]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
target/arm: Don't implement *32_EL2 registers when EL1 is AArch64 only
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35
36 static void switch_mode(CPUARMState *env, int mode);
37
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
45 }
46 }
47
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
55 }
56 }
57
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60 return (char *)env + ri->fieldoffset;
61 }
62
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
74 }
75 }
76
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
79 {
80 /*
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
85 */
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
94 }
95 }
96
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99 /*
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
110 */
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
115 }
116 return true;
117 }
118
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
124
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
129
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
134 }
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
137 }
138
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
141 /*
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
146 */
147 uint64_t oldval = cpu->cpreg_values[i];
148
149 if (oldval == newval) {
150 continue;
151 }
152
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
156 }
157
158 write_raw_cp_reg(&cpu->env, ri, newval);
159 }
160 cpu->cpreg_values[i] = newval;
161 }
162 return ok;
163 }
164
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167 int i;
168 bool ok = true;
169
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
174
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
179 }
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
182 }
183 /*
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
187 */
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
191 }
192 }
193 return ok;
194 }
195
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
206 }
207 }
208
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
213
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
215
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
218 }
219 }
220
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225
226 if (aidx > bidx) {
227 return 1;
228 }
229 if (aidx < bidx) {
230 return -1;
231 }
232 return 0;
233 }
234
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237 /*
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
240 */
241 GList *keys;
242 int arraylen;
243
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
246
247 cpu->cpreg_array_len = 0;
248
249 g_list_foreach(keys, count_cpreg, cpu);
250
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
258
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
260
261 assert(cpu->cpreg_array_len == arraylen);
262
263 g_list_free(keys);
264 }
265
266 /*
267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
268 */
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270 const ARMCPRegInfo *ri,
271 bool isread)
272 {
273 if (!is_a64(env) && arm_current_el(env) == 3 &&
274 arm_is_secure_below_el3(env)) {
275 return CP_ACCESS_TRAP_UNCATEGORIZED;
276 }
277 return CP_ACCESS_OK;
278 }
279
280 /*
281 * Some secure-only AArch32 registers trap to EL3 if used from
282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284 * We assume that the .access field is set to PL1_RW.
285 */
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287 const ARMCPRegInfo *ri,
288 bool isread)
289 {
290 if (arm_current_el(env) == 3) {
291 return CP_ACCESS_OK;
292 }
293 if (arm_is_secure_below_el3(env)) {
294 if (env->cp15.scr_el3 & SCR_EEL2) {
295 return CP_ACCESS_TRAP_EL2;
296 }
297 return CP_ACCESS_TRAP_EL3;
298 }
299 /* This will be EL1 NS and EL2 NS, which just UNDEF */
300 return CP_ACCESS_TRAP_UNCATEGORIZED;
301 }
302
303 /*
304 * Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306 */
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
309 {
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
315 }
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
318 }
319 return CP_ACCESS_OK;
320 }
321
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
325 {
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
330 }
331 }
332 return CP_ACCESS_OK;
333 }
334
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338 {
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
341 }
342 return CP_ACCESS_OK;
343 }
344
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
348 {
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
351 }
352 return CP_ACCESS_OK;
353 }
354
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
358 {
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
361 }
362 return CP_ACCESS_OK;
363 }
364
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
368 {
369 if (arm_current_el(env) == 1 &&
370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371 return CP_ACCESS_TRAP_EL2;
372 }
373 return CP_ACCESS_OK;
374 }
375
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
380 {
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383 return CP_ACCESS_TRAP_EL2;
384 }
385 return CP_ACCESS_OK;
386 }
387 #endif
388
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
390 {
391 ARMCPU *cpu = env_archcpu(env);
392
393 raw_write(env, ri, value);
394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
395 }
396
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 {
399 ARMCPU *cpu = env_archcpu(env);
400
401 if (raw_read(env, ri) != value) {
402 /*
403 * Unlike real hardware the qemu TLB uses virtual addresses,
404 * not modified virtual addresses, so this causes a TLB flush.
405 */
406 tlb_flush(CPU(cpu));
407 raw_write(env, ri, value);
408 }
409 }
410
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
413 {
414 ARMCPU *cpu = env_archcpu(env);
415
416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417 && !extended_addresses_enabled(env)) {
418 /*
419 * For VMSA (when not using the LPAE long descriptor page table
420 * format) this register includes the ASID, so do a TLB flush.
421 * For PMSA it is purely a process ID and no action is needed.
422 */
423 tlb_flush(CPU(cpu));
424 }
425 raw_write(env, ri, value);
426 }
427
428 static int alle1_tlbmask(CPUARMState *env)
429 {
430 /*
431 * Note that the 'ALL' scope must invalidate both stage 1 and
432 * stage 2 translations, whereas most other scopes only invalidate
433 * stage 1 translations.
434 */
435 return (ARMMMUIdxBit_E10_1 |
436 ARMMMUIdxBit_E10_1_PAN |
437 ARMMMUIdxBit_E10_0 |
438 ARMMMUIdxBit_Stage2 |
439 ARMMMUIdxBit_Stage2_S);
440 }
441
442
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
446 {
447 CPUState *cs = env_cpu(env);
448
449 tlb_flush_all_cpus_synced(cs);
450 }
451
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
454 {
455 CPUState *cs = env_cpu(env);
456
457 tlb_flush_all_cpus_synced(cs);
458 }
459
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
462 {
463 CPUState *cs = env_cpu(env);
464
465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466 }
467
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470 {
471 CPUState *cs = env_cpu(env);
472
473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474 }
475
476 /*
477 * Non-IS variants of TLB operations are upgraded to
478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479 * force broadcast of these operations.
480 */
481 static bool tlb_force_broadcast(CPUARMState *env)
482 {
483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
484 }
485
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
488 {
489 /* Invalidate all (TLBIALL) */
490 CPUState *cs = env_cpu(env);
491
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_all_cpus_synced(cs);
494 } else {
495 tlb_flush(cs);
496 }
497 }
498
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503 CPUState *cs = env_cpu(env);
504
505 value &= TARGET_PAGE_MASK;
506 if (tlb_force_broadcast(env)) {
507 tlb_flush_page_all_cpus_synced(cs, value);
508 } else {
509 tlb_flush_page(cs, value);
510 }
511 }
512
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
515 {
516 /* Invalidate by ASID (TLBIASID) */
517 CPUState *cs = env_cpu(env);
518
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
523 }
524 }
525
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 CPUState *cs = env_cpu(env);
531
532 value &= TARGET_PAGE_MASK;
533 if (tlb_force_broadcast(env)) {
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
537 }
538 }
539
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
542 {
543 CPUState *cs = env_cpu(env);
544
545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
546 }
547
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549 uint64_t value)
550 {
551 CPUState *cs = env_cpu(env);
552
553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
554 }
555
556
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
559 {
560 CPUState *cs = env_cpu(env);
561
562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
563 }
564
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
567 {
568 CPUState *cs = env_cpu(env);
569
570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
571 }
572
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
575 {
576 CPUState *cs = env_cpu(env);
577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578
579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
580 }
581
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
584 {
585 CPUState *cs = env_cpu(env);
586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587
588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589 ARMMMUIdxBit_E2);
590 }
591
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
594 {
595 CPUState *cs = env_cpu(env);
596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597
598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599 }
600
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
603 {
604 CPUState *cs = env_cpu(env);
605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606
607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608 }
609
610 static const ARMCPRegInfo cp_reginfo[] = {
611 /*
612 * Define the secure and non-secure FCSE identifier CP registers
613 * separately because there is no secure bank in V8 (no _EL3). This allows
614 * the secure register to be properly reset and migrated. There is also no
615 * v8 EL1 version of the register so the non-secure instance stands alone.
616 */
617 { .name = "FCSEIDR",
618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622 { .name = "FCSEIDR_S",
623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
627 /*
628 * Define the secure and non-secure context identifier CP registers
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. In the
631 * non-secure case, the 32-bit register will have reset and migration
632 * disabled during registration as it is handled by the 64-bit instance.
633 */
634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636 .access = PL1_RW, .accessfn = access_tvm_trvm,
637 .fgt = FGT_CONTEXTIDR_EL1,
638 .secure = ARM_CP_SECSTATE_NS,
639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643 .access = PL1_RW, .accessfn = access_tvm_trvm,
644 .secure = ARM_CP_SECSTATE_S,
645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
647 };
648
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
650 /*
651 * NB: Some of these registers exist in v8 but with more precise
652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653 */
654 /* MMU Domain access control / MPU write buffer control */
655 { .name = "DACR",
656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658 .writefn = dacr_write, .raw_writefn = raw_write,
659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
661 /*
662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663 * For v6 and v5, these mappings are overly broad.
664 */
665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673 /* Cache maintenance ops; some of this space may be overridden later. */
674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
677 };
678
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
680 /*
681 * Not all pre-v6 cores implemented this WFI, so this is slightly
682 * over-broad.
683 */
684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685 .access = PL1_W, .type = ARM_CP_WFI },
686 };
687
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
689 /*
690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691 * is UNPREDICTABLE; we choose to NOP as most implementations do).
692 */
693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694 .access = PL1_W, .type = ARM_CP_WFI },
695 /*
696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698 * OMAPCP will override this space.
699 */
700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702 .resetvalue = 0 },
703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705 .resetvalue = 0 },
706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709 .resetvalue = 0 },
710 /*
711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712 * implementing it as RAZ means the "debug architecture version" bits
713 * will read as a reserved value, which should cause Linux to not try
714 * to use the debug hardware.
715 */
716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
718 /*
719 * MMU TLB control. Note that the wildcarding means we cover not just
720 * the unified TLB ops but also the dside/iside/inner-shareable variants.
721 */
722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724 .type = ARM_CP_NO_RAW },
725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727 .type = ARM_CP_NO_RAW },
728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730 .type = ARM_CP_NO_RAW },
731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733 .type = ARM_CP_NO_RAW },
734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
738 };
739
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
742 {
743 uint32_t mask = 0;
744
745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746 if (!arm_feature(env, ARM_FEATURE_V8)) {
747 /*
748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751 */
752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753 /* VFP coprocessor: cp10 & cp11 [23:20] */
754 mask |= R_CPACR_ASEDIS_MASK |
755 R_CPACR_D32DIS_MASK |
756 R_CPACR_CP11_MASK |
757 R_CPACR_CP10_MASK;
758
759 if (!arm_feature(env, ARM_FEATURE_NEON)) {
760 /* ASEDIS [31] bit is RAO/WI */
761 value |= R_CPACR_ASEDIS_MASK;
762 }
763
764 /*
765 * VFPv3 and upwards with NEON implement 32 double precision
766 * registers (D0-D31).
767 */
768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770 value |= R_CPACR_D32DIS_MASK;
771 }
772 }
773 value &= mask;
774 }
775
776 /*
777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779 */
780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
784 }
785
786 env->cp15.cpacr_el1 = value;
787 }
788
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790 {
791 /*
792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 */
795 uint64_t value = env->cp15.cpacr_el1;
796
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
800 }
801 return value;
802 }
803
804
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806 {
807 /*
808 * Call cpacr_write() so that we reset with the correct RAO bits set
809 * for our CPU features.
810 */
811 cpacr_write(env, ri, 0);
812 }
813
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815 bool isread)
816 {
817 if (arm_feature(env, ARM_FEATURE_V8)) {
818 /* Check if CPACR accesses are to be trapped to EL2 */
819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821 return CP_ACCESS_TRAP_EL2;
822 /* Check if CPACR accesses are to be trapped to EL3 */
823 } else if (arm_current_el(env) < 3 &&
824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825 return CP_ACCESS_TRAP_EL3;
826 }
827 }
828
829 return CP_ACCESS_OK;
830 }
831
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833 bool isread)
834 {
835 /* Check if CPTR accesses are set to trap to EL3 */
836 if (arm_current_el(env) == 2 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
839 }
840
841 return CP_ACCESS_OK;
842 }
843
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845 /* prefetch by MVA in v6, NOP in v7 */
846 { .name = "MVA_prefetch",
847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848 .access = PL1_W, .type = ARM_CP_NOP },
849 /*
850 * We need to break the TB after ISB to execute self-modifying code
851 * correctly and also to take any pending interrupts immediately.
852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853 */
854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NOP },
858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861 .access = PL1_RW, .accessfn = access_tvm_trvm,
862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863 offsetof(CPUARMState, cp15.ifar_ns) },
864 .resetvalue = 0, },
865 /*
866 * Watchpoint Fault Address Register : should actually only be present
867 * for 1136, 1176, 11MPCore.
868 */
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873 .fgt = FGT_CPACR_EL1,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
876 };
877
878 typedef struct pm_event {
879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881 bool (*supported)(CPUARMState *);
882 /*
883 * Retrieve the current count of the underlying event. The programmed
884 * counters hold a difference from the return value from this function
885 */
886 uint64_t (*get_count)(CPUARMState *);
887 /*
888 * Return how many nanoseconds it will take (at a minimum) for count events
889 * to occur. A negative value indicates the counter will never overflow, or
890 * that the counter has otherwise arranged for the overflow bit to be set
891 * and the PMU interrupt to be raised on overflow.
892 */
893 int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
895
896 static bool event_always_supported(CPUARMState *env)
897 {
898 return true;
899 }
900
901 static uint64_t swinc_get_count(CPUARMState *env)
902 {
903 /*
904 * SW_INCR events are written directly to the pmevcntr's by writes to
905 * PMSWINC, so there is no underlying count maintained by the PMU itself
906 */
907 return 0;
908 }
909
910 static int64_t swinc_ns_per(uint64_t ignored)
911 {
912 return -1;
913 }
914
915 /*
916 * Return the underlying cycle count for the PMU cycle counters. If we're in
917 * usermode, simply return 0.
918 */
919 static uint64_t cycles_get_count(CPUARMState *env)
920 {
921 #ifndef CONFIG_USER_ONLY
922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925 return cpu_get_host_ticks();
926 #endif
927 }
928
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
931 {
932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933 }
934
935 static bool instructions_supported(CPUARMState *env)
936 {
937 return icount_enabled() == 1; /* Precise instruction counting */
938 }
939
940 static uint64_t instructions_get_count(CPUARMState *env)
941 {
942 return (uint64_t)icount_get_raw();
943 }
944
945 static int64_t instructions_ns_per(uint64_t icount)
946 {
947 return icount_to_ns((int64_t)icount);
948 }
949 #endif
950
951 static bool pmuv3p1_events_supported(CPUARMState *env)
952 {
953 /* For events which are supported in any v8.1 PMU */
954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
955 }
956
957 static bool pmuv3p4_events_supported(CPUARMState *env)
958 {
959 /* For events which are supported in any v8.1 PMU */
960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
961 }
962
963 static uint64_t zero_event_get_count(CPUARMState *env)
964 {
965 /* For events which on QEMU never fire, so their count is always zero */
966 return 0;
967 }
968
969 static int64_t zero_event_ns_per(uint64_t cycles)
970 {
971 /* An event which never fires can never overflow */
972 return -1;
973 }
974
975 static const pm_event pm_events[] = {
976 { .number = 0x000, /* SW_INCR */
977 .supported = event_always_supported,
978 .get_count = swinc_get_count,
979 .ns_per_count = swinc_ns_per,
980 },
981 #ifndef CONFIG_USER_ONLY
982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983 .supported = instructions_supported,
984 .get_count = instructions_get_count,
985 .ns_per_count = instructions_ns_per,
986 },
987 { .number = 0x011, /* CPU_CYCLES, Cycle */
988 .supported = event_always_supported,
989 .get_count = cycles_get_count,
990 .ns_per_count = cycles_ns_per,
991 },
992 #endif
993 { .number = 0x023, /* STALL_FRONTEND */
994 .supported = pmuv3p1_events_supported,
995 .get_count = zero_event_get_count,
996 .ns_per_count = zero_event_ns_per,
997 },
998 { .number = 0x024, /* STALL_BACKEND */
999 .supported = pmuv3p1_events_supported,
1000 .get_count = zero_event_get_count,
1001 .ns_per_count = zero_event_ns_per,
1002 },
1003 { .number = 0x03c, /* STALL */
1004 .supported = pmuv3p4_events_supported,
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1007 },
1008 };
1009
1010 /*
1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012 * events (i.e. the statistical profiling extension), this implementation
1013 * should first be updated to something sparse instead of the current
1014 * supported_event_map[] array.
1015 */
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019
1020 /*
1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022 * of ARM event numbers to indices in our pm_events array.
1023 *
1024 * Note: Events in the 0x40XX range are not currently supported.
1025 */
1026 void pmu_init(ARMCPU *cpu)
1027 {
1028 unsigned int i;
1029
1030 /*
1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032 * events to them
1033 */
1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035 supported_event_map[i] = UNSUPPORTED_EVENT;
1036 }
1037 cpu->pmceid0 = 0;
1038 cpu->pmceid1 = 0;
1039
1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041 const pm_event *cnt = &pm_events[i];
1042 assert(cnt->number <= MAX_EVENT_ID);
1043 /* We do not currently support events in the 0x40xx range */
1044 assert(cnt->number <= 0x3f);
1045
1046 if (cnt->supported(&cpu->env)) {
1047 supported_event_map[cnt->number] = i;
1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049 if (cnt->number & 0x20) {
1050 cpu->pmceid1 |= event_mask;
1051 } else {
1052 cpu->pmceid0 |= event_mask;
1053 }
1054 }
1055 }
1056 }
1057
1058 /*
1059 * Check at runtime whether a PMU event is supported for the current machine
1060 */
1061 static bool event_supported(uint16_t number)
1062 {
1063 if (number > MAX_EVENT_ID) {
1064 return false;
1065 }
1066 return supported_event_map[number] != UNSUPPORTED_EVENT;
1067 }
1068
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070 bool isread)
1071 {
1072 /*
1073 * Performance monitor registers user accessibility is controlled
1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075 * trapping to EL2 or EL3 for other accesses.
1076 */
1077 int el = arm_current_el(env);
1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1079
1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081 return CP_ACCESS_TRAP;
1082 }
1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084 return CP_ACCESS_TRAP_EL2;
1085 }
1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087 return CP_ACCESS_TRAP_EL3;
1088 }
1089
1090 return CP_ACCESS_OK;
1091 }
1092
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094 const ARMCPRegInfo *ri,
1095 bool isread)
1096 {
1097 /* ER: event counter read trap control */
1098 if (arm_feature(env, ARM_FEATURE_V8)
1099 && arm_current_el(env) == 0
1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101 && isread) {
1102 return CP_ACCESS_OK;
1103 }
1104
1105 return pmreg_access(env, ri, isread);
1106 }
1107
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1111 {
1112 /* SW: software increment write trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116 && !isread) {
1117 return CP_ACCESS_OK;
1118 }
1119
1120 return pmreg_access(env, ri, isread);
1121 }
1122
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1126 {
1127 /* ER: event counter read trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131 return CP_ACCESS_OK;
1132 }
1133
1134 return pmreg_access(env, ri, isread);
1135 }
1136
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1140 {
1141 /* CR: cycle counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145 && isread) {
1146 return CP_ACCESS_OK;
1147 }
1148
1149 return pmreg_access(env, ri, isread);
1150 }
1151
1152 /*
1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154 * We use these to decide whether we need to wrap a write to MDCR_EL2
1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156 */
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1160
1161 /*
1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163 * the current EL, security state, and register configuration.
1164 */
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 {
1167 uint64_t filter;
1168 bool e, p, u, nsk, nsu, nsh, m;
1169 bool enabled, prohibited = false, filtered;
1170 bool secure = arm_is_secure(env);
1171 int el = arm_current_el(env);
1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1174
1175 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176 return false;
1177 }
1178
1179 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180 (counter < hpmn || counter == 31)) {
1181 e = env->cp15.c9_pmcr & PMCRE;
1182 } else {
1183 e = mdcr_el2 & MDCR_HPME;
1184 }
1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1186
1187 /* Is event counting prohibited? */
1188 if (el == 2 && (counter < hpmn || counter == 31)) {
1189 prohibited = mdcr_el2 & MDCR_HPMD;
1190 }
1191 if (secure) {
1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1193 }
1194
1195 if (counter == 31) {
1196 /*
1197 * The cycle counter defaults to running. PMCR.DP says "disable
1198 * the cycle counter when event counting is prohibited".
1199 * Some MDCR bits disable the cycle counter specifically.
1200 */
1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203 if (secure) {
1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1205 }
1206 if (el == 2) {
1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1208 }
1209 }
1210 }
1211
1212 if (counter == 31) {
1213 filter = env->cp15.pmccfiltr_el0;
1214 } else {
1215 filter = env->cp15.c14_pmevtyper[counter];
1216 }
1217
1218 p = filter & PMXEVTYPER_P;
1219 u = filter & PMXEVTYPER_U;
1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223 m = arm_el_is_aa64(env, 1) &&
1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1225
1226 if (el == 0) {
1227 filtered = secure ? u : u != nsu;
1228 } else if (el == 1) {
1229 filtered = secure ? p : p != nsk;
1230 } else if (el == 2) {
1231 filtered = !nsh;
1232 } else { /* EL3 */
1233 filtered = m != p;
1234 }
1235
1236 if (counter != 31) {
1237 /*
1238 * If not checking PMCCNTR, ensure the counter is setup to an event we
1239 * support
1240 */
1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242 if (!event_supported(event)) {
1243 return false;
1244 }
1245 }
1246
1247 return enabled && !prohibited && !filtered;
1248 }
1249
1250 static void pmu_update_irq(CPUARMState *env)
1251 {
1252 ARMCPU *cpu = env_archcpu(env);
1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1255 }
1256
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1258 {
1259 /*
1260 * Return true if the clock divider is enabled and the cycle counter
1261 * is supposed to tick only once every 64 clock cycles. This is
1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263 * (64-bit) cycle counter PMCR.D has no effect.
1264 */
1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1266 }
1267
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1269 {
1270 /* Return true if the specified event counter is configured to be 64 bit */
1271
1272 /* This isn't intended to be used with the cycle counter */
1273 assert(counter < 31);
1274
1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276 return false;
1277 }
1278
1279 if (arm_feature(env, ARM_FEATURE_EL2)) {
1280 /*
1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282 * current security state, so we don't use arm_mdcr_el2_eff() here.
1283 */
1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1286
1287 if (counter >= hpmn) {
1288 return hlp;
1289 }
1290 }
1291 return env->cp15.c9_pmcr & PMCRLP;
1292 }
1293
1294 /*
1295 * Ensure c15_ccnt is the guest-visible count so that operations such as
1296 * enabling/disabling the counter or filtering, modifying the count itself,
1297 * etc. can be done logically. This is essentially a no-op if the counter is
1298 * not enabled at the time of the call.
1299 */
1300 static void pmccntr_op_start(CPUARMState *env)
1301 {
1302 uint64_t cycles = cycles_get_count(env);
1303
1304 if (pmu_counter_enabled(env, 31)) {
1305 uint64_t eff_cycles = cycles;
1306 if (pmccntr_clockdiv_enabled(env)) {
1307 eff_cycles /= 64;
1308 }
1309
1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1311
1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313 1ull << 63 : 1ull << 31;
1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315 env->cp15.c9_pmovsr |= (1ULL << 31);
1316 pmu_update_irq(env);
1317 }
1318
1319 env->cp15.c15_ccnt = new_pmccntr;
1320 }
1321 env->cp15.c15_ccnt_delta = cycles;
1322 }
1323
1324 /*
1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327 * pmccntr_op_start.
1328 */
1329 static void pmccntr_op_finish(CPUARMState *env)
1330 {
1331 if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333 /* Calculate when the counter will next overflow */
1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336 remaining_cycles = (uint32_t)remaining_cycles;
1337 }
1338 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1339
1340 if (overflow_in > 0) {
1341 int64_t overflow_at;
1342
1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344 overflow_in, &overflow_at)) {
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1347 }
1348 }
1349 #endif
1350
1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352 if (pmccntr_clockdiv_enabled(env)) {
1353 prev_cycles /= 64;
1354 }
1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1356 }
1357 }
1358
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1360 {
1361
1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363 uint64_t count = 0;
1364 if (event_supported(event)) {
1365 uint16_t event_idx = supported_event_map[event];
1366 count = pm_events[event_idx].get_count(env);
1367 }
1368
1369 if (pmu_counter_enabled(env, counter)) {
1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372 1ULL << 63 : 1ULL << 31;
1373
1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375 env->cp15.c9_pmovsr |= (1 << counter);
1376 pmu_update_irq(env);
1377 }
1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1379 }
1380 env->cp15.c14_pmevcntr_delta[counter] = count;
1381 }
1382
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1384 {
1385 if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388 uint16_t event_idx = supported_event_map[event];
1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390 int64_t overflow_in;
1391
1392 if (!pmevcntr_is_64_bit(env, counter)) {
1393 delta = (uint32_t)delta;
1394 }
1395 overflow_in = pm_events[event_idx].ns_per_count(delta);
1396
1397 if (overflow_in > 0) {
1398 int64_t overflow_at;
1399
1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401 overflow_in, &overflow_at)) {
1402 ARMCPU *cpu = env_archcpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1404 }
1405 }
1406 #endif
1407
1408 env->cp15.c14_pmevcntr_delta[counter] -=
1409 env->cp15.c14_pmevcntr[counter];
1410 }
1411 }
1412
1413 void pmu_op_start(CPUARMState *env)
1414 {
1415 unsigned int i;
1416 pmccntr_op_start(env);
1417 for (i = 0; i < pmu_num_counters(env); i++) {
1418 pmevcntr_op_start(env, i);
1419 }
1420 }
1421
1422 void pmu_op_finish(CPUARMState *env)
1423 {
1424 unsigned int i;
1425 pmccntr_op_finish(env);
1426 for (i = 0; i < pmu_num_counters(env); i++) {
1427 pmevcntr_op_finish(env, i);
1428 }
1429 }
1430
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1432 {
1433 pmu_op_start(&cpu->env);
1434 }
1435
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1437 {
1438 pmu_op_finish(&cpu->env);
1439 }
1440
1441 void arm_pmu_timer_cb(void *opaque)
1442 {
1443 ARMCPU *cpu = opaque;
1444
1445 /*
1446 * Update all the counter values based on the current underlying counts,
1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449 * counter may expire.
1450 */
1451 pmu_op_start(&cpu->env);
1452 pmu_op_finish(&cpu->env);
1453 }
1454
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1457 {
1458 pmu_op_start(env);
1459
1460 if (value & PMCRC) {
1461 /* The counter has been reset */
1462 env->cp15.c15_ccnt = 0;
1463 }
1464
1465 if (value & PMCRP) {
1466 unsigned int i;
1467 for (i = 0; i < pmu_num_counters(env); i++) {
1468 env->cp15.c14_pmevcntr[i] = 0;
1469 }
1470 }
1471
1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1474
1475 pmu_op_finish(env);
1476 }
1477
1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479 uint64_t value)
1480 {
1481 unsigned int i;
1482 uint64_t overflow_mask, new_pmswinc;
1483
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 /* Increment a counter's count iff: */
1486 if ((value & (1 << i)) && /* counter's bit is set */
1487 /* counter is enabled and not filtered */
1488 pmu_counter_enabled(env, i) &&
1489 /* counter is SW_INCR */
1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1491 pmevcntr_op_start(env, i);
1492
1493 /*
1494 * Detect if this write causes an overflow since we can't predict
1495 * PMSWINC overflows like we can for other events
1496 */
1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1498
1499 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1500 1ULL << 63 : 1ULL << 31;
1501
1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1503 env->cp15.c9_pmovsr |= (1 << i);
1504 pmu_update_irq(env);
1505 }
1506
1507 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1508
1509 pmevcntr_op_finish(env, i);
1510 }
1511 }
1512 }
1513
1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1515 {
1516 uint64_t ret;
1517 pmccntr_op_start(env);
1518 ret = env->cp15.c15_ccnt;
1519 pmccntr_op_finish(env);
1520 return ret;
1521 }
1522
1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524 uint64_t value)
1525 {
1526 /*
1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1530 * accessed.
1531 */
1532 env->cp15.c9_pmselr = value & 0x1f;
1533 }
1534
1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536 uint64_t value)
1537 {
1538 pmccntr_op_start(env);
1539 env->cp15.c15_ccnt = value;
1540 pmccntr_op_finish(env);
1541 }
1542
1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1544 uint64_t value)
1545 {
1546 uint64_t cur_val = pmccntr_read(env, NULL);
1547
1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1549 }
1550
1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552 uint64_t value)
1553 {
1554 pmccntr_op_start(env);
1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1556 pmccntr_op_finish(env);
1557 }
1558
1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1561 {
1562 pmccntr_op_start(env);
1563 /* M is not accessible from AArch32 */
1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1565 (value & PMCCFILTR);
1566 pmccntr_op_finish(env);
1567 }
1568
1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1570 {
1571 /* M is not visible in AArch32 */
1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1573 }
1574
1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1577 {
1578 pmu_op_start(env);
1579 value &= pmu_counter_mask(env);
1580 env->cp15.c9_pmcnten |= value;
1581 pmu_op_finish(env);
1582 }
1583
1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
1586 {
1587 pmu_op_start(env);
1588 value &= pmu_counter_mask(env);
1589 env->cp15.c9_pmcnten &= ~value;
1590 pmu_op_finish(env);
1591 }
1592
1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1595 {
1596 value &= pmu_counter_mask(env);
1597 env->cp15.c9_pmovsr &= ~value;
1598 pmu_update_irq(env);
1599 }
1600
1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1603 {
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmovsr |= value;
1606 pmu_update_irq(env);
1607 }
1608
1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value, const uint8_t counter)
1611 {
1612 if (counter == 31) {
1613 pmccfiltr_write(env, ri, value);
1614 } else if (counter < pmu_num_counters(env)) {
1615 pmevcntr_op_start(env, counter);
1616
1617 /*
1618 * If this counter's event type is changing, store the current
1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1620 * pmevcntr_op_finish has the correct baseline when it converts back to
1621 * a delta.
1622 */
1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1624 PMXEVTYPER_EVTCOUNT;
1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1626 if (old_event != new_event) {
1627 uint64_t count = 0;
1628 if (event_supported(new_event)) {
1629 uint16_t event_idx = supported_event_map[new_event];
1630 count = pm_events[event_idx].get_count(env);
1631 }
1632 env->cp15.c14_pmevcntr_delta[counter] = count;
1633 }
1634
1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1636 pmevcntr_op_finish(env, counter);
1637 }
1638 /*
1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1640 * PMSELR value is equal to or greater than the number of implemented
1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1642 */
1643 }
1644
1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1646 const uint8_t counter)
1647 {
1648 if (counter == 31) {
1649 return env->cp15.pmccfiltr_el0;
1650 } else if (counter < pmu_num_counters(env)) {
1651 return env->cp15.c14_pmevtyper[counter];
1652 } else {
1653 /*
1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1656 */
1657 return 0;
1658 }
1659 }
1660
1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1662 uint64_t value)
1663 {
1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1665 pmevtyper_write(env, ri, value, counter);
1666 }
1667
1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1669 uint64_t value)
1670 {
1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1672 env->cp15.c14_pmevtyper[counter] = value;
1673
1674 /*
1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1676 * pmu_op_finish calls when loading saved state for a migration. Because
1677 * we're potentially updating the type of event here, the value written to
1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1679 * different counter type. Therefore, we need to set this value to the
1680 * current count for the counter type we're writing so that pmu_op_finish
1681 * has the correct count for its calculation.
1682 */
1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1684 if (event_supported(event)) {
1685 uint16_t event_idx = supported_event_map[event];
1686 env->cp15.c14_pmevcntr_delta[counter] =
1687 pm_events[event_idx].get_count(env);
1688 }
1689 }
1690
1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1692 {
1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694 return pmevtyper_read(env, ri, counter);
1695 }
1696
1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1698 uint64_t value)
1699 {
1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1701 }
1702
1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1704 {
1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1706 }
1707
1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value, uint8_t counter)
1710 {
1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1713 value &= MAKE_64BIT_MASK(0, 32);
1714 }
1715 if (counter < pmu_num_counters(env)) {
1716 pmevcntr_op_start(env, counter);
1717 env->cp15.c14_pmevcntr[counter] = value;
1718 pmevcntr_op_finish(env, counter);
1719 }
1720 /*
1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1722 * are CONSTRAINED UNPREDICTABLE.
1723 */
1724 }
1725
1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1727 uint8_t counter)
1728 {
1729 if (counter < pmu_num_counters(env)) {
1730 uint64_t ret;
1731 pmevcntr_op_start(env, counter);
1732 ret = env->cp15.c14_pmevcntr[counter];
1733 pmevcntr_op_finish(env, counter);
1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1736 ret &= MAKE_64BIT_MASK(0, 32);
1737 }
1738 return ret;
1739 } else {
1740 /*
1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1742 * are CONSTRAINED UNPREDICTABLE.
1743 */
1744 return 0;
1745 }
1746 }
1747
1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1749 uint64_t value)
1750 {
1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752 pmevcntr_write(env, ri, value, counter);
1753 }
1754
1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1756 {
1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758 return pmevcntr_read(env, ri, counter);
1759 }
1760
1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1763 {
1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1765 assert(counter < pmu_num_counters(env));
1766 env->cp15.c14_pmevcntr[counter] = value;
1767 pmevcntr_write(env, ri, value, counter);
1768 }
1769
1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1771 {
1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773 assert(counter < pmu_num_counters(env));
1774 return env->cp15.c14_pmevcntr[counter];
1775 }
1776
1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1779 {
1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1781 }
1782
1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1786 }
1787
1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 uint64_t value)
1790 {
1791 if (arm_feature(env, ARM_FEATURE_V8)) {
1792 env->cp15.c9_pmuserenr = value & 0xf;
1793 } else {
1794 env->cp15.c9_pmuserenr = value & 1;
1795 }
1796 }
1797
1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1800 {
1801 /* We have no event counters so only the C bit can be changed */
1802 value &= pmu_counter_mask(env);
1803 env->cp15.c9_pminten |= value;
1804 pmu_update_irq(env);
1805 }
1806
1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808 uint64_t value)
1809 {
1810 value &= pmu_counter_mask(env);
1811 env->cp15.c9_pminten &= ~value;
1812 pmu_update_irq(env);
1813 }
1814
1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816 uint64_t value)
1817 {
1818 /*
1819 * Note that even though the AArch64 view of this register has bits
1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1821 * architectural requirements for bits which are RES0 only in some
1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1824 */
1825 raw_write(env, ri, value & ~0x1FULL);
1826 }
1827
1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1829 {
1830 /* Begin with base v8.0 state. */
1831 uint64_t valid_mask = 0x3fff;
1832 ARMCPU *cpu = env_archcpu(env);
1833 uint64_t changed;
1834
1835 /*
1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1838 * Instead, choose the format based on the mode of EL3.
1839 */
1840 if (arm_el_is_aa64(env, 3)) {
1841 value |= SCR_FW | SCR_AW; /* RES1 */
1842 valid_mask &= ~SCR_NET; /* RES0 */
1843
1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1846 value |= SCR_RW; /* RAO/WI */
1847 }
1848 if (cpu_isar_feature(aa64_ras, cpu)) {
1849 valid_mask |= SCR_TERR;
1850 }
1851 if (cpu_isar_feature(aa64_lor, cpu)) {
1852 valid_mask |= SCR_TLOR;
1853 }
1854 if (cpu_isar_feature(aa64_pauth, cpu)) {
1855 valid_mask |= SCR_API | SCR_APK;
1856 }
1857 if (cpu_isar_feature(aa64_sel2, cpu)) {
1858 valid_mask |= SCR_EEL2;
1859 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1861 value |= SCR_NS;
1862 }
1863 if (cpu_isar_feature(aa64_mte, cpu)) {
1864 valid_mask |= SCR_ATA;
1865 }
1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1867 valid_mask |= SCR_ENSCXT;
1868 }
1869 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1870 valid_mask |= SCR_EASE | SCR_NMEA;
1871 }
1872 if (cpu_isar_feature(aa64_sme, cpu)) {
1873 valid_mask |= SCR_ENTP2;
1874 }
1875 if (cpu_isar_feature(aa64_hcx, cpu)) {
1876 valid_mask |= SCR_HXEN;
1877 }
1878 if (cpu_isar_feature(aa64_fgt, cpu)) {
1879 valid_mask |= SCR_FGTEN;
1880 }
1881 if (cpu_isar_feature(aa64_rme, cpu)) {
1882 valid_mask |= SCR_NSE | SCR_GPF;
1883 }
1884 } else {
1885 valid_mask &= ~(SCR_RW | SCR_ST);
1886 if (cpu_isar_feature(aa32_ras, cpu)) {
1887 valid_mask |= SCR_TERR;
1888 }
1889 }
1890
1891 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1892 valid_mask &= ~SCR_HCE;
1893
1894 /*
1895 * On ARMv7, SMD (or SCD as it is called in v7) is only
1896 * supported if EL2 exists. The bit is UNK/SBZP when
1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1898 * when EL2 is unavailable.
1899 * On ARMv8, this bit is always available.
1900 */
1901 if (arm_feature(env, ARM_FEATURE_V7) &&
1902 !arm_feature(env, ARM_FEATURE_V8)) {
1903 valid_mask &= ~SCR_SMD;
1904 }
1905 }
1906
1907 /* Clear all-context RES0 bits. */
1908 value &= valid_mask;
1909 changed = env->cp15.scr_el3 ^ value;
1910 env->cp15.scr_el3 = value;
1911
1912 /*
1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1914 * we must invalidate all TLBs below EL3.
1915 */
1916 if (changed & (SCR_NS | SCR_NSE)) {
1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1918 ARMMMUIdxBit_E20_0 |
1919 ARMMMUIdxBit_E10_1 |
1920 ARMMMUIdxBit_E20_2 |
1921 ARMMMUIdxBit_E10_1_PAN |
1922 ARMMMUIdxBit_E20_2_PAN |
1923 ARMMMUIdxBit_E2));
1924 }
1925 }
1926
1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1928 {
1929 /*
1930 * scr_write will set the RES1 bits on an AArch64-only CPU.
1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1932 */
1933 scr_write(env, ri, 0);
1934 }
1935
1936 static CPAccessResult access_tid4(CPUARMState *env,
1937 const ARMCPRegInfo *ri,
1938 bool isread)
1939 {
1940 if (arm_current_el(env) == 1 &&
1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1942 return CP_ACCESS_TRAP_EL2;
1943 }
1944
1945 return CP_ACCESS_OK;
1946 }
1947
1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1949 {
1950 ARMCPU *cpu = env_archcpu(env);
1951
1952 /*
1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1954 * bank
1955 */
1956 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1957 ri->secure & ARM_CP_SECSTATE_S);
1958
1959 return cpu->ccsidr[index];
1960 }
1961
1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963 uint64_t value)
1964 {
1965 raw_write(env, ri, value & 0xf);
1966 }
1967
1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 {
1970 CPUState *cs = env_cpu(env);
1971 bool el1 = arm_current_el(env) == 1;
1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1973 uint64_t ret = 0;
1974
1975 if (hcr_el2 & HCR_IMO) {
1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1977 ret |= CPSR_I;
1978 }
1979 } else {
1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1981 ret |= CPSR_I;
1982 }
1983 }
1984
1985 if (hcr_el2 & HCR_FMO) {
1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1987 ret |= CPSR_F;
1988 }
1989 } else {
1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1991 ret |= CPSR_F;
1992 }
1993 }
1994
1995 if (hcr_el2 & HCR_AMO) {
1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1997 ret |= CPSR_A;
1998 }
1999 }
2000
2001 return ret;
2002 }
2003
2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2005 bool isread)
2006 {
2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2008 return CP_ACCESS_TRAP_EL2;
2009 }
2010
2011 return CP_ACCESS_OK;
2012 }
2013
2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2015 bool isread)
2016 {
2017 if (arm_feature(env, ARM_FEATURE_V8)) {
2018 return access_aa64_tid1(env, ri, isread);
2019 }
2020
2021 return CP_ACCESS_OK;
2022 }
2023
2024 static const ARMCPRegInfo v7_cp_reginfo[] = {
2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2027 .access = PL1_W, .type = ARM_CP_NOP },
2028 /*
2029 * Performance monitors are implementation defined in v7,
2030 * but with an ARM recommended set of registers, which we
2031 * follow.
