env, ri, isread);
7874 }
7875
7876 return CP_ACCESS_OK;
7877 }
7878
7879 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7880 bool isread)
7881 {
7882 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7883 return CP_ACCESS_TRAP_EL2;
7884 }
7885
7886 return CP_ACCESS_OK;
7887 }
7888
7889 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7890 const ARMCPRegInfo *ri, bool isread)
7891 {
7892 /*
7893 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7894 * in v7A, not in v8A.
7895 */
7896 if (!arm_feature(env, ARM_FEATURE_V8) &&
7897 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7898 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7899 return CP_ACCESS_TRAP_EL2;
7900 }
7901 return CP_ACCESS_OK;
7902 }
7903
7904 static const ARMCPRegInfo jazelle_regs[] = {
7905 { .name = "JIDR",
7906 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7907 .access = PL1_R, .accessfn = access_jazelle,
7908 .type = ARM_CP_CONST, .resetvalue = 0 },
7909 { .name = "JOSCR",
7910 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7911 .accessfn = access_joscr_jmcr,
7912 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7913 { .name = "JMCR",
7914 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7915 .accessfn = access_joscr_jmcr,
7916 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7917 };
7918
7919 static const ARMCPRegInfo contextidr_el2 = {
7920 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7921 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7922 .access = PL2_RW,
7923 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7924 };
7925
7926 static const ARMCPRegInfo vhe_reginfo[] = {
7927 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7928 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7929 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7930 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7931 #ifndef CONFIG_USER_ONLY
7932 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7934 .fieldoffset =
7935 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7936 .type = ARM_CP_IO, .access = PL2_RW,
7937 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7938 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7940 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7941 .resetfn = gt_hv_timer_reset,
7942 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7943 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7944 .type = ARM_CP_IO,
7945 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7946 .access = PL2_RW,
7947 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7948 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7949 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7950 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7951 .type = ARM_CP_IO | ARM_CP_ALIAS,
7952 .access = PL2_RW, .accessfn = e2h_access,
7953 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7954 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7955 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7956 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7957 .type = ARM_CP_IO | ARM_CP_ALIAS,
7958 .access = PL2_RW, .accessfn = e2h_access,
7959 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7960 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7961 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7962 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7963 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7964 .access = PL2_RW, .accessfn = e2h_access,
7965 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7966 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7967 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7968 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7969 .access = PL2_RW, .accessfn = e2h_access,
7970 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7971 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7972 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7973 .type = ARM_CP_IO | ARM_CP_ALIAS,
7974 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7975 .access = PL2_RW, .accessfn = e2h_access,
7976 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7977 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7978 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7979 .type = ARM_CP_IO | ARM_CP_ALIAS,
7980 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7981 .access = PL2_RW, .accessfn = e2h_access,
7982 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7983 #endif
7984 };
7985
7986 #ifndef CONFIG_USER_ONLY
7987 static const ARMCPRegInfo ats1e1_reginfo[] = {
7988 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7989 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7990 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7991 .fgt = FGT_ATS1E1RP,
7992 .writefn = ats_write64 },
7993 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7994 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7995 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7996 .fgt = FGT_ATS1E1WP,
7997 .writefn = ats_write64 },
7998 };
7999
8000 static const ARMCPRegInfo ats1cp_reginfo[] = {
8001 { .name = "ATS1CPRP",
8002 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8003 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8004 .writefn = ats_write },
8005 { .name = "ATS1CPWP",
8006 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8007 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8008 .writefn = ats_write },
8009 };
8010 #endif
8011
8012 /*
8013 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8014 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8015 * is non-zero, which is never for ARMv7, optionally in ARMv8
8016 * and mandatorily for ARMv8.2 and up.
8017 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8018 * implementation is RAZ/WI we can ignore this detail, as we
8019 * do for ACTLR.
8020 */
8021 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8022 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8023 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8024 .access = PL1_RW, .accessfn = access_tacr,
8025 .type = ARM_CP_CONST, .resetvalue = 0 },
8026 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8027 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8028 .access = PL2_RW, .type = ARM_CP_CONST,
8029 .resetvalue = 0 },
8030 };
8031
8032 void register_cp_regs_for_features(ARMCPU *cpu)
8033 {
8034 /* Register all the coprocessor registers based on feature bits */
8035 CPUARMState *env = &cpu->env;
8036 if (arm_feature(env, ARM_FEATURE_M)) {
8037 /* M profile has no coprocessor registers */
8038 return;
8039 }
8040
8041 define_arm_cp_regs(cpu, cp_reginfo);
8042 if (!arm_feature(env, ARM_FEATURE_V8)) {
8043 /*
8044 * Must go early as it is full of wildcards that may be
8045 * overridden by later definitions.
8046 */
8047 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8048 }
8049
8050 if (arm_feature(env, ARM_FEATURE_V6)) {
8051 /* The ID registers all have impdef reset values */
8052 ARMCPRegInfo v6_idregs[] = {
8053 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8055 .access = PL1_R, .type = ARM_CP_CONST,
8056 .accessfn = access_aa32_tid3,
8057 .resetvalue = cpu->isar.id_pfr0 },
8058 /*
8059 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8060 * the value of the GIC field until after we define these regs.
8061 */
8062 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8063 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8064 .access = PL1_R, .type = ARM_CP_NO_RAW,
8065 .accessfn = access_aa32_tid3,
8066 #ifdef CONFIG_USER_ONLY
8067 .type = ARM_CP_CONST,
8068 .resetvalue = cpu->isar.id_pfr1,
8069 #else
8070 .type = ARM_CP_NO_RAW,
8071 .accessfn = access_aa32_tid3,
8072 .readfn = id_pfr1_read,
8073 .writefn = arm_cp_write_ignore
8074 #endif
8075 },
8076 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8078 .access = PL1_R, .type = ARM_CP_CONST,
8079 .accessfn = access_aa32_tid3,
8080 .resetvalue = cpu->isar.id_dfr0 },
8081 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8083 .access = PL1_R, .type = ARM_CP_CONST,
8084 .accessfn = access_aa32_tid3,
8085 .resetvalue = cpu->id_afr0 },
8086 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8088 .access = PL1_R, .type = ARM_CP_CONST,
8089 .accessfn = access_aa32_tid3,
8090 .resetvalue = cpu->isar.id_mmfr0 },
8091 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8093 .access = PL1_R, .type = ARM_CP_CONST,
8094 .accessfn = access_aa32_tid3,
8095 .resetvalue = cpu->isar.id_mmfr1 },
8096 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8098 .access = PL1_R, .type = ARM_CP_CONST,
8099 .accessfn = access_aa32_tid3,
8100 .resetvalue = cpu->isar.id_mmfr2 },
8101 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8103 .access = PL1_R, .type = ARM_CP_CONST,
8104 .accessfn = access_aa32_tid3,
8105 .resetvalue = cpu->isar.id_mmfr3 },
8106 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8108 .access = PL1_R, .type = ARM_CP_CONST,
8109 .accessfn = access_aa32_tid3,
8110 .resetvalue = cpu->isar.id_isar0 },
8111 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8112 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8113 .access = PL1_R, .type = ARM_CP_CONST,
8114 .accessfn = access_aa32_tid3,
8115 .resetvalue = cpu->isar.id_isar1 },
8116 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8118 .access = PL1_R, .type = ARM_CP_CONST,
8119 .accessfn = access_aa32_tid3,
8120 .resetvalue = cpu->isar.id_isar2 },
8121 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8123 .access = PL1_R, .type = ARM_CP_CONST,
8124 .accessfn = access_aa32_tid3,
8125 .resetvalue = cpu->isar.id_isar3 },
8126 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8127 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8128 .access = PL1_R, .type = ARM_CP_CONST,
8129 .accessfn = access_aa32_tid3,
8130 .resetvalue = cpu->isar.id_isar4 },
8131 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8132 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8133 .access = PL1_R, .type = ARM_CP_CONST,
8134 .accessfn = access_aa32_tid3,
8135 .resetvalue = cpu->isar.id_isar5 },
8136 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8138 .access = PL1_R, .type = ARM_CP_CONST,
8139 .accessfn = access_aa32_tid3,
8140 .resetvalue = cpu->isar.id_mmfr4 },
8141 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8143 .access = PL1_R, .type = ARM_CP_CONST,
8144 .accessfn = access_aa32_tid3,
8145 .resetvalue = cpu->isar.id_isar6 },
8146 };
8147 define_arm_cp_regs(cpu, v6_idregs);
8148 define_arm_cp_regs(cpu, v6_cp_reginfo);
8149 } else {
8150 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8151 }
8152 if (arm_feature(env, ARM_FEATURE_V6K)) {
8153 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8154 }
8155 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8156 !arm_feature(env, ARM_FEATURE_PMSA)) {
8157 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8158 }
8159 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8160 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8161 }
8162 if (arm_feature(env, ARM_FEATURE_V7)) {
8163 ARMCPRegInfo clidr = {
8164 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8165 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8166 .access = PL1_R, .type = ARM_CP_CONST,
8167 .accessfn = access_tid4,
8168 .fgt = FGT_CLIDR_EL1,
8169 .resetvalue = cpu->clidr
8170 };
8171 define_one_arm_cp_reg(cpu, &clidr);
8172 define_arm_cp_regs(cpu, v7_cp_reginfo);
8173 define_debug_regs(cpu);
8174 define_pmu_regs(cpu);
8175 } else {
8176 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8177 }
8178 if (arm_feature(env, ARM_FEATURE_V8)) {
8179 /*
8180 * v8 ID registers, which all have impdef reset values.
8181 * Note that within the ID register ranges the unused slots
8182 * must all RAZ, not UNDEF; future architecture versions may
8183 * define new registers here.
8184 * ID registers which are AArch64 views of the AArch32 ID registers
8185 * which already existed in v6 and v7 are handled elsewhere,
8186 * in v6_idregs[].
8187 */
8188 int i;
8189 ARMCPRegInfo v8_idregs[] = {
8190 /*
8191 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8192 * emulation because we don't know the right value for the
8193 * GIC field until after we define these regs.
8194 */
8195 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8197 .access = PL1_R,
8198 #ifdef CONFIG_USER_ONLY
8199 .type = ARM_CP_CONST,
8200 .resetvalue = cpu->isar.id_aa64pfr0
8201 #else
8202 .type = ARM_CP_NO_RAW,
8203 .accessfn = access_aa64_tid3,
8204 .readfn = id_aa64pfr0_read,
8205 .writefn = arm_cp_write_ignore
8206 #endif
8207 },
8208 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8209 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8210 .access = PL1_R, .type = ARM_CP_CONST,
8211 .accessfn = access_aa64_tid3,
8212 .resetvalue = cpu->isar.id_aa64pfr1},
8213 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8214 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8215 .access = PL1_R, .type = ARM_CP_CONST,
8216 .accessfn = access_aa64_tid3,
8217 .resetvalue = 0 },
8218 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8220 .access = PL1_R, .type = ARM_CP_CONST,
8221 .accessfn = access_aa64_tid3,
8222 .resetvalue = 0 },
8223 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8225 .access = PL1_R, .type = ARM_CP_CONST,
8226 .accessfn = access_aa64_tid3,
8227 .resetvalue = cpu->isar.id_aa64zfr0 },
8228 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8230 .access = PL1_R, .type = ARM_CP_CONST,
8231 .accessfn = access_aa64_tid3,
8232 .resetvalue = cpu->isar.id_aa64smfr0 },
8233 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8235 .access = PL1_R, .type = ARM_CP_CONST,
8236 .accessfn = access_aa64_tid3,
8237 .resetvalue = 0 },
8238 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8240 .access = PL1_R, .type = ARM_CP_CONST,
8241 .accessfn = access_aa64_tid3,
8242 .resetvalue = 0 },
8243 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8245 .access = PL1_R, .type = ARM_CP_CONST,
8246 .accessfn = access_aa64_tid3,
8247 .resetvalue = cpu->isar.id_aa64dfr0 },
8248 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8250 .access = PL1_R, .type = ARM_CP_CONST,
8251 .accessfn = access_aa64_tid3,
8252 .resetvalue = cpu->isar.id_aa64dfr1 },
8253 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8255 .access = PL1_R, .type = ARM_CP_CONST,
8256 .accessfn = access_aa64_tid3,
8257 .resetvalue = 0 },
8258 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8260 .access = PL1_R, .type = ARM_CP_CONST,
8261 .accessfn = access_aa64_tid3,
8262 .resetvalue = 0 },
8263 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8265 .access = PL1_R, .type = ARM_CP_CONST,
8266 .accessfn = access_aa64_tid3,
8267 .resetvalue = cpu->id_aa64afr0 },
8268 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8270 .access = PL1_R, .type = ARM_CP_CONST,
8271 .accessfn = access_aa64_tid3,
8272 .resetvalue = cpu->id_aa64afr1 },
8273 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8275 .access = PL1_R, .type = ARM_CP_CONST,
8276 .accessfn = access_aa64_tid3,
8277 .resetvalue = 0 },
8278 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8280 .access = PL1_R, .type = ARM_CP_CONST,
8281 .accessfn = access_aa64_tid3,
8282 .resetvalue = 0 },
8283 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8285 .access = PL1_R, .type = ARM_CP_CONST,
8286 .accessfn = access_aa64_tid3,
8287 .resetvalue = cpu->isar.id_aa64isar0 },
8288 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8290 .access = PL1_R, .type = ARM_CP_CONST,
8291 .accessfn = access_aa64_tid3,
8292 .resetvalue = cpu->isar.id_aa64isar1 },
8293 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8295 .access = PL1_R, .type = ARM_CP_CONST,
8296 .accessfn = access_aa64_tid3,
8297 .resetvalue = 0 },
8298 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8300 .access = PL1_R, .type = ARM_CP_CONST,
8301 .accessfn = access_aa64_tid3,
8302 .resetvalue = 0 },
8303 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8305 .access = PL1_R, .type = ARM_CP_CONST,
8306 .accessfn = access_aa64_tid3,
8307 .resetvalue = 0 },
8308 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8310 .access = PL1_R, .type = ARM_CP_CONST,
8311 .accessfn = access_aa64_tid3,
8312 .resetvalue = 0 },
8313 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8314 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8315 .access = PL1_R, .type = ARM_CP_CONST,
8316 .accessfn = access_aa64_tid3,
8317 .resetvalue = 0 },
8318 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8319 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8320 .access = PL1_R, .type = ARM_CP_CONST,
8321 .accessfn = access_aa64_tid3,
8322 .resetvalue = 0 },
8323 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8325 .access = PL1_R, .type = ARM_CP_CONST,
8326 .accessfn = access_aa64_tid3,
8327 .resetvalue = cpu->isar.id_aa64mmfr0 },
8328 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8329 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8330 .access = PL1_R, .type = ARM_CP_CONST,
8331 .accessfn = access_aa64_tid3,
8332 .resetvalue = cpu->isar.id_aa64mmfr1 },
8333 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8334 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8335 .access = PL1_R, .type = ARM_CP_CONST,
8336 .accessfn = access_aa64_tid3,
8337 .resetvalue = cpu->isar.id_aa64mmfr2 },
8338 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8339 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8340 .access = PL1_R, .type = ARM_CP_CONST,
8341 .accessfn = access_aa64_tid3,
8342 .resetvalue = 0 },
8343 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8345 .access = PL1_R, .type = ARM_CP_CONST,
8346 .accessfn = access_aa64_tid3,
8347 .resetvalue = 0 },
8348 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8350 .access = PL1_R, .type = ARM_CP_CONST,
8351 .accessfn = access_aa64_tid3,
8352 .resetvalue = 0 },
8353 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8355 .access = PL1_R, .type = ARM_CP_CONST,
8356 .accessfn = access_aa64_tid3,
8357 .resetvalue = 0 },
8358 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8360 .access = PL1_R, .type = ARM_CP_CONST,
8361 .accessfn = access_aa64_tid3,
8362 .resetvalue = 0 },
8363 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8365 .access = PL1_R, .type = ARM_CP_CONST,
8366 .accessfn = access_aa64_tid3,
8367 .resetvalue = cpu->isar.mvfr0 },
8368 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8370 .access = PL1_R, .type = ARM_CP_CONST,
8371 .accessfn = access_aa64_tid3,
8372 .resetvalue = cpu->isar.mvfr1 },
8373 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8375 .access = PL1_R, .type = ARM_CP_CONST,
8376 .accessfn = access_aa64_tid3,
8377 .resetvalue = cpu->isar.mvfr2 },
8378 /*
8379 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8380 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8381 * as RAZ, since it is in the "reserved for future ID
8382 * registers, RAZ" part of the AArch32 encoding space.
8383 */
8384 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8385 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8386 .access = PL1_R, .type = ARM_CP_CONST,
8387 .accessfn = access_aa64_tid3,
8388 .resetvalue = 0 },
8389 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8390 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8391 .access = PL1_R, .type = ARM_CP_CONST,
8392 .accessfn = access_aa64_tid3,
8393 .resetvalue = 0 },
8394 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8395 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8396 .access = PL1_R, .type = ARM_CP_CONST,
8397 .accessfn = access_aa64_tid3,
8398 .resetvalue = 0 },
8399 /*
8400 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8401 * they're also RAZ for AArch64, and in v8 are gradually
8402 * being filled with AArch64-view-of-AArch32-ID-register
8403 * for new ID registers.
8404 */
8405 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8407 .access = PL1_R, .type = ARM_CP_CONST,
8408 .accessfn = access_aa64_tid3,
8409 .resetvalue = 0 },
8410 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8412 .access = PL1_R, .type = ARM_CP_CONST,
8413 .accessfn = access_aa64_tid3,
8414 .resetvalue = cpu->isar.id_pfr2 },
8415 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8417 .access = PL1_R, .type = ARM_CP_CONST,
8418 .accessfn = access_aa64_tid3,
8419 .resetvalue = cpu->isar.id_dfr1 },
8420 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8422 .access = PL1_R, .type = ARM_CP_CONST,
8423 .accessfn = access_aa64_tid3,
8424 .resetvalue = cpu->isar.id_mmfr5 },
8425 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8427 .access = PL1_R, .type = ARM_CP_CONST,
8428 .accessfn = access_aa64_tid3,
8429 .resetvalue = 0 },
8430 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8431 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8432 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8433 .fgt = FGT_PMCEIDN_EL0,
8434 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8435 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8436 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8437 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8438 .fgt = FGT_PMCEIDN_EL0,
8439 .resetvalue = cpu->pmceid0 },
8440 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8441 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8442 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8443 .fgt = FGT_PMCEIDN_EL0,
8444 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8445 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8446 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8447 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8448 .fgt = FGT_PMCEIDN_EL0,
8449 .resetvalue = cpu->pmceid1 },
8450 };
8451 #ifdef CONFIG_USER_ONLY
8452 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8453 { .name = "ID_AA64PFR0_EL1",
8454 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8455 R_ID_AA64PFR0_ADVSIMD_MASK |
8456 R_ID_AA64PFR0_SVE_MASK |
8457 R_ID_AA64PFR0_DIT_MASK,
8458 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8459 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8460 { .name = "ID_AA64PFR1_EL1",
8461 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8462 R_ID_AA64PFR1_SSBS_MASK |
8463 R_ID_AA64PFR1_MTE_MASK |
8464 R_ID_AA64PFR1_SME_MASK },
8465 { .name = "ID_AA64PFR*_EL1_RESERVED",
8466 .is_glob = true },
8467 { .name = "ID_AA64ZFR0_EL1",
8468 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8469 R_ID_AA64ZFR0_AES_MASK |
8470 R_ID_AA64ZFR0_BITPERM_MASK |
8471 R_ID_AA64ZFR0_BFLOAT16_MASK |
8472 R_ID_AA64ZFR0_SHA3_MASK |
8473 R_ID_AA64ZFR0_SM4_MASK |
8474 R_ID_AA64ZFR0_I8MM_MASK |
8475 R_ID_AA64ZFR0_F32MM_MASK |
8476 R_ID_AA64ZFR0_F64MM_MASK },
8477 { .name = "ID_AA64SMFR0_EL1",
8478 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8479 R_ID_AA64SMFR0_B16F32_MASK |
8480 R_ID_AA64SMFR0_F16F32_MASK |
8481 R_ID_AA64SMFR0_I8I32_MASK |
8482 R_ID_AA64SMFR0_F64F64_MASK |
8483 R_ID_AA64SMFR0_I16I64_MASK |
8484 R_ID_AA64SMFR0_FA64_MASK },
8485 { .name = "ID_AA64MMFR0_EL1",
8486 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8487 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8488 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8489 { .name = "ID_AA64MMFR1_EL1",
8490 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8491 { .name = "ID_AA64MMFR2_EL1",
8492 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8493 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8494 .is_glob = true },
8495 { .name = "ID_AA64DFR0_EL1",
8496 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8497 { .name = "ID_AA64DFR1_EL1" },
8498 { .name = "ID_AA64DFR*_EL1_RESERVED",
8499 .is_glob = true },
8500 { .name = "ID_AA64AFR*",
8501 .is_glob = true },
8502 { .name = "ID_AA64ISAR0_EL1",
8503 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8504 R_ID_AA64ISAR0_SHA1_MASK |
8505 R_ID_AA64ISAR0_SHA2_MASK |
8506 R_ID_AA64ISAR0_CRC32_MASK |
8507 R_ID_AA64ISAR0_ATOMIC_MASK |
8508 R_ID_AA64ISAR0_RDM_MASK |
8509 R_ID_AA64ISAR0_SHA3_MASK |
8510 R_ID_AA64ISAR0_SM3_MASK |
8511 R_ID_AA64ISAR0_SM4_MASK |
8512 R_ID_AA64ISAR0_DP_MASK |
8513 R_ID_AA64ISAR0_FHM_MASK |
8514 R_ID_AA64ISAR0_TS_MASK |
8515 R_ID_AA64ISAR0_RNDR_MASK },
8516 { .name = "ID_AA64ISAR1_EL1",
8517 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8518 R_ID_AA64ISAR1_APA_MASK |
8519 R_ID_AA64ISAR1_API_MASK |
8520 R_ID_AA64ISAR1_JSCVT_MASK |
8521 R_ID_AA64ISAR1_FCMA_MASK |
8522 R_ID_AA64ISAR1_LRCPC_MASK |
8523 R_ID_AA64ISAR1_GPA_MASK |
8524 R_ID_AA64ISAR1_GPI_MASK |
8525 R_ID_AA64ISAR1_FRINTTS_MASK |
8526 R_ID_AA64ISAR1_SB_MASK |
8527 R_ID_AA64ISAR1_BF16_MASK |
8528 R_ID_AA64ISAR1_DGH_MASK |
8529 R_ID_AA64ISAR1_I8MM_MASK },
8530 { .name = "ID_AA64ISAR2_EL1",
8531 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8532 R_ID_AA64ISAR2_RPRES_MASK |
8533 R_ID_AA64ISAR2_GPA3_MASK |
8534 R_ID_AA64ISAR2_APA3_MASK },
8535 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8536 .is_glob = true },
8537 };
8538 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8539 #endif
8540 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8541 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8542 !arm_feature(env, ARM_FEATURE_EL2)) {
8543 ARMCPRegInfo rvbar = {
8544 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8545 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8546 .access = PL1_R,
8547 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8548 };
8549 define_one_arm_cp_reg(cpu, &rvbar);
8550 }
8551 define_arm_cp_regs(cpu, v8_idregs);
8552 define_arm_cp_regs(cpu, v8_cp_reginfo);
8553
8554 for (i = 4; i < 16; i++) {
8555 /*
8556 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8557 * For pre-v8 cores there are RAZ patterns for these in
8558 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8559 * v8 extends the "must RAZ" part of the ID register space
8560 * to also cover c0, 0, c{8-15}, {0-7}.
8561 * These are STATE_AA32 because in the AArch64 sysreg space
8562 * c4-c7 is where the AArch64 ID registers live (and we've
8563 * already defined those in v8_idregs[]), and c8-c15 are not
8564 * "must RAZ" for AArch64.
8565 */
8566 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8567 ARMCPRegInfo v8_aa32_raz_idregs = {
8568 .name = name,
8569 .state = ARM_CP_STATE_AA32,
8570 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8571 .access = PL1_R, .type = ARM_CP_CONST,
8572 .accessfn = access_aa64_tid3,
8573 .resetvalue = 0 };
8574 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8575 }
8576 }
8577
8578 /*
8579 * Register the base EL2 cpregs.
8580 * Pre v8, these registers are implemented only as part of the
8581 * Virtualization Extensions (EL2 present). Beginning with v8,
8582 * if EL2 is missing but EL3 is enabled, mostly these become
8583 * RES0 from EL3, with some specific exceptions.
8584 */
8585 if (arm_feature(env, ARM_FEATURE_EL2)
8586 || (arm_feature(env, ARM_FEATURE_EL3)
8587 && arm_feature(env, ARM_FEATURE_V8))) {
8588 uint64_t vmpidr_def = mpidr_read_val(env);
8589 ARMCPRegInfo vpidr_regs[] = {
8590 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8591 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8592 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8593 .resetvalue = cpu->midr,
8594 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8595 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8596 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8597 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8598 .access = PL2_RW, .resetvalue = cpu->midr,
8599 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8600 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8601 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8602 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8603 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8604 .resetvalue = vmpidr_def,
8605 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8606 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8607 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8608 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8609 .access = PL2_RW, .resetvalue = vmpidr_def,
8610 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8611 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8612 };
8613 /*
8614 * The only field of MDCR_EL2 that has a defined architectural reset
8615 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8616 */
8617 ARMCPRegInfo mdcr_el2 = {
8618 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8619 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8620 .writefn = mdcr_el2_write,
8621 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8622 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8623 };
8624 define_one_arm_cp_reg(cpu, &mdcr_el2);
8625 define_arm_cp_regs(cpu, vpidr_regs);
8626 define_arm_cp_regs(cpu, el2_cp_reginfo);
8627 if (arm_feature(env, ARM_FEATURE_V8)) {
8628 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8629 }
8630 if (cpu_isar_feature(aa64_sel2, cpu)) {
8631 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8632 }
8633 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8634 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8635 ARMCPRegInfo rvbar[] = {
8636 {
8637 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8638 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8639 .access = PL2_R,
8640 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8641 },
8642 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8643 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8644 .access = PL2_R,
8645 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8646 },
8647 };
8648 define_arm_cp_regs(cpu, rvbar);
8649 }
8650 }
8651
8652 /* Register the base EL3 cpregs. */
8653 if (arm_feature(env, ARM_FEATURE_EL3)) {
8654 define_arm_cp_regs(cpu, el3_cp_reginfo);
8655 ARMCPRegInfo el3_regs[] = {
8656 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8657 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8658 .access = PL3_R,
8659 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8660 },
8661 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8662 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8663 .access = PL3_RW,
8664 .raw_writefn = raw_write, .writefn = sctlr_write,
8665 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8666 .resetvalue = cpu->reset_sctlr },
8667 };
8668
8669 define_arm_cp_regs(cpu, el3_regs);
8670 }
8671 /*
8672 * The behaviour of NSACR is sufficiently various that we don't
8673 * try to describe it in a single reginfo:
8674 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8675 * reads as constant 0xc00 from NS EL1 and NS EL2
8676 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8677 * if v7 without EL3, register doesn't exist
8678 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8679 */
8680 if (arm_feature(env, ARM_FEATURE_EL3)) {
8681 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8682 static const ARMCPRegInfo nsacr = {
8683 .name = "NSACR", .type = ARM_CP_CONST,
8684 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8685 .access = PL1_RW, .accessfn = nsacr_access,
8686 .resetvalue = 0xc00
8687 };
8688 define_one_arm_cp_reg(cpu, &nsacr);
8689 } else {
8690 static const ARMCPRegInfo nsacr = {
8691 .name = "NSACR",
8692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8693 .access = PL3_RW | PL1_R,
8694 .resetvalue = 0,
8695 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8696 };
8697 define_one_arm_cp_reg(cpu, &nsacr);
8698 }
8699 } else {
8700 if (arm_feature(env, ARM_FEATURE_V8)) {
8701 static const ARMCPRegInfo nsacr = {
8702 .name = "NSACR", .type = ARM_CP_CONST,
8703 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8704 .access = PL1_R,
8705 .resetvalue = 0xc00
8706 };
8707 define_one_arm_cp_reg(cpu, &nsacr);
8708 }
8709 }
8710
8711 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8712 if (arm_feature(env, ARM_FEATURE_V6)) {
8713 /* PMSAv6 not implemented */
8714 assert(arm_feature(env, ARM_FEATURE_V7));
8715 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8716 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8717 } else {
8718 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8719 }
8720 } else {
8721 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8722 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8723 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8724 if (cpu_isar_feature(aa32_hpd, cpu)) {
8725 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8726 }
8727 }
8728 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8729 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8730 }
8731 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8732 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8733 }
8734 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8735 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8736 }
8737 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8738 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8739 }
8740 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8741 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8742 }
8743 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8744 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8745 }
8746 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8747 define_arm_cp_regs(cpu, omap_cp_reginfo);
8748 }
8749 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8750 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8751 }
8752 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8753 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8754 }
8755 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8756 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8757 }
8758 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8759 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8760 }
8761 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8762 define_arm_cp_regs(cpu, jazelle_regs);
8763 }
8764 /*
8765 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8766 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8767 * be read-only (ie write causes UNDEF exception).
8768 */
8769 {
8770 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8771 /*
8772 * Pre-v8 MIDR space.
8773 * Note that the MIDR isn't a simple constant register because
8774 * of the TI925 behaviour where writes to another register can
8775 * cause the MIDR value to change.
8776 *
8777 * Unimplemented registers in the c15 0 0 0 space default to
8778 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8779 * and friends override accordingly.
8780 */
8781 { .name = "MIDR",
8782 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8783 .access = PL1_R, .resetvalue = cpu->midr,
8784 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8785 .readfn = midr_read,
8786 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8787 .type = ARM_CP_OVERRIDE },
8788 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8789 { .name = "DUMMY",
8790 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8791 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8792 { .name = "DUMMY",
8793 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8794 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8795 { .name = "DUMMY",
8796 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8797 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8798 { .name = "DUMMY",
8799 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8800 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8801 { .name = "DUMMY",
8802 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8803 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8804 };
8805 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8806 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8808 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8809 .fgt = FGT_MIDR_EL1,
8810 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8811 .readfn = midr_read },
8812 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8813 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8814 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8815 .access = PL1_R, .resetvalue = cpu->midr },
8816 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8818 .access = PL1_R,
8819 .accessfn = access_aa64_tid1,
8820 .fgt = FGT_REVIDR_EL1,
8821 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8822 };
8823 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8824 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8825 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8826 .access = PL1_R, .resetvalue = cpu->midr
8827 };
8828 ARMCPRegInfo id_cp_reginfo[] = {
8829 /* These are common to v8 and pre-v8 */
8830 { .name = "CTR",
8831 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8832 .access = PL1_R, .accessfn = ctr_el0_access,
8833 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8834 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8835 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8836 .access = PL0_R, .accessfn = ctr_el0_access,
8837 .fgt = FGT_CTR_EL0,
8838 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8839 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8840 { .name = "TCMTR",
8841 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8842 .access = PL1_R,
8843 .accessfn = access_aa32_tid1,
8844 .type = ARM_CP_CONST, .resetvalue = 0 },
8845 };
8846 /* TLBTR is specific to VMSA */
8847 ARMCPRegInfo id_tlbtr_reginfo = {
8848 .name = "TLBTR",
8849 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8850 .access = PL1_R,
8851 .accessfn = access_aa32_tid1,
8852 .type = ARM_CP_CONST, .resetvalue = 0,
8853 };
8854 /* MPUIR is specific to PMSA V6+ */
8855 ARMCPRegInfo id_mpuir_reginfo = {
8856 .name = "MPUIR",
8857 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8858 .access = PL1_R, .type = ARM_CP_CONST,
8859 .resetvalue = cpu->pmsav7_dregion << 8
8860 };
8861 /* HMPUIR is specific to PMSA V8 */
8862 ARMCPRegInfo id_hmpuir_reginfo = {
8863 .name = "HMPUIR",
8864 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8865 .access = PL2_R, .type = ARM_CP_CONST,
8866 .resetvalue = cpu->pmsav8r_hdregion
8867 };
8868 static const ARMCPRegInfo crn0_wi_reginfo = {
8869 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8870 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8871 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8872 };
8873 #ifdef CONFIG_USER_ONLY
8874 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8875 { .name = "MIDR_EL1",
8876 .exported_bits = R_MIDR_EL1_REVISION_MASK |
8877 R_MIDR_EL1_PARTNUM_MASK |
8878 R_MIDR_EL1_ARCHITECTURE_MASK |
8879 R_MIDR_EL1_VARIANT_MASK |
8880 R_MIDR_EL1_IMPLEMENTER_MASK },
8881 { .name = "REVIDR_EL1" },
8882 };
8883 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8884 #endif
8885 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8886 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8887 size_t i;
8888 /*
8889 * Register the blanket "writes ignored" value first to cover the
8890 * whole space. Then update the specific ID registers to allow write
8891 * access, so that they ignore writes rather than causing them to
8892 * UNDEF.
8893 */
8894 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8895 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8896 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8897 }
8898 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8899 id_cp_reginfo[i].access = PL1_RW;
8900 }
8901 id_mpuir_reginfo.access = PL1_RW;
8902 id_tlbtr_reginfo.access = PL1_RW;
8903 }
8904 if (arm_feature(env, ARM_FEATURE_V8)) {
8905 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8906 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8907 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8908 }
8909 } else {
8910 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8911 }
8912 define_arm_cp_regs(cpu, id_cp_reginfo);
8913 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8914 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8915 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8916 arm_feature(env, ARM_FEATURE_V8)) {
8917 uint32_t i = 0;
8918 char *tmp_string;
8919
8920 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8921 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8922 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8923
8924 /* Register alias is only valid for first 32 indexes */
8925 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8926 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8927 uint8_t opc1 = extract32(i, 4, 1);
8928 uint8_t opc2 = extract32(i, 0, 1) << 2;
8929
8930 tmp_string = g_strdup_printf("PRBAR%u", i);
8931 ARMCPRegInfo tmp_prbarn_reginfo = {
8932 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8933 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8934 .access = PL1_RW, .resetvalue = 0,
8935 .accessfn = access_tvm_trvm,
8936 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8937 };
8938 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8939 g_free(tmp_string);
8940
8941 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8942 tmp_string = g_strdup_printf("PRLAR%u", i);
8943 ARMCPRegInfo tmp_prlarn_reginfo = {
8944 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8945 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8946 .access = PL1_RW, .resetvalue = 0,
8947 .accessfn = access_tvm_trvm,
8948 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8949 };
8950 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8951 g_free(tmp_string);
8952 }
8953
8954 /* Register alias is only valid for first 32 indexes */
8955 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8956 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8957 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8958 uint8_t opc2 = extract32(i, 0, 1) << 2;
8959
8960 tmp_string = g_strdup_printf("HPRBAR%u", i);
8961 ARMCPRegInfo tmp_hprbarn_reginfo = {
8962 .name = tmp_string,
8963 .type = ARM_CP_NO_RAW,
8964 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8965 .access = PL2_RW, .resetvalue = 0,
8966 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8967 };
8968 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8969 g_free(tmp_string);
8970
8971 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8972 tmp_string = g_strdup_printf("HPRLAR%u", i);
8973 ARMCPRegInfo tmp_hprlarn_reginfo = {
8974 .name = tmp_string,
8975 .type = ARM_CP_NO_RAW,
8976 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8977 .access = PL2_RW, .resetvalue = 0,
8978 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8979 };
8980 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8981 g_free(tmp_string);
8982 }
8983 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8984 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8985 }
8986 }
8987
8988 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8989 ARMCPRegInfo mpidr_cp_reginfo[] = {
8990 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8991 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8992 .fgt = FGT_MPIDR_EL1,
8993 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8994 };
8995 #ifdef CONFIG_USER_ONLY
8996 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8997 { .name = "MPIDR_EL1",
8998 .fixed_bits = 0x0000000080000000 },
8999 };
9000 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9001 #endif
9002 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9003 }
9004
9005 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9006 ARMCPRegInfo auxcr_reginfo[] = {
9007 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9008 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9009 .access = PL1_RW, .accessfn = access_tacr,
9010 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9011 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9012 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9013 .access = PL2_RW, .type = ARM_CP_CONST,
9014 .resetvalue = 0 },
9015 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9016 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9017 .access = PL3_RW, .type = ARM_CP_CONST,
9018 .resetvalue = 0 },
9019 };
9020 define_arm_cp_regs(cpu, auxcr_reginfo);
9021 if (cpu_isar_feature(aa32_ac2, cpu)) {
9022 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9023 }
9024 }
9025
9026 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9027 /*
9028 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9029 * There are two flavours:
9030 * (1) older 32-bit only cores have a simple 32-bit CBAR
9031 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9032 * 32-bit register visible to AArch32 at a different encoding
9033 * to the "flavour 1" register and with the bits rearranged to
9034 * be able to squash a 64-bit address into the 32-bit view.
9035 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9036 * in future if we support AArch32-only configs of some of the
9037 * AArch64 cores we might need to add a specific feature flag
9038 * to indicate cores with "flavour 2" CBAR.
9039 */
9040 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9041 /* 32 bit view is [31:18] 0...0 [43:32]. */
9042 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9043 | extract64(cpu->reset_cbar, 32, 12);
9044 ARMCPRegInfo cbar_reginfo[] = {
9045 { .name = "CBAR",
9046 .type = ARM_CP_CONST,
9047 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9048 .access = PL1_R, .resetvalue = cbar32 },
9049 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9050 .type = ARM_CP_CONST,
9051 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9052 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9053 };
9054 /* We don't implement a r/w 64 bit CBAR currently */
9055 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9056 define_arm_cp_regs(cpu, cbar_reginfo);
9057 } else {
9058 ARMCPRegInfo cbar = {
9059 .name = "CBAR",
9060 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9061 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9062 .fieldoffset = offsetof(CPUARMState,
9063 cp15.c15_config_base_address)
9064 };
9065 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9066 cbar.access = PL1_R;
9067 cbar.fieldoffset = 0;
9068 cbar.type = ARM_CP_CONST;
9069 }
9070 define_one_arm_cp_reg(cpu, &cbar);
9071 }
9072 }
9073
9074 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9075 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9076 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9077 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9078 .access = PL1_RW, .writefn = vbar_write,
9079 .fgt = FGT_VBAR_EL1,
9080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9081 offsetof(CPUARMState, cp15.vbar_ns) },
9082 .resetvalue = 0 },
9083 };
9084 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9085 }
9086
9087 /* Generic registers whose values depend on the implementation */
9088 {
9089 ARMCPRegInfo sctlr = {
9090 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9091 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9092 .access = PL1_RW, .accessfn = access_tvm_trvm,
9093 .fgt = FGT_SCTLR_EL1,
9094 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9095 offsetof(CPUARMState, cp15.sctlr_ns) },
9096 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9097 .raw_writefn = raw_write,
9098 };
9099 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9100 /*
9101 * Normally we would always end the TB on an SCTLR write, but Linux
9102 * arch/arm/mach-pxa/sleep.S expects two instructions following
9103 * an MMU enable to execute from cache. Imitate this behaviour.
9104 */
9105 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9106 }
9107 define_one_arm_cp_reg(cpu, &sctlr);
9108
9109 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9110 arm_feature(env, ARM_FEATURE_V8)) {
9111 ARMCPRegInfo vsctlr = {
9112 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9113 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9114 .access = PL2_RW, .resetvalue = 0x0,
9115 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9116 };
9117 define_one_arm_cp_reg(cpu, &vsctlr);
9118 }
9119 }
9120
9121 if (cpu_isar_feature(aa64_lor, cpu)) {
9122 define_arm_cp_regs(cpu, lor_reginfo);
9123 }
9124 if (cpu_isar_feature(aa64_pan, cpu)) {
9125 define_one_arm_cp_reg(cpu, &pan_reginfo);
9126 }
9127 #ifndef CONFIG_USER_ONLY
9128 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9129 define_arm_cp_regs(cpu, ats1e1_reginfo);
9130 }
9131 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9132 define_arm_cp_regs(cpu, ats1cp_reginfo);
9133 }
9134 #endif
9135 if (cpu_isar_feature(aa64_uao, cpu)) {
9136 define_one_arm_cp_reg(cpu, &uao_reginfo);
9137 }
9138
9139 if (cpu_isar_feature(aa64_dit, cpu)) {
9140 define_one_arm_cp_reg(cpu, &dit_reginfo);
9141 }
9142 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9143 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9144 }
9145 if (cpu_isar_feature(any_ras, cpu)) {
9146 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9147 }
9148
9149 if (cpu_isar_feature(aa64_vh, cpu) ||
9150 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9151 define_one_arm_cp_reg(cpu, &contextidr_el2);
9152 }
9153 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9154 define_arm_cp_regs(cpu, vhe_reginfo);
9155 }
9156
9157 if (cpu_isar_feature(aa64_sve, cpu)) {
9158 define_arm_cp_regs(cpu, zcr_reginfo);
9159 }
9160
9161 if (cpu_isar_feature(aa64_hcx, cpu)) {
9162 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9163 }
9164
9165 #ifdef TARGET_AARCH64
9166 if (cpu_isar_feature(aa64_sme, cpu)) {
9167 define_arm_cp_regs(cpu, sme_reginfo);
9168 }
9169 if (cpu_isar_feature(aa64_pauth, cpu)) {
9170 define_arm_cp_regs(cpu, pauth_reginfo);
9171 }
9172 if (cpu_isar_feature(aa64_rndr, cpu)) {
9173 define_arm_cp_regs(cpu, rndr_reginfo);
9174 }
9175 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9176 define_arm_cp_regs(cpu, tlbirange_reginfo);
9177 }
9178 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9179 define_arm_cp_regs(cpu, tlbios_reginfo);
9180 }
9181 /* Data Cache clean instructions up to PoP */
9182 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9183 define_one_arm_cp_reg(cpu, dcpop_reg);
9184
9185 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9186 define_one_arm_cp_reg(cpu, dcpodp_reg);
9187 }
9188 }
9189
9190 /*
9191 * If full MTE is enabled, add all of the system registers.
9192 * If only "instructions available at EL0" are enabled,
9193 * then define only a RAZ/WI version of PSTATE.TCO.
9194 */
9195 if (cpu_isar_feature(aa64_mte, cpu)) {
9196 define_arm_cp_regs(cpu, mte_reginfo);
9197 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9198 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9199 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9200 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9201 }
9202
9203 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9204 define_arm_cp_regs(cpu, scxtnum_reginfo);
9205 }
9206
9207 if (cpu_isar_feature(aa64_fgt, cpu)) {
9208 define_arm_cp_regs(cpu, fgt_reginfo);
9209 }
9210
9211 if (cpu_isar_feature(aa64_rme, cpu)) {
9212 define_arm_cp_regs(cpu, rme_reginfo);
9213 if (cpu_isar_feature(aa64_mte, cpu)) {
9214 define_arm_cp_regs(cpu, rme_mte_reginfo);
9215 }
9216 }
9217 #endif
9218
9219 if (cpu_isar_feature(any_predinv, cpu)) {
9220 define_arm_cp_regs(cpu, predinv_reginfo);
9221 }
9222
9223 if (cpu_isar_feature(any_ccidx, cpu)) {
9224 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9225 }
9226
9227 #ifndef CONFIG_USER_ONLY
9228 /*
9229 * Register redirections and aliases must be done last,
9230 * after the registers from the other extensions have been defined.
9231 */
9232 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9233 define_arm_vh_e2h_redirects_aliases(cpu);
9234 }
9235 #endif
9236 }
9237
9238 /* Sort alphabetically by type name, except for "any". */
9239 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9240 {
9241 ObjectClass *class_a = (ObjectClass *)a;
9242 ObjectClass *class_b = (ObjectClass *)b;
9243 const char *name_a, *name_b;
9244
9245 name_a = object_class_get_name(class_a);
9246 name_b = object_class_get_name(class_b);
9247 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9248 return 1;
9249 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9250 return -1;
9251 } else {
9252 return strcmp(name_a, name_b);
9253 }
9254 }
9255
9256 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9257 {
9258 ObjectClass *oc = data;
9259 CPUClass *cc = CPU_CLASS(oc);
9260 const char *typename;
9261 char *name;
9262
9263 typename = object_class_get_name(oc);
9264 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9265 if (cc->deprecation_note) {
9266 qemu_printf(" %s (deprecated)\n", name);
9267 } else {
9268 qemu_printf(" %s\n", name);
9269 }
9270 g_free(name);
9271 }
9272
9273 void arm_cpu_list(void)
9274 {
9275 GSList *list;
9276
9277 list = object_class_get_list(TYPE_ARM_CPU, false);
9278 list = g_slist_sort(list, arm_cpu_list_compare);
9279 qemu_printf("Available CPUs:\n");
9280 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9281 g_slist_free(list);
9282 }
9283
9284 /*
9285 * Private utility function for define_one_arm_cp_reg_with_opaque():
9286 * add a single reginfo struct to the hash table.
9287 */
9288 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9289 void *opaque, CPState state,
9290 CPSecureState secstate,
9291 int crm, int opc1, int opc2,
9292 const char *name)
9293 {
9294 CPUARMState *env = &cpu->env;
9295 uint32_t key;
9296 ARMCPRegInfo *r2;
9297 bool is64 = r->type & ARM_CP_64BIT;
9298 bool ns = secstate & ARM_CP_SECSTATE_NS;
9299 int cp = r->cp;
9300 size_t name_len;
9301 bool make_const;
9302
9303 switch (state) {
9304 case ARM_CP_STATE_AA32:
9305 /* We assume it is a cp15 register if the .cp field is left unset. */
9306 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9307 cp = 15;
9308 }
9309 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9310 break;
9311 case ARM_CP_STATE_AA64:
9312 /*
9313 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9314 * cp == 0 as equivalent to the value for "standard guest-visible
9315 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9316 * in their AArch64 view (the .cp value may be non-zero for the
9317 * benefit of the AArch32 view).
9318 */
9319 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9320 cp = CP_REG_ARM64_SYSREG_CP;
9321 }
9322 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9323 break;
9324 default:
9325 g_assert_not_reached();
9326 }
9327
9328 /* Overriding of an existing definition must be explicitly requested. */
9329 if (!(r->type & ARM_CP_OVERRIDE)) {
9330 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9331 if (oldreg) {
9332 assert(oldreg->type & ARM_CP_OVERRIDE);
9333 }
9334 }
9335
9336 /*
9337 * Eliminate registers that are not present because the EL is missing.
9338 * Doing this here makes it easier to put all registers for a given
9339 * feature into the same ARMCPRegInfo array and define them all at once.
9340 */
9341 make_const = false;
9342 if (arm_feature(env, ARM_FEATURE_EL3)) {
9343 /*
9344 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9345 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9346 */
9347 int min_el = ctz32(r->access) / 2;
9348 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9349 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9350 return;
9351 }
9352 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9353 }
9354 } else {
9355 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9356 ? PL2_RW : PL1_RW);
9357 if ((r->access & max_el) == 0) {
9358 return;
9359 }
9360 }
9361
9362 /* Combine cpreg and name into one allocation. */
9363 name_len = strlen(name) + 1;
9364 r2 = g_malloc(sizeof(*r2) + name_len);
9365 *r2 = *r;
9366 r2->name = memcpy(r2 + 1, name, name_len);
9367
9368 /*
9369 * Update fields to match the instantiation, overwiting wildcards
9370 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9371 */
9372 r2->cp = cp;
9373 r2->crm = crm;
9374 r2->opc1 = opc1;
9375 r2->opc2 = opc2;
9376 r2->state = state;
9377 r2->secure = secstate;
9378 if (opaque) {
9379 r2->opaque = opaque;
9380 }
9381
9382 if (make_const) {
9383 /* This should not have been a very special register to begin. */
9384 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9385 assert(old_special == 0 || old_special == ARM_CP_NOP);
9386 /*
9387 * Set the special function to CONST, retaining the other flags.
9388 * This is important for e.g. ARM_CP_SVE so that we still
9389 * take the SVE trap if CPTR_EL3.EZ == 0.
9390 */
9391 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9392 /*
9393 * Usually, these registers become RES0, but there are a few
9394 * special cases like VPIDR_EL2 which have a constant non-zero
9395 * value with writes ignored.
9396 */
9397 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9398 r2->resetvalue = 0;
9399 }
9400 /*
9401 * ARM_CP_CONST has precedence, so removing the callbacks and
9402 * offsets are not strictly necessary, but it is potentially
9403 * less confusing to debug later.
9404 */
9405 r2->readfn = NULL;
9406 r2->writefn = NULL;
9407 r2->raw_readfn = NULL;
9408 r2->raw_writefn = NULL;
9409 r2->resetfn = NULL;
9410 r2->fieldoffset = 0;
9411 r2->bank_fieldoffsets[0] = 0;
9412 r2->bank_fieldoffsets[1] = 0;
9413 } else {
9414 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9415
9416 if (isbanked) {
9417 /*
9418 * Register is banked (using both entries in array).
9419 * Overwriting fieldoffset as the array is only used to define
9420 * banked registers but later only fieldoffset is used.
9421 */
9422 r2->fieldoffset = r->bank_fieldoffsets[ns];
9423 }
9424 if (state == ARM_CP_STATE_AA32) {
9425 if (isbanked) {
9426 /*
9427 * If the register is banked then we don't need to migrate or
9428 * reset the 32-bit instance in certain cases:
9429 *
9430 * 1) If the register has both 32-bit and 64-bit instances
9431 * then we can count on the 64-bit instance taking care
9432 * of the non-secure bank.
9433 * 2) If ARMv8 is enabled then we can count on a 64-bit
9434 * version taking care of the secure bank. This requires
9435 * that separate 32 and 64-bit definitions are provided.
9436 */
9437 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9438 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9439 r2->type |= ARM_CP_ALIAS;
9440 }
9441 } else if ((secstate != r->secure) && !ns) {
9442 /*
9443 * The register is not banked so we only want to allow
9444 * migration of the non-secure instance.
9445 */
9446 r2->type |= ARM_CP_ALIAS;
9447 }
9448
9449 if (HOST_BIG_ENDIAN &&
9450 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9451 r2->fieldoffset += sizeof(uint32_t);
9452 }
9453 }
9454 }
9455
9456 /*
9457 * By convention, for wildcarded registers only the first
9458 * entry is used for migration; the others are marked as
9459 * ALIAS so we don't try to transfer the register
9460 * multiple times. Special registers (ie NOP/WFI) are
9461 * never migratable and not even raw-accessible.
9462 */
9463 if (r2->type & ARM_CP_SPECIAL_MASK) {
9464 r2->type |= ARM_CP_NO_RAW;
9465 }
9466 if (((r->crm == CP_ANY) && crm != 0) ||
9467 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9468 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9469 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9470 }
9471
9472 /*
9473 * Check that raw accesses are either forbidden or handled. Note that
9474 * we can't assert this earlier because the setup of fieldoffset for
9475 * banked registers has to be done first.
9476 */
9477 if (!(r2->type & ARM_CP_NO_RAW)) {
9478 assert(!raw_accessors_invalid(r2));
9479 }
9480
9481 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9482 }
9483
9484
9485 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9486 const ARMCPRegInfo *r, void *opaque)
9487 {
9488 /*
9489 * Define implementations of coprocessor registers.
9490 * We store these in a hashtable because typically
9491 * there are less than 150 registers in a space which
9492 * is 16*16*16*8*8 = 262144 in size.
9493 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9494 * If a register is defined twice then the second definition is
9495 * used, so this can be used to define some generic registers and
9496 * then override them with implementation specific variations.
9497 * At least one of the original and the second definition should
9498 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9499 * against accidental use.
9500 *
9501 * The state field defines whether the register is to be
9502 * visible in the AArch32 or AArch64 execution state. If the
9503 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9504 * reginfo structure for the AArch32 view, which sees the lower
9505 * 32 bits of the 64 bit register.
9506 *
9507 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9508 * be wildcarded. AArch64 registers are always considered to be 64
9509 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9510 * the register, if any.
9511 */
9512 int crm, opc1, opc2;
9513 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9514 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9515 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9516 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9517 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9518 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9519 CPState state;
9520
9521 /* 64 bit registers have only CRm and Opc1 fields */
9522 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9523 /* op0 only exists in the AArch64 encodings */
9524 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9525 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9526 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9527 /*
9528 * This API is only for Arm's system coprocessors (14 and 15) or
9529 * (M-profile or v7A-and-earlier only) for implementation defined
9530 * coprocessors in the range 0..7. Our decode assumes this, since
9531 * 8..13 can be used for other insns including VFP and Neon. See
9532 * valid_cp() in translate.c. Assert here that we haven't tried
9533 * to use an invalid coprocessor number.
9534 */
9535 switch (r->state) {
9536 case ARM_CP_STATE_BOTH:
9537 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9538 if (r->cp == 0) {
9539 break;
9540 }
9541 /* fall through */
9542 case ARM_CP_STATE_AA32:
9543 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9544 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9545 assert(r->cp >= 14 && r->cp <= 15);
9546 } else {
9547 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9548 }
9549 break;
9550 case ARM_CP_STATE_AA64:
9551 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9552 break;
9553 default:
9554 g_assert_not_reached();
9555 }
9556 /*
9557 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9558 * encodes a minimum access level for the register. We roll this
9559 * runtime check into our general permission check code, so check
9560 * here that the reginfo's specified permissions are strict enough
9561 * to encompass the generic architectural permission check.
9562 */
9563 if (r->state != ARM_CP_STATE_AA32) {
9564 CPAccessRights mask;
9565 switch (r->opc1) {
9566 case 0:
9567 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9568 mask = PL0U_R | PL1_RW;
9569 break;
9570 case 1: case 2:
9571 /* min_EL EL1 */
9572 mask = PL1_RW;
9573 break;
9574 case 3:
9575 /* min_EL EL0 */
9576 mask = PL0_RW;
9577 break;
9578 case 4:
9579 case 5:
9580 /* min_EL EL2 */
9581 mask = PL2_RW;
9582 break;
9583 case 6:
9584 /* min_EL EL3 */
9585 mask = PL3_RW;
9586 break;
9587 case 7:
9588 /* min_EL EL1, secure mode only (we don't check the latter) */
9589 mask = PL1_RW;
9590 break;
9591 default:
9592 /* broken reginfo with out-of-range opc1 */
9593 g_assert_not_reached();
9594 }
9595 /* assert our permissions are not too lax (stricter is fine) */
9596 assert((r->access & ~mask) == 0);
9597 }
9598
9599 /*
9600 * Check that the register definition has enough info to handle
9601 * reads and writes if they are permitted.
9602 */
9603 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9604 if (r->access & PL3_R) {
9605 assert((r->fieldoffset ||
9606 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9607 r->readfn);
9608 }
9609 if (r->access & PL3_W) {
9610 assert((r->fieldoffset ||
9611 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9612 r->writefn);
9613 }
9614 }
9615
9616 for (crm = crmmin; crm <= crmmax; crm++) {
9617 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9618 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9619 for (state = ARM_CP_STATE_AA32;
9620 state <= ARM_CP_STATE_AA64; state++) {
9621 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9622 continue;
9623 }
9624 if (state == ARM_CP_STATE_AA32) {
9625 /*
9626 * Under AArch32 CP registers can be common
9627 * (same for secure and non-secure world) or banked.
9628 */
9629 char *name;
9630
9631 switch (r->secure) {
9632 case ARM_CP_SECSTATE_S:
9633 case ARM_CP_SECSTATE_NS:
9634 add_cpreg_to_hashtable(cpu, r, opaque, state,
9635 r->secure, crm, opc1, opc2,
9636 r->name);
9637 break;
9638 case ARM_CP_SECSTATE_BOTH:
9639 name = g_strdup_printf("%s_S", r->name);
9640 add_cpreg_to_hashtable(cpu, r, opaque, state,
9641 ARM_CP_SECSTATE_S,
9642 crm, opc1, opc2, name);
9643 g_free(name);
9644 add_cpreg_to_hashtable(cpu, r, opaque, state,
9645 ARM_CP_SECSTATE_NS,
9646 crm, opc1, opc2, r->name);
9647 break;
9648 default:
9649 g_assert_not_reached();
9650 }
9651 } else {
9652 /*
9653 * AArch64 registers get mapped to non-secure instance
9654 * of AArch32
9655 */
9656 add_cpreg_to_hashtable(cpu, r, opaque, state,
9657 ARM_CP_SECSTATE_NS,
9658 crm, opc1, opc2, r->name);
9659 }
9660 }
9661 }
9662 }
9663 }
9664 }
9665
9666 /* Define a whole list of registers */
9667 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9668 void *opaque, size_t len)
9669 {
9670 size_t i;
9671 for (i = 0; i < len; ++i) {
9672 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9673 }
9674 }
9675
9676 /*
9677 * Modify ARMCPRegInfo for access from userspace.
9678 *
9679 * This is a data driven modification directed by
9680 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9681 * user-space cannot alter any values and dynamic values pertaining to
9682 * execution state are hidden from user space view anyway.
9683 */
9684 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9685 const ARMCPRegUserSpaceInfo *mods,
9686 size_t mods_len)
9687 {
9688 for (size_t mi = 0; mi < mods_len; ++mi) {
9689 const ARMCPRegUserSpaceInfo *m = mods + mi;
9690 GPatternSpec *pat = NULL;
9691
9692 if (m->is_glob) {
9693 pat = g_pattern_spec_new(m->name);
9694 }
9695 for (size_t ri = 0; ri < regs_len; ++ri) {
9696 ARMCPRegInfo *r = regs + ri;
9697
9698 if (pat && g_pattern_match_string(pat, r->name)) {
9699 r->type = ARM_CP_CONST;
9700 r->access = PL0U_R;
9701 r->resetvalue = 0;
9702 /* continue */
9703 } else if (strcmp(r->name, m->name) == 0) {
9704 r->type = ARM_CP_CONST;
9705 r->access = PL0U_R;
9706 r->resetvalue &= m->exported_bits;
9707 r->resetvalue |= m->fixed_bits;
9708 break;
9709 }
9710 }
9711 if (pat) {
9712 g_pattern_spec_free(pat);
9713 }
9714 }
9715 }
9716
9717 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9718 {
9719 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9720 }
9721
9722 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9723 uint64_t value)
9724 {
9725 /* Helper coprocessor write function for write-ignore registers */
9726 }
9727
9728 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9729 {
9730 /* Helper coprocessor write function for read-as-zero registers */
9731 return 0;
9732 }
9733
9734 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9735 {
9736 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9737 }
9738
9739 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9740 {
9741 /*
9742 * Return true if it is not valid for us to switch to
9743 * this CPU mode (ie all the UNPREDICTABLE cases in
9744 * the ARM ARM CPSRWriteByInstr pseudocode).
9745 */
9746
9747 /* Changes to or from Hyp via MSR and CPS are illegal. */
9748 if (write_type == CPSRWriteByInstr &&
9749 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9750 mode == ARM_CPU_MODE_HYP)) {
9751 return 1;
9752 }
9753
9754 switch (mode) {
9755 case ARM_CPU_MODE_USR:
9756 return 0;
9757 case ARM_CPU_MODE_SYS:
9758 case ARM_CPU_MODE_SVC:
9759 case ARM_CPU_MODE_ABT:
9760 case ARM_CPU_MODE_UND:
9761 case ARM_CPU_MODE_IRQ:
9762 case ARM_CPU_MODE_FIQ:
9763 /*
9764 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9765 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9766 */
9767 /*
9768 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9769 * and CPS are treated as illegal mode changes.
9770 */
9771 if (write_type == CPSRWriteByInstr &&
9772 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9773 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9774 return 1;
9775 }
9776 return 0;
9777 case ARM_CPU_MODE_HYP:
9778 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9779 case ARM_CPU_MODE_MON:
9780 return arm_current_el(env) < 3;
9781 default:
9782 return 1;
9783 }
9784 }
9785
9786 uint32_t cpsr_read(CPUARMState *env)
9787 {
9788 int ZF;
9789 ZF = (env->ZF == 0);
9790 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9791 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9792 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9793 | ((env->condexec_bits & 0xfc) << 8)
9794 | (env->GE << 16) | (env->daif & CPSR_AIF);
9795 }
9796
9797 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9798 CPSRWriteType write_type)
9799 {
9800 uint32_t changed_daif;
9801 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9802 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9803
9804 if (mask & CPSR_NZCV) {
9805 env->ZF = (~val) & CPSR_Z;
9806 env->NF = val;
9807 env->CF = (val >> 29) & 1;
9808 env->VF = (val << 3) & 0x80000000;
9809 }
9810 if (mask & CPSR_Q) {
9811 env->QF = ((val & CPSR_Q) != 0);
9812 }
9813 if (mask & CPSR_T) {
9814 env->thumb = ((val & CPSR_T) != 0);
9815 }
9816 if (mask & CPSR_IT_0_1) {
9817 env->condexec_bits &= ~3;
9818 env->condexec_bits |= (val >> 25) & 3;
9819 }
9820 if (mask & CPSR_IT_2_7) {
9821 env->condexec_bits &= 3;
9822 env->condexec_bits |= (val >> 8) & 0xfc;
9823 }
9824 if (mask & CPSR_GE) {
9825 env->GE = (val >> 16) & 0xf;
9826 }
9827
9828 /*
9829 * In a V7 implementation that includes the security extensions but does
9830 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9831 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9832 * bits respectively.
9833 *
9834 * In a V8 implementation, it is permitted for privileged software to
9835 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9836 */
9837 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9838 arm_feature(env, ARM_FEATURE_EL3) &&
9839 !arm_feature(env, ARM_FEATURE_EL2) &&
9840 !arm_is_secure(env)) {
9841
9842 changed_daif = (env->daif ^ val) & mask;
9843
9844 if (changed_daif & CPSR_A) {
9845 /*
9846 * Check to see if we are allowed to change the masking of async
9847 * abort exceptions from a non-secure state.
9848 */
9849 if (!(env->cp15.scr_el3 & SCR_AW)) {
9850 qemu_log_mask(LOG_GUEST_ERROR,
9851 "Ignoring attempt to switch CPSR_A flag from "
9852 "non-secure world with SCR.AW bit clear\n");
9853 mask &= ~CPSR_A;
9854 }
9855 }
9856
9857 if (changed_daif & CPSR_F) {
9858 /*
9859 * Check to see if we are allowed to change the masking of FIQ
9860 * exceptions from a non-secure state.
9861 */
9862 if (!(env->cp15.scr_el3 & SCR_FW)) {
9863 qemu_log_mask(LOG_GUEST_ERROR,
9864 "Ignoring attempt to switch CPSR_F flag from "
9865 "non-secure world with SCR.FW bit clear\n");
9866 mask &= ~CPSR_F;
9867 }
9868
9869 /*
9870 * Check whether non-maskable FIQ (NMFI) support is enabled.
9871 * If this bit is set software is not allowed to mask
9872 * FIQs, but is allowed to set CPSR_F to 0.
9873 */
9874 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9875 (val & CPSR_F)) {
9876 qemu_log_mask(LOG_GUEST_ERROR,
9877 "Ignoring attempt to enable CPSR_F flag "
9878 "(non-maskable FIQ [NMFI] support enabled)\n");
9879 mask &= ~CPSR_F;
9880 }
9881 }
9882 }
9883
9884 env->daif &= ~(CPSR_AIF & mask);
9885 env->daif |= val & CPSR_AIF & mask;
9886
9887 if (write_type != CPSRWriteRaw &&
9888 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9889 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9890 /*
9891 * Note that we can only get here in USR mode if this is a
9892 * gdb stub write; for this case we follow the architectural
9893 * behaviour for guest writes in USR mode of ignoring an attempt
9894 * to switch mode. (Those are caught by translate.c for writes
9895 * triggered by guest instructions.)
9896 */
9897 mask &= ~CPSR_M;
9898 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9899 /*
9900 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9901 * v7, and has defined behaviour in v8:
9902 * + leave CPSR.M untouched
9903 * + allow changes to the other CPSR fields
9904 * + set PSTATE.IL
9905 * For user changes via the GDB stub, we don't set PSTATE.IL,
9906 * as this would be unnecessarily harsh for a user error.
9907 */
9908 mask &= ~CPSR_M;
9909 if (write_type != CPSRWriteByGDBStub &&
9910 arm_feature(env, ARM_FEATURE_V8)) {
9911 mask |= CPSR_IL;
9912 val |= CPSR_IL;
9913 }
9914 qemu_log_mask(LOG_GUEST_ERROR,
9915 "Illegal AArch32 mode switch attempt from %s to %s\n",
9916 aarch32_mode_name(env->uncached_cpsr),
9917 aarch32_mode_name(val));
9918 } else {
9919 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9920 write_type == CPSRWriteExceptionReturn ?
9921 "Exception return from AArch32" :
9922 "AArch32 mode switch from",
9923 aarch32_mode_name(env->uncached_cpsr),
9924 aarch32_mode_name(val), env->regs[15]);
9925 switch_mode(env, val & CPSR_M);
9926 }
9927 }
9928 mask &= ~CACHED_CPSR_BITS;
9929 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9930 if (tcg_enabled() && rebuild_hflags) {
9931 arm_rebuild_hflags(env);
9932 }
9933 }
9934
9935 /* Sign/zero extend */
9936 uint32_t HELPER(sxtb16)(uint32_t x)
9937 {
9938 uint32_t res;
9939 res = (uint16_t)(int8_t)x;
9940 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9941 return res;
9942 }
9943
9944 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9945 {
9946 /*
9947 * Take a division-by-zero exception if necessary; otherwise return
9948 * to get the usual non-trapping division behaviour (result of 0)
9949 */
9950 if (arm_feature(env, ARM_FEATURE_M)
9951 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9952 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9953 }
9954 }
9955
9956 uint32_t HELPER(uxtb16)(uint32_t x)
9957 {
9958 uint32_t res;
9959 res = (uint16_t)(uint8_t)x;
9960 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9961 return res;
9962 }
9963
9964 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9965 {
9966 if (den == 0) {
9967 handle_possible_div0_trap(env, GETPC());
9968 return 0;
9969 }
9970 if (num == INT_MIN && den == -1) {
9971 return INT_MIN;
9972 }
9973 return num / den;
9974 }
9975
9976 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9977 {
9978 if (den == 0) {
9979 handle_possible_div0_trap(env, GETPC());
9980 return 0;
9981 }
9982 return num / den;
9983 }
9984
9985 uint32_t HELPER(rbit)(uint32_t x)
9986 {
9987 return revbit32(x);
9988 }
9989
9990 #ifdef CONFIG_USER_ONLY
9991
9992 static void switch_mode(CPUARMState *env, int mode)
9993 {
9994 ARMCPU *cpu = env_archcpu(env);
9995
9996 if (mode != ARM_CPU_MODE_USR) {
9997 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9998 }
9999 }
10000
10001 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10002 uint32_t cur_el, bool secure)
10003 {
10004 return 1;
10005 }
10006
10007 void aarch64_sync_64_to_32(CPUARMState *env)
10008 {
10009 g_assert_not_reached();
10010 }
10011
10012 #else
10013
10014 static void switch_mode(CPUARMState *env, int mode)
10015 {
10016 int old_mode;
10017 int i;
10018
10019 old_mode = env->uncached_cpsr & CPSR_M;
10020 if (mode == old_mode) {
10021 return;
10022 }
10023
10024 if (old_mode == ARM_CPU_MODE_FIQ) {
10025 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10026 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10027 } else if (mode == ARM_CPU_MODE_FIQ) {
10028 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10029 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10030 }
10031
10032 i = bank_number(old_mode);
10033 env->banked_r13[i] = env->regs[13];
10034 env->banked_spsr[i] = env->spsr;
10035
10036 i = bank_number(mode);
10037 env->regs[13] = env->banked_r13[i];
10038 env->spsr = env->banked_spsr[i];
10039
10040 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10041 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10042 }
10043
10044 /*
10045 * Physical Interrupt Target EL Lookup Table
10046 *
10047 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10048 *
10049 * The below multi-dimensional table is used for looking up the target
10050 * exception level given numerous condition criteria. Specifically, the
10051 * target EL is based on SCR and HCR routing controls as well as the
10052 * currently executing EL and secure state.
10053 *
10054 * Dimensions:
10055 * target_el_table[2][2][2][2][2][4]
10056 * | | | | | +--- Current EL
10057 * | | | | +------ Non-secure(0)/Secure(1)
10058 * | | | +--------- HCR mask override
10059 * | | +------------ SCR exec state control
10060 * | +--------------- SCR mask override
10061 * +------------------ 32-bit(0)/64-bit(1) EL3
10062 *
10063 * The table values are as such:
10064 * 0-3 = EL0-EL3
10065 * -1 = Cannot occur
10066 *
10067 * The ARM ARM target EL table includes entries indicating that an "exception
10068 * is not taken". The two cases where this is applicable are:
10069 * 1) An exception is taken from EL3 but the SCR does not have the exception
10070 * routed to EL3.
10071 * 2) An exception is taken from EL2 but the HCR does not have the exception
10072 * routed to EL2.
10073 * In these two cases, the below table contain a target of EL1. This value is
10074 * returned as it is expected that the consumer of the table data will check
10075 * for "target EL >= current EL" to ensure the exception is not taken.
10076 *
10077 * SCR HCR
10078 * 64 EA AMO From
10079 * BIT IRQ IMO Non-secure Secure
10080 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10081 */
10082 static const int8_t target_el_table[2][2][2][2][2][4] = {
10083 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10084 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10085 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10086 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10087 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10088 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10089 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10090 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10091 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10092 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10093 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10094 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10095 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10096 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10097 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10098 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10099 };
10100
10101 /*
10102 * Determine the target EL for physical exceptions
10103 */
10104 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10105 uint32_t cur_el, bool secure)
10106 {
10107 CPUARMState *env = cs->env_ptr;
10108 bool rw;
10109 bool scr;
10110 bool hcr;
10111 int target_el;
10112 /* Is the highest EL AArch64? */
10113 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10114 uint64_t hcr_el2;
10115
10116 if (arm_feature(env, ARM_FEATURE_EL3)) {
10117 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10118 } else {
10119 /*
10120 * Either EL2 is the highest EL (and so the EL2 register width
10121 * is given by is64); or there is no EL2 or EL3, in which case
10122 * the value of 'rw' does not affect the table lookup anyway.
10123 */
10124 rw = is64;
10125 }
10126
10127 hcr_el2 = arm_hcr_el2_eff(env);
10128 switch (excp_idx) {
10129 case EXCP_IRQ:
10130 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10131 hcr = hcr_el2 & HCR_IMO;
10132 break;
10133 case EXCP_FIQ:
10134 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10135 hcr = hcr_el2 & HCR_FMO;
10136 break;
10137 default:
10138 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10139 hcr = hcr_el2 & HCR_AMO;
10140 break;
10141 };
10142
10143 /*
10144 * For these purposes, TGE and AMO/IMO/FMO both force the
10145 * interrupt to EL2. Fold TGE into the bit extracted above.
10146 */
10147 hcr |= (hcr_el2 & HCR_TGE) != 0;
10148
10149 /* Perform a table-lookup for the target EL given the current state */
10150 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10151
10152 assert(target_el > 0);
10153
10154 return target_el;
10155 }
10156
10157 void arm_log_exception(CPUState *cs)
10158 {
10159 int idx = cs->exception_index;
10160
10161 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10162 const char *exc = NULL;
10163 static const char * const excnames[] = {
10164 [EXCP_UDEF] = "Undefined Instruction",
10165 [EXCP_SWI] = "SVC",
10166 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10167 [EXCP_DATA_ABORT] = "Data Abort",
10168 [EXCP_IRQ] = "IRQ",
10169 [EXCP_FIQ] = "FIQ",
10170 [EXCP_BKPT] = "Breakpoint",
10171 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10172 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10173 [EXCP_HVC] = "Hypervisor Call",
10174 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10175 [EXCP_SMC] = "Secure Monitor Call",
10176 [EXCP_VIRQ] = "Virtual IRQ",
10177 [EXCP_VFIQ] = "Virtual FIQ",
10178 [EXCP_SEMIHOST] = "Semihosting call",
10179 [EXCP_NOCP] = "v7M NOCP UsageFault",
10180 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10181 [EXCP_STKOF] = "v8M STKOF UsageFault",
10182 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10183 [EXCP_LSERR] = "v8M LSERR UsageFault",
10184 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10185 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10186 [EXCP_VSERR] = "Virtual SERR",
10187 [EXCP_GPC] = "Granule Protection Check",
10188 };
10189
10190 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10191 exc = excnames[idx];
10192 }
10193 if (!exc) {
10194 exc = "unknown";
10195 }
10196 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10197 idx, exc, cs->cpu_index);
10198 }
10199 }
10200
10201 /*
10202 * Function used to synchronize QEMU's AArch64 register set with AArch32
10203 * register set. This is necessary when switching between AArch32 and AArch64
10204 * execution state.
10205 */
10206 void aarch64_sync_32_to_64(CPUARMState *env)
10207 {
10208 int i;
10209 uint32_t mode = env->uncached_cpsr & CPSR_M;
10210
10211 /* We can blanket copy R[0:7] to X[0:7] */
10212 for (i = 0; i < 8; i++) {
10213 env->xregs[i] = env->regs[i];
10214 }
10215
10216 /*
10217 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10218 * Otherwise, they come from the banked user regs.
10219 */
10220 if (mode == ARM_CPU_MODE_FIQ) {
10221 for (i = 8; i < 13; i++) {
10222 env->xregs[i] = env->usr_regs[i - 8];
10223 }
10224 } else {
10225 for (i = 8; i < 13; i++) {
10226 env->xregs[i] = env->regs[i];
10227 }
10228 }
10229
10230 /*
10231 * Registers x13-x23 are the various mode SP and FP registers. Registers
10232 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10233 * from the mode banked register.
10234 */
10235 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10236 env->xregs[13] = env->regs[13];
10237 env->xregs[14] = env->regs[14];
10238 } else {
10239 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10240 /* HYP is an exception in that it is copied from r14 */
10241 if (mode == ARM_CPU_MODE_HYP) {
10242 env->xregs[14] = env->regs[14];
10243 } else {
10244 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10245 }
10246 }
10247
10248 if (mode == ARM_CPU_MODE_HYP) {
10249 env->xregs[15] = env->regs[13];
10250 } else {
10251 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10252 }
10253
10254 if (mode == ARM_CPU_MODE_IRQ) {
10255 env->xregs[16] = env->regs[14];
10256 env->xregs[17] = env->regs[13];
10257 } else {
10258 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10259 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10260 }
10261
10262 if (mode == ARM_CPU_MODE_SVC) {
10263 env->xregs[18] = env->regs[14];
10264 env->xregs[19] = env->regs[13];
10265 } else {
10266 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10267 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10268 }
10269
10270 if (mode == ARM_CPU_MODE_ABT) {
10271 env->xregs[20] = env->regs[14];
10272 env->xregs[21] = env->regs[13];
10273 } else {
10274 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10275 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10276 }
10277
10278 if (mode == ARM_CPU_MODE_UND) {
10279 env->xregs[22] = env->regs[14];
10280 env->xregs[23] = env->regs[13];
10281 } else {
10282 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10283 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10284 }
10285
10286 /*
10287 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10288 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10289 * FIQ bank for r8-r14.
10290 */
10291 if (mode == ARM_CPU_MODE_FIQ) {
10292 for (i = 24; i < 31; i++) {
10293 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10294 }
10295 } else {
10296 for (i = 24; i < 29; i++) {
10297 env->xregs[i] = env->fiq_regs[i - 24];
10298 }
10299 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10300 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10301 }
10302
10303 env->pc = env->regs[15];
10304 }
10305
10306 /*
10307 * Function used to synchronize QEMU's AArch32 register set with AArch64
10308 * register set. This is necessary when switching between AArch32 and AArch64
10309 * execution state.
10310 */
10311 void aarch64_sync_64_to_32(CPUARMState *env)
10312 {
10313 int i;
10314 uint32_t mode = env->uncached_cpsr & CPSR_M;
10315
10316 /* We can blanket copy X[0:7] to R[0:7] */
10317 for (i = 0; i < 8; i++) {
10318 env->regs[i] = env->xregs[i];
10319 }
10320
10321 /*
10322 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10323 * Otherwise, we copy x8-x12 into the banked user regs.
10324 */
10325 if (mode == ARM_CPU_MODE_FIQ) {
10326 for (i = 8; i < 13; i++) {
10327 env->usr_regs[i - 8] = env->xregs[i];
10328 }
10329 } else {
10330 for (i = 8; i < 13; i++) {
10331 env->regs[i] = env->xregs[i];
10332 }
10333 }
10334
10335 /*
10336 * Registers r13 & r14 depend on the current mode.
10337 * If we are in a given mode, we copy the corresponding x registers to r13
10338 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10339 * for the mode.
10340 */
10341 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10342 env->regs[13] = env->xregs[13];
10343 env->regs[14] = env->xregs[14];
10344 } else {
10345 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10346
10347 /*
10348 * HYP is an exception in that it does not have its own banked r14 but
10349 * shares the USR r14
10350 */
10351 if (mode == ARM_CPU_MODE_HYP) {
10352 env->regs[14] = env->xregs[14];
10353 } else {
10354 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10355 }
10356 }
10357
10358 if (mode == ARM_CPU_MODE_HYP) {
10359 env->regs[13] = env->xregs[15];
10360 } else {
10361 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10362 }
10363
10364 if (mode == ARM_CPU_MODE_IRQ) {
10365 env->regs[14] = env->xregs[16];
10366 env->regs[13] = env->xregs[17];
10367 } else {
10368 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10369 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10370 }
10371
10372 if (mode == ARM_CPU_MODE_SVC) {
10373 env->regs[14] = env->xregs[18];
10374 env->regs[13] = env->xregs[19];
10375 } else {
10376 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10377 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10378 }
10379
10380 if (mode == ARM_CPU_MODE_ABT) {
10381 env->regs[14] = env->xregs[20];
10382 env->regs[13] = env->xregs[21];
10383 } else {
10384 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10385 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10386 }
10387
10388 if (mode == ARM_CPU_MODE_UND) {
10389 env->regs[14] = env->xregs[22];
10390 env->regs[13] = env->xregs[23];
10391 } else {
10392 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10393 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10394 }
10395
10396 /*
10397 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10398 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10399 * FIQ bank for r8-r14.
10400 */
10401 if (mode == ARM_CPU_MODE_FIQ) {
10402 for (i = 24; i < 31; i++) {
10403 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10404 }
10405 } else {
10406 for (i = 24; i < 29; i++) {
10407 env->fiq_regs[i - 24] = env->xregs[i];
10408 }
10409 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10410 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10411 }
10412
10413 env->regs[15] = env->pc;
10414 }
10415
10416 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10417 uint32_t mask, uint32_t offset,
10418 uint32_t newpc)
10419 {
10420 int new_el;
10421
10422 /* Change the CPU state so as to actually take the exception. */
10423 switch_mode(env, new_mode);
10424
10425 /*
10426 * For exceptions taken to AArch32 we must clear the SS bit in both
10427 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10428 */
10429 env->pstate &= ~PSTATE_SS;
10430 env->spsr = cpsr_read(env);
10431 /* Clear IT bits. */
10432 env->condexec_bits = 0;
10433 /* Switch to the new mode, and to the correct instruction set. */
10434 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10435
10436 /* This must be after mode switching. */
10437 new_el = arm_current_el(env);
10438
10439 /* Set new mode endianness */
10440 env->uncached_cpsr &= ~CPSR_E;
10441 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10442 env->uncached_cpsr |= CPSR_E;
10443 }
10444 /* J and IL must always be cleared for exception entry */
10445 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10446 env->daif |= mask;
10447
10448 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10449 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10450 env->uncached_cpsr |= CPSR_SSBS;
10451 } else {
10452 env->uncached_cpsr &= ~CPSR_SSBS;
10453 }
10454 }
10455
10456 if (new_mode == ARM_CPU_MODE_HYP) {
10457 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10458 env->elr_el[2] = env->regs[15];
10459 } else {
10460 /* CPSR.PAN is normally preserved preserved unless... */
10461 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10462 switch (new_el) {
10463 case 3:
10464 if (!arm_is_secure_below_el3(env)) {
10465 /* ... the target is EL3, from non-secure state. */
10466 env->uncached_cpsr &= ~CPSR_PAN;
10467 break;
10468 }
10469 /* ... the target is EL3, from secure state ... */
10470 /* fall through */
10471 case 1:
10472 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10473 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10474 env->uncached_cpsr |= CPSR_PAN;
10475 }
10476 break;
10477 }
10478 }
10479 /*
10480 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10481 * and we should just guard the thumb mode on V4
10482 */
10483 if (arm_feature(env, ARM_FEATURE_V4T)) {
10484 env->thumb =
10485 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10486 }
10487 env->regs[14] = env->regs[15] + offset;
10488 }
10489 env->regs[15] = newpc;
10490
10491 if (tcg_enabled()) {
10492 arm_rebuild_hflags(env);
10493 }
10494 }
10495
10496 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10497 {
10498 /*
10499 * Handle exception entry to Hyp mode; this is sufficiently
10500 * different to entry to other AArch32 modes that we handle it
10501 * separately here.
10502 *
10503 * The vector table entry used is always the 0x14 Hyp mode entry point,
10504 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10505 * The offset applied to the preferred return address is always zero
10506 * (see DDI0487C.a section G1.12.3).
10507 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10508 */
10509 uint32_t addr, mask;
10510 ARMCPU *cpu = ARM_CPU(cs);
10511 CPUARMState *env = &cpu->env;
10512
10513 switch (cs->exception_index) {
10514 case EXCP_UDEF:
10515 addr = 0x04;
10516 break;
10517 case EXCP_SWI:
10518 addr = 0x08;
10519 break;
10520 case EXCP_BKPT:
10521 /* Fall through to prefetch abort. */
10522 case EXCP_PREFETCH_ABORT:
10523 env->cp15.ifar_s = env->exception.vaddress;
10524 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10525 (uint32_t)env->exception.vaddress);
10526 addr = 0x0c;
10527 break;
10528 case EXCP_DATA_ABORT:
10529 env->cp15.dfar_s = env->exception.vaddress;
10530 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10531 (uint32_t)env->exception.vaddress);
10532 addr = 0x10;
10533 break;
10534 case EXCP_IRQ:
10535 addr = 0x18;
10536 break;
10537 case EXCP_FIQ:
10538 addr = 0x1c;
10539 break;
10540 case EXCP_HVC:
10541 addr = 0x08;
10542 break;
10543 case EXCP_HYP_TRAP:
10544 addr = 0x14;
10545 break;
10546 default:
10547 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10548 }
10549
10550 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10551 if (!arm_feature(env, ARM_FEATURE_V8)) {
10552 /*
10553 * QEMU syndrome values are v8-style. v7 has the IL bit
10554 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10555 * If this is a v7 CPU, squash the IL bit in those cases.
10556 */
10557 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10558 (cs->exception_index == EXCP_DATA_ABORT &&
10559 !(env->exception.syndrome & ARM_EL_ISV)) ||
10560 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10561 env->exception.syndrome &= ~ARM_EL_IL;
10562 }
10563 }
10564 env->cp15.esr_el[2] = env->exception.syndrome;
10565 }
10566
10567 if (arm_current_el(env) != 2 && addr < 0x14) {
10568 addr = 0x14;
10569 }
10570
10571 mask = 0;
10572 if (!(env->cp15.scr_el3 & SCR_EA)) {
10573 mask |= CPSR_A;
10574 }
10575 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10576 mask |= CPSR_I;
10577 }
10578 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10579 mask |= CPSR_F;
10580 }
10581
10582 addr += env->cp15.hvbar;
10583
10584 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10585 }
10586
10587 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10588 {
10589 ARMCPU *cpu = ARM_CPU(cs);
10590 CPUARMState *env = &cpu->env;
10591 uint32_t addr;
10592 uint32_t mask;
10593 int new_mode;
10594 uint32_t offset;
10595 uint32_t moe;
10596
10597 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10598 switch (syn_get_ec(env->exception.syndrome)) {
10599 case EC_BREAKPOINT:
10600 case EC_BREAKPOINT_SAME_EL:
10601 moe = 1;
10602 break;
10603 case EC_WATCHPOINT:
10604 case EC_WATCHPOINT_SAME_EL:
10605 moe = 10;
10606 break;
10607 case EC_AA32_BKPT:
10608 moe = 3;
10609 break;
10610 case EC_VECTORCATCH:
10611 moe = 5;
10612 break;
10613 default:
10614 moe = 0;
10615 break;
10616 }
10617
10618 if (moe) {
10619 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10620 }
10621
10622 if (env->exception.target_el == 2) {
10623 arm_cpu_do_interrupt_aarch32_hyp(cs);
10624 return;
10625 }
10626
10627 switch (cs->exception_index) {
10628 case EXCP_UDEF:
10629 new_mode = ARM_CPU_MODE_UND;
10630 addr = 0x04;
10631 mask = CPSR_I;
10632 if (env->thumb) {
10633 offset = 2;
10634 } else {
10635 offset = 4;
10636 }
10637 break;
10638 case EXCP_SWI:
10639 new_mode = ARM_CPU_MODE_SVC;
10640 addr = 0x08;
10641 mask = CPSR_I;
10642 /* The PC already points to the next instruction. */
10643 offset = 0;
10644 break;
10645 case EXCP_BKPT:
10646 /* Fall through to prefetch abort. */
10647 case EXCP_PREFETCH_ABORT:
10648 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10649 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10650 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10651 env->exception.fsr, (uint32_t)env->exception.vaddress);
10652 new_mode = ARM_CPU_MODE_ABT;
10653 addr = 0x0c;
10654 mask = CPSR_A | CPSR_I;
10655 offset = 4;
10656 break;
10657 case EXCP_DATA_ABORT:
10658 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10659 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10660 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10661 env->exception.fsr,
10662 (uint32_t)env->exception.vaddress);
10663 new_mode = ARM_CPU_MODE_ABT;
10664 addr = 0x10;
10665 mask = CPSR_A | CPSR_I;
10666 offset = 8;
10667 break;
10668 case EXCP_IRQ:
10669 new_mode = ARM_CPU_MODE_IRQ;
10670 addr = 0x18;
10671 /* Disable IRQ and imprecise data aborts. */
10672 mask = CPSR_A | CPSR_I;
10673 offset = 4;
10674 if (env->cp15.scr_el3 & SCR_IRQ) {
10675 /* IRQ routed to monitor mode */
10676 new_mode = ARM_CPU_MODE_MON;
10677 mask |= CPSR_F;
10678 }
10679 break;
10680 case EXCP_FIQ:
10681 new_mode = ARM_CPU_MODE_FIQ;
10682 addr = 0x1c;
10683 /* Disable FIQ, IRQ and imprecise data aborts. */
10684 mask = CPSR_A | CPSR_I | CPSR_F;
10685 if (env->cp15.scr_el3 & SCR_FIQ) {
10686 /* FIQ routed to monitor mode */
10687 new_mode = ARM_CPU_MODE_MON;
10688 }
10689 offset = 4;
10690 break;
10691 case EXCP_VIRQ:
10692 new_mode = ARM_CPU_MODE_IRQ;
10693 addr = 0x18;
10694 /* Disable IRQ and imprecise data aborts. */
10695 mask = CPSR_A | CPSR_I;
10696 offset = 4;
10697 break;
10698 case EXCP_VFIQ:
10699 new_mode = ARM_CPU_MODE_FIQ;
10700 addr = 0x1c;
10701 /* Disable FIQ, IRQ and imprecise data aborts. */
10702 mask = CPSR_A | CPSR_I | CPSR_F;
10703 offset = 4;
10704 break;
10705 case EXCP_VSERR:
10706 {
10707 /*
10708 * Note that this is reported as a data abort, but the DFAR
10709 * has an UNKNOWN value. Construct the SError syndrome from
10710 * AET and ExT fields.
10711 */
10712 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10713
10714 if (extended_addresses_enabled(env)) {
10715 env->exception.fsr = arm_fi_to_lfsc(&fi);
10716 } else {
10717 env->exception.fsr = arm_fi_to_sfsc(&fi);
10718 }
10719 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10720 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10721 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10722 env->exception.fsr);
10723
10724 new_mode = ARM_CPU_MODE_ABT;
10725 addr = 0x10;
10726 mask = CPSR_A | CPSR_I;
10727 offset = 8;
10728 }
10729 break;
10730 case EXCP_SMC:
10731 new_mode = ARM_CPU_MODE_MON;
10732 addr = 0x08;
10733 mask = CPSR_A | CPSR_I | CPSR_F;
10734 offset = 0;
10735 break;
10736 default:
10737 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10738 return; /* Never happens. Keep compiler happy. */
10739 }
10740
10741 if (new_mode == ARM_CPU_MODE_MON) {
10742 addr += env->cp15.mvbar;
10743 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10744 /* High vectors. When enabled, base address cannot be remapped. */
10745 addr += 0xffff0000;
10746 } else {
10747 /*
10748 * ARM v7 architectures provide a vector base address register to remap
10749 * the interrupt vector table.
10750 * This register is only followed in non-monitor mode, and is banked.
10751 * Note: only bits 31:5 are valid.
10752 */
10753 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10754 }
10755
10756 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10757 env->cp15.scr_el3 &= ~SCR_NS;
10758 }
10759
10760 take_aarch32_exception(env, new_mode, mask, offset, addr);
10761 }
10762
10763 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10764 {
10765 /*
10766 * Return the register number of the AArch64 view of the AArch32
10767 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10768 * be that of the AArch32 mode the exception came from.
10769 */
10770 int mode = env->uncached_cpsr & CPSR_M;
10771
10772 switch (aarch32_reg) {
10773 case 0 ... 7:
10774 return aarch32_reg;
10775 case 8 ... 12:
10776 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10777 case 13:
10778 switch (mode) {
10779 case ARM_CPU_MODE_USR:
10780 case ARM_CPU_MODE_SYS:
10781 return 13;
10782 case ARM_CPU_MODE_HYP:
10783 return 15;
10784 case ARM_CPU_MODE_IRQ:
10785 return 17;
10786 case ARM_CPU_MODE_SVC:
10787 return 19;
10788 case ARM_CPU_MODE_ABT:
10789 return 21;
10790 case ARM_CPU_MODE_UND:
10791 return 23;
10792 case ARM_CPU_MODE_FIQ:
10793 return 29;
10794 default:
10795 g_assert_not_reached();
10796 }
10797 case 14:
10798 switch (mode) {
10799 case ARM_CPU_MODE_USR:
10800 case ARM_CPU_MODE_SYS:
10801 case ARM_CPU_MODE_HYP:
10802 return 14;
10803 case ARM_CPU_MODE_IRQ:
10804 return 16;
10805 case ARM_CPU_MODE_SVC:
10806 return 18;
10807 case ARM_CPU_MODE_ABT:
10808 return 20;
10809 case ARM_CPU_MODE_UND:
10810 return 22;
10811 case ARM_CPU_MODE_FIQ:
10812 return 30;
10813 default:
10814 g_assert_not_reached();
10815 }
10816 case 15:
10817 return 31;
10818 default:
10819 g_assert_not_reached();
10820 }
10821 }
10822
10823 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10824 {
10825 uint32_t ret = cpsr_read(env);
10826
10827 /* Move DIT to the correct location for SPSR_ELx */
10828 if (ret & CPSR_DIT) {
10829 ret &= ~CPSR_DIT;
10830 ret |= PSTATE_DIT;
10831 }
10832 /* Merge PSTATE.SS into SPSR_ELx */
10833 ret |= env->pstate & PSTATE_SS;
10834
10835 return ret;
10836 }
10837
10838 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10839 {
10840 /* Return true if this syndrome value is a synchronous external abort */
10841 switch (syn_get_ec(syndrome)) {
10842 case EC_INSNABORT:
10843 case EC_INSNABORT_SAME_EL:
10844 case EC_DATAABORT:
10845 case EC_DATAABORT_SAME_EL:
10846 /* Look at fault status code for all the synchronous ext abort cases */
10847 switch (syndrome & 0x3f) {
10848 case 0x10:
10849 case 0x13:
10850 case 0x14:
10851 case 0x15:
10852 case 0x16:
10853 case 0x17:
10854 return true;
10855 default:
10856 return false;
10857 }
10858 default:
10859 return false;
10860 }
10861 }
10862
10863 /* Handle exception entry to a target EL which is using AArch64 */
10864 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10865 {
10866 ARMCPU *cpu = ARM_CPU(cs);
10867 CPUARMState *env = &cpu->env;
10868 unsigned int new_el = env->exception.target_el;
10869 target_ulong addr = env->cp15.vbar_el[new_el];
10870 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10871 unsigned int old_mode;
10872 unsigned int cur_el = arm_current_el(env);
10873 int rt;
10874
10875 if (tcg_enabled()) {
10876 /*
10877 * Note that new_el can never be 0. If cur_el is 0, then
10878 * el0_a64 is is_a64(), else el0_a64 is ignored.
10879 */
10880 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10881 }
10882
10883 if (cur_el < new_el) {
10884 /*
10885 * Entry vector offset depends on whether the implemented EL
10886 * immediately lower than the target level is using AArch32 or AArch64
10887 */
10888 bool is_aa64;
10889 uint64_t hcr;
10890
10891 switch (new_el) {
10892 case 3:
10893 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10894 break;
10895 case 2:
10896 hcr = arm_hcr_el2_eff(env);
10897 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10898 is_aa64 = (hcr & HCR_RW) != 0;
10899 break;
10900 }
10901 /* fall through */
10902 case 1:
10903 is_aa64 = is_a64(env);
10904 break;
10905 default:
10906 g_assert_not_reached();
10907 }
10908
10909 if (is_aa64) {
10910 addr += 0x400;
10911 } else {
10912 addr += 0x600;
10913 }
10914 } else if (pstate_read(env) & PSTATE_SP) {
10915 addr += 0x200;
10916 }
10917
10918 switch (cs->exception_index) {
10919 case EXCP_GPC:
10920 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
10921 env->cp15.mfar_el3);
10922 /* fall through */
10923 case EXCP_PREFETCH_ABORT:
10924 case EXCP_DATA_ABORT:
10925 /*
10926 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10927 * to be taken to the SError vector entrypoint.
10928 */
10929 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10930 syndrome_is_sync_extabt(env->exception.syndrome)) {
10931 addr += 0x180;
10932 }
10933 env->cp15.far_el[new_el] = env->exception.vaddress;
10934 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10935 env->cp15.far_el[new_el]);
10936 /* fall through */
10937 case EXCP_BKPT:
10938 case EXCP_UDEF:
10939 case EXCP_SWI:
10940 case EXCP_HVC:
10941 case EXCP_HYP_TRAP:
10942 case EXCP_SMC:
10943 switch (syn_get_ec(env->exception.syndrome)) {
10944 case EC_ADVSIMDFPACCESSTRAP:
10945 /*
10946 * QEMU internal FP/SIMD syndromes from AArch32 include the
10947 * TA and coproc fields which are only exposed if the exception
10948 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10949 * AArch64 format syndrome.
10950 */
10951 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10952 break;
10953 case EC_CP14RTTRAP:
10954 case EC_CP15RTTRAP:
10955 case EC_CP14DTTRAP:
10956 /*
10957 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10958 * the raw register field from the insn; when taking this to
10959 * AArch64 we must convert it to the AArch64 view of the register
10960 * number. Notice that we read a 4-bit AArch32 register number and
10961 * write back a 5-bit AArch64 one.
10962 */
10963 rt = extract32(env->exception.syndrome, 5, 4);
10964 rt = aarch64_regnum(env, rt);
10965 env->exception.syndrome = deposit32(env->exception.syndrome,
10966 5, 5, rt);
10967 break;
10968 case EC_CP15RRTTRAP:
10969 case EC_CP14RRTTRAP:
10970 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10971 rt = extract32(env->exception.syndrome, 5, 4);
10972 rt = aarch64_regnum(env, rt);
10973 env->exception.syndrome = deposit32(env->exception.syndrome,
10974 5, 5, rt);
10975 rt = extract32(env->exception.syndrome, 10, 4);
10976 rt = aarch64_regnum(env, rt);
10977 env->exception.syndrome = deposit32(env->exception.syndrome,
10978 10, 5, rt);
10979 break;
10980 }
10981 env->cp15.esr_el[new_el] = env->exception.syndrome;
10982 break;
10983 case EXCP_IRQ:
10984 case EXCP_VIRQ:
10985 addr += 0x80;
10986 break;
10987 case EXCP_FIQ:
10988 case EXCP_VFIQ:
10989 addr += 0x100;
10990 break;
10991 case EXCP_VSERR:
10992 addr += 0x180;
10993 /* Construct the SError syndrome from IDS and ISS fields. */
10994 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10995 env->cp15.esr_el[new_el] = env->exception.syndrome;
10996 break;
10997 default:
10998 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10999 }
11000
11001 if (is_a64(env)) {
11002 old_mode = pstate_read(env);
11003 aarch64_save_sp(env, arm_current_el(env));
11004 env->elr_el[new_el] = env->pc;
11005 } else {
11006 old_mode = cpsr_read_for_spsr_elx(env);
11007 env->elr_el[new_el] = env->regs[15];
11008
11009 aarch64_sync_32_to_64(env);
11010
11011 env->condexec_bits = 0;
11012 }
11013 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11014
11015 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11016 env->elr_el[new_el]);
11017
11018 if (cpu_isar_feature(aa64_pan, cpu)) {
11019 /* The value of PSTATE.PAN is normally preserved, except when ... */
11020 new_mode |= old_mode & PSTATE_PAN;
11021 switch (new_el) {
11022 case 2:
11023 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11024 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11025 != (HCR_E2H | HCR_TGE)) {
11026 break;
11027 }
11028 /* fall through */
11029 case 1:
11030 /* ... the target is EL1 ... */
11031 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11032 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11033 new_mode |= PSTATE_PAN;
11034 }
11035 break;
11036 }
11037 }
11038 if (cpu_isar_feature(aa64_mte, cpu)) {
11039 new_mode |= PSTATE_TCO;
11040 }
11041
11042 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11043 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11044 new_mode |= PSTATE_SSBS;
11045 } else {
11046 new_mode &= ~PSTATE_SSBS;
11047 }
11048 }
11049
11050 pstate_write(env, PSTATE_DAIF | new_mode);
11051 env->aarch64 = true;
11052 aarch64_restore_sp(env, new_el);
11053
11054 if (tcg_enabled()) {
11055 helper_rebuild_hflags_a64(env, new_el);
11056 }
11057
11058 env->pc = addr;
11059
11060 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11061 new_el, env->pc, pstate_read(env));
11062 }
11063
11064 /*
11065 * Do semihosting call and set the appropriate return value. All the
11066 * permission and validity checks have been done at translate time.
11067 *
11068 * We only see semihosting exceptions in TCG only as they are not
11069 * trapped to the hypervisor in KVM.
11070 */
11071 #ifdef CONFIG_TCG
11072 static void tcg_handle_semihosting(CPUState *cs)
11073 {
11074 ARMCPU *cpu = ARM_CPU(cs);
11075 CPUARMState *env = &cpu->env;
11076
11077 if (is_a64(env)) {
11078 qemu_log_mask(CPU_LOG_INT,
11079 "...handling as semihosting call 0x%" PRIx64 "\n",
11080 env->xregs[0]);
11081 do_common_semihosting(cs);
11082 env->pc += 4;
11083 } else {
11084 qemu_log_mask(CPU_LOG_INT,
11085 "...handling as semihosting call 0x%x\n",
11086 env->regs[0]);
11087 do_common_semihosting(cs);
11088 env->regs[15] += env->thumb ? 2 : 4;
11089 }
11090 }
11091 #endif
11092
11093 /*
11094 * Handle a CPU exception for A and R profile CPUs.
11095 * Do any appropriate logging, handle PSCI calls, and then hand off
11096 * to the AArch64-entry or AArch32-entry function depending on the
11097 * target exception level's register width.
11098 *
11099 * Note: this is used for both TCG (as the do_interrupt tcg op),
11100 * and KVM to re-inject guest debug exceptions, and to
11101 * inject a Synchronous-External-Abort.
11102 */
11103 void arm_cpu_do_interrupt(CPUState *cs)
11104 {
11105 ARMCPU *cpu = ARM_CPU(cs);
11106 CPUARMState *env = &cpu->env;
11107 unsigned int new_el = env->exception.target_el;
11108
11109 assert(!arm_feature(env, ARM_FEATURE_M));
11110
11111 arm_log_exception(cs);
11112 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11113 new_el);
11114 if (qemu_loglevel_mask(CPU_LOG_INT)
11115 && !excp_is_internal(cs->exception_index)) {
11116 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11117 syn_get_ec(env->exception.syndrome),
11118 env->exception.syndrome);
11119 }
11120
11121 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11122 arm_handle_psci_call(cpu);
11123 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11124 return;
11125 }
11126
11127 /*
11128 * Semihosting semantics depend on the register width of the code
11129 * that caused the exception, not the target exception level, so
11130 * must be handled here.
11131 */
11132 #ifdef CONFIG_TCG
11133 if (cs->exception_index == EXCP_SEMIHOST) {
11134 tcg_handle_semihosting(cs);
11135 return;
11136 }
11137 #endif
11138
11139 /*
11140 * Hooks may change global state so BQL should be held, also the
11141 * BQL needs to be held for any modification of
11142 * cs->interrupt_request.
11143 */
11144 g_assert(qemu_mutex_iothread_locked());
11145
11146 arm_call_pre_el_change_hook(cpu);
11147
11148 assert(!excp_is_internal(cs->exception_index));
11149 if (arm_el_is_aa64(env, new_el)) {
11150 arm_cpu_do_interrupt_aarch64(cs);
11151 } else {
11152 arm_cpu_do_interrupt_aarch32(cs);
11153 }
11154
11155 arm_call_el_change_hook(cpu);
11156
11157 if (!kvm_enabled()) {
11158 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11159 }
11160 }
11161 #endif /* !CONFIG_USER_ONLY */
11162
11163 uint64_t arm_sctlr(CPUARMState *env, int el)
11164 {
11165 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11166 if (el == 0) {
11167 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11168 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11169 }
11170 return env->cp15.sctlr_el[el];
11171 }
11172
11173 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11174 {
11175 if (regime_has_2_ranges(mmu_idx)) {
11176 return extract64(tcr, 37, 2);
11177 } else if (regime_is_stage2(mmu_idx)) {
11178 return 0; /* VTCR_EL2 */
11179 } else {
11180 /* Replicate the single TBI bit so we always have 2 bits. */
11181 return extract32(tcr, 20, 1) * 3;
11182 }
11183 }
11184
11185 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11186 {
11187 if (regime_has_2_ranges(mmu_idx)) {
11188 return extract64(tcr, 51, 2);
11189 } else if (regime_is_stage2(mmu_idx)) {
11190 return 0; /* VTCR_EL2 */
11191 } else {
11192 /* Replicate the single TBID bit so we always have 2 bits. */
11193 return extract32(tcr, 29, 1) * 3;
11194 }
11195 }
11196
11197 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11198 {
11199 if (regime_has_2_ranges(mmu_idx)) {
11200 return extract64(tcr, 57, 2);
11201 } else {
11202 /* Replicate the single TCMA bit so we always have 2 bits. */
11203 return extract32(tcr, 30, 1) * 3;
11204 }
11205 }
11206
11207 static ARMGranuleSize tg0_to_gran_size(int tg)
11208 {
11209 switch (tg) {
11210 case 0:
11211 return Gran4K;
11212 case 1:
11213 return Gran64K;
11214 case 2:
11215 return Gran16K;
11216 default:
11217 return GranInvalid;
11218 }
11219 }
11220
11221 static ARMGranuleSize tg1_to_gran_size(int tg)
11222 {
11223 switch (tg) {
11224 case 1:
11225 return Gran16K;
11226 case 2:
11227 return Gran4K;
11228 case 3:
11229 return Gran64K;
11230 default:
11231 return GranInvalid;
11232 }
11233 }
11234
11235 static inline bool have4k(ARMCPU *cpu, bool stage2)
11236 {
11237 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11238 : cpu_isar_feature(aa64_tgran4, cpu);
11239 }
11240
11241 static inline bool have16k(ARMCPU *cpu, bool stage2)
11242 {
11243 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11244 : cpu_isar_feature(aa64_tgran16, cpu);
11245 }
11246
11247 static inline bool have64k(ARMCPU *cpu, bool stage2)
11248 {
11249 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11250 : cpu_isar_feature(aa64_tgran64, cpu);
11251 }
11252
11253 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11254 bool stage2)
11255 {
11256 switch (gran) {
11257 case Gran4K:
11258 if (have4k(cpu, stage2)) {
11259 return gran;
11260 }
11261 break;
11262 case Gran16K:
11263 if (have16k(cpu, stage2)) {
11264 return gran;
11265 }
11266 break;
11267 case Gran64K:
11268 if (have64k(cpu, stage2)) {
11269 return gran;
11270 }
11271 break;
11272 case GranInvalid:
11273 break;
11274 }
11275 /*
11276 * If the guest selects a granule size that isn't implemented,
11277 * the architecture requires that we behave as if it selected one
11278 * that is (with an IMPDEF choice of which one to pick). We choose
11279 * to implement the smallest supported granule size.
11280 */
11281 if (have4k(cpu, stage2)) {
11282 return Gran4K;
11283 }
11284 if (have16k(cpu, stage2)) {
11285 return Gran16K;
11286 }
11287 assert(have64k(cpu, stage2));
11288 return Gran64K;
11289 }
11290
11291 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11292 ARMMMUIdx mmu_idx, bool data,
11293 bool el1_is_aa32)
11294 {
11295 uint64_t tcr = regime_tcr(env, mmu_idx);
11296 bool epd, hpd, tsz_oob, ds, ha, hd;
11297 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11298 ARMGranuleSize gran;
11299 ARMCPU *cpu = env_archcpu(env);
11300 bool stage2 = regime_is_stage2(mmu_idx);
11301
11302 if (!regime_has_2_ranges(mmu_idx)) {
11303 select = 0;
11304 tsz = extract32(tcr, 0, 6);
11305 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11306 if (stage2) {
11307 /* VTCR_EL2 */
11308 hpd = false;
11309 } else {
11310 hpd = extract32(tcr, 24, 1);
11311 }
11312 epd = false;
11313 sh = extract32(tcr, 12, 2);
11314 ps = extract32(tcr, 16, 3);
11315 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11316 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11317 ds = extract64(tcr, 32, 1);
11318 } else {
11319 bool e0pd;
11320
11321 /*
11322 * Bit 55 is always between the two regions, and is canonical for
11323 * determining if address tagging is enabled.
11324 */
11325 select = extract64(va, 55, 1);
11326 if (!select) {
11327 tsz = extract32(tcr, 0, 6);
11328 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11329 epd = extract32(tcr, 7, 1);
11330 sh = extract32(tcr, 12, 2);
11331 hpd = extract64(tcr, 41, 1);
11332 e0pd = extract64(tcr, 55, 1);
11333 } else {
11334 tsz = extract32(tcr, 16, 6);
11335 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11336 epd = extract32(tcr, 23, 1);
11337 sh = extract32(tcr, 28, 2);
11338 hpd = extract64(tcr, 42, 1);
11339 e0pd = extract64(tcr, 56, 1);
11340 }
11341 ps = extract64(tcr, 32, 3);
11342 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11343 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11344 ds = extract64(tcr, 59, 1);
11345
11346 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11347 regime_is_user(env, mmu_idx)) {
11348 epd = true;
11349 }
11350 }
11351
11352 gran = sanitize_gran_size(cpu, gran, stage2);
11353
11354 if (cpu_isar_feature(aa64_st, cpu)) {
11355 max_tsz = 48 - (gran == Gran64K);
11356 } else {
11357 max_tsz = 39;
11358 }
11359
11360 /*
11361 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11362 * adjust the effective value of DS, as documented.
11363 */
11364 min_tsz = 16;
11365 if (gran == Gran64K) {
11366 if (cpu_isar_feature(aa64_lva, cpu)) {
11367 min_tsz = 12;
11368 }
11369 ds = false;
11370 } else if (ds) {
11371 if (regime_is_stage2(mmu_idx)) {
11372 if (gran == Gran16K) {
11373 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11374 } else {
11375 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11376 }
11377 } else {
11378 if (gran == Gran16K) {
11379 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11380 } else {
11381 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11382 }
11383 }
11384 if (ds) {
11385 min_tsz = 12;
11386 }
11387 }
11388
11389 if (stage2 && el1_is_aa32) {
11390 /*
11391 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11392 * are loosened: a configured IPA of 40 bits is permitted even if
11393 * the implemented PA is less than that (and so a 40 bit IPA would
11394 * fault for an AArch64 EL1). See R_DTLMN.
11395 */
11396 min_tsz = MIN(min_tsz, 24);
11397 }
11398
11399 if (tsz > max_tsz) {
11400 tsz = max_tsz;
11401 tsz_oob = true;
11402 } else if (tsz < min_tsz) {
11403 tsz = min_tsz;
11404 tsz_oob = true;
11405 } else {
11406 tsz_oob = false;
11407 }
11408
11409 /* Present TBI as a composite with TBID. */
11410 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11411 if (!data) {
11412 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11413 }
11414 tbi = (tbi >> select) & 1;
11415
11416 return (ARMVAParameters) {
11417 .tsz = tsz,
11418 .ps = ps,
11419 .sh = sh,
11420 .select = select,
11421 .tbi = tbi,
11422 .epd = epd,
11423 .hpd = hpd,
11424 .tsz_oob = tsz_oob,
11425 .ds = ds,
11426 .ha = ha,
11427 .hd = ha && hd,
11428 .gran = gran,
11429 };
11430 }
11431
11432 /*
11433 * Note that signed overflow is undefined in C. The following routines are
11434 * careful to use unsigned types where modulo arithmetic is required.
11435 * Failure to do so _will_ break on newer gcc.
11436 */
11437
11438 /* Signed saturating arithmetic. */
11439
11440 /* Perform 16-bit signed saturating addition. */
11441 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11442 {
11443 uint16_t res;
11444
11445 res = a + b;
11446 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11447 if (a & 0x8000) {
11448 res = 0x8000;
11449 } else {
11450 res = 0x7fff;
11451 }
11452 }
11453 return res;
11454 }
11455
11456 /* Perform 8-bit signed saturating addition. */
11457 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11458 {
11459 uint8_t res;
11460
11461 res = a + b;
11462 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11463 if (a & 0x80) {
11464 res = 0x80;
11465 } else {
11466 res = 0x7f;
11467 }
11468 }
11469 return res;
11470 }
11471
11472 /* Perform 16-bit signed saturating subtraction. */
11473 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11474 {
11475 uint16_t res;
11476
11477 res = a - b;
11478 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11479 if (a & 0x8000) {
11480 res = 0x8000;
11481 } else {
11482 res = 0x7fff;
11483 }
11484 }
11485 return res;
11486 }
11487
11488 /* Perform 8-bit signed saturating subtraction. */
11489 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11490 {
11491 uint8_t res;
11492
11493 res = a - b;
11494 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11495 if (a & 0x80) {
11496 res = 0x80;
11497 } else {
11498 res = 0x7f;
11499 }
11500 }
11501 return res;
11502 }
11503
11504 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11505 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11506 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11507 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11508 #define PFX q
11509
11510 #include "op_addsub.h"
11511
11512 /* Unsigned saturating arithmetic. */
11513 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11514 {
11515 uint16_t res;
11516 res = a + b;
11517 if (res < a) {
11518 res = 0xffff;
11519 }
11520 return res;
11521 }
11522
11523 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11524 {
11525 if (a > b) {
11526 return a - b;
11527 } else {
11528 return 0;
11529 }
11530 }
11531
11532 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11533 {
11534 uint8_t res;
11535 res = a + b;
11536 if (res < a) {
11537 res = 0xff;
11538 }
11539 return res;
11540 }
11541
11542 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11543 {
11544 if (a > b) {
11545 return a - b;
11546 } else {
11547 return 0;
11548 }
11549 }
11550
11551 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11552 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11553 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11554 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11555 #define PFX uq
11556
11557 #include "op_addsub.h"
11558
11559 /* Signed modulo arithmetic. */
11560 #define SARITH16(a, b, n, op) do { \
11561 int32_t sum; \
11562 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11563 RESULT(sum, n, 16); \
11564 if (sum >= 0) \
11565 ge |= 3 << (n * 2); \
11566 } while (0)
11567
11568 #define SARITH8(a, b, n, op) do { \
11569 int32_t sum; \
11570 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11571 RESULT(sum, n, 8); \
11572 if (sum >= 0) \
11573 ge |= 1 << n; \
11574 } while (0)
11575
11576
11577 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11578 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11579 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11580 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11581 #define PFX s
11582 #define ARITH_GE
11583
11584 #include "op_addsub.h"
11585
11586 /* Unsigned modulo arithmetic. */
11587 #define ADD16(a, b, n) do { \
11588 uint32_t sum; \
11589 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11590 RESULT(sum, n, 16); \
11591 if ((sum >> 16) == 1) \
11592 ge |= 3 << (n * 2); \
11593 } while (0)
11594
11595 #define ADD8(a, b, n) do { \
11596 uint32_t sum; \
11597 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11598 RESULT(sum, n, 8); \
11599 if ((sum >> 8) == 1) \
11600 ge |= 1 << n; \
11601 } while (0)
11602
11603 #define SUB16(a, b, n) do { \
11604 uint32_t sum; \
11605 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11606 RESULT(sum, n, 16); \
11607 if ((sum >> 16) == 0) \
11608 ge |= 3 << (n * 2); \
11609 } while (0)
11610
11611 #define SUB8(a, b, n) do { \
11612 uint32_t sum; \
11613 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11614 RESULT(sum, n, 8); \
11615 if ((sum >> 8) == 0) \
11616 ge |= 1 << n; \
11617 } while (0)
11618
11619 #define PFX u
11620 #define ARITH_GE
11621
11622 #include "op_addsub.h"
11623
11624 /* Halved signed arithmetic. */
11625 #define ADD16(a, b, n) \
11626 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11627 #define SUB16(a, b, n) \
11628 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11629 #define ADD8(a, b, n) \
11630 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11631 #define SUB8(a, b, n) \
11632 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11633 #define PFX sh
11634
11635 #include "op_addsub.h"
11636
11637 /* Halved unsigned arithmetic. */
11638 #define ADD16(a, b, n) \
11639 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11640 #define SUB16(a, b, n) \
11641 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11642 #define ADD8(a, b, n) \
11643 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11644 #define SUB8(a, b, n) \
11645 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11646 #define PFX uh
11647
11648 #include "op_addsub.h"
11649
11650 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11651 {
11652 if (a > b) {
11653 return a - b;
11654 } else {
11655 return b - a;
11656 }
11657 }
11658
11659 /* Unsigned sum of absolute byte differences. */
11660 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11661 {
11662 uint32_t sum;
11663 sum = do_usad(a, b);
11664 sum += do_usad(a >> 8, b >> 8);
11665 sum += do_usad(a >> 16, b >> 16);
11666 sum += do_usad(a >> 24, b >> 24);
11667 return sum;
11668 }
11669
11670 /* For ARMv6 SEL instruction. */
11671 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11672 {
11673 uint32_t mask;
11674
11675 mask = 0;
11676 if (flags & 1) {
11677 mask |= 0xff;
11678 }
11679 if (flags & 2) {
11680 mask |= 0xff00;
11681 }
11682 if (flags & 4) {
11683 mask |= 0xff0000;
11684 }
11685 if (flags & 8) {
11686 mask |= 0xff000000;
11687 }
11688 return (a & mask) | (b & ~mask);
11689 }
11690
11691 /*
11692 * CRC helpers.
11693 * The upper bytes of val (above the number specified by 'bytes') must have
11694 * been zeroed out by the caller.
11695 */
11696 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11697 {
11698 uint8_t buf[4];
11699
11700 stl_le_p(buf, val);
11701
11702 /* zlib crc32 converts the accumulator and output to one's complement. */
11703 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11704 }
11705
11706 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11707 {
11708 uint8_t buf[4];
11709
11710 stl_le_p(buf, val);
11711
11712 /* Linux crc32c converts the output to one's complement. */
11713 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11714 }
11715
11716 /*
11717 * Return the exception level to which FP-disabled exceptions should
11718 * be taken, or 0 if FP is enabled.
11719 */
11720 int fp_exception_el(CPUARMState *env, int cur_el)
11721 {
11722 #ifndef CONFIG_USER_ONLY
11723 uint64_t hcr_el2;
11724
11725 /*
11726 * CPACR and the CPTR registers don't exist before v6, so FP is
11727 * always accessible
11728 */
11729 if (!arm_feature(env, ARM_FEATURE_V6)) {
11730 return 0;
11731 }
11732
11733 if (arm_feature(env, ARM_FEATURE_M)) {
11734 /* CPACR can cause a NOCP UsageFault taken to current security state */
11735 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11736 return 1;
11737 }
11738
11739 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11740 if (!extract32(env->v7m.nsacr, 10, 1)) {
11741 /* FP insns cause a NOCP UsageFault taken to Secure */
11742 return 3;
11743 }
11744 }
11745
11746 return 0;
11747 }
11748
11749 hcr_el2 = arm_hcr_el2_eff(env);
11750
11751 /*
11752 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11753 * 0, 2 : trap EL0 and EL1/PL1 accesses
11754 * 1 : trap only EL0 accesses
11755 * 3 : trap no accesses
11756 * This register is ignored if E2H+TGE are both set.
11757 */
11758 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11759 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11760
11761 switch (fpen) {
11762 case 1:
11763 if (cur_el != 0) {
11764 break;
11765 }
11766 /* fall through */
11767 case 0:
11768 case 2:
11769 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11770 if (!arm_el_is_aa64(env, 3)
11771 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11772 return 3;
11773 }
11774 if (cur_el <= 1) {
11775 return 1;
11776 }
11777 break;
11778 }
11779 }
11780
11781 /*
11782 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11783 * to control non-secure access to the FPU. It doesn't have any
11784 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11785 */
11786 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11787 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11788 if (!extract32(env->cp15.nsacr, 10, 1)) {
11789 /* FP insns act as UNDEF */
11790 return cur_el == 2 ? 2 : 1;
11791 }
11792 }
11793
11794 /*
11795 * CPTR_EL2 is present in v7VE or v8, and changes format
11796 * with HCR_EL2.E2H (regardless of TGE).
11797 */
11798 if (cur_el <= 2) {
11799 if (hcr_el2 & HCR_E2H) {
11800 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11801 case 1:
11802 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11803 break;
11804 }
11805 /* fall through */
11806 case 0:
11807 case 2:
11808 return 2;
11809 }
11810 } else if (arm_is_el2_enabled(env)) {
11811 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11812 return 2;
11813 }
11814 }
11815 }
11816
11817 /* CPTR_EL3 : present in v8 */
11818 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11819 /* Trap all FP ops to EL3 */
11820 return 3;
11821 }
11822 #endif
11823 return 0;
11824 }
11825
11826 /* Return the exception level we're running at if this is our mmu_idx */
11827 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11828 {
11829 if (mmu_idx & ARM_MMU_IDX_M) {
11830 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11831 }
11832
11833 switch (mmu_idx) {
11834 case ARMMMUIdx_E10_0:
11835 case ARMMMUIdx_E20_0:
11836 return 0;
11837 case ARMMMUIdx_E10_1:
11838 case ARMMMUIdx_E10_1_PAN:
11839 return 1;
11840 case ARMMMUIdx_E2:
11841 case ARMMMUIdx_E20_2:
11842 case ARMMMUIdx_E20_2_PAN:
11843 return 2;
11844 case ARMMMUIdx_E3:
11845 return 3;
11846 default:
11847 g_assert_not_reached();
11848 }
11849 }
11850
11851 #ifndef CONFIG_TCG
11852 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11853 {
11854 g_assert_not_reached();
11855 }
11856 #endif
11857
11858 static bool arm_pan_enabled(CPUARMState *env)
11859 {
11860 if (is_a64(env)) {
11861 return env->pstate & PSTATE_PAN;
11862 } else {
11863 return env->uncached_cpsr & CPSR_PAN;
11864 }
11865 }
11866
11867 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11868 {
11869 ARMMMUIdx idx;
11870 uint64_t hcr;
11871
11872 if (arm_feature(env, ARM_FEATURE_M)) {
11873 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11874 }
11875
11876 /* See ARM pseudo-function ELIsInHost. */
11877 switch (el) {
11878 case 0:
11879 hcr = arm_hcr_el2_eff(env);
11880 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11881 idx = ARMMMUIdx_E20_0;
11882 } else {
11883 idx = ARMMMUIdx_E10_0;
11884 }
11885 break;
11886 case 1:
11887 if (arm_pan_enabled(env)) {
11888 idx = ARMMMUIdx_E10_1_PAN;
11889 } else {
11890 idx = ARMMMUIdx_E10_1;
11891 }
11892 break;
11893 case 2:
11894 /* Note that TGE does not apply at EL2. */
11895 if (arm_hcr_el2_eff(env) & HCR_E2H) {
11896 if (arm_pan_enabled(env)) {
11897 idx = ARMMMUIdx_E20_2_PAN;
11898 } else {
11899 idx = ARMMMUIdx_E20_2;
11900 }
11901 } else {
11902 idx = ARMMMUIdx_E2;
11903 }
11904 break;
11905 case 3:
11906 return ARMMMUIdx_E3;
11907 default:
11908 g_assert_not_reached();
11909 }
11910
11911 return idx;
11912 }
11913
11914 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11915 {
11916 return arm_mmu_idx_el(env, arm_current_el(env));
11917 }
11918
11919 static bool mve_no_pred(CPUARMState *env)
11920 {
11921 /*
11922 * Return true if there is definitely no predication of MVE
11923 * instructions by VPR or LTPSIZE. (Returning false even if there
11924 * isn't any predication is OK; generated code will just be
11925 * a little worse.)
11926 * If the CPU does not implement MVE then this TB flag is always 0.
11927 *
11928 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11929 * logic in gen_update_fp_context() needs to be updated to match.
11930 *
11931 * We do not include the effect of the ECI bits here -- they are
11932 * tracked in other TB flags. This simplifies the logic for
11933 * "when did we emit code that changes the MVE_NO_PRED TB flag
11934 * and thus need to end the TB?".
11935 */
11936 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11937 return false;
11938 }
11939 if (env->v7m.vpr) {
11940 return false;
11941 }
11942 if (env->v7m.ltpsize < 4) {
11943 return false;
11944 }
11945 return true;
11946 }
11947
11948 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11949 target_ulong *cs_base, uint32_t *pflags)
11950 {
11951 CPUARMTBFlags flags;
11952
11953 assert_hflags_rebuild_correctly(env);
11954 flags = env->hflags;
11955
11956 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11957 *pc = env->pc;
11958 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11959 DP_TBFLAG_A64(flags, BTYPE, env->btype);
11960 }
11961 } else {
11962 *pc = env->regs[15];
11963
11964 if (arm_feature(env, ARM_FEATURE_M)) {
11965 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11966 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11967 != env->v7m.secure) {
11968 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11969 }
11970
11971 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11972 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11973 (env->v7m.secure &&
11974 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11975 /*
11976 * ASPEN is set, but FPCA/SFPA indicate that there is no
11977 * active FP context; we must create a new FP context before
11978 * executing any FP insn.
11979 */
11980 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11981 }
11982
11983 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11984 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11985 DP_TBFLAG_M32(flags, LSPACT, 1);
11986 }
11987
11988 if (mve_no_pred(env)) {
11989 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11990 }
11991 } else {
11992 /*
11993 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11994 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11995 */
11996 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11997 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11998 } else {
11999 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12000 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12001 }
12002 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12003 DP_TBFLAG_A32(flags, VFPEN, 1);
12004 }
12005 }
12006
12007 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12008 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12009 }
12010
12011 /*
12012 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12013 * states defined in the ARM ARM for software singlestep:
12014 * SS_ACTIVE PSTATE.SS State
12015 * 0 x Inactive (the TB flag for SS is always 0)
12016 * 1 0 Active-pending
12017 * 1 1 Active-not-pending
12018 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12019 */
12020 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12021 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12022 }
12023
12024 *pflags = flags.flags;
12025 *cs_base = flags.flags2;
12026 }
12027
12028 #ifdef TARGET_AARCH64
12029 /*
12030 * The manual says that when SVE is enabled and VQ is widened the
12031 * implementation is allowed to zero the previously inaccessible
12032 * portion of the registers. The corollary to that is that when
12033 * SVE is enabled and VQ is narrowed we are also allowed to zero
12034 * the now inaccessible portion of the registers.
12035 *
12036 * The intent of this is that no predicate bit beyond VQ is ever set.
12037 * Which means that some operations on predicate registers themselves
12038 * may operate on full uint64_t or even unrolled across the maximum
12039 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12040 * may well be cheaper than conditionals to restrict the operation
12041 * to the relevant portion of a uint16_t[16].
12042 */
12043 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12044 {
12045 int i, j;
12046 uint64_t pmask;
12047
12048 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12049 assert(vq <= env_archcpu(env)->sve_max_vq);
12050
12051 /* Zap the high bits of the zregs. */
12052 for (i = 0; i < 32; i++) {
12053 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12054 }
12055
12056 /* Zap the high bits of the pregs and ffr. */
12057 pmask = 0;
12058 if (vq & 3) {
12059 pmask = ~(-1ULL << (16 * (vq & 3)));
12060 }
12061 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12062 for (i = 0; i < 17; ++i) {
12063 env->vfp.pregs[i].p[j] &= pmask;
12064 }
12065 pmask = 0;
12066 }
12067 }
12068
12069 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12070 {
12071 int exc_el;
12072
12073 if (sm) {
12074 exc_el = sme_exception_el(env, el);
12075 } else {
12076 exc_el = sve_exception_el(env, el);
12077 }
12078 if (exc_el) {
12079 return 0; /* disabled */
12080 }
12081 return sve_vqm1_for_el_sm(env, el, sm);
12082 }
12083
12084 /*
12085 * Notice a change in SVE vector size when changing EL.
12086 */
12087 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12088 int new_el, bool el0_a64)
12089 {
12090 ARMCPU *cpu = env_archcpu(env);
12091 int old_len, new_len;
12092 bool old_a64, new_a64, sm;
12093
12094 /* Nothing to do if no SVE. */
12095 if (!cpu_isar_feature(aa64_sve, cpu)) {
12096 return;
12097 }
12098
12099 /* Nothing to do if FP is disabled in either EL. */
12100 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12101 return;
12102 }
12103
12104 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12105 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12106
12107 /*
12108 * Both AArch64.TakeException and AArch64.ExceptionReturn
12109 * invoke ResetSVEState when taking an exception from, or
12110 * returning to, AArch32 state when PSTATE.SM is enabled.
12111 */
12112 sm = FIELD_EX64(env->svcr, SVCR, SM);
12113 if (old_a64 != new_a64 && sm) {
12114 arm_reset_sve_state(env);
12115 return;
12116 }
12117
12118 /*
12119 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12120 * at ELx, or not available because the EL is in AArch32 state, then
12121 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12122 * has an effective value of 0".
12123 *
12124 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12125 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12126 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12127 * we already have the correct register contents when encountering the
12128 * vq0->vq0 transition between EL0->EL1.
12129 */
12130 old_len = new_len = 0;
12131 if (old_a64) {
12132 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12133 }
12134 if (new_a64) {
12135 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12136 }
12137
12138 /* When changing vector length, clear inaccessible state. */
12139 if (new_len < old_len) {
12140 aarch64_sve_narrow_vq(env, new_len + 1);
12141 }
12142 }
12143 #endif
12144
12145 #ifndef CONFIG_USER_ONLY
12146 ARMSecuritySpace arm_security_space(CPUARMState *env)
12147 {
12148 if (arm_feature(env, ARM_FEATURE_M)) {
12149 return arm_secure_to_space(env->v7m.secure);
12150 }
12151
12152 /*
12153 * If EL3 is not supported then the secure state is implementation
12154 * defined, in which case QEMU defaults to non-secure.
12155 */
12156 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12157 return ARMSS_NonSecure;
12158 }
12159
12160 /* Check for AArch64 EL3 or AArch32 Mon. */
12161 if (is_a64(env)) {
12162 if (extract32(env->pstate, 2, 2) == 3) {
12163 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12164 return ARMSS_Root;
12165 } else {
12166 return ARMSS_Secure;
12167 }
12168 }
12169 } else {
12170 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12171 return ARMSS_Secure;
12172 }
12173 }
12174
12175 return arm_security_space_below_el3(env);
12176 }
12177
12178 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12179 {
12180 assert(!arm_feature(env, ARM_FEATURE_M));
12181
12182 /*
12183 * If EL3 is not supported then the secure state is implementation
12184 * defined, in which case QEMU defaults to non-secure.
12185 */
12186 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12187 return ARMSS_NonSecure;
12188 }
12189
12190 /*
12191 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12192 * Ignoring NSE when !NS retains consistency without having to
12193 * modify other predicates.
12194 */
12195 if (!(env->cp15.scr_el3 & SCR_NS)) {
12196 return ARMSS_Secure;
12197 } else if (env->cp15.scr_el3 & SCR_NSE) {
12198 return ARMSS_Realm;
12199 } else {
12200 return ARMSS_NonSecure;
12201 }
12202 }
12203 #endif /* !CONFIG_USER_ONLY */