]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
753a69d40df7fa6af3c1680d1ce4a231ba838f9d
[mirror_qemu.git] / target / arm / helper.c
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
27
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
33
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
39
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 {
42 int nregs;
43
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 }
64 return 0;
65 }
66
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69 int nregs;
70
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
75 }
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
82 }
83 }
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88 }
89 return 0;
90 }
91
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
110 }
111 }
112
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
131 }
132 }
133
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 {
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
141 }
142 }
143
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
146 {
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
152 }
153 }
154
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 {
157 return (char *)env + ri->fieldoffset;
158 }
159
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 {
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
171 }
172 }
173
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
176 {
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
181 */
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
190 }
191 }
192
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 {
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
205 */
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
210 }
211 return true;
212 }
213
214 bool write_cpustate_to_list(ARMCPU *cpu)
215 {
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
219
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
223
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
228 }
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
231 }
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233 }
234 return ok;
235 }
236
237 bool write_list_to_cpustate(ARMCPU *cpu)
238 {
239 int i;
240 bool ok = true;
241
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
246
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
251 }
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
254 }
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
258 */
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
262 }
263 }
264 return ok;
265 }
266
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 {
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
272
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
280 }
281 }
282
283 static void count_cpreg(gpointer key, gpointer opaque)
284 {
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
288
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
294 }
295 }
296
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 {
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301
302 if (aidx > bidx) {
303 return 1;
304 }
305 if (aidx < bidx) {
306 return -1;
307 }
308 return 0;
309 }
310
311 void init_cpreg_list(ARMCPU *cpu)
312 {
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 */
316 GList *keys;
317 int arraylen;
318
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
321
322 cpu->cpreg_array_len = 0;
323
324 g_list_foreach(keys, count_cpreg, cpu);
325
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
333
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
335
336 assert(cpu->cpreg_array_len == arraylen);
337
338 g_list_free(keys);
339 }
340
341 /*
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 *
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 */
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
351 {
352 bool secure = arm_is_secure_below_el3(env);
353
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 }
358 return CP_ACCESS_OK;
359 }
360
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
364 {
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
367 }
368 return CP_ACCESS_OK;
369 }
370
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
375 */
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
379 {
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
382 }
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
385 }
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
388 }
389
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
392 */
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
395 {
396 int el = arm_current_el(env);
397
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
401 }
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
404 }
405 return CP_ACCESS_OK;
406 }
407
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 */
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
413 {
414 int el = arm_current_el(env);
415
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
419 }
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
422 }
423 return CP_ACCESS_OK;
424 }
425
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 */
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
431 {
432 int el = arm_current_el(env);
433
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
437 }
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
440 }
441 return CP_ACCESS_OK;
442 }
443
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 */
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
449 {
450 int el = arm_current_el(env);
451
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
455 }
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
458 }
459 return CP_ACCESS_OK;
460 }
461
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 {
464 ARMCPU *cpu = arm_env_get_cpu(env);
465
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 }
469
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 {
472 ARMCPU *cpu = arm_env_get_cpu(env);
473
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
477 */
478 tlb_flush(CPU(cpu));
479 raw_write(env, ri, value);
480 }
481 }
482
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
485 {
486 ARMCPU *cpu = arm_env_get_cpu(env);
487
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
493 */
494 tlb_flush(CPU(cpu));
495 }
496 raw_write(env, ri, value);
497 }
498
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
504
505 tlb_flush(CPU(cpu));
506 }
507
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
510 {
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
513
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 }
516
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
519 {
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
522
523 tlb_flush(CPU(cpu));
524 }
525
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
531
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 }
534
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538 {
539 CPUState *other_cs;
540
541 CPU_FOREACH(other_cs) {
542 tlb_flush(other_cs);
543 }
544 }
545
546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
548 {
549 CPUState *other_cs;
550
551 CPU_FOREACH(other_cs) {
552 tlb_flush(other_cs);
553 }
554 }
555
556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *other_cs;
560
561 CPU_FOREACH(other_cs) {
562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
563 }
564 }
565
566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
568 {
569 CPUState *other_cs;
570
571 CPU_FOREACH(other_cs) {
572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
573 }
574 }
575
576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
578 {
579 CPUState *cs = ENV_GET_CPU(env);
580
581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
582 ARMMMUIdx_S2NS, -1);
583 }
584
585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
587 {
588 CPUState *other_cs;
589
590 CPU_FOREACH(other_cs) {
591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
593 }
594 }
595
596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 uint64_t value)
598 {
599 /* Invalidate by IPA. This has to invalidate any structures that
600 * contain only stage 2 translation information, but does not need
601 * to apply to structures that contain combined stage 1 and stage 2
602 * translation information.
603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
604 */
605 CPUState *cs = ENV_GET_CPU(env);
606 uint64_t pageaddr;
607
608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
609 return;
610 }
611
612 pageaddr = sextract64(value << 12, 0, 40);
613
614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
615 }
616
617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619 {
620 CPUState *other_cs;
621 uint64_t pageaddr;
622
623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
624 return;
625 }
626
627 pageaddr = sextract64(value << 12, 0, 40);
628
629 CPU_FOREACH(other_cs) {
630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
631 }
632 }
633
634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
635 uint64_t value)
636 {
637 CPUState *cs = ENV_GET_CPU(env);
638
639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
640 }
641
642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
644 {
645 CPUState *other_cs;
646
647 CPU_FOREACH(other_cs) {
648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
649 }
650 }
651
652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654 {
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657
658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
659 }
660
661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
662 uint64_t value)
663 {
664 CPUState *other_cs;
665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
666
667 CPU_FOREACH(other_cs) {
668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
669 }
670 }
671
672 static const ARMCPRegInfo cp_reginfo[] = {
673 /* Define the secure and non-secure FCSE identifier CP registers
674 * separately because there is no secure bank in V8 (no _EL3). This allows
675 * the secure register to be properly reset and migrated. There is also no
676 * v8 EL1 version of the register so the non-secure instance stands alone.
677 */
678 { .name = "FCSEIDR(NS)",
679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
683 { .name = "FCSEIDR(S)",
684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
688 /* Define the secure and non-secure context identifier CP registers
689 * separately because there is no secure bank in V8 (no _EL3). This allows
690 * the secure register to be properly reset and migrated. In the
691 * non-secure case, the 32-bit register will have reset and migration
692 * disabled during registration as it is handled by the 64-bit instance.
693 */
694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
704 REGINFO_SENTINEL
705 };
706
707 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
708 /* NB: Some of these registers exist in v8 but with more precise
709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
710 */
711 /* MMU Domain access control / MPU write buffer control */
712 { .name = "DACR",
713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
714 .access = PL1_RW, .resetvalue = 0,
715 .writefn = dacr_write, .raw_writefn = raw_write,
716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
717 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
719 * For v6 and v5, these mappings are overly broad.
720 */
721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729 /* Cache maintenance ops; some of this space may be overridden later. */
730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
733 REGINFO_SENTINEL
734 };
735
736 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
737 /* Not all pre-v6 cores implemented this WFI, so this is slightly
738 * over-broad.
739 */
740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
741 .access = PL1_W, .type = ARM_CP_WFI },
742 REGINFO_SENTINEL
743 };
744
745 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
747 * is UNPREDICTABLE; we choose to NOP as most implementations do).
748 */
749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
750 .access = PL1_W, .type = ARM_CP_WFI },
751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
753 * OMAPCP will override this space.
754 */
755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
757 .resetvalue = 0 },
758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
760 .resetvalue = 0 },
761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
764 .resetvalue = 0 },
765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
766 * implementing it as RAZ means the "debug architecture version" bits
767 * will read as a reserved value, which should cause Linux to not try
768 * to use the debug hardware.
769 */
770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
772 /* MMU TLB control. Note that the wildcarding means we cover not just
773 * the unified TLB ops but also the dside/iside/inner-shareable variants.
774 */
775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
777 .type = ARM_CP_NO_RAW },
778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
780 .type = ARM_CP_NO_RAW },
781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
783 .type = ARM_CP_NO_RAW },
784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
786 .type = ARM_CP_NO_RAW },
787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
791 REGINFO_SENTINEL
792 };
793
794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
796 {
797 uint32_t mask = 0;
798
799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
800 if (!arm_feature(env, ARM_FEATURE_V8)) {
801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
804 */
805 if (arm_feature(env, ARM_FEATURE_VFP)) {
806 /* VFP coprocessor: cp10 & cp11 [23:20] */
807 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
808
809 if (!arm_feature(env, ARM_FEATURE_NEON)) {
810 /* ASEDIS [31] bit is RAO/WI */
811 value |= (1 << 31);
812 }
813
814 /* VFPv3 and upwards with NEON implement 32 double precision
815 * registers (D0-D31).
816 */
817 if (!arm_feature(env, ARM_FEATURE_NEON) ||
818 !arm_feature(env, ARM_FEATURE_VFP3)) {
819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
820 value |= (1 << 30);
821 }
822 }
823 value &= mask;
824 }
825 env->cp15.cpacr_el1 = value;
826 }
827
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
830 {
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 &&
834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
840 }
841 }
842
843 return CP_ACCESS_OK;
844 }
845
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
848 {
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
852 }
853
854 return CP_ACCESS_OK;
855 }
856
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /* We need to break the TB after ISB to execute self-modifying code
863 * correctly and also to take any pending interrupts immediately.
864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
865 */
866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NOP },
870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
875 offsetof(CPUARMState, cp15.ifar_ns) },
876 .resetvalue = 0, },
877 /* Watchpoint Fault Address Register : should actually only be present
878 * for 1136, 1176, 11MPCore.
879 */
880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885 .resetvalue = 0, .writefn = cpacr_write },
886 REGINFO_SENTINEL
887 };
888
889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
890 bool isread)
891 {
892 /* Performance monitor registers user accessibility is controlled
893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
894 * trapping to EL2 or EL3 for other accesses.
895 */
896 int el = arm_current_el(env);
897
898 if (el == 0 && !env->cp15.c9_pmuserenr) {
899 return CP_ACCESS_TRAP;
900 }
901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
902 && !arm_is_secure_below_el3(env)) {
903 return CP_ACCESS_TRAP_EL2;
904 }
905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
906 return CP_ACCESS_TRAP_EL3;
907 }
908
909 return CP_ACCESS_OK;
910 }
911
912 #ifndef CONFIG_USER_ONLY
913
914 static inline bool arm_ccnt_enabled(CPUARMState *env)
915 {
916 /* This does not support checking PMCCFILTR_EL0 register */
917
918 if (!(env->cp15.c9_pmcr & PMCRE)) {
919 return false;
920 }
921
922 return true;
923 }
924
925 void pmccntr_sync(CPUARMState *env)
926 {
927 uint64_t temp_ticks;
928
929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
931
932 if (env->cp15.c9_pmcr & PMCRD) {
933 /* Increment once every 64 processor clock cycles */
934 temp_ticks /= 64;
935 }
936
937 if (arm_ccnt_enabled(env)) {
938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
939 }
940 }
941
942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
943 uint64_t value)
944 {
945 pmccntr_sync(env);
946
947 if (value & PMCRC) {
948 /* The counter has been reset */
949 env->cp15.c15_ccnt = 0;
950 }
951
952 /* only the DP, X, D and E bits are writable */
953 env->cp15.c9_pmcr &= ~0x39;
954 env->cp15.c9_pmcr |= (value & 0x39);
955
956 pmccntr_sync(env);
957 }
958
959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
960 {
961 uint64_t total_ticks;
962
963 if (!arm_ccnt_enabled(env)) {
964 /* Counter is disabled, do not change value */
965 return env->cp15.c15_ccnt;
966 }
967
968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
970
971 if (env->cp15.c9_pmcr & PMCRD) {
972 /* Increment once every 64 processor clock cycles */
973 total_ticks /= 64;
974 }
975 return total_ticks - env->cp15.c15_ccnt;
976 }
977
978 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
979 uint64_t value)
980 {
981 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
982 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
983 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
984 * accessed.
985 */
986 env->cp15.c9_pmselr = value & 0x1f;
987 }
988
989 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
990 uint64_t value)
991 {
992 uint64_t total_ticks;
993
994 if (!arm_ccnt_enabled(env)) {
995 /* Counter is disabled, set the absolute value */
996 env->cp15.c15_ccnt = value;
997 return;
998 }
999
1000 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1001 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1002
1003 if (env->cp15.c9_pmcr & PMCRD) {
1004 /* Increment once every 64 processor clock cycles */
1005 total_ticks /= 64;
1006 }
1007 env->cp15.c15_ccnt = total_ticks - value;
1008 }
1009
1010 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1011 uint64_t value)
1012 {
1013 uint64_t cur_val = pmccntr_read(env, NULL);
1014
1015 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1016 }
1017
1018 #else /* CONFIG_USER_ONLY */
1019
1020 void pmccntr_sync(CPUARMState *env)
1021 {
1022 }
1023
1024 #endif
1025
1026 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1027 uint64_t value)
1028 {
1029 pmccntr_sync(env);
1030 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1031 pmccntr_sync(env);
1032 }
1033
1034 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1035 uint64_t value)
1036 {
1037 value &= (1 << 31);
1038 env->cp15.c9_pmcnten |= value;
1039 }
1040
1041 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1042 uint64_t value)
1043 {
1044 value &= (1 << 31);
1045 env->cp15.c9_pmcnten &= ~value;
1046 }
1047
1048 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1049 uint64_t value)
1050 {
1051 env->cp15.c9_pmovsr &= ~value;
1052 }
1053
1054 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1055 uint64_t value)
1056 {
1057 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1058 * PMSELR value is equal to or greater than the number of implemented
1059 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1060 */
1061 if (env->cp15.c9_pmselr == 0x1f) {
1062 pmccfiltr_write(env, ri, value);
1063 }
1064 }
1065
1066 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1067 {
1068 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1069 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1070 */
1071 if (env->cp15.c9_pmselr == 0x1f) {
1072 return env->cp15.pmccfiltr_el0;
1073 } else {
1074 return 0;
1075 }
1076 }
1077
1078 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1079 uint64_t value)
1080 {
1081 env->cp15.c9_pmuserenr = value & 1;
1082 }
1083
1084 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1085 uint64_t value)
1086 {
1087 /* We have no event counters so only the C bit can be changed */
1088 value &= (1 << 31);
1089 env->cp15.c9_pminten |= value;
1090 }
1091
1092 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1093 uint64_t value)
1094 {
1095 value &= (1 << 31);
1096 env->cp15.c9_pminten &= ~value;
1097 }
1098
1099 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1100 uint64_t value)
1101 {
1102 /* Note that even though the AArch64 view of this register has bits
1103 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1104 * architectural requirements for bits which are RES0 only in some
1105 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1106 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1107 */
1108 raw_write(env, ri, value & ~0x1FULL);
1109 }
1110
1111 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1112 {
1113 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1114 * For bits that vary between AArch32/64, code needs to check the
1115 * current execution mode before directly using the feature bit.
1116 */
1117 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1118
1119 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1120 valid_mask &= ~SCR_HCE;
1121
1122 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1123 * supported if EL2 exists. The bit is UNK/SBZP when
1124 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1125 * when EL2 is unavailable.
1126 * On ARMv8, this bit is always available.
1127 */
1128 if (arm_feature(env, ARM_FEATURE_V7) &&
1129 !arm_feature(env, ARM_FEATURE_V8)) {
1130 valid_mask &= ~SCR_SMD;
1131 }
1132 }
1133
1134 /* Clear all-context RES0 bits. */
1135 value &= valid_mask;
1136 raw_write(env, ri, value);
1137 }
1138
1139 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1140 {
1141 ARMCPU *cpu = arm_env_get_cpu(env);
1142
1143 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1144 * bank
1145 */
1146 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1147 ri->secure & ARM_CP_SECSTATE_S);
1148
1149 return cpu->ccsidr[index];
1150 }
1151
1152 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153 uint64_t value)
1154 {
1155 raw_write(env, ri, value & 0xf);
1156 }
1157
1158 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1159 {
1160 CPUState *cs = ENV_GET_CPU(env);
1161 uint64_t ret = 0;
1162
1163 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1164 ret |= CPSR_I;
1165 }
1166 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1167 ret |= CPSR_F;
1168 }
1169 /* External aborts are not possible in QEMU so A bit is always clear */
1170 return ret;
1171 }
1172
1173 static const ARMCPRegInfo v7_cp_reginfo[] = {
1174 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1175 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1176 .access = PL1_W, .type = ARM_CP_NOP },
1177 /* Performance monitors are implementation defined in v7,
1178 * but with an ARM recommended set of registers, which we
1179 * follow (although we don't actually implement any counters)
1180 *
1181 * Performance registers fall into three categories:
1182 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1183 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1184 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1185 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1186 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1187 */
1188 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1189 .access = PL0_RW, .type = ARM_CP_ALIAS,
1190 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1191 .writefn = pmcntenset_write,
1192 .accessfn = pmreg_access,
1193 .raw_writefn = raw_write },
1194 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1195 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1196 .access = PL0_RW, .accessfn = pmreg_access,
1197 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1198 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1199 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1200 .access = PL0_RW,
1201 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1202 .accessfn = pmreg_access,
1203 .writefn = pmcntenclr_write,
1204 .type = ARM_CP_ALIAS },
1205 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1206 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1207 .access = PL0_RW, .accessfn = pmreg_access,
1208 .type = ARM_CP_ALIAS,
1209 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1210 .writefn = pmcntenclr_write },
1211 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1213 .accessfn = pmreg_access,
1214 .writefn = pmovsr_write,
1215 .raw_writefn = raw_write },
1216 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1217 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1218 .access = PL0_RW, .accessfn = pmreg_access,
1219 .type = ARM_CP_ALIAS,
1220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1221 .writefn = pmovsr_write,
1222 .raw_writefn = raw_write },
1223 /* Unimplemented so WI. */
1224 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1225 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1226 #ifndef CONFIG_USER_ONLY
1227 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1228 .access = PL0_RW, .type = ARM_CP_ALIAS,
1229 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1230 .accessfn = pmreg_access, .writefn = pmselr_write,
1231 .raw_writefn = raw_write},
1232 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1233 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1234 .access = PL0_RW, .accessfn = pmreg_access,
1235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1236 .writefn = pmselr_write, .raw_writefn = raw_write, },
1237 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1238 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1239 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1240 .accessfn = pmreg_access },
1241 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1242 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1243 .access = PL0_RW, .accessfn = pmreg_access,
1244 .type = ARM_CP_IO,
1245 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1246 #endif
1247 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1248 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1249 .writefn = pmccfiltr_write,
1250 .access = PL0_RW, .accessfn = pmreg_access,
1251 .type = ARM_CP_IO,
1252 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1253 .resetvalue = 0, },
1254 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1255 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1256 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1257 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1258 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1259 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1260 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1261 /* Unimplemented, RAZ/WI. */
1262 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1263 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1264 .accessfn = pmreg_access },
1265 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1266 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1267 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1268 .resetvalue = 0,
1269 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1270 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1271 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1272 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1274 .resetvalue = 0,
1275 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1276 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1277 .access = PL1_RW, .accessfn = access_tpm,
1278 .type = ARM_CP_ALIAS,
1279 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1280 .resetvalue = 0,
1281 .writefn = pmintenset_write, .raw_writefn = raw_write },
1282 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1283 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1284 .access = PL1_RW, .accessfn = access_tpm,
1285 .type = ARM_CP_IO,
1286 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1287 .writefn = pmintenset_write, .raw_writefn = raw_write,
1288 .resetvalue = 0x0 },
1289 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1290 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1291 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1292 .writefn = pmintenclr_write, },
1293 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1294 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1295 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1296 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1297 .writefn = pmintenclr_write },
1298 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1299 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1300 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1301 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1302 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1303 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1305 offsetof(CPUARMState, cp15.csselr_ns) } },
1306 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1307 * just RAZ for all cores:
1308 */
1309 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1310 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1311 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1312 /* Auxiliary fault status registers: these also are IMPDEF, and we
1313 * choose to RAZ/WI for all cores.
1314 */
1315 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1316 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1317 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1318 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1319 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1320 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1321 /* MAIR can just read-as-written because we don't implement caches
1322 * and so don't need to care about memory attributes.
1323 */
1324 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1325 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1326 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1327 .resetvalue = 0 },
1328 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1329 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1330 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1331 .resetvalue = 0 },
1332 /* For non-long-descriptor page tables these are PRRR and NMRR;
1333 * regardless they still act as reads-as-written for QEMU.
1334 */
1335 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1336 * allows them to assign the correct fieldoffset based on the endianness
1337 * handled in the field definitions.
1338 */
1339 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1340 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1341 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1342 offsetof(CPUARMState, cp15.mair0_ns) },
1343 .resetfn = arm_cp_reset_ignore },
1344 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1345 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1346 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1347 offsetof(CPUARMState, cp15.mair1_ns) },
1348 .resetfn = arm_cp_reset_ignore },
1349 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1350 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1351 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1352 /* 32 bit ITLB invalidates */
1353 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1354 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1355 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1356 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1357 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1358 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1359 /* 32 bit DTLB invalidates */
1360 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1361 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1362 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1363 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1364 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1365 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1366 /* 32 bit TLB invalidates */
1367 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1368 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1369 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1370 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1371 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1372 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1373 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1374 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1375 REGINFO_SENTINEL
1376 };
1377
1378 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1379 /* 32 bit TLB invalidates, Inner Shareable */
1380 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1381 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1382 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1383 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1384 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1385 .type = ARM_CP_NO_RAW, .access = PL1_W,
1386 .writefn = tlbiasid_is_write },
1387 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1388 .type = ARM_CP_NO_RAW, .access = PL1_W,
1389 .writefn = tlbimvaa_is_write },
1390 REGINFO_SENTINEL
1391 };
1392
1393 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1394 uint64_t value)
1395 {
1396 value &= 1;
1397 env->teecr = value;
1398 }
1399
1400 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1401 bool isread)
1402 {
1403 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1404 return CP_ACCESS_TRAP;
1405 }
1406 return CP_ACCESS_OK;
1407 }
1408
1409 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1410 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1411 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1412 .resetvalue = 0,
1413 .writefn = teecr_write },
1414 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1415 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1416 .accessfn = teehbr_access, .resetvalue = 0 },
1417 REGINFO_SENTINEL
1418 };
1419
1420 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1421 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1422 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1423 .access = PL0_RW,
1424 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1425 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1426 .access = PL0_RW,
1427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1428 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1429 .resetfn = arm_cp_reset_ignore },
1430 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1431 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1432 .access = PL0_R|PL1_W,
1433 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1434 .resetvalue = 0},
1435 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1436 .access = PL0_R|PL1_W,
1437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1438 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1439 .resetfn = arm_cp_reset_ignore },
1440 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1441 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1442 .access = PL1_RW,
1443 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1444 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1445 .access = PL1_RW,
1446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1447 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1448 .resetvalue = 0 },
1449 REGINFO_SENTINEL
1450 };
1451
1452 #ifndef CONFIG_USER_ONLY
1453
1454 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1455 bool isread)
1456 {
1457 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1458 * Writable only at the highest implemented exception level.
1459 */
1460 int el = arm_current_el(env);
1461
1462 switch (el) {
1463 case 0:
1464 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1465 return CP_ACCESS_TRAP;
1466 }
1467 break;
1468 case 1:
1469 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1470 arm_is_secure_below_el3(env)) {
1471 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1472 return CP_ACCESS_TRAP_UNCATEGORIZED;
1473 }
1474 break;
1475 case 2:
1476 case 3:
1477 break;
1478 }
1479
1480 if (!isread && el < arm_highest_el(env)) {
1481 return CP_ACCESS_TRAP_UNCATEGORIZED;
1482 }
1483
1484 return CP_ACCESS_OK;
1485 }
1486
1487 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1488 bool isread)
1489 {
1490 unsigned int cur_el = arm_current_el(env);
1491 bool secure = arm_is_secure(env);
1492
1493 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1494 if (cur_el == 0 &&
1495 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1496 return CP_ACCESS_TRAP;
1497 }
1498
1499 if (arm_feature(env, ARM_FEATURE_EL2) &&
1500 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1501 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1502 return CP_ACCESS_TRAP_EL2;
1503 }
1504 return CP_ACCESS_OK;
1505 }
1506
1507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1508 bool isread)
1509 {
1510 unsigned int cur_el = arm_current_el(env);
1511 bool secure = arm_is_secure(env);
1512
1513 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1514 * EL0[PV]TEN is zero.
1515 */
1516 if (cur_el == 0 &&
1517 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1518 return CP_ACCESS_TRAP;
1519 }
1520
1521 if (arm_feature(env, ARM_FEATURE_EL2) &&
1522 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1523 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1524 return CP_ACCESS_TRAP_EL2;
1525 }
1526 return CP_ACCESS_OK;
1527 }
1528
1529 static CPAccessResult gt_pct_access(CPUARMState *env,
1530 const ARMCPRegInfo *ri,
1531 bool isread)
1532 {
1533 return gt_counter_access(env, GTIMER_PHYS, isread);
1534 }
1535
1536 static CPAccessResult gt_vct_access(CPUARMState *env,
1537 const ARMCPRegInfo *ri,
1538 bool isread)
1539 {
1540 return gt_counter_access(env, GTIMER_VIRT, isread);
1541 }
1542
1543 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1544 bool isread)
1545 {
1546 return gt_timer_access(env, GTIMER_PHYS, isread);
1547 }
1548
1549 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1550 bool isread)
1551 {
1552 return gt_timer_access(env, GTIMER_VIRT, isread);
1553 }
1554
1555 static CPAccessResult gt_stimer_access(CPUARMState *env,
1556 const ARMCPRegInfo *ri,
1557 bool isread)
1558 {
1559 /* The AArch64 register view of the secure physical timer is
1560 * always accessible from EL3, and configurably accessible from
1561 * Secure EL1.
1562 */
1563 switch (arm_current_el(env)) {
1564 case 1:
1565 if (!arm_is_secure(env)) {
1566 return CP_ACCESS_TRAP;
1567 }
1568 if (!(env->cp15.scr_el3 & SCR_ST)) {
1569 return CP_ACCESS_TRAP_EL3;
1570 }
1571 return CP_ACCESS_OK;
1572 case 0:
1573 case 2:
1574 return CP_ACCESS_TRAP;
1575 case 3:
1576 return CP_ACCESS_OK;
1577 default:
1578 g_assert_not_reached();
1579 }
1580 }
1581
1582 static uint64_t gt_get_countervalue(CPUARMState *env)
1583 {
1584 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1585 }
1586
1587 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1588 {
1589 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1590
1591 if (gt->ctl & 1) {
1592 /* Timer enabled: calculate and set current ISTATUS, irq, and
1593 * reset timer to when ISTATUS next has to change
1594 */
1595 uint64_t offset = timeridx == GTIMER_VIRT ?
1596 cpu->env.cp15.cntvoff_el2 : 0;
1597 uint64_t count = gt_get_countervalue(&cpu->env);
1598 /* Note that this must be unsigned 64 bit arithmetic: */
1599 int istatus = count - offset >= gt->cval;
1600 uint64_t nexttick;
1601 int irqstate;
1602
1603 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1604
1605 irqstate = (istatus && !(gt->ctl & 2));
1606 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1607
1608 if (istatus) {
1609 /* Next transition is when count rolls back over to zero */
1610 nexttick = UINT64_MAX;
1611 } else {
1612 /* Next transition is when we hit cval */
1613 nexttick = gt->cval + offset;
1614 }
1615 /* Note that the desired next expiry time might be beyond the
1616 * signed-64-bit range of a QEMUTimer -- in this case we just
1617 * set the timer for as far in the future as possible. When the
1618 * timer expires we will reset the timer for any remaining period.
1619 */
1620 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1621 nexttick = INT64_MAX / GTIMER_SCALE;
1622 }
1623 timer_mod(cpu->gt_timer[timeridx], nexttick);
1624 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1625 } else {
1626 /* Timer disabled: ISTATUS and timer output always clear */
1627 gt->ctl &= ~4;
1628 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1629 timer_del(cpu->gt_timer[timeridx]);
1630 trace_arm_gt_recalc_disabled(timeridx);
1631 }
1632 }
1633
1634 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1635 int timeridx)
1636 {
1637 ARMCPU *cpu = arm_env_get_cpu(env);
1638
1639 timer_del(cpu->gt_timer[timeridx]);
1640 }
1641
1642 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1643 {
1644 return gt_get_countervalue(env);
1645 }
1646
1647 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1648 {
1649 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1650 }
1651
1652 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1653 int timeridx,
1654 uint64_t value)
1655 {
1656 trace_arm_gt_cval_write(timeridx, value);
1657 env->cp15.c14_timer[timeridx].cval = value;
1658 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1659 }
1660
1661 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1662 int timeridx)
1663 {
1664 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1665
1666 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1667 (gt_get_countervalue(env) - offset));
1668 }
1669
1670 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671 int timeridx,
1672 uint64_t value)
1673 {
1674 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1675
1676 trace_arm_gt_tval_write(timeridx, value);
1677 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1678 sextract64(value, 0, 32);
1679 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1680 }
1681
1682 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1683 int timeridx,
1684 uint64_t value)
1685 {
1686 ARMCPU *cpu = arm_env_get_cpu(env);
1687 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1688
1689 trace_arm_gt_ctl_write(timeridx, value);
1690 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1691 if ((oldval ^ value) & 1) {
1692 /* Enable toggled */
1693 gt_recalc_timer(cpu, timeridx);
1694 } else if ((oldval ^ value) & 2) {
1695 /* IMASK toggled: don't need to recalculate,
1696 * just set the interrupt line based on ISTATUS
1697 */
1698 int irqstate = (oldval & 4) && !(value & 2);
1699
1700 trace_arm_gt_imask_toggle(timeridx, irqstate);
1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1702 }
1703 }
1704
1705 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1706 {
1707 gt_timer_reset(env, ri, GTIMER_PHYS);
1708 }
1709
1710 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1711 uint64_t value)
1712 {
1713 gt_cval_write(env, ri, GTIMER_PHYS, value);
1714 }
1715
1716 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1717 {
1718 return gt_tval_read(env, ri, GTIMER_PHYS);
1719 }
1720
1721 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1722 uint64_t value)
1723 {
1724 gt_tval_write(env, ri, GTIMER_PHYS, value);
1725 }
1726
1727 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728 uint64_t value)
1729 {
1730 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1731 }
1732
1733 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735 gt_timer_reset(env, ri, GTIMER_VIRT);
1736 }
1737
1738 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1739 uint64_t value)
1740 {
1741 gt_cval_write(env, ri, GTIMER_VIRT, value);
1742 }
1743
1744 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1745 {
1746 return gt_tval_read(env, ri, GTIMER_VIRT);
1747 }
1748
1749 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1750 uint64_t value)
1751 {
1752 gt_tval_write(env, ri, GTIMER_VIRT, value);
1753 }
1754
1755 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value)
1757 {
1758 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1759 }
1760
1761 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1763 {
1764 ARMCPU *cpu = arm_env_get_cpu(env);
1765
1766 trace_arm_gt_cntvoff_write(value);
1767 raw_write(env, ri, value);
1768 gt_recalc_timer(cpu, GTIMER_VIRT);
1769 }
1770
1771 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1772 {
1773 gt_timer_reset(env, ri, GTIMER_HYP);
1774 }
1775
1776 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1778 {
1779 gt_cval_write(env, ri, GTIMER_HYP, value);
1780 }
1781
1782 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784 return gt_tval_read(env, ri, GTIMER_HYP);
1785 }
1786
1787 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788 uint64_t value)
1789 {
1790 gt_tval_write(env, ri, GTIMER_HYP, value);
1791 }
1792
1793 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1795 {
1796 gt_ctl_write(env, ri, GTIMER_HYP, value);
1797 }
1798
1799 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1800 {
1801 gt_timer_reset(env, ri, GTIMER_SEC);
1802 }
1803
1804 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value)
1806 {
1807 gt_cval_write(env, ri, GTIMER_SEC, value);
1808 }
1809
1810 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1811 {
1812 return gt_tval_read(env, ri, GTIMER_SEC);
1813 }
1814
1815 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816 uint64_t value)
1817 {
1818 gt_tval_write(env, ri, GTIMER_SEC, value);
1819 }
1820
1821 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1822 uint64_t value)
1823 {
1824 gt_ctl_write(env, ri, GTIMER_SEC, value);
1825 }
1826
1827 void arm_gt_ptimer_cb(void *opaque)
1828 {
1829 ARMCPU *cpu = opaque;
1830
1831 gt_recalc_timer(cpu, GTIMER_PHYS);
1832 }
1833
1834 void arm_gt_vtimer_cb(void *opaque)
1835 {
1836 ARMCPU *cpu = opaque;
1837
1838 gt_recalc_timer(cpu, GTIMER_VIRT);
1839 }
1840
1841 void arm_gt_htimer_cb(void *opaque)
1842 {
1843 ARMCPU *cpu = opaque;
1844
1845 gt_recalc_timer(cpu, GTIMER_HYP);
1846 }
1847
1848 void arm_gt_stimer_cb(void *opaque)
1849 {
1850 ARMCPU *cpu = opaque;
1851
1852 gt_recalc_timer(cpu, GTIMER_SEC);
1853 }
1854
1855 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1856 /* Note that CNTFRQ is purely reads-as-written for the benefit
1857 * of software; writing it doesn't actually change the timer frequency.
1858 * Our reset value matches the fixed frequency we implement the timer at.
1859 */
1860 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1861 .type = ARM_CP_ALIAS,
1862 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1863 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1864 },
1865 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1866 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1867 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1868 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1869 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1870 },
1871 /* overall control: mostly access permissions */
1872 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1873 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1874 .access = PL1_RW,
1875 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1876 .resetvalue = 0,
1877 },
1878 /* per-timer control */
1879 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1880 .secure = ARM_CP_SECSTATE_NS,
1881 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1882 .accessfn = gt_ptimer_access,
1883 .fieldoffset = offsetoflow32(CPUARMState,
1884 cp15.c14_timer[GTIMER_PHYS].ctl),
1885 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1886 },
1887 { .name = "CNTP_CTL(S)",
1888 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1889 .secure = ARM_CP_SECSTATE_S,
1890 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1891 .accessfn = gt_ptimer_access,
1892 .fieldoffset = offsetoflow32(CPUARMState,
1893 cp15.c14_timer[GTIMER_SEC].ctl),
1894 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1895 },
1896 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1897 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1898 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1899 .accessfn = gt_ptimer_access,
1900 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1901 .resetvalue = 0,
1902 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1903 },
1904 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1905 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1906 .accessfn = gt_vtimer_access,
1907 .fieldoffset = offsetoflow32(CPUARMState,
1908 cp15.c14_timer[GTIMER_VIRT].ctl),
1909 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1910 },
1911 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1912 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1913 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1914 .accessfn = gt_vtimer_access,
1915 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1916 .resetvalue = 0,
1917 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1918 },
1919 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1920 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1921 .secure = ARM_CP_SECSTATE_NS,
1922 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1923 .accessfn = gt_ptimer_access,
1924 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1925 },
1926 { .name = "CNTP_TVAL(S)",
1927 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1928 .secure = ARM_CP_SECSTATE_S,
1929 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1930 .accessfn = gt_ptimer_access,
1931 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1932 },
1933 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1934 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1935 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1936 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1937 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1938 },
1939 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1940 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1941 .accessfn = gt_vtimer_access,
1942 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1943 },
1944 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1945 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1946 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1947 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1948 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1949 },
1950 /* The counter itself */
1951 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1952 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1953 .accessfn = gt_pct_access,
1954 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1955 },
1956 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1957 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1958 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1959 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1960 },
1961 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1962 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1963 .accessfn = gt_vct_access,
1964 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1965 },
1966 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1967 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1968 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1969 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1970 },
1971 /* Comparison value, indicating when the timer goes off */
1972 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1973 .secure = ARM_CP_SECSTATE_NS,
1974 .access = PL1_RW | PL0_R,
1975 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1976 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1977 .accessfn = gt_ptimer_access,
1978 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1979 },
1980 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1981 .secure = ARM_CP_SECSTATE_S,
1982 .access = PL1_RW | PL0_R,
1983 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1984 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1985 .accessfn = gt_ptimer_access,
1986 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1987 },
1988 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1989 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1990 .access = PL1_RW | PL0_R,
1991 .type = ARM_CP_IO,
1992 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1993 .resetvalue = 0, .accessfn = gt_ptimer_access,
1994 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1995 },
1996 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1997 .access = PL1_RW | PL0_R,
1998 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1999 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2000 .accessfn = gt_vtimer_access,
2001 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2002 },
2003 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2004 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2005 .access = PL1_RW | PL0_R,
2006 .type = ARM_CP_IO,
2007 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2008 .resetvalue = 0, .accessfn = gt_vtimer_access,
2009 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2010 },
2011 /* Secure timer -- this is actually restricted to only EL3
2012 * and configurably Secure-EL1 via the accessfn.
2013 */
2014 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2015 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2016 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2017 .accessfn = gt_stimer_access,
2018 .readfn = gt_sec_tval_read,
2019 .writefn = gt_sec_tval_write,
2020 .resetfn = gt_sec_timer_reset,
2021 },
2022 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2023 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2024 .type = ARM_CP_IO, .access = PL1_RW,
2025 .accessfn = gt_stimer_access,
2026 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2027 .resetvalue = 0,
2028 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2029 },
2030 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2031 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2032 .type = ARM_CP_IO, .access = PL1_RW,
2033 .accessfn = gt_stimer_access,
2034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2035 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2036 },
2037 REGINFO_SENTINEL
2038 };
2039
2040 #else
2041 /* In user-mode none of the generic timer registers are accessible,
2042 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2043 * so instead just don't register any of them.
2044 */
2045 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2046 REGINFO_SENTINEL
2047 };
2048
2049 #endif
2050
2051 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2052 {
2053 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2054 raw_write(env, ri, value);
2055 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2056 raw_write(env, ri, value & 0xfffff6ff);
2057 } else {
2058 raw_write(env, ri, value & 0xfffff1ff);
2059 }
2060 }
2061
2062 #ifndef CONFIG_USER_ONLY
2063 /* get_phys_addr() isn't present for user-mode-only targets */
2064
2065 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2066 bool isread)
2067 {
2068 if (ri->opc2 & 4) {
2069 /* The ATS12NSO* operations must trap to EL3 if executed in
2070 * Secure EL1 (which can only happen if EL3 is AArch64).
2071 * They are simply UNDEF if executed from NS EL1.
2072 * They function normally from EL2 or EL3.
2073 */
2074 if (arm_current_el(env) == 1) {
2075 if (arm_is_secure_below_el3(env)) {
2076 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2077 }
2078 return CP_ACCESS_TRAP_UNCATEGORIZED;
2079 }
2080 }
2081 return CP_ACCESS_OK;
2082 }
2083
2084 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2085 int access_type, ARMMMUIdx mmu_idx)
2086 {
2087 hwaddr phys_addr;
2088 target_ulong page_size;
2089 int prot;
2090 uint32_t fsr;
2091 bool ret;
2092 uint64_t par64;
2093 MemTxAttrs attrs = {};
2094 ARMMMUFaultInfo fi = {};
2095
2096 ret = get_phys_addr(env, value, access_type, mmu_idx,
2097 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2098 if (extended_addresses_enabled(env)) {
2099 /* fsr is a DFSR/IFSR value for the long descriptor
2100 * translation table format, but with WnR always clear.
2101 * Convert it to a 64-bit PAR.
2102 */
2103 par64 = (1 << 11); /* LPAE bit always set */
2104 if (!ret) {
2105 par64 |= phys_addr & ~0xfffULL;
2106 if (!attrs.secure) {
2107 par64 |= (1 << 9); /* NS */
2108 }
2109 /* We don't set the ATTR or SH fields in the PAR. */
2110 } else {
2111 par64 |= 1; /* F */
2112 par64 |= (fsr & 0x3f) << 1; /* FS */
2113 /* Note that S2WLK and FSTAGE are always zero, because we don't
2114 * implement virtualization and therefore there can't be a stage 2
2115 * fault.
2116 */
2117 }
2118 } else {
2119 /* fsr is a DFSR/IFSR value for the short descriptor
2120 * translation table format (with WnR always clear).
2121 * Convert it to a 32-bit PAR.
2122 */
2123 if (!ret) {
2124 /* We do not set any attribute bits in the PAR */
2125 if (page_size == (1 << 24)
2126 && arm_feature(env, ARM_FEATURE_V7)) {
2127 par64 = (phys_addr & 0xff000000) | (1 << 1);
2128 } else {
2129 par64 = phys_addr & 0xfffff000;
2130 }
2131 if (!attrs.secure) {
2132 par64 |= (1 << 9); /* NS */
2133 }
2134 } else {
2135 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2136 ((fsr & 0xf) << 1) | 1;
2137 }
2138 }
2139 return par64;
2140 }
2141
2142 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2143 {
2144 int access_type = ri->opc2 & 1;
2145 uint64_t par64;
2146 ARMMMUIdx mmu_idx;
2147 int el = arm_current_el(env);
2148 bool secure = arm_is_secure_below_el3(env);
2149
2150 switch (ri->opc2 & 6) {
2151 case 0:
2152 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2153 switch (el) {
2154 case 3:
2155 mmu_idx = ARMMMUIdx_S1E3;
2156 break;
2157 case 2:
2158 mmu_idx = ARMMMUIdx_S1NSE1;
2159 break;
2160 case 1:
2161 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2162 break;
2163 default:
2164 g_assert_not_reached();
2165 }
2166 break;
2167 case 2:
2168 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2169 switch (el) {
2170 case 3:
2171 mmu_idx = ARMMMUIdx_S1SE0;
2172 break;
2173 case 2:
2174 mmu_idx = ARMMMUIdx_S1NSE0;
2175 break;
2176 case 1:
2177 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2178 break;
2179 default:
2180 g_assert_not_reached();
2181 }
2182 break;
2183 case 4:
2184 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2185 mmu_idx = ARMMMUIdx_S12NSE1;
2186 break;
2187 case 6:
2188 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2189 mmu_idx = ARMMMUIdx_S12NSE0;
2190 break;
2191 default:
2192 g_assert_not_reached();
2193 }
2194
2195 par64 = do_ats_write(env, value, access_type, mmu_idx);
2196
2197 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2198 }
2199
2200 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2201 uint64_t value)
2202 {
2203 int access_type = ri->opc2 & 1;
2204 uint64_t par64;
2205
2206 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2207
2208 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2209 }
2210
2211 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2212 bool isread)
2213 {
2214 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2215 return CP_ACCESS_TRAP;
2216 }
2217 return CP_ACCESS_OK;
2218 }
2219
2220 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2221 uint64_t value)
2222 {
2223 int access_type = ri->opc2 & 1;
2224 ARMMMUIdx mmu_idx;
2225 int secure = arm_is_secure_below_el3(env);
2226
2227 switch (ri->opc2 & 6) {
2228 case 0:
2229 switch (ri->opc1) {
2230 case 0: /* AT S1E1R, AT S1E1W */
2231 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2232 break;
2233 case 4: /* AT S1E2R, AT S1E2W */
2234 mmu_idx = ARMMMUIdx_S1E2;
2235 break;
2236 case 6: /* AT S1E3R, AT S1E3W */
2237 mmu_idx = ARMMMUIdx_S1E3;
2238 break;
2239 default:
2240 g_assert_not_reached();
2241 }
2242 break;
2243 case 2: /* AT S1E0R, AT S1E0W */
2244 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2245 break;
2246 case 4: /* AT S12E1R, AT S12E1W */
2247 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2248 break;
2249 case 6: /* AT S12E0R, AT S12E0W */
2250 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2251 break;
2252 default:
2253 g_assert_not_reached();
2254 }
2255
2256 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2257 }
2258 #endif
2259
2260 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2261 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2262 .access = PL1_RW, .resetvalue = 0,
2263 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2264 offsetoflow32(CPUARMState, cp15.par_ns) },
2265 .writefn = par_write },
2266 #ifndef CONFIG_USER_ONLY
2267 /* This underdecoding is safe because the reginfo is NO_RAW. */
2268 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2269 .access = PL1_W, .accessfn = ats_access,
2270 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2271 #endif
2272 REGINFO_SENTINEL
2273 };
2274
2275 /* Return basic MPU access permission bits. */
2276 static uint32_t simple_mpu_ap_bits(uint32_t val)
2277 {
2278 uint32_t ret;
2279 uint32_t mask;
2280 int i;
2281 ret = 0;
2282 mask = 3;
2283 for (i = 0; i < 16; i += 2) {
2284 ret |= (val >> i) & mask;
2285 mask <<= 2;
2286 }
2287 return ret;
2288 }
2289
2290 /* Pad basic MPU access permission bits to extended format. */
2291 static uint32_t extended_mpu_ap_bits(uint32_t val)
2292 {
2293 uint32_t ret;
2294 uint32_t mask;
2295 int i;
2296 ret = 0;
2297 mask = 3;
2298 for (i = 0; i < 16; i += 2) {
2299 ret |= (val & mask) << i;
2300 mask <<= 2;
2301 }
2302 return ret;
2303 }
2304
2305 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2306 uint64_t value)
2307 {
2308 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2309 }
2310
2311 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2312 {
2313 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2314 }
2315
2316 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2317 uint64_t value)
2318 {
2319 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2320 }
2321
2322 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2323 {
2324 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2325 }
2326
2327 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2328 {
2329 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2330
2331 if (!u32p) {
2332 return 0;
2333 }
2334
2335 u32p += env->cp15.c6_rgnr;
2336 return *u32p;
2337 }
2338
2339 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340 uint64_t value)
2341 {
2342 ARMCPU *cpu = arm_env_get_cpu(env);
2343 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2344
2345 if (!u32p) {
2346 return;
2347 }
2348
2349 u32p += env->cp15.c6_rgnr;
2350 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2351 *u32p = value;
2352 }
2353
2354 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2355 {
2356 ARMCPU *cpu = arm_env_get_cpu(env);
2357 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2358
2359 if (!u32p) {
2360 return;
2361 }
2362
2363 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2364 }
2365
2366 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2367 uint64_t value)
2368 {
2369 ARMCPU *cpu = arm_env_get_cpu(env);
2370 uint32_t nrgs = cpu->pmsav7_dregion;
2371
2372 if (value >= nrgs) {
2373 qemu_log_mask(LOG_GUEST_ERROR,
2374 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2375 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2376 return;
2377 }
2378
2379 raw_write(env, ri, value);
2380 }
2381
2382 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2383 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2384 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2385 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2386 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2387 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2388 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2389 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2390 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2391 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2392 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2393 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2394 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2395 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2396 .access = PL1_RW,
2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2398 .writefn = pmsav7_rgnr_write },
2399 REGINFO_SENTINEL
2400 };
2401
2402 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2403 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2404 .access = PL1_RW, .type = ARM_CP_ALIAS,
2405 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2406 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2407 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2408 .access = PL1_RW, .type = ARM_CP_ALIAS,
2409 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2410 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2411 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2412 .access = PL1_RW,
2413 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2414 .resetvalue = 0, },
2415 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2416 .access = PL1_RW,
2417 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2418 .resetvalue = 0, },
2419 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2420 .access = PL1_RW,
2421 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2422 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2423 .access = PL1_RW,
2424 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2425 /* Protection region base and size registers */
2426 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2427 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2428 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2429 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2430 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2431 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2432 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2433 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2434 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2435 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2436 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2437 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2438 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2439 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2440 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2441 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2442 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2443 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2444 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2445 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2446 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2447 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2448 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2449 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2450 REGINFO_SENTINEL
2451 };
2452
2453 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2454 uint64_t value)
2455 {
2456 TCR *tcr = raw_ptr(env, ri);
2457 int maskshift = extract32(value, 0, 3);
2458
2459 if (!arm_feature(env, ARM_FEATURE_V8)) {
2460 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2461 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2462 * using Long-desciptor translation table format */
2463 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2464 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2465 /* In an implementation that includes the Security Extensions
2466 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2467 * Short-descriptor translation table format.
2468 */
2469 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2470 } else {
2471 value &= TTBCR_N;
2472 }
2473 }
2474
2475 /* Update the masks corresponding to the TCR bank being written
2476 * Note that we always calculate mask and base_mask, but
2477 * they are only used for short-descriptor tables (ie if EAE is 0);
2478 * for long-descriptor tables the TCR fields are used differently
2479 * and the mask and base_mask values are meaningless.
2480 */
2481 tcr->raw_tcr = value;
2482 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2483 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2484 }
2485
2486 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2487 uint64_t value)
2488 {
2489 ARMCPU *cpu = arm_env_get_cpu(env);
2490
2491 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2492 /* With LPAE the TTBCR could result in a change of ASID
2493 * via the TTBCR.A1 bit, so do a TLB flush.
2494 */
2495 tlb_flush(CPU(cpu));
2496 }
2497 vmsa_ttbcr_raw_write(env, ri, value);
2498 }
2499
2500 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2501 {
2502 TCR *tcr = raw_ptr(env, ri);
2503
2504 /* Reset both the TCR as well as the masks corresponding to the bank of
2505 * the TCR being reset.
2506 */
2507 tcr->raw_tcr = 0;
2508 tcr->mask = 0;
2509 tcr->base_mask = 0xffffc000u;
2510 }
2511
2512 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2513 uint64_t value)
2514 {
2515 ARMCPU *cpu = arm_env_get_cpu(env);
2516 TCR *tcr = raw_ptr(env, ri);
2517
2518 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2519 tlb_flush(CPU(cpu));
2520 tcr->raw_tcr = value;
2521 }
2522
2523 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2524 uint64_t value)
2525 {
2526 /* 64 bit accesses to the TTBRs can change the ASID and so we
2527 * must flush the TLB.
2528 */
2529 if (cpreg_field_is_64bit(ri)) {
2530 ARMCPU *cpu = arm_env_get_cpu(env);
2531
2532 tlb_flush(CPU(cpu));
2533 }
2534 raw_write(env, ri, value);
2535 }
2536
2537 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2538 uint64_t value)
2539 {
2540 ARMCPU *cpu = arm_env_get_cpu(env);
2541 CPUState *cs = CPU(cpu);
2542
2543 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2544 if (raw_read(env, ri) != value) {
2545 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2546 ARMMMUIdx_S2NS, -1);
2547 raw_write(env, ri, value);
2548 }
2549 }
2550
2551 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2552 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2553 .access = PL1_RW, .type = ARM_CP_ALIAS,
2554 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2555 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2556 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2557 .access = PL1_RW, .resetvalue = 0,
2558 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2559 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2560 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2561 .access = PL1_RW, .resetvalue = 0,
2562 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2563 offsetof(CPUARMState, cp15.dfar_ns) } },
2564 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2565 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2566 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2567 .resetvalue = 0, },
2568 REGINFO_SENTINEL
2569 };
2570
2571 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2572 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2573 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2574 .access = PL1_RW,
2575 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2576 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2577 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2578 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2579 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2580 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2581 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2582 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2583 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2584 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2585 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2586 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2587 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2588 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2589 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2590 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2591 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2592 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2593 .raw_writefn = vmsa_ttbcr_raw_write,
2594 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2595 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2596 REGINFO_SENTINEL
2597 };
2598
2599 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2600 uint64_t value)
2601 {
2602 env->cp15.c15_ticonfig = value & 0xe7;
2603 /* The OS_TYPE bit in this register changes the reported CPUID! */
2604 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2605 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2606 }
2607
2608 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609 uint64_t value)
2610 {
2611 env->cp15.c15_threadid = value & 0xffff;
2612 }
2613
2614 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615 uint64_t value)
2616 {
2617 /* Wait-for-interrupt (deprecated) */
2618 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2619 }
2620
2621 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2622 uint64_t value)
2623 {
2624 /* On OMAP there are registers indicating the max/min index of dcache lines
2625 * containing a dirty line; cache flush operations have to reset these.
2626 */
2627 env->cp15.c15_i_max = 0x000;
2628 env->cp15.c15_i_min = 0xff0;
2629 }
2630
2631 static const ARMCPRegInfo omap_cp_reginfo[] = {
2632 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2633 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2634 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2635 .resetvalue = 0, },
2636 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2637 .access = PL1_RW, .type = ARM_CP_NOP },
2638 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2639 .access = PL1_RW,
2640 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2641 .writefn = omap_ticonfig_write },
2642 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2643 .access = PL1_RW,
2644 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2645 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2646 .access = PL1_RW, .resetvalue = 0xff0,
2647 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2648 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2649 .access = PL1_RW,
2650 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2651 .writefn = omap_threadid_write },
2652 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2653 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2654 .type = ARM_CP_NO_RAW,
2655 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2656 /* TODO: Peripheral port remap register:
2657 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2658 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2659 * when MMU is off.
2660 */
2661 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2662 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2663 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2664 .writefn = omap_cachemaint_write },
2665 { .name = "C9", .cp = 15, .crn = 9,
2666 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2667 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2668 REGINFO_SENTINEL
2669 };
2670
2671 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2672 uint64_t value)
2673 {
2674 env->cp15.c15_cpar = value & 0x3fff;
2675 }
2676
2677 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2678 { .name = "XSCALE_CPAR",
2679 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2680 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2681 .writefn = xscale_cpar_write, },
2682 { .name = "XSCALE_AUXCR",
2683 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2684 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2685 .resetvalue = 0, },
2686 /* XScale specific cache-lockdown: since we have no cache we NOP these
2687 * and hope the guest does not really rely on cache behaviour.
2688 */
2689 { .name = "XSCALE_LOCK_ICACHE_LINE",
2690 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2691 .access = PL1_W, .type = ARM_CP_NOP },
2692 { .name = "XSCALE_UNLOCK_ICACHE",
2693 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2694 .access = PL1_W, .type = ARM_CP_NOP },
2695 { .name = "XSCALE_DCACHE_LOCK",
2696 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2697 .access = PL1_RW, .type = ARM_CP_NOP },
2698 { .name = "XSCALE_UNLOCK_DCACHE",
2699 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2700 .access = PL1_W, .type = ARM_CP_NOP },
2701 REGINFO_SENTINEL
2702 };
2703
2704 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2705 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2706 * implementation of this implementation-defined space.
2707 * Ideally this should eventually disappear in favour of actually
2708 * implementing the correct behaviour for all cores.
2709 */
2710 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2711 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2712 .access = PL1_RW,
2713 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2714 .resetvalue = 0 },
2715 REGINFO_SENTINEL
2716 };
2717
2718 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2719 /* Cache status: RAZ because we have no cache so it's always clean */
2720 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2721 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2722 .resetvalue = 0 },
2723 REGINFO_SENTINEL
2724 };
2725
2726 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2727 /* We never have a a block transfer operation in progress */
2728 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2729 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2730 .resetvalue = 0 },
2731 /* The cache ops themselves: these all NOP for QEMU */
2732 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2733 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2734 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2735 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2736 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2737 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2738 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2739 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2740 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2741 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2742 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2743 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2744 REGINFO_SENTINEL
2745 };
2746
2747 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2748 /* The cache test-and-clean instructions always return (1 << 30)
2749 * to indicate that there are no dirty cache lines.
2750 */
2751 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2752 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2753 .resetvalue = (1 << 30) },
2754 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2755 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2756 .resetvalue = (1 << 30) },
2757 REGINFO_SENTINEL
2758 };
2759
2760 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2761 /* Ignore ReadBuffer accesses */
2762 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2763 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2764 .access = PL1_RW, .resetvalue = 0,
2765 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2766 REGINFO_SENTINEL
2767 };
2768
2769 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2770 {
2771 ARMCPU *cpu = arm_env_get_cpu(env);
2772 unsigned int cur_el = arm_current_el(env);
2773 bool secure = arm_is_secure(env);
2774
2775 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2776 return env->cp15.vpidr_el2;
2777 }
2778 return raw_read(env, ri);
2779 }
2780
2781 static uint64_t mpidr_read_val(CPUARMState *env)
2782 {
2783 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2784 uint64_t mpidr = cpu->mp_affinity;
2785
2786 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2787 mpidr |= (1U << 31);
2788 /* Cores which are uniprocessor (non-coherent)
2789 * but still implement the MP extensions set
2790 * bit 30. (For instance, Cortex-R5).
2791 */
2792 if (cpu->mp_is_up) {
2793 mpidr |= (1u << 30);
2794 }
2795 }
2796 return mpidr;
2797 }
2798
2799 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2800 {
2801 unsigned int cur_el = arm_current_el(env);
2802 bool secure = arm_is_secure(env);
2803
2804 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2805 return env->cp15.vmpidr_el2;
2806 }
2807 return mpidr_read_val(env);
2808 }
2809
2810 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2811 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2812 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2813 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2814 REGINFO_SENTINEL
2815 };
2816
2817 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2818 /* NOP AMAIR0/1 */
2819 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2820 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2821 .access = PL1_RW, .type = ARM_CP_CONST,
2822 .resetvalue = 0 },
2823 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2824 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2825 .access = PL1_RW, .type = ARM_CP_CONST,
2826 .resetvalue = 0 },
2827 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2828 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2829 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2830 offsetof(CPUARMState, cp15.par_ns)} },
2831 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2832 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2834 offsetof(CPUARMState, cp15.ttbr0_ns) },
2835 .writefn = vmsa_ttbr_write, },
2836 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2837 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2839 offsetof(CPUARMState, cp15.ttbr1_ns) },
2840 .writefn = vmsa_ttbr_write, },
2841 REGINFO_SENTINEL
2842 };
2843
2844 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2845 {
2846 return vfp_get_fpcr(env);
2847 }
2848
2849 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850 uint64_t value)
2851 {
2852 vfp_set_fpcr(env, value);
2853 }
2854
2855 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2856 {
2857 return vfp_get_fpsr(env);
2858 }
2859
2860 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2861 uint64_t value)
2862 {
2863 vfp_set_fpsr(env, value);
2864 }
2865
2866 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2867 bool isread)
2868 {
2869 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2870 return CP_ACCESS_TRAP;
2871 }
2872 return CP_ACCESS_OK;
2873 }
2874
2875 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2876 uint64_t value)
2877 {
2878 env->daif = value & PSTATE_DAIF;
2879 }
2880
2881 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2882 const ARMCPRegInfo *ri,
2883 bool isread)
2884 {
2885 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2886 * SCTLR_EL1.UCI is set.
2887 */
2888 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2889 return CP_ACCESS_TRAP;
2890 }
2891 return CP_ACCESS_OK;
2892 }
2893
2894 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2895 * Page D4-1736 (DDI0487A.b)
2896 */
2897
2898 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2900 {
2901 ARMCPU *cpu = arm_env_get_cpu(env);
2902 CPUState *cs = CPU(cpu);
2903
2904 if (arm_is_secure_below_el3(env)) {
2905 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2906 } else {
2907 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2908 }
2909 }
2910
2911 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912 uint64_t value)
2913 {
2914 bool sec = arm_is_secure_below_el3(env);
2915 CPUState *other_cs;
2916
2917 CPU_FOREACH(other_cs) {
2918 if (sec) {
2919 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2920 } else {
2921 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2922 ARMMMUIdx_S12NSE0, -1);
2923 }
2924 }
2925 }
2926
2927 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2928 uint64_t value)
2929 {
2930 /* Note that the 'ALL' scope must invalidate both stage 1 and
2931 * stage 2 translations, whereas most other scopes only invalidate
2932 * stage 1 translations.
2933 */
2934 ARMCPU *cpu = arm_env_get_cpu(env);
2935 CPUState *cs = CPU(cpu);
2936
2937 if (arm_is_secure_below_el3(env)) {
2938 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2939 } else {
2940 if (arm_feature(env, ARM_FEATURE_EL2)) {
2941 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2942 ARMMMUIdx_S2NS, -1);
2943 } else {
2944 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2945 }
2946 }
2947 }
2948
2949 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
2951 {
2952 ARMCPU *cpu = arm_env_get_cpu(env);
2953 CPUState *cs = CPU(cpu);
2954
2955 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2956 }
2957
2958 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2959 uint64_t value)
2960 {
2961 ARMCPU *cpu = arm_env_get_cpu(env);
2962 CPUState *cs = CPU(cpu);
2963
2964 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2965 }
2966
2967 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2968 uint64_t value)
2969 {
2970 /* Note that the 'ALL' scope must invalidate both stage 1 and
2971 * stage 2 translations, whereas most other scopes only invalidate
2972 * stage 1 translations.
2973 */
2974 bool sec = arm_is_secure_below_el3(env);
2975 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2976 CPUState *other_cs;
2977
2978 CPU_FOREACH(other_cs) {
2979 if (sec) {
2980 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2981 } else if (has_el2) {
2982 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2983 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2984 } else {
2985 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2986 ARMMMUIdx_S12NSE0, -1);
2987 }
2988 }
2989 }
2990
2991 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2992 uint64_t value)
2993 {
2994 CPUState *other_cs;
2995
2996 CPU_FOREACH(other_cs) {
2997 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2998 }
2999 }
3000
3001 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3002 uint64_t value)
3003 {
3004 CPUState *other_cs;
3005
3006 CPU_FOREACH(other_cs) {
3007 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
3008 }
3009 }
3010
3011 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3012 uint64_t value)
3013 {
3014 /* Invalidate by VA, EL1&0 (AArch64 version).
3015 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3016 * since we don't support flush-for-specific-ASID-only or
3017 * flush-last-level-only.
3018 */
3019 ARMCPU *cpu = arm_env_get_cpu(env);
3020 CPUState *cs = CPU(cpu);
3021 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3022
3023 if (arm_is_secure_below_el3(env)) {
3024 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
3025 ARMMMUIdx_S1SE0, -1);
3026 } else {
3027 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
3028 ARMMMUIdx_S12NSE0, -1);
3029 }
3030 }
3031
3032 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034 {
3035 /* Invalidate by VA, EL2
3036 * Currently handles both VAE2 and VALE2, since we don't support
3037 * flush-last-level-only.
3038 */
3039 ARMCPU *cpu = arm_env_get_cpu(env);
3040 CPUState *cs = CPU(cpu);
3041 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3042
3043 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
3044 }
3045
3046 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3048 {
3049 /* Invalidate by VA, EL3
3050 * Currently handles both VAE3 and VALE3, since we don't support
3051 * flush-last-level-only.
3052 */
3053 ARMCPU *cpu = arm_env_get_cpu(env);
3054 CPUState *cs = CPU(cpu);
3055 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3056
3057 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
3058 }
3059
3060 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3062 {
3063 bool sec = arm_is_secure_below_el3(env);
3064 CPUState *other_cs;
3065 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3066
3067 CPU_FOREACH(other_cs) {
3068 if (sec) {
3069 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
3070 ARMMMUIdx_S1SE0, -1);
3071 } else {
3072 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
3073 ARMMMUIdx_S12NSE0, -1);
3074 }
3075 }
3076 }
3077
3078 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079 uint64_t value)
3080 {
3081 CPUState *other_cs;
3082 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3083
3084 CPU_FOREACH(other_cs) {
3085 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3086 }
3087 }
3088
3089 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3090 uint64_t value)
3091 {
3092 CPUState *other_cs;
3093 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3094
3095 CPU_FOREACH(other_cs) {
3096 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
3097 }
3098 }
3099
3100 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3101 uint64_t value)
3102 {
3103 /* Invalidate by IPA. This has to invalidate any structures that
3104 * contain only stage 2 translation information, but does not need
3105 * to apply to structures that contain combined stage 1 and stage 2
3106 * translation information.
3107 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3108 */
3109 ARMCPU *cpu = arm_env_get_cpu(env);
3110 CPUState *cs = CPU(cpu);
3111 uint64_t pageaddr;
3112
3113 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3114 return;
3115 }
3116
3117 pageaddr = sextract64(value << 12, 0, 48);
3118
3119 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
3120 }
3121
3122 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123 uint64_t value)
3124 {
3125 CPUState *other_cs;
3126 uint64_t pageaddr;
3127
3128 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3129 return;
3130 }
3131
3132 pageaddr = sextract64(value << 12, 0, 48);
3133
3134 CPU_FOREACH(other_cs) {
3135 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
3136 }
3137 }
3138
3139 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3140 bool isread)
3141 {
3142 /* We don't implement EL2, so the only control on DC ZVA is the
3143 * bit in the SCTLR which can prohibit access for EL0.
3144 */
3145 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3146 return CP_ACCESS_TRAP;
3147 }
3148 return CP_ACCESS_OK;
3149 }
3150
3151 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3152 {
3153 ARMCPU *cpu = arm_env_get_cpu(env);
3154 int dzp_bit = 1 << 4;
3155
3156 /* DZP indicates whether DC ZVA access is allowed */
3157 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3158 dzp_bit = 0;
3159 }
3160 return cpu->dcz_blocksize | dzp_bit;
3161 }
3162
3163 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3164 bool isread)
3165 {
3166 if (!(env->pstate & PSTATE_SP)) {
3167 /* Access to SP_EL0 is undefined if it's being used as
3168 * the stack pointer.
3169 */
3170 return CP_ACCESS_TRAP_UNCATEGORIZED;
3171 }
3172 return CP_ACCESS_OK;
3173 }
3174
3175 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3176 {
3177 return env->pstate & PSTATE_SP;
3178 }
3179
3180 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3181 {
3182 update_spsel(env, val);
3183 }
3184
3185 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3186 uint64_t value)
3187 {
3188 ARMCPU *cpu = arm_env_get_cpu(env);
3189
3190 if (raw_read(env, ri) == value) {
3191 /* Skip the TLB flush if nothing actually changed; Linux likes
3192 * to do a lot of pointless SCTLR writes.
3193 */
3194 return;
3195 }
3196
3197 raw_write(env, ri, value);
3198 /* ??? Lots of these bits are not implemented. */
3199 /* This may enable/disable the MMU, so do a TLB flush. */
3200 tlb_flush(CPU(cpu));
3201 }
3202
3203 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3204 bool isread)
3205 {
3206 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3207 return CP_ACCESS_TRAP_FP_EL2;
3208 }
3209 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3210 return CP_ACCESS_TRAP_FP_EL3;
3211 }
3212 return CP_ACCESS_OK;
3213 }
3214
3215 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3216 uint64_t value)
3217 {
3218 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3219 }
3220
3221 static const ARMCPRegInfo v8_cp_reginfo[] = {
3222 /* Minimal set of EL0-visible registers. This will need to be expanded
3223 * significantly for system emulation of AArch64 CPUs.
3224 */
3225 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3227 .access = PL0_RW, .type = ARM_CP_NZCV },
3228 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3229 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3230 .type = ARM_CP_NO_RAW,
3231 .access = PL0_RW, .accessfn = aa64_daif_access,
3232 .fieldoffset = offsetof(CPUARMState, daif),
3233 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3234 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3235 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3236 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3237 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3238 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3239 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3240 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3241 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3242 .access = PL0_R, .type = ARM_CP_NO_RAW,
3243 .readfn = aa64_dczid_read },
3244 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3245 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3246 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3247 #ifndef CONFIG_USER_ONLY
3248 /* Avoid overhead of an access check that always passes in user-mode */
3249 .accessfn = aa64_zva_access,
3250 #endif
3251 },
3252 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3254 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3255 /* Cache ops: all NOPs since we don't emulate caches */
3256 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3258 .access = PL1_W, .type = ARM_CP_NOP },
3259 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3260 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3261 .access = PL1_W, .type = ARM_CP_NOP },
3262 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3263 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3264 .access = PL0_W, .type = ARM_CP_NOP,
3265 .accessfn = aa64_cacheop_access },
3266 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3268 .access = PL1_W, .type = ARM_CP_NOP },
3269 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3270 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3271 .access = PL1_W, .type = ARM_CP_NOP },
3272 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3274 .access = PL0_W, .type = ARM_CP_NOP,
3275 .accessfn = aa64_cacheop_access },
3276 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3278 .access = PL1_W, .type = ARM_CP_NOP },
3279 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3280 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3281 .access = PL0_W, .type = ARM_CP_NOP,
3282 .accessfn = aa64_cacheop_access },
3283 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3284 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3285 .access = PL0_W, .type = ARM_CP_NOP,
3286 .accessfn = aa64_cacheop_access },
3287 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3289 .access = PL1_W, .type = ARM_CP_NOP },
3290 /* TLBI operations */
3291 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3292 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3293 .access = PL1_W, .type = ARM_CP_NO_RAW,
3294 .writefn = tlbi_aa64_vmalle1is_write },
3295 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3296 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3297 .access = PL1_W, .type = ARM_CP_NO_RAW,
3298 .writefn = tlbi_aa64_vae1is_write },
3299 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3301 .access = PL1_W, .type = ARM_CP_NO_RAW,
3302 .writefn = tlbi_aa64_vmalle1is_write },
3303 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3304 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3305 .access = PL1_W, .type = ARM_CP_NO_RAW,
3306 .writefn = tlbi_aa64_vae1is_write },
3307 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3308 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3309 .access = PL1_W, .type = ARM_CP_NO_RAW,
3310 .writefn = tlbi_aa64_vae1is_write },
3311 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3313 .access = PL1_W, .type = ARM_CP_NO_RAW,
3314 .writefn = tlbi_aa64_vae1is_write },
3315 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3317 .access = PL1_W, .type = ARM_CP_NO_RAW,
3318 .writefn = tlbi_aa64_vmalle1_write },
3319 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3321 .access = PL1_W, .type = ARM_CP_NO_RAW,
3322 .writefn = tlbi_aa64_vae1_write },
3323 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3325 .access = PL1_W, .type = ARM_CP_NO_RAW,
3326 .writefn = tlbi_aa64_vmalle1_write },
3327 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3329 .access = PL1_W, .type = ARM_CP_NO_RAW,
3330 .writefn = tlbi_aa64_vae1_write },
3331 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3333 .access = PL1_W, .type = ARM_CP_NO_RAW,
3334 .writefn = tlbi_aa64_vae1_write },
3335 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3337 .access = PL1_W, .type = ARM_CP_NO_RAW,
3338 .writefn = tlbi_aa64_vae1_write },
3339 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3341 .access = PL2_W, .type = ARM_CP_NO_RAW,
3342 .writefn = tlbi_aa64_ipas2e1is_write },
3343 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3345 .access = PL2_W, .type = ARM_CP_NO_RAW,
3346 .writefn = tlbi_aa64_ipas2e1is_write },
3347 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3349 .access = PL2_W, .type = ARM_CP_NO_RAW,
3350 .writefn = tlbi_aa64_alle1is_write },
3351 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3353 .access = PL2_W, .type = ARM_CP_NO_RAW,
3354 .writefn = tlbi_aa64_alle1is_write },
3355 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3357 .access = PL2_W, .type = ARM_CP_NO_RAW,
3358 .writefn = tlbi_aa64_ipas2e1_write },
3359 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3361 .access = PL2_W, .type = ARM_CP_NO_RAW,
3362 .writefn = tlbi_aa64_ipas2e1_write },
3363 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3364 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3365 .access = PL2_W, .type = ARM_CP_NO_RAW,
3366 .writefn = tlbi_aa64_alle1_write },
3367 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3368 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3369 .access = PL2_W, .type = ARM_CP_NO_RAW,
3370 .writefn = tlbi_aa64_alle1is_write },
3371 #ifndef CONFIG_USER_ONLY
3372 /* 64 bit address translation operations */
3373 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3374 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3375 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3376 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3377 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3378 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3379 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3380 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3381 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3382 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3384 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3385 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3386 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3387 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3388 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3389 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3390 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3391 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3393 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3394 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3396 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3397 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3398 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3400 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3401 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3402 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3403 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3404 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3405 .type = ARM_CP_ALIAS,
3406 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3407 .access = PL1_RW, .resetvalue = 0,
3408 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3409 .writefn = par_write },
3410 #endif
3411 /* TLB invalidate last level of translation table walk */
3412 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3413 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3414 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3415 .type = ARM_CP_NO_RAW, .access = PL1_W,
3416 .writefn = tlbimvaa_is_write },
3417 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3418 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3419 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3420 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3421 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3422 .type = ARM_CP_NO_RAW, .access = PL2_W,
3423 .writefn = tlbimva_hyp_write },
3424 { .name = "TLBIMVALHIS",
3425 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3426 .type = ARM_CP_NO_RAW, .access = PL2_W,
3427 .writefn = tlbimva_hyp_is_write },
3428 { .name = "TLBIIPAS2",
3429 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3430 .type = ARM_CP_NO_RAW, .access = PL2_W,
3431 .writefn = tlbiipas2_write },
3432 { .name = "TLBIIPAS2IS",
3433 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3434 .type = ARM_CP_NO_RAW, .access = PL2_W,
3435 .writefn = tlbiipas2_is_write },
3436 { .name = "TLBIIPAS2L",
3437 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3438 .type = ARM_CP_NO_RAW, .access = PL2_W,
3439 .writefn = tlbiipas2_write },
3440 { .name = "TLBIIPAS2LIS",
3441 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3442 .type = ARM_CP_NO_RAW, .access = PL2_W,
3443 .writefn = tlbiipas2_is_write },
3444 /* 32 bit cache operations */
3445 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3446 .type = ARM_CP_NOP, .access = PL1_W },
3447 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3448 .type = ARM_CP_NOP, .access = PL1_W },
3449 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3450 .type = ARM_CP_NOP, .access = PL1_W },
3451 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3452 .type = ARM_CP_NOP, .access = PL1_W },
3453 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3454 .type = ARM_CP_NOP, .access = PL1_W },
3455 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3456 .type = ARM_CP_NOP, .access = PL1_W },
3457 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3458 .type = ARM_CP_NOP, .access = PL1_W },
3459 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3460 .type = ARM_CP_NOP, .access = PL1_W },
3461 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3462 .type = ARM_CP_NOP, .access = PL1_W },
3463 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3464 .type = ARM_CP_NOP, .access = PL1_W },
3465 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3466 .type = ARM_CP_NOP, .access = PL1_W },
3467 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3468 .type = ARM_CP_NOP, .access = PL1_W },
3469 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3470 .type = ARM_CP_NOP, .access = PL1_W },
3471 /* MMU Domain access control / MPU write buffer control */
3472 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3473 .access = PL1_RW, .resetvalue = 0,
3474 .writefn = dacr_write, .raw_writefn = raw_write,
3475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3476 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3477 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3478 .type = ARM_CP_ALIAS,
3479 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3480 .access = PL1_RW,
3481 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3482 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3483 .type = ARM_CP_ALIAS,
3484 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3485 .access = PL1_RW,
3486 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3487 /* We rely on the access checks not allowing the guest to write to the
3488 * state field when SPSel indicates that it's being used as the stack
3489 * pointer.
3490 */
3491 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3492 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3493 .access = PL1_RW, .accessfn = sp_el0_access,
3494 .type = ARM_CP_ALIAS,
3495 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3496 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3497 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3498 .access = PL2_RW, .type = ARM_CP_ALIAS,
3499 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3500 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3501 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3502 .type = ARM_CP_NO_RAW,
3503 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3504 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3506 .type = ARM_CP_ALIAS,
3507 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3508 .access = PL2_RW, .accessfn = fpexc32_access },
3509 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3511 .access = PL2_RW, .resetvalue = 0,
3512 .writefn = dacr_write, .raw_writefn = raw_write,
3513 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3514 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3515 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3516 .access = PL2_RW, .resetvalue = 0,
3517 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3518 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3519 .type = ARM_CP_ALIAS,
3520 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3521 .access = PL2_RW,
3522 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3523 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3524 .type = ARM_CP_ALIAS,
3525 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3526 .access = PL2_RW,
3527 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3528 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3529 .type = ARM_CP_ALIAS,
3530 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3531 .access = PL2_RW,
3532 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3533 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3534 .type = ARM_CP_ALIAS,
3535 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3536 .access = PL2_RW,
3537 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3538 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3539 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3540 .resetvalue = 0,
3541 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3542 { .name = "SDCR", .type = ARM_CP_ALIAS,
3543 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3544 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3545 .writefn = sdcr_write,
3546 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3547 REGINFO_SENTINEL
3548 };
3549
3550 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3551 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3552 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3553 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3554 .access = PL2_RW,
3555 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3556 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3557 .type = ARM_CP_NO_RAW,
3558 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3559 .access = PL2_RW,
3560 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3561 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3562 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3564 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3565 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3566 .access = PL2_RW, .type = ARM_CP_CONST,
3567 .resetvalue = 0 },
3568 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3569 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3570 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3571 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3572 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3573 .access = PL2_RW, .type = ARM_CP_CONST,
3574 .resetvalue = 0 },
3575 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3576 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3577 .access = PL2_RW, .type = ARM_CP_CONST,
3578 .resetvalue = 0 },
3579 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3580 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3581 .access = PL2_RW, .type = ARM_CP_CONST,
3582 .resetvalue = 0 },
3583 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3584 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3585 .access = PL2_RW, .type = ARM_CP_CONST,
3586 .resetvalue = 0 },
3587 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3589 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3590 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3591 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3592 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3593 .type = ARM_CP_CONST, .resetvalue = 0 },
3594 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3595 .cp = 15, .opc1 = 6, .crm = 2,
3596 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3597 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3598 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3599 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3600 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3601 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3602 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3603 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3604 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3605 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3606 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3607 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3608 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3609 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3610 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3611 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3612 .resetvalue = 0 },
3613 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3614 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3615 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3616 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3617 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3618 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3619 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3620 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3621 .resetvalue = 0 },
3622 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3623 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3624 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3625 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3626 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3627 .resetvalue = 0 },
3628 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3629 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3630 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3631 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3632 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3633 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3634 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3635 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3636 .access = PL2_RW, .accessfn = access_tda,
3637 .type = ARM_CP_CONST, .resetvalue = 0 },
3638 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3639 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3640 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3641 .type = ARM_CP_CONST, .resetvalue = 0 },
3642 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3643 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3644 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3645 REGINFO_SENTINEL
3646 };
3647
3648 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3649 {
3650 ARMCPU *cpu = arm_env_get_cpu(env);
3651 uint64_t valid_mask = HCR_MASK;
3652
3653 if (arm_feature(env, ARM_FEATURE_EL3)) {
3654 valid_mask &= ~HCR_HCD;
3655 } else {
3656 valid_mask &= ~HCR_TSC;
3657 }
3658
3659 /* Clear RES0 bits. */
3660 value &= valid_mask;
3661
3662 /* These bits change the MMU setup:
3663 * HCR_VM enables stage 2 translation
3664 * HCR_PTW forbids certain page-table setups
3665 * HCR_DC Disables stage1 and enables stage2 translation
3666 */
3667 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3668 tlb_flush(CPU(cpu));
3669 }
3670 raw_write(env, ri, value);
3671 }
3672
3673 static const ARMCPRegInfo el2_cp_reginfo[] = {
3674 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3675 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3676 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3677 .writefn = hcr_write },
3678 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3679 .type = ARM_CP_ALIAS,
3680 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3681 .access = PL2_RW,
3682 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3683 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3684 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3685 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3686 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3687 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3688 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3689 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3690 .type = ARM_CP_ALIAS,
3691 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3692 .access = PL2_RW,
3693 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3694 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3695 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3696 .access = PL2_RW, .writefn = vbar_write,
3697 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3698 .resetvalue = 0 },
3699 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3700 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3701 .access = PL3_RW, .type = ARM_CP_ALIAS,
3702 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3703 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3705 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3706 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3707 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3708 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3709 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3710 .resetvalue = 0 },
3711 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3712 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3713 .access = PL2_RW, .type = ARM_CP_ALIAS,
3714 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3715 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3716 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3717 .access = PL2_RW, .type = ARM_CP_CONST,
3718 .resetvalue = 0 },
3719 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3720 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3721 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3722 .access = PL2_RW, .type = ARM_CP_CONST,
3723 .resetvalue = 0 },
3724 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3725 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3726 .access = PL2_RW, .type = ARM_CP_CONST,
3727 .resetvalue = 0 },
3728 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3729 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3730 .access = PL2_RW, .type = ARM_CP_CONST,
3731 .resetvalue = 0 },
3732 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3733 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3734 .access = PL2_RW,
3735 /* no .writefn needed as this can't cause an ASID change;
3736 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3737 */
3738 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3739 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3740 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3741 .type = ARM_CP_ALIAS,
3742 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3743 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3744 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3745 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3746 .access = PL2_RW,
3747 /* no .writefn needed as this can't cause an ASID change;
3748 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3749 */
3750 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3751 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3752 .cp = 15, .opc1 = 6, .crm = 2,
3753 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3754 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3755 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3756 .writefn = vttbr_write },
3757 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3758 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3759 .access = PL2_RW, .writefn = vttbr_write,
3760 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3761 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3762 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3763 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3764 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3765 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3766 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3767 .access = PL2_RW, .resetvalue = 0,
3768 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3769 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3770 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3771 .access = PL2_RW, .resetvalue = 0,
3772 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3773 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3774 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3775 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3776 { .name = "TLBIALLNSNH",
3777 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3778 .type = ARM_CP_NO_RAW, .access = PL2_W,
3779 .writefn = tlbiall_nsnh_write },
3780 { .name = "TLBIALLNSNHIS",
3781 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3782 .type = ARM_CP_NO_RAW, .access = PL2_W,
3783 .writefn = tlbiall_nsnh_is_write },
3784 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3785 .type = ARM_CP_NO_RAW, .access = PL2_W,
3786 .writefn = tlbiall_hyp_write },
3787 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3788 .type = ARM_CP_NO_RAW, .access = PL2_W,
3789 .writefn = tlbiall_hyp_is_write },
3790 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3791 .type = ARM_CP_NO_RAW, .access = PL2_W,
3792 .writefn = tlbimva_hyp_write },
3793 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3794 .type = ARM_CP_NO_RAW, .access = PL2_W,
3795 .writefn = tlbimva_hyp_is_write },
3796 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3797 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3798 .type = ARM_CP_NO_RAW, .access = PL2_W,
3799 .writefn = tlbi_aa64_alle2_write },
3800 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3801 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3802 .type = ARM_CP_NO_RAW, .access = PL2_W,
3803 .writefn = tlbi_aa64_vae2_write },
3804 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3805 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3806 .access = PL2_W, .type = ARM_CP_NO_RAW,
3807 .writefn = tlbi_aa64_vae2_write },
3808 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3810 .access = PL2_W, .type = ARM_CP_NO_RAW,
3811 .writefn = tlbi_aa64_alle2is_write },
3812 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3813 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3814 .type = ARM_CP_NO_RAW, .access = PL2_W,
3815 .writefn = tlbi_aa64_vae2is_write },
3816 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3817 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3818 .access = PL2_W, .type = ARM_CP_NO_RAW,
3819 .writefn = tlbi_aa64_vae2is_write },
3820 #ifndef CONFIG_USER_ONLY
3821 /* Unlike the other EL2-related AT operations, these must
3822 * UNDEF from EL3 if EL2 is not implemented, which is why we
3823 * define them here rather than with the rest of the AT ops.
3824 */
3825 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3826 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3827 .access = PL2_W, .accessfn = at_s1e2_access,
3828 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3829 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3830 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3831 .access = PL2_W, .accessfn = at_s1e2_access,
3832 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3833 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3834 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3835 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3836 * to behave as if SCR.NS was 1.
3837 */
3838 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3839 .access = PL2_W,
3840 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3841 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3842 .access = PL2_W,
3843 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3844 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3845 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3846 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3847 * reset values as IMPDEF. We choose to reset to 3 to comply with
3848 * both ARMv7 and ARMv8.
3849 */
3850 .access = PL2_RW, .resetvalue = 3,
3851 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3852 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3853 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3854 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3855 .writefn = gt_cntvoff_write,
3856 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3857 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3858 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3859 .writefn = gt_cntvoff_write,
3860 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3861 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3862 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3864 .type = ARM_CP_IO, .access = PL2_RW,
3865 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3866 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3867 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3869 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3870 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3871 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3872 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3873 .resetfn = gt_hyp_timer_reset,
3874 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3875 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3876 .type = ARM_CP_IO,
3877 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3878 .access = PL2_RW,
3879 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3880 .resetvalue = 0,
3881 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3882 #endif
3883 /* The only field of MDCR_EL2 that has a defined architectural reset value
3884 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3885 * don't impelment any PMU event counters, so using zero as a reset
3886 * value for MDCR_EL2 is okay
3887 */
3888 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3889 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3890 .access = PL2_RW, .resetvalue = 0,
3891 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3892 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3893 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3894 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3895 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3896 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3897 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3898 .access = PL2_RW,
3899 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3900 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3901 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3902 .access = PL2_RW,
3903 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3904 REGINFO_SENTINEL
3905 };
3906
3907 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3908 bool isread)
3909 {
3910 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3911 * At Secure EL1 it traps to EL3.
3912 */
3913 if (arm_current_el(env) == 3) {
3914 return CP_ACCESS_OK;
3915 }
3916 if (arm_is_secure_below_el3(env)) {
3917 return CP_ACCESS_TRAP_EL3;
3918 }
3919 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3920 if (isread) {
3921 return CP_ACCESS_OK;
3922 }
3923 return CP_ACCESS_TRAP_UNCATEGORIZED;
3924 }
3925
3926 static const ARMCPRegInfo el3_cp_reginfo[] = {
3927 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3928 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3929 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3930 .resetvalue = 0, .writefn = scr_write },
3931 { .name = "SCR", .type = ARM_CP_ALIAS,
3932 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3933 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3934 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3935 .writefn = scr_write },
3936 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3937 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3938 .access = PL3_RW, .resetvalue = 0,
3939 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3940 { .name = "SDER",
3941 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3942 .access = PL3_RW, .resetvalue = 0,
3943 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3944 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3945 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3946 .writefn = vbar_write, .resetvalue = 0,
3947 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3948 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3949 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3950 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3951 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3952 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3953 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3954 .access = PL3_RW,
3955 /* no .writefn needed as this can't cause an ASID change;
3956 * we must provide a .raw_writefn and .resetfn because we handle
3957 * reset and migration for the AArch32 TTBCR(S), which might be
3958 * using mask and base_mask.
3959 */
3960 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3961 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3962 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3963 .type = ARM_CP_ALIAS,
3964 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3965 .access = PL3_RW,
3966 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3967 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3968 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3969 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3970 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3971 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3972 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3973 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3974 .type = ARM_CP_ALIAS,
3975 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3976 .access = PL3_RW,
3977 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3978 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3979 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3980 .access = PL3_RW, .writefn = vbar_write,
3981 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3982 .resetvalue = 0 },
3983 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3984 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3985 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3986 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3987 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3988 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3989 .access = PL3_RW, .resetvalue = 0,
3990 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3991 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3992 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3993 .access = PL3_RW, .type = ARM_CP_CONST,
3994 .resetvalue = 0 },
3995 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3996 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3997 .access = PL3_RW, .type = ARM_CP_CONST,
3998 .resetvalue = 0 },
3999 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4000 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4001 .access = PL3_RW, .type = ARM_CP_CONST,
4002 .resetvalue = 0 },
4003 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4004 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4005 .access = PL3_W, .type = ARM_CP_NO_RAW,
4006 .writefn = tlbi_aa64_alle3is_write },
4007 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4008 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4009 .access = PL3_W, .type = ARM_CP_NO_RAW,
4010 .writefn = tlbi_aa64_vae3is_write },
4011 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4012 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4013 .access = PL3_W, .type = ARM_CP_NO_RAW,
4014 .writefn = tlbi_aa64_vae3is_write },
4015 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4016 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4017 .access = PL3_W, .type = ARM_CP_NO_RAW,
4018 .writefn = tlbi_aa64_alle3_write },
4019 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4020 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4021 .access = PL3_W, .type = ARM_CP_NO_RAW,
4022 .writefn = tlbi_aa64_vae3_write },
4023 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4024 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4025 .access = PL3_W, .type = ARM_CP_NO_RAW,
4026 .writefn = tlbi_aa64_vae3_write },
4027 REGINFO_SENTINEL
4028 };
4029
4030 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4031 bool isread)
4032 {
4033 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4034 * but the AArch32 CTR has its own reginfo struct)
4035 */
4036 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4037 return CP_ACCESS_TRAP;
4038 }
4039 return CP_ACCESS_OK;
4040 }
4041
4042 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4043 uint64_t value)
4044 {
4045 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4046 * read via a bit in OSLSR_EL1.
4047 */
4048 int oslock;
4049
4050 if (ri->state == ARM_CP_STATE_AA32) {
4051 oslock = (value == 0xC5ACCE55);
4052 } else {
4053 oslock = value & 1;
4054 }
4055
4056 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4057 }
4058
4059 static const ARMCPRegInfo debug_cp_reginfo[] = {
4060 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4061 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4062 * unlike DBGDRAR it is never accessible from EL0.
4063 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4064 * accessor.
4065 */
4066 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4067 .access = PL0_R, .accessfn = access_tdra,
4068 .type = ARM_CP_CONST, .resetvalue = 0 },
4069 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4070 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4071 .access = PL1_R, .accessfn = access_tdra,
4072 .type = ARM_CP_CONST, .resetvalue = 0 },
4073 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4074 .access = PL0_R, .accessfn = access_tdra,
4075 .type = ARM_CP_CONST, .resetvalue = 0 },
4076 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4077 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4079 .access = PL1_RW, .accessfn = access_tda,
4080 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4081 .resetvalue = 0 },
4082 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4083 * We don't implement the configurable EL0 access.
4084 */
4085 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4086 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4087 .type = ARM_CP_ALIAS,
4088 .access = PL1_R, .accessfn = access_tda,
4089 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4090 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4091 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4092 .access = PL1_W, .type = ARM_CP_NO_RAW,
4093 .accessfn = access_tdosa,
4094 .writefn = oslar_write },
4095 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4096 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4097 .access = PL1_R, .resetvalue = 10,
4098 .accessfn = access_tdosa,
4099 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4100 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4101 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4103 .access = PL1_RW, .accessfn = access_tdosa,
4104 .type = ARM_CP_NOP },
4105 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4106 * implement vector catch debug events yet.
4107 */
4108 { .name = "DBGVCR",
4109 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4110 .access = PL1_RW, .accessfn = access_tda,
4111 .type = ARM_CP_NOP },
4112 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4113 * to save and restore a 32-bit guest's DBGVCR)
4114 */
4115 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4116 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4117 .access = PL2_RW, .accessfn = access_tda,
4118 .type = ARM_CP_NOP },
4119 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4120 * Channel but Linux may try to access this register. The 32-bit
4121 * alias is DBGDCCINT.
4122 */
4123 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4124 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4125 .access = PL1_RW, .accessfn = access_tda,
4126 .type = ARM_CP_NOP },
4127 REGINFO_SENTINEL
4128 };
4129
4130 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4131 /* 64 bit access versions of the (dummy) debug registers */
4132 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4133 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4134 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4135 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4136 REGINFO_SENTINEL
4137 };
4138
4139 void hw_watchpoint_update(ARMCPU *cpu, int n)
4140 {
4141 CPUARMState *env = &cpu->env;
4142 vaddr len = 0;
4143 vaddr wvr = env->cp15.dbgwvr[n];
4144 uint64_t wcr = env->cp15.dbgwcr[n];
4145 int mask;
4146 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4147
4148 if (env->cpu_watchpoint[n]) {
4149 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4150 env->cpu_watchpoint[n] = NULL;
4151 }
4152
4153 if (!extract64(wcr, 0, 1)) {
4154 /* E bit clear : watchpoint disabled */
4155 return;
4156 }
4157
4158 switch (extract64(wcr, 3, 2)) {
4159 case 0:
4160 /* LSC 00 is reserved and must behave as if the wp is disabled */
4161 return;
4162 case 1:
4163 flags |= BP_MEM_READ;
4164 break;
4165 case 2:
4166 flags |= BP_MEM_WRITE;
4167 break;
4168 case 3:
4169 flags |= BP_MEM_ACCESS;
4170 break;
4171 }
4172
4173 /* Attempts to use both MASK and BAS fields simultaneously are
4174 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4175 * thus generating a watchpoint for every byte in the masked region.
4176 */
4177 mask = extract64(wcr, 24, 4);
4178 if (mask == 1 || mask == 2) {
4179 /* Reserved values of MASK; we must act as if the mask value was
4180 * some non-reserved value, or as if the watchpoint were disabled.
4181 * We choose the latter.
4182 */
4183 return;
4184 } else if (mask) {
4185 /* Watchpoint covers an aligned area up to 2GB in size */
4186 len = 1ULL << mask;
4187 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4188 * whether the watchpoint fires when the unmasked bits match; we opt
4189 * to generate the exceptions.
4190 */
4191 wvr &= ~(len - 1);
4192 } else {
4193 /* Watchpoint covers bytes defined by the byte address select bits */
4194 int bas = extract64(wcr, 5, 8);
4195 int basstart;
4196
4197 if (bas == 0) {
4198 /* This must act as if the watchpoint is disabled */
4199 return;
4200 }
4201
4202 if (extract64(wvr, 2, 1)) {
4203 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4204 * ignored, and BAS[3:0] define which bytes to watch.
4205 */
4206 bas &= 0xf;
4207 }
4208 /* The BAS bits are supposed to be programmed to indicate a contiguous
4209 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4210 * we fire for each byte in the word/doubleword addressed by the WVR.
4211 * We choose to ignore any non-zero bits after the first range of 1s.
4212 */
4213 basstart = ctz32(bas);
4214 len = cto32(bas >> basstart);
4215 wvr += basstart;
4216 }
4217
4218 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4219 &env->cpu_watchpoint[n]);
4220 }
4221
4222 void hw_watchpoint_update_all(ARMCPU *cpu)
4223 {
4224 int i;
4225 CPUARMState *env = &cpu->env;
4226
4227 /* Completely clear out existing QEMU watchpoints and our array, to
4228 * avoid possible stale entries following migration load.
4229 */
4230 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4231 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4232
4233 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4234 hw_watchpoint_update(cpu, i);
4235 }
4236 }
4237
4238 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4239 uint64_t value)
4240 {
4241 ARMCPU *cpu = arm_env_get_cpu(env);
4242 int i = ri->crm;
4243
4244 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4245 * register reads and behaves as if values written are sign extended.
4246 * Bits [1:0] are RES0.
4247 */
4248 value = sextract64(value, 0, 49) & ~3ULL;
4249
4250 raw_write(env, ri, value);
4251 hw_watchpoint_update(cpu, i);
4252 }
4253
4254 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255 uint64_t value)
4256 {
4257 ARMCPU *cpu = arm_env_get_cpu(env);
4258 int i = ri->crm;
4259
4260 raw_write(env, ri, value);
4261 hw_watchpoint_update(cpu, i);
4262 }
4263
4264 void hw_breakpoint_update(ARMCPU *cpu, int n)
4265 {
4266 CPUARMState *env = &cpu->env;
4267 uint64_t bvr = env->cp15.dbgbvr[n];
4268 uint64_t bcr = env->cp15.dbgbcr[n];
4269 vaddr addr;
4270 int bt;
4271 int flags = BP_CPU;
4272
4273 if (env->cpu_breakpoint[n]) {
4274 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4275 env->cpu_breakpoint[n] = NULL;
4276 }
4277
4278 if (!extract64(bcr, 0, 1)) {
4279 /* E bit clear : watchpoint disabled */
4280 return;
4281 }
4282
4283 bt = extract64(bcr, 20, 4);
4284
4285 switch (bt) {
4286 case 4: /* unlinked address mismatch (reserved if AArch64) */
4287 case 5: /* linked address mismatch (reserved if AArch64) */
4288 qemu_log_mask(LOG_UNIMP,
4289 "arm: address mismatch breakpoint types not implemented");
4290 return;
4291 case 0: /* unlinked address match */
4292 case 1: /* linked address match */
4293 {
4294 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4295 * we behave as if the register was sign extended. Bits [1:0] are
4296 * RES0. The BAS field is used to allow setting breakpoints on 16
4297 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4298 * a bp will fire if the addresses covered by the bp and the addresses
4299 * covered by the insn overlap but the insn doesn't start at the
4300 * start of the bp address range. We choose to require the insn and
4301 * the bp to have the same address. The constraints on writing to
4302 * BAS enforced in dbgbcr_write mean we have only four cases:
4303 * 0b0000 => no breakpoint
4304 * 0b0011 => breakpoint on addr
4305 * 0b1100 => breakpoint on addr + 2
4306 * 0b1111 => breakpoint on addr
4307 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4308 */
4309 int bas = extract64(bcr, 5, 4);
4310 addr = sextract64(bvr, 0, 49) & ~3ULL;
4311 if (bas == 0) {
4312 return;
4313 }
4314 if (bas == 0xc) {
4315 addr += 2;
4316 }
4317 break;
4318 }
4319 case 2: /* unlinked context ID match */
4320 case 8: /* unlinked VMID match (reserved if no EL2) */
4321 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4322 qemu_log_mask(LOG_UNIMP,
4323 "arm: unlinked context breakpoint types not implemented");
4324 return;
4325 case 9: /* linked VMID match (reserved if no EL2) */
4326 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4327 case 3: /* linked context ID match */
4328 default:
4329 /* We must generate no events for Linked context matches (unless
4330 * they are linked to by some other bp/wp, which is handled in
4331 * updates for the linking bp/wp). We choose to also generate no events
4332 * for reserved values.
4333 */
4334 return;
4335 }
4336
4337 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4338 }
4339
4340 void hw_breakpoint_update_all(ARMCPU *cpu)
4341 {
4342 int i;
4343 CPUARMState *env = &cpu->env;
4344
4345 /* Completely clear out existing QEMU breakpoints and our array, to
4346 * avoid possible stale entries following migration load.
4347 */
4348 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4349 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4350
4351 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4352 hw_breakpoint_update(cpu, i);
4353 }
4354 }
4355
4356 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4357 uint64_t value)
4358 {
4359 ARMCPU *cpu = arm_env_get_cpu(env);
4360 int i = ri->crm;
4361
4362 raw_write(env, ri, value);
4363 hw_breakpoint_update(cpu, i);
4364 }
4365
4366 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4367 uint64_t value)
4368 {
4369 ARMCPU *cpu = arm_env_get_cpu(env);
4370 int i = ri->crm;
4371
4372 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4373 * copy of BAS[0].
4374 */
4375 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4376 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4377
4378 raw_write(env, ri, value);
4379 hw_breakpoint_update(cpu, i);
4380 }
4381
4382 static void define_debug_regs(ARMCPU *cpu)
4383 {
4384 /* Define v7 and v8 architectural debug registers.
4385 * These are just dummy implementations for now.
4386 */
4387 int i;
4388 int wrps, brps, ctx_cmps;
4389 ARMCPRegInfo dbgdidr = {
4390 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4391 .access = PL0_R, .accessfn = access_tda,
4392 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4393 };
4394
4395 /* Note that all these register fields hold "number of Xs minus 1". */
4396 brps = extract32(cpu->dbgdidr, 24, 4);
4397 wrps = extract32(cpu->dbgdidr, 28, 4);
4398 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4399
4400 assert(ctx_cmps <= brps);
4401
4402 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4403 * of the debug registers such as number of breakpoints;
4404 * check that if they both exist then they agree.
4405 */
4406 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4407 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4408 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4409 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4410 }
4411
4412 define_one_arm_cp_reg(cpu, &dbgdidr);
4413 define_arm_cp_regs(cpu, debug_cp_reginfo);
4414
4415 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4416 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4417 }
4418
4419 for (i = 0; i < brps + 1; i++) {
4420 ARMCPRegInfo dbgregs[] = {
4421 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4422 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4423 .access = PL1_RW, .accessfn = access_tda,
4424 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4425 .writefn = dbgbvr_write, .raw_writefn = raw_write
4426 },
4427 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4428 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4429 .access = PL1_RW, .accessfn = access_tda,
4430 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4431 .writefn = dbgbcr_write, .raw_writefn = raw_write
4432 },
4433 REGINFO_SENTINEL
4434 };
4435 define_arm_cp_regs(cpu, dbgregs);
4436 }
4437
4438 for (i = 0; i < wrps + 1; i++) {
4439 ARMCPRegInfo dbgregs[] = {
4440 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4441 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4442 .access = PL1_RW, .accessfn = access_tda,
4443 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4444 .writefn = dbgwvr_write, .raw_writefn = raw_write
4445 },
4446 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4447 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4448 .access = PL1_RW, .accessfn = access_tda,
4449 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4450 .writefn = dbgwcr_write, .raw_writefn = raw_write
4451 },
4452 REGINFO_SENTINEL
4453 };
4454 define_arm_cp_regs(cpu, dbgregs);
4455 }
4456 }
4457
4458 void register_cp_regs_for_features(ARMCPU *cpu)
4459 {
4460 /* Register all the coprocessor registers based on feature bits */
4461 CPUARMState *env = &cpu->env;
4462 if (arm_feature(env, ARM_FEATURE_M)) {
4463 /* M profile has no coprocessor registers */
4464 return;
4465 }
4466
4467 define_arm_cp_regs(cpu, cp_reginfo);
4468 if (!arm_feature(env, ARM_FEATURE_V8)) {
4469 /* Must go early as it is full of wildcards that may be
4470 * overridden by later definitions.
4471 */
4472 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4473 }
4474
4475 if (arm_feature(env, ARM_FEATURE_V6)) {
4476 /* The ID registers all have impdef reset values */
4477 ARMCPRegInfo v6_idregs[] = {
4478 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4480 .access = PL1_R, .type = ARM_CP_CONST,
4481 .resetvalue = cpu->id_pfr0 },
4482 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4483 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4484 .access = PL1_R, .type = ARM_CP_CONST,
4485 .resetvalue = cpu->id_pfr1 },
4486 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4488 .access = PL1_R, .type = ARM_CP_CONST,
4489 .resetvalue = cpu->id_dfr0 },
4490 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4492 .access = PL1_R, .type = ARM_CP_CONST,
4493 .resetvalue = cpu->id_afr0 },
4494 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4496 .access = PL1_R, .type = ARM_CP_CONST,
4497 .resetvalue = cpu->id_mmfr0 },
4498 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4500 .access = PL1_R, .type = ARM_CP_CONST,
4501 .resetvalue = cpu->id_mmfr1 },
4502 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4504 .access = PL1_R, .type = ARM_CP_CONST,
4505 .resetvalue = cpu->id_mmfr2 },
4506 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4508 .access = PL1_R, .type = ARM_CP_CONST,
4509 .resetvalue = cpu->id_mmfr3 },
4510 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4512 .access = PL1_R, .type = ARM_CP_CONST,
4513 .resetvalue = cpu->id_isar0 },
4514 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4516 .access = PL1_R, .type = ARM_CP_CONST,
4517 .resetvalue = cpu->id_isar1 },
4518 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4520 .access = PL1_R, .type = ARM_CP_CONST,
4521 .resetvalue = cpu->id_isar2 },
4522 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4524 .access = PL1_R, .type = ARM_CP_CONST,
4525 .resetvalue = cpu->id_isar3 },
4526 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4528 .access = PL1_R, .type = ARM_CP_CONST,
4529 .resetvalue = cpu->id_isar4 },
4530 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4532 .access = PL1_R, .type = ARM_CP_CONST,
4533 .resetvalue = cpu->id_isar5 },
4534 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4536 .access = PL1_R, .type = ARM_CP_CONST,
4537 .resetvalue = cpu->id_mmfr4 },
4538 /* 7 is as yet unallocated and must RAZ */
4539 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4541 .access = PL1_R, .type = ARM_CP_CONST,
4542 .resetvalue = 0 },
4543 REGINFO_SENTINEL
4544 };
4545 define_arm_cp_regs(cpu, v6_idregs);
4546 define_arm_cp_regs(cpu, v6_cp_reginfo);
4547 } else {
4548 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4549 }
4550 if (arm_feature(env, ARM_FEATURE_V6K)) {
4551 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4552 }
4553 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4554 !arm_feature(env, ARM_FEATURE_MPU)) {
4555 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4556 }
4557 if (arm_feature(env, ARM_FEATURE_V7)) {
4558 /* v7 performance monitor control register: same implementor
4559 * field as main ID register, and we implement only the cycle
4560 * count register.
4561 */
4562 #ifndef CONFIG_USER_ONLY
4563 ARMCPRegInfo pmcr = {
4564 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4565 .access = PL0_RW,
4566 .type = ARM_CP_IO | ARM_CP_ALIAS,
4567 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4568 .accessfn = pmreg_access, .writefn = pmcr_write,
4569 .raw_writefn = raw_write,
4570 };
4571 ARMCPRegInfo pmcr64 = {
4572 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4573 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4574 .access = PL0_RW, .accessfn = pmreg_access,
4575 .type = ARM_CP_IO,
4576 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4577 .resetvalue = cpu->midr & 0xff000000,
4578 .writefn = pmcr_write, .raw_writefn = raw_write,
4579 };
4580 define_one_arm_cp_reg(cpu, &pmcr);
4581 define_one_arm_cp_reg(cpu, &pmcr64);
4582 #endif
4583 ARMCPRegInfo clidr = {
4584 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4585 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4586 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4587 };
4588 define_one_arm_cp_reg(cpu, &clidr);
4589 define_arm_cp_regs(cpu, v7_cp_reginfo);
4590 define_debug_regs(cpu);
4591 } else {
4592 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4593 }
4594 if (arm_feature(env, ARM_FEATURE_V8)) {
4595 /* AArch64 ID registers, which all have impdef reset values.
4596 * Note that within the ID register ranges the unused slots
4597 * must all RAZ, not UNDEF; future architecture versions may
4598 * define new registers here.
4599 */
4600 ARMCPRegInfo v8_idregs[] = {
4601 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4603 .access = PL1_R, .type = ARM_CP_CONST,
4604 .resetvalue = cpu->id_aa64pfr0 },
4605 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4607 .access = PL1_R, .type = ARM_CP_CONST,
4608 .resetvalue = cpu->id_aa64pfr1},
4609 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4611 .access = PL1_R, .type = ARM_CP_CONST,
4612 .resetvalue = 0 },
4613 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4615 .access = PL1_R, .type = ARM_CP_CONST,
4616 .resetvalue = 0 },
4617 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4619 .access = PL1_R, .type = ARM_CP_CONST,
4620 .resetvalue = 0 },
4621 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4623 .access = PL1_R, .type = ARM_CP_CONST,
4624 .resetvalue = 0 },
4625 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4627 .access = PL1_R, .type = ARM_CP_CONST,
4628 .resetvalue = 0 },
4629 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4631 .access = PL1_R, .type = ARM_CP_CONST,
4632 .resetvalue = 0 },
4633 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4635 .access = PL1_R, .type = ARM_CP_CONST,
4636 .resetvalue = cpu->id_aa64dfr0 },
4637 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4639 .access = PL1_R, .type = ARM_CP_CONST,
4640 .resetvalue = cpu->id_aa64dfr1 },
4641 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4643 .access = PL1_R, .type = ARM_CP_CONST,
4644 .resetvalue = 0 },
4645 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4647 .access = PL1_R, .type = ARM_CP_CONST,
4648 .resetvalue = 0 },
4649 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4651 .access = PL1_R, .type = ARM_CP_CONST,
4652 .resetvalue = cpu->id_aa64afr0 },
4653 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4654 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4655 .access = PL1_R, .type = ARM_CP_CONST,
4656 .resetvalue = cpu->id_aa64afr1 },
4657 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4658 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4659 .access = PL1_R, .type = ARM_CP_CONST,
4660 .resetvalue = 0 },
4661 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4663 .access = PL1_R, .type = ARM_CP_CONST,
4664 .resetvalue = 0 },
4665 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4667 .access = PL1_R, .type = ARM_CP_CONST,
4668 .resetvalue = cpu->id_aa64isar0 },
4669 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4670 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4671 .access = PL1_R, .type = ARM_CP_CONST,
4672 .resetvalue = cpu->id_aa64isar1 },
4673 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4675 .access = PL1_R, .type = ARM_CP_CONST,
4676 .resetvalue = 0 },
4677 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4678 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4679 .access = PL1_R, .type = ARM_CP_CONST,
4680 .resetvalue = 0 },
4681 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4683 .access = PL1_R, .type = ARM_CP_CONST,
4684 .resetvalue = 0 },
4685 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4686 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4687 .access = PL1_R, .type = ARM_CP_CONST,
4688 .resetvalue = 0 },
4689 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4691 .access = PL1_R, .type = ARM_CP_CONST,
4692 .resetvalue = 0 },
4693 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4695 .access = PL1_R, .type = ARM_CP_CONST,
4696 .resetvalue = 0 },
4697 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4699 .access = PL1_R, .type = ARM_CP_CONST,
4700 .resetvalue = cpu->id_aa64mmfr0 },
4701 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4703 .access = PL1_R, .type = ARM_CP_CONST,
4704 .resetvalue = cpu->id_aa64mmfr1 },
4705 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4707 .access = PL1_R, .type = ARM_CP_CONST,
4708 .resetvalue = 0 },
4709 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4710 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4711 .access = PL1_R, .type = ARM_CP_CONST,
4712 .resetvalue = 0 },
4713 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4715 .access = PL1_R, .type = ARM_CP_CONST,
4716 .resetvalue = 0 },
4717 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4719 .access = PL1_R, .type = ARM_CP_CONST,
4720 .resetvalue = 0 },
4721 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4723 .access = PL1_R, .type = ARM_CP_CONST,
4724 .resetvalue = 0 },
4725 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4727 .access = PL1_R, .type = ARM_CP_CONST,
4728 .resetvalue = 0 },
4729 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4731 .access = PL1_R, .type = ARM_CP_CONST,
4732 .resetvalue = cpu->mvfr0 },
4733 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4735 .access = PL1_R, .type = ARM_CP_CONST,
4736 .resetvalue = cpu->mvfr1 },
4737 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4739 .access = PL1_R, .type = ARM_CP_CONST,
4740 .resetvalue = cpu->mvfr2 },
4741 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4743 .access = PL1_R, .type = ARM_CP_CONST,
4744 .resetvalue = 0 },
4745 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4747 .access = PL1_R, .type = ARM_CP_CONST,
4748 .resetvalue = 0 },
4749 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4751 .access = PL1_R, .type = ARM_CP_CONST,
4752 .resetvalue = 0 },
4753 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4755 .access = PL1_R, .type = ARM_CP_CONST,
4756 .resetvalue = 0 },
4757 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4759 .access = PL1_R, .type = ARM_CP_CONST,
4760 .resetvalue = 0 },
4761 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4762 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4763 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4764 .resetvalue = cpu->pmceid0 },
4765 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4767 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4768 .resetvalue = cpu->pmceid0 },
4769 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4770 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4771 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4772 .resetvalue = cpu->pmceid1 },
4773 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4775 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4776 .resetvalue = cpu->pmceid1 },
4777 REGINFO_SENTINEL
4778 };
4779 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4780 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4781 !arm_feature(env, ARM_FEATURE_EL2)) {
4782 ARMCPRegInfo rvbar = {
4783 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4785 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4786 };
4787 define_one_arm_cp_reg(cpu, &rvbar);
4788 }
4789 define_arm_cp_regs(cpu, v8_idregs);
4790 define_arm_cp_regs(cpu, v8_cp_reginfo);
4791 }
4792 if (arm_feature(env, ARM_FEATURE_EL2)) {
4793 uint64_t vmpidr_def = mpidr_read_val(env);
4794 ARMCPRegInfo vpidr_regs[] = {
4795 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4796 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4797 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4798 .resetvalue = cpu->midr,
4799 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4800 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4802 .access = PL2_RW, .resetvalue = cpu->midr,
4803 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4804 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4805 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4806 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4807 .resetvalue = vmpidr_def,
4808 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4809 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4811 .access = PL2_RW,
4812 .resetvalue = vmpidr_def,
4813 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4814 REGINFO_SENTINEL
4815 };
4816 define_arm_cp_regs(cpu, vpidr_regs);
4817 define_arm_cp_regs(cpu, el2_cp_reginfo);
4818 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4819 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4820 ARMCPRegInfo rvbar = {
4821 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4823 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4824 };
4825 define_one_arm_cp_reg(cpu, &rvbar);
4826 }
4827 } else {
4828 /* If EL2 is missing but higher ELs are enabled, we need to
4829 * register the no_el2 reginfos.
4830 */
4831 if (arm_feature(env, ARM_FEATURE_EL3)) {
4832 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4833 * of MIDR_EL1 and MPIDR_EL1.
4834 */
4835 ARMCPRegInfo vpidr_regs[] = {
4836 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4837 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4838 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4839 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4840 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4841 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4842 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4843 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4844 .type = ARM_CP_NO_RAW,
4845 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4846 REGINFO_SENTINEL
4847 };
4848 define_arm_cp_regs(cpu, vpidr_regs);
4849 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4850 }
4851 }
4852 if (arm_feature(env, ARM_FEATURE_EL3)) {
4853 define_arm_cp_regs(cpu, el3_cp_reginfo);
4854 ARMCPRegInfo el3_regs[] = {
4855 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4857 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4858 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4859 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4860 .access = PL3_RW,
4861 .raw_writefn = raw_write, .writefn = sctlr_write,
4862 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4863 .resetvalue = cpu->reset_sctlr },
4864 REGINFO_SENTINEL
4865 };
4866
4867 define_arm_cp_regs(cpu, el3_regs);
4868 }
4869 /* The behaviour of NSACR is sufficiently various that we don't
4870 * try to describe it in a single reginfo:
4871 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4872 * reads as constant 0xc00 from NS EL1 and NS EL2
4873 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4874 * if v7 without EL3, register doesn't exist
4875 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4876 */
4877 if (arm_feature(env, ARM_FEATURE_EL3)) {
4878 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4879 ARMCPRegInfo nsacr = {
4880 .name = "NSACR", .type = ARM_CP_CONST,
4881 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4882 .access = PL1_RW, .accessfn = nsacr_access,
4883 .resetvalue = 0xc00
4884 };
4885 define_one_arm_cp_reg(cpu, &nsacr);
4886 } else {
4887 ARMCPRegInfo nsacr = {
4888 .name = "NSACR",
4889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4890 .access = PL3_RW | PL1_R,
4891 .resetvalue = 0,
4892 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4893 };
4894 define_one_arm_cp_reg(cpu, &nsacr);
4895 }
4896 } else {
4897 if (arm_feature(env, ARM_FEATURE_V8)) {
4898 ARMCPRegInfo nsacr = {
4899 .name = "NSACR", .type = ARM_CP_CONST,
4900 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4901 .access = PL1_R,
4902 .resetvalue = 0xc00
4903 };
4904 define_one_arm_cp_reg(cpu, &nsacr);
4905 }
4906 }
4907
4908 if (arm_feature(env, ARM_FEATURE_MPU)) {
4909 if (arm_feature(env, ARM_FEATURE_V6)) {
4910 /* PMSAv6 not implemented */
4911 assert(arm_feature(env, ARM_FEATURE_V7));
4912 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4913 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4914 } else {
4915 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4916 }
4917 } else {
4918 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4919 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4920 }
4921 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4922 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4923 }
4924 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4925 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4926 }
4927 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4928 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4929 }
4930 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4931 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4932 }
4933 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4934 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4935 }
4936 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4937 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4938 }
4939 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4940 define_arm_cp_regs(cpu, omap_cp_reginfo);
4941 }
4942 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4943 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4944 }
4945 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4946 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4947 }
4948 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4949 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4950 }
4951 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4952 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4953 }
4954 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4955 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4956 * be read-only (ie write causes UNDEF exception).
4957 */
4958 {
4959 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4960 /* Pre-v8 MIDR space.
4961 * Note that the MIDR isn't a simple constant register because
4962 * of the TI925 behaviour where writes to another register can
4963 * cause the MIDR value to change.
4964 *
4965 * Unimplemented registers in the c15 0 0 0 space default to
4966 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4967 * and friends override accordingly.
4968 */
4969 { .name = "MIDR",
4970 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4971 .access = PL1_R, .resetvalue = cpu->midr,
4972 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4973 .readfn = midr_read,
4974 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4975 .type = ARM_CP_OVERRIDE },
4976 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4977 { .name = "DUMMY",
4978 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4979 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4980 { .name = "DUMMY",
4981 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4982 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4983 { .name = "DUMMY",
4984 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4985 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4986 { .name = "DUMMY",
4987 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4988 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4989 { .name = "DUMMY",
4990 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4991 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4992 REGINFO_SENTINEL
4993 };
4994 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4995 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4997 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4998 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4999 .readfn = midr_read },
5000 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5001 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5002 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5003 .access = PL1_R, .resetvalue = cpu->midr },
5004 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5005 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5006 .access = PL1_R, .resetvalue = cpu->midr },
5007 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5009 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5010 REGINFO_SENTINEL
5011 };
5012 ARMCPRegInfo id_cp_reginfo[] = {
5013 /* These are common to v8 and pre-v8 */
5014 { .name = "CTR",
5015 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5016 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5017 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5019 .access = PL0_R, .accessfn = ctr_el0_access,
5020 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5021 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5022 { .name = "TCMTR",
5023 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5024 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5025 REGINFO_SENTINEL
5026 };
5027 /* TLBTR is specific to VMSA */
5028 ARMCPRegInfo id_tlbtr_reginfo = {
5029 .name = "TLBTR",
5030 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5031 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5032 };
5033 /* MPUIR is specific to PMSA V6+ */
5034 ARMCPRegInfo id_mpuir_reginfo = {
5035 .name = "MPUIR",
5036 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5037 .access = PL1_R, .type = ARM_CP_CONST,
5038 .resetvalue = cpu->pmsav7_dregion << 8
5039 };
5040 ARMCPRegInfo crn0_wi_reginfo = {
5041 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5042 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5043 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5044 };
5045 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5046 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5047 ARMCPRegInfo *r;
5048 /* Register the blanket "writes ignored" value first to cover the
5049 * whole space. Then update the specific ID registers to allow write
5050 * access, so that they ignore writes rather than causing them to
5051 * UNDEF.
5052 */
5053 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5054 for (r = id_pre_v8_midr_cp_reginfo;
5055 r->type != ARM_CP_SENTINEL; r++) {
5056 r->access = PL1_RW;
5057 }
5058 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5059 r->access = PL1_RW;
5060 }
5061 id_tlbtr_reginfo.access = PL1_RW;
5062 id_tlbtr_reginfo.access = PL1_RW;
5063 }
5064 if (arm_feature(env, ARM_FEATURE_V8)) {
5065 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5066 } else {
5067 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5068 }
5069 define_arm_cp_regs(cpu, id_cp_reginfo);
5070 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5071 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5072 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5073 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5074 }
5075 }
5076
5077 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5078 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5079 }
5080
5081 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5082 ARMCPRegInfo auxcr_reginfo[] = {
5083 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5084 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5085 .access = PL1_RW, .type = ARM_CP_CONST,
5086 .resetvalue = cpu->reset_auxcr },
5087 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5088 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5089 .access = PL2_RW, .type = ARM_CP_CONST,
5090 .resetvalue = 0 },
5091 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5092 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5093 .access = PL3_RW, .type = ARM_CP_CONST,
5094 .resetvalue = 0 },
5095 REGINFO_SENTINEL
5096 };
5097 define_arm_cp_regs(cpu, auxcr_reginfo);
5098 }
5099
5100 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5101 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5102 /* 32 bit view is [31:18] 0...0 [43:32]. */
5103 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5104 | extract64(cpu->reset_cbar, 32, 12);
5105 ARMCPRegInfo cbar_reginfo[] = {
5106 { .name = "CBAR",
5107 .type = ARM_CP_CONST,
5108 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5109 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5110 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5111 .type = ARM_CP_CONST,
5112 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5113 .access = PL1_R, .resetvalue = cbar32 },
5114 REGINFO_SENTINEL
5115 };
5116 /* We don't implement a r/w 64 bit CBAR currently */
5117 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5118 define_arm_cp_regs(cpu, cbar_reginfo);
5119 } else {
5120 ARMCPRegInfo cbar = {
5121 .name = "CBAR",
5122 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5123 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5124 .fieldoffset = offsetof(CPUARMState,
5125 cp15.c15_config_base_address)
5126 };
5127 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5128 cbar.access = PL1_R;
5129 cbar.fieldoffset = 0;
5130 cbar.type = ARM_CP_CONST;
5131 }
5132 define_one_arm_cp_reg(cpu, &cbar);
5133 }
5134 }
5135
5136 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5137 ARMCPRegInfo vbar_cp_reginfo[] = {
5138 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5139 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5140 .access = PL1_RW, .writefn = vbar_write,
5141 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5142 offsetof(CPUARMState, cp15.vbar_ns) },
5143 .resetvalue = 0 },
5144 REGINFO_SENTINEL
5145 };
5146 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5147 }
5148
5149 /* Generic registers whose values depend on the implementation */
5150 {
5151 ARMCPRegInfo sctlr = {
5152 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5153 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5154 .access = PL1_RW,
5155 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5156 offsetof(CPUARMState, cp15.sctlr_ns) },
5157 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5158 .raw_writefn = raw_write,
5159 };
5160 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5161 /* Normally we would always end the TB on an SCTLR write, but Linux
5162 * arch/arm/mach-pxa/sleep.S expects two instructions following
5163 * an MMU enable to execute from cache. Imitate this behaviour.
5164 */
5165 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5166 }
5167 define_one_arm_cp_reg(cpu, &sctlr);
5168 }
5169 }
5170
5171 ARMCPU *cpu_arm_init(const char *cpu_model)
5172 {
5173 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5174 }
5175
5176 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5177 {
5178 CPUState *cs = CPU(cpu);
5179 CPUARMState *env = &cpu->env;
5180
5181 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5182 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5183 aarch64_fpu_gdb_set_reg,
5184 34, "aarch64-fpu.xml", 0);
5185 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5186 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5187 51, "arm-neon.xml", 0);
5188 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5189 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5190 35, "arm-vfp3.xml", 0);
5191 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5192 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5193 19, "arm-vfp.xml", 0);
5194 }
5195 }
5196
5197 /* Sort alphabetically by type name, except for "any". */
5198 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5199 {
5200 ObjectClass *class_a = (ObjectClass *)a;
5201 ObjectClass *class_b = (ObjectClass *)b;
5202 const char *name_a, *name_b;
5203
5204 name_a = object_class_get_name(class_a);
5205 name_b = object_class_get_name(class_b);
5206 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5207 return 1;
5208 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5209 return -1;
5210 } else {
5211 return strcmp(name_a, name_b);
5212 }
5213 }
5214
5215 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5216 {
5217 ObjectClass *oc = data;
5218 CPUListState *s = user_data;
5219 const char *typename;
5220 char *name;
5221
5222 typename = object_class_get_name(oc);
5223 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5224 (*s->cpu_fprintf)(s->file, " %s\n",
5225 name);
5226 g_free(name);
5227 }
5228
5229 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5230 {
5231 CPUListState s = {
5232 .file = f,
5233 .cpu_fprintf = cpu_fprintf,
5234 };
5235 GSList *list;
5236
5237 list = object_class_get_list(TYPE_ARM_CPU, false);
5238 list = g_slist_sort(list, arm_cpu_list_compare);
5239 (*cpu_fprintf)(f, "Available CPUs:\n");
5240 g_slist_foreach(list, arm_cpu_list_entry, &s);
5241 g_slist_free(list);
5242 #ifdef CONFIG_KVM
5243 /* The 'host' CPU type is dynamically registered only if KVM is
5244 * enabled, so we have to special-case it here:
5245 */
5246 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5247 #endif
5248 }
5249
5250 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5251 {
5252 ObjectClass *oc = data;
5253 CpuDefinitionInfoList **cpu_list = user_data;
5254 CpuDefinitionInfoList *entry;
5255 CpuDefinitionInfo *info;
5256 const char *typename;
5257
5258 typename = object_class_get_name(oc);
5259 info = g_malloc0(sizeof(*info));
5260 info->name = g_strndup(typename,
5261 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5262 info->q_typename = g_strdup(typename);
5263
5264 entry = g_malloc0(sizeof(*entry));
5265 entry->value = info;
5266 entry->next = *cpu_list;
5267 *cpu_list = entry;
5268 }
5269
5270 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5271 {
5272 CpuDefinitionInfoList *cpu_list = NULL;
5273 GSList *list;
5274
5275 list = object_class_get_list(TYPE_ARM_CPU, false);
5276 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5277 g_slist_free(list);
5278
5279 return cpu_list;
5280 }
5281
5282 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5283 void *opaque, int state, int secstate,
5284 int crm, int opc1, int opc2)
5285 {
5286 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5287 * add a single reginfo struct to the hash table.
5288 */
5289 uint32_t *key = g_new(uint32_t, 1);
5290 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5291 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5292 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5293
5294 /* Reset the secure state to the specific incoming state. This is
5295 * necessary as the register may have been defined with both states.
5296 */
5297 r2->secure = secstate;
5298
5299 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5300 /* Register is banked (using both entries in array).
5301 * Overwriting fieldoffset as the array is only used to define
5302 * banked registers but later only fieldoffset is used.
5303 */
5304 r2->fieldoffset = r->bank_fieldoffsets[ns];
5305 }
5306
5307 if (state == ARM_CP_STATE_AA32) {
5308 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5309 /* If the register is banked then we don't need to migrate or
5310 * reset the 32-bit instance in certain cases:
5311 *
5312 * 1) If the register has both 32-bit and 64-bit instances then we
5313 * can count on the 64-bit instance taking care of the
5314 * non-secure bank.
5315 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5316 * taking care of the secure bank. This requires that separate
5317 * 32 and 64-bit definitions are provided.
5318 */
5319 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5320 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5321 r2->type |= ARM_CP_ALIAS;
5322 }
5323 } else if ((secstate != r->secure) && !ns) {
5324 /* The register is not banked so we only want to allow migration of
5325 * the non-secure instance.
5326 */
5327 r2->type |= ARM_CP_ALIAS;
5328 }
5329
5330 if (r->state == ARM_CP_STATE_BOTH) {
5331 /* We assume it is a cp15 register if the .cp field is left unset.
5332 */
5333 if (r2->cp == 0) {
5334 r2->cp = 15;
5335 }
5336
5337 #ifdef HOST_WORDS_BIGENDIAN
5338 if (r2->fieldoffset) {
5339 r2->fieldoffset += sizeof(uint32_t);
5340 }
5341 #endif
5342 }
5343 }
5344 if (state == ARM_CP_STATE_AA64) {
5345 /* To allow abbreviation of ARMCPRegInfo
5346 * definitions, we treat cp == 0 as equivalent to
5347 * the value for "standard guest-visible sysreg".
5348 * STATE_BOTH definitions are also always "standard
5349 * sysreg" in their AArch64 view (the .cp value may
5350 * be non-zero for the benefit of the AArch32 view).
5351 */
5352 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5353 r2->cp = CP_REG_ARM64_SYSREG_CP;
5354 }
5355 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5356 r2->opc0, opc1, opc2);
5357 } else {
5358 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5359 }
5360 if (opaque) {
5361 r2->opaque = opaque;
5362 }
5363 /* reginfo passed to helpers is correct for the actual access,
5364 * and is never ARM_CP_STATE_BOTH:
5365 */
5366 r2->state = state;
5367 /* Make sure reginfo passed to helpers for wildcarded regs
5368 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5369 */
5370 r2->crm = crm;
5371 r2->opc1 = opc1;
5372 r2->opc2 = opc2;
5373 /* By convention, for wildcarded registers only the first
5374 * entry is used for migration; the others are marked as
5375 * ALIAS so we don't try to transfer the register
5376 * multiple times. Special registers (ie NOP/WFI) are
5377 * never migratable and not even raw-accessible.
5378 */
5379 if ((r->type & ARM_CP_SPECIAL)) {
5380 r2->type |= ARM_CP_NO_RAW;
5381 }
5382 if (((r->crm == CP_ANY) && crm != 0) ||
5383 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5384 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5385 r2->type |= ARM_CP_ALIAS;
5386 }
5387
5388 /* Check that raw accesses are either forbidden or handled. Note that
5389 * we can't assert this earlier because the setup of fieldoffset for
5390 * banked registers has to be done first.
5391 */
5392 if (!(r2->type & ARM_CP_NO_RAW)) {
5393 assert(!raw_accessors_invalid(r2));
5394 }
5395
5396 /* Overriding of an existing definition must be explicitly
5397 * requested.
5398 */
5399 if (!(r->type & ARM_CP_OVERRIDE)) {
5400 ARMCPRegInfo *oldreg;
5401 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5402 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5403 fprintf(stderr, "Register redefined: cp=%d %d bit "
5404 "crn=%d crm=%d opc1=%d opc2=%d, "
5405 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5406 r2->crn, r2->crm, r2->opc1, r2->opc2,
5407 oldreg->name, r2->name);
5408 g_assert_not_reached();
5409 }
5410 }
5411 g_hash_table_insert(cpu->cp_regs, key, r2);
5412 }
5413
5414
5415 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5416 const ARMCPRegInfo *r, void *opaque)
5417 {
5418 /* Define implementations of coprocessor registers.
5419 * We store these in a hashtable because typically
5420 * there are less than 150 registers in a space which
5421 * is 16*16*16*8*8 = 262144 in size.
5422 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5423 * If a register is defined twice then the second definition is
5424 * used, so this can be used to define some generic registers and
5425 * then override them with implementation specific variations.
5426 * At least one of the original and the second definition should
5427 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5428 * against accidental use.
5429 *
5430 * The state field defines whether the register is to be
5431 * visible in the AArch32 or AArch64 execution state. If the
5432 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5433 * reginfo structure for the AArch32 view, which sees the lower
5434 * 32 bits of the 64 bit register.
5435 *
5436 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5437 * be wildcarded. AArch64 registers are always considered to be 64
5438 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5439 * the register, if any.
5440 */
5441 int crm, opc1, opc2, state;
5442 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5443 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5444 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5445 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5446 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5447 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5448 /* 64 bit registers have only CRm and Opc1 fields */
5449 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5450 /* op0 only exists in the AArch64 encodings */
5451 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5452 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5453 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5454 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5455 * encodes a minimum access level for the register. We roll this
5456 * runtime check into our general permission check code, so check
5457 * here that the reginfo's specified permissions are strict enough
5458 * to encompass the generic architectural permission check.
5459 */
5460 if (r->state != ARM_CP_STATE_AA32) {
5461 int mask = 0;
5462 switch (r->opc1) {
5463 case 0: case 1: case 2:
5464 /* min_EL EL1 */
5465 mask = PL1_RW;
5466 break;
5467 case 3:
5468 /* min_EL EL0 */
5469 mask = PL0_RW;
5470 break;
5471 case 4:
5472 /* min_EL EL2 */
5473 mask = PL2_RW;
5474 break;
5475 case 5:
5476 /* unallocated encoding, so not possible */
5477 assert(false);
5478 break;
5479 case 6:
5480 /* min_EL EL3 */
5481 mask = PL3_RW;
5482 break;
5483 case 7:
5484 /* min_EL EL1, secure mode only (we don't check the latter) */
5485 mask = PL1_RW;
5486 break;
5487 default:
5488 /* broken reginfo with out-of-range opc1 */
5489 assert(false);
5490 break;
5491 }
5492 /* assert our permissions are not too lax (stricter is fine) */
5493 assert((r->access & ~mask) == 0);
5494 }
5495
5496 /* Check that the register definition has enough info to handle
5497 * reads and writes if they are permitted.
5498 */
5499 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5500 if (r->access & PL3_R) {
5501 assert((r->fieldoffset ||
5502 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5503 r->readfn);
5504 }
5505 if (r->access & PL3_W) {
5506 assert((r->fieldoffset ||
5507 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5508 r->writefn);
5509 }
5510 }
5511 /* Bad type field probably means missing sentinel at end of reg list */
5512 assert(cptype_valid(r->type));
5513 for (crm = crmmin; crm <= crmmax; crm++) {
5514 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5515 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5516 for (state = ARM_CP_STATE_AA32;
5517 state <= ARM_CP_STATE_AA64; state++) {
5518 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5519 continue;
5520 }
5521 if (state == ARM_CP_STATE_AA32) {
5522 /* Under AArch32 CP registers can be common
5523 * (same for secure and non-secure world) or banked.
5524 */
5525 switch (r->secure) {
5526 case ARM_CP_SECSTATE_S:
5527 case ARM_CP_SECSTATE_NS:
5528 add_cpreg_to_hashtable(cpu, r, opaque, state,
5529 r->secure, crm, opc1, opc2);
5530 break;
5531 default:
5532 add_cpreg_to_hashtable(cpu, r, opaque, state,
5533 ARM_CP_SECSTATE_S,
5534 crm, opc1, opc2);
5535 add_cpreg_to_hashtable(cpu, r, opaque, state,
5536 ARM_CP_SECSTATE_NS,
5537 crm, opc1, opc2);
5538 break;
5539 }
5540 } else {
5541 /* AArch64 registers get mapped to non-secure instance
5542 * of AArch32 */
5543 add_cpreg_to_hashtable(cpu, r, opaque, state,
5544 ARM_CP_SECSTATE_NS,
5545 crm, opc1, opc2);
5546 }
5547 }
5548 }
5549 }
5550 }
5551 }
5552
5553 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5554 const ARMCPRegInfo *regs, void *opaque)
5555 {
5556 /* Define a whole list of registers */
5557 const ARMCPRegInfo *r;
5558 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5559 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5560 }
5561 }
5562
5563 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5564 {
5565 return g_hash_table_lookup(cpregs, &encoded_cp);
5566 }
5567
5568 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5569 uint64_t value)
5570 {
5571 /* Helper coprocessor write function for write-ignore registers */
5572 }
5573
5574 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5575 {
5576 /* Helper coprocessor write function for read-as-zero registers */
5577 return 0;
5578 }
5579
5580 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5581 {
5582 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5583 }
5584
5585 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5586 {
5587 /* Return true if it is not valid for us to switch to
5588 * this CPU mode (ie all the UNPREDICTABLE cases in
5589 * the ARM ARM CPSRWriteByInstr pseudocode).
5590 */
5591
5592 /* Changes to or from Hyp via MSR and CPS are illegal. */
5593 if (write_type == CPSRWriteByInstr &&
5594 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5595 mode == ARM_CPU_MODE_HYP)) {
5596 return 1;
5597 }
5598
5599 switch (mode) {
5600 case ARM_CPU_MODE_USR:
5601 return 0;
5602 case ARM_CPU_MODE_SYS:
5603 case ARM_CPU_MODE_SVC:
5604 case ARM_CPU_MODE_ABT:
5605 case ARM_CPU_MODE_UND:
5606 case ARM_CPU_MODE_IRQ:
5607 case ARM_CPU_MODE_FIQ:
5608 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5609 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5610 */
5611 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5612 * and CPS are treated as illegal mode changes.
5613 */
5614 if (write_type == CPSRWriteByInstr &&
5615 (env->cp15.hcr_el2 & HCR_TGE) &&
5616 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5617 !arm_is_secure_below_el3(env)) {
5618 return 1;
5619 }
5620 return 0;
5621 case ARM_CPU_MODE_HYP:
5622 return !arm_feature(env, ARM_FEATURE_EL2)
5623 || arm_current_el(env) < 2 || arm_is_secure(env);
5624 case ARM_CPU_MODE_MON:
5625 return arm_current_el(env) < 3;
5626 default:
5627 return 1;
5628 }
5629 }
5630
5631 uint32_t cpsr_read(CPUARMState *env)
5632 {
5633 int ZF;
5634 ZF = (env->ZF == 0);
5635 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5636 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5637 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5638 | ((env->condexec_bits & 0xfc) << 8)
5639 | (env->GE << 16) | (env->daif & CPSR_AIF);
5640 }
5641
5642 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5643 CPSRWriteType write_type)
5644 {
5645 uint32_t changed_daif;
5646
5647 if (mask & CPSR_NZCV) {
5648 env->ZF = (~val) & CPSR_Z;
5649 env->NF = val;
5650 env->CF = (val >> 29) & 1;
5651 env->VF = (val << 3) & 0x80000000;
5652 }
5653 if (mask & CPSR_Q)
5654 env->QF = ((val & CPSR_Q) != 0);
5655 if (mask & CPSR_T)
5656 env->thumb = ((val & CPSR_T) != 0);
5657 if (mask & CPSR_IT_0_1) {
5658 env->condexec_bits &= ~3;
5659 env->condexec_bits |= (val >> 25) & 3;
5660 }
5661 if (mask & CPSR_IT_2_7) {
5662 env->condexec_bits &= 3;
5663 env->condexec_bits |= (val >> 8) & 0xfc;
5664 }
5665 if (mask & CPSR_GE) {
5666 env->GE = (val >> 16) & 0xf;
5667 }
5668
5669 /* In a V7 implementation that includes the security extensions but does
5670 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5671 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5672 * bits respectively.
5673 *
5674 * In a V8 implementation, it is permitted for privileged software to
5675 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5676 */
5677 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5678 arm_feature(env, ARM_FEATURE_EL3) &&
5679 !arm_feature(env, ARM_FEATURE_EL2) &&
5680 !arm_is_secure(env)) {
5681
5682 changed_daif = (env->daif ^ val) & mask;
5683
5684 if (changed_daif & CPSR_A) {
5685 /* Check to see if we are allowed to change the masking of async
5686 * abort exceptions from a non-secure state.
5687 */
5688 if (!(env->cp15.scr_el3 & SCR_AW)) {
5689 qemu_log_mask(LOG_GUEST_ERROR,
5690 "Ignoring attempt to switch CPSR_A flag from "
5691 "non-secure world with SCR.AW bit clear\n");
5692 mask &= ~CPSR_A;
5693 }
5694 }
5695
5696 if (changed_daif & CPSR_F) {
5697 /* Check to see if we are allowed to change the masking of FIQ
5698 * exceptions from a non-secure state.
5699 */
5700 if (!(env->cp15.scr_el3 & SCR_FW)) {
5701 qemu_log_mask(LOG_GUEST_ERROR,
5702 "Ignoring attempt to switch CPSR_F flag from "
5703 "non-secure world with SCR.FW bit clear\n");
5704 mask &= ~CPSR_F;
5705 }
5706
5707 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5708 * If this bit is set software is not allowed to mask
5709 * FIQs, but is allowed to set CPSR_F to 0.
5710 */
5711 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5712 (val & CPSR_F)) {
5713 qemu_log_mask(LOG_GUEST_ERROR,
5714 "Ignoring attempt to enable CPSR_F flag "
5715 "(non-maskable FIQ [NMFI] support enabled)\n");
5716 mask &= ~CPSR_F;
5717 }
5718 }
5719 }
5720
5721 env->daif &= ~(CPSR_AIF & mask);
5722 env->daif |= val & CPSR_AIF & mask;
5723
5724 if (write_type != CPSRWriteRaw &&
5725 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5726 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5727 /* Note that we can only get here in USR mode if this is a
5728 * gdb stub write; for this case we follow the architectural
5729 * behaviour for guest writes in USR mode of ignoring an attempt
5730 * to switch mode. (Those are caught by translate.c for writes
5731 * triggered by guest instructions.)
5732 */
5733 mask &= ~CPSR_M;
5734 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5735 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5736 * v7, and has defined behaviour in v8:
5737 * + leave CPSR.M untouched
5738 * + allow changes to the other CPSR fields
5739 * + set PSTATE.IL
5740 * For user changes via the GDB stub, we don't set PSTATE.IL,
5741 * as this would be unnecessarily harsh for a user error.
5742 */
5743 mask &= ~CPSR_M;
5744 if (write_type != CPSRWriteByGDBStub &&
5745 arm_feature(env, ARM_FEATURE_V8)) {
5746 mask |= CPSR_IL;
5747 val |= CPSR_IL;
5748 }
5749 } else {
5750 switch_mode(env, val & CPSR_M);
5751 }
5752 }
5753 mask &= ~CACHED_CPSR_BITS;
5754 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5755 }
5756
5757 /* Sign/zero extend */
5758 uint32_t HELPER(sxtb16)(uint32_t x)
5759 {
5760 uint32_t res;
5761 res = (uint16_t)(int8_t)x;
5762 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5763 return res;
5764 }
5765
5766 uint32_t HELPER(uxtb16)(uint32_t x)
5767 {
5768 uint32_t res;
5769 res = (uint16_t)(uint8_t)x;
5770 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5771 return res;
5772 }
5773
5774 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5775 {
5776 if (den == 0)
5777 return 0;
5778 if (num == INT_MIN && den == -1)
5779 return INT_MIN;
5780 return num / den;
5781 }
5782
5783 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5784 {
5785 if (den == 0)
5786 return 0;
5787 return num / den;
5788 }
5789
5790 uint32_t HELPER(rbit)(uint32_t x)
5791 {
5792 return revbit32(x);
5793 }
5794
5795 #if defined(CONFIG_USER_ONLY)
5796
5797 /* These should probably raise undefined insn exceptions. */
5798 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5799 {
5800 ARMCPU *cpu = arm_env_get_cpu(env);
5801
5802 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5803 }
5804
5805 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5806 {
5807 ARMCPU *cpu = arm_env_get_cpu(env);
5808
5809 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5810 return 0;
5811 }
5812
5813 void switch_mode(CPUARMState *env, int mode)
5814 {
5815 ARMCPU *cpu = arm_env_get_cpu(env);
5816
5817 if (mode != ARM_CPU_MODE_USR) {
5818 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5819 }
5820 }
5821
5822 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5823 uint32_t cur_el, bool secure)
5824 {
5825 return 1;
5826 }
5827
5828 void aarch64_sync_64_to_32(CPUARMState *env)
5829 {
5830 g_assert_not_reached();
5831 }
5832
5833 #else
5834
5835 void switch_mode(CPUARMState *env, int mode)
5836 {
5837 int old_mode;
5838 int i;
5839
5840 old_mode = env->uncached_cpsr & CPSR_M;
5841 if (mode == old_mode)
5842 return;
5843
5844 if (old_mode == ARM_CPU_MODE_FIQ) {
5845 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5846 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5847 } else if (mode == ARM_CPU_MODE_FIQ) {
5848 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5849 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5850 }
5851
5852 i = bank_number(old_mode);
5853 env->banked_r13[i] = env->regs[13];
5854 env->banked_r14[i] = env->regs[14];
5855 env->banked_spsr[i] = env->spsr;
5856
5857 i = bank_number(mode);
5858 env->regs[13] = env->banked_r13[i];
5859 env->regs[14] = env->banked_r14[i];
5860 env->spsr = env->banked_spsr[i];
5861 }
5862
5863 /* Physical Interrupt Target EL Lookup Table
5864 *
5865 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5866 *
5867 * The below multi-dimensional table is used for looking up the target
5868 * exception level given numerous condition criteria. Specifically, the
5869 * target EL is based on SCR and HCR routing controls as well as the
5870 * currently executing EL and secure state.
5871 *
5872 * Dimensions:
5873 * target_el_table[2][2][2][2][2][4]
5874 * | | | | | +--- Current EL
5875 * | | | | +------ Non-secure(0)/Secure(1)
5876 * | | | +--------- HCR mask override
5877 * | | +------------ SCR exec state control
5878 * | +--------------- SCR mask override
5879 * +------------------ 32-bit(0)/64-bit(1) EL3
5880 *
5881 * The table values are as such:
5882 * 0-3 = EL0-EL3
5883 * -1 = Cannot occur
5884 *
5885 * The ARM ARM target EL table includes entries indicating that an "exception
5886 * is not taken". The two cases where this is applicable are:
5887 * 1) An exception is taken from EL3 but the SCR does not have the exception
5888 * routed to EL3.
5889 * 2) An exception is taken from EL2 but the HCR does not have the exception
5890 * routed to EL2.
5891 * In these two cases, the below table contain a target of EL1. This value is
5892 * returned as it is expected that the consumer of the table data will check
5893 * for "target EL >= current EL" to ensure the exception is not taken.
5894 *
5895 * SCR HCR
5896 * 64 EA AMO From
5897 * BIT IRQ IMO Non-secure Secure
5898 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5899 */
5900 static const int8_t target_el_table[2][2][2][2][2][4] = {
5901 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5902 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5903 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5904 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5905 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5906 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5907 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5908 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5909 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5910 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5911 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5912 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5913 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5914 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5915 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5916 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5917 };
5918
5919 /*
5920 * Determine the target EL for physical exceptions
5921 */
5922 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5923 uint32_t cur_el, bool secure)
5924 {
5925 CPUARMState *env = cs->env_ptr;
5926 int rw;
5927 int scr;
5928 int hcr;
5929 int target_el;
5930 /* Is the highest EL AArch64? */
5931 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5932
5933 if (arm_feature(env, ARM_FEATURE_EL3)) {
5934 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5935 } else {
5936 /* Either EL2 is the highest EL (and so the EL2 register width
5937 * is given by is64); or there is no EL2 or EL3, in which case
5938 * the value of 'rw' does not affect the table lookup anyway.
5939 */
5940 rw = is64;
5941 }
5942
5943 switch (excp_idx) {
5944 case EXCP_IRQ:
5945 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5946 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5947 break;
5948 case EXCP_FIQ:
5949 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5950 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5951 break;
5952 default:
5953 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5954 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5955 break;
5956 };
5957
5958 /* If HCR.TGE is set then HCR is treated as being 1 */
5959 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5960
5961 /* Perform a table-lookup for the target EL given the current state */
5962 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5963
5964 assert(target_el > 0);
5965
5966 return target_el;
5967 }
5968
5969 static void v7m_push(CPUARMState *env, uint32_t val)
5970 {
5971 CPUState *cs = CPU(arm_env_get_cpu(env));
5972
5973 env->regs[13] -= 4;
5974 stl_phys(cs->as, env->regs[13], val);
5975 }
5976
5977 static uint32_t v7m_pop(CPUARMState *env)
5978 {
5979 CPUState *cs = CPU(arm_env_get_cpu(env));
5980 uint32_t val;
5981
5982 val = ldl_phys(cs->as, env->regs[13]);
5983 env->regs[13] += 4;
5984 return val;
5985 }
5986
5987 /* Switch to V7M main or process stack pointer. */
5988 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
5989 {
5990 uint32_t tmp;
5991 bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
5992
5993 if (old_spsel != new_spsel) {
5994 tmp = env->v7m.other_sp;
5995 env->v7m.other_sp = env->regs[13];
5996 env->regs[13] = tmp;
5997
5998 env->v7m.control = deposit32(env->v7m.control,
5999 R_V7M_CONTROL_SPSEL_SHIFT,
6000 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6001 }
6002 }
6003
6004 static void do_v7m_exception_exit(CPUARMState *env)
6005 {
6006 uint32_t type;
6007 uint32_t xpsr;
6008
6009 type = env->regs[15];
6010 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6011 /* Auto-clear FAULTMASK on return from other than NMI */
6012 env->daif &= ~PSTATE_F;
6013 }
6014 if (env->v7m.exception != 0) {
6015 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
6016 }
6017
6018 /* Switch to the target stack. */
6019 switch_v7m_sp(env, (type & 4) != 0);
6020 /* Pop registers. */
6021 env->regs[0] = v7m_pop(env);
6022 env->regs[1] = v7m_pop(env);
6023 env->regs[2] = v7m_pop(env);
6024 env->regs[3] = v7m_pop(env);
6025 env->regs[12] = v7m_pop(env);
6026 env->regs[14] = v7m_pop(env);
6027 env->regs[15] = v7m_pop(env);
6028 if (env->regs[15] & 1) {
6029 qemu_log_mask(LOG_GUEST_ERROR,
6030 "M profile return from interrupt with misaligned "
6031 "PC is UNPREDICTABLE\n");
6032 /* Actual hardware seems to ignore the lsbit, and there are several
6033 * RTOSes out there which incorrectly assume the r15 in the stack
6034 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6035 */
6036 env->regs[15] &= ~1U;
6037 }
6038 xpsr = v7m_pop(env);
6039 xpsr_write(env, xpsr, 0xfffffdff);
6040 /* Undo stack alignment. */
6041 if (xpsr & 0x200)
6042 env->regs[13] |= 4;
6043 /* ??? The exception return type specifies Thread/Handler mode. However
6044 this is also implied by the xPSR value. Not sure what to do
6045 if there is a mismatch. */
6046 /* ??? Likewise for mismatches between the CONTROL register and the stack
6047 pointer. */
6048 }
6049
6050 static void arm_log_exception(int idx)
6051 {
6052 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6053 const char *exc = NULL;
6054
6055 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6056 exc = excnames[idx];
6057 }
6058 if (!exc) {
6059 exc = "unknown";
6060 }
6061 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6062 }
6063 }
6064
6065 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6066
6067 {
6068 CPUState *cs = CPU(cpu);
6069 CPUARMState *env = &cpu->env;
6070 MemTxResult result;
6071 hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
6072 uint32_t addr;
6073
6074 addr = address_space_ldl(cs->as, vec,
6075 MEMTXATTRS_UNSPECIFIED, &result);
6076 if (result != MEMTX_OK) {
6077 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6078 * which would then be immediately followed by our failing to load
6079 * the entry vector for that HardFault, which is a Lockup case.
6080 * Since we don't model Lockup, we just report this guest error
6081 * via cpu_abort().
6082 */
6083 cpu_abort(cs, "Failed to read from exception vector table "
6084 "entry %08x\n", (unsigned)vec);
6085 }
6086 return addr;
6087 }
6088
6089 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6090 {
6091 ARMCPU *cpu = ARM_CPU(cs);
6092 CPUARMState *env = &cpu->env;
6093 uint32_t xpsr = xpsr_read(env);
6094 uint32_t lr;
6095 uint32_t addr;
6096
6097 arm_log_exception(cs->exception_index);
6098
6099 lr = 0xfffffff1;
6100 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
6101 lr |= 4;
6102 }
6103 if (env->v7m.exception == 0)
6104 lr |= 8;
6105
6106 /* For exceptions we just mark as pending on the NVIC, and let that
6107 handle it. */
6108 /* TODO: Need to escalate if the current priority is higher than the
6109 one we're raising. */
6110 switch (cs->exception_index) {
6111 case EXCP_UDEF:
6112 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6113 env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6114 return;
6115 case EXCP_NOCP:
6116 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6117 env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6118 return;
6119 case EXCP_SWI:
6120 /* The PC already points to the next instruction. */
6121 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6122 return;
6123 case EXCP_PREFETCH_ABORT:
6124 case EXCP_DATA_ABORT:
6125 /* TODO: if we implemented the MPU registers, this is where we
6126 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6127 */
6128 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6129 return;
6130 case EXCP_BKPT:
6131 if (semihosting_enabled()) {
6132 int nr;
6133 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6134 if (nr == 0xab) {
6135 env->regs[15] += 2;
6136 qemu_log_mask(CPU_LOG_INT,
6137 "...handling as semihosting call 0x%x\n",
6138 env->regs[0]);
6139 env->regs[0] = do_arm_semihosting(env);
6140 return;
6141 }
6142 }
6143 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6144 return;
6145 case EXCP_IRQ:
6146 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
6147 break;
6148 case EXCP_EXCEPTION_EXIT:
6149 do_v7m_exception_exit(env);
6150 return;
6151 default:
6152 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6153 return; /* Never happens. Keep compiler happy. */
6154 }
6155
6156 /* Align stack pointer if the guest wants that */
6157 if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6158 env->regs[13] -= 4;
6159 xpsr |= 0x200;
6160 }
6161 /* Switch to the handler mode. */
6162 v7m_push(env, xpsr);
6163 v7m_push(env, env->regs[15]);
6164 v7m_push(env, env->regs[14]);
6165 v7m_push(env, env->regs[12]);
6166 v7m_push(env, env->regs[3]);
6167 v7m_push(env, env->regs[2]);
6168 v7m_push(env, env->regs[1]);
6169 v7m_push(env, env->regs[0]);
6170 switch_v7m_sp(env, 0);
6171 /* Clear IT bits */
6172 env->condexec_bits = 0;
6173 env->regs[14] = lr;
6174 addr = arm_v7m_load_vector(cpu);
6175 env->regs[15] = addr & 0xfffffffe;
6176 env->thumb = addr & 1;
6177 }
6178
6179 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6180 * register set. This is necessary when switching between AArch32 and AArch64
6181 * execution state.
6182 */
6183 void aarch64_sync_32_to_64(CPUARMState *env)
6184 {
6185 int i;
6186 uint32_t mode = env->uncached_cpsr & CPSR_M;
6187
6188 /* We can blanket copy R[0:7] to X[0:7] */
6189 for (i = 0; i < 8; i++) {
6190 env->xregs[i] = env->regs[i];
6191 }
6192
6193 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6194 * Otherwise, they come from the banked user regs.
6195 */
6196 if (mode == ARM_CPU_MODE_FIQ) {
6197 for (i = 8; i < 13; i++) {
6198 env->xregs[i] = env->usr_regs[i - 8];
6199 }
6200 } else {
6201 for (i = 8; i < 13; i++) {
6202 env->xregs[i] = env->regs[i];
6203 }
6204 }
6205
6206 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6207 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6208 * from the mode banked register.
6209 */
6210 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6211 env->xregs[13] = env->regs[13];
6212 env->xregs[14] = env->regs[14];
6213 } else {
6214 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6215 /* HYP is an exception in that it is copied from r14 */
6216 if (mode == ARM_CPU_MODE_HYP) {
6217 env->xregs[14] = env->regs[14];
6218 } else {
6219 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6220 }
6221 }
6222
6223 if (mode == ARM_CPU_MODE_HYP) {
6224 env->xregs[15] = env->regs[13];
6225 } else {
6226 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6227 }
6228
6229 if (mode == ARM_CPU_MODE_IRQ) {
6230 env->xregs[16] = env->regs[14];
6231 env->xregs[17] = env->regs[13];
6232 } else {
6233 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6234 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6235 }
6236
6237 if (mode == ARM_CPU_MODE_SVC) {
6238 env->xregs[18] = env->regs[14];
6239 env->xregs[19] = env->regs[13];
6240 } else {
6241 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6242 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6243 }
6244
6245 if (mode == ARM_CPU_MODE_ABT) {
6246 env->xregs[20] = env->regs[14];
6247 env->xregs[21] = env->regs[13];
6248 } else {
6249 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6250 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6251 }
6252
6253 if (mode == ARM_CPU_MODE_UND) {
6254 env->xregs[22] = env->regs[14];
6255 env->xregs[23] = env->regs[13];
6256 } else {
6257 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6258 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6259 }
6260
6261 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6262 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6263 * FIQ bank for r8-r14.
6264 */
6265 if (mode == ARM_CPU_MODE_FIQ) {
6266 for (i = 24; i < 31; i++) {
6267 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6268 }
6269 } else {
6270 for (i = 24; i < 29; i++) {
6271 env->xregs[i] = env->fiq_regs[i - 24];
6272 }
6273 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6274 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6275 }
6276
6277 env->pc = env->regs[15];
6278 }
6279
6280 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6281 * register set. This is necessary when switching between AArch32 and AArch64
6282 * execution state.
6283 */
6284 void aarch64_sync_64_to_32(CPUARMState *env)
6285 {
6286 int i;
6287 uint32_t mode = env->uncached_cpsr & CPSR_M;
6288
6289 /* We can blanket copy X[0:7] to R[0:7] */
6290 for (i = 0; i < 8; i++) {
6291 env->regs[i] = env->xregs[i];
6292 }
6293
6294 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6295 * Otherwise, we copy x8-x12 into the banked user regs.
6296 */
6297 if (mode == ARM_CPU_MODE_FIQ) {
6298 for (i = 8; i < 13; i++) {
6299 env->usr_regs[i - 8] = env->xregs[i];
6300 }
6301 } else {
6302 for (i = 8; i < 13; i++) {
6303 env->regs[i] = env->xregs[i];
6304 }
6305 }
6306
6307 /* Registers r13 & r14 depend on the current mode.
6308 * If we are in a given mode, we copy the corresponding x registers to r13
6309 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6310 * for the mode.
6311 */
6312 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6313 env->regs[13] = env->xregs[13];
6314 env->regs[14] = env->xregs[14];
6315 } else {
6316 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6317
6318 /* HYP is an exception in that it does not have its own banked r14 but
6319 * shares the USR r14
6320 */
6321 if (mode == ARM_CPU_MODE_HYP) {
6322 env->regs[14] = env->xregs[14];
6323 } else {
6324 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6325 }
6326 }
6327
6328 if (mode == ARM_CPU_MODE_HYP) {
6329 env->regs[13] = env->xregs[15];
6330 } else {
6331 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6332 }
6333
6334 if (mode == ARM_CPU_MODE_IRQ) {
6335 env->regs[14] = env->xregs[16];
6336 env->regs[13] = env->xregs[17];
6337 } else {
6338 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6339 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6340 }
6341
6342 if (mode == ARM_CPU_MODE_SVC) {
6343 env->regs[14] = env->xregs[18];
6344 env->regs[13] = env->xregs[19];
6345 } else {
6346 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6347 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6348 }
6349
6350 if (mode == ARM_CPU_MODE_ABT) {
6351 env->regs[14] = env->xregs[20];
6352 env->regs[13] = env->xregs[21];
6353 } else {
6354 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6355 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6356 }
6357
6358 if (mode == ARM_CPU_MODE_UND) {
6359 env->regs[14] = env->xregs[22];
6360 env->regs[13] = env->xregs[23];
6361 } else {
6362 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6363 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6364 }
6365
6366 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6367 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6368 * FIQ bank for r8-r14.
6369 */
6370 if (mode == ARM_CPU_MODE_FIQ) {
6371 for (i = 24; i < 31; i++) {
6372 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6373 }
6374 } else {
6375 for (i = 24; i < 29; i++) {
6376 env->fiq_regs[i - 24] = env->xregs[i];
6377 }
6378 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6379 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6380 }
6381
6382 env->regs[15] = env->pc;
6383 }
6384
6385 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6386 {
6387 ARMCPU *cpu = ARM_CPU(cs);
6388 CPUARMState *env = &cpu->env;
6389 uint32_t addr;
6390 uint32_t mask;
6391 int new_mode;
6392 uint32_t offset;
6393 uint32_t moe;
6394
6395 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6396 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6397 case EC_BREAKPOINT:
6398 case EC_BREAKPOINT_SAME_EL:
6399 moe = 1;
6400 break;
6401 case EC_WATCHPOINT:
6402 case EC_WATCHPOINT_SAME_EL:
6403 moe = 10;
6404 break;
6405 case EC_AA32_BKPT:
6406 moe = 3;
6407 break;
6408 case EC_VECTORCATCH:
6409 moe = 5;
6410 break;
6411 default:
6412 moe = 0;
6413 break;
6414 }
6415
6416 if (moe) {
6417 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6418 }
6419
6420 /* TODO: Vectored interrupt controller. */
6421 switch (cs->exception_index) {
6422 case EXCP_UDEF:
6423 new_mode = ARM_CPU_MODE_UND;
6424 addr = 0x04;
6425 mask = CPSR_I;
6426 if (env->thumb)
6427 offset = 2;
6428 else
6429 offset = 4;
6430 break;
6431 case EXCP_SWI:
6432 new_mode = ARM_CPU_MODE_SVC;
6433 addr = 0x08;
6434 mask = CPSR_I;
6435 /* The PC already points to the next instruction. */
6436 offset = 0;
6437 break;
6438 case EXCP_BKPT:
6439 env->exception.fsr = 2;
6440 /* Fall through to prefetch abort. */
6441 case EXCP_PREFETCH_ABORT:
6442 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6443 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6444 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6445 env->exception.fsr, (uint32_t)env->exception.vaddress);
6446 new_mode = ARM_CPU_MODE_ABT;
6447 addr = 0x0c;
6448 mask = CPSR_A | CPSR_I;
6449 offset = 4;
6450 break;
6451 case EXCP_DATA_ABORT:
6452 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6453 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6454 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6455 env->exception.fsr,
6456 (uint32_t)env->exception.vaddress);
6457 new_mode = ARM_CPU_MODE_ABT;
6458 addr = 0x10;
6459 mask = CPSR_A | CPSR_I;
6460 offset = 8;
6461 break;
6462 case EXCP_IRQ:
6463 new_mode = ARM_CPU_MODE_IRQ;
6464 addr = 0x18;
6465 /* Disable IRQ and imprecise data aborts. */
6466 mask = CPSR_A | CPSR_I;
6467 offset = 4;
6468 if (env->cp15.scr_el3 & SCR_IRQ) {
6469 /* IRQ routed to monitor mode */
6470 new_mode = ARM_CPU_MODE_MON;
6471 mask |= CPSR_F;
6472 }
6473 break;
6474 case EXCP_FIQ:
6475 new_mode = ARM_CPU_MODE_FIQ;
6476 addr = 0x1c;
6477 /* Disable FIQ, IRQ and imprecise data aborts. */
6478 mask = CPSR_A | CPSR_I | CPSR_F;
6479 if (env->cp15.scr_el3 & SCR_FIQ) {
6480 /* FIQ routed to monitor mode */
6481 new_mode = ARM_CPU_MODE_MON;
6482 }
6483 offset = 4;
6484 break;
6485 case EXCP_VIRQ:
6486 new_mode = ARM_CPU_MODE_IRQ;
6487 addr = 0x18;
6488 /* Disable IRQ and imprecise data aborts. */
6489 mask = CPSR_A | CPSR_I;
6490 offset = 4;
6491 break;
6492 case EXCP_VFIQ:
6493 new_mode = ARM_CPU_MODE_FIQ;
6494 addr = 0x1c;
6495 /* Disable FIQ, IRQ and imprecise data aborts. */
6496 mask = CPSR_A | CPSR_I | CPSR_F;
6497 offset = 4;
6498 break;
6499 case EXCP_SMC:
6500 new_mode = ARM_CPU_MODE_MON;
6501 addr = 0x08;
6502 mask = CPSR_A | CPSR_I | CPSR_F;
6503 offset = 0;
6504 break;
6505 default:
6506 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6507 return; /* Never happens. Keep compiler happy. */
6508 }
6509
6510 if (new_mode == ARM_CPU_MODE_MON) {
6511 addr += env->cp15.mvbar;
6512 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6513 /* High vectors. When enabled, base address cannot be remapped. */
6514 addr += 0xffff0000;
6515 } else {
6516 /* ARM v7 architectures provide a vector base address register to remap
6517 * the interrupt vector table.
6518 * This register is only followed in non-monitor mode, and is banked.
6519 * Note: only bits 31:5 are valid.
6520 */
6521 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6522 }
6523
6524 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6525 env->cp15.scr_el3 &= ~SCR_NS;
6526 }
6527
6528 switch_mode (env, new_mode);
6529 /* For exceptions taken to AArch32 we must clear the SS bit in both
6530 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6531 */
6532 env->uncached_cpsr &= ~PSTATE_SS;
6533 env->spsr = cpsr_read(env);
6534 /* Clear IT bits. */
6535 env->condexec_bits = 0;
6536 /* Switch to the new mode, and to the correct instruction set. */
6537 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6538 /* Set new mode endianness */
6539 env->uncached_cpsr &= ~CPSR_E;
6540 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6541 env->uncached_cpsr |= CPSR_E;
6542 }
6543 env->daif |= mask;
6544 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6545 * and we should just guard the thumb mode on V4 */
6546 if (arm_feature(env, ARM_FEATURE_V4T)) {
6547 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6548 }
6549 env->regs[14] = env->regs[15] + offset;
6550 env->regs[15] = addr;
6551 }
6552
6553 /* Handle exception entry to a target EL which is using AArch64 */
6554 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6555 {
6556 ARMCPU *cpu = ARM_CPU(cs);
6557 CPUARMState *env = &cpu->env;
6558 unsigned int new_el = env->exception.target_el;
6559 target_ulong addr = env->cp15.vbar_el[new_el];
6560 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6561
6562 if (arm_current_el(env) < new_el) {
6563 /* Entry vector offset depends on whether the implemented EL
6564 * immediately lower than the target level is using AArch32 or AArch64
6565 */
6566 bool is_aa64;
6567
6568 switch (new_el) {
6569 case 3:
6570 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6571 break;
6572 case 2:
6573 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6574 break;
6575 case 1:
6576 is_aa64 = is_a64(env);
6577 break;
6578 default:
6579 g_assert_not_reached();
6580 }
6581
6582 if (is_aa64) {
6583 addr += 0x400;
6584 } else {
6585 addr += 0x600;
6586 }
6587 } else if (pstate_read(env) & PSTATE_SP) {
6588 addr += 0x200;
6589 }
6590
6591 switch (cs->exception_index) {
6592 case EXCP_PREFETCH_ABORT:
6593 case EXCP_DATA_ABORT:
6594 env->cp15.far_el[new_el] = env->exception.vaddress;
6595 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6596 env->cp15.far_el[new_el]);
6597 /* fall through */
6598 case EXCP_BKPT:
6599 case EXCP_UDEF:
6600 case EXCP_SWI:
6601 case EXCP_HVC:
6602 case EXCP_HYP_TRAP:
6603 case EXCP_SMC:
6604 env->cp15.esr_el[new_el] = env->exception.syndrome;
6605 break;
6606 case EXCP_IRQ:
6607 case EXCP_VIRQ:
6608 addr += 0x80;
6609 break;
6610 case EXCP_FIQ:
6611 case EXCP_VFIQ:
6612 addr += 0x100;
6613 break;
6614 case EXCP_SEMIHOST:
6615 qemu_log_mask(CPU_LOG_INT,
6616 "...handling as semihosting call 0x%" PRIx64 "\n",
6617 env->xregs[0]);
6618 env->xregs[0] = do_arm_semihosting(env);
6619 return;
6620 default:
6621 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6622 }
6623
6624 if (is_a64(env)) {
6625 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6626 aarch64_save_sp(env, arm_current_el(env));
6627 env->elr_el[new_el] = env->pc;
6628 } else {
6629 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6630 env->elr_el[new_el] = env->regs[15];
6631
6632 aarch64_sync_32_to_64(env);
6633
6634 env->condexec_bits = 0;
6635 }
6636 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6637 env->elr_el[new_el]);
6638
6639 pstate_write(env, PSTATE_DAIF | new_mode);
6640 env->aarch64 = 1;
6641 aarch64_restore_sp(env, new_el);
6642
6643 env->pc = addr;
6644
6645 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6646 new_el, env->pc, pstate_read(env));
6647 }
6648
6649 static inline bool check_for_semihosting(CPUState *cs)
6650 {
6651 /* Check whether this exception is a semihosting call; if so
6652 * then handle it and return true; otherwise return false.
6653 */
6654 ARMCPU *cpu = ARM_CPU(cs);
6655 CPUARMState *env = &cpu->env;
6656
6657 if (is_a64(env)) {
6658 if (cs->exception_index == EXCP_SEMIHOST) {
6659 /* This is always the 64-bit semihosting exception.
6660 * The "is this usermode" and "is semihosting enabled"
6661 * checks have been done at translate time.
6662 */
6663 qemu_log_mask(CPU_LOG_INT,
6664 "...handling as semihosting call 0x%" PRIx64 "\n",
6665 env->xregs[0]);
6666 env->xregs[0] = do_arm_semihosting(env);
6667 return true;
6668 }
6669 return false;
6670 } else {
6671 uint32_t imm;
6672
6673 /* Only intercept calls from privileged modes, to provide some
6674 * semblance of security.
6675 */
6676 if (cs->exception_index != EXCP_SEMIHOST &&
6677 (!semihosting_enabled() ||
6678 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6679 return false;
6680 }
6681
6682 switch (cs->exception_index) {
6683 case EXCP_SEMIHOST:
6684 /* This is always a semihosting call; the "is this usermode"
6685 * and "is semihosting enabled" checks have been done at
6686 * translate time.
6687 */
6688 break;
6689 case EXCP_SWI:
6690 /* Check for semihosting interrupt. */
6691 if (env->thumb) {
6692 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6693 & 0xff;
6694 if (imm == 0xab) {
6695 break;
6696 }
6697 } else {
6698 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6699 & 0xffffff;
6700 if (imm == 0x123456) {
6701 break;
6702 }
6703 }
6704 return false;
6705 case EXCP_BKPT:
6706 /* See if this is a semihosting syscall. */
6707 if (env->thumb) {
6708 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6709 & 0xff;
6710 if (imm == 0xab) {
6711 env->regs[15] += 2;
6712 break;
6713 }
6714 }
6715 return false;
6716 default:
6717 return false;
6718 }
6719
6720 qemu_log_mask(CPU_LOG_INT,
6721 "...handling as semihosting call 0x%x\n",
6722 env->regs[0]);
6723 env->regs[0] = do_arm_semihosting(env);
6724 return true;
6725 }
6726 }
6727
6728 /* Handle a CPU exception for A and R profile CPUs.
6729 * Do any appropriate logging, handle PSCI calls, and then hand off
6730 * to the AArch64-entry or AArch32-entry function depending on the
6731 * target exception level's register width.
6732 */
6733 void arm_cpu_do_interrupt(CPUState *cs)
6734 {
6735 ARMCPU *cpu = ARM_CPU(cs);
6736 CPUARMState *env = &cpu->env;
6737 unsigned int new_el = env->exception.target_el;
6738
6739 assert(!arm_feature(env, ARM_FEATURE_M));
6740
6741 arm_log_exception(cs->exception_index);
6742 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6743 new_el);
6744 if (qemu_loglevel_mask(CPU_LOG_INT)
6745 && !excp_is_internal(cs->exception_index)) {
6746 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6747 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6748 env->exception.syndrome);
6749 }
6750
6751 if (arm_is_psci_call(cpu, cs->exception_index)) {
6752 arm_handle_psci_call(cpu);
6753 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6754 return;
6755 }
6756
6757 /* Semihosting semantics depend on the register width of the
6758 * code that caused the exception, not the target exception level,
6759 * so must be handled here.
6760 */
6761 if (check_for_semihosting(cs)) {
6762 return;
6763 }
6764
6765 assert(!excp_is_internal(cs->exception_index));
6766 if (arm_el_is_aa64(env, new_el)) {
6767 arm_cpu_do_interrupt_aarch64(cs);
6768 } else {
6769 arm_cpu_do_interrupt_aarch32(cs);
6770 }
6771
6772 /* Hooks may change global state so BQL should be held, also the
6773 * BQL needs to be held for any modification of
6774 * cs->interrupt_request.
6775 */
6776 g_assert(qemu_mutex_iothread_locked());
6777
6778 arm_call_el_change_hook(cpu);
6779
6780 if (!kvm_enabled()) {
6781 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6782 }
6783 }
6784
6785 /* Return the exception level which controls this address translation regime */
6786 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6787 {
6788 switch (mmu_idx) {
6789 case ARMMMUIdx_S2NS:
6790 case ARMMMUIdx_S1E2:
6791 return 2;
6792 case ARMMMUIdx_S1E3:
6793 return 3;
6794 case ARMMMUIdx_S1SE0:
6795 return arm_el_is_aa64(env, 3) ? 1 : 3;
6796 case ARMMMUIdx_S1SE1:
6797 case ARMMMUIdx_S1NSE0:
6798 case ARMMMUIdx_S1NSE1:
6799 return 1;
6800 default:
6801 g_assert_not_reached();
6802 }
6803 }
6804
6805 /* Return true if this address translation regime is secure */
6806 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6807 {
6808 switch (mmu_idx) {
6809 case ARMMMUIdx_S12NSE0:
6810 case ARMMMUIdx_S12NSE1:
6811 case ARMMMUIdx_S1NSE0:
6812 case ARMMMUIdx_S1NSE1:
6813 case ARMMMUIdx_S1E2:
6814 case ARMMMUIdx_S2NS:
6815 return false;
6816 case ARMMMUIdx_S1E3:
6817 case ARMMMUIdx_S1SE0:
6818 case ARMMMUIdx_S1SE1:
6819 return true;
6820 default:
6821 g_assert_not_reached();
6822 }
6823 }
6824
6825 /* Return the SCTLR value which controls this address translation regime */
6826 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6827 {
6828 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6829 }
6830
6831 /* Return true if the specified stage of address translation is disabled */
6832 static inline bool regime_translation_disabled(CPUARMState *env,
6833 ARMMMUIdx mmu_idx)
6834 {
6835 if (mmu_idx == ARMMMUIdx_S2NS) {
6836 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6837 }
6838 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6839 }
6840
6841 static inline bool regime_translation_big_endian(CPUARMState *env,
6842 ARMMMUIdx mmu_idx)
6843 {
6844 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6845 }
6846
6847 /* Return the TCR controlling this translation regime */
6848 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6849 {
6850 if (mmu_idx == ARMMMUIdx_S2NS) {
6851 return &env->cp15.vtcr_el2;
6852 }
6853 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6854 }
6855
6856 /* Returns TBI0 value for current regime el */
6857 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
6858 {
6859 TCR *tcr;
6860 uint32_t el;
6861
6862 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6863 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6864 */
6865 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6866 mmu_idx += ARMMMUIdx_S1NSE0;
6867 }
6868
6869 tcr = regime_tcr(env, mmu_idx);
6870 el = regime_el(env, mmu_idx);
6871
6872 if (el > 1) {
6873 return extract64(tcr->raw_tcr, 20, 1);
6874 } else {
6875 return extract64(tcr->raw_tcr, 37, 1);
6876 }
6877 }
6878
6879 /* Returns TBI1 value for current regime el */
6880 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
6881 {
6882 TCR *tcr;
6883 uint32_t el;
6884
6885 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6886 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6887 */
6888 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6889 mmu_idx += ARMMMUIdx_S1NSE0;
6890 }
6891
6892 tcr = regime_tcr(env, mmu_idx);
6893 el = regime_el(env, mmu_idx);
6894
6895 if (el > 1) {
6896 return 0;
6897 } else {
6898 return extract64(tcr->raw_tcr, 38, 1);
6899 }
6900 }
6901
6902 /* Return the TTBR associated with this translation regime */
6903 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6904 int ttbrn)
6905 {
6906 if (mmu_idx == ARMMMUIdx_S2NS) {
6907 return env->cp15.vttbr_el2;
6908 }
6909 if (ttbrn == 0) {
6910 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6911 } else {
6912 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6913 }
6914 }
6915
6916 /* Return true if the translation regime is using LPAE format page tables */
6917 static inline bool regime_using_lpae_format(CPUARMState *env,
6918 ARMMMUIdx mmu_idx)
6919 {
6920 int el = regime_el(env, mmu_idx);
6921 if (el == 2 || arm_el_is_aa64(env, el)) {
6922 return true;
6923 }
6924 if (arm_feature(env, ARM_FEATURE_LPAE)
6925 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6926 return true;
6927 }
6928 return false;
6929 }
6930
6931 /* Returns true if the stage 1 translation regime is using LPAE format page
6932 * tables. Used when raising alignment exceptions, whose FSR changes depending
6933 * on whether the long or short descriptor format is in use. */
6934 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6935 {
6936 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6937 mmu_idx += ARMMMUIdx_S1NSE0;
6938 }
6939
6940 return regime_using_lpae_format(env, mmu_idx);
6941 }
6942
6943 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6944 {
6945 switch (mmu_idx) {
6946 case ARMMMUIdx_S1SE0:
6947 case ARMMMUIdx_S1NSE0:
6948 return true;
6949 default:
6950 return false;
6951 case ARMMMUIdx_S12NSE0:
6952 case ARMMMUIdx_S12NSE1:
6953 g_assert_not_reached();
6954 }
6955 }
6956
6957 /* Translate section/page access permissions to page
6958 * R/W protection flags
6959 *
6960 * @env: CPUARMState
6961 * @mmu_idx: MMU index indicating required translation regime
6962 * @ap: The 3-bit access permissions (AP[2:0])
6963 * @domain_prot: The 2-bit domain access permissions
6964 */
6965 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6966 int ap, int domain_prot)
6967 {
6968 bool is_user = regime_is_user(env, mmu_idx);
6969
6970 if (domain_prot == 3) {
6971 return PAGE_READ | PAGE_WRITE;
6972 }
6973
6974 switch (ap) {
6975 case 0:
6976 if (arm_feature(env, ARM_FEATURE_V7)) {
6977 return 0;
6978 }
6979 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6980 case SCTLR_S:
6981 return is_user ? 0 : PAGE_READ;
6982 case SCTLR_R:
6983 return PAGE_READ;
6984 default:
6985 return 0;
6986 }
6987 case 1:
6988 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6989 case 2:
6990 if (is_user) {
6991 return PAGE_READ;
6992 } else {
6993 return PAGE_READ | PAGE_WRITE;
6994 }
6995 case 3:
6996 return PAGE_READ | PAGE_WRITE;
6997 case 4: /* Reserved. */
6998 return 0;
6999 case 5:
7000 return is_user ? 0 : PAGE_READ;
7001 case 6:
7002 return PAGE_READ;
7003 case 7:
7004 if (!arm_feature(env, ARM_FEATURE_V6K)) {
7005 return 0;
7006 }
7007 return PAGE_READ;
7008 default:
7009 g_assert_not_reached();
7010 }
7011 }
7012
7013 /* Translate section/page access permissions to page
7014 * R/W protection flags.
7015 *
7016 * @ap: The 2-bit simple AP (AP[2:1])
7017 * @is_user: TRUE if accessing from PL0
7018 */
7019 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7020 {
7021 switch (ap) {
7022 case 0:
7023 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7024 case 1:
7025 return PAGE_READ | PAGE_WRITE;
7026 case 2:
7027 return is_user ? 0 : PAGE_READ;
7028 case 3:
7029 return PAGE_READ;
7030 default:
7031 g_assert_not_reached();
7032 }
7033 }
7034
7035 static inline int
7036 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7037 {
7038 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7039 }
7040
7041 /* Translate S2 section/page access permissions to protection flags
7042 *
7043 * @env: CPUARMState
7044 * @s2ap: The 2-bit stage2 access permissions (S2AP)
7045 * @xn: XN (execute-never) bit
7046 */
7047 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7048 {
7049 int prot = 0;
7050
7051 if (s2ap & 1) {
7052 prot |= PAGE_READ;
7053 }
7054 if (s2ap & 2) {
7055 prot |= PAGE_WRITE;
7056 }
7057 if (!xn) {
7058 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7059 prot |= PAGE_EXEC;
7060 }
7061 }
7062 return prot;
7063 }
7064
7065 /* Translate section/page access permissions to protection flags
7066 *
7067 * @env: CPUARMState
7068 * @mmu_idx: MMU index indicating required translation regime
7069 * @is_aa64: TRUE if AArch64
7070 * @ap: The 2-bit simple AP (AP[2:1])
7071 * @ns: NS (non-secure) bit
7072 * @xn: XN (execute-never) bit
7073 * @pxn: PXN (privileged execute-never) bit
7074 */
7075 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7076 int ap, int ns, int xn, int pxn)
7077 {
7078 bool is_user = regime_is_user(env, mmu_idx);
7079 int prot_rw, user_rw;
7080 bool have_wxn;
7081 int wxn = 0;
7082
7083 assert(mmu_idx != ARMMMUIdx_S2NS);
7084
7085 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7086 if (is_user) {
7087 prot_rw = user_