2032 *
2033 * Performance registers fall into three categories:
2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2039 */
2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2043 .writefn = pmcntenset_write,
2044 .accessfn = pmreg_access,
2045 .fgt = FGT_PMCNTEN,
2046 .raw_writefn = raw_write },
2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2049 .access = PL0_RW, .accessfn = pmreg_access,
2050 .fgt = FGT_PMCNTEN,
2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2052 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2054 .access = PL0_RW,
2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2056 .accessfn = pmreg_access,
2057 .fgt = FGT_PMCNTEN,
2058 .writefn = pmcntenclr_write,
2059 .type = ARM_CP_ALIAS | ARM_CP_IO },
2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2062 .access = PL0_RW, .accessfn = pmreg_access,
2063 .fgt = FGT_PMCNTEN,
2064 .type = ARM_CP_ALIAS | ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2066 .writefn = pmcntenclr_write },
2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2068 .access = PL0_RW, .type = ARM_CP_IO,
2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2070 .accessfn = pmreg_access,
2071 .fgt = FGT_PMOVS,
2072 .writefn = pmovsr_write,
2073 .raw_writefn = raw_write },
2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2076 .access = PL0_RW, .accessfn = pmreg_access,
2077 .fgt = FGT_PMOVS,
2078 .type = ARM_CP_ALIAS | ARM_CP_IO,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2080 .writefn = pmovsr_write,
2081 .raw_writefn = raw_write },
2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2083 .access = PL0_W, .accessfn = pmreg_access_swinc,
2084 .fgt = FGT_PMSWINC_EL0,
2085 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2086 .writefn = pmswinc_write },
2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2089 .access = PL0_W, .accessfn = pmreg_access_swinc,
2090 .fgt = FGT_PMSWINC_EL0,
2091 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2092 .writefn = pmswinc_write },
2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2094 .access = PL0_RW, .type = ARM_CP_ALIAS,
2095 .fgt = FGT_PMSELR_EL0,
2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2098 .raw_writefn = raw_write},
2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2101 .access = PL0_RW, .accessfn = pmreg_access_selr,
2102 .fgt = FGT_PMSELR_EL0,
2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2104 .writefn = pmselr_write, .raw_writefn = raw_write, },
2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2107 .fgt = FGT_PMCCNTR_EL0,
2108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2109 .accessfn = pmreg_access_ccntr },
2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2113 .fgt = FGT_PMCCNTR_EL0,
2114 .type = ARM_CP_IO,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2116 .readfn = pmccntr_read, .writefn = pmccntr_write,
2117 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2120 .access = PL0_RW, .accessfn = pmreg_access,
2121 .fgt = FGT_PMCCFILTR_EL0,
2122 .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .resetvalue = 0, },
2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2127 .access = PL0_RW, .accessfn = pmreg_access,
2128 .fgt = FGT_PMCCFILTR_EL0,
2129 .type = ARM_CP_IO,
2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2131 .resetvalue = 0, },
2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134 .accessfn = pmreg_access,
2135 .fgt = FGT_PMEVTYPERN_EL0,
2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2140 .accessfn = pmreg_access,
2141 .fgt = FGT_PMEVTYPERN_EL0,
2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145 .accessfn = pmreg_access_xevcntr,
2146 .fgt = FGT_PMEVCNTRN_EL0,
2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2151 .accessfn = pmreg_access_xevcntr,
2152 .fgt = FGT_PMEVCNTRN_EL0,
2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2157 .resetvalue = 0,
2158 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2163 .resetvalue = 0,
2164 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2166 .access = PL1_RW, .accessfn = access_tpm,
2167 .fgt = FGT_PMINTEN,
2168 .type = ARM_CP_ALIAS | ARM_CP_IO,
2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2170 .resetvalue = 0,
2171 .writefn = pmintenset_write, .raw_writefn = raw_write },
2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2174 .access = PL1_RW, .accessfn = access_tpm,
2175 .fgt = FGT_PMINTEN,
2176 .type = ARM_CP_IO,
2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178 .writefn = pmintenset_write, .raw_writefn = raw_write,
2179 .resetvalue = 0x0 },
2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2181 .access = PL1_RW, .accessfn = access_tpm,
2182 .fgt = FGT_PMINTEN,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185 .writefn = pmintenclr_write, },
2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2188 .access = PL1_RW, .accessfn = access_tpm,
2189 .fgt = FGT_PMINTEN,
2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2192 .writefn = pmintenclr_write },
2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2195 .access = PL1_R,
2196 .accessfn = access_tid4,
2197 .fgt = FGT_CCSIDR_EL1,
2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2201 .access = PL1_RW,
2202 .accessfn = access_tid4,
2203 .fgt = FGT_CSSELR_EL1,
2204 .writefn = csselr_write, .resetvalue = 0,
2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2206 offsetof(CPUARMState, cp15.csselr_ns) } },
2207 /*
2208 * Auxiliary ID register: this actually has an IMPDEF value but for now
2209 * just RAZ for all cores:
2210 */
2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2213 .access = PL1_R, .type = ARM_CP_CONST,
2214 .accessfn = access_aa64_tid1,
2215 .fgt = FGT_AIDR_EL1,
2216 .resetvalue = 0 },
2217 /*
2218 * Auxiliary fault status registers: these also are IMPDEF, and we
2219 * choose to RAZ/WI for all cores.
2220 */
2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2223 .access = PL1_RW, .accessfn = access_tvm_trvm,
2224 .fgt = FGT_AFSR0_EL1,
2225 .type = ARM_CP_CONST, .resetvalue = 0 },
2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2228 .access = PL1_RW, .accessfn = access_tvm_trvm,
2229 .fgt = FGT_AFSR1_EL1,
2230 .type = ARM_CP_CONST, .resetvalue = 0 },
2231 /*
2232 * MAIR can just read-as-written because we don't implement caches
2233 * and so don't need to care about memory attributes.
2234 */
2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2237 .access = PL1_RW, .accessfn = access_tvm_trvm,
2238 .fgt = FGT_MAIR_EL1,
2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2240 .resetvalue = 0 },
2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2244 .resetvalue = 0 },
2245 /*
2246 * For non-long-descriptor page tables these are PRRR and NMRR;
2247 * regardless they still act as reads-as-written for QEMU.
2248 */
2249 /*
2250 * MAIR0/1 are defined separately from their 64-bit counterpart which
2251 * allows them to assign the correct fieldoffset based on the endianness
2252 * handled in the field definitions.
2253 */
2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2256 .access = PL1_RW, .accessfn = access_tvm_trvm,
2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2258 offsetof(CPUARMState, cp15.mair0_ns) },
2259 .resetfn = arm_cp_reset_ignore },
2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2262 .access = PL1_RW, .accessfn = access_tvm_trvm,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2264 offsetof(CPUARMState, cp15.mair1_ns) },
2265 .resetfn = arm_cp_reset_ignore },
2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2268 .fgt = FGT_ISR_EL1,
2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2270 /* 32 bit ITLB invalidates */
2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273 .writefn = tlbiall_write },
2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276 .writefn = tlbimva_write },
2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279 .writefn = tlbiasid_write },
2280 /* 32 bit DTLB invalidates */
2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2283 .writefn = tlbiall_write },
2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286 .writefn = tlbimva_write },
2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbiasid_write },
2290 /* 32 bit TLB invalidates */
2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2293 .writefn = tlbiall_write },
2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2296 .writefn = tlbimva_write },
2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299 .writefn = tlbiasid_write },
2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302 .writefn = tlbimvaa_write },
2303 };
2304
2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2306 /* 32 bit TLB invalidates, Inner Shareable */
2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2309 .writefn = tlbiall_is_write },
2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2312 .writefn = tlbimva_is_write },
2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2315 .writefn = tlbiasid_is_write },
2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2318 .writefn = tlbimvaa_is_write },
2319 };
2320
2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2322 /* PMOVSSET is not implemented in v7 before v7ve */
2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2324 .access = PL0_RW, .accessfn = pmreg_access,
2325 .fgt = FGT_PMOVS,
2326 .type = ARM_CP_ALIAS | ARM_CP_IO,
2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2328 .writefn = pmovsset_write,
2329 .raw_writefn = raw_write },
2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2332 .access = PL0_RW, .accessfn = pmreg_access,
2333 .fgt = FGT_PMOVS,
2334 .type = ARM_CP_ALIAS | ARM_CP_IO,
2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2336 .writefn = pmovsset_write,
2337 .raw_writefn = raw_write },
2338 };
2339
2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
2342 {
2343 value &= 1;
2344 env->teecr = value;
2345 }
2346
2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2348 bool isread)
2349 {
2350 /*
2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2352 * at all, so we don't need to check whether we're v8A.
2353 */
2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2355 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2356 return CP_ACCESS_TRAP_EL2;
2357 }
2358 return CP_ACCESS_OK;
2359 }
2360
2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362 bool isread)
2363 {
2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2365 return CP_ACCESS_TRAP;
2366 }
2367 return teecr_access(env, ri, isread);
2368 }
2369
2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2373 .resetvalue = 0,
2374 .writefn = teecr_write, .accessfn = teecr_access },
2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2377 .accessfn = teehbr_access, .resetvalue = 0 },
2378 };
2379
2380 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2383 .access = PL0_RW,
2384 .fgt = FGT_TPIDR_EL0,
2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2387 .access = PL0_RW,
2388 .fgt = FGT_TPIDR_EL0,
2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2391 .resetfn = arm_cp_reset_ignore },
2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2394 .access = PL0_R | PL1_W,
2395 .fgt = FGT_TPIDRRO_EL0,
2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2397 .resetvalue = 0},
2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2399 .access = PL0_R | PL1_W,
2400 .fgt = FGT_TPIDRRO_EL0,
2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2403 .resetfn = arm_cp_reset_ignore },
2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2406 .access = PL1_RW,
2407 .fgt = FGT_TPIDR_EL1,
2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2410 .access = PL1_RW,
2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2413 .resetvalue = 0 },
2414 };
2415
2416 #ifndef CONFIG_USER_ONLY
2417
2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419 bool isread)
2420 {
2421 /*
2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2423 * Writable only at the highest implemented exception level.
2424 */
2425 int el = arm_current_el(env);
2426 uint64_t hcr;
2427 uint32_t cntkctl;
2428
2429 switch (el) {
2430 case 0:
2431 hcr = arm_hcr_el2_eff(env);
2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2433 cntkctl = env->cp15.cnthctl_el2;
2434 } else {
2435 cntkctl = env->cp15.c14_cntkctl;
2436 }
2437 if (!extract32(cntkctl, 0, 2)) {
2438 return CP_ACCESS_TRAP;
2439 }
2440 break;
2441 case 1:
2442 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2443 arm_is_secure_below_el3(env)) {
2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2445 return CP_ACCESS_TRAP_UNCATEGORIZED;
2446 }
2447 break;
2448 case 2:
2449 case 3:
2450 break;
2451 }
2452
2453 if (!isread && el < arm_highest_el(env)) {
2454 return CP_ACCESS_TRAP_UNCATEGORIZED;
2455 }
2456
2457 return CP_ACCESS_OK;
2458 }
2459
2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2461 bool isread)
2462 {
2463 unsigned int cur_el = arm_current_el(env);
2464 bool has_el2 = arm_is_el2_enabled(env);
2465 uint64_t hcr = arm_hcr_el2_eff(env);
2466
2467 switch (cur_el) {
2468 case 0:
2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2473 }
2474
2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2477 return CP_ACCESS_TRAP;
2478 }
2479 /* fall through */
2480 case 1:
2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2482 if (has_el2 && timeridx == GTIMER_PHYS &&
2483 (hcr & HCR_E2H
2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2486 return CP_ACCESS_TRAP_EL2;
2487 }
2488 break;
2489 }
2490 return CP_ACCESS_OK;
2491 }
2492
2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2494 bool isread)
2495 {
2496 unsigned int cur_el = arm_current_el(env);
2497 bool has_el2 = arm_is_el2_enabled(env);
2498 uint64_t hcr = arm_hcr_el2_eff(env);
2499
2500 switch (cur_el) {
2501 case 0:
2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2506 }
2507
2508 /*
2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2510 * EL0 if EL0[PV]TEN is zero.
2511 */
2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2513 return CP_ACCESS_TRAP;
2514 }
2515 /* fall through */
2516
2517 case 1:
2518 if (has_el2 && timeridx == GTIMER_PHYS) {
2519 if (hcr & HCR_E2H) {
2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2522 return CP_ACCESS_TRAP_EL2;
2523 }
2524 } else {
2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2527 return CP_ACCESS_TRAP_EL2;
2528 }
2529 }
2530 }
2531 break;
2532 }
2533 return CP_ACCESS_OK;
2534 }
2535
2536 static CPAccessResult gt_pct_access(CPUARMState *env,
2537 const ARMCPRegInfo *ri,
2538 bool isread)
2539 {
2540 return gt_counter_access(env, GTIMER_PHYS, isread);
2541 }
2542
2543 static CPAccessResult gt_vct_access(CPUARMState *env,
2544 const ARMCPRegInfo *ri,
2545 bool isread)
2546 {
2547 return gt_counter_access(env, GTIMER_VIRT, isread);
2548 }
2549
2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2551 bool isread)
2552 {
2553 return gt_timer_access(env, GTIMER_PHYS, isread);
2554 }
2555
2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2557 bool isread)
2558 {
2559 return gt_timer_access(env, GTIMER_VIRT, isread);
2560 }
2561
2562 static CPAccessResult gt_stimer_access(CPUARMState *env,
2563 const ARMCPRegInfo *ri,
2564 bool isread)
2565 {
2566 /*
2567 * The AArch64 register view of the secure physical timer is
2568 * always accessible from EL3, and configurably accessible from
2569 * Secure EL1.
2570 */
2571 switch (arm_current_el(env)) {
2572 case 1:
2573 if (!arm_is_secure(env)) {
2574 return CP_ACCESS_TRAP;
2575 }
2576 if (!(env->cp15.scr_el3 & SCR_ST)) {
2577 return CP_ACCESS_TRAP_EL3;
2578 }
2579 return CP_ACCESS_OK;
2580 case 0:
2581 case 2:
2582 return CP_ACCESS_TRAP;
2583 case 3:
2584 return CP_ACCESS_OK;
2585 default:
2586 g_assert_not_reached();
2587 }
2588 }
2589
2590 static uint64_t gt_get_countervalue(CPUARMState *env)
2591 {
2592 ARMCPU *cpu = env_archcpu(env);
2593
2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2595 }
2596
2597 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2598 {
2599 CPUARMState *env = &cpu->env;
2600 uint64_t cnthctl = env->cp15.cnthctl_el2;
2601 ARMSecuritySpace ss = arm_security_space(env);
2602 /* ISTATUS && !IMASK */
2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2604
2605 /*
2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2607 * It is RES0 in Secure and NonSecure state.
2608 */
2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2612 irqstate = 0;
2613 }
2614
2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2616 trace_arm_gt_update_irq(timeridx, irqstate);
2617 }
2618
2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2620 {
2621 /*
2622 * Changing security state between Root and Secure/NonSecure, which may
2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2624 * mask bits. Update the IRQ state accordingly.
2625 */
2626 gt_update_irq(cpu, GTIMER_VIRT);
2627 gt_update_irq(cpu, GTIMER_PHYS);
2628 }
2629
2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2631 {
2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2633
2634 if (gt->ctl & 1) {
2635 /*
2636 * Timer enabled: calculate and set current ISTATUS, irq, and
2637 * reset timer to when ISTATUS next has to change
2638 */
2639 uint64_t offset = timeridx == GTIMER_VIRT ?
2640 cpu->env.cp15.cntvoff_el2 : 0;
2641 uint64_t count = gt_get_countervalue(&cpu->env);
2642 /* Note that this must be unsigned 64 bit arithmetic: */
2643 int istatus = count - offset >= gt->cval;
2644 uint64_t nexttick;
2645
2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2647
2648 if (istatus) {
2649 /*
2650 * Next transition is when (count - offset) rolls back over to 0.
2651 * If offset > count then this is when count == offset;
2652 * if offset <= count then this is when count == offset + 2^64
2653 * For the latter case we set nexttick to an "as far in future
2654 * as possible" value and let the code below handle it.
2655 */
2656 if (offset > count) {
2657 nexttick = offset;
2658 } else {
2659 nexttick = UINT64_MAX;
2660 }
2661 } else {
2662 /*
2663 * Next transition is when (count - offset) == cval, i.e.
2664 * when count == (cval + offset).
2665 * If that would overflow, then again we set up the next interrupt
2666 * for "as far in the future as possible" for the code below.
2667 */
2668 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2669 nexttick = UINT64_MAX;
2670 }
2671 }
2672 /*
2673 * Note that the desired next expiry time might be beyond the
2674 * signed-64-bit range of a QEMUTimer -- in this case we just
2675 * set the timer for as far in the future as possible. When the
2676 * timer expires we will reset the timer for any remaining period.
2677 */
2678 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2679 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2680 } else {
2681 timer_mod(cpu->gt_timer[timeridx], nexttick);
2682 }
2683 trace_arm_gt_recalc(timeridx, nexttick);
2684 } else {
2685 /* Timer disabled: ISTATUS and timer output always clear */
2686 gt->ctl &= ~4;
2687 timer_del(cpu->gt_timer[timeridx]);
2688 trace_arm_gt_recalc_disabled(timeridx);
2689 }
2690 gt_update_irq(cpu, timeridx);
2691 }
2692
2693 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2694 int timeridx)
2695 {
2696 ARMCPU *cpu = env_archcpu(env);
2697
2698 timer_del(cpu->gt_timer[timeridx]);
2699 }
2700
2701 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2702 {
2703 return gt_get_countervalue(env);
2704 }
2705
2706 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2707 {
2708 uint64_t hcr;
2709
2710 switch (arm_current_el(env)) {
2711 case 2:
2712 hcr = arm_hcr_el2_eff(env);
2713 if (hcr & HCR_E2H) {
2714 return 0;
2715 }
2716 break;
2717 case 0:
2718 hcr = arm_hcr_el2_eff(env);
2719 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2720 return 0;
2721 }
2722 break;
2723 }
2724
2725 return env->cp15.cntvoff_el2;
2726 }
2727
2728 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2729 {
2730 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2731 }
2732
2733 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2734 int timeridx,
2735 uint64_t value)
2736 {
2737 trace_arm_gt_cval_write(timeridx, value);
2738 env->cp15.c14_timer[timeridx].cval = value;
2739 gt_recalc_timer(env_archcpu(env), timeridx);
2740 }
2741
2742 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2743 int timeridx)
2744 {
2745 uint64_t offset = 0;
2746
2747 switch (timeridx) {
2748 case GTIMER_VIRT:
2749 case GTIMER_HYPVIRT:
2750 offset = gt_virt_cnt_offset(env);
2751 break;
2752 }
2753
2754 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2755 (gt_get_countervalue(env) - offset));
2756 }
2757
2758 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2759 int timeridx,
2760 uint64_t value)
2761 {
2762 uint64_t offset = 0;
2763
2764 switch (timeridx) {
2765 case GTIMER_VIRT:
2766 case GTIMER_HYPVIRT:
2767 offset = gt_virt_cnt_offset(env);
2768 break;
2769 }
2770
2771 trace_arm_gt_tval_write(timeridx, value);
2772 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2773 sextract64(value, 0, 32);
2774 gt_recalc_timer(env_archcpu(env), timeridx);
2775 }
2776
2777 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2778 int timeridx,
2779 uint64_t value)
2780 {
2781 ARMCPU *cpu = env_archcpu(env);
2782 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2783
2784 trace_arm_gt_ctl_write(timeridx, value);
2785 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2786 if ((oldval ^ value) & 1) {
2787 /* Enable toggled */
2788 gt_recalc_timer(cpu, timeridx);
2789 } else if ((oldval ^ value) & 2) {
2790 /*
2791 * IMASK toggled: don't need to recalculate,
2792 * just set the interrupt line based on ISTATUS
2793 */
2794 trace_arm_gt_imask_toggle(timeridx);
2795 gt_update_irq(cpu, timeridx);
2796 }
2797 }
2798
2799 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2800 {
2801 gt_timer_reset(env, ri, GTIMER_PHYS);
2802 }
2803
2804 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2805 uint64_t value)
2806 {
2807 gt_cval_write(env, ri, GTIMER_PHYS, value);
2808 }
2809
2810 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2811 {
2812 return gt_tval_read(env, ri, GTIMER_PHYS);
2813 }
2814
2815 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2816 uint64_t value)
2817 {
2818 gt_tval_write(env, ri, GTIMER_PHYS, value);
2819 }
2820
2821 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 uint64_t value)
2823 {
2824 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2825 }
2826
2827 static int gt_phys_redir_timeridx(CPUARMState *env)
2828 {
2829 switch (arm_mmu_idx(env)) {
2830 case ARMMMUIdx_E20_0:
2831 case ARMMMUIdx_E20_2:
2832 case ARMMMUIdx_E20_2_PAN:
2833 return GTIMER_HYP;
2834 default:
2835 return GTIMER_PHYS;
2836 }
2837 }
2838
2839 static int gt_virt_redir_timeridx(CPUARMState *env)
2840 {
2841 switch (arm_mmu_idx(env)) {
2842 case ARMMMUIdx_E20_0:
2843 case ARMMMUIdx_E20_2:
2844 case ARMMMUIdx_E20_2_PAN:
2845 return GTIMER_HYPVIRT;
2846 default:
2847 return GTIMER_VIRT;
2848 }
2849 }
2850
2851 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2852 const ARMCPRegInfo *ri)
2853 {
2854 int timeridx = gt_phys_redir_timeridx(env);
2855 return env->cp15.c14_timer[timeridx].cval;
2856 }
2857
2858 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 uint64_t value)
2860 {
2861 int timeridx = gt_phys_redir_timeridx(env);
2862 gt_cval_write(env, ri, timeridx, value);
2863 }
2864
2865 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2866 const ARMCPRegInfo *ri)
2867 {
2868 int timeridx = gt_phys_redir_timeridx(env);
2869 return gt_tval_read(env, ri, timeridx);
2870 }
2871
2872 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873 uint64_t value)
2874 {
2875 int timeridx = gt_phys_redir_timeridx(env);
2876 gt_tval_write(env, ri, timeridx, value);
2877 }
2878
2879 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2880 const ARMCPRegInfo *ri)
2881 {
2882 int timeridx = gt_phys_redir_timeridx(env);
2883 return env->cp15.c14_timer[timeridx].ctl;
2884 }
2885
2886 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
2888 {
2889 int timeridx = gt_phys_redir_timeridx(env);
2890 gt_ctl_write(env, ri, timeridx, value);
2891 }
2892
2893 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2894 {
2895 gt_timer_reset(env, ri, GTIMER_VIRT);
2896 }
2897
2898 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2900 {
2901 gt_cval_write(env, ri, GTIMER_VIRT, value);
2902 }
2903
2904 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2905 {
2906 return gt_tval_read(env, ri, GTIMER_VIRT);
2907 }
2908
2909 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2910 uint64_t value)
2911 {
2912 gt_tval_write(env, ri, GTIMER_VIRT, value);
2913 }
2914
2915 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2917 {
2918 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2919 }
2920
2921 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2922 uint64_t value)
2923 {
2924 ARMCPU *cpu = env_archcpu(env);
2925 uint32_t oldval = env->cp15.cnthctl_el2;
2926
2927 raw_write(env, ri, value);
2928
2929 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2930 gt_update_irq(cpu, GTIMER_VIRT);
2931 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2932 gt_update_irq(cpu, GTIMER_PHYS);
2933 }
2934 }
2935
2936 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2938 {
2939 ARMCPU *cpu = env_archcpu(env);
2940
2941 trace_arm_gt_cntvoff_write(value);
2942 raw_write(env, ri, value);
2943 gt_recalc_timer(cpu, GTIMER_VIRT);
2944 }
2945
2946 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2947 const ARMCPRegInfo *ri)
2948 {
2949 int timeridx = gt_virt_redir_timeridx(env);
2950 return env->cp15.c14_timer[timeridx].cval;
2951 }
2952
2953 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2955 {
2956 int timeridx = gt_virt_redir_timeridx(env);
2957 gt_cval_write(env, ri, timeridx, value);
2958 }
2959
2960 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2961 const ARMCPRegInfo *ri)
2962 {
2963 int timeridx = gt_virt_redir_timeridx(env);
2964 return gt_tval_read(env, ri, timeridx);
2965 }
2966
2967 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2968 uint64_t value)
2969 {
2970 int timeridx = gt_virt_redir_timeridx(env);
2971 gt_tval_write(env, ri, timeridx, value);
2972 }
2973
2974 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2975 const ARMCPRegInfo *ri)
2976 {
2977 int timeridx = gt_virt_redir_timeridx(env);
2978 return env->cp15.c14_timer[timeridx].ctl;
2979 }
2980
2981 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2983 {
2984 int timeridx = gt_virt_redir_timeridx(env);
2985 gt_ctl_write(env, ri, timeridx, value);
2986 }
2987
2988 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2989 {
2990 gt_timer_reset(env, ri, GTIMER_HYP);
2991 }
2992
2993 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2995 {
2996 gt_cval_write(env, ri, GTIMER_HYP, value);
2997 }
2998
2999 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001 return gt_tval_read(env, ri, GTIMER_HYP);
3002 }
3003
3004 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 gt_tval_write(env, ri, GTIMER_HYP, value);
3008 }
3009
3010 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011 uint64_t value)
3012 {
3013 gt_ctl_write(env, ri, GTIMER_HYP, value);
3014 }
3015
3016 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3017 {
3018 gt_timer_reset(env, ri, GTIMER_SEC);
3019 }
3020
3021 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023 {
3024 gt_cval_write(env, ri, GTIMER_SEC, value);
3025 }
3026
3027 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3028 {
3029 return gt_tval_read(env, ri, GTIMER_SEC);
3030 }
3031
3032 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034 {
3035 gt_tval_write(env, ri, GTIMER_SEC, value);
3036 }
3037
3038 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3039 uint64_t value)
3040 {
3041 gt_ctl_write(env, ri, GTIMER_SEC, value);
3042 }
3043
3044 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3045 {
3046 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3047 }
3048
3049 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3051 {
3052 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3053 }
3054
3055 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3056 {
3057 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3058 }
3059
3060 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3062 {
3063 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3064 }
3065
3066 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3067 uint64_t value)
3068 {
3069 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3070 }
3071
3072 void arm_gt_ptimer_cb(void *opaque)
3073 {
3074 ARMCPU *cpu = opaque;
3075
3076 gt_recalc_timer(cpu, GTIMER_PHYS);
3077 }
3078
3079 void arm_gt_vtimer_cb(void *opaque)
3080 {
3081 ARMCPU *cpu = opaque;
3082
3083 gt_recalc_timer(cpu, GTIMER_VIRT);
3084 }
3085
3086 void arm_gt_htimer_cb(void *opaque)
3087 {
3088 ARMCPU *cpu = opaque;
3089
3090 gt_recalc_timer(cpu, GTIMER_HYP);
3091 }
3092
3093 void arm_gt_stimer_cb(void *opaque)
3094 {
3095 ARMCPU *cpu = opaque;
3096
3097 gt_recalc_timer(cpu, GTIMER_SEC);
3098 }
3099
3100 void arm_gt_hvtimer_cb(void *opaque)
3101 {
3102 ARMCPU *cpu = opaque;
3103
3104 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3105 }
3106
3107 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3108 {
3109 ARMCPU *cpu = env_archcpu(env);
3110
3111 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3112 }
3113
3114 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3115 /*
3116 * Note that CNTFRQ is purely reads-as-written for the benefit
3117 * of software; writing it doesn't actually change the timer frequency.
3118 * Our reset value matches the fixed frequency we implement the timer at.
3119 */
3120 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3121 .type = ARM_CP_ALIAS,
3122 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3123 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3124 },
3125 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3126 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3127 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3129 .resetfn = arm_gt_cntfrq_reset,
3130 },
3131 /* overall control: mostly access permissions */
3132 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3133 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3134 .access = PL1_RW,
3135 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3136 .resetvalue = 0,
3137 },
3138 /* per-timer control */
3139 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3140 .secure = ARM_CP_SECSTATE_NS,
3141 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3142 .accessfn = gt_ptimer_access,
3143 .fieldoffset = offsetoflow32(CPUARMState,
3144 cp15.c14_timer[GTIMER_PHYS].ctl),
3145 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3146 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3147 },
3148 { .name = "CNTP_CTL_S",
3149 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3150 .secure = ARM_CP_SECSTATE_S,
3151 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3152 .accessfn = gt_ptimer_access,
3153 .fieldoffset = offsetoflow32(CPUARMState,
3154 cp15.c14_timer[GTIMER_SEC].ctl),
3155 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3156 },
3157 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3159 .type = ARM_CP_IO, .access = PL0_RW,
3160 .accessfn = gt_ptimer_access,
3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3162 .resetvalue = 0,
3163 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3164 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3165 },
3166 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3167 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3168 .accessfn = gt_vtimer_access,
3169 .fieldoffset = offsetoflow32(CPUARMState,
3170 cp15.c14_timer[GTIMER_VIRT].ctl),
3171 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3172 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3173 },
3174 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3175 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3176 .type = ARM_CP_IO, .access = PL0_RW,
3177 .accessfn = gt_vtimer_access,
3178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3179 .resetvalue = 0,
3180 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3181 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3182 },
3183 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3184 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3185 .secure = ARM_CP_SECSTATE_NS,
3186 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3187 .accessfn = gt_ptimer_access,
3188 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3189 },
3190 { .name = "CNTP_TVAL_S",
3191 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3192 .secure = ARM_CP_SECSTATE_S,
3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3194 .accessfn = gt_ptimer_access,
3195 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3196 },
3197 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3199 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3200 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3201 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3202 },
3203 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3204 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3205 .accessfn = gt_vtimer_access,
3206 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3207 },
3208 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3210 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3211 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3212 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3213 },
3214 /* The counter itself */
3215 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3216 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3217 .accessfn = gt_pct_access,
3218 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3219 },
3220 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3222 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3223 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3224 },
3225 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3226 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3227 .accessfn = gt_vct_access,
3228 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3229 },
3230 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3232 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3233 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3234 },
3235 /* Comparison value, indicating when the timer goes off */
3236 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3237 .secure = ARM_CP_SECSTATE_NS,
3238 .access = PL0_RW,
3239 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3241 .accessfn = gt_ptimer_access,
3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3244 },
3245 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3246 .secure = ARM_CP_SECSTATE_S,
3247 .access = PL0_RW,
3248 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3249 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3250 .accessfn = gt_ptimer_access,
3251 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3252 },
3253 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3255 .access = PL0_RW,
3256 .type = ARM_CP_IO,
3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3258 .resetvalue = 0, .accessfn = gt_ptimer_access,
3259 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3260 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3261 },
3262 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3263 .access = PL0_RW,
3264 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3266 .accessfn = gt_vtimer_access,
3267 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3268 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3269 },
3270 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3272 .access = PL0_RW,
3273 .type = ARM_CP_IO,
3274 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3275 .resetvalue = 0, .accessfn = gt_vtimer_access,
3276 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3277 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3278 },
3279 /*
3280 * Secure timer -- this is actually restricted to only EL3
3281 * and configurably Secure-EL1 via the accessfn.
3282 */
3283 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3284 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3285 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3286 .accessfn = gt_stimer_access,
3287 .readfn = gt_sec_tval_read,
3288 .writefn = gt_sec_tval_write,
3289 .resetfn = gt_sec_timer_reset,
3290 },
3291 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3293 .type = ARM_CP_IO, .access = PL1_RW,
3294 .accessfn = gt_stimer_access,
3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3296 .resetvalue = 0,
3297 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3298 },
3299 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3301 .type = ARM_CP_IO, .access = PL1_RW,
3302 .accessfn = gt_stimer_access,
3303 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3304 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3305 },
3306 };
3307
3308 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3309 bool isread)
3310 {
3311 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3312 return CP_ACCESS_TRAP;
3313 }
3314 return CP_ACCESS_OK;
3315 }
3316
3317 #else
3318
3319 /*
3320 * In user-mode most of the generic timer registers are inaccessible
3321 * however modern kernels (4.12+) allow access to cntvct_el0
3322 */
3323
3324 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3325 {
3326 ARMCPU *cpu = env_archcpu(env);
3327
3328 /*
3329 * Currently we have no support for QEMUTimer in linux-user so we
3330 * can't call gt_get_countervalue(env), instead we directly
3331 * call the lower level functions.
3332 */
3333 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3334 }
3335
3336 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3337 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3339 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3340 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3341 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3342 },
3343 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3346 .readfn = gt_virt_cnt_read,
3347 },
3348 };
3349
3350 #endif
3351
3352 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3353 {
3354 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3355 raw_write(env, ri, value);
3356 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3357 raw_write(env, ri, value & 0xfffff6ff);
3358 } else {
3359 raw_write(env, ri, value & 0xfffff1ff);
3360 }
3361 }
3362
3363 #ifndef CONFIG_USER_ONLY
3364 /* get_phys_addr() isn't present for user-mode-only targets */
3365
3366 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3367 bool isread)
3368 {
3369 if (ri->opc2 & 4) {
3370 /*
3371 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3372 * Secure EL1 (which can only happen if EL3 is AArch64).
3373 * They are simply UNDEF if executed from NS EL1.
3374 * They function normally from EL2 or EL3.
3375 */
3376 if (arm_current_el(env) == 1) {
3377 if (arm_is_secure_below_el3(env)) {
3378 if (env->cp15.scr_el3 & SCR_EEL2) {
3379 return CP_ACCESS_TRAP_EL2;
3380 }
3381 return CP_ACCESS_TRAP_EL3;
3382 }
3383 return CP_ACCESS_TRAP_UNCATEGORIZED;
3384 }
3385 }
3386 return CP_ACCESS_OK;
3387 }
3388
3389 #ifdef CONFIG_TCG
3390 static int par_el1_shareability(GetPhysAddrResult *res)
3391 {
3392 /*
3393 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3394 * memory -- see pseudocode PAREncodeShareability().
3395 */
3396 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3397 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3398 return 2;
3399 }
3400 return res->cacheattrs.shareability;
3401 }
3402
3403 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3404 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3405 ARMSecuritySpace ss)
3406 {
3407 bool ret;
3408 uint64_t par64;
3409 bool format64 = false;
3410 ARMMMUFaultInfo fi = {};
3411 GetPhysAddrResult res = {};
3412
3413 /*
3414 * I_MXTJT: Granule protection checks are not performed on the final address
3415 * of a successful translation.
3416 */
3417 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3418 &res, &fi);
3419
3420 /*
3421 * ATS operations only do S1 or S1+S2 translations, so we never
3422 * have to deal with the ARMCacheAttrs format for S2 only.
3423 */
3424 assert(!res.cacheattrs.is_s2_format);
3425
3426 if (ret) {
3427 /*
3428 * Some kinds of translation fault must cause exceptions rather
3429 * than being reported in the PAR.
3430 */
3431 int current_el = arm_current_el(env);
3432 int target_el;
3433 uint32_t syn, fsr, fsc;
3434 bool take_exc = false;
3435
3436 if (fi.s1ptw && current_el == 1
3437 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3438 /*
3439 * Synchronous stage 2 fault on an access made as part of the
3440 * translation table walk for AT S1E0* or AT S1E1* insn
3441 * executed from NS EL1. If this is a synchronous external abort
3442 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3443 * to EL3. Otherwise the fault is taken as an exception to EL2,
3444 * and HPFAR_EL2 holds the faulting IPA.
3445 */
3446 if (fi.type == ARMFault_SyncExternalOnWalk &&
3447 (env->cp15.scr_el3 & SCR_EA)) {
3448 target_el = 3;
3449 } else {
3450 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3451 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3452 env->cp15.hpfar_el2 |= HPFAR_NS;
3453 }
3454 target_el = 2;
3455 }
3456 take_exc = true;
3457 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3458 /*
3459 * Synchronous external aborts during a translation table walk
3460 * are taken as Data Abort exceptions.
3461 */
3462 if (fi.stage2) {
3463 if (current_el == 3) {
3464 target_el = 3;
3465 } else {
3466 target_el = 2;
3467 }
3468 } else {
3469 target_el = exception_target_el(env);
3470 }
3471 take_exc = true;
3472 }
3473
3474 if (take_exc) {
3475 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3476 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3477 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3478 fsr = arm_fi_to_lfsc(&fi);
3479 fsc = extract32(fsr, 0, 6);
3480 } else {
3481 fsr = arm_fi_to_sfsc(&fi);
3482 fsc = 0x3f;
3483 }
3484 /*
3485 * Report exception with ESR indicating a fault due to a
3486 * translation table walk for a cache maintenance instruction.
3487 */
3488 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3489 fi.ea, 1, fi.s1ptw, 1, fsc);
3490 env->exception.vaddress = value;
3491 env->exception.fsr = fsr;
3492 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3493 }
3494 }
3495
3496 if (is_a64(env)) {
3497 format64 = true;
3498 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3499 /*
3500 * ATS1Cxx:
3501 * * TTBCR.EAE determines whether the result is returned using the
3502 * 32-bit or the 64-bit PAR format
3503 * * Instructions executed in Hyp mode always use the 64bit format
3504 *
3505 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3506 * * The Non-secure TTBCR.EAE bit is set to 1
3507 * * The implementation includes EL2, and the value of HCR.VM is 1
3508 *
3509 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3510 *
3511 * ATS1Hx always uses the 64bit format.
3512 */
3513 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3514
3515 if (arm_feature(env, ARM_FEATURE_EL2)) {
3516 if (mmu_idx == ARMMMUIdx_E10_0 ||
3517 mmu_idx == ARMMMUIdx_E10_1 ||
3518 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3519 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3520 } else {
3521 format64 |= arm_current_el(env) == 2;
3522 }
3523 }
3524 }
3525
3526 if (format64) {
3527 /* Create a 64-bit PAR */
3528 par64 = (1 << 11); /* LPAE bit always set */
3529 if (!ret) {
3530 par64 |= res.f.phys_addr & ~0xfffULL;
3531 if (!res.f.attrs.secure) {
3532 par64 |= (1 << 9); /* NS */
3533 }
3534 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3535 par64 |= par_el1_shareability(&res) << 7; /* SH */
3536 } else {
3537 uint32_t fsr = arm_fi_to_lfsc(&fi);
3538
3539 par64 |= 1; /* F */
3540 par64 |= (fsr & 0x3f) << 1; /* FS */
3541 if (fi.stage2) {
3542 par64 |= (1 << 9); /* S */
3543 }
3544 if (fi.s1ptw) {
3545 par64 |= (1 << 8); /* PTW */
3546 }
3547 }
3548 } else {
3549 /*
3550 * fsr is a DFSR/IFSR value for the short descriptor
3551 * translation table format (with WnR always clear).
3552 * Convert it to a 32-bit PAR.
3553 */
3554 if (!ret) {
3555 /* We do not set any attribute bits in the PAR */
3556 if (res.f.lg_page_size == 24
3557 && arm_feature(env, ARM_FEATURE_V7)) {
3558 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3559 } else {
3560 par64 = res.f.phys_addr & 0xfffff000;
3561 }
3562 if (!res.f.attrs.secure) {
3563 par64 |= (1 << 9); /* NS */
3564 }
3565 } else {
3566 uint32_t fsr = arm_fi_to_sfsc(&fi);
3567
3568 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3569 ((fsr & 0xf) << 1) | 1;
3570 }
3571 }
3572 return par64;
3573 }
3574 #endif /* CONFIG_TCG */
3575
3576 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3577 {
3578 #ifdef CONFIG_TCG
3579 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3580 uint64_t par64;
3581 ARMMMUIdx mmu_idx;
3582 int el = arm_current_el(env);
3583 ARMSecuritySpace ss = arm_security_space(env);
3584
3585 switch (ri->opc2 & 6) {
3586 case 0:
3587 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3588 switch (el) {
3589 case 3:
3590 mmu_idx = ARMMMUIdx_E3;
3591 break;
3592 case 2:
3593 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3594 /* fall through */
3595 case 1:
3596 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3597 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3598 } else {
3599 mmu_idx = ARMMMUIdx_Stage1_E1;
3600 }
3601 break;
3602 default:
3603 g_assert_not_reached();
3604 }
3605 break;
3606 case 2:
3607 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3608 switch (el) {
3609 case 3:
3610 mmu_idx = ARMMMUIdx_E10_0;
3611 break;
3612 case 2:
3613 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3614 mmu_idx = ARMMMUIdx_Stage1_E0;
3615 break;
3616 case 1:
3617 mmu_idx = ARMMMUIdx_Stage1_E0;
3618 break;
3619 default:
3620 g_assert_not_reached();
3621 }
3622 break;
3623 case 4:
3624 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3625 mmu_idx = ARMMMUIdx_E10_1;
3626 ss = ARMSS_NonSecure;
3627 break;
3628 case 6:
3629 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3630 mmu_idx = ARMMMUIdx_E10_0;
3631 ss = ARMSS_NonSecure;
3632 break;
3633 default:
3634 g_assert_not_reached();
3635 }
3636
3637 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3638
3639 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3640 #else
3641 /* Handled by hardware accelerator. */
3642 g_assert_not_reached();
3643 #endif /* CONFIG_TCG */
3644 }
3645
3646 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3647 uint64_t value)
3648 {
3649 #ifdef CONFIG_TCG
3650 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3651 uint64_t par64;
3652
3653 /* There is no SecureEL2 for AArch32. */
3654 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3655 ARMSS_NonSecure);
3656
3657 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3658 #else
3659 /* Handled by hardware accelerator. */
3660 g_assert_not_reached();
3661 #endif /* CONFIG_TCG */
3662 }
3663
3664 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3665 bool isread)
3666 {
3667 /*
3668 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3669 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3670 * only happen when executing at EL3 because that combination also causes an
3671 * illegal exception return. We don't need to check FEAT_RME either, because
3672 * scr_write() ensures that the NSE bit is not set otherwise.
3673 */
3674 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3675 return CP_ACCESS_TRAP;
3676 }
3677 return CP_ACCESS_OK;
3678 }
3679
3680 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3681 bool isread)
3682 {
3683 if (arm_current_el(env) == 3 &&
3684 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3685 return CP_ACCESS_TRAP;
3686 }
3687 return at_e012_access(env, ri, isread);
3688 }
3689
3690 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3691 uint64_t value)
3692 {
3693 #ifdef CONFIG_TCG
3694 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3695 ARMMMUIdx mmu_idx;
3696 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3697 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3698
3699 switch (ri->opc2 & 6) {
3700 case 0:
3701 switch (ri->opc1) {
3702 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3703 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3704 mmu_idx = regime_e20 ?
3705 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3706 } else {
3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3708 }
3709 break;
3710 case 4: /* AT S1E2R, AT S1E2W */
3711 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3712 break;
3713 case 6: /* AT S1E3R, AT S1E3W */
3714 mmu_idx = ARMMMUIdx_E3;
3715 break;
3716 default:
3717 g_assert_not_reached();
3718 }
3719 break;
3720 case 2: /* AT S1E0R, AT S1E0W */
3721 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3722 break;
3723 case 4: /* AT S12E1R, AT S12E1W */
3724 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3725 break;
3726 case 6: /* AT S12E0R, AT S12E0W */
3727 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3728 break;
3729 default:
3730 g_assert_not_reached();
3731 }
3732
3733 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3734 mmu_idx, arm_security_space(env));
3735 #else
3736 /* Handled by hardware accelerator. */
3737 g_assert_not_reached();
3738 #endif /* CONFIG_TCG */
3739 }
3740 #endif
3741
3742 /* Return basic MPU access permission bits. */
3743 static uint32_t simple_mpu_ap_bits(uint32_t val)
3744 {
3745 uint32_t ret;
3746 uint32_t mask;
3747 int i;
3748 ret = 0;
3749 mask = 3;
3750 for (i = 0; i < 16; i += 2) {
3751 ret |= (val >> i) & mask;
3752 mask <<= 2;
3753 }
3754 return ret;
3755 }
3756
3757 /* Pad basic MPU access permission bits to extended format. */
3758 static uint32_t extended_mpu_ap_bits(uint32_t val)
3759 {
3760 uint32_t ret;
3761 uint32_t mask;
3762 int i;
3763 ret = 0;
3764 mask = 3;
3765 for (i = 0; i < 16; i += 2) {
3766 ret |= (val & mask) << i;
3767 mask <<= 2;
3768 }
3769 return ret;
3770 }
3771
3772 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3773 uint64_t value)
3774 {
3775 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3776 }
3777
3778 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3779 {
3780 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3781 }
3782
3783 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784 uint64_t value)
3785 {
3786 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3787 }
3788
3789 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3790 {
3791 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3792 }
3793
3794 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3795 {
3796 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3797
3798 if (!u32p) {
3799 return 0;
3800 }
3801
3802 u32p += env->pmsav7.rnr[M_REG_NS];
3803 return *u32p;
3804 }
3805
3806 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3807 uint64_t value)
3808 {
3809 ARMCPU *cpu = env_archcpu(env);
3810 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3811
3812 if (!u32p) {
3813 return;
3814 }
3815
3816 u32p += env->pmsav7.rnr[M_REG_NS];
3817 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3818 *u32p = value;
3819 }
3820
3821 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3822 uint64_t value)
3823 {
3824 ARMCPU *cpu = env_archcpu(env);
3825 uint32_t nrgs = cpu->pmsav7_dregion;
3826
3827 if (value >= nrgs) {
3828 qemu_log_mask(LOG_GUEST_ERROR,
3829 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3830 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3831 return;
3832 }
3833
3834 raw_write(env, ri, value);
3835 }
3836
3837 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3838 uint64_t value)
3839 {
3840 ARMCPU *cpu = env_archcpu(env);
3841
3842 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3843 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3844 }
3845
3846 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3847 {
3848 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3849 }
3850
3851 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3852 uint64_t value)
3853 {
3854 ARMCPU *cpu = env_archcpu(env);
3855
3856 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3857 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3858 }
3859
3860 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3861 {
3862 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3863 }
3864
3865 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3866 uint64_t value)
3867 {
3868 ARMCPU *cpu = env_archcpu(env);
3869
3870 /*
3871 * Ignore writes that would select not implemented region.
3872 * This is architecturally UNPREDICTABLE.
3873 */
3874 if (value >= cpu->pmsav7_dregion) {
3875 return;
3876 }
3877
3878 env->pmsav7.rnr[M_REG_NS] = value;
3879 }
3880
3881 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3882 uint64_t value)
3883 {
3884 ARMCPU *cpu = env_archcpu(env);
3885
3886 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3887 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3888 }
3889
3890 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3891 {
3892 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3893 }
3894
3895 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3896 uint64_t value)
3897 {
3898 ARMCPU *cpu = env_archcpu(env);
3899
3900 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3901 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3902 }
3903
3904 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3905 {
3906 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3907 }
3908
3909 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3910 uint64_t value)
3911 {
3912 uint32_t n;
3913 uint32_t bit;
3914 ARMCPU *cpu = env_archcpu(env);
3915
3916 /* Ignore writes to unimplemented regions */
3917 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3918 value &= MAKE_64BIT_MASK(0, rmax);
3919
3920 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3921
3922 /* Register alias is only valid for first 32 indexes */
3923 for (n = 0; n < rmax; ++n) {
3924 bit = extract32(value, n, 1);
3925 env->pmsav8.hprlar[n] = deposit32(
3926 env->pmsav8.hprlar[n], 0, 1, bit);
3927 }
3928 }
3929
3930 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931 {
3932 uint32_t n;
3933 uint32_t result = 0x0;
3934 ARMCPU *cpu = env_archcpu(env);
3935
3936 /* Register alias is only valid for first 32 indexes */
3937 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3938 if (env->pmsav8.hprlar[n] & 0x1) {
3939 result |= (0x1 << n);
3940 }
3941 }
3942 return result;
3943 }
3944
3945 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3946 uint64_t value)
3947 {
3948 ARMCPU *cpu = env_archcpu(env);
3949
3950 /*
3951 * Ignore writes that would select not implemented region.
3952 * This is architecturally UNPREDICTABLE.
3953 */
3954 if (value >= cpu->pmsav8r_hdregion) {
3955 return;
3956 }
3957
3958 env->pmsav8.hprselr = value;
3959 }
3960
3961 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962 uint64_t value)
3963 {
3964 ARMCPU *cpu = env_archcpu(env);
3965 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3966 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3967
3968 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3969
3970 if (ri->opc1 & 4) {
3971 if (index >= cpu->pmsav8r_hdregion) {
3972 return;
3973 }
3974 if (ri->opc2 & 0x1) {
3975 env->pmsav8.hprlar[index] = value;
3976 } else {
3977 env->pmsav8.hprbar[index] = value;
3978 }
3979 } else {
3980 if (index >= cpu->pmsav7_dregion) {
3981 return;
3982 }
3983 if (ri->opc2 & 0x1) {
3984 env->pmsav8.rlar[M_REG_NS][index] = value;
3985 } else {
3986 env->pmsav8.rbar[M_REG_NS][index] = value;
3987 }
3988 }
3989 }
3990
3991 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3992 {
3993 ARMCPU *cpu = env_archcpu(env);
3994 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3995 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3996
3997 if (ri->opc1 & 4) {
3998 if (index >= cpu->pmsav8r_hdregion) {
3999 return 0x0;
4000 }
4001 if (ri->opc2 & 0x1) {
4002 return env->pmsav8.hprlar[index];
4003 } else {
4004 return env->pmsav8.hprbar[index];
4005 }
4006 } else {
4007 if (index >= cpu->pmsav7_dregion) {
4008 return 0x0;
4009 }
4010 if (ri->opc2 & 0x1) {
4011 return env->pmsav8.rlar[M_REG_NS][index];
4012 } else {
4013 return env->pmsav8.rbar[M_REG_NS][index];
4014 }
4015 }
4016 }
4017
4018 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4019 { .name = "PRBAR",
4020 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4021 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4022 .accessfn = access_tvm_trvm,
4023 .readfn = prbar_read, .writefn = prbar_write },
4024 { .name = "PRLAR",
4025 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4026 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4027 .accessfn = access_tvm_trvm,
4028 .readfn = prlar_read, .writefn = prlar_write },
4029 { .name = "PRSELR", .resetvalue = 0,
4030 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4031 .access = PL1_RW, .accessfn = access_tvm_trvm,
4032 .writefn = prselr_write,
4033 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4034 { .name = "HPRBAR", .resetvalue = 0,
4035 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4036 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4037 .readfn = hprbar_read, .writefn = hprbar_write },
4038 { .name = "HPRLAR",
4039 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4040 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4041 .readfn = hprlar_read, .writefn = hprlar_write },
4042 { .name = "HPRSELR", .resetvalue = 0,
4043 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4044 .access = PL2_RW,
4045 .writefn = hprselr_write,
4046 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4047 { .name = "HPRENR",
4048 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4049 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4050 .readfn = hprenr_read, .writefn = hprenr_write },
4051 };
4052
4053 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4054 /*
4055 * Reset for all these registers is handled in arm_cpu_reset(),
4056 * because the PMSAv7 is also used by M-profile CPUs, which do
4057 * not register cpregs but still need the state to be reset.
4058 */
4059 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4060 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4061 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4062 .readfn = pmsav7_read, .writefn = pmsav7_write,
4063 .resetfn = arm_cp_reset_ignore },
4064 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4065 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4066 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4067 .readfn = pmsav7_read, .writefn = pmsav7_write,
4068 .resetfn = arm_cp_reset_ignore },
4069 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4070 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4071 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4072 .readfn = pmsav7_read, .writefn = pmsav7_write,
4073 .resetfn = arm_cp_reset_ignore },
4074 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4075 .access = PL1_RW,
4076 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4077 .writefn = pmsav7_rgnr_write,
4078 .resetfn = arm_cp_reset_ignore },
4079 };
4080
4081 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4082 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4083 .access = PL1_RW, .type = ARM_CP_ALIAS,
4084 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4085 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4086 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4087 .access = PL1_RW, .type = ARM_CP_ALIAS,
4088 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4089 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4090 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4091 .access = PL1_RW,
4092 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4093 .resetvalue = 0, },
4094 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4095 .access = PL1_RW,
4096 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4097 .resetvalue = 0, },
4098 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4099 .access = PL1_RW,
4100 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4101 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4102 .access = PL1_RW,
4103 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4104 /* Protection region base and size registers */
4105 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4108 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4111 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4114 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4117 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4120 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4123 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4126 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4127 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4128 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4129 };
4130
4131 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4132 uint64_t value)
4133 {
4134 ARMCPU *cpu = env_archcpu(env);
4135
4136 if (!arm_feature(env, ARM_FEATURE_V8)) {
4137 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4138 /*
4139 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4140 * using Long-descriptor translation table format
4141 */
4142 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4143 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4144 /*
4145 * In an implementation that includes the Security Extensions
4146 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4147 * Short-descriptor translation table format.
4148 */
4149 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4150 } else {
4151 value &= TTBCR_N;
4152 }
4153 }
4154
4155 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4156 /*
4157 * With LPAE the TTBCR could result in a change of ASID
4158 * via the TTBCR.A1 bit, so do a TLB flush.
4159 */
4160 tlb_flush(CPU(cpu));
4161 }
4162 raw_write(env, ri, value);
4163 }
4164
4165 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4166 uint64_t value)
4167 {
4168 ARMCPU *cpu = env_archcpu(env);
4169
4170 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4171 tlb_flush(CPU(cpu));
4172 raw_write(env, ri, value);
4173 }
4174
4175 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4176 uint64_t value)
4177 {
4178 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4179 if (cpreg_field_is_64bit(ri) &&
4180 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4181 ARMCPU *cpu = env_archcpu(env);
4182 tlb_flush(CPU(cpu));
4183 }
4184 raw_write(env, ri, value);
4185 }
4186
4187 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4188 uint64_t value)
4189 {
4190 /*
4191 * If we are running with E2&0 regime, then an ASID is active.
4192 * Flush if that might be changing. Note we're not checking
4193 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4194 * holds the active ASID, only checking the field that might.
4195 */
4196 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4197 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4198 uint16_t mask = ARMMMUIdxBit_E20_2 |
4199 ARMMMUIdxBit_E20_2_PAN |
4200 ARMMMUIdxBit_E20_0;
4201 tlb_flush_by_mmuidx(env_cpu(env), mask);
4202 }
4203 raw_write(env, ri, value);
4204 }
4205
4206 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4207 uint64_t value)
4208 {
4209 ARMCPU *cpu = env_archcpu(env);
4210 CPUState *cs = CPU(cpu);
4211
4212 /*
4213 * A change in VMID to the stage2 page table (Stage2) invalidates
4214 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4215 */
4216 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4217 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4218 }
4219 raw_write(env, ri, value);
4220 }
4221
4222 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4223 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4224 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4225 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4226 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4227 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4228 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4229 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4230 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4231 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4232 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4233 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4234 offsetof(CPUARMState, cp15.dfar_ns) } },
4235 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4236 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4237 .access = PL1_RW, .accessfn = access_tvm_trvm,
4238 .fgt = FGT_FAR_EL1,
4239 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4240 .resetvalue = 0, },
4241 };
4242
4243 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4244 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4246 .access = PL1_RW, .accessfn = access_tvm_trvm,
4247 .fgt = FGT_ESR_EL1,
4248 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4249 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4250 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4251 .access = PL1_RW, .accessfn = access_tvm_trvm,
4252 .fgt = FGT_TTBR0_EL1,
4253 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4254 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4255 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4256 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4257 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4258 .access = PL1_RW, .accessfn = access_tvm_trvm,
4259 .fgt = FGT_TTBR1_EL1,
4260 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4261 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4262 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4263 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4264 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4265 .access = PL1_RW, .accessfn = access_tvm_trvm,
4266 .fgt = FGT_TCR_EL1,
4267 .writefn = vmsa_tcr_el12_write,
4268 .raw_writefn = raw_write,
4269 .resetvalue = 0,
4270 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4271 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4272 .access = PL1_RW, .accessfn = access_tvm_trvm,
4273 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4274 .raw_writefn = raw_write,
4275 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4276 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4277 };
4278
4279 /*
4280 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4281 * qemu tlbs nor adjusting cached masks.
4282 */
4283 static const ARMCPRegInfo ttbcr2_reginfo = {
4284 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4285 .access = PL1_RW, .accessfn = access_tvm_trvm,
4286 .type = ARM_CP_ALIAS,
4287 .bank_fieldoffsets = {
4288 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4289 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4290 },
4291 };
4292
4293 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4294 uint64_t value)
4295 {
4296 env->cp15.c15_ticonfig = value & 0xe7;
4297 /* The OS_TYPE bit in this register changes the reported CPUID! */
4298 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4299 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4300 }
4301
4302 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303 uint64_t value)
4304 {
4305 env->cp15.c15_threadid = value & 0xffff;
4306 }
4307
4308 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4309 uint64_t value)
4310 {
4311 /* Wait-for-interrupt (deprecated) */
4312 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4313 }
4314
4315 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4316 uint64_t value)
4317 {
4318 /*
4319 * On OMAP there are registers indicating the max/min index of dcache lines
4320 * containing a dirty line; cache flush operations have to reset these.
4321 */
4322 env->cp15.c15_i_max = 0x000;
4323 env->cp15.c15_i_min = 0xff0;
4324 }
4325
4326 static const ARMCPRegInfo omap_cp_reginfo[] = {
4327 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4328 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4329 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4330 .resetvalue = 0, },
4331 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4332 .access = PL1_RW, .type = ARM_CP_NOP },
4333 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4334 .access = PL1_RW,
4335 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4336 .writefn = omap_ticonfig_write },
4337 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4338 .access = PL1_RW,
4339 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4340 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4341 .access = PL1_RW, .resetvalue = 0xff0,
4342 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4343 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4344 .access = PL1_RW,
4345 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4346 .writefn = omap_threadid_write },
4347 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4348 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4349 .type = ARM_CP_NO_RAW,
4350 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4351 /*
4352 * TODO: Peripheral port remap register:
4353 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4354 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4355 * when MMU is off.
4356 */
4357 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4358 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4359 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4360 .writefn = omap_cachemaint_write },
4361 { .name = "C9", .cp = 15, .crn = 9,
4362 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4363 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4364 };
4365
4366 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4367 uint64_t value)
4368 {
4369 env->cp15.c15_cpar = value & 0x3fff;
4370 }
4371
4372 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4373 { .name = "XSCALE_CPAR",
4374 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4375 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4376 .writefn = xscale_cpar_write, },
4377 { .name = "XSCALE_AUXCR",
4378 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4379 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4380 .resetvalue = 0, },
4381 /*
4382 * XScale specific cache-lockdown: since we have no cache we NOP these
4383 * and hope the guest does not really rely on cache behaviour.
4384 */
4385 { .name = "XSCALE_LOCK_ICACHE_LINE",
4386 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4387 .access = PL1_W, .type = ARM_CP_NOP },
4388 { .name = "XSCALE_UNLOCK_ICACHE",
4389 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4390 .access = PL1_W, .type = ARM_CP_NOP },
4391 { .name = "XSCALE_DCACHE_LOCK",
4392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4393 .access = PL1_RW, .type = ARM_CP_NOP },
4394 { .name = "XSCALE_UNLOCK_DCACHE",
4395 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4396 .access = PL1_W, .type = ARM_CP_NOP },
4397 };
4398
4399 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4400 /*
4401 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4402 * implementation of this implementation-defined space.
4403 * Ideally this should eventually disappear in favour of actually
4404 * implementing the correct behaviour for all cores.
4405 */
4406 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4407 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4408 .access = PL1_RW,
4409 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4410 .resetvalue = 0 },
4411 };
4412
4413 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4414 /* Cache status: RAZ because we have no cache so it's always clean */
4415 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4416 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4417 .resetvalue = 0 },
4418 };
4419
4420 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4421 /* We never have a block transfer operation in progress */
4422 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4423 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4424 .resetvalue = 0 },
4425 /* The cache ops themselves: these all NOP for QEMU */
4426 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4427 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4428 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4429 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4430 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4431 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4432 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4433 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4434 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4435 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4436 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4437 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4438 };
4439
4440 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4441 /*
4442 * The cache test-and-clean instructions always return (1 << 30)
4443 * to indicate that there are no dirty cache lines.
4444 */
4445 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4446 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4447 .resetvalue = (1 << 30) },
4448 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4449 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4450 .resetvalue = (1 << 30) },
4451 };
4452
4453 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4454 /* Ignore ReadBuffer accesses */
4455 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4456 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4457 .access = PL1_RW, .resetvalue = 0,
4458 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4459 };
4460
4461 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4462 {
4463 unsigned int cur_el = arm_current_el(env);
4464
4465 if (arm_is_el2_enabled(env) && cur_el == 1) {
4466 return env->cp15.vpidr_el2;
4467 }
4468 return raw_read(env, ri);
4469 }
4470
4471 static uint64_t mpidr_read_val(CPUARMState *env)
4472 {
4473 ARMCPU *cpu = env_archcpu(env);
4474 uint64_t mpidr = cpu->mp_affinity;
4475
4476 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4477 mpidr |= (1U << 31);
4478 /*
4479 * Cores which are uniprocessor (non-coherent)
4480 * but still implement the MP extensions set
4481 * bit 30. (For instance, Cortex-R5).
4482 */
4483 if (cpu->mp_is_up) {
4484 mpidr |= (1u << 30);
4485 }
4486 }
4487 return mpidr;
4488 }
4489
4490 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4491 {
4492 unsigned int cur_el = arm_current_el(env);
4493
4494 if (arm_is_el2_enabled(env) && cur_el == 1) {
4495 return env->cp15.vmpidr_el2;
4496 }
4497 return mpidr_read_val(env);
4498 }
4499
4500 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4501 /* NOP AMAIR0/1 */
4502 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4503 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4504 .access = PL1_RW, .accessfn = access_tvm_trvm,
4505 .fgt = FGT_AMAIR_EL1,
4506 .type = ARM_CP_CONST, .resetvalue = 0 },
4507 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4508 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4509 .access = PL1_RW, .accessfn = access_tvm_trvm,
4510 .type = ARM_CP_CONST, .resetvalue = 0 },
4511 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4512 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4513 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4514 offsetof(CPUARMState, cp15.par_ns)} },
4515 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4516 .access = PL1_RW, .accessfn = access_tvm_trvm,
4517 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4518 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4519 offsetof(CPUARMState, cp15.ttbr0_ns) },
4520 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4521 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4522 .access = PL1_RW, .accessfn = access_tvm_trvm,
4523 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4524 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4525 offsetof(CPUARMState, cp15.ttbr1_ns) },
4526 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4527 };
4528
4529 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4530 {
4531 return vfp_get_fpcr(env);
4532 }
4533
4534 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4535 uint64_t value)
4536 {
4537 vfp_set_fpcr(env, value);
4538 }
4539
4540 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4541 {
4542 return vfp_get_fpsr(env);
4543 }
4544
4545 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546 uint64_t value)
4547 {
4548 vfp_set_fpsr(env, value);
4549 }
4550
4551 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4552 bool isread)
4553 {
4554 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4555 return CP_ACCESS_TRAP;
4556 }
4557 return CP_ACCESS_OK;
4558 }
4559
4560 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4561 uint64_t value)
4562 {
4563 env->daif = value & PSTATE_DAIF;
4564 }
4565
4566 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4567 {
4568 return env->pstate & PSTATE_PAN;
4569 }
4570
4571 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4572 uint64_t value)
4573 {
4574 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4575 }
4576
4577 static const ARMCPRegInfo pan_reginfo = {
4578 .name = "PAN", .state = ARM_CP_STATE_AA64,
4579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4580 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4581 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4582 };
4583
4584 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4585 {
4586 return env->pstate & PSTATE_UAO;
4587 }
4588
4589 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4590 uint64_t value)
4591 {
4592 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4593 }
4594
4595 static const ARMCPRegInfo uao_reginfo = {
4596 .name = "UAO", .state = ARM_CP_STATE_AA64,
4597 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4598 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4599 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4600 };
4601
4602 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4603 {
4604 return env->pstate & PSTATE_DIT;
4605 }
4606
4607 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4608 uint64_t value)
4609 {
4610 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4611 }
4612
4613 static const ARMCPRegInfo dit_reginfo = {
4614 .name = "DIT", .state = ARM_CP_STATE_AA64,
4615 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4616 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4617 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4618 };
4619
4620 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4621 {
4622 return env->pstate & PSTATE_SSBS;
4623 }
4624
4625 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4626 uint64_t value)
4627 {
4628 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4629 }
4630
4631 static const ARMCPRegInfo ssbs_reginfo = {
4632 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4633 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4634 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4635 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4636 };
4637
4638 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4639 const ARMCPRegInfo *ri,
4640 bool isread)
4641 {
4642 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4643 switch (arm_current_el(env)) {
4644 case 0:
4645 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4646 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4647 return CP_ACCESS_TRAP;
4648 }
4649 /* fall through */
4650 case 1:
4651 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4652 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4653 return CP_ACCESS_TRAP_EL2;
4654 }
4655 break;
4656 }
4657 return CP_ACCESS_OK;
4658 }
4659
4660 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4661 {
4662 /* Cache invalidate/clean to Point of Unification... */
4663 switch (arm_current_el(env)) {
4664 case 0:
4665 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4666 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4667 return CP_ACCESS_TRAP;
4668 }
4669 /* fall through */
4670 case 1:
4671 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4672 if (arm_hcr_el2_eff(env) & hcrflags) {
4673 return CP_ACCESS_TRAP_EL2;
4674 }
4675 break;
4676 }
4677 return CP_ACCESS_OK;
4678 }
4679
4680 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4681 bool isread)
4682 {
4683 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4684 }
4685
4686 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4687 bool isread)
4688 {
4689 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4690 }
4691
4692 /*
4693 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4694 * Page D4-1736 (DDI0487A.b)
4695 */
4696
4697 static int vae1_tlbmask(CPUARMState *env)
4698 {
4699 uint64_t hcr = arm_hcr_el2_eff(env);
4700 uint16_t mask;
4701
4702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4703 mask = ARMMMUIdxBit_E20_2 |
4704 ARMMMUIdxBit_E20_2_PAN |
4705 ARMMMUIdxBit_E20_0;
4706 } else {
4707 mask = ARMMMUIdxBit_E10_1 |
4708 ARMMMUIdxBit_E10_1_PAN |
4709 ARMMMUIdxBit_E10_0;
4710 }
4711 return mask;
4712 }
4713
4714 static int vae2_tlbmask(CPUARMState *env)
4715 {
4716 uint64_t hcr = arm_hcr_el2_eff(env);
4717 uint16_t mask;
4718
4719 if (hcr & HCR_E2H) {
4720 mask = ARMMMUIdxBit_E20_2 |
4721 ARMMMUIdxBit_E20_2_PAN |
4722 ARMMMUIdxBit_E20_0;
4723 } else {
4724 mask = ARMMMUIdxBit_E2;
4725 }
4726 return mask;
4727 }
4728
4729 /* Return 56 if TBI is enabled, 64 otherwise. */
4730 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4731 uint64_t addr)
4732 {
4733 uint64_t tcr = regime_tcr(env, mmu_idx);
4734 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4735 int select = extract64(addr, 55, 1);
4736
4737 return (tbi >> select) & 1 ? 56 : 64;
4738 }
4739
4740 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4741 {
4742 uint64_t hcr = arm_hcr_el2_eff(env);
4743 ARMMMUIdx mmu_idx;
4744
4745 /* Only the regime of the mmu_idx below is significant. */
4746 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4747 mmu_idx = ARMMMUIdx_E20_0;
4748 } else {
4749 mmu_idx = ARMMMUIdx_E10_0;
4750 }
4751
4752 return tlbbits_for_regime(env, mmu_idx, addr);
4753 }
4754
4755 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4756 {
4757 uint64_t hcr = arm_hcr_el2_eff(env);
4758 ARMMMUIdx mmu_idx;
4759
4760 /*
4761 * Only the regime of the mmu_idx below is significant.
4762 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4763 * only has one.
4764 */
4765 if (hcr & HCR_E2H) {
4766 mmu_idx = ARMMMUIdx_E20_2;
4767 } else {
4768 mmu_idx = ARMMMUIdx_E2;
4769 }
4770
4771 return tlbbits_for_regime(env, mmu_idx, addr);
4772 }
4773
4774 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4775 uint64_t value)
4776 {
4777 CPUState *cs = env_cpu(env);
4778 int mask = vae1_tlbmask(env);
4779
4780 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4781 }
4782
4783 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4784 uint64_t value)
4785 {
4786 CPUState *cs = env_cpu(env);
4787 int mask = vae1_tlbmask(env);
4788
4789 if (tlb_force_broadcast(env)) {
4790 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4791 } else {
4792 tlb_flush_by_mmuidx(cs, mask);
4793 }
4794 }
4795
4796 static int e2_tlbmask(CPUARMState *env)
4797 {
4798 return (ARMMMUIdxBit_E20_0 |
4799 ARMMMUIdxBit_E20_2 |
4800 ARMMMUIdxBit_E20_2_PAN |
4801 ARMMMUIdxBit_E2);
4802 }
4803
4804 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4805 uint64_t value)
4806 {
4807 CPUState *cs = env_cpu(env);
4808 int mask = alle1_tlbmask(env);
4809
4810 tlb_flush_by_mmuidx(cs, mask);
4811 }
4812
4813 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4814 uint64_t value)
4815 {
4816 CPUState *cs = env_cpu(env);
4817 int mask = e2_tlbmask(env);
4818
4819 tlb_flush_by_mmuidx(cs, mask);
4820 }
4821
4822 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4823 uint64_t value)
4824 {
4825 ARMCPU *cpu = env_archcpu(env);
4826 CPUState *cs = CPU(cpu);
4827
4828 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4829 }
4830
4831 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4832 uint64_t value)
4833 {
4834 CPUState *cs = env_cpu(env);
4835 int mask = alle1_tlbmask(env);
4836
4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4838 }
4839
4840 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841 uint64_t value)
4842 {
4843 CPUState *cs = env_cpu(env);
4844 int mask = e2_tlbmask(env);
4845
4846 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4847 }
4848
4849 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4850 uint64_t value)
4851 {
4852 CPUState *cs = env_cpu(env);
4853
4854 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4855 }
4856
4857 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4858 uint64_t value)
4859 {
4860 /*
4861 * Invalidate by VA, EL2
4862 * Currently handles both VAE2 and VALE2, since we don't support
4863 * flush-last-level-only.
4864 */
4865 CPUState *cs = env_cpu(env);
4866 int mask = vae2_tlbmask(env);
4867 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4868 int bits = vae2_tlbbits(env, pageaddr);
4869
4870 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4871 }
4872
4873 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874 uint64_t value)
4875 {
4876 /*
4877 * Invalidate by VA, EL3
4878 * Currently handles both VAE3 and VALE3, since we don't support
4879 * flush-last-level-only.
4880 */
4881 ARMCPU *cpu = env_archcpu(env);
4882 CPUState *cs = CPU(cpu);
4883 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4884
4885 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4886 }
4887
4888 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4889 uint64_t value)
4890 {
4891 CPUState *cs = env_cpu(env);
4892 int mask = vae1_tlbmask(env);
4893 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4894 int bits = vae1_tlbbits(env, pageaddr);
4895
4896 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4897 }
4898
4899 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4900 uint64_t value)
4901 {
4902 /*
4903 * Invalidate by VA, EL1&0 (AArch64 version).
4904 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4905 * since we don't support flush-for-specific-ASID-only or
4906 * flush-last-level-only.
4907 */
4908 CPUState *cs = env_cpu(env);
4909 int mask = vae1_tlbmask(env);
4910 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4911 int bits = vae1_tlbbits(env, pageaddr);
4912
4913 if (tlb_force_broadcast(env)) {
4914 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4915 } else {
4916 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4917 }
4918 }
4919
4920 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4921 uint64_t value)
4922 {
4923 CPUState *cs = env_cpu(env);
4924 int mask = vae2_tlbmask(env);
4925 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4926 int bits = vae2_tlbbits(env, pageaddr);
4927
4928 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4929 }
4930
4931 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4932 uint64_t value)
4933 {
4934 CPUState *cs = env_cpu(env);
4935 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4936 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4937
4938 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4939 ARMMMUIdxBit_E3, bits);
4940 }
4941
4942 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4943 {
4944 /*
4945 * The MSB of value is the NS field, which only applies if SEL2
4946 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4947 */
4948 return (value >= 0
4949 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4950 && arm_is_secure_below_el3(env)
4951 ? ARMMMUIdxBit_Stage2_S
4952 : ARMMMUIdxBit_Stage2);
4953 }
4954
4955 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4956 uint64_t value)
4957 {
4958 CPUState *cs = env_cpu(env);
4959 int mask = ipas2e1_tlbmask(env, value);
4960 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4961
4962 if (tlb_force_broadcast(env)) {
4963 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4964 } else {
4965 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4966 }
4967 }
4968
4969 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4970 uint64_t value)
4971 {
4972 CPUState *cs = env_cpu(env);
4973 int mask = ipas2e1_tlbmask(env, value);
4974 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4975
4976 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4977 }
4978
4979 #ifdef TARGET_AARCH64
4980 typedef struct {
4981 uint64_t base;
4982 uint64_t length;
4983 } TLBIRange;
4984
4985 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4986 {
4987 /*
4988 * Note that the TLBI range TG field encoding differs from both
4989 * TG0 and TG1 encodings.
4990 */
4991 switch (tg) {
4992 case 1:
4993 return Gran4K;
4994 case 2:
4995 return Gran16K;
4996 case 3:
4997 return Gran64K;
4998 default:
4999 return GranInvalid;
5000 }
5001 }
5002
5003 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5004 uint64_t value)
5005 {
5006 unsigned int page_size_granule, page_shift, num, scale, exponent;
5007 /* Extract one bit to represent the va selector in use. */
5008 uint64_t select = sextract64(value, 36, 1);
5009 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5010 TLBIRange ret = { };
5011 ARMGranuleSize gran;
5012
5013 page_size_granule = extract64(value, 46, 2);
5014 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5015
5016 /* The granule encoded in value must match the granule in use. */
5017 if (gran != param.gran) {
5018 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5019 page_size_granule);
5020 return ret;
5021 }
5022
5023 page_shift = arm_granule_bits(gran);
5024 num = extract64(value, 39, 5);
5025 scale = extract64(value, 44, 2);
5026 exponent = (5 * scale) + 1;
5027
5028 ret.length = (num + 1) << (exponent + page_shift);
5029
5030 if (param.select) {
5031 ret.base = sextract64(value, 0, 37);
5032 } else {
5033 ret.base = extract64(value, 0, 37);
5034 }
5035 if (param.ds) {
5036 /*
5037 * With DS=1, BaseADDR is always shifted 16 so that it is able
5038 * to address all 52 va bits. The input address is perforce
5039 * aligned on a 64k boundary regardless of translation granule.
5040 */
5041 page_shift = 16;
5042 }
5043 ret.base <<= page_shift;
5044
5045 return ret;
5046 }
5047
5048 static void do_rvae_write(CPUARMState *env, uint64_t value,
5049 int idxmap, bool synced)
5050 {
5051 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5052 TLBIRange range;
5053 int bits;
5054
5055 range = tlbi_aa64_get_range(env, one_idx, value);
5056 bits = tlbbits_for_regime(env, one_idx, range.base);
5057
5058 if (synced) {
5059 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5060 range.base,
5061 range.length,
5062 idxmap,
5063 bits);
5064 } else {
5065 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5066 range.length, idxmap, bits);
5067 }
5068 }
5069
5070 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5071 const ARMCPRegInfo *ri,
5072 uint64_t value)
5073 {
5074 /*
5075 * Invalidate by VA range, EL1&0.
5076 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5077 * since we don't support flush-for-specific-ASID-only or
5078 * flush-last-level-only.
5079 */
5080
5081 do_rvae_write(env, value, vae1_tlbmask(env),
5082 tlb_force_broadcast(env));
5083 }
5084
5085 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5086 const ARMCPRegInfo *ri,
5087 uint64_t value)
5088 {
5089 /*
5090 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5091 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5092 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5093 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5094 * shareable specific flushes.
5095 */
5096
5097 do_rvae_write(env, value, vae1_tlbmask(env), true);
5098 }
5099
5100 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5101 const ARMCPRegInfo *ri,
5102 uint64_t value)
5103 {
5104 /*
5105 * Invalidate by VA range, EL2.
5106 * Currently handles all of RVAE2 and RVALE2,
5107 * since we don't support flush-for-specific-ASID-only or
5108 * flush-last-level-only.
5109 */
5110
5111 do_rvae_write(env, value, vae2_tlbmask(env),
5112 tlb_force_broadcast(env));
5113
5114
5115 }
5116
5117 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5118 const ARMCPRegInfo *ri,
5119 uint64_t value)
5120 {
5121 /*
5122 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5123 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5124 * since we don't support flush-for-specific-ASID-only,
5125 * flush-last-level-only or inner/outer shareable specific flushes.
5126 */
5127
5128 do_rvae_write(env, value, vae2_tlbmask(env), true);
5129
5130 }
5131
5132 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5133 const ARMCPRegInfo *ri,
5134 uint64_t value)
5135 {
5136 /*
5137 * Invalidate by VA range, EL3.
5138 * Currently handles all of RVAE3 and RVALE3,
5139 * since we don't support flush-for-specific-ASID-only or
5140 * flush-last-level-only.
5141 */
5142
5143 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5144 }
5145
5146 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5147 const ARMCPRegInfo *ri,
5148 uint64_t value)
5149 {
5150 /*
5151 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5152 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5153 * since we don't support flush-for-specific-ASID-only,
5154 * flush-last-level-only or inner/outer specific flushes.
5155 */
5156
5157 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5158 }
5159
5160 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5161 uint64_t value)
5162 {
5163 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5164 tlb_force_broadcast(env));
5165 }
5166
5167 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5168 const ARMCPRegInfo *ri,
5169 uint64_t value)
5170 {
5171 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5172 }
5173 #endif
5174
5175 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5176 bool isread)
5177 {
5178 int cur_el = arm_current_el(env);
5179
5180 if (cur_el < 2) {
5181 uint64_t hcr = arm_hcr_el2_eff(env);
5182
5183 if (cur_el == 0) {
5184 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5185 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5186 return CP_ACCESS_TRAP_EL2;
5187 }
5188 } else {
5189 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5190 return CP_ACCESS_TRAP;
5191 }
5192 if (hcr & HCR_TDZ) {
5193 return CP_ACCESS_TRAP_EL2;
5194 }
5195 }
5196 } else if (hcr & HCR_TDZ) {
5197 return CP_ACCESS_TRAP_EL2;
5198 }
5199 }
5200 return CP_ACCESS_OK;
5201 }
5202
5203 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5204 {
5205 ARMCPU *cpu = env_archcpu(env);
5206 int dzp_bit = 1 << 4;
5207
5208 /* DZP indicates whether DC ZVA access is allowed */
5209 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5210 dzp_bit = 0;
5211 }
5212 return cpu->dcz_blocksize | dzp_bit;
5213 }
5214
5215 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5216 bool isread)
5217 {
5218 if (!(env->pstate & PSTATE_SP)) {
5219 /*
5220 * Access to SP_EL0 is undefined if it's being used as
5221 * the stack pointer.
5222 */
5223 return CP_ACCESS_TRAP_UNCATEGORIZED;
5224 }
5225 return CP_ACCESS_OK;
5226 }
5227
5228 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5229 {
5230 return env->pstate & PSTATE_SP;
5231 }
5232
5233 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5234 {
5235 update_spsel(env, val);
5236 }
5237
5238 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5239 uint64_t value)
5240 {
5241 ARMCPU *cpu = env_archcpu(env);
5242
5243 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5244 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5245 value &= ~SCTLR_M;
5246 }
5247
5248 /* ??? Lots of these bits are not implemented. */
5249
5250 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5251 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5252 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5253 } else {
5254 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5255 SCTLR_ATA0 | SCTLR_ATA);
5256 }
5257 }
5258
5259 if (raw_read(env, ri) == value) {
5260 /*
5261 * Skip the TLB flush if nothing actually changed; Linux likes
5262 * to do a lot of pointless SCTLR writes.
5263 */
5264 return;
5265 }
5266
5267 raw_write(env, ri, value);
5268
5269 /* This may enable/disable the MMU, so do a TLB flush. */
5270 tlb_flush(CPU(cpu));
5271
5272 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5273 /*
5274 * Normally we would always end the TB on an SCTLR write; see the
5275 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5276 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5277 * of hflags from the translator, so do it here.
5278 */
5279 arm_rebuild_hflags(env);
5280 }
5281 }
5282
5283 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5284 uint64_t value)
5285 {
5286 /*
5287 * Some MDCR_EL3 bits affect whether PMU counters are running:
5288 * if we are trying to change any of those then we must
5289 * bracket this update with PMU start/finish calls.
5290 */
5291 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5292
5293 if (pmu_op) {
5294 pmu_op_start(env);
5295 }
5296 env->cp15.mdcr_el3 = value;
5297 if (pmu_op) {
5298 pmu_op_finish(env);
5299 }
5300 }
5301
5302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5303 uint64_t value)
5304 {
5305 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5306 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5307 }
5308
5309 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5310 uint64_t value)
5311 {
5312 /*
5313 * Some MDCR_EL2 bits affect whether PMU counters are running:
5314 * if we are trying to change any of those then we must
5315 * bracket this update with PMU start/finish calls.
5316 */
5317 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5318
5319 if (pmu_op) {
5320 pmu_op_start(env);
5321 }
5322 env->cp15.mdcr_el2 = value;
5323 if (pmu_op) {
5324 pmu_op_finish(env);
5325 }
5326 }
5327
5328 #ifdef CONFIG_USER_ONLY
5329 /*
5330 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5331 * code to get around W^X restrictions, where one region is writable and the
5332 * other is executable.
5333 *
5334 * Since the executable region is never written to we cannot detect code
5335 * changes when running in user mode, and rely on the emulated JIT telling us
5336 * that the code has changed by executing this instruction.
5337 */
5338 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5339 uint64_t value)
5340 {
5341 uint64_t icache_line_mask, start_address, end_address;
5342 const ARMCPU *cpu;
5343
5344 cpu = env_archcpu(env);
5345
5346 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5347 start_address = value & ~icache_line_mask;
5348 end_address = value | icache_line_mask;
5349
5350 mmap_lock();
5351
5352 tb_invalidate_phys_range(start_address, end_address);
5353
5354 mmap_unlock();
5355 }
5356 #endif
5357
5358 static const ARMCPRegInfo v8_cp_reginfo[] = {
5359 /*
5360 * Minimal set of EL0-visible registers. This will need to be expanded
5361 * significantly for system emulation of AArch64 CPUs.
5362 */
5363 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5364 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5365 .access = PL0_RW, .type = ARM_CP_NZCV },
5366 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5367 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5368 .type = ARM_CP_NO_RAW,
5369 .access = PL0_RW, .accessfn = aa64_daif_access,
5370 .fieldoffset = offsetof(CPUARMState, daif),
5371 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5372 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5373 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5374 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5375 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5376 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5377 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5378 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5379 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5380 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5381 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5382 .access = PL0_R, .type = ARM_CP_NO_RAW,
5383 .fgt = FGT_DCZID_EL0,
5384 .readfn = aa64_dczid_read },
5385 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5386 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5387 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5388 #ifndef CONFIG_USER_ONLY
5389 /* Avoid overhead of an access check that always passes in user-mode */
5390 .accessfn = aa64_zva_access,
5391 .fgt = FGT_DCZVA,
5392 #endif
5393 },
5394 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5395 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5396 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5397 /*
5398 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5399 * don't emulate caches.
5400 */
5401 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5402 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5403 .access = PL1_W, .type = ARM_CP_NOP,
5404 .fgt = FGT_ICIALLUIS,
5405 .accessfn = access_ticab },
5406 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5407 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5408 .access = PL1_W, .type = ARM_CP_NOP,
5409 .fgt = FGT_ICIALLU,
5410 .accessfn = access_tocu },
5411 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5412 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5413 .access = PL0_W,
5414 .fgt = FGT_ICIVAU,
5415 .accessfn = access_tocu,
5416 #ifdef CONFIG_USER_ONLY
5417 .type = ARM_CP_NO_RAW,
5418 .writefn = ic_ivau_write
5419 #else
5420 .type = ARM_CP_NOP
5421 #endif
5422 },
5423 /* Cache ops: all NOPs since we don't emulate caches */
5424 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5426 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5427 .fgt = FGT_DCIVAC,
5428 .type = ARM_CP_NOP },
5429 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5431 .fgt = FGT_DCISW,
5432 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5433 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5434 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5435 .access = PL0_W, .type = ARM_CP_NOP,
5436 .fgt = FGT_DCCVAC,
5437 .accessfn = aa64_cacheop_poc_access },
5438 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5440 .fgt = FGT_DCCSW,
5441 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5442 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5443 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5444 .access = PL0_W, .type = ARM_CP_NOP,
5445 .fgt = FGT_DCCVAU,
5446 .accessfn = access_tocu },
5447 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5449 .access = PL0_W, .type = ARM_CP_NOP,
5450 .fgt = FGT_DCCIVAC,
5451 .accessfn = aa64_cacheop_poc_access },
5452 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5453 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5454 .fgt = FGT_DCCISW,
5455 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5456 /* TLBI operations */
5457 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5458 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5459 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5460 .fgt = FGT_TLBIVMALLE1IS,
5461 .writefn = tlbi_aa64_vmalle1is_write },
5462 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5463 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5464 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5465 .fgt = FGT_TLBIVAE1IS,
5466 .writefn = tlbi_aa64_vae1is_write },
5467 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5468 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5469 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5470 .fgt = FGT_TLBIASIDE1IS,
5471 .writefn = tlbi_aa64_vmalle1is_write },
5472 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5473 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5474 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5475 .fgt = FGT_TLBIVAAE1IS,
5476 .writefn = tlbi_aa64_vae1is_write },
5477 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5478 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5479 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5480 .fgt = FGT_TLBIVALE1IS,
5481 .writefn = tlbi_aa64_vae1is_write },
5482 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5483 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5484 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5485 .fgt = FGT_TLBIVAALE1IS,
5486 .writefn = tlbi_aa64_vae1is_write },
5487 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5489 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5490 .fgt = FGT_TLBIVMALLE1,
5491 .writefn = tlbi_aa64_vmalle1_write },
5492 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5494 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5495 .fgt = FGT_TLBIVAE1,
5496 .writefn = tlbi_aa64_vae1_write },
5497 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5499 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5500 .fgt = FGT_TLBIASIDE1,
5501 .writefn = tlbi_aa64_vmalle1_write },
5502 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5503 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5504 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5505 .fgt = FGT_TLBIVAAE1,
5506 .writefn = tlbi_aa64_vae1_write },
5507 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5509 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5510 .fgt = FGT_TLBIVALE1,
5511 .writefn = tlbi_aa64_vae1_write },
5512 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5514 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5515 .fgt = FGT_TLBIVAALE1,
5516 .writefn = tlbi_aa64_vae1_write },
5517 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5519 .access = PL2_W, .type = ARM_CP_NO_RAW,
5520 .writefn = tlbi_aa64_ipas2e1is_write },
5521 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5522 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5523 .access = PL2_W, .type = ARM_CP_NO_RAW,
5524 .writefn = tlbi_aa64_ipas2e1is_write },
5525 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5527 .access = PL2_W, .type = ARM_CP_NO_RAW,
5528 .writefn = tlbi_aa64_alle1is_write },
5529 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5531 .access = PL2_W, .type = ARM_CP_NO_RAW,
5532 .writefn = tlbi_aa64_alle1is_write },
5533 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5535 .access = PL2_W, .type = ARM_CP_NO_RAW,
5536 .writefn = tlbi_aa64_ipas2e1_write },
5537 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5539 .access = PL2_W, .type = ARM_CP_NO_RAW,
5540 .writefn = tlbi_aa64_ipas2e1_write },
5541 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5543 .access = PL2_W, .type = ARM_CP_NO_RAW,
5544 .writefn = tlbi_aa64_alle1_write },
5545 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5547 .access = PL2_W, .type = ARM_CP_NO_RAW,
5548 .writefn = tlbi_aa64_alle1is_write },
5549 #ifndef CONFIG_USER_ONLY
5550 /* 64 bit address translation operations */
5551 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5553 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5554 .fgt = FGT_ATS1E1R,
5555 .accessfn = at_e012_access, .writefn = ats_write64 },
5556 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5557 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5558 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5559 .fgt = FGT_ATS1E1W,
5560 .accessfn = at_e012_access, .writefn = ats_write64 },
5561 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5563 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5564 .fgt = FGT_ATS1E0R,
5565 .accessfn = at_e012_access, .writefn = ats_write64 },
5566 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5568 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5569 .fgt = FGT_ATS1E0W,
5570 .accessfn = at_e012_access, .writefn = ats_write64 },
5571 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5573 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5574 .accessfn = at_e012_access, .writefn = ats_write64 },
5575 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5577 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5578 .accessfn = at_e012_access, .writefn = ats_write64 },
5579 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5581 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5582 .accessfn = at_e012_access, .writefn = ats_write64 },
5583 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5584 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5585 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5586 .accessfn = at_e012_access, .writefn = ats_write64 },
5587 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5588 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5589 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5590 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5591 .writefn = ats_write64 },
5592 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5593 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5594 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5595 .writefn = ats_write64 },
5596 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5597 .type = ARM_CP_ALIAS,
5598 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5599 .access = PL1_RW, .resetvalue = 0,
5600 .fgt = FGT_PAR_EL1,
5601 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5602 .writefn = par_write },
5603 #endif
5604 /* TLB invalidate last level of translation table walk */
5605 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5606 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5607 .writefn = tlbimva_is_write },
5608 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5609 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5610 .writefn = tlbimvaa_is_write },
5611 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5612 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5613 .writefn = tlbimva_write },
5614 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5615 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5616 .writefn = tlbimvaa_write },
5617 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5618 .type = ARM_CP_NO_RAW, .access = PL2_W,
5619 .writefn = tlbimva_hyp_write },
5620 { .name = "TLBIMVALHIS",
5621 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5622 .type = ARM_CP_NO_RAW, .access = PL2_W,
5623 .writefn = tlbimva_hyp_is_write },
5624 { .name = "TLBIIPAS2",
5625 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5626 .type = ARM_CP_NO_RAW, .access = PL2_W,
5627 .writefn = tlbiipas2_hyp_write },
5628 { .name = "TLBIIPAS2IS",
5629 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5630 .type = ARM_CP_NO_RAW, .access = PL2_W,
5631 .writefn = tlbiipas2is_hyp_write },
5632 { .name = "TLBIIPAS2L",
5633 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5634 .type = ARM_CP_NO_RAW, .access = PL2_W,
5635 .writefn = tlbiipas2_hyp_write },
5636 { .name = "TLBIIPAS2LIS",
5637 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5638 .type = ARM_CP_NO_RAW, .access = PL2_W,
5639 .writefn = tlbiipas2is_hyp_write },
5640 /* 32 bit cache operations */
5641 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5642 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5643 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5644 .type = ARM_CP_NOP, .access = PL1_W },
5645 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5646 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5647 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5648 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5649 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5650 .type = ARM_CP_NOP, .access = PL1_W },
5651 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5652 .type = ARM_CP_NOP, .access = PL1_W },
5653 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5654 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5655 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5656 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5657 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5658 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5659 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5660 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5661 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5662 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5663 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5664 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5665 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5666 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5667 /* MMU Domain access control / MPU write buffer control */
5668 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5669 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5670 .writefn = dacr_write, .raw_writefn = raw_write,
5671 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5672 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5673 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5674 .type = ARM_CP_ALIAS,
5675 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5676 .access = PL1_RW,
5677 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5678 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5679 .type = ARM_CP_ALIAS,
5680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5681 .access = PL1_RW,
5682 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5683 /*
5684 * We rely on the access checks not allowing the guest to write to the
5685 * state field when SPSel indicates that it's being used as the stack
5686 * pointer.
5687 */
5688 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5689 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5690 .access = PL1_RW, .accessfn = sp_el0_access,
5691 .type = ARM_CP_ALIAS,
5692 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5693 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5694 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5695 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5696 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5697 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5698 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5699 .type = ARM_CP_NO_RAW,
5700 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5701 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5702 .type = ARM_CP_ALIAS,
5703 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5704 .access = PL2_RW,
5705 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5706 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5707 .type = ARM_CP_ALIAS,
5708 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5709 .access = PL2_RW,
5710 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5711 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5712 .type = ARM_CP_ALIAS,
5713 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5714 .access = PL2_RW,
5715 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5716 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5717 .type = ARM_CP_ALIAS,
5718 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5719 .access = PL2_RW,
5720 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5721 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5722 .type = ARM_CP_IO,
5723 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5724 .resetvalue = 0,
5725 .access = PL3_RW,
5726 .writefn = mdcr_el3_write,
5727 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5728 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5729 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5730 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5731 .writefn = sdcr_write,
5732 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5733 };
5734
5735 /* These are present only when EL1 supports AArch32 */
5736 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5737 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5739 .access = PL2_RW,
5740 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5741 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5742 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5744 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5745 .writefn = dacr_write, .raw_writefn = raw_write,
5746 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5747 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5749 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5750 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5751 };
5752
5753 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5754 {
5755 ARMCPU *cpu = env_archcpu(env);
5756
5757 if (arm_feature(env, ARM_FEATURE_V8)) {
5758 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5759 } else {
5760 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5761 }
5762
5763 if (arm_feature(env, ARM_FEATURE_EL3)) {
5764 valid_mask &= ~HCR_HCD;
5765 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5766 /*
5767 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5768 * However, if we're using the SMC PSCI conduit then QEMU is
5769 * effectively acting like EL3 firmware and so the guest at
5770 * EL2 should retain the ability to prevent EL1 from being
5771 * able to make SMC calls into the ersatz firmware, so in
5772 * that case HCR.TSC should be read/write.
5773 */
5774 valid_mask &= ~HCR_TSC;
5775 }
5776
5777 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5778 if (cpu_isar_feature(aa64_vh, cpu)) {
5779 valid_mask |= HCR_E2H;
5780 }
5781 if (cpu_isar_feature(aa64_ras, cpu)) {
5782 valid_mask |= HCR_TERR | HCR_TEA;
5783 }
5784 if (cpu_isar_feature(aa64_lor, cpu)) {
5785 valid_mask |= HCR_TLOR;
5786 }
5787 if (cpu_isar_feature(aa64_pauth, cpu)) {
5788 valid_mask |= HCR_API | HCR_APK;
5789 }
5790 if (cpu_isar_feature(aa64_mte, cpu)) {
5791 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5792 }
5793 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5794 valid_mask |= HCR_ENSCXT;
5795 }
5796 if (cpu_isar_feature(aa64_fwb, cpu)) {
5797 valid_mask |= HCR_FWB;
5798 }
5799 if (cpu_isar_feature(aa64_rme, cpu)) {
5800 valid_mask |= HCR_GPF;
5801 }
5802 }
5803
5804 if (cpu_isar_feature(any_evt, cpu)) {
5805 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5806 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5807 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5808 }
5809
5810 /* Clear RES0 bits. */
5811 value &= valid_mask;
5812
5813 /*
5814 * These bits change the MMU setup:
5815 * HCR_VM enables stage 2 translation
5816 * HCR_PTW forbids certain page-table setups
5817 * HCR_DC disables stage1 and enables stage2 translation
5818 * HCR_DCT enables tagging on (disabled) stage1 translation
5819 * HCR_FWB changes the interpretation of stage2 descriptor bits
5820 */
5821 if ((env->cp15.hcr_el2 ^ value) &
5822 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5823 tlb_flush(CPU(cpu));
5824 }
5825 env->cp15.hcr_el2 = value;
5826
5827 /*
5828 * Updates to VI and VF require us to update the status of
5829 * virtual interrupts, which are the logical OR of these bits
5830 * and the state of the input lines from the GIC. (This requires
5831 * that we have the iothread lock, which is done by marking the
5832 * reginfo structs as ARM_CP_IO.)
5833 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5834 * possible for it to be taken immediately, because VIRQ and
5835 * VFIQ are masked unless running at EL0 or EL1, and HCR
5836 * can only be written at EL2.
5837 */
5838 g_assert(qemu_mutex_iothread_locked());
5839 arm_cpu_update_virq(cpu);
5840 arm_cpu_update_vfiq(cpu);
5841 arm_cpu_update_vserr(cpu);
5842 }
5843
5844 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5845 {
5846 do_hcr_write(env, value, 0);
5847 }
5848
5849 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5850 uint64_t value)
5851 {
5852 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5853 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5854 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5855 }
5856
5857 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5858 uint64_t value)
5859 {
5860 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5861 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5862 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5863 }
5864
5865 /*
5866 * Return the effective value of HCR_EL2, at the given security state.
5867 * Bits that are not included here:
5868 * RW (read from SCR_EL3.RW as needed)
5869 */
5870 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5871 {
5872 uint64_t ret = env->cp15.hcr_el2;
5873
5874 assert(space != ARMSS_Root);
5875
5876 if (!arm_is_el2_enabled_secstate(env, space)) {
5877 /*
5878 * "This register has no effect if EL2 is not enabled in the
5879 * current Security state". This is ARMv8.4-SecEL2 speak for
5880 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5881 *
5882 * Prior to that, the language was "In an implementation that
5883 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5884 * as if this field is 0 for all purposes other than a direct
5885 * read or write access of HCR_EL2". With lots of enumeration
5886 * on a per-field basis. In current QEMU, this is condition
5887 * is arm_is_secure_below_el3.
5888 *
5889 * Since the v8.4 language applies to the entire register, and
5890 * appears to be backward compatible, use that.
5891 */
5892 return 0;
5893 }
5894
5895 /*
5896 * For a cpu that supports both aarch64 and aarch32, we can set bits
5897 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5898 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5899 */
5900 if (!arm_el_is_aa64(env, 2)) {
5901 uint64_t aa32_valid;
5902
5903 /*
5904 * These bits are up-to-date as of ARMv8.6.
5905 * For HCR, it's easiest to list just the 2 bits that are invalid.
5906 * For HCR2, list those that are valid.
5907 */
5908 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5909 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5910 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5911 ret &= aa32_valid;
5912 }
5913
5914 if (ret & HCR_TGE) {
5915 /* These bits are up-to-date as of ARMv8.6. */
5916 if (ret & HCR_E2H) {
5917 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5918 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5919 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5920 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5921 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5922 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5923 } else {
5924 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5925 }
5926 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5927 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5928 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5929 HCR_TLOR);
5930 }
5931
5932 return ret;
5933 }
5934
5935 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5936 {
5937 if (arm_feature(env, ARM_FEATURE_M)) {
5938 return 0;
5939 }
5940 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5941 }
5942
5943 /*
5944 * Corresponds to ARM pseudocode function ELIsInHost().
5945 */
5946 bool el_is_in_host(CPUARMState *env, int el)
5947 {
5948 uint64_t mask;
5949
5950 /*
5951 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5952 * Perform the simplest bit tests first, and validate EL2 afterward.
5953 */
5954 if (el & 1) {
5955 return false; /* EL1 or EL3 */
5956 }
5957
5958 /*
5959 * Note that hcr_write() checks isar_feature_aa64_vh(),
5960 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5961 */
5962 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5963 if ((env->cp15.hcr_el2 & mask) != mask) {
5964 return false;
5965 }
5966
5967 /* TGE and/or E2H set: double check those bits are currently legal. */
5968 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5969 }
5970
5971 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5972 uint64_t value)
5973 {
5974 uint64_t valid_mask = 0;
5975
5976 /* FEAT_MOPS adds MSCEn and MCE2 */
5977 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5978 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5979 }
5980
5981 /* Clear RES0 bits. */
5982 env->cp15.hcrx_el2 = value & valid_mask;
5983 }
5984
5985 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5986 bool isread)
5987 {
5988 if (arm_current_el(env) < 3
5989 && arm_feature(env, ARM_FEATURE_EL3)
5990 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5991 return CP_ACCESS_TRAP_EL3;
5992 }
5993 return CP_ACCESS_OK;
5994 }
5995
5996 static const ARMCPRegInfo hcrx_el2_reginfo = {
5997 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5998 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5999 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6000 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6001 };
6002
6003 /* Return the effective value of HCRX_EL2. */
6004 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6005 {
6006 /*
6007 * The bits in this register behave as 0 for all purposes other than
6008 * direct reads of the register if SCR_EL3.HXEn is 0.
6009 * If EL2 is not enabled in the current security state, then the
6010 * bit may behave as if 0, or as if 1, depending on the bit.
6011 * For the moment, we treat the EL2-disabled case as taking
6012 * priority over the HXEn-disabled case. This is true for the only
6013 * bit for a feature which we implement where the answer is different
6014 * for the two cases (MSCEn for FEAT_MOPS).
6015 * This may need to be revisited for future bits.
6016 */
6017 if (!arm_is_el2_enabled(env)) {
6018 uint64_t hcrx = 0;
6019 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6020 /* MSCEn behaves as 1 if EL2 is not enabled */
6021 hcrx |= HCRX_MSCEN;
6022 }
6023 return hcrx;
6024 }
6025 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6026 return 0;
6027 }
6028 return env->cp15.hcrx_el2;
6029 }
6030
6031 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6032 uint64_t value)
6033 {
6034 /*
6035 * For A-profile AArch32 EL3, if NSACR.CP10
6036 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6037 */
6038 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6039 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6040 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6041 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6042 }
6043 env->cp15.cptr_el[2] = value;
6044 }
6045
6046 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6047 {
6048 /*
6049 * For A-profile AArch32 EL3, if NSACR.CP10
6050 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6051 */
6052 uint64_t value = env->cp15.cptr_el[2];
6053
6054 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6055 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6056 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6057 }
6058 return value;
6059 }
6060
6061 static const ARMCPRegInfo el2_cp_reginfo[] = {
6062 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6063 .type = ARM_CP_IO,
6064 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6065 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6066 .writefn = hcr_write, .raw_writefn = raw_write },
6067 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6068 .type = ARM_CP_ALIAS | ARM_CP_IO,
6069 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6070 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6071 .writefn = hcr_writelow },
6072 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6073 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6074 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6075 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6076 .type = ARM_CP_ALIAS,
6077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6078 .access = PL2_RW,
6079 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6080 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6081 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6082 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6083 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6084 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6085 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6086 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6087 .type = ARM_CP_ALIAS,
6088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6089 .access = PL2_RW,
6090 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6091 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6092 .type = ARM_CP_ALIAS,
6093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6094 .access = PL2_RW,
6095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6096 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6097 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6098 .access = PL2_RW, .writefn = vbar_write,
6099 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6100 .resetvalue = 0 },
6101 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6102 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6103 .access = PL3_RW, .type = ARM_CP_ALIAS,
6104 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6105 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6106 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6107 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6109 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6110 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6111 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6112 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6113 .resetvalue = 0 },
6114 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6115 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6116 .access = PL2_RW, .type = ARM_CP_ALIAS,
6117 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6118 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6119 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6120 .access = PL2_RW, .type = ARM_CP_CONST,
6121 .resetvalue = 0 },
6122 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6123 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6124 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6125 .access = PL2_RW, .type = ARM_CP_CONST,
6126 .resetvalue = 0 },
6127 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6129 .access = PL2_RW, .type = ARM_CP_CONST,
6130 .resetvalue = 0 },
6131 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6132 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6133 .access = PL2_RW, .type = ARM_CP_CONST,
6134 .resetvalue = 0 },
6135 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6136 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6137 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6138 .raw_writefn = raw_write,
6139 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6140 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6141 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6142 .type = ARM_CP_ALIAS,
6143 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6144 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6145 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6146 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6147 .access = PL2_RW,
6148 /* no .writefn needed as this can't cause an ASID change */
6149 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6150 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6151 .cp = 15, .opc1 = 6, .crm = 2,
6152 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6153 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6154 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6155 .writefn = vttbr_write, .raw_writefn = raw_write },
6156 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6158 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6159 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6160 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6161 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6162 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6163 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6164 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6165 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6166 .access = PL2_RW, .resetvalue = 0,
6167 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6168 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6169 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6170 .access = PL2_RW, .resetvalue = 0,
6171 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6172 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6173 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6174 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6175 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6176 { .name = "TLBIALLNSNH",
6177 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6178 .type = ARM_CP_NO_RAW, .access = PL2_W,
6179 .writefn = tlbiall_nsnh_write },
6180 { .name = "TLBIALLNSNHIS",
6181 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6182 .type = ARM_CP_NO_RAW, .access = PL2_W,
6183 .writefn = tlbiall_nsnh_is_write },
6184 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6185 .type = ARM_CP_NO_RAW, .access = PL2_W,
6186 .writefn = tlbiall_hyp_write },
6187 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6188 .type = ARM_CP_NO_RAW, .access = PL2_W,
6189 .writefn = tlbiall_hyp_is_write },
6190 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6191 .type = ARM_CP_NO_RAW, .access = PL2_W,
6192 .writefn = tlbimva_hyp_write },
6193 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6194 .type = ARM_CP_NO_RAW, .access = PL2_W,
6195 .writefn = tlbimva_hyp_is_write },
6196 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6197 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6198 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6199 .writefn = tlbi_aa64_alle2_write },
6200 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6201 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6202 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6203 .writefn = tlbi_aa64_vae2_write },
6204 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6205 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6206 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6207 .writefn = tlbi_aa64_vae2_write },
6208 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6209 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6210 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6211 .writefn = tlbi_aa64_alle2is_write },
6212 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6213 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6214 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6215 .writefn = tlbi_aa64_vae2is_write },
6216 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6217 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6218 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6219 .writefn = tlbi_aa64_vae2is_write },
6220 #ifndef CONFIG_USER_ONLY
6221 /*
6222 * Unlike the other EL2-related AT operations, these must
6223 * UNDEF from EL3 if EL2 is not implemented, which is why we
6224 * define them here rather than with the rest of the AT ops.
6225 */
6226 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6227 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6228 .access = PL2_W, .accessfn = at_s1e2_access,
6229 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6230 .writefn = ats_write64 },
6231 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6233 .access = PL2_W, .accessfn = at_s1e2_access,
6234 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6235 .writefn = ats_write64 },
6236 /*
6237 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6238 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6239 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6240 * to behave as if SCR.NS was 1.
6241 */
6242 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6243 .access = PL2_W,
6244 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6245 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6246 .access = PL2_W,
6247 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6248 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6249 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6250 /*
6251 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6252 * reset values as IMPDEF. We choose to reset to 3 to comply with
6253 * both ARMv7 and ARMv8.
6254 */
6255 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6256 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6257 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6258 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6259 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6260 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6261 .writefn = gt_cntvoff_write,
6262 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6263 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6264 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6265 .writefn = gt_cntvoff_write,
6266 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6267 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6268 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6269 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6270 .type = ARM_CP_IO, .access = PL2_RW,
6271 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6272 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6274 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6275 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6276 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6277 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6278 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6279 .resetfn = gt_hyp_timer_reset,
6280 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6281 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6282 .type = ARM_CP_IO,
6283 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6284 .access = PL2_RW,
6285 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6286 .resetvalue = 0,
6287 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6288 #endif
6289 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6290 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6291 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6292 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6293 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6294 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6295 .access = PL2_RW,
6296 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6297 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6298 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6299 .access = PL2_RW,
6300 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6301 };
6302
6303 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6304 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6305 .type = ARM_CP_ALIAS | ARM_CP_IO,
6306 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6307 .access = PL2_RW,
6308 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6309 .writefn = hcr_writehigh },
6310 };
6311
6312 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6313 bool isread)
6314 {
6315 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6316 return CP_ACCESS_OK;
6317 }
6318 return CP_ACCESS_TRAP_UNCATEGORIZED;
6319 }
6320
6321 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6322 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6323 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6324 .access = PL2_RW, .accessfn = sel2_access,
6325 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6326 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6327 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6328 .access = PL2_RW, .accessfn = sel2_access,
6329 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6330 };
6331
6332 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6333 bool isread)
6334 {
6335 /*
6336 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6337 * At Secure EL1 it traps to EL3 or EL2.
6338 */
6339 if (arm_current_el(env) == 3) {
6340 return CP_ACCESS_OK;
6341 }
6342 if (arm_is_secure_below_el3(env)) {
6343 if (env->cp15.scr_el3 & SCR_EEL2) {
6344 return CP_ACCESS_TRAP_EL2;
6345 }
6346 return CP_ACCESS_TRAP_EL3;
6347 }
6348 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6349 if (isread) {
6350 return CP_ACCESS_OK;
6351 }
6352 return CP_ACCESS_TRAP_UNCATEGORIZED;
6353 }
6354
6355 static const ARMCPRegInfo el3_cp_reginfo[] = {
6356 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6357 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6358 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6359 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6360 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6361 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6362 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6363 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6364 .writefn = scr_write, .raw_writefn = raw_write },
6365 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6366 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6367 .access = PL3_RW, .resetvalue = 0,
6368 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6369 { .name = "SDER",
6370 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6371 .access = PL3_RW, .resetvalue = 0,
6372 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6373 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6374 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6375 .writefn = vbar_write, .resetvalue = 0,
6376 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6377 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6378 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6379 .access = PL3_RW, .resetvalue = 0,
6380 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6381 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6382 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6383 .access = PL3_RW,
6384 /* no .writefn needed as this can't cause an ASID change */
6385 .resetvalue = 0,
6386 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6387 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6388 .type = ARM_CP_ALIAS,
6389 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6390 .access = PL3_RW,
6391 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6392 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6393 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6394 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6395 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6396 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6397 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6398 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6399 .type = ARM_CP_ALIAS,
6400 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6401 .access = PL3_RW,
6402 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6403 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6404 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6405 .access = PL3_RW, .writefn = vbar_write,
6406 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6407 .resetvalue = 0 },
6408 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6409 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6410 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6411 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6412 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6413 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6414 .access = PL3_RW, .resetvalue = 0,
6415 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6416 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6418 .access = PL3_RW, .type = ARM_CP_CONST,
6419 .resetvalue = 0 },
6420 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6421 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6422 .access = PL3_RW, .type = ARM_CP_CONST,
6423 .resetvalue = 0 },
6424 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6425 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6426 .access = PL3_RW, .type = ARM_CP_CONST,
6427 .resetvalue = 0 },
6428 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6429 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6430 .access = PL3_W, .type = ARM_CP_NO_RAW,
6431 .writefn = tlbi_aa64_alle3is_write },
6432 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6433 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6434 .access = PL3_W, .type = ARM_CP_NO_RAW,
6435 .writefn = tlbi_aa64_vae3is_write },
6436 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6437 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6438 .access = PL3_W, .type = ARM_CP_NO_RAW,
6439 .writefn = tlbi_aa64_vae3is_write },
6440 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6441 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6442 .access = PL3_W, .type = ARM_CP_NO_RAW,
6443 .writefn = tlbi_aa64_alle3_write },
6444 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6445 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6446 .access = PL3_W, .type = ARM_CP_NO_RAW,
6447 .writefn = tlbi_aa64_vae3_write },
6448 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6449 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6450 .access = PL3_W, .type = ARM_CP_NO_RAW,
6451 .writefn = tlbi_aa64_vae3_write },
6452 };
6453
6454 #ifndef CONFIG_USER_ONLY
6455 /* Test if system register redirection is to occur in the current state. */
6456 static bool redirect_for_e2h(CPUARMState *env)
6457 {
6458 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6459 }
6460
6461 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6462 {
6463 CPReadFn *readfn;
6464
6465 if (redirect_for_e2h(env)) {
6466 /* Switch to the saved EL2 version of the register. */
6467 ri = ri->opaque;
6468 readfn = ri->readfn;
6469 } else {
6470 readfn = ri->orig_readfn;
6471 }
6472 if (readfn == NULL) {
6473 readfn = raw_read;
6474 }
6475 return readfn(env, ri);
6476 }
6477
6478 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6479 uint64_t value)
6480 {
6481 CPWriteFn *writefn;
6482
6483 if (redirect_for_e2h(env)) {
6484 /* Switch to the saved EL2 version of the register. */
6485 ri = ri->opaque;
6486 writefn = ri->writefn;
6487 } else {
6488 writefn = ri->orig_writefn;
6489 }
6490 if (writefn == NULL) {
6491 writefn = raw_write;
6492 }
6493 writefn(env, ri, value);
6494 }
6495
6496 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6497 {
6498 struct E2HAlias {
6499 uint32_t src_key, dst_key, new_key;
6500 const char *src_name, *dst_name, *new_name;
6501 bool (*feature)(const ARMISARegisters *id);
6502 };
6503
6504 #define K(op0, op1, crn, crm, op2) \
6505 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6506
6507 static const struct E2HAlias aliases[] = {
6508 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6509 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6510 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6511 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6512 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6513 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6514 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6515 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6516 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6517 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6518 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6519 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6520 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6521 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6522 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6523 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6524 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6525 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6526 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6527 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6528 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6529 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6530 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6531 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6532 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6533 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6534 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6535 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6536 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6537 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6538 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6539 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6540
6541 /*
6542 * Note that redirection of ZCR is mentioned in the description
6543 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6544 * not in the summary table.
6545 */
6546 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6547 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6548 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6549 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6550
6551 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6552 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6553
6554 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6555 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6556 isar_feature_aa64_scxtnum },
6557
6558 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6559 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6560 };
6561 #undef K
6562
6563 size_t i;
6564
6565 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6566 const struct E2HAlias *a = &aliases[i];
6567 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6568 bool ok;
6569
6570 if (a->feature && !a->feature(&cpu->isar)) {
6571 continue;
6572 }
6573
6574 src_reg = g_hash_table_lookup(cpu->cp_regs,
6575 (gpointer)(uintptr_t)a->src_key);
6576 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6577 (gpointer)(uintptr_t)a->dst_key);
6578 g_assert(src_reg != NULL);
6579 g_assert(dst_reg != NULL);
6580
6581 /* Cross-compare names to detect typos in the keys. */
6582 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6583 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6584
6585 /* None of the core system registers use opaque; we will. */
6586 g_assert(src_reg->opaque == NULL);
6587
6588 /* Create alias before redirection so we dup the right data. */
6589 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6590
6591 new_reg->name = a->new_name;
6592 new_reg->type |= ARM_CP_ALIAS;
6593 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6594 new_reg->access &= PL2_RW | PL3_RW;
6595
6596 ok = g_hash_table_insert(cpu->cp_regs,
6597 (gpointer)(uintptr_t)a->new_key, new_reg);
6598 g_assert(ok);
6599
6600 src_reg->opaque = dst_reg;
6601 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6602 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6603 if (!src_reg->raw_readfn) {
6604 src_reg->raw_readfn = raw_read;
6605 }
6606 if (!src_reg->raw_writefn) {
6607 src_reg->raw_writefn = raw_write;
6608 }
6609 src_reg->readfn = el2_e2h_read;
6610 src_reg->writefn = el2_e2h_write;
6611 }
6612 }
6613 #endif
6614
6615 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6616 bool isread)
6617 {
6618 int cur_el = arm_current_el(env);
6619
6620 if (cur_el < 2) {
6621 uint64_t hcr = arm_hcr_el2_eff(env);
6622
6623 if (cur_el == 0) {
6624 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6625 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6626 return CP_ACCESS_TRAP_EL2;
6627 }
6628 } else {
6629 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6630 return CP_ACCESS_TRAP;
6631 }
6632 if (hcr & HCR_TID2) {
6633 return CP_ACCESS_TRAP_EL2;
6634 }
6635 }
6636 } else if (hcr & HCR_TID2) {
6637 return CP_ACCESS_TRAP_EL2;
6638 }
6639 }
6640
6641 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6642 return CP_ACCESS_TRAP_EL2;
6643 }
6644
6645 return CP_ACCESS_OK;
6646 }
6647
6648 /*
6649 * Check for traps to RAS registers, which are controlled
6650 * by HCR_EL2.TERR and SCR_EL3.TERR.
6651 */
6652 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6653 bool isread)
6654 {
6655 int el = arm_current_el(env);
6656
6657 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6658 return CP_ACCESS_TRAP_EL2;
6659 }
6660 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6661 return CP_ACCESS_TRAP_EL3;
6662 }
6663 return CP_ACCESS_OK;
6664 }
6665
6666 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6667 {
6668 int el = arm_current_el(env);
6669
6670 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6671 return env->cp15.vdisr_el2;
6672 }
6673 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6674 return 0; /* RAZ/WI */
6675 }
6676 return env->cp15.disr_el1;
6677 }
6678
6679 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6680 {
6681 int el = arm_current_el(env);
6682
6683 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6684 env->cp15.vdisr_el2 = val;
6685 return;
6686 }
6687 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6688 return; /* RAZ/WI */
6689 }
6690 env->cp15.disr_el1 = val;
6691 }
6692
6693 /*
6694 * Minimal RAS implementation with no Error Records.
6695 * Which means that all of the Error Record registers:
6696 * ERXADDR_EL1
6697 * ERXCTLR_EL1
6698 * ERXFR_EL1
6699 * ERXMISC0_EL1
6700 * ERXMISC1_EL1
6701 * ERXMISC2_EL1
6702 * ERXMISC3_EL1
6703 * ERXPFGCDN_EL1 (RASv1p1)
6704 * ERXPFGCTL_EL1 (RASv1p1)
6705 * ERXPFGF_EL1 (RASv1p1)
6706 * ERXSTATUS_EL1
6707 * and
6708 * ERRSELR_EL1
6709 * may generate UNDEFINED, which is the effect we get by not
6710 * listing them at all.
6711 *
6712 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6713 * is higher priority than FGT-to-EL2 so we do not need to list them
6714 * in order to check for an FGT.
6715 */
6716 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6717 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6718 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6719 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6720 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6721 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6722 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6723 .access = PL1_R, .accessfn = access_terr,
6724 .fgt = FGT_ERRIDR_EL1,
6725 .type = ARM_CP_CONST, .resetvalue = 0 },
6726 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6727 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6728 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6729 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6730 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6731 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6732 };
6733
6734 /*
6735 * Return the exception level to which exceptions should be taken
6736 * via SVEAccessTrap. This excludes the check for whether the exception
6737 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6738 * be found by testing 0 < fp_exception_el < sve_exception_el.
6739 *
6740 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6741 * pseudocode does *not* separate out the FP trap checks, but has them
6742 * all in one function.
6743 */
6744 int sve_exception_el(CPUARMState *env, int el)
6745 {
6746 #ifndef CONFIG_USER_ONLY
6747 if (el <= 1 && !el_is_in_host(env, el)) {
6748 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6749 case 1:
6750 if (el != 0) {
6751 break;
6752 }
6753 /* fall through */
6754 case 0:
6755 case 2:
6756 return 1;
6757 }
6758 }
6759
6760 if (el <= 2 && arm_is_el2_enabled(env)) {
6761 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6762 if (env->cp15.hcr_el2 & HCR_E2H) {
6763 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6764 case 1:
6765 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6766 break;
6767 }
6768 /* fall through */
6769 case 0:
6770 case 2:
6771 return 2;
6772 }
6773 } else {
6774 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6775 return 2;
6776 }
6777 }
6778 }
6779
6780 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6781 if (arm_feature(env, ARM_FEATURE_EL3)
6782 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6783 return 3;
6784 }
6785 #endif
6786 return 0;
6787 }
6788
6789 /*
6790 * Return the exception level to which exceptions should be taken for SME.
6791 * C.f. the ARM pseudocode function CheckSMEAccess.
6792 */
6793 int sme_exception_el(CPUARMState *env, int el)
6794 {
6795 #ifndef CONFIG_USER_ONLY
6796 if (el <= 1 && !el_is_in_host(env, el)) {
6797 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6798 case 1:
6799 if (el != 0) {
6800 break;
6801 }
6802 /* fall through */
6803 case 0:
6804 case 2:
6805 return 1;
6806 }
6807 }
6808
6809 if (el <= 2 && arm_is_el2_enabled(env)) {
6810 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6811 if (env->cp15.hcr_el2 & HCR_E2H) {
6812 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6813 case 1:
6814 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6815 break;
6816 }
6817 /* fall through */
6818 case 0:
6819 case 2:
6820 return 2;
6821 }
6822 } else {
6823 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6824 return 2;
6825 }
6826 }
6827 }
6828
6829 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6830 if (arm_feature(env, ARM_FEATURE_EL3)
6831 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6832 return 3;
6833 }
6834 #endif
6835 return 0;
6836 }
6837
6838 /*
6839 * Given that SVE is enabled, return the vector length for EL.
6840 */
6841 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6842 {
6843 ARMCPU *cpu = env_archcpu(env);
6844 uint64_t *cr = env->vfp.zcr_el;
6845 uint32_t map = cpu->sve_vq.map;
6846 uint32_t len = ARM_MAX_VQ - 1;
6847
6848 if (sm) {
6849 cr = env->vfp.smcr_el;
6850 map = cpu->sme_vq.map;
6851 }
6852
6853 if (el <= 1 && !el_is_in_host(env, el)) {
6854 len = MIN(len, 0xf & (uint32_t)cr[1]);
6855 }
6856 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6857 len = MIN(len, 0xf & (uint32_t)cr[2]);
6858 }
6859 if (arm_feature(env, ARM_FEATURE_EL3)) {
6860 len = MIN(len, 0xf & (uint32_t)cr[3]);
6861 }
6862
6863 map &= MAKE_64BIT_MASK(0, len + 1);
6864 if (map != 0) {
6865 return 31 - clz32(map);
6866 }
6867
6868 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6869 assert(sm);
6870 return ctz32(cpu->sme_vq.map);
6871 }
6872
6873 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6874 {
6875 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6876 }
6877
6878 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6879 uint64_t value)
6880 {
6881 int cur_el = arm_current_el(env);
6882 int old_len = sve_vqm1_for_el(env, cur_el);
6883 int new_len;
6884
6885 /* Bits other than [3:0] are RAZ/WI. */
6886 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6887 raw_write(env, ri, value & 0xf);
6888
6889 /*
6890 * Because we arrived here, we know both FP and SVE are enabled;
6891 * otherwise we would have trapped access to the ZCR_ELn register.
6892 */
6893 new_len = sve_vqm1_for_el(env, cur_el);
6894 if (new_len < old_len) {
6895 aarch64_sve_narrow_vq(env, new_len + 1);
6896 }
6897 }
6898
6899 static const ARMCPRegInfo zcr_reginfo[] = {
6900 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6901 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6902 .access = PL1_RW, .type = ARM_CP_SVE,
6903 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6904 .writefn = zcr_write, .raw_writefn = raw_write },
6905 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6906 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6907 .access = PL2_RW, .type = ARM_CP_SVE,
6908 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6909 .writefn = zcr_write, .raw_writefn = raw_write },
6910 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6911 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6912 .access = PL3_RW, .type = ARM_CP_SVE,
6913 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6914 .writefn = zcr_write, .raw_writefn = raw_write },
6915 };
6916
6917 #ifdef TARGET_AARCH64
6918 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6919 bool isread)
6920 {
6921 int el = arm_current_el(env);
6922
6923 if (el == 0) {
6924 uint64_t sctlr = arm_sctlr(env, el);
6925 if (!(sctlr & SCTLR_EnTP2)) {
6926 return CP_ACCESS_TRAP;
6927 }
6928 }
6929 /* TODO: FEAT_FGT */
6930 if (el < 3
6931 && arm_feature(env, ARM_FEATURE_EL3)
6932 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6933 return CP_ACCESS_TRAP_EL3;
6934 }
6935 return CP_ACCESS_OK;
6936 }
6937
6938 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6939 bool isread)
6940 {
6941 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6942 if (arm_current_el(env) < 3
6943 && arm_feature(env, ARM_FEATURE_EL3)
6944 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6945 return CP_ACCESS_TRAP_EL3;
6946 }
6947 return CP_ACCESS_OK;
6948 }
6949
6950 /* ResetSVEState */
6951 static void arm_reset_sve_state(CPUARMState *env)
6952 {
6953 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6954 /* Recall that FFR is stored as pregs[16]. */
6955 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6956 vfp_set_fpcr(env, 0x0800009f);
6957 }
6958
6959 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6960 {
6961 uint64_t change = (env->svcr ^ new) & mask;
6962
6963 if (change == 0) {
6964 return;
6965 }
6966 env->svcr ^= change;
6967
6968 if (change & R_SVCR_SM_MASK) {
6969 arm_reset_sve_state(env);
6970 }
6971
6972 /*
6973 * ResetSMEState.
6974 *
6975 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6976 * on enable: while disabled, the storage is inaccessible and the
6977 * value does not matter. We're not saving the storage in vmstate
6978 * when disabled either.
6979 */
6980 if (change & new & R_SVCR_ZA_MASK) {
6981 memset(env->zarray, 0, sizeof(env->zarray));
6982 }
6983
6984 if (tcg_enabled()) {
6985 arm_rebuild_hflags(env);
6986 }
6987 }
6988
6989 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6990 uint64_t value)
6991 {
6992 aarch64_set_svcr(env, value, -1);
6993 }
6994
6995 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6996 uint64_t value)
6997 {
6998 int cur_el = arm_current_el(env);
6999 int old_len = sve_vqm1_for_el(env, cur_el);
7000 int new_len;
7001
7002 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7003 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7004 raw_write(env, ri, value);
7005
7006 /*
7007 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7008 * when SVL is widened (old values kept, or zeros). Choose to keep the
7009 * current values for simplicity. But for QEMU internals, we must still
7010 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7011 * above aarch64_sve_narrow_vq.
7012 */
7013 new_len = sve_vqm1_for_el(env, cur_el);
7014 if (new_len < old_len) {
7015 aarch64_sve_narrow_vq(env, new_len + 1);
7016 }
7017 }
7018
7019 static const ARMCPRegInfo sme_reginfo[] = {
7020 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7021 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7022 .access = PL0_RW, .accessfn = access_tpidr2,
7023 .fgt = FGT_NTPIDR2_EL0,
7024 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7025 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7026 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7027 .access = PL0_RW, .type = ARM_CP_SME,
7028 .fieldoffset = offsetof(CPUARMState, svcr),
7029 .writefn = svcr_write, .raw_writefn = raw_write },
7030 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7031 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7032 .access = PL1_RW, .type = ARM_CP_SME,
7033 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7034 .writefn = smcr_write, .raw_writefn = raw_write },
7035 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7036 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7037 .access = PL2_RW, .type = ARM_CP_SME,
7038 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7039 .writefn = smcr_write, .raw_writefn = raw_write },
7040 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7042 .access = PL3_RW, .type = ARM_CP_SME,
7043 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7044 .writefn = smcr_write, .raw_writefn = raw_write },
7045 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7046 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7047 .access = PL1_R, .accessfn = access_aa64_tid1,
7048 /*
7049 * IMPLEMENTOR = 0 (software)
7050 * REVISION = 0 (implementation defined)
7051 * SMPS = 0 (no streaming execution priority in QEMU)
7052 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7053 */
7054 .type = ARM_CP_CONST, .resetvalue = 0, },
7055 /*
7056 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7057 */
7058 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7059 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7060 .access = PL1_RW, .accessfn = access_esm,
7061 .fgt = FGT_NSMPRI_EL1,
7062 .type = ARM_CP_CONST, .resetvalue = 0 },
7063 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7064 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7065 .access = PL2_RW, .accessfn = access_esm,
7066 .type = ARM_CP_CONST, .resetvalue = 0 },
7067 };
7068
7069 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7070 uint64_t value)
7071 {
7072 CPUState *cs = env_cpu(env);
7073
7074 tlb_flush(cs);
7075 }
7076
7077 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7078 uint64_t value)
7079 {
7080 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7081 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7082 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7083 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7084
7085 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7086 }
7087
7088 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7089 {
7090 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7091 env_archcpu(env)->reset_l0gptsz);
7092 }
7093
7094 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7095 uint64_t value)
7096 {
7097 CPUState *cs = env_cpu(env);
7098
7099 tlb_flush_all_cpus_synced(cs);
7100 }
7101
7102 static const ARMCPRegInfo rme_reginfo[] = {
7103 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7104 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7105 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7106 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7107 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7108 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7109 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7110 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7112 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7113 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7115 .access = PL3_W, .type = ARM_CP_NO_RAW,
7116 .writefn = tlbi_aa64_paall_write },
7117 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7118 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7119 .access = PL3_W, .type = ARM_CP_NO_RAW,
7120 .writefn = tlbi_aa64_paallos_write },
7121 /*
7122 * QEMU does not have a way to invalidate by physical address, thus
7123 * invalidating a range of physical addresses is accomplished by
7124 * flushing all tlb entries in the outer shareable domain,
7125 * just like PAALLOS.
7126 */
7127 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7129 .access = PL3_W, .type = ARM_CP_NO_RAW,
7130 .writefn = tlbi_aa64_paallos_write },
7131 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7132 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7133 .access = PL3_W, .type = ARM_CP_NO_RAW,
7134 .writefn = tlbi_aa64_paallos_write },
7135 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7136 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7137 .access = PL3_W, .type = ARM_CP_NOP },
7138 };
7139
7140 static const ARMCPRegInfo rme_mte_reginfo[] = {
7141 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7142 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7143 .access = PL3_W, .type = ARM_CP_NOP },
7144 };
7145 #endif /* TARGET_AARCH64 */
7146
7147 static void define_pmu_regs(ARMCPU *cpu)
7148 {
7149 /*
7150 * v7 performance monitor control register: same implementor
7151 * field as main ID register, and we implement four counters in
7152 * addition to the cycle count register.
7153 */
7154 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7155 ARMCPRegInfo pmcr = {
7156 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7157 .access = PL0_RW,
7158 .fgt = FGT_PMCR_EL0,
7159 .type = ARM_CP_IO | ARM_CP_ALIAS,
7160 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7161 .accessfn = pmreg_access, .writefn = pmcr_write,
7162 .raw_writefn = raw_write,
7163 };
7164 ARMCPRegInfo pmcr64 = {
7165 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7167 .access = PL0_RW, .accessfn = pmreg_access,
7168 .fgt = FGT_PMCR_EL0,
7169 .type = ARM_CP_IO,
7170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7171 .resetvalue = cpu->isar.reset_pmcr_el0,
7172 .writefn = pmcr_write, .raw_writefn = raw_write,
7173 };
7174
7175 define_one_arm_cp_reg(cpu, &pmcr);
7176 define_one_arm_cp_reg(cpu, &pmcr64);
7177 for (i = 0; i < pmcrn; i++) {
7178 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7179 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7180 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7181 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7182 ARMCPRegInfo pmev_regs[] = {
7183 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7184 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7185 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7186 .fgt = FGT_PMEVCNTRN_EL0,
7187 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7188 .accessfn = pmreg_access_xevcntr },
7189 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7190 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7191 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7192 .type = ARM_CP_IO,
7193 .fgt = FGT_PMEVCNTRN_EL0,
7194 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7195 .raw_readfn = pmevcntr_rawread,
7196 .raw_writefn = pmevcntr_rawwrite },
7197 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7198 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7199 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7200 .fgt = FGT_PMEVTYPERN_EL0,
7201 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7202 .accessfn = pmreg_access },
7203 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7205 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7206 .fgt = FGT_PMEVTYPERN_EL0,
7207 .type = ARM_CP_IO,
7208 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7209 .raw_writefn = pmevtyper_rawwrite },
7210 };
7211 define_arm_cp_regs(cpu, pmev_regs);
7212 g_free(pmevcntr_name);
7213 g_free(pmevcntr_el0_name);
7214 g_free(pmevtyper_name);
7215 g_free(pmevtyper_el0_name);
7216 }
7217 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7218 ARMCPRegInfo v81_pmu_regs[] = {
7219 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7220 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7221 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7222 .fgt = FGT_PMCEIDN_EL0,
7223 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7224 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7225 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7226 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7227 .fgt = FGT_PMCEIDN_EL0,
7228 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7229 };
7230 define_arm_cp_regs(cpu, v81_pmu_regs);
7231 }
7232 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7233 static const ARMCPRegInfo v84_pmmir = {
7234 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7235 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7236 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7237 .fgt = FGT_PMMIR_EL1,
7238 .resetvalue = 0
7239 };
7240 define_one_arm_cp_reg(cpu, &v84_pmmir);
7241 }
7242 }
7243
7244 #ifndef CONFIG_USER_ONLY
7245 /*
7246 * We don't know until after realize whether there's a GICv3
7247 * attached, and that is what registers the gicv3 sysregs.
7248 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7249 * at runtime.
7250 */
7251 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7252 {
7253 ARMCPU *cpu = env_archcpu(env);
7254 uint64_t pfr1 = cpu->isar.id_pfr1;
7255
7256 if (env->gicv3state) {
7257 pfr1 |= 1 << 28;
7258 }
7259 return pfr1;
7260 }
7261
7262 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7263 {
7264 ARMCPU *cpu = env_archcpu(env);
7265 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7266
7267 if (env->gicv3state) {
7268 pfr0 |= 1 << 24;
7269 }
7270 return pfr0;
7271 }
7272 #endif
7273
7274 /*
7275 * Shared logic between LORID and the rest of the LOR* registers.
7276 * Secure state exclusion has already been dealt with.
7277 */
7278 static CPAccessResult access_lor_ns(CPUARMState *env,
7279 const ARMCPRegInfo *ri, bool isread)
7280 {
7281 int el = arm_current_el(env);
7282
7283 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7284 return CP_ACCESS_TRAP_EL2;
7285 }
7286 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7287 return CP_ACCESS_TRAP_EL3;
7288 }
7289 return CP_ACCESS_OK;
7290 }
7291
7292 static CPAccessResult access_lor_other(CPUARMState *env,
7293 const ARMCPRegInfo *ri, bool isread)
7294 {
7295 if (arm_is_secure_below_el3(env)) {
7296 /* Access denied in secure mode. */
7297 return CP_ACCESS_TRAP;
7298 }
7299 return access_lor_ns(env, ri, isread);
7300 }
7301
7302 /*
7303 * A trivial implementation of ARMv8.1-LOR leaves all of these
7304 * registers fixed at 0, which indicates that there are zero
7305 * supported Limited Ordering regions.
7306 */
7307 static const ARMCPRegInfo lor_reginfo[] = {
7308 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7309 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7310 .access = PL1_RW, .accessfn = access_lor_other,
7311 .fgt = FGT_LORSA_EL1,
7312 .type = ARM_CP_CONST, .resetvalue = 0 },
7313 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7314 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7315 .access = PL1_RW, .accessfn = access_lor_other,
7316 .fgt = FGT_LOREA_EL1,
7317 .type = ARM_CP_CONST, .resetvalue = 0 },
7318 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7319 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7320 .access = PL1_RW, .accessfn = access_lor_other,
7321 .fgt = FGT_LORN_EL1,
7322 .type = ARM_CP_CONST, .resetvalue = 0 },
7323 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7324 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7325 .access = PL1_RW, .accessfn = access_lor_other,
7326 .fgt = FGT_LORC_EL1,
7327 .type = ARM_CP_CONST, .resetvalue = 0 },
7328 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7329 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7330 .access = PL1_R, .accessfn = access_lor_ns,
7331 .fgt = FGT_LORID_EL1,
7332 .type = ARM_CP_CONST, .resetvalue = 0 },
7333 };
7334
7335 #ifdef TARGET_AARCH64
7336 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7337 bool isread)
7338 {
7339 int el = arm_current_el(env);
7340
7341 if (el < 2 &&
7342 arm_is_el2_enabled(env) &&
7343 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7344 return CP_ACCESS_TRAP_EL2;
7345 }
7346 if (el < 3 &&
7347 arm_feature(env, ARM_FEATURE_EL3) &&
7348 !(env->cp15.scr_el3 & SCR_APK)) {
7349 return CP_ACCESS_TRAP_EL3;
7350 }
7351 return CP_ACCESS_OK;
7352 }
7353
7354 static const ARMCPRegInfo pauth_reginfo[] = {
7355 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7356 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7357 .access = PL1_RW, .accessfn = access_pauth,
7358 .fgt = FGT_APDAKEY,
7359 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7360 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7361 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7362 .access = PL1_RW, .accessfn = access_pauth,
7363 .fgt = FGT_APDAKEY,
7364 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7365 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7366 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7367 .access = PL1_RW, .accessfn = access_pauth,
7368 .fgt = FGT_APDBKEY,
7369 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7370 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7371 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7372 .access = PL1_RW, .accessfn = access_pauth,
7373 .fgt = FGT_APDBKEY,
7374 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7375 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7376 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7377 .access = PL1_RW, .accessfn = access_pauth,
7378 .fgt = FGT_APGAKEY,
7379 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7380 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7381 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7382 .access = PL1_RW, .accessfn = access_pauth,
7383 .fgt = FGT_APGAKEY,
7384 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7385 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7387 .access = PL1_RW, .accessfn = access_pauth,
7388 .fgt = FGT_APIAKEY,
7389 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7390 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7391 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7392 .access = PL1_RW, .accessfn = access_pauth,
7393 .fgt = FGT_APIAKEY,
7394 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7395 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7396 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7397 .access = PL1_RW, .accessfn = access_pauth,
7398 .fgt = FGT_APIBKEY,
7399 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7400 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7401 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7402 .access = PL1_RW, .accessfn = access_pauth,
7403 .fgt = FGT_APIBKEY,
7404 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7405 };
7406
7407 static const ARMCPRegInfo tlbirange_reginfo[] = {
7408 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7409 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7410 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7411 .fgt = FGT_TLBIRVAE1IS,
7412 .writefn = tlbi_aa64_rvae1is_write },
7413 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7414 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7415 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7416 .fgt = FGT_TLBIRVAAE1IS,
7417 .writefn = tlbi_aa64_rvae1is_write },
7418 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7420 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7421 .fgt = FGT_TLBIRVALE1IS,
7422 .writefn = tlbi_aa64_rvae1is_write },
7423 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7424 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7425 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7426 .fgt = FGT_TLBIRVAALE1IS,
7427 .writefn = tlbi_aa64_rvae1is_write },
7428 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7429 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7430 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7431 .fgt = FGT_TLBIRVAE1OS,
7432 .writefn = tlbi_aa64_rvae1is_write },
7433 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7435 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7436 .fgt = FGT_TLBIRVAAE1OS,
7437 .writefn = tlbi_aa64_rvae1is_write },
7438 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7440 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7441 .fgt = FGT_TLBIRVALE1OS,
7442 .writefn = tlbi_aa64_rvae1is_write },
7443 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7444 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7445 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7446 .fgt = FGT_TLBIRVAALE1OS,
7447 .writefn = tlbi_aa64_rvae1is_write },
7448 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7449 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7450 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7451 .fgt = FGT_TLBIRVAE1,
7452 .writefn = tlbi_aa64_rvae1_write },
7453 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7455 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7456 .fgt = FGT_TLBIRVAAE1,
7457 .writefn = tlbi_aa64_rvae1_write },
7458 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7460 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7461 .fgt = FGT_TLBIRVALE1,
7462 .writefn = tlbi_aa64_rvae1_write },
7463 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7465 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7466 .fgt = FGT_TLBIRVAALE1,
7467 .writefn = tlbi_aa64_rvae1_write },
7468 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7470 .access = PL2_W, .type = ARM_CP_NO_RAW,
7471 .writefn = tlbi_aa64_ripas2e1is_write },
7472 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7474 .access = PL2_W, .type = ARM_CP_NO_RAW,
7475 .writefn = tlbi_aa64_ripas2e1is_write },
7476 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7478 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7479 .writefn = tlbi_aa64_rvae2is_write },
7480 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7482 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7483 .writefn = tlbi_aa64_rvae2is_write },
7484 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7486 .access = PL2_W, .type = ARM_CP_NO_RAW,
7487 .writefn = tlbi_aa64_ripas2e1_write },
7488 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7490 .access = PL2_W, .type = ARM_CP_NO_RAW,
7491 .writefn = tlbi_aa64_ripas2e1_write },
7492 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7495 .writefn = tlbi_aa64_rvae2is_write },
7496 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7498 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7499 .writefn = tlbi_aa64_rvae2is_write },
7500 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7502 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7503 .writefn = tlbi_aa64_rvae2_write },
7504 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7506 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7507 .writefn = tlbi_aa64_rvae2_write },
7508 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7510 .access = PL3_W, .type = ARM_CP_NO_RAW,
7511 .writefn = tlbi_aa64_rvae3is_write },
7512 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7514 .access = PL3_W, .type = ARM_CP_NO_RAW,
7515 .writefn = tlbi_aa64_rvae3is_write },
7516 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7517 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7518 .access = PL3_W, .type = ARM_CP_NO_RAW,
7519 .writefn = tlbi_aa64_rvae3is_write },
7520 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7522 .access = PL3_W, .type = ARM_CP_NO_RAW,
7523 .writefn = tlbi_aa64_rvae3is_write },
7524 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7526 .access = PL3_W, .type = ARM_CP_NO_RAW,
7527 .writefn = tlbi_aa64_rvae3_write },
7528 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7530 .access = PL3_W, .type = ARM_CP_NO_RAW,
7531 .writefn = tlbi_aa64_rvae3_write },
7532 };
7533
7534 static const ARMCPRegInfo tlbios_reginfo[] = {
7535 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7537 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7538 .fgt = FGT_TLBIVMALLE1OS,
7539 .writefn = tlbi_aa64_vmalle1is_write },
7540 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7542 .fgt = FGT_TLBIVAE1OS,
7543 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7544 .writefn = tlbi_aa64_vae1is_write },
7545 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7547 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7548 .fgt = FGT_TLBIASIDE1OS,
7549 .writefn = tlbi_aa64_vmalle1is_write },
7550 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7552 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7553 .fgt = FGT_TLBIVAAE1OS,
7554 .writefn = tlbi_aa64_vae1is_write },
7555 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7557 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7558 .fgt = FGT_TLBIVALE1OS,
7559 .writefn = tlbi_aa64_vae1is_write },
7560 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7562 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7563 .fgt = FGT_TLBIVAALE1OS,
7564 .writefn = tlbi_aa64_vae1is_write },
7565 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7567 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7568 .writefn = tlbi_aa64_alle2is_write },
7569 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7570 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7571 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7572 .writefn = tlbi_aa64_vae2is_write },
7573 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7575 .access = PL2_W, .type = ARM_CP_NO_RAW,
7576 .writefn = tlbi_aa64_alle1is_write },
7577 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7578 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7579 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7580 .writefn = tlbi_aa64_vae2is_write },
7581 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7583 .access = PL2_W, .type = ARM_CP_NO_RAW,
7584 .writefn = tlbi_aa64_alle1is_write },
7585 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7586 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7587 .access = PL2_W, .type = ARM_CP_NOP },
7588 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7590 .access = PL2_W, .type = ARM_CP_NOP },
7591 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7592 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7593 .access = PL2_W, .type = ARM_CP_NOP },
7594 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7596 .access = PL2_W, .type = ARM_CP_NOP },
7597 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7598 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7599 .access = PL3_W, .type = ARM_CP_NO_RAW,
7600 .writefn = tlbi_aa64_alle3is_write },
7601 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7602 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7603 .access = PL3_W, .type = ARM_CP_NO_RAW,
7604 .writefn = tlbi_aa64_vae3is_write },
7605 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7606 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7607 .access = PL3_W, .type = ARM_CP_NO_RAW,
7608 .writefn = tlbi_aa64_vae3is_write },
7609 };
7610
7611 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7612 {
7613 Error *err = NULL;
7614 uint64_t ret;
7615
7616 /* Success sets NZCV = 0000. */
7617 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7618
7619 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7620 /*
7621 * ??? Failed, for unknown reasons in the crypto subsystem.
7622 * The best we can do is log the reason and return the
7623 * timed-out indication to the guest. There is no reason
7624 * we know to expect this failure to be transitory, so the
7625 * guest may well hang retrying the operation.
7626 */
7627 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7628 ri->name, error_get_pretty(err));
7629 error_free(err);
7630
7631 env->ZF = 0; /* NZCF = 0100 */
7632 return 0;
7633 }
7634 return ret;
7635 }
7636
7637 /* We do not support re-seeding, so the two registers operate the same. */
7638 static const ARMCPRegInfo rndr_reginfo[] = {
7639 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7640 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7641 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7642 .access = PL0_R, .readfn = rndr_readfn },
7643 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7644 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7645 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7646 .access = PL0_R, .readfn = rndr_readfn },
7647 };
7648
7649 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7650 uint64_t value)
7651 {
7652 ARMCPU *cpu = env_archcpu(env);
7653 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7654 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7655 uint64_t vaddr_in = (uint64_t) value;
7656 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7657 void *haddr;
7658 int mem_idx = cpu_mmu_index(env, false);
7659
7660 /* This won't be crossing page boundaries */
7661 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7662 if (haddr) {
7663 #ifndef CONFIG_USER_ONLY
7664
7665 ram_addr_t offset;
7666 MemoryRegion *mr;
7667
7668 /* RCU lock is already being held */
7669 mr = memory_region_from_host(haddr, &offset);
7670
7671 if (mr) {
7672 memory_region_writeback(mr, offset, dline_size);
7673 }
7674 #endif /*CONFIG_USER_ONLY*/
7675 }
7676 }
7677
7678 static const ARMCPRegInfo dcpop_reg[] = {
7679 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7680 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7681 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7682 .fgt = FGT_DCCVAP,
7683 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7684 };
7685
7686 static const ARMCPRegInfo dcpodp_reg[] = {
7687 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7688 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7689 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7690 .fgt = FGT_DCCVADP,
7691 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7692 };
7693
7694 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7695 bool isread)
7696 {
7697 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7698 return CP_ACCESS_TRAP_EL2;
7699 }
7700
7701 return CP_ACCESS_OK;
7702 }
7703
7704 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7705 bool isread)
7706 {
7707 int el = arm_current_el(env);
7708
7709 if (el < 2 && arm_is_el2_enabled(env)) {
7710 uint64_t hcr = arm_hcr_el2_eff(env);
7711 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7712 return CP_ACCESS_TRAP_EL2;
7713 }
7714 }
7715 if (el < 3 &&
7716 arm_feature(env, ARM_FEATURE_EL3) &&
7717 !(env->cp15.scr_el3 & SCR_ATA)) {
7718 return CP_ACCESS_TRAP_EL3;
7719 }
7720 return CP_ACCESS_OK;
7721 }
7722
7723 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7724 {
7725 return env->pstate & PSTATE_TCO;
7726 }
7727
7728 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7729 {
7730 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7731 }
7732
7733 static const ARMCPRegInfo mte_reginfo[] = {
7734 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7735 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7736 .access = PL1_RW, .accessfn = access_mte,
7737 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7738 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7740 .access = PL1_RW, .accessfn = access_mte,
7741 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7742 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7743 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7744 .access = PL2_RW, .accessfn = access_mte,
7745 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7746 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7747 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7748 .access = PL3_RW,
7749 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7750 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7752 .access = PL1_RW, .accessfn = access_mte,
7753 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7754 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7755 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7756 .access = PL1_RW, .accessfn = access_mte,
7757 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7758 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7759 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7760 .type = ARM_CP_NO_RAW,
7761 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7762 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7763 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7764 .type = ARM_CP_NOP, .access = PL1_W,
7765 .fgt = FGT_DCIVAC,
7766 .accessfn = aa64_cacheop_poc_access },
7767 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7769 .fgt = FGT_DCISW,
7770 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7771 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7773 .type = ARM_CP_NOP, .access = PL1_W,
7774 .fgt = FGT_DCIVAC,
7775 .accessfn = aa64_cacheop_poc_access },
7776 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7777 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7778 .fgt = FGT_DCISW,
7779 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7780 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7781 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7782 .fgt = FGT_DCCSW,
7783 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7784 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7785 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7786 .fgt = FGT_DCCSW,
7787 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7788 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7789 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7790 .fgt = FGT_DCCISW,
7791 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7792 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7793 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7794 .fgt = FGT_DCCISW,
7795 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7796 };
7797
7798 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7799 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7800 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7801 .type = ARM_CP_CONST, .access = PL0_RW, },
7802 };
7803
7804 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7805 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7806 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7807 .type = ARM_CP_NOP, .access = PL0_W,
7808 .fgt = FGT_DCCVAC,
7809 .accessfn = aa64_cacheop_poc_access },
7810 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7811 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7812 .type = ARM_CP_NOP, .access = PL0_W,
7813 .fgt = FGT_DCCVAC,
7814 .accessfn = aa64_cacheop_poc_access },
7815 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7816 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7817 .type = ARM_CP_NOP, .access = PL0_W,
7818 .fgt = FGT_DCCVAP,
7819 .accessfn = aa64_cacheop_poc_access },
7820 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7822 .type = ARM_CP_NOP, .access = PL0_W,
7823 .fgt = FGT_DCCVAP,
7824 .accessfn = aa64_cacheop_poc_access },
7825 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7827 .type = ARM_CP_NOP, .access = PL0_W,
7828 .fgt = FGT_DCCVADP,
7829 .accessfn = aa64_cacheop_poc_access },
7830 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7832 .type = ARM_CP_NOP, .access = PL0_W,
7833 .fgt = FGT_DCCVADP,
7834 .accessfn = aa64_cacheop_poc_access },
7835 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7836 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7837 .type = ARM_CP_NOP, .access = PL0_W,
7838 .fgt = FGT_DCCIVAC,
7839 .accessfn = aa64_cacheop_poc_access },
7840 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7842 .type = ARM_CP_NOP, .access = PL0_W,
7843 .fgt = FGT_DCCIVAC,
7844 .accessfn = aa64_cacheop_poc_access },
7845 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7846 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7847 .access = PL0_W, .type = ARM_CP_DC_GVA,
7848 #ifndef CONFIG_USER_ONLY
7849 /* Avoid overhead of an access check that always passes in user-mode */
7850 .accessfn = aa64_zva_access,
7851 .fgt = FGT_DCZVA,
7852 #endif
7853 },
7854 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7856 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7857 #ifndef CONFIG_USER_ONLY
7858 /* Avoid overhead of an access check that always passes in user-mode */
7859 .accessfn = aa64_zva_access,
7860 .fgt = FGT_DCZVA,
7861 #endif
7862 },
7863 };
7864
7865 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7866 bool isread)
7867 {
7868 uint64_t hcr = arm_hcr_el2_eff(env);
7869 int el = arm_current_el(env);
7870
7871 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7872 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7873 if (hcr & HCR_TGE) {
7874 return CP_ACCESS_TRAP_EL2;
7875 }
7876 return CP_ACCESS_TRAP;
7877 }
7878 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7879 return CP_ACCESS_TRAP_EL2;
7880 }
7881 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7882 return CP_ACCESS_TRAP_EL2;
7883 }
7884 if (el < 3
7885 && arm_feature(env, ARM_FEATURE_EL3)
7886 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7887 return CP_ACCESS_TRAP_EL3;
7888 }
7889 return CP_ACCESS_OK;
7890 }
7891
7892 static const ARMCPRegInfo scxtnum_reginfo[] = {
7893 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7894 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7895 .access = PL0_RW, .accessfn = access_scxtnum,
7896 .fgt = FGT_SCXTNUM_EL0,
7897 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7898 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7899 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7900 .access = PL1_RW, .accessfn = access_scxtnum,
7901 .fgt = FGT_SCXTNUM_EL1,
7902 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7903 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7904 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7905 .access = PL2_RW, .accessfn = access_scxtnum,
7906 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7907 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7908 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7909 .access = PL3_RW,
7910 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7911 };
7912
7913 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7914 bool isread)
7915 {
7916 if (arm_current_el(env) == 2 &&
7917 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7918 return CP_ACCESS_TRAP_EL3;
7919 }
7920 return CP_ACCESS_OK;
7921 }
7922
7923 static const ARMCPRegInfo fgt_reginfo[] = {
7924 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7925 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7926 .access = PL2_RW, .accessfn = access_fgt,
7927 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7928 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7929 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7930 .access = PL2_RW, .accessfn = access_fgt,
7931 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7932 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7934 .access = PL2_RW, .accessfn = access_fgt,
7935 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7936 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7937 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7938 .access = PL2_RW, .accessfn = access_fgt,
7939 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7940 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7941 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7942 .access = PL2_RW, .accessfn = access_fgt,
7943 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7944 };
7945 #endif /* TARGET_AARCH64 */
7946
7947 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7948 bool isread)
7949 {
7950 int el = arm_current_el(env);
7951
7952 if (el == 0) {
7953 uint64_t sctlr = arm_sctlr(env, el);
7954 if (!(sctlr & SCTLR_EnRCTX)) {
7955 return CP_ACCESS_TRAP;
7956 }
7957 } else if (el == 1) {
7958 uint64_t hcr = arm_hcr_el2_eff(env);
7959 if (hcr & HCR_NV) {
7960 return CP_ACCESS_TRAP_EL2;
7961 }
7962 }
7963 return CP_ACCESS_OK;
7964 }
7965
7966 static const ARMCPRegInfo predinv_reginfo[] = {
7967 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7968 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7969 .fgt = FGT_CFPRCTX,
7970 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7971 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7972 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7973 .fgt = FGT_DVPRCTX,
7974 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7975 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7976 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7977 .fgt = FGT_CPPRCTX,
7978 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7979 /*
7980 * Note the AArch32 opcodes have a different OPC1.
7981 */
7982 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7983 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7984 .fgt = FGT_CFPRCTX,
7985 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7986 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7987 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7988 .fgt = FGT_DVPRCTX,
7989 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7990 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7991 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7992 .fgt = FGT_CPPRCTX,
7993 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7994 };
7995
7996 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7997 {
7998 /* Read the high 32 bits of the current CCSIDR */
7999 return extract64(ccsidr_read(env, ri), 32, 32);
8000 }
8001
8002 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8003 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8004 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8005 .access = PL1_R,
8006 .accessfn = access_tid4,
8007 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8008 };
8009
8010 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8011 bool isread)
8012 {
8013 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8014 return CP_ACCESS_TRAP_EL2;
8015 }
8016
8017 return CP_ACCESS_OK;
8018 }
8019
8020 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8021 bool isread)
8022 {
8023 if (arm_feature(env, ARM_FEATURE_V8)) {
8024 return access_aa64_tid3(env, ri, isread);
8025 }
8026
8027 return CP_ACCESS_OK;
8028 }
8029
8030 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8031 bool isread)
8032 {
8033 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8034 return CP_ACCESS_TRAP_EL2;
8035 }
8036
8037 return CP_ACCESS_OK;
8038 }
8039
8040 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8041 const ARMCPRegInfo *ri, bool isread)
8042 {
8043 /*
8044 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8045 * in v7A, not in v8A.
8046 */
8047 if (!arm_feature(env, ARM_FEATURE_V8) &&
8048 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8049 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8050 return CP_ACCESS_TRAP_EL2;
8051 }
8052 return CP_ACCESS_OK;
8053 }
8054
8055 static const ARMCPRegInfo jazelle_regs[] = {
8056 { .name = "JIDR",
8057 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8058 .access = PL1_R, .accessfn = access_jazelle,
8059 .type = ARM_CP_CONST, .resetvalue = 0 },
8060 { .name = "JOSCR",
8061 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8062 .accessfn = access_joscr_jmcr,
8063 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8064 { .name = "JMCR",
8065 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8066 .accessfn = access_joscr_jmcr,
8067 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8068 };
8069
8070 static const ARMCPRegInfo contextidr_el2 = {
8071 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8072 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8073 .access = PL2_RW,
8074 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8075 };
8076
8077 static const ARMCPRegInfo vhe_reginfo[] = {
8078 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8079 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8080 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8081 .raw_writefn = raw_write,
8082 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8083 #ifndef CONFIG_USER_ONLY
8084 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8085 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8086 .fieldoffset =
8087 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8088 .type = ARM_CP_IO, .access = PL2_RW,
8089 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8090 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8091 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8092 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8093 .resetfn = gt_hv_timer_reset,
8094 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8095 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8096 .type = ARM_CP_IO,
8097 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8098 .access = PL2_RW,
8099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8100 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8101 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8102 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8103 .type = ARM_CP_IO | ARM_CP_ALIAS,
8104 .access = PL2_RW, .accessfn = e2h_access,
8105 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8106 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8107 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8108 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8109 .type = ARM_CP_IO | ARM_CP_ALIAS,
8110 .access = PL2_RW, .accessfn = e2h_access,
8111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8112 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8113 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8114 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8115 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8116 .access = PL2_RW, .accessfn = e2h_access,
8117 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8118 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8119 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8120 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8121 .access = PL2_RW, .accessfn = e2h_access,
8122 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8123 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8124 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8125 .type = ARM_CP_IO | ARM_CP_ALIAS,
8126 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8127 .access = PL2_RW, .accessfn = e2h_access,
8128 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8129 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8130 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8131 .type = ARM_CP_IO | ARM_CP_ALIAS,
8132 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8133 .access = PL2_RW, .accessfn = e2h_access,
8134 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8135 #endif
8136 };
8137
8138 #ifndef CONFIG_USER_ONLY
8139 static const ARMCPRegInfo ats1e1_reginfo[] = {
8140 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8141 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8142 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8143 .fgt = FGT_ATS1E1RP,
8144 .accessfn = at_e012_access, .writefn = ats_write64 },
8145 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8146 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8147 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8148 .fgt = FGT_ATS1E1WP,
8149 .accessfn = at_e012_access, .writefn = ats_write64 },
8150 };
8151
8152 static const ARMCPRegInfo ats1cp_reginfo[] = {
8153 { .name = "ATS1CPRP",
8154 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8155 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8156 .writefn = ats_write },
8157 { .name = "ATS1CPWP",
8158 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8159 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8160 .writefn = ats_write },
8161 };
8162 #endif
8163
8164 /*
8165 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8166 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8167 * is non-zero, which is never for ARMv7, optionally in ARMv8
8168 * and mandatorily for ARMv8.2 and up.
8169 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8170 * implementation is RAZ/WI we can ignore this detail, as we
8171 * do for ACTLR.
8172 */
8173 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8174 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8175 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8176 .access = PL1_RW, .accessfn = access_tacr,
8177 .type = ARM_CP_CONST, .resetvalue = 0 },
8178 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8179 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8180 .access = PL2_RW, .type = ARM_CP_CONST,
8181 .resetvalue = 0 },
8182 };
8183
8184 void register_cp_regs_for_features(ARMCPU *cpu)
8185 {
8186 /* Register all the coprocessor registers based on feature bits */
8187 CPUARMState *env = &cpu->env;
8188 if (arm_feature(env, ARM_FEATURE_M)) {
8189 /* M profile has no coprocessor registers */
8190 return;
8191 }
8192
8193 define_arm_cp_regs(cpu, cp_reginfo);
8194 if (!arm_feature(env, ARM_FEATURE_V8)) {
8195 /*
8196 * Must go early as it is full of wildcards that may be
8197 * overridden by later definitions.
8198 */
8199 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8200 }
8201
8202 if (arm_feature(env, ARM_FEATURE_V6)) {
8203 /* The ID registers all have impdef reset values */
8204 ARMCPRegInfo v6_idregs[] = {
8205 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8207 .access = PL1_R, .type = ARM_CP_CONST,
8208 .accessfn = access_aa32_tid3,
8209 .resetvalue = cpu->isar.id_pfr0 },
8210 /*
8211 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8212 * the value of the GIC field until after we define these regs.
8213 */
8214 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8216 .access = PL1_R, .type = ARM_CP_NO_RAW,
8217 .accessfn = access_aa32_tid3,
8218 #ifdef CONFIG_USER_ONLY
8219 .type = ARM_CP_CONST,
8220 .resetvalue = cpu->isar.id_pfr1,
8221 #else
8222 .type = ARM_CP_NO_RAW,
8223 .accessfn = access_aa32_tid3,
8224 .readfn = id_pfr1_read,
8225 .writefn = arm_cp_write_ignore
8226 #endif
8227 },
8228 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8230 .access = PL1_R, .type = ARM_CP_CONST,
8231 .accessfn = access_aa32_tid3,
8232 .resetvalue = cpu->isar.id_dfr0 },
8233 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8235 .access = PL1_R, .type = ARM_CP_CONST,
8236 .accessfn = access_aa32_tid3,
8237 .resetvalue = cpu->id_afr0 },
8238 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8239 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8240 .access = PL1_R, .type = ARM_CP_CONST,
8241 .accessfn = access_aa32_tid3,
8242 .resetvalue = cpu->isar.id_mmfr0 },
8243 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8245 .access = PL1_R, .type = ARM_CP_CONST,
8246 .accessfn = access_aa32_tid3,
8247 .resetvalue = cpu->isar.id_mmfr1 },
8248 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8250 .access = PL1_R, .type = ARM_CP_CONST,
8251 .accessfn = access_aa32_tid3,
8252 .resetvalue = cpu->isar.id_mmfr2 },
8253 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8254 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8255 .access = PL1_R, .type = ARM_CP_CONST,
8256 .accessfn = access_aa32_tid3,
8257 .resetvalue = cpu->isar.id_mmfr3 },
8258 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8260 .access = PL1_R, .type = ARM_CP_CONST,
8261 .accessfn = access_aa32_tid3,
8262 .resetvalue = cpu->isar.id_isar0 },
8263 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8265 .access = PL1_R, .type = ARM_CP_CONST,
8266 .accessfn = access_aa32_tid3,
8267 .resetvalue = cpu->isar.id_isar1 },
8268 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8270 .access = PL1_R, .type = ARM_CP_CONST,
8271 .accessfn = access_aa32_tid3,
8272 .resetvalue = cpu->isar.id_isar2 },
8273 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8274 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8275 .access = PL1_R, .type = ARM_CP_CONST,
8276 .accessfn = access_aa32_tid3,
8277 .resetvalue = cpu->isar.id_isar3 },
8278 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8279 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8280 .access = PL1_R, .type = ARM_CP_CONST,
8281 .accessfn = access_aa32_tid3,
8282 .resetvalue = cpu->isar.id_isar4 },
8283 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8285 .access = PL1_R, .type = ARM_CP_CONST,
8286 .accessfn = access_aa32_tid3,
8287 .resetvalue = cpu->isar.id_isar5 },
8288 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8290 .access = PL1_R, .type = ARM_CP_CONST,
8291 .accessfn = access_aa32_tid3,
8292 .resetvalue = cpu->isar.id_mmfr4 },
8293 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8295 .access = PL1_R, .type = ARM_CP_CONST,
8296 .accessfn = access_aa32_tid3,
8297 .resetvalue = cpu->isar.id_isar6 },
8298 };
8299 define_arm_cp_regs(cpu, v6_idregs);
8300 define_arm_cp_regs(cpu, v6_cp_reginfo);
8301 } else {
8302 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8303 }
8304 if (arm_feature(env, ARM_FEATURE_V6K)) {
8305 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8306 }
8307 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8308 !arm_feature(env, ARM_FEATURE_PMSA)) {
8309 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8310 }
8311 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8312 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8313 }
8314 if (arm_feature(env, ARM_FEATURE_V7)) {
8315 ARMCPRegInfo clidr = {
8316 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8317 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8318 .access = PL1_R, .type = ARM_CP_CONST,
8319 .accessfn = access_tid4,
8320 .fgt = FGT_CLIDR_EL1,
8321 .resetvalue = cpu->clidr
8322 };
8323 define_one_arm_cp_reg(cpu, &clidr);
8324 define_arm_cp_regs(cpu, v7_cp_reginfo);
8325 define_debug_regs(cpu);
8326 define_pmu_regs(cpu);
8327 } else {
8328 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8329 }
8330 if (arm_feature(env, ARM_FEATURE_V8)) {
8331 /*
8332 * v8 ID registers, which all have impdef reset values.
8333 * Note that within the ID register ranges the unused slots
8334 * must all RAZ, not UNDEF; future architecture versions may
8335 * define new registers here.
8336 * ID registers which are AArch64 views of the AArch32 ID registers
8337 * which already existed in v6 and v7 are handled elsewhere,
8338 * in v6_idregs[].
8339 */
8340 int i;
8341 ARMCPRegInfo v8_idregs[] = {
8342 /*
8343 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8344 * emulation because we don't know the right value for the
8345 * GIC field until after we define these regs.
8346 */
8347 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8349 .access = PL1_R,
8350 #ifdef CONFIG_USER_ONLY
8351 .type = ARM_CP_CONST,
8352 .resetvalue = cpu->isar.id_aa64pfr0
8353 #else
8354 .type = ARM_CP_NO_RAW,
8355 .accessfn = access_aa64_tid3,
8356 .readfn = id_aa64pfr0_read,
8357 .writefn = arm_cp_write_ignore
8358 #endif
8359 },
8360 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8362 .access = PL1_R, .type = ARM_CP_CONST,
8363 .accessfn = access_aa64_tid3,
8364 .resetvalue = cpu->isar.id_aa64pfr1},
8365 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8367 .access = PL1_R, .type = ARM_CP_CONST,
8368 .accessfn = access_aa64_tid3,
8369 .resetvalue = 0 },
8370 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8372 .access = PL1_R, .type = ARM_CP_CONST,
8373 .accessfn = access_aa64_tid3,
8374 .resetvalue = 0 },
8375 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8376 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8377 .access = PL1_R, .type = ARM_CP_CONST,
8378 .accessfn = access_aa64_tid3,
8379 .resetvalue = cpu->isar.id_aa64zfr0 },
8380 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8381 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8382 .access = PL1_R, .type = ARM_CP_CONST,
8383 .accessfn = access_aa64_tid3,
8384 .resetvalue = cpu->isar.id_aa64smfr0 },
8385 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8387 .access = PL1_R, .type = ARM_CP_CONST,
8388 .accessfn = access_aa64_tid3,
8389 .resetvalue = 0 },
8390 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8391 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8392 .access = PL1_R, .type = ARM_CP_CONST,
8393 .accessfn = access_aa64_tid3,
8394 .resetvalue = 0 },
8395 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8396 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8397 .access = PL1_R, .type = ARM_CP_CONST,
8398 .accessfn = access_aa64_tid3,
8399 .resetvalue = cpu->isar.id_aa64dfr0 },
8400 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8401 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8402 .access = PL1_R, .type = ARM_CP_CONST,
8403 .accessfn = access_aa64_tid3,
8404 .resetvalue = cpu->isar.id_aa64dfr1 },
8405 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8406 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8407 .access = PL1_R, .type = ARM_CP_CONST,
8408 .accessfn = access_aa64_tid3,
8409 .resetvalue = 0 },
8410 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8412 .access = PL1_R, .type = ARM_CP_CONST,
8413 .accessfn = access_aa64_tid3,
8414 .resetvalue = 0 },
8415 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8416 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8417 .access = PL1_R, .type = ARM_CP_CONST,
8418 .accessfn = access_aa64_tid3,
8419 .resetvalue = cpu->id_aa64afr0 },
8420 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8422 .access = PL1_R, .type = ARM_CP_CONST,
8423 .accessfn = access_aa64_tid3,
8424 .resetvalue = cpu->id_aa64afr1 },
8425 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8427 .access = PL1_R, .type = ARM_CP_CONST,
8428 .accessfn = access_aa64_tid3,
8429 .resetvalue = 0 },
8430 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8432 .access = PL1_R, .type = ARM_CP_CONST,
8433 .accessfn = access_aa64_tid3,
8434 .resetvalue = 0 },
8435 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8437 .access = PL1_R, .type = ARM_CP_CONST,
8438 .accessfn = access_aa64_tid3,
8439 .resetvalue = cpu->isar.id_aa64isar0 },
8440 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8442 .access = PL1_R, .type = ARM_CP_CONST,
8443 .accessfn = access_aa64_tid3,
8444 .resetvalue = cpu->isar.id_aa64isar1 },
8445 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8447 .access = PL1_R, .type = ARM_CP_CONST,
8448 .accessfn = access_aa64_tid3,
8449 .resetvalue = cpu->isar.id_aa64isar2 },
8450 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8452 .access = PL1_R, .type = ARM_CP_CONST,
8453 .accessfn = access_aa64_tid3,
8454 .resetvalue = 0 },
8455 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8457 .access = PL1_R, .type = ARM_CP_CONST,
8458 .accessfn = access_aa64_tid3,
8459 .resetvalue = 0 },
8460 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8462 .access = PL1_R, .type = ARM_CP_CONST,
8463 .accessfn = access_aa64_tid3,
8464 .resetvalue = 0 },
8465 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8467 .access = PL1_R, .type = ARM_CP_CONST,
8468 .accessfn = access_aa64_tid3,
8469 .resetvalue = 0 },
8470 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8472 .access = PL1_R, .type = ARM_CP_CONST,
8473 .accessfn = access_aa64_tid3,
8474 .resetvalue = 0 },
8475 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8477 .access = PL1_R, .type = ARM_CP_CONST,
8478 .accessfn = access_aa64_tid3,
8479 .resetvalue = cpu->isar.id_aa64mmfr0 },
8480 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8482 .access = PL1_R, .type = ARM_CP_CONST,
8483 .accessfn = access_aa64_tid3,
8484 .resetvalue = cpu->isar.id_aa64mmfr1 },
8485 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8487 .access = PL1_R, .type = ARM_CP_CONST,
8488 .accessfn = access_aa64_tid3,
8489 .resetvalue = cpu->isar.id_aa64mmfr2 },
8490 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8492 .access = PL1_R, .type = ARM_CP_CONST,
8493 .accessfn = access_aa64_tid3,
8494 .resetvalue = 0 },
8495 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8497 .access = PL1_R, .type = ARM_CP_CONST,
8498 .accessfn = access_aa64_tid3,
8499 .resetvalue = 0 },
8500 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8502 .access = PL1_R, .type = ARM_CP_CONST,
8503 .accessfn = access_aa64_tid3,
8504 .resetvalue = 0 },
8505 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8507 .access = PL1_R, .type = ARM_CP_CONST,
8508 .accessfn = access_aa64_tid3,
8509 .resetvalue = 0 },
8510 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8512 .access = PL1_R, .type = ARM_CP_CONST,
8513 .accessfn = access_aa64_tid3,
8514 .resetvalue = 0 },
8515 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8517 .access = PL1_R, .type = ARM_CP_CONST,
8518 .accessfn = access_aa64_tid3,
8519 .resetvalue = cpu->isar.mvfr0 },
8520 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8522 .access = PL1_R, .type = ARM_CP_CONST,
8523 .accessfn = access_aa64_tid3,
8524 .resetvalue = cpu->isar.mvfr1 },
8525 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8527 .access = PL1_R, .type = ARM_CP_CONST,
8528 .accessfn = access_aa64_tid3,
8529 .resetvalue = cpu->isar.mvfr2 },
8530 /*
8531 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8532 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8533 * as RAZ, since it is in the "reserved for future ID
8534 * registers, RAZ" part of the AArch32 encoding space.
8535 */
8536 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8537 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8538 .access = PL1_R, .type = ARM_CP_CONST,
8539 .accessfn = access_aa64_tid3,
8540 .resetvalue = 0 },
8541 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8542 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8543 .access = PL1_R, .type = ARM_CP_CONST,
8544 .accessfn = access_aa64_tid3,
8545 .resetvalue = 0 },
8546 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8547 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8548 .access = PL1_R, .type = ARM_CP_CONST,
8549 .accessfn = access_aa64_tid3,
8550 .resetvalue = 0 },
8551 /*
8552 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8553 * they're also RAZ for AArch64, and in v8 are gradually
8554 * being filled with AArch64-view-of-AArch32-ID-register
8555 * for new ID registers.
8556 */
8557 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8559 .access = PL1_R, .type = ARM_CP_CONST,
8560 .accessfn = access_aa64_tid3,
8561 .resetvalue = 0 },
8562 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8564 .access = PL1_R, .type = ARM_CP_CONST,
8565 .accessfn = access_aa64_tid3,
8566 .resetvalue = cpu->isar.id_pfr2 },
8567 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8569 .access = PL1_R, .type = ARM_CP_CONST,
8570 .accessfn = access_aa64_tid3,
8571 .resetvalue = cpu->isar.id_dfr1 },
8572 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8574 .access = PL1_R, .type = ARM_CP_CONST,
8575 .accessfn = access_aa64_tid3,
8576 .resetvalue = cpu->isar.id_mmfr5 },
8577 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8579 .access = PL1_R, .type = ARM_CP_CONST,
8580 .accessfn = access_aa64_tid3,
8581 .resetvalue = 0 },
8582 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8583 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8584 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8585 .fgt = FGT_PMCEIDN_EL0,
8586 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8587 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8588 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8589 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8590 .fgt = FGT_PMCEIDN_EL0,
8591 .resetvalue = cpu->pmceid0 },
8592 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8593 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8594 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8595 .fgt = FGT_PMCEIDN_EL0,
8596 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8597 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8598 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8599 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8600 .fgt = FGT_PMCEIDN_EL0,
8601 .resetvalue = cpu->pmceid1 },
8602 };
8603 #ifdef CONFIG_USER_ONLY
8604 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8605 { .name = "ID_AA64PFR0_EL1",
8606 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8607 R_ID_AA64PFR0_ADVSIMD_MASK |
8608 R_ID_AA64PFR0_SVE_MASK |
8609 R_ID_AA64PFR0_DIT_MASK,
8610 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8611 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8612 { .name = "ID_AA64PFR1_EL1",
8613 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8614 R_ID_AA64PFR1_SSBS_MASK |
8615 R_ID_AA64PFR1_MTE_MASK |
8616 R_ID_AA64PFR1_SME_MASK },
8617 { .name = "ID_AA64PFR*_EL1_RESERVED",
8618 .is_glob = true },
8619 { .name = "ID_AA64ZFR0_EL1",
8620 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8621 R_ID_AA64ZFR0_AES_MASK |
8622 R_ID_AA64ZFR0_BITPERM_MASK |
8623 R_ID_AA64ZFR0_BFLOAT16_MASK |
8624 R_ID_AA64ZFR0_SHA3_MASK |
8625 R_ID_AA64ZFR0_SM4_MASK |
8626 R_ID_AA64ZFR0_I8MM_MASK |
8627 R_ID_AA64ZFR0_F32MM_MASK |
8628 R_ID_AA64ZFR0_F64MM_MASK },
8629 { .name = "ID_AA64SMFR0_EL1",
8630 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8631 R_ID_AA64SMFR0_BI32I32_MASK |
8632 R_ID_AA64SMFR0_B16F32_MASK |
8633 R_ID_AA64SMFR0_F16F32_MASK |
8634 R_ID_AA64SMFR0_I8I32_MASK |
8635 R_ID_AA64SMFR0_F16F16_MASK |
8636 R_ID_AA64SMFR0_B16B16_MASK |
8637 R_ID_AA64SMFR0_I16I32_MASK |
8638 R_ID_AA64SMFR0_F64F64_MASK |
8639 R_ID_AA64SMFR0_I16I64_MASK |
8640 R_ID_AA64SMFR0_SMEVER_MASK |
8641 R_ID_AA64SMFR0_FA64_MASK },
8642 { .name = "ID_AA64MMFR0_EL1",
8643 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8644 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8645 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8646 { .name = "ID_AA64MMFR1_EL1",
8647 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8648 { .name = "ID_AA64MMFR2_EL1",
8649 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8650 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8651 .is_glob = true },
8652 { .name = "ID_AA64DFR0_EL1",
8653 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8654 { .name = "ID_AA64DFR1_EL1" },
8655 { .name = "ID_AA64DFR*_EL1_RESERVED",
8656 .is_glob = true },
8657 { .name = "ID_AA64AFR*",
8658 .is_glob = true },
8659 { .name = "ID_AA64ISAR0_EL1",
8660 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8661 R_ID_AA64ISAR0_SHA1_MASK |
8662 R_ID_AA64ISAR0_SHA2_MASK |
8663 R_ID_AA64ISAR0_CRC32_MASK |
8664 R_ID_AA64ISAR0_ATOMIC_MASK |
8665 R_ID_AA64ISAR0_RDM_MASK |
8666 R_ID_AA64ISAR0_SHA3_MASK |
8667 R_ID_AA64ISAR0_SM3_MASK |
8668 R_ID_AA64ISAR0_SM4_MASK |
8669 R_ID_AA64ISAR0_DP_MASK |
8670 R_ID_AA64ISAR0_FHM_MASK |
8671 R_ID_AA64ISAR0_TS_MASK |
8672 R_ID_AA64ISAR0_RNDR_MASK },
8673 { .name = "ID_AA64ISAR1_EL1",
8674 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8675 R_ID_AA64ISAR1_APA_MASK |
8676 R_ID_AA64ISAR1_API_MASK |
8677 R_ID_AA64ISAR1_JSCVT_MASK |
8678 R_ID_AA64ISAR1_FCMA_MASK |
8679 R_ID_AA64ISAR1_LRCPC_MASK |
8680 R_ID_AA64ISAR1_GPA_MASK |
8681 R_ID_AA64ISAR1_GPI_MASK |
8682 R_ID_AA64ISAR1_FRINTTS_MASK |
8683 R_ID_AA64ISAR1_SB_MASK |
8684 R_ID_AA64ISAR1_BF16_MASK |
8685 R_ID_AA64ISAR1_DGH_MASK |
8686 R_ID_AA64ISAR1_I8MM_MASK },
8687 { .name = "ID_AA64ISAR2_EL1",
8688 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8689 R_ID_AA64ISAR2_RPRES_MASK |
8690 R_ID_AA64ISAR2_GPA3_MASK |
8691 R_ID_AA64ISAR2_APA3_MASK |
8692 R_ID_AA64ISAR2_MOPS_MASK |
8693 R_ID_AA64ISAR2_BC_MASK |
8694 R_ID_AA64ISAR2_RPRFM_MASK |
8695 R_ID_AA64ISAR2_CSSC_MASK },
8696 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8697 .is_glob = true },
8698 };
8699 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8700 #endif
8701 /*
8702 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8703 * TODO: For RMR, a write with bit 1 set should do something with
8704 * cpu_reset(). In the meantime, "the bit is strictly a request",
8705 * so we are in spec just ignoring writes.
8706 */
8707 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8708 !arm_feature(env, ARM_FEATURE_EL2)) {
8709 ARMCPRegInfo el1_reset_regs[] = {
8710 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8711 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8712 .access = PL1_R,
8713 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8714 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8715 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8716 .access = PL1_RW, .type = ARM_CP_CONST,
8717 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8718 };
8719 define_arm_cp_regs(cpu, el1_reset_regs);
8720 }
8721 define_arm_cp_regs(cpu, v8_idregs);
8722 define_arm_cp_regs(cpu, v8_cp_reginfo);
8723 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8724 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8725 }
8726
8727 for (i = 4; i < 16; i++) {
8728 /*
8729 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8730 * For pre-v8 cores there are RAZ patterns for these in
8731 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8732 * v8 extends the "must RAZ" part of the ID register space
8733 * to also cover c0, 0, c{8-15}, {0-7}.
8734 * These are STATE_AA32 because in the AArch64 sysreg space
8735 * c4-c7 is where the AArch64 ID registers live (and we've
8736 * already defined those in v8_idregs[]), and c8-c15 are not
8737 * "must RAZ" for AArch64.
8738 */
8739 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8740 ARMCPRegInfo v8_aa32_raz_idregs = {
8741 .name = name,
8742 .state = ARM_CP_STATE_AA32,
8743 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8744 .access = PL1_R, .type = ARM_CP_CONST,
8745 .accessfn = access_aa64_tid3,
8746 .resetvalue = 0 };
8747 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8748 }
8749 }
8750
8751 /*
8752 * Register the base EL2 cpregs.
8753 * Pre v8, these registers are implemented only as part of the
8754 * Virtualization Extensions (EL2 present). Beginning with v8,
8755 * if EL2 is missing but EL3 is enabled, mostly these become
8756 * RES0 from EL3, with some specific exceptions.
8757 */
8758 if (arm_feature(env, ARM_FEATURE_EL2)
8759 || (arm_feature(env, ARM_FEATURE_EL3)
8760 && arm_feature(env, ARM_FEATURE_V8))) {
8761 uint64_t vmpidr_def = mpidr_read_val(env);
8762 ARMCPRegInfo vpidr_regs[] = {
8763 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8764 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8765 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8766 .resetvalue = cpu->midr,
8767 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8768 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8769 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8770 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8771 .access = PL2_RW, .resetvalue = cpu->midr,
8772 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8773 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8774 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8775 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8776 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8777 .resetvalue = vmpidr_def,
8778 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8779 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8780 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8781 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8782 .access = PL2_RW, .resetvalue = vmpidr_def,
8783 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8784 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8785 };
8786 /*
8787 * The only field of MDCR_EL2 that has a defined architectural reset
8788 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8789 */
8790 ARMCPRegInfo mdcr_el2 = {
8791 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8792 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8793 .writefn = mdcr_el2_write,
8794 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8795 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8796 };
8797 define_one_arm_cp_reg(cpu, &mdcr_el2);
8798 define_arm_cp_regs(cpu, vpidr_regs);
8799 define_arm_cp_regs(cpu, el2_cp_reginfo);
8800 if (arm_feature(env, ARM_FEATURE_V8)) {
8801 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8802 }
8803 if (cpu_isar_feature(aa64_sel2, cpu)) {
8804 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8805 }
8806 /*
8807 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8808 * See commentary near RMR_EL1.
8809 */
8810 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8811 static const ARMCPRegInfo el2_reset_regs[] = {
8812 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8813 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8814 .access = PL2_R,
8815 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8816 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8817 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8818 .access = PL2_R,
8819 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8820 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8821 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8822 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8823 };
8824 define_arm_cp_regs(cpu, el2_reset_regs);
8825 }
8826 }
8827
8828 /* Register the base EL3 cpregs. */
8829 if (arm_feature(env, ARM_FEATURE_EL3)) {
8830 define_arm_cp_regs(cpu, el3_cp_reginfo);
8831 ARMCPRegInfo el3_regs[] = {
8832 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8833 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8834 .access = PL3_R,
8835 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8836 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8837 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8838 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8839 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8840 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8841 .access = PL3_RW, .type = ARM_CP_CONST,
8842 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8843 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8844 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8845 .access = PL3_RW,
8846 .raw_writefn = raw_write, .writefn = sctlr_write,
8847 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8848 .resetvalue = cpu->reset_sctlr },
8849 };
8850
8851 define_arm_cp_regs(cpu, el3_regs);
8852 }
8853 /*
8854 * The behaviour of NSACR is sufficiently various that we don't
8855 * try to describe it in a single reginfo:
8856 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8857 * reads as constant 0xc00 from NS EL1 and NS EL2
8858 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8859 * if v7 without EL3, register doesn't exist
8860 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8861 */
8862 if (arm_feature(env, ARM_FEATURE_EL3)) {
8863 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8864 static const ARMCPRegInfo nsacr = {
8865 .name = "NSACR", .type = ARM_CP_CONST,
8866 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8867 .access = PL1_RW, .accessfn = nsacr_access,
8868 .resetvalue = 0xc00
8869 };
8870 define_one_arm_cp_reg(cpu, &nsacr);
8871 } else {
8872 static const ARMCPRegInfo nsacr = {
8873 .name = "NSACR",
8874 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8875 .access = PL3_RW | PL1_R,
8876 .resetvalue = 0,
8877 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8878 };
8879 define_one_arm_cp_reg(cpu, &nsacr);
8880 }
8881 } else {
8882 if (arm_feature(env, ARM_FEATURE_V8)) {
8883 static const ARMCPRegInfo nsacr = {
8884 .name = "NSACR", .type = ARM_CP_CONST,
8885 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8886 .access = PL1_R,
8887 .resetvalue = 0xc00
8888 };
8889 define_one_arm_cp_reg(cpu, &nsacr);
8890 }
8891 }
8892
8893 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8894 if (arm_feature(env, ARM_FEATURE_V6)) {
8895 /* PMSAv6 not implemented */
8896 assert(arm_feature(env, ARM_FEATURE_V7));
8897 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8898 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8899 } else {
8900 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8901 }
8902 } else {
8903 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8904 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8905 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8906 if (cpu_isar_feature(aa32_hpd, cpu)) {
8907 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8908 }
8909 }
8910 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8911 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8912 }
8913 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8914 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8915 }
8916 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8917 ARMCPRegInfo vapa_cp_reginfo[] = {
8918 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8919 .access = PL1_RW, .resetvalue = 0,
8920 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8921 offsetoflow32(CPUARMState, cp15.par_ns) },
8922 .writefn = par_write},
8923 #ifndef CONFIG_USER_ONLY
8924 /* This underdecoding is safe because the reginfo is NO_RAW. */
8925 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8926 .access = PL1_W, .accessfn = ats_access,
8927 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8928 #endif
8929 };
8930
8931 /*
8932 * When LPAE exists this 32-bit PAR register is an alias of the
8933 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
8934 */
8935 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8936 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
8937 }
8938 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8939 }
8940 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8941 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8942 }
8943 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8944 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8945 }
8946 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8947 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8948 }
8949 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8950 define_arm_cp_regs(cpu, omap_cp_reginfo);
8951 }
8952 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8953 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8954 }
8955 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8956 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8957 }
8958 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8959 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8960 }
8961 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8962 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8963 }
8964 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8965 define_arm_cp_regs(cpu, jazelle_regs);
8966 }
8967 /*
8968 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8969 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8970 * be read-only (ie write causes UNDEF exception).
8971 */
8972 {
8973 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8974 /*
8975 * Pre-v8 MIDR space.
8976 * Note that the MIDR isn't a simple constant register because
8977 * of the TI925 behaviour where writes to another register can
8978 * cause the MIDR value to change.
8979 *
8980 * Unimplemented registers in the c15 0 0 0 space default to
8981 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8982 * and friends override accordingly.
8983 */
8984 { .name = "MIDR",
8985 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8986 .access = PL1_R, .resetvalue = cpu->midr,
8987 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8988 .readfn = midr_read,
8989 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8990 .type = ARM_CP_OVERRIDE },
8991 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8992 { .name = "DUMMY",
8993 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8994 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8995 { .name = "DUMMY",
8996 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8997 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8998 { .name = "DUMMY",
8999 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9000 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9001 { .name = "DUMMY",
9002 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9003 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9004 { .name = "DUMMY",
9005 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9006 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9007 };
9008 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9009 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9011 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9012 .fgt = FGT_MIDR_EL1,
9013 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9014 .readfn = midr_read },
9015 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9016 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9017 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9018 .access = PL1_R, .resetvalue = cpu->midr },
9019 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9021 .access = PL1_R,
9022 .accessfn = access_aa64_tid1,
9023 .fgt = FGT_REVIDR_EL1,
9024 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9025 };
9026 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9027 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9028 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9029 .access = PL1_R, .resetvalue = cpu->midr
9030 };
9031 ARMCPRegInfo id_cp_reginfo[] = {
9032 /* These are common to v8 and pre-v8 */
9033 { .name = "CTR",
9034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9035 .access = PL1_R, .accessfn = ctr_el0_access,
9036 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9037 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9038 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9039 .access = PL0_R, .accessfn = ctr_el0_access,
9040 .fgt = FGT_CTR_EL0,
9041 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9042 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9043 { .name = "TCMTR",
9044 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9045 .access = PL1_R,
9046 .accessfn = access_aa32_tid1,
9047 .type = ARM_CP_CONST, .resetvalue = 0 },
9048 };
9049 /* TLBTR is specific to VMSA */
9050 ARMCPRegInfo id_tlbtr_reginfo = {
9051 .name = "TLBTR",
9052 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9053 .access = PL1_R,
9054 .accessfn = access_aa32_tid1,
9055 .type = ARM_CP_CONST, .resetvalue = 0,
9056 };
9057 /* MPUIR is specific to PMSA V6+ */
9058 ARMCPRegInfo id_mpuir_reginfo = {
9059 .name = "MPUIR",
9060 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9061 .access = PL1_R, .type = ARM_CP_CONST,
9062 .resetvalue = cpu->pmsav7_dregion << 8
9063 };
9064 /* HMPUIR is specific to PMSA V8 */
9065 ARMCPRegInfo id_hmpuir_reginfo = {
9066 .name = "HMPUIR",
9067 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9068 .access = PL2_R, .type = ARM_CP_CONST,
9069 .resetvalue = cpu->pmsav8r_hdregion
9070 };
9071 static const ARMCPRegInfo crn0_wi_reginfo = {
9072 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9073 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9074 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9075 };
9076 #ifdef CONFIG_USER_ONLY
9077 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9078 { .name = "MIDR_EL1",
9079 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9080 R_MIDR_EL1_PARTNUM_MASK |
9081 R_MIDR_EL1_ARCHITECTURE_MASK |
9082 R_MIDR_EL1_VARIANT_MASK |
9083 R_MIDR_EL1_IMPLEMENTER_MASK },
9084 { .name = "REVIDR_EL1" },
9085 };
9086 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9087 #endif
9088 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9089 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9090 size_t i;
9091 /*
9092 * Register the blanket "writes ignored" value first to cover the
9093 * whole space. Then update the specific ID registers to allow write
9094 * access, so that they ignore writes rather than causing them to
9095 * UNDEF.
9096 */
9097 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9098 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9099 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9100 }
9101 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9102 id_cp_reginfo[i].access = PL1_RW;
9103 }
9104 id_mpuir_reginfo.access = PL1_RW;
9105 id_tlbtr_reginfo.access = PL1_RW;
9106 }
9107 if (arm_feature(env, ARM_FEATURE_V8)) {
9108 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9109 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9110 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9111 }
9112 } else {
9113 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9114 }
9115 define_arm_cp_regs(cpu, id_cp_reginfo);
9116 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9117 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9118 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9119 arm_feature(env, ARM_FEATURE_V8)) {
9120 uint32_t i = 0;
9121 char *tmp_string;
9122
9123 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9124 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9125 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9126
9127 /* Register alias is only valid for first 32 indexes */
9128 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9129 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9130 uint8_t opc1 = extract32(i, 4, 1);
9131 uint8_t opc2 = extract32(i, 0, 1) << 2;
9132
9133 tmp_string = g_strdup_printf("PRBAR%u", i);
9134 ARMCPRegInfo tmp_prbarn_reginfo = {
9135 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9136 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9137 .access = PL1_RW, .resetvalue = 0,
9138 .accessfn = access_tvm_trvm,
9139 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9140 };
9141 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9142 g_free(tmp_string);
9143
9144 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9145 tmp_string = g_strdup_printf("PRLAR%u", i);
9146 ARMCPRegInfo tmp_prlarn_reginfo = {
9147 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9148 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9149 .access = PL1_RW, .resetvalue = 0,
9150 .accessfn = access_tvm_trvm,
9151 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9152 };
9153 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9154 g_free(tmp_string);
9155 }
9156
9157 /* Register alias is only valid for first 32 indexes */
9158 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9159 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9160 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9161 uint8_t opc2 = extract32(i, 0, 1) << 2;
9162
9163 tmp_string = g_strdup_printf("HPRBAR%u", i);
9164 ARMCPRegInfo tmp_hprbarn_reginfo = {
9165 .name = tmp_string,
9166 .type = ARM_CP_NO_RAW,
9167 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9168 .access = PL2_RW, .resetvalue = 0,
9169 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9170 };
9171 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9172 g_free(tmp_string);
9173
9174 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9175 tmp_string = g_strdup_printf("HPRLAR%u", i);
9176 ARMCPRegInfo tmp_hprlarn_reginfo = {
9177 .name = tmp_string,
9178 .type = ARM_CP_NO_RAW,
9179 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9180 .access = PL2_RW, .resetvalue = 0,
9181 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9182 };
9183 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9184 g_free(tmp_string);
9185 }
9186 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9187 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9188 }
9189 }
9190
9191 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9192 ARMCPRegInfo mpidr_cp_reginfo[] = {
9193 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9195 .fgt = FGT_MPIDR_EL1,
9196 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9197 };
9198 #ifdef CONFIG_USER_ONLY
9199 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9200 { .name = "MPIDR_EL1",
9201 .fixed_bits = 0x0000000080000000 },
9202 };
9203 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9204 #endif
9205 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9206 }
9207
9208 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9209 ARMCPRegInfo auxcr_reginfo[] = {
9210 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9211 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9212 .access = PL1_RW, .accessfn = access_tacr,
9213 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9214 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9215 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9216 .access = PL2_RW, .type = ARM_CP_CONST,
9217 .resetvalue = 0 },
9218 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9219 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9220 .access = PL3_RW, .type = ARM_CP_CONST,
9221 .resetvalue = 0 },
9222 };
9223 define_arm_cp_regs(cpu, auxcr_reginfo);
9224 if (cpu_isar_feature(aa32_ac2, cpu)) {
9225 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9226 }
9227 }
9228
9229 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9230 /*
9231 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9232 * There are two flavours:
9233 * (1) older 32-bit only cores have a simple 32-bit CBAR
9234 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9235 * 32-bit register visible to AArch32 at a different encoding
9236 * to the "flavour 1" register and with the bits rearranged to
9237 * be able to squash a 64-bit address into the 32-bit view.
9238 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9239 * in future if we support AArch32-only configs of some of the
9240 * AArch64 cores we might need to add a specific feature flag
9241 * to indicate cores with "flavour 2" CBAR.
9242 */
9243 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9244 /* 32 bit view is [31:18] 0...0 [43:32]. */
9245 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9246 | extract64(cpu->reset_cbar, 32, 12);
9247 ARMCPRegInfo cbar_reginfo[] = {
9248 { .name = "CBAR",
9249 .type = ARM_CP_CONST,
9250 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9251 .access = PL1_R, .resetvalue = cbar32 },
9252 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9253 .type = ARM_CP_CONST,
9254 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9255 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9256 };
9257 /* We don't implement a r/w 64 bit CBAR currently */
9258 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9259 define_arm_cp_regs(cpu, cbar_reginfo);
9260 } else {
9261 ARMCPRegInfo cbar = {
9262 .name = "CBAR",
9263 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9264 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9265 .fieldoffset = offsetof(CPUARMState,
9266 cp15.c15_config_base_address)
9267 };
9268 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9269 cbar.access = PL1_R;
9270 cbar.fieldoffset = 0;
9271 cbar.type = ARM_CP_CONST;
9272 }
9273 define_one_arm_cp_reg(cpu, &cbar);
9274 }
9275 }
9276
9277 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9278 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9279 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9280 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9281 .access = PL1_RW, .writefn = vbar_write,
9282 .fgt = FGT_VBAR_EL1,
9283 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9284 offsetof(CPUARMState, cp15.vbar_ns) },
9285 .resetvalue = 0 },
9286 };
9287 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9288 }
9289
9290 /* Generic registers whose values depend on the implementation */
9291 {
9292 ARMCPRegInfo sctlr = {
9293 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9294 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9295 .access = PL1_RW, .accessfn = access_tvm_trvm,
9296 .fgt = FGT_SCTLR_EL1,
9297 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9298 offsetof(CPUARMState, cp15.sctlr_ns) },
9299 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9300 .raw_writefn = raw_write,
9301 };
9302 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9303 /*
9304 * Normally we would always end the TB on an SCTLR write, but Linux
9305 * arch/arm/mach-pxa/sleep.S expects two instructions following
9306 * an MMU enable to execute from cache. Imitate this behaviour.
9307 */
9308 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9309 }
9310 define_one_arm_cp_reg(cpu, &sctlr);
9311
9312 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9313 arm_feature(env, ARM_FEATURE_V8)) {
9314 ARMCPRegInfo vsctlr = {
9315 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9316 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9317 .access = PL2_RW, .resetvalue = 0x0,
9318 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9319 };
9320 define_one_arm_cp_reg(cpu, &vsctlr);
9321 }
9322 }
9323
9324 if (cpu_isar_feature(aa64_lor, cpu)) {
9325 define_arm_cp_regs(cpu, lor_reginfo);
9326 }
9327 if (cpu_isar_feature(aa64_pan, cpu)) {
9328 define_one_arm_cp_reg(cpu, &pan_reginfo);
9329 }
9330 #ifndef CONFIG_USER_ONLY
9331 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9332 define_arm_cp_regs(cpu, ats1e1_reginfo);
9333 }
9334 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9335 define_arm_cp_regs(cpu, ats1cp_reginfo);
9336 }
9337 #endif
9338 if (cpu_isar_feature(aa64_uao, cpu)) {
9339 define_one_arm_cp_reg(cpu, &uao_reginfo);
9340 }
9341
9342 if (cpu_isar_feature(aa64_dit, cpu)) {
9343 define_one_arm_cp_reg(cpu, &dit_reginfo);
9344 }
9345 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9346 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9347 }
9348 if (cpu_isar_feature(any_ras, cpu)) {
9349 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9350 }
9351
9352 if (cpu_isar_feature(aa64_vh, cpu) ||
9353 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9354 define_one_arm_cp_reg(cpu, &contextidr_el2);
9355 }
9356 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9357 define_arm_cp_regs(cpu, vhe_reginfo);
9358 }
9359
9360 if (cpu_isar_feature(aa64_sve, cpu)) {
9361 define_arm_cp_regs(cpu, zcr_reginfo);
9362 }
9363
9364 if (cpu_isar_feature(aa64_hcx, cpu)) {
9365 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9366 }
9367
9368 #ifdef TARGET_AARCH64
9369 if (cpu_isar_feature(aa64_sme, cpu)) {
9370 define_arm_cp_regs(cpu, sme_reginfo);
9371 }
9372 if (cpu_isar_feature(aa64_pauth, cpu)) {
9373 define_arm_cp_regs(cpu, pauth_reginfo);
9374 }
9375 if (cpu_isar_feature(aa64_rndr, cpu)) {
9376 define_arm_cp_regs(cpu, rndr_reginfo);
9377 }
9378 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9379 define_arm_cp_regs(cpu, tlbirange_reginfo);
9380 }
9381 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9382 define_arm_cp_regs(cpu, tlbios_reginfo);
9383 }
9384 /* Data Cache clean instructions up to PoP */
9385 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9386 define_one_arm_cp_reg(cpu, dcpop_reg);
9387
9388 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9389 define_one_arm_cp_reg(cpu, dcpodp_reg);
9390 }
9391 }
9392
9393 /*
9394 * If full MTE is enabled, add all of the system registers.
9395 * If only "instructions available at EL0" are enabled,
9396 * then define only a RAZ/WI version of PSTATE.TCO.
9397 */
9398 if (cpu_isar_feature(aa64_mte, cpu)) {
9399 ARMCPRegInfo gmid_reginfo = {
9400 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9401 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9402 .access = PL1_R, .accessfn = access_aa64_tid5,
9403 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9404 };
9405 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9406 define_arm_cp_regs(cpu, mte_reginfo);
9407 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9408 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9409 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9410 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9411 }
9412
9413 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9414 define_arm_cp_regs(cpu, scxtnum_reginfo);
9415 }
9416
9417 if (cpu_isar_feature(aa64_fgt, cpu)) {
9418 define_arm_cp_regs(cpu, fgt_reginfo);
9419 }
9420
9421 if (cpu_isar_feature(aa64_rme, cpu)) {
9422 define_arm_cp_regs(cpu, rme_reginfo);
9423 if (cpu_isar_feature(aa64_mte, cpu)) {
9424 define_arm_cp_regs(cpu, rme_mte_reginfo);
9425 }
9426 }
9427 #endif
9428
9429 if (cpu_isar_feature(any_predinv, cpu)) {
9430 define_arm_cp_regs(cpu, predinv_reginfo);
9431 }
9432
9433 if (cpu_isar_feature(any_ccidx, cpu)) {
9434 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9435 }
9436
9437 #ifndef CONFIG_USER_ONLY
9438 /*
9439 * Register redirections and aliases must be done last,
9440 * after the registers from the other extensions have been defined.
9441 */
9442 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9443 define_arm_vh_e2h_redirects_aliases(cpu);
9444 }
9445 #endif
9446 }
9447
9448 /* Sort alphabetically by type name, except for "any". */
9449 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9450 {
9451 ObjectClass *class_a = (ObjectClass *)a;
9452 ObjectClass *class_b = (ObjectClass *)b;
9453 const char *name_a, *name_b;
9454
9455 name_a = object_class_get_name(class_a);
9456 name_b = object_class_get_name(class_b);
9457 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9458 return 1;
9459 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9460 return -1;
9461 } else {
9462 return strcmp(name_a, name_b);
9463 }
9464 }
9465
9466 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9467 {
9468 ObjectClass *oc = data;
9469 CPUClass *cc = CPU_CLASS(oc);
9470 const char *typename;
9471 char *name;
9472
9473 typename = object_class_get_name(oc);
9474 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9475 if (cc->deprecation_note) {
9476 qemu_printf(" %s (deprecated)\n", name);
9477 } else {
9478 qemu_printf(" %s\n", name);
9479 }
9480 g_free(name);
9481 }
9482
9483 void arm_cpu_list(void)
9484 {
9485 GSList *list;
9486
9487 list = object_class_get_list(TYPE_ARM_CPU, false);
9488 list = g_slist_sort(list, arm_cpu_list_compare);
9489 qemu_printf("Available CPUs:\n");
9490 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9491 g_slist_free(list);
9492 }
9493
9494 /*
9495 * Private utility function for define_one_arm_cp_reg_with_opaque():
9496 * add a single reginfo struct to the hash table.
9497 */
9498 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9499 void *opaque, CPState state,
9500 CPSecureState secstate,
9501 int crm, int opc1, int opc2,
9502 const char *name)
9503 {
9504 CPUARMState *env = &cpu->env;
9505 uint32_t key;
9506 ARMCPRegInfo *r2;
9507 bool is64 = r->type & ARM_CP_64BIT;
9508 bool ns = secstate & ARM_CP_SECSTATE_NS;
9509 int cp = r->cp;
9510 size_t name_len;
9511 bool make_const;
9512
9513 switch (state) {
9514 case ARM_CP_STATE_AA32:
9515 /* We assume it is a cp15 register if the .cp field is left unset. */
9516 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9517 cp = 15;
9518 }
9519 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9520 break;
9521 case ARM_CP_STATE_AA64:
9522 /*
9523 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9524 * cp == 0 as equivalent to the value for "standard guest-visible
9525 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9526 * in their AArch64 view (the .cp value may be non-zero for the
9527 * benefit of the AArch32 view).
9528 */
9529 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9530 cp = CP_REG_ARM64_SYSREG_CP;
9531 }
9532 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9533 break;
9534 default:
9535 g_assert_not_reached();
9536 }
9537
9538 /* Overriding of an existing definition must be explicitly requested. */
9539 if (!(r->type & ARM_CP_OVERRIDE)) {
9540 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9541 if (oldreg) {
9542 assert(oldreg->type & ARM_CP_OVERRIDE);
9543 }
9544 }
9545
9546 /*
9547 * Eliminate registers that are not present because the EL is missing.
9548 * Doing this here makes it easier to put all registers for a given
9549 * feature into the same ARMCPRegInfo array and define them all at once.
9550 */
9551 make_const = false;
9552 if (arm_feature(env, ARM_FEATURE_EL3)) {
9553 /*
9554 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9555 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9556 */
9557 int min_el = ctz32(r->access) / 2;
9558 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9559 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9560 return;
9561 }
9562 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9563 }
9564 } else {
9565 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9566 ? PL2_RW : PL1_RW);
9567 if ((r->access & max_el) == 0) {
9568 return;
9569 }
9570 }
9571
9572 /* Combine cpreg and name into one allocation. */
9573 name_len = strlen(name) + 1;
9574 r2 = g_malloc(sizeof(*r2) + name_len);
9575 *r2 = *r;
9576 r2->name = memcpy(r2 + 1, name, name_len);
9577
9578 /*
9579 * Update fields to match the instantiation, overwiting wildcards
9580 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9581 */
9582 r2->cp = cp;
9583 r2->crm = crm;
9584 r2->opc1 = opc1;
9585 r2->opc2 = opc2;
9586 r2->state = state;
9587 r2->secure = secstate;
9588 if (opaque) {
9589 r2->opaque = opaque;
9590 }
9591
9592 if (make_const) {
9593 /* This should not have been a very special register to begin. */
9594 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9595 assert(old_special == 0 || old_special == ARM_CP_NOP);
9596 /*
9597 * Set the special function to CONST, retaining the other flags.
9598 * This is important for e.g. ARM_CP_SVE so that we still
9599 * take the SVE trap if CPTR_EL3.EZ == 0.
9600 */
9601 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9602 /*
9603 * Usually, these registers become RES0, but there are a few
9604 * special cases like VPIDR_EL2 which have a constant non-zero
9605 * value with writes ignored.
9606 */
9607 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9608 r2->resetvalue = 0;
9609 }
9610 /*
9611 * ARM_CP_CONST has precedence, so removing the callbacks and
9612 * offsets are not strictly necessary, but it is potentially
9613 * less confusing to debug later.
9614 */
9615 r2->readfn = NULL;
9616 r2->writefn = NULL;
9617 r2->raw_readfn = NULL;
9618 r2->raw_writefn = NULL;
9619 r2->resetfn = NULL;
9620 r2->fieldoffset = 0;
9621 r2->bank_fieldoffsets[0] = 0;
9622 r2->bank_fieldoffsets[1] = 0;
9623 } else {
9624 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9625
9626 if (isbanked) {
9627 /*
9628 * Register is banked (using both entries in array).
9629 * Overwriting fieldoffset as the array is only used to define
9630 * banked registers but later only fieldoffset is used.
9631 */
9632 r2->fieldoffset = r->bank_fieldoffsets[ns];
9633 }
9634 if (state == ARM_CP_STATE_AA32) {
9635 if (isbanked) {
9636 /*
9637 * If the register is banked then we don't need to migrate or
9638 * reset the 32-bit instance in certain cases:
9639 *
9640 * 1) If the register has both 32-bit and 64-bit instances
9641 * then we can count on the 64-bit instance taking care
9642 * of the non-secure bank.
9643 * 2) If ARMv8 is enabled then we can count on a 64-bit
9644 * version taking care of the secure bank. This requires
9645 * that separate 32 and 64-bit definitions are provided.
9646 */
9647 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9648 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9649 r2->type |= ARM_CP_ALIAS;
9650 }
9651 } else if ((secstate != r->secure) && !ns) {
9652 /*
9653 * The register is not banked so we only want to allow
9654 * migration of the non-secure instance.
9655 */
9656 r2->type |= ARM_CP_ALIAS;
9657 }
9658
9659 if (HOST_BIG_ENDIAN &&
9660 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9661 r2->fieldoffset += sizeof(uint32_t);
9662 }
9663 }
9664 }
9665
9666 /*
9667 * By convention, for wildcarded registers only the first
9668 * entry is used for migration; the others are marked as
9669 * ALIAS so we don't try to transfer the register
9670 * multiple times. Special registers (ie NOP/WFI) are
9671 * never migratable and not even raw-accessible.
9672 */
9673 if (r2->type & ARM_CP_SPECIAL_MASK) {
9674 r2->type |= ARM_CP_NO_RAW;
9675 }
9676 if (((r->crm == CP_ANY) && crm != 0) ||
9677 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9678 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9679 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9680 }
9681
9682 /*
9683 * Check that raw accesses are either forbidden or handled. Note that
9684 * we can't assert this earlier because the setup of fieldoffset for
9685 * banked registers has to be done first.
9686 */
9687 if (!(r2->type & ARM_CP_NO_RAW)) {
9688 assert(!raw_accessors_invalid(r2));
9689 }
9690
9691 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9692 }
9693
9694
9695 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9696 const ARMCPRegInfo *r, void *opaque)
9697 {
9698 /*
9699 * Define implementations of coprocessor registers.
9700 * We store these in a hashtable because typically
9701 * there are less than 150 registers in a space which
9702 * is 16*16*16*8*8 = 262144 in size.
9703 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9704 * If a register is defined twice then the second definition is
9705 * used, so this can be used to define some generic registers and
9706 * then override them with implementation specific variations.
9707 * At least one of the original and the second definition should
9708 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9709 * against accidental use.
9710 *
9711 * The state field defines whether the register is to be
9712 * visible in the AArch32 or AArch64 execution state. If the
9713 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9714 * reginfo structure for the AArch32 view, which sees the lower
9715 * 32 bits of the 64 bit register.
9716 *
9717 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9718 * be wildcarded. AArch64 registers are always considered to be 64
9719 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9720 * the register, if any.
9721 */
9722 int crm, opc1, opc2;
9723 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9724 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9725 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9726 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9727 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9728 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9729 CPState state;
9730
9731 /* 64 bit registers have only CRm and Opc1 fields */
9732 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9733 /* op0 only exists in the AArch64 encodings */
9734 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9735 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9736 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9737 /*
9738 * This API is only for Arm's system coprocessors (14 and 15) or
9739 * (M-profile or v7A-and-earlier only) for implementation defined
9740 * coprocessors in the range 0..7. Our decode assumes this, since
9741 * 8..13 can be used for other insns including VFP and Neon. See
9742 * valid_cp() in translate.c. Assert here that we haven't tried
9743 * to use an invalid coprocessor number.
9744 */
9745 switch (r->state) {
9746 case ARM_CP_STATE_BOTH:
9747 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9748 if (r->cp == 0) {
9749 break;
9750 }
9751 /* fall through */
9752 case ARM_CP_STATE_AA32:
9753 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9754 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9755 assert(r->cp >= 14 && r->cp <= 15);
9756 } else {
9757 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9758 }
9759 break;
9760 case ARM_CP_STATE_AA64:
9761 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9762 break;
9763 default:
9764 g_assert_not_reached();
9765 }
9766 /*
9767 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9768 * encodes a minimum access level for the register. We roll this
9769 * runtime check into our general permission check code, so check
9770 * here that the reginfo's specified permissions are strict enough
9771 * to encompass the generic architectural permission check.
9772 */
9773 if (r->state != ARM_CP_STATE_AA32) {
9774 CPAccessRights mask;
9775 switch (r->opc1) {
9776 case 0:
9777 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9778 mask = PL0U_R | PL1_RW;
9779 break;
9780 case 1: case 2:
9781 /* min_EL EL1 */
9782 mask = PL1_RW;
9783 break;
9784 case 3:
9785 /* min_EL EL0 */
9786 mask = PL0_RW;
9787 break;
9788 case 4:
9789 case 5:
9790 /* min_EL EL2 */
9791 mask = PL2_RW;
9792 break;
9793 case 6:
9794 /* min_EL EL3 */
9795 mask = PL3_RW;
9796 break;
9797 case 7:
9798 /* min_EL EL1, secure mode only (we don't check the latter) */
9799 mask = PL1_RW;
9800 break;
9801 default:
9802 /* broken reginfo with out-of-range opc1 */
9803 g_assert_not_reached();
9804 }
9805 /* assert our permissions are not too lax (stricter is fine) */
9806 assert((r->access & ~mask) == 0);
9807 }
9808
9809 /*
9810 * Check that the register definition has enough info to handle
9811 * reads and writes if they are permitted.
9812 */
9813 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9814 if (r->access & PL3_R) {
9815 assert((r->fieldoffset ||
9816 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9817 r->readfn);
9818 }
9819 if (r->access & PL3_W) {
9820 assert((r->fieldoffset ||
9821 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9822 r->writefn);
9823 }
9824 }
9825
9826 for (crm = crmmin; crm <= crmmax; crm++) {
9827 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9828 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9829 for (state = ARM_CP_STATE_AA32;
9830 state <= ARM_CP_STATE_AA64; state++) {
9831 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9832 continue;
9833 }
9834 if (state == ARM_CP_STATE_AA32) {
9835 /*
9836 * Under AArch32 CP registers can be common
9837 * (same for secure and non-secure world) or banked.
9838 */
9839 char *name;
9840
9841 switch (r->secure) {
9842 case ARM_CP_SECSTATE_S:
9843 case ARM_CP_SECSTATE_NS:
9844 add_cpreg_to_hashtable(cpu, r, opaque, state,
9845 r->secure, crm, opc1, opc2,
9846 r->name);
9847 break;
9848 case ARM_CP_SECSTATE_BOTH:
9849 name = g_strdup_printf("%s_S", r->name);
9850 add_cpreg_to_hashtable(cpu, r, opaque, state,
9851 ARM_CP_SECSTATE_S,
9852 crm, opc1, opc2, name);
9853 g_free(name);
9854 add_cpreg_to_hashtable(cpu, r, opaque, state,
9855 ARM_CP_SECSTATE_NS,
9856 crm, opc1, opc2, r->name);
9857 break;
9858 default:
9859 g_assert_not_reached();
9860 }
9861 } else {
9862 /*
9863 * AArch64 registers get mapped to non-secure instance
9864 * of AArch32
9865 */
9866 add_cpreg_to_hashtable(cpu, r, opaque, state,
9867 ARM_CP_SECSTATE_NS,
9868 crm, opc1, opc2, r->name);
9869 }
9870 }
9871 }
9872 }
9873 }
9874 }
9875
9876 /* Define a whole list of registers */
9877 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9878 void *opaque, size_t len)
9879 {
9880 size_t i;
9881 for (i = 0; i < len; ++i) {
9882 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9883 }
9884 }
9885
9886 /*
9887 * Modify ARMCPRegInfo for access from userspace.
9888 *
9889 * This is a data driven modification directed by
9890 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9891 * user-space cannot alter any values and dynamic values pertaining to
9892 * execution state are hidden from user space view anyway.
9893 */
9894 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9895 const ARMCPRegUserSpaceInfo *mods,
9896 size_t mods_len)
9897 {
9898 for (size_t mi = 0; mi < mods_len; ++mi) {
9899 const ARMCPRegUserSpaceInfo *m = mods + mi;
9900 GPatternSpec *pat = NULL;
9901
9902 if (m->is_glob) {
9903 pat = g_pattern_spec_new(m->name);
9904 }
9905 for (size_t ri = 0; ri < regs_len; ++ri) {
9906 ARMCPRegInfo *r = regs + ri;
9907
9908 if (pat && g_pattern_match_string(pat, r->name)) {
9909 r->type = ARM_CP_CONST;
9910 r->access = PL0U_R;
9911 r->resetvalue = 0;
9912 /* continue */
9913 } else if (strcmp(r->name, m->name) == 0) {
9914 r->type = ARM_CP_CONST;
9915 r->access = PL0U_R;
9916 r->resetvalue &= m->exported_bits;
9917 r->resetvalue |= m->fixed_bits;
9918 break;
9919 }
9920 }
9921 if (pat) {
9922 g_pattern_spec_free(pat);
9923 }
9924 }
9925 }
9926
9927 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9928 {
9929 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9930 }
9931
9932 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9933 uint64_t value)
9934 {
9935 /* Helper coprocessor write function for write-ignore registers */
9936 }
9937
9938 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9939 {
9940 /* Helper coprocessor write function for read-as-zero registers */
9941 return 0;
9942 }
9943
9944 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9945 {
9946 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9947 }
9948
9949 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9950 {
9951 /*
9952 * Return true if it is not valid for us to switch to
9953 * this CPU mode (ie all the UNPREDICTABLE cases in
9954 * the ARM ARM CPSRWriteByInstr pseudocode).
9955 */
9956
9957 /* Changes to or from Hyp via MSR and CPS are illegal. */
9958 if (write_type == CPSRWriteByInstr &&
9959 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9960 mode == ARM_CPU_MODE_HYP)) {
9961 return 1;
9962 }
9963
9964 switch (mode) {
9965 case ARM_CPU_MODE_USR:
9966 return 0;
9967 case ARM_CPU_MODE_SYS:
9968 case ARM_CPU_MODE_SVC:
9969 case ARM_CPU_MODE_ABT:
9970 case ARM_CPU_MODE_UND:
9971 case ARM_CPU_MODE_IRQ:
9972 case ARM_CPU_MODE_FIQ:
9973 /*
9974 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9975 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9976 */
9977 /*
9978 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9979 * and CPS are treated as illegal mode changes.
9980 */
9981 if (write_type == CPSRWriteByInstr &&
9982 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9983 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9984 return 1;
9985 }
9986 return 0;
9987 case ARM_CPU_MODE_HYP:
9988 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9989 case ARM_CPU_MODE_MON:
9990 return arm_current_el(env) < 3;
9991 default:
9992 return 1;
9993 }
9994 }
9995
9996 uint32_t cpsr_read(CPUARMState *env)
9997 {
9998 int ZF;
9999 ZF = (env->ZF == 0);
10000 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10001 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10002 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10003 | ((env->condexec_bits & 0xfc) << 8)
10004 | (env->GE << 16) | (env->daif & CPSR_AIF);
10005 }
10006
10007 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10008 CPSRWriteType write_type)
10009 {
10010 uint32_t changed_daif;
10011 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10012 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10013
10014 if (mask & CPSR_NZCV) {
10015 env->ZF = (~val) & CPSR_Z;
10016 env->NF = val;
10017 env->CF = (val >> 29) & 1;
10018 env->VF = (val << 3) & 0x80000000;
10019 }
10020 if (mask & CPSR_Q) {
10021 env->QF = ((val & CPSR_Q) != 0);
10022 }
10023 if (mask & CPSR_T) {
10024 env->thumb = ((val & CPSR_T) != 0);
10025 }
10026 if (mask & CPSR_IT_0_1) {
10027 env->condexec_bits &= ~3;
10028 env->condexec_bits |= (val >> 25) & 3;
10029 }
10030 if (mask & CPSR_IT_2_7) {
10031 env->condexec_bits &= 3;
10032 env->condexec_bits |= (val >> 8) & 0xfc;
10033 }
10034 if (mask & CPSR_GE) {
10035 env->GE = (val >> 16) & 0xf;
10036 }
10037
10038 /*
10039 * In a V7 implementation that includes the security extensions but does
10040 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10041 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10042 * bits respectively.
10043 *
10044 * In a V8 implementation, it is permitted for privileged software to
10045 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10046 */
10047 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10048 arm_feature(env, ARM_FEATURE_EL3) &&
10049 !arm_feature(env, ARM_FEATURE_EL2) &&
10050 !arm_is_secure(env)) {
10051
10052 changed_daif = (env->daif ^ val) & mask;
10053
10054 if (changed_daif & CPSR_A) {
10055 /*
10056 * Check to see if we are allowed to change the masking of async
10057 * abort exceptions from a non-secure state.
10058 */
10059 if (!(env->cp15.scr_el3 & SCR_AW)) {
10060 qemu_log_mask(LOG_GUEST_ERROR,
10061 "Ignoring attempt to switch CPSR_A flag from "
10062 "non-secure world with SCR.AW bit clear\n");
10063 mask &= ~CPSR_A;
10064 }
10065 }
10066
10067 if (changed_daif & CPSR_F) {
10068 /*
10069 * Check to see if we are allowed to change the masking of FIQ
10070 * exceptions from a non-secure state.
10071 */
10072 if (!(env->cp15.scr_el3 & SCR_FW)) {
10073 qemu_log_mask(LOG_GUEST_ERROR,
10074 "Ignoring attempt to switch CPSR_F flag from "
10075 "non-secure world with SCR.FW bit clear\n");
10076 mask &= ~CPSR_F;
10077 }
10078
10079 /*
10080 * Check whether non-maskable FIQ (NMFI) support is enabled.
10081 * If this bit is set software is not allowed to mask
10082 * FIQs, but is allowed to set CPSR_F to 0.
10083 */
10084 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10085 (val & CPSR_F)) {
10086 qemu_log_mask(LOG_GUEST_ERROR,
10087 "Ignoring attempt to enable CPSR_F flag "
10088 "(non-maskable FIQ [NMFI] support enabled)\n");
10089 mask &= ~CPSR_F;
10090 }
10091 }
10092 }
10093
10094 env->daif &= ~(CPSR_AIF & mask);
10095 env->daif |= val & CPSR_AIF & mask;
10096
10097 if (write_type != CPSRWriteRaw &&
10098 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10099 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10100 /*
10101 * Note that we can only get here in USR mode if this is a
10102 * gdb stub write; for this case we follow the architectural
10103 * behaviour for guest writes in USR mode of ignoring an attempt
10104 * to switch mode. (Those are caught by translate.c for writes
10105 * triggered by guest instructions.)
10106 */
10107 mask &= ~CPSR_M;
10108 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10109 /*
10110 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10111 * v7, and has defined behaviour in v8:
10112 * + leave CPSR.M untouched
10113 * + allow changes to the other CPSR fields
10114 * + set PSTATE.IL
10115 * For user changes via the GDB stub, we don't set PSTATE.IL,
10116 * as this would be unnecessarily harsh for a user error.
10117 */
10118 mask &= ~CPSR_M;
10119 if (write_type != CPSRWriteByGDBStub &&
10120 arm_feature(env, ARM_FEATURE_V8)) {
10121 mask |= CPSR_IL;
10122 val |= CPSR_IL;
10123 }
10124 qemu_log_mask(LOG_GUEST_ERROR,
10125 "Illegal AArch32 mode switch attempt from %s to %s\n",
10126 aarch32_mode_name(env->uncached_cpsr),
10127 aarch32_mode_name(val));
10128 } else {
10129 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10130 write_type == CPSRWriteExceptionReturn ?
10131 "Exception return from AArch32" :
10132 "AArch32 mode switch from",
10133 aarch32_mode_name(env->uncached_cpsr),
10134 aarch32_mode_name(val), env->regs[15]);
10135 switch_mode(env, val & CPSR_M);
10136 }
10137 }
10138 mask &= ~CACHED_CPSR_BITS;
10139 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10140 if (tcg_enabled() && rebuild_hflags) {
10141 arm_rebuild_hflags(env);
10142 }
10143 }
10144
10145 /* Sign/zero extend */
10146 uint32_t HELPER(sxtb16)(uint32_t x)
10147 {
10148 uint32_t res;
10149 res = (uint16_t)(int8_t)x;
10150 res |= (uint32_t)(int8_t)(x >> 16) << 16;
10151 return res;
10152 }
10153
10154 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10155 {
10156 /*
10157 * Take a division-by-zero exception if necessary; otherwise return
10158 * to get the usual non-trapping division behaviour (result of 0)
10159 */
10160 if (arm_feature(env, ARM_FEATURE_M)
10161 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10162 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10163 }
10164 }
10165
10166 uint32_t HELPER(uxtb16)(uint32_t x)
10167 {
10168 uint32_t res;
10169 res = (uint16_t)(uint8_t)x;
10170 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10171 return res;
10172 }
10173
10174 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10175 {
10176 if (den == 0) {
10177 handle_possible_div0_trap(env, GETPC());
10178 return 0;
10179 }
10180 if (num == INT_MIN && den == -1) {
10181 return INT_MIN;
10182 }
10183 return num / den;
10184 }
10185
10186 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10187 {
10188 if (den == 0) {
10189 handle_possible_div0_trap(env, GETPC());
10190 return 0;
10191 }
10192 return num / den;
10193 }
10194
10195 uint32_t HELPER(rbit)(uint32_t x)
10196 {
10197 return revbit32(x);
10198 }
10199
10200 #ifdef CONFIG_USER_ONLY
10201
10202 static void switch_mode(CPUARMState *env, int mode)
10203 {
10204 ARMCPU *cpu = env_archcpu(env);
10205
10206 if (mode != ARM_CPU_MODE_USR) {
10207 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10208 }
10209 }
10210
10211 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10212 uint32_t cur_el, bool secure)
10213 {
10214 return 1;
10215 }
10216
10217 void aarch64_sync_64_to_32(CPUARMState *env)
10218 {
10219 g_assert_not_reached();
10220 }
10221
10222 #else
10223
10224 static void switch_mode(CPUARMState *env, int mode)
10225 {
10226 int old_mode;
10227 int i;
10228
10229 old_mode = env->uncached_cpsr & CPSR_M;
10230 if (mode == old_mode) {
10231 return;
10232 }
10233
10234 if (old_mode == ARM_CPU_MODE_FIQ) {
10235 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10236 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10237 } else if (mode == ARM_CPU_MODE_FIQ) {
10238 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10239 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10240 }
10241
10242 i = bank_number(old_mode);
10243 env->banked_r13[i] = env->regs[13];
10244 env->banked_spsr[i] = env->spsr;
10245
10246 i = bank_number(mode);
10247 env->regs[13] = env->banked_r13[i];
10248 env->spsr = env->banked_spsr[i];
10249
10250 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10251 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10252 }
10253
10254 /*
10255 * Physical Interrupt Target EL Lookup Table
10256 *
10257 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10258 *
10259 * The below multi-dimensional table is used for looking up the target
10260 * exception level given numerous condition criteria. Specifically, the
10261 * target EL is based on SCR and HCR routing controls as well as the
10262 * currently executing EL and secure state.
10263 *
10264 * Dimensions:
10265 * target_el_table[2][2][2][2][2][4]
10266 * | | | | | +--- Current EL
10267 * | | | | +------ Non-secure(0)/Secure(1)
10268 * | | | +--------- HCR mask override
10269 * | | +------------ SCR exec state control
10270 * | +--------------- SCR mask override
10271 * +------------------ 32-bit(0)/64-bit(1) EL3
10272 *
10273 * The table values are as such:
10274 * 0-3 = EL0-EL3
10275 * -1 = Cannot occur
10276 *
10277 * The ARM ARM target EL table includes entries indicating that an "exception
10278 * is not taken". The two cases where this is applicable are:
10279 * 1) An exception is taken from EL3 but the SCR does not have the exception
10280 * routed to EL3.
10281 * 2) An exception is taken from EL2 but the HCR does not have the exception
10282 * routed to EL2.
10283 * In these two cases, the below table contain a target of EL1. This value is
10284 * returned as it is expected that the consumer of the table data will check
10285 * for "target EL >= current EL" to ensure the exception is not taken.
10286 *
10287 * SCR HCR
10288 * 64 EA AMO From
10289 * BIT IRQ IMO Non-secure Secure
10290 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10291 */
10292 static const int8_t target_el_table[2][2][2][2][2][4] = {
10293 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10294 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10295 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10296 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10297 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10298 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10299 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10300 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10301 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10302 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10303 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10304 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10305 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10306 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10307 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10308 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10309 };
10310
10311 /*
10312 * Determine the target EL for physical exceptions
10313 */
10314 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10315 uint32_t cur_el, bool secure)
10316 {
10317 CPUARMState *env = cpu_env(cs);
10318 bool rw;
10319 bool scr;
10320 bool hcr;
10321 int target_el;
10322 /* Is the highest EL AArch64? */
10323 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10324 uint64_t hcr_el2;
10325
10326 if (arm_feature(env, ARM_FEATURE_EL3)) {
10327 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10328 } else {
10329 /*
10330 * Either EL2 is the highest EL (and so the EL2 register width
10331 * is given by is64); or there is no EL2 or EL3, in which case
10332 * the value of 'rw' does not affect the table lookup anyway.
10333 */
10334 rw = is64;
10335 }
10336
10337 hcr_el2 = arm_hcr_el2_eff(env);
10338 switch (excp_idx) {
10339 case EXCP_IRQ:
10340 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10341 hcr = hcr_el2 & HCR_IMO;
10342 break;
10343 case EXCP_FIQ:
10344 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10345 hcr = hcr_el2 & HCR_FMO;
10346 break;
10347 default:
10348 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10349 hcr = hcr_el2 & HCR_AMO;
10350 break;
10351 };
10352
10353 /*
10354 * For these purposes, TGE and AMO/IMO/FMO both force the
10355 * interrupt to EL2. Fold TGE into the bit extracted above.
10356 */
10357 hcr |= (hcr_el2 & HCR_TGE) != 0;
10358
10359 /* Perform a table-lookup for the target EL given the current state */
10360 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10361
10362 assert(target_el > 0);
10363
10364 return target_el;
10365 }
10366
10367 void arm_log_exception(CPUState *cs)
10368 {
10369 int idx = cs->exception_index;
10370
10371 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10372 const char *exc = NULL;
10373 static const char * const excnames[] = {
10374 [EXCP_UDEF] = "Undefined Instruction",
10375 [EXCP_SWI] = "SVC",
10376 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10377 [EXCP_DATA_ABORT] = "Data Abort",
10378 [EXCP_IRQ] = "IRQ",
10379 [EXCP_FIQ] = "FIQ",
10380 [EXCP_BKPT] = "Breakpoint",
10381 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10382 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10383 [EXCP_HVC] = "Hypervisor Call",
10384 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10385 [EXCP_SMC] = "Secure Monitor Call",
10386 [EXCP_VIRQ] = "Virtual IRQ",
10387 [EXCP_VFIQ] = "Virtual FIQ",
10388 [EXCP_SEMIHOST] = "Semihosting call",
10389 [EXCP_NOCP] = "v7M NOCP UsageFault",
10390 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10391 [EXCP_STKOF] = "v8M STKOF UsageFault",
10392 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10393 [EXCP_LSERR] = "v8M LSERR UsageFault",
10394 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10395 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10396 [EXCP_VSERR] = "Virtual SERR",
10397 [EXCP_GPC] = "Granule Protection Check",
10398 };
10399
10400 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10401 exc = excnames[idx];
10402 }
10403 if (!exc) {
10404 exc = "unknown";
10405 }
10406 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10407 idx, exc, cs->cpu_index);
10408 }
10409 }
10410
10411 /*
10412 * Function used to synchronize QEMU's AArch64 register set with AArch32
10413 * register set. This is necessary when switching between AArch32 and AArch64
10414 * execution state.
10415 */
10416 void aarch64_sync_32_to_64(CPUARMState *env)
10417 {
10418 int i;
10419 uint32_t mode = env->uncached_cpsr & CPSR_M;
10420
10421 /* We can blanket copy R[0:7] to X[0:7] */
10422 for (i = 0; i < 8; i++) {
10423 env->xregs[i] = env->regs[i];
10424 }
10425
10426 /*
10427 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10428 * Otherwise, they come from the banked user regs.
10429 */
10430 if (mode == ARM_CPU_MODE_FIQ) {
10431 for (i = 8; i < 13; i++) {
10432 env->xregs[i] = env->usr_regs[i - 8];
10433 }
10434 } else {
10435 for (i = 8; i < 13; i++) {
10436 env->xregs[i] = env->regs[i];
10437 }
10438 }
10439
10440 /*
10441 * Registers x13-x23 are the various mode SP and FP registers. Registers
10442 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10443 * from the mode banked register.
10444 */
10445 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10446 env->xregs[13] = env->regs[13];
10447 env->xregs[14] = env->regs[14];
10448 } else {
10449 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10450 /* HYP is an exception in that it is copied from r14 */
10451 if (mode == ARM_CPU_MODE_HYP) {
10452 env->xregs[14] = env->regs[14];
10453 } else {
10454 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10455 }
10456 }
10457
10458 if (mode == ARM_CPU_MODE_HYP) {
10459 env->xregs[15] = env->regs[13];
10460 } else {
10461 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10462 }
10463
10464 if (mode == ARM_CPU_MODE_IRQ) {
10465 env->xregs[16] = env->regs[14];
10466 env->xregs[17] = env->regs[13];
10467 } else {
10468 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10469 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10470 }
10471
10472 if (mode == ARM_CPU_MODE_SVC) {
10473 env->xregs[18] = env->regs[14];
10474 env->xregs[19] = env->regs[13];
10475 } else {
10476 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10477 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10478 }
10479
10480 if (mode == ARM_CPU_MODE_ABT) {
10481 env->xregs[20] = env->regs[14];
10482 env->xregs[21] = env->regs[13];
10483 } else {
10484 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10485 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10486 }
10487
10488 if (mode == ARM_CPU_MODE_UND) {
10489 env->xregs[22] = env->regs[14];
10490 env->xregs[23] = env->regs[13];
10491 } else {
10492 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10493 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10494 }
10495
10496 /*
10497 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10498 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10499 * FIQ bank for r8-r14.
10500 */
10501 if (mode == ARM_CPU_MODE_FIQ) {
10502 for (i = 24; i < 31; i++) {
10503 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10504 }
10505 } else {
10506 for (i = 24; i < 29; i++) {
10507 env->xregs[i] = env->fiq_regs[i - 24];
10508 }
10509 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10510 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10511 }
10512
10513 env->pc = env->regs[15];
10514 }
10515
10516 /*
10517 * Function used to synchronize QEMU's AArch32 register set with AArch64
10518 * register set. This is necessary when switching between AArch32 and AArch64
10519 * execution state.
10520 */
10521 void aarch64_sync_64_to_32(CPUARMState *env)
10522 {
10523 int i;
10524 uint32_t mode = env->uncached_cpsr & CPSR_M;
10525
10526 /* We can blanket copy X[0:7] to R[0:7] */
10527 for (i = 0; i < 8; i++) {
10528 env->regs[i] = env->xregs[i];
10529 }
10530
10531 /*
10532 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10533 * Otherwise, we copy x8-x12 into the banked user regs.
10534 */
10535 if (mode == ARM_CPU_MODE_FIQ) {
10536 for (i = 8; i < 13; i++) {
10537 env->usr_regs[i - 8] = env->xregs[i];
10538 }
10539 } else {
10540 for (i = 8; i < 13; i++) {
10541 env->regs[i] = env->xregs[i];
10542 }
10543 }
10544
10545 /*
10546 * Registers r13 & r14 depend on the current mode.
10547 * If we are in a given mode, we copy the corresponding x registers to r13
10548 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10549 * for the mode.
10550 */
10551 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10552 env->regs[13] = env->xregs[13];
10553 env->regs[14] = env->xregs[14];
10554 } else {
10555 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10556
10557 /*
10558 * HYP is an exception in that it does not have its own banked r14 but
10559 * shares the USR r14
10560 */
10561 if (mode == ARM_CPU_MODE_HYP) {
10562 env->regs[14] = env->xregs[14];
10563 } else {
10564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10565 }
10566 }
10567
10568 if (mode == ARM_CPU_MODE_HYP) {
10569 env->regs[13] = env->xregs[15];
10570 } else {
10571 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10572 }
10573
10574 if (mode == ARM_CPU_MODE_IRQ) {
10575 env->regs[14] = env->xregs[16];
10576 env->regs[13] = env->xregs[17];
10577 } else {
10578 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10579 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10580 }
10581
10582 if (mode == ARM_CPU_MODE_SVC) {
10583 env->regs[14] = env->xregs[18];
10584 env->regs[13] = env->xregs[19];
10585 } else {
10586 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10587 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10588 }
10589
10590 if (mode == ARM_CPU_MODE_ABT) {
10591 env->regs[14] = env->xregs[20];
10592 env->regs[13] = env->xregs[21];
10593 } else {
10594 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10595 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10596 }
10597
10598 if (mode == ARM_CPU_MODE_UND) {
10599 env->regs[14] = env->xregs[22];
10600 env->regs[13] = env->xregs[23];
10601 } else {
10602 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10603 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10604 }
10605
10606 /*
10607 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10608 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10609 * FIQ bank for r8-r14.
10610 */
10611 if (mode == ARM_CPU_MODE_FIQ) {
10612 for (i = 24; i < 31; i++) {
10613 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10614 }
10615 } else {
10616 for (i = 24; i < 29; i++) {
10617 env->fiq_regs[i - 24] = env->xregs[i];
10618 }
10619 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10620 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10621 }
10622
10623 env->regs[15] = env->pc;
10624 }
10625
10626 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10627 uint32_t mask, uint32_t offset,
10628 uint32_t newpc)
10629 {
10630 int new_el;
10631
10632 /* Change the CPU state so as to actually take the exception. */
10633 switch_mode(env, new_mode);
10634
10635 /*
10636 * For exceptions taken to AArch32 we must clear the SS bit in both
10637 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10638 */
10639 env->pstate &= ~PSTATE_SS;
10640 env->spsr = cpsr_read(env);
10641 /* Clear IT bits. */
10642 env->condexec_bits = 0;
10643 /* Switch to the new mode, and to the correct instruction set. */
10644 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10645
10646 /* This must be after mode switching. */
10647 new_el = arm_current_el(env);
10648
10649 /* Set new mode endianness */
10650 env->uncached_cpsr &= ~CPSR_E;
10651 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10652 env->uncached_cpsr |= CPSR_E;
10653 }
10654 /* J and IL must always be cleared for exception entry */
10655 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10656 env->daif |= mask;
10657
10658 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10659 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10660 env->uncached_cpsr |= CPSR_SSBS;
10661 } else {
10662 env->uncached_cpsr &= ~CPSR_SSBS;
10663 }
10664 }
10665
10666 if (new_mode == ARM_CPU_MODE_HYP) {
10667 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10668 env->elr_el[2] = env->regs[15];
10669 } else {
10670 /* CPSR.PAN is normally preserved preserved unless... */
10671 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10672 switch (new_el) {
10673 case 3:
10674 if (!arm_is_secure_below_el3(env)) {
10675 /* ... the target is EL3, from non-secure state. */
10676 env->uncached_cpsr &= ~CPSR_PAN;
10677 break;
10678 }
10679 /* ... the target is EL3, from secure state ... */
10680 /* fall through */
10681 case 1:
10682 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10683 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10684 env->uncached_cpsr |= CPSR_PAN;
10685 }
10686 break;
10687 }
10688 }
10689 /*
10690 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10691 * and we should just guard the thumb mode on V4
10692 */
10693 if (arm_feature(env, ARM_FEATURE_V4T)) {
10694 env->thumb =
10695 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10696 }
10697 env->regs[14] = env->regs[15] + offset;
10698 }
10699 env->regs[15] = newpc;
10700
10701 if (tcg_enabled()) {
10702 arm_rebuild_hflags(env);
10703 }
10704 }
10705
10706 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10707 {
10708 /*
10709 * Handle exception entry to Hyp mode; this is sufficiently
10710 * different to entry to other AArch32 modes that we handle it
10711 * separately here.
10712 *
10713 * The vector table entry used is always the 0x14 Hyp mode entry point,
10714 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10715 * The offset applied to the preferred return address is always zero
10716 * (see DDI0487C.a section G1.12.3).
10717 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10718 */
10719 uint32_t addr, mask;
10720 ARMCPU *cpu = ARM_CPU(cs);
10721 CPUARMState *env = &cpu->env;
10722
10723 switch (cs->exception_index) {
10724 case EXCP_UDEF:
10725 addr = 0x04;
10726 break;
10727 case EXCP_SWI:
10728 addr = 0x08;
10729 break;
10730 case EXCP_BKPT:
10731 /* Fall through to prefetch abort. */
10732 case EXCP_PREFETCH_ABORT:
10733 env->cp15.ifar_s = env->exception.vaddress;
10734 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10735 (uint32_t)env->exception.vaddress);
10736 addr = 0x0c;
10737 break;
10738 case EXCP_DATA_ABORT:
10739 env->cp15.dfar_s = env->exception.vaddress;
10740 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10741 (uint32_t)env->exception.vaddress);
10742 addr = 0x10;
10743 break;
10744 case EXCP_IRQ:
10745 addr = 0x18;
10746 break;
10747 case EXCP_FIQ:
10748 addr = 0x1c;
10749 break;
10750 case EXCP_HVC:
10751 addr = 0x08;
10752 break;
10753 case EXCP_HYP_TRAP:
10754 addr = 0x14;
10755 break;
10756 default:
10757 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10758 }
10759
10760 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10761 if (!arm_feature(env, ARM_FEATURE_V8)) {
10762 /*
10763 * QEMU syndrome values are v8-style. v7 has the IL bit
10764 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10765 * If this is a v7 CPU, squash the IL bit in those cases.
10766 */
10767 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10768 (cs->exception_index == EXCP_DATA_ABORT &&
10769 !(env->exception.syndrome & ARM_EL_ISV)) ||
10770 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10771 env->exception.syndrome &= ~ARM_EL_IL;
10772 }
10773 }
10774 env->cp15.esr_el[2] = env->exception.syndrome;
10775 }
10776
10777 if (arm_current_el(env) != 2 && addr < 0x14) {
10778 addr = 0x14;
10779 }
10780
10781 mask = 0;
10782 if (!(env->cp15.scr_el3 & SCR_EA)) {
10783 mask |= CPSR_A;
10784 }
10785 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10786 mask |= CPSR_I;
10787 }
10788 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10789 mask |= CPSR_F;
10790 }
10791
10792 addr += env->cp15.hvbar;
10793
10794 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10795 }
10796
10797 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10798 {
10799 ARMCPU *cpu = ARM_CPU(cs);
10800 CPUARMState *env = &cpu->env;
10801 uint32_t addr;
10802 uint32_t mask;
10803 int new_mode;
10804 uint32_t offset;
10805 uint32_t moe;
10806
10807 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10808 switch (syn_get_ec(env->exception.syndrome)) {
10809 case EC_BREAKPOINT:
10810 case EC_BREAKPOINT_SAME_EL:
10811 moe = 1;
10812 break;
10813 case EC_WATCHPOINT:
10814 case EC_WATCHPOINT_SAME_EL:
10815 moe = 10;
10816 break;
10817 case EC_AA32_BKPT:
10818 moe = 3;
10819 break;
10820 case EC_VECTORCATCH:
10821 moe = 5;
10822 break;
10823 default:
10824 moe = 0;
10825 break;
10826 }
10827
10828 if (moe) {
10829 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10830 }
10831
10832 if (env->exception.target_el == 2) {
10833 arm_cpu_do_interrupt_aarch32_hyp(cs);
10834 return;
10835 }
10836
10837 switch (cs->exception_index) {
10838 case EXCP_UDEF:
10839 new_mode = ARM_CPU_MODE_UND;
10840 addr = 0x04;
10841 mask = CPSR_I;
10842 if (env->thumb) {
10843 offset = 2;
10844 } else {
10845 offset = 4;
10846 }
10847 break;
10848 case EXCP_SWI:
10849 new_mode = ARM_CPU_MODE_SVC;
10850 addr = 0x08;
10851 mask = CPSR_I;
10852 /* The PC already points to the next instruction. */
10853 offset = 0;
10854 break;
10855 case EXCP_BKPT:
10856 /* Fall through to prefetch abort. */
10857 case EXCP_PREFETCH_ABORT:
10858 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10859 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10860 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10861 env->exception.fsr, (uint32_t)env->exception.vaddress);
10862 new_mode = ARM_CPU_MODE_ABT;
10863 addr = 0x0c;
10864 mask = CPSR_A | CPSR_I;
10865 offset = 4;
10866 break;
10867 case EXCP_DATA_ABORT:
10868 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10869 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10870 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10871 env->exception.fsr,
10872 (uint32_t)env->exception.vaddress);
10873 new_mode = ARM_CPU_MODE_ABT;
10874 addr = 0x10;
10875 mask = CPSR_A | CPSR_I;
10876 offset = 8;
10877 break;
10878 case EXCP_IRQ:
10879 new_mode = ARM_CPU_MODE_IRQ;
10880 addr = 0x18;
10881 /* Disable IRQ and imprecise data aborts. */
10882 mask = CPSR_A | CPSR_I;
10883 offset = 4;
10884 if (env->cp15.scr_el3 & SCR_IRQ) {
10885 /* IRQ routed to monitor mode */
10886 new_mode = ARM_CPU_MODE_MON;
10887 mask |= CPSR_F;
10888 }
10889 break;
10890 case EXCP_FIQ:
10891 new_mode = ARM_CPU_MODE_FIQ;
10892 addr = 0x1c;
10893 /* Disable FIQ, IRQ and imprecise data aborts. */
10894 mask = CPSR_A | CPSR_I | CPSR_F;
10895 if (env->cp15.scr_el3 & SCR_FIQ) {
10896 /* FIQ routed to monitor mode */
10897 new_mode = ARM_CPU_MODE_MON;
10898 }
10899 offset = 4;
10900 break;
10901 case EXCP_VIRQ:
10902 new_mode = ARM_CPU_MODE_IRQ;
10903 addr = 0x18;
10904 /* Disable IRQ and imprecise data aborts. */
10905 mask = CPSR_A | CPSR_I;
10906 offset = 4;
10907 break;
10908 case EXCP_VFIQ:
10909 new_mode = ARM_CPU_MODE_FIQ;
10910 addr = 0x1c;
10911 /* Disable FIQ, IRQ and imprecise data aborts. */
10912 mask = CPSR_A | CPSR_I | CPSR_F;
10913 offset = 4;
10914 break;
10915 case EXCP_VSERR:
10916 {
10917 /*
10918 * Note that this is reported as a data abort, but the DFAR
10919 * has an UNKNOWN value. Construct the SError syndrome from
10920 * AET and ExT fields.
10921 */
10922 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10923
10924 if (extended_addresses_enabled(env)) {
10925 env->exception.fsr = arm_fi_to_lfsc(&fi);
10926 } else {
10927 env->exception.fsr = arm_fi_to_sfsc(&fi);
10928 }
10929 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10930 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10931 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10932 env->exception.fsr);
10933
10934 new_mode = ARM_CPU_MODE_ABT;
10935 addr = 0x10;
10936 mask = CPSR_A | CPSR_I;
10937 offset = 8;
10938 }
10939 break;
10940 case EXCP_SMC:
10941 new_mode = ARM_CPU_MODE_MON;
10942 addr = 0x08;
10943 mask = CPSR_A | CPSR_I | CPSR_F;
10944 offset = 0;
10945 break;
10946 default:
10947 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10948 return; /* Never happens. Keep compiler happy. */
10949 }
10950
10951 if (new_mode == ARM_CPU_MODE_MON) {
10952 addr += env->cp15.mvbar;
10953 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10954 /* High vectors. When enabled, base address cannot be remapped. */
10955 addr += 0xffff0000;
10956 } else {
10957 /*
10958 * ARM v7 architectures provide a vector base address register to remap
10959 * the interrupt vector table.
10960 * This register is only followed in non-monitor mode, and is banked.
10961 * Note: only bits 31:5 are valid.
10962 */
10963 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10964 }
10965
10966 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10967 env->cp15.scr_el3 &= ~SCR_NS;
10968 }
10969
10970 take_aarch32_exception(env, new_mode, mask, offset, addr);
10971 }
10972
10973 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10974 {
10975 /*
10976 * Return the register number of the AArch64 view of the AArch32
10977 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10978 * be that of the AArch32 mode the exception came from.
10979 */
10980 int mode = env->uncached_cpsr & CPSR_M;
10981
10982 switch (aarch32_reg) {
10983 case 0 ... 7:
10984 return aarch32_reg;
10985 case 8 ... 12:
10986 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10987 case 13:
10988 switch (mode) {
10989 case ARM_CPU_MODE_USR:
10990 case ARM_CPU_MODE_SYS:
10991 return 13;
10992 case ARM_CPU_MODE_HYP:
10993 return 15;
10994 case ARM_CPU_MODE_IRQ:
10995 return 17;
10996 case ARM_CPU_MODE_SVC:
10997 return 19;
10998 case ARM_CPU_MODE_ABT:
10999 return 21;
11000 case ARM_CPU_MODE_UND:
11001 return 23;
11002 case ARM_CPU_MODE_FIQ:
11003 return 29;
11004 default:
11005 g_assert_not_reached();
11006 }
11007 case 14:
11008 switch (mode) {
11009 case ARM_CPU_MODE_USR:
11010 case ARM_CPU_MODE_SYS:
11011 case ARM_CPU_MODE_HYP:
11012 return 14;
11013 case ARM_CPU_MODE_IRQ:
11014 return 16;
11015 case ARM_CPU_MODE_SVC:
11016 return 18;
11017 case ARM_CPU_MODE_ABT:
11018 return 20;
11019 case ARM_CPU_MODE_UND:
11020 return 22;
11021 case ARM_CPU_MODE_FIQ:
11022 return 30;
11023 default:
11024 g_assert_not_reached();
11025 }
11026 case 15:
11027 return 31;
11028 default:
11029 g_assert_not_reached();
11030 }
11031 }
11032
11033 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11034 {
11035 uint32_t ret = cpsr_read(env);
11036
11037 /* Move DIT to the correct location for SPSR_ELx */
11038 if (ret & CPSR_DIT) {
11039 ret &= ~CPSR_DIT;
11040 ret |= PSTATE_DIT;
11041 }
11042 /* Merge PSTATE.SS into SPSR_ELx */
11043 ret |= env->pstate & PSTATE_SS;
11044
11045 return ret;
11046 }
11047
11048 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11049 {
11050 /* Return true if this syndrome value is a synchronous external abort */
11051 switch (syn_get_ec(syndrome)) {
11052 case EC_INSNABORT:
11053 case EC_INSNABORT_SAME_EL:
11054 case EC_DATAABORT:
11055 case EC_DATAABORT_SAME_EL:
11056 /* Look at fault status code for all the synchronous ext abort cases */
11057 switch (syndrome & 0x3f) {
11058 case 0x10:
11059 case 0x13:
11060 case 0x14:
11061 case 0x15:
11062 case 0x16:
11063 case 0x17:
11064 return true;
11065 default:
11066 return false;
11067 }
11068 default:
11069 return false;
11070 }
11071 }
11072
11073 /* Handle exception entry to a target EL which is using AArch64 */
11074 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11075 {
11076 ARMCPU *cpu = ARM_CPU(cs);
11077 CPUARMState *env = &cpu->env;
11078 unsigned int new_el = env->exception.target_el;
11079 target_ulong addr = env->cp15.vbar_el[new_el];
11080 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11081 unsigned int old_mode;
11082 unsigned int cur_el = arm_current_el(env);
11083 int rt;
11084
11085 if (tcg_enabled()) {
11086 /*
11087 * Note that new_el can never be 0. If cur_el is 0, then
11088 * el0_a64 is is_a64(), else el0_a64 is ignored.
11089 */
11090 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11091 }
11092
11093 if (cur_el < new_el) {
11094 /*
11095 * Entry vector offset depends on whether the implemented EL
11096 * immediately lower than the target level is using AArch32 or AArch64
11097 */
11098 bool is_aa64;
11099 uint64_t hcr;
11100
11101 switch (new_el) {
11102 case 3:
11103 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11104 break;
11105 case 2:
11106 hcr = arm_hcr_el2_eff(env);
11107 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11108 is_aa64 = (hcr & HCR_RW) != 0;
11109 break;
11110 }
11111 /* fall through */
11112 case 1:
11113 is_aa64 = is_a64(env);
11114 break;
11115 default:
11116 g_assert_not_reached();
11117 }
11118
11119 if (is_aa64) {
11120 addr += 0x400;
11121 } else {
11122 addr += 0x600;
11123 }
11124 } else if (pstate_read(env) & PSTATE_SP) {
11125 addr += 0x200;
11126 }
11127
11128 switch (cs->exception_index) {
11129 case EXCP_GPC:
11130 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11131 env->cp15.mfar_el3);
11132 /* fall through */
11133 case EXCP_PREFETCH_ABORT:
11134 case EXCP_DATA_ABORT:
11135 /*
11136 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11137 * to be taken to the SError vector entrypoint.
11138 */
11139 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11140 syndrome_is_sync_extabt(env->exception.syndrome)) {
11141 addr += 0x180;
11142 }
11143 env->cp15.far_el[new_el] = env->exception.vaddress;
11144 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11145 env->cp15.far_el[new_el]);
11146 /* fall through */
11147 case EXCP_BKPT:
11148 case EXCP_UDEF:
11149 case EXCP_SWI:
11150 case EXCP_HVC:
11151 case EXCP_HYP_TRAP:
11152 case EXCP_SMC:
11153 switch (syn_get_ec(env->exception.syndrome)) {
11154 case EC_ADVSIMDFPACCESSTRAP:
11155 /*
11156 * QEMU internal FP/SIMD syndromes from AArch32 include the
11157 * TA and coproc fields which are only exposed if the exception
11158 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11159 * AArch64 format syndrome.
11160 */
11161 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11162 break;
11163 case EC_CP14RTTRAP:
11164 case EC_CP15RTTRAP:
11165 case EC_CP14DTTRAP:
11166 /*
11167 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11168 * the raw register field from the insn; when taking this to
11169 * AArch64 we must convert it to the AArch64 view of the register
11170 * number. Notice that we read a 4-bit AArch32 register number and
11171 * write back a 5-bit AArch64 one.
11172 */
11173 rt = extract32(env->exception.syndrome, 5, 4);
11174 rt = aarch64_regnum(env, rt);
11175 env->exception.syndrome = deposit32(env->exception.syndrome,
11176 5, 5, rt);
11177 break;
11178 case EC_CP15RRTTRAP:
11179 case EC_CP14RRTTRAP:
11180 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11181 rt = extract32(env->exception.syndrome, 5, 4);
11182 rt = aarch64_regnum(env, rt);
11183 env->exception.syndrome = deposit32(env->exception.syndrome,
11184 5, 5, rt);
11185 rt = extract32(env->exception.syndrome, 10, 4);
11186 rt = aarch64_regnum(env, rt);
11187 env->exception.syndrome = deposit32(env->exception.syndrome,
11188 10, 5, rt);
11189 break;
11190 }
11191 env->cp15.esr_el[new_el] = env->exception.syndrome;
11192 break;
11193 case EXCP_IRQ:
11194 case EXCP_VIRQ:
11195 addr += 0x80;
11196 break;
11197 case EXCP_FIQ:
11198 case EXCP_VFIQ:
11199 addr += 0x100;
11200 break;
11201 case EXCP_VSERR:
11202 addr += 0x180;
11203 /* Construct the SError syndrome from IDS and ISS fields. */
11204 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11205 env->cp15.esr_el[new_el] = env->exception.syndrome;
11206 break;
11207 default:
11208 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11209 }
11210
11211 if (is_a64(env)) {
11212 old_mode = pstate_read(env);
11213 aarch64_save_sp(env, arm_current_el(env));
11214 env->elr_el[new_el] = env->pc;
11215 } else {
11216 old_mode = cpsr_read_for_spsr_elx(env);
11217 env->elr_el[new_el] = env->regs[15];
11218
11219 aarch64_sync_32_to_64(env);
11220
11221 env->condexec_bits = 0;
11222 }
11223 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11224
11225 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11226 env->elr_el[new_el]);
11227
11228 if (cpu_isar_feature(aa64_pan, cpu)) {
11229 /* The value of PSTATE.PAN is normally preserved, except when ... */
11230 new_mode |= old_mode & PSTATE_PAN;
11231 switch (new_el) {
11232 case 2:
11233 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11234 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11235 != (HCR_E2H | HCR_TGE)) {
11236 break;
11237 }
11238 /* fall through */
11239 case 1:
11240 /* ... the target is EL1 ... */
11241 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11242 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11243 new_mode |= PSTATE_PAN;
11244 }
11245 break;
11246 }
11247 }
11248 if (cpu_isar_feature(aa64_mte, cpu)) {
11249 new_mode |= PSTATE_TCO;
11250 }
11251
11252 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11253 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11254 new_mode |= PSTATE_SSBS;
11255 } else {
11256 new_mode &= ~PSTATE_SSBS;
11257 }
11258 }
11259
11260 pstate_write(env, PSTATE_DAIF | new_mode);
11261 env->aarch64 = true;
11262 aarch64_restore_sp(env, new_el);
11263
11264 if (tcg_enabled()) {
11265 helper_rebuild_hflags_a64(env, new_el);
11266 }
11267
11268 env->pc = addr;
11269
11270 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11271 new_el, env->pc, pstate_read(env));
11272 }
11273
11274 /*
11275 * Do semihosting call and set the appropriate return value. All the
11276 * permission and validity checks have been done at translate time.
11277 *
11278 * We only see semihosting exceptions in TCG only as they are not
11279 * trapped to the hypervisor in KVM.
11280 */
11281 #ifdef CONFIG_TCG
11282 static void tcg_handle_semihosting(CPUState *cs)
11283 {
11284 ARMCPU *cpu = ARM_CPU(cs);
11285 CPUARMState *env = &cpu->env;
11286
11287 if (is_a64(env)) {
11288 qemu_log_mask(CPU_LOG_INT,
11289 "...handling as semihosting call 0x%" PRIx64 "\n",
11290 env->xregs[0]);
11291 do_common_semihosting(cs);
11292 env->pc += 4;
11293 } else {
11294 qemu_log_mask(CPU_LOG_INT,
11295 "...handling as semihosting call 0x%x\n",
11296 env->regs[0]);
11297 do_common_semihosting(cs);
11298 env->regs[15] += env->thumb ? 2 : 4;
11299 }
11300 }
11301 #endif
11302
11303 /*
11304 * Handle a CPU exception for A and R profile CPUs.
11305 * Do any appropriate logging, handle PSCI calls, and then hand off
11306 * to the AArch64-entry or AArch32-entry function depending on the
11307 * target exception level's register width.
11308 *
11309 * Note: this is used for both TCG (as the do_interrupt tcg op),
11310 * and KVM to re-inject guest debug exceptions, and to
11311 * inject a Synchronous-External-Abort.
11312 */
11313 void arm_cpu_do_interrupt(CPUState *cs)
11314 {
11315 ARMCPU *cpu = ARM_CPU(cs);
11316 CPUARMState *env = &cpu->env;
11317 unsigned int new_el = env->exception.target_el;
11318
11319 assert(!arm_feature(env, ARM_FEATURE_M));
11320
11321 arm_log_exception(cs);
11322 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11323 new_el);
11324 if (qemu_loglevel_mask(CPU_LOG_INT)
11325 && !excp_is_internal(cs->exception_index)) {
11326 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11327 syn_get_ec(env->exception.syndrome),
11328 env->exception.syndrome);
11329 }
11330
11331 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11332 arm_handle_psci_call(cpu);
11333 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11334 return;
11335 }
11336
11337 /*
11338 * Semihosting semantics depend on the register width of the code
11339 * that caused the exception, not the target exception level, so
11340 * must be handled here.
11341 */
11342 #ifdef CONFIG_TCG
11343 if (cs->exception_index == EXCP_SEMIHOST) {
11344 tcg_handle_semihosting(cs);
11345 return;
11346 }
11347 #endif
11348
11349 /*
11350 * Hooks may change global state so BQL should be held, also the
11351 * BQL needs to be held for any modification of
11352 * cs->interrupt_request.
11353 */
11354 g_assert(qemu_mutex_iothread_locked());
11355
11356 arm_call_pre_el_change_hook(cpu);
11357
11358 assert(!excp_is_internal(cs->exception_index));
11359 if (arm_el_is_aa64(env, new_el)) {
11360 arm_cpu_do_interrupt_aarch64(cs);
11361 } else {
11362 arm_cpu_do_interrupt_aarch32(cs);
11363 }
11364
11365 arm_call_el_change_hook(cpu);
11366
11367 if (!kvm_enabled()) {
11368 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11369 }
11370 }
11371 #endif /* !CONFIG_USER_ONLY */
11372
11373 uint64_t arm_sctlr(CPUARMState *env, int el)
11374 {
11375 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11376 if (el == 0) {
11377 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11378 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11379 }
11380 return env->cp15.sctlr_el[el];
11381 }
11382
11383 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11384 {
11385 if (regime_has_2_ranges(mmu_idx)) {
11386 return extract64(tcr, 37, 2);
11387 } else if (regime_is_stage2(mmu_idx)) {
11388 return 0; /* VTCR_EL2 */
11389 } else {
11390 /* Replicate the single TBI bit so we always have 2 bits. */
11391 return extract32(tcr, 20, 1) * 3;
11392 }
11393 }
11394
11395 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11396 {
11397 if (regime_has_2_ranges(mmu_idx)) {
11398 return extract64(tcr, 51, 2);
11399 } else if (regime_is_stage2(mmu_idx)) {
11400 return 0; /* VTCR_EL2 */
11401 } else {
11402 /* Replicate the single TBID bit so we always have 2 bits. */
11403 return extract32(tcr, 29, 1) * 3;
11404 }
11405 }
11406
11407 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11408 {
11409 if (regime_has_2_ranges(mmu_idx)) {
11410 return extract64(tcr, 57, 2);
11411 } else {
11412 /* Replicate the single TCMA bit so we always have 2 bits. */
11413 return extract32(tcr, 30, 1) * 3;
11414 }
11415 }
11416
11417 static ARMGranuleSize tg0_to_gran_size(int tg)
11418 {
11419 switch (tg) {
11420 case 0:
11421 return Gran4K;
11422 case 1:
11423 return Gran64K;
11424 case 2:
11425 return Gran16K;
11426 default:
11427 return GranInvalid;
11428 }
11429 }
11430
11431 static ARMGranuleSize tg1_to_gran_size(int tg)
11432 {
11433 switch (tg) {
11434 case 1:
11435 return Gran16K;
11436 case 2:
11437 return Gran4K;
11438 case 3:
11439 return Gran64K;
11440 default:
11441 return GranInvalid;
11442 }
11443 }
11444
11445 static inline bool have4k(ARMCPU *cpu, bool stage2)
11446 {
11447 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11448 : cpu_isar_feature(aa64_tgran4, cpu);
11449 }
11450
11451 static inline bool have16k(ARMCPU *cpu, bool stage2)
11452 {
11453 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11454 : cpu_isar_feature(aa64_tgran16, cpu);
11455 }
11456
11457 static inline bool have64k(ARMCPU *cpu, bool stage2)
11458 {
11459 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11460 : cpu_isar_feature(aa64_tgran64, cpu);
11461 }
11462
11463 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11464 bool stage2)
11465 {
11466 switch (gran) {
11467 case Gran4K:
11468 if (have4k(cpu, stage2)) {
11469 return gran;
11470 }
11471 break;
11472 case Gran16K:
11473 if (have16k(cpu, stage2)) {
11474 return gran;
11475 }
11476 break;
11477 case Gran64K:
11478 if (have64k(cpu, stage2)) {
11479 return gran;
11480 }
11481 break;
11482 case GranInvalid:
11483 break;
11484 }
11485 /*
11486 * If the guest selects a granule size that isn't implemented,
11487 * the architecture requires that we behave as if it selected one
11488 * that is (with an IMPDEF choice of which one to pick). We choose
11489 * to implement the smallest supported granule size.
11490 */
11491 if (have4k(cpu, stage2)) {
11492 return Gran4K;
11493 }
11494 if (have16k(cpu, stage2)) {
11495 return Gran16K;
11496 }
11497 assert(have64k(cpu, stage2));
11498 return Gran64K;
11499 }
11500
11501 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11502 ARMMMUIdx mmu_idx, bool data,
11503 bool el1_is_aa32)
11504 {
11505 uint64_t tcr = regime_tcr(env, mmu_idx);
11506 bool epd, hpd, tsz_oob, ds, ha, hd;
11507 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11508 ARMGranuleSize gran;
11509 ARMCPU *cpu = env_archcpu(env);
11510 bool stage2 = regime_is_stage2(mmu_idx);
11511
11512 if (!regime_has_2_ranges(mmu_idx)) {
11513 select = 0;
11514 tsz = extract32(tcr, 0, 6);
11515 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11516 if (stage2) {
11517 /* VTCR_EL2 */
11518 hpd = false;
11519 } else {
11520 hpd = extract32(tcr, 24, 1);
11521 }
11522 epd = false;
11523 sh = extract32(tcr, 12, 2);
11524 ps = extract32(tcr, 16, 3);
11525 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11526 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11527 ds = extract64(tcr, 32, 1);
11528 } else {
11529 bool e0pd;
11530
11531 /*
11532 * Bit 55 is always between the two regions, and is canonical for
11533 * determining if address tagging is enabled.
11534 */
11535 select = extract64(va, 55, 1);
11536 if (!select) {
11537 tsz = extract32(tcr, 0, 6);
11538 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11539 epd = extract32(tcr, 7, 1);
11540 sh = extract32(tcr, 12, 2);
11541 hpd = extract64(tcr, 41, 1);
11542 e0pd = extract64(tcr, 55, 1);
11543 } else {
11544 tsz = extract32(tcr, 16, 6);
11545 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11546 epd = extract32(tcr, 23, 1);
11547 sh = extract32(tcr, 28, 2);
11548 hpd = extract64(tcr, 42, 1);
11549 e0pd = extract64(tcr, 56, 1);
11550 }
11551 ps = extract64(tcr, 32, 3);
11552 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11553 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11554 ds = extract64(tcr, 59, 1);
11555
11556 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11557 regime_is_user(env, mmu_idx)) {
11558 epd = true;
11559 }
11560 }
11561
11562 gran = sanitize_gran_size(cpu, gran, stage2);
11563
11564 if (cpu_isar_feature(aa64_st, cpu)) {
11565 max_tsz = 48 - (gran == Gran64K);
11566 } else {
11567 max_tsz = 39;
11568 }
11569
11570 /*
11571 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11572 * adjust the effective value of DS, as documented.
11573 */
11574 min_tsz = 16;
11575 if (gran == Gran64K) {
11576 if (cpu_isar_feature(aa64_lva, cpu)) {
11577 min_tsz = 12;
11578 }
11579 ds = false;
11580 } else if (ds) {
11581 if (regime_is_stage2(mmu_idx)) {
11582 if (gran == Gran16K) {
11583 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11584 } else {
11585 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11586 }
11587 } else {
11588 if (gran == Gran16K) {
11589 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11590 } else {
11591 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11592 }
11593 }
11594 if (ds) {
11595 min_tsz = 12;
11596 }
11597 }
11598
11599 if (stage2 && el1_is_aa32) {
11600 /*
11601 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11602 * are loosened: a configured IPA of 40 bits is permitted even if
11603 * the implemented PA is less than that (and so a 40 bit IPA would
11604 * fault for an AArch64 EL1). See R_DTLMN.
11605 */
11606 min_tsz = MIN(min_tsz, 24);
11607 }
11608
11609 if (tsz > max_tsz) {
11610 tsz = max_tsz;
11611 tsz_oob = true;
11612 } else if (tsz < min_tsz) {
11613 tsz = min_tsz;
11614 tsz_oob = true;
11615 } else {
11616 tsz_oob = false;
11617 }
11618
11619 /* Present TBI as a composite with TBID. */
11620 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11621 if (!data) {
11622 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11623 }
11624 tbi = (tbi >> select) & 1;
11625
11626 return (ARMVAParameters) {
11627 .tsz = tsz,
11628 .ps = ps,
11629 .sh = sh,
11630 .select = select,
11631 .tbi = tbi,
11632 .epd = epd,
11633 .hpd = hpd,
11634 .tsz_oob = tsz_oob,
11635 .ds = ds,
11636 .ha = ha,
11637 .hd = ha && hd,
11638 .gran = gran,
11639 };
11640 }
11641
11642 /*
11643 * Note that signed overflow is undefined in C. The following routines are
11644 * careful to use unsigned types where modulo arithmetic is required.
11645 * Failure to do so _will_ break on newer gcc.
11646 */
11647
11648 /* Signed saturating arithmetic. */
11649
11650 /* Perform 16-bit signed saturating addition. */
11651 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11652 {
11653 uint16_t res;
11654
11655 res = a + b;
11656 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11657 if (a & 0x8000) {
11658 res = 0x8000;
11659 } else {
11660 res = 0x7fff;
11661 }
11662 }
11663 return res;
11664 }
11665
11666 /* Perform 8-bit signed saturating addition. */
11667 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11668 {
11669 uint8_t res;
11670
11671 res = a + b;
11672 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11673 if (a & 0x80) {
11674 res = 0x80;
11675 } else {
11676 res = 0x7f;
11677 }
11678 }
11679 return res;
11680 }
11681
11682 /* Perform 16-bit signed saturating subtraction. */
11683 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11684 {
11685 uint16_t res;
11686
11687 res = a - b;
11688 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11689 if (a & 0x8000) {
11690 res = 0x8000;
11691 } else {
11692 res = 0x7fff;
11693 }
11694 }
11695 return res;
11696 }
11697
11698 /* Perform 8-bit signed saturating subtraction. */
11699 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11700 {
11701 uint8_t res;
11702
11703 res = a - b;
11704 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11705 if (a & 0x80) {
11706 res = 0x80;
11707 } else {
11708 res = 0x7f;
11709 }
11710 }
11711 return res;
11712 }
11713
11714 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11715 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11716 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11717 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11718 #define PFX q
11719
11720 #include "op_addsub.h"
11721
11722 /* Unsigned saturating arithmetic. */
11723 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11724 {
11725 uint16_t res;
11726 res = a + b;
11727 if (res < a) {
11728 res = 0xffff;
11729 }
11730 return res;
11731 }
11732
11733 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11734 {
11735 if (a > b) {
11736 return a - b;
11737 } else {
11738 return 0;
11739 }
11740 }
11741
11742 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11743 {
11744 uint8_t res;
11745 res = a + b;
11746 if (res < a) {
11747 res = 0xff;
11748 }
11749 return res;
11750 }
11751
11752 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11753 {
11754 if (a > b) {
11755 return a - b;
11756 } else {
11757 return 0;
11758 }
11759 }
11760
11761 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11762 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11763 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11764 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11765 #define PFX uq
11766
11767 #include "op_addsub.h"
11768
11769 /* Signed modulo arithmetic. */
11770 #define SARITH16(a, b, n, op) do { \
11771 int32_t sum; \
11772 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11773 RESULT(sum, n, 16); \
11774 if (sum >= 0) \
11775 ge |= 3 << (n * 2); \
11776 } while (0)
11777
11778 #define SARITH8(a, b, n, op) do { \
11779 int32_t sum; \
11780 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11781 RESULT(sum, n, 8); \
11782 if (sum >= 0) \
11783 ge |= 1 << n; \
11784 } while (0)
11785
11786
11787 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11788 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11789 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11790 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11791 #define PFX s
11792 #define ARITH_GE
11793
11794 #include "op_addsub.h"
11795
11796 /* Unsigned modulo arithmetic. */
11797 #define ADD16(a, b, n) do { \
11798 uint32_t sum; \
11799 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11800 RESULT(sum, n, 16); \
11801 if ((sum >> 16) == 1) \
11802 ge |= 3 << (n * 2); \
11803 } while (0)
11804
11805 #define ADD8(a, b, n) do { \
11806 uint32_t sum; \
11807 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11808 RESULT(sum, n, 8); \
11809 if ((sum >> 8) == 1) \
11810 ge |= 1 << n; \
11811 } while (0)
11812
11813 #define SUB16(a, b, n) do { \
11814 uint32_t sum; \
11815 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11816 RESULT(sum, n, 16); \
11817 if ((sum >> 16) == 0) \
11818 ge |= 3 << (n * 2); \
11819 } while (0)
11820
11821 #define SUB8(a, b, n) do { \
11822 uint32_t sum; \
11823 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11824 RESULT(sum, n, 8); \
11825 if ((sum >> 8) == 0) \
11826 ge |= 1 << n; \
11827 } while (0)
11828
11829 #define PFX u
11830 #define ARITH_GE
11831
11832 #include "op_addsub.h"
11833
11834 /* Halved signed arithmetic. */
11835 #define ADD16(a, b, n) \
11836 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11837 #define SUB16(a, b, n) \
11838 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11839 #define ADD8(a, b, n) \
11840 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11841 #define SUB8(a, b, n) \
11842 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11843 #define PFX sh
11844
11845 #include "op_addsub.h"
11846
11847 /* Halved unsigned arithmetic. */
11848 #define ADD16(a, b, n) \
11849 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11850 #define SUB16(a, b, n) \
11851 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11852 #define ADD8(a, b, n) \
11853 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11854 #define SUB8(a, b, n) \
11855 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11856 #define PFX uh
11857
11858 #include "op_addsub.h"
11859
11860 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11861 {
11862 if (a > b) {
11863 return a - b;
11864 } else {
11865 return b - a;
11866 }
11867 }
11868
11869 /* Unsigned sum of absolute byte differences. */
11870 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11871 {
11872 uint32_t sum;
11873 sum = do_usad(a, b);
11874 sum += do_usad(a >> 8, b >> 8);
11875 sum += do_usad(a >> 16, b >> 16);
11876 sum += do_usad(a >> 24, b >> 24);
11877 return sum;
11878 }
11879
11880 /* For ARMv6 SEL instruction. */
11881 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11882 {
11883 uint32_t mask;
11884
11885 mask = 0;
11886 if (flags & 1) {
11887 mask |= 0xff;
11888 }
11889 if (flags & 2) {
11890 mask |= 0xff00;
11891 }
11892 if (flags & 4) {
11893 mask |= 0xff0000;
11894 }
11895 if (flags & 8) {
11896 mask |= 0xff000000;
11897 }
11898 return (a & mask) | (b & ~mask);
11899 }
11900
11901 /*
11902 * CRC helpers.
11903 * The upper bytes of val (above the number specified by 'bytes') must have
11904 * been zeroed out by the caller.
11905 */
11906 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11907 {
11908 uint8_t buf[4];
11909
11910 stl_le_p(buf, val);
11911
11912 /* zlib crc32 converts the accumulator and output to one's complement. */
11913 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11914 }
11915
11916 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11917 {
11918 uint8_t buf[4];
11919
11920 stl_le_p(buf, val);
11921
11922 /* Linux crc32c converts the output to one's complement. */
11923 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11924 }
11925
11926 /*
11927 * Return the exception level to which FP-disabled exceptions should
11928 * be taken, or 0 if FP is enabled.
11929 */
11930 int fp_exception_el(CPUARMState *env, int cur_el)
11931 {
11932 #ifndef CONFIG_USER_ONLY
11933 uint64_t hcr_el2;
11934
11935 /*
11936 * CPACR and the CPTR registers don't exist before v6, so FP is
11937 * always accessible
11938 */
11939 if (!arm_feature(env, ARM_FEATURE_V6)) {
11940 return 0;
11941 }
11942
11943 if (arm_feature(env, ARM_FEATURE_M)) {
11944 /* CPACR can cause a NOCP UsageFault taken to current security state */
11945 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11946 return 1;
11947 }
11948
11949 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11950 if (!extract32(env->v7m.nsacr, 10, 1)) {
11951 /* FP insns cause a NOCP UsageFault taken to Secure */
11952 return 3;
11953 }
11954 }
11955
11956 return 0;
11957 }
11958
11959 hcr_el2 = arm_hcr_el2_eff(env);
11960
11961 /*
11962 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11963 * 0, 2 : trap EL0 and EL1/PL1 accesses
11964 * 1 : trap only EL0 accesses
11965 * 3 : trap no accesses
11966 * This register is ignored if E2H+TGE are both set.
11967 */
11968 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11969 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11970
11971 switch (fpen) {
11972 case 1:
11973 if (cur_el != 0) {
11974 break;
11975 }
11976 /* fall through */
11977 case 0:
11978 case 2:
11979 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11980 if (!arm_el_is_aa64(env, 3)
11981 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11982 return 3;
11983 }
11984 if (cur_el <= 1) {
11985 return 1;
11986 }
11987 break;
11988 }
11989 }
11990
11991 /*
11992 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11993 * to control non-secure access to the FPU. It doesn't have any
11994 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11995 */
11996 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11997 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11998 if (!extract32(env->cp15.nsacr, 10, 1)) {
11999 /* FP insns act as UNDEF */
12000 return cur_el == 2 ? 2 : 1;
12001 }
12002 }
12003
12004 /*
12005 * CPTR_EL2 is present in v7VE or v8, and changes format
12006 * with HCR_EL2.E2H (regardless of TGE).
12007 */
12008 if (cur_el <= 2) {
12009 if (hcr_el2 & HCR_E2H) {
12010 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12011 case 1:
12012 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12013 break;
12014 }
12015 /* fall through */
12016 case 0:
12017 case 2:
12018 return 2;
12019 }
12020 } else if (arm_is_el2_enabled(env)) {
12021 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12022 return 2;
12023 }
12024 }
12025 }
12026
12027 /* CPTR_EL3 : present in v8 */
12028 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12029 /* Trap all FP ops to EL3 */
12030 return 3;
12031 }
12032 #endif
12033 return 0;
12034 }
12035
12036 /* Return the exception level we're running at if this is our mmu_idx */
12037 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12038 {
12039 if (mmu_idx & ARM_MMU_IDX_M) {
12040 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12041 }
12042
12043 switch (mmu_idx) {
12044 case ARMMMUIdx_E10_0:
12045 case ARMMMUIdx_E20_0:
12046 return 0;
12047 case ARMMMUIdx_E10_1:
12048 case ARMMMUIdx_E10_1_PAN:
12049 return 1;
12050 case ARMMMUIdx_E2:
12051 case ARMMMUIdx_E20_2:
12052 case ARMMMUIdx_E20_2_PAN:
12053 return 2;
12054 case ARMMMUIdx_E3:
12055 return 3;
12056 default:
12057 g_assert_not_reached();
12058 }
12059 }
12060
12061 #ifndef CONFIG_TCG
12062 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12063 {
12064 g_assert_not_reached();
12065 }
12066 #endif
12067
12068 static bool arm_pan_enabled(CPUARMState *env)
12069 {
12070 if (is_a64(env)) {
12071 return env->pstate & PSTATE_PAN;
12072 } else {
12073 return env->uncached_cpsr & CPSR_PAN;
12074 }
12075 }
12076
12077 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12078 {
12079 ARMMMUIdx idx;
12080 uint64_t hcr;
12081
12082 if (arm_feature(env, ARM_FEATURE_M)) {
12083 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12084 }
12085
12086 /* See ARM pseudo-function ELIsInHost. */
12087 switch (el) {
12088 case 0:
12089 hcr = arm_hcr_el2_eff(env);
12090 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12091 idx = ARMMMUIdx_E20_0;
12092 } else {
12093 idx = ARMMMUIdx_E10_0;
12094 }
12095 break;
12096 case 1:
12097 if (arm_pan_enabled(env)) {
12098 idx = ARMMMUIdx_E10_1_PAN;
12099 } else {
12100 idx = ARMMMUIdx_E10_1;
12101 }
12102 break;
12103 case 2:
12104 /* Note that TGE does not apply at EL2. */
12105 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12106 if (arm_pan_enabled(env)) {
12107 idx = ARMMMUIdx_E20_2_PAN;
12108 } else {
12109 idx = ARMMMUIdx_E20_2;
12110 }
12111 } else {
12112 idx = ARMMMUIdx_E2;
12113 }
12114 break;
12115 case 3:
12116 return ARMMMUIdx_E3;
12117 default:
12118 g_assert_not_reached();
12119 }
12120
12121 return idx;
12122 }
12123
12124 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12125 {
12126 return arm_mmu_idx_el(env, arm_current_el(env));
12127 }
12128
12129 static bool mve_no_pred(CPUARMState *env)
12130 {
12131 /*
12132 * Return true if there is definitely no predication of MVE
12133 * instructions by VPR or LTPSIZE. (Returning false even if there
12134 * isn't any predication is OK; generated code will just be
12135 * a little worse.)
12136 * If the CPU does not implement MVE then this TB flag is always 0.
12137 *
12138 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12139 * logic in gen_update_fp_context() needs to be updated to match.
12140 *
12141 * We do not include the effect of the ECI bits here -- they are
12142 * tracked in other TB flags. This simplifies the logic for
12143 * "when did we emit code that changes the MVE_NO_PRED TB flag
12144 * and thus need to end the TB?".
12145 */
12146 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12147 return false;
12148 }
12149 if (env->v7m.vpr) {
12150 return false;
12151 }
12152 if (env->v7m.ltpsize < 4) {
12153 return false;
12154 }
12155 return true;
12156 }
12157
12158 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12159 uint64_t *cs_base, uint32_t *pflags)
12160 {
12161 CPUARMTBFlags flags;
12162
12163 assert_hflags_rebuild_correctly(env);
12164 flags = env->hflags;
12165
12166 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12167 *pc = env->pc;
12168 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12169 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12170 }
12171 } else {
12172 *pc = env->regs[15];
12173
12174 if (arm_feature(env, ARM_FEATURE_M)) {
12175 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12176 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12177 != env->v7m.secure) {
12178 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12179 }
12180
12181 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12182 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12183 (env->v7m.secure &&
12184 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12185 /*
12186 * ASPEN is set, but FPCA/SFPA indicate that there is no
12187 * active FP context; we must create a new FP context before
12188 * executing any FP insn.
12189 */
12190 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12191 }
12192
12193 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12194 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12195 DP_TBFLAG_M32(flags, LSPACT, 1);
12196 }
12197
12198 if (mve_no_pred(env)) {
12199 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12200 }
12201 } else {
12202 /*
12203 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12204 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12205 */
12206 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12207 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12208 } else {
12209 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12210 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12211 }
12212 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12213 DP_TBFLAG_A32(flags, VFPEN, 1);
12214 }
12215 }
12216
12217 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12218 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12219 }
12220
12221 /*
12222 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12223 * states defined in the ARM ARM for software singlestep:
12224 * SS_ACTIVE PSTATE.SS State
12225 * 0 x Inactive (the TB flag for SS is always 0)
12226 * 1 0 Active-pending
12227 * 1 1 Active-not-pending
12228 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12229 */
12230 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12231 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12232 }
12233
12234 *pflags = flags.flags;
12235 *cs_base = flags.flags2;
12236 }
12237
12238 #ifdef TARGET_AARCH64
12239 /*
12240 * The manual says that when SVE is enabled and VQ is widened the
12241 * implementation is allowed to zero the previously inaccessible
12242 * portion of the registers. The corollary to that is that when
12243 * SVE is enabled and VQ is narrowed we are also allowed to zero
12244 * the now inaccessible portion of the registers.
12245 *
12246 * The intent of this is that no predicate bit beyond VQ is ever set.
12247 * Which means that some operations on predicate registers themselves
12248 * may operate on full uint64_t or even unrolled across the maximum
12249 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12250 * may well be cheaper than conditionals to restrict the operation
12251 * to the relevant portion of a uint16_t[16].
12252 */
12253 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12254 {
12255 int i, j;
12256 uint64_t pmask;
12257
12258 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12259 assert(vq <= env_archcpu(env)->sve_max_vq);
12260
12261 /* Zap the high bits of the zregs. */
12262 for (i = 0; i < 32; i++) {
12263 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12264 }
12265
12266 /* Zap the high bits of the pregs and ffr. */
12267 pmask = 0;
12268 if (vq & 3) {
12269 pmask = ~(-1ULL << (16 * (vq & 3)));
12270 }
12271 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12272 for (i = 0; i < 17; ++i) {
12273 env->vfp.pregs[i].p[j] &= pmask;
12274 }
12275 pmask = 0;
12276 }
12277 }
12278
12279 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12280 {
12281 int exc_el;
12282
12283 if (sm) {
12284 exc_el = sme_exception_el(env, el);
12285 } else {
12286 exc_el = sve_exception_el(env, el);
12287 }
12288 if (exc_el) {
12289 return 0; /* disabled */
12290 }
12291 return sve_vqm1_for_el_sm(env, el, sm);
12292 }
12293
12294 /*
12295 * Notice a change in SVE vector size when changing EL.
12296 */
12297 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12298 int new_el, bool el0_a64)
12299 {
12300 ARMCPU *cpu = env_archcpu(env);
12301 int old_len, new_len;
12302 bool old_a64, new_a64, sm;
12303
12304 /* Nothing to do if no SVE. */
12305 if (!cpu_isar_feature(aa64_sve, cpu)) {
12306 return;
12307 }
12308
12309 /* Nothing to do if FP is disabled in either EL. */
12310 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12311 return;
12312 }
12313
12314 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12315 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12316
12317 /*
12318 * Both AArch64.TakeException and AArch64.ExceptionReturn
12319 * invoke ResetSVEState when taking an exception from, or
12320 * returning to, AArch32 state when PSTATE.SM is enabled.
12321 */
12322 sm = FIELD_EX64(env->svcr, SVCR, SM);
12323 if (old_a64 != new_a64 && sm) {
12324 arm_reset_sve_state(env);
12325 return;
12326 }
12327
12328 /*
12329 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12330 * at ELx, or not available because the EL is in AArch32 state, then
12331 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12332 * has an effective value of 0".
12333 *
12334 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12335 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12336 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12337 * we already have the correct register contents when encountering the
12338 * vq0->vq0 transition between EL0->EL1.
12339 */
12340 old_len = new_len = 0;
12341 if (old_a64) {
12342 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12343 }
12344 if (new_a64) {
12345 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12346 }
12347
12348 /* When changing vector length, clear inaccessible state. */
12349 if (new_len < old_len) {
12350 aarch64_sve_narrow_vq(env, new_len + 1);
12351 }
12352 }
12353 #endif
12354
12355 #ifndef CONFIG_USER_ONLY
12356 ARMSecuritySpace arm_security_space(CPUARMState *env)
12357 {
12358 if (arm_feature(env, ARM_FEATURE_M)) {
12359 return arm_secure_to_space(env->v7m.secure);
12360 }
12361
12362 /*
12363 * If EL3 is not supported then the secure state is implementation
12364 * defined, in which case QEMU defaults to non-secure.
12365 */
12366 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12367 return ARMSS_NonSecure;
12368 }
12369
12370 /* Check for AArch64 EL3 or AArch32 Mon. */
12371 if (is_a64(env)) {
12372 if (extract32(env->pstate, 2, 2) == 3) {
12373 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12374 return ARMSS_Root;
12375 } else {
12376 return ARMSS_Secure;
12377 }
12378 }
12379 } else {
12380 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12381 return ARMSS_Secure;
12382 }
12383 }
12384
12385 return arm_security_space_below_el3(env);
12386 }
12387
12388 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12389 {
12390 assert(!arm_feature(env, ARM_FEATURE_M));
12391
12392 /*
12393 * If EL3 is not supported then the secure state is implementation
12394 * defined, in which case QEMU defaults to non-secure.
12395 */
12396 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12397 return ARMSS_NonSecure;
12398 }
12399
12400 /*
12401 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12402 * Ignoring NSE when !NS retains consistency without having to
12403 * modify other predicates.
12404 */
12405 if (!(env->cp15.scr_el3 & SCR_NS)) {
12406 return ARMSS_Secure;
12407 } else if (env->cp15.scr_el3 & SCR_NSE) {
12408 return ARMSS_Realm;
12409 } else {
12410 return ARMSS_NonSecure;
12411 }
12412 }
12413 #endif /* !CONFIG_USER_ONLY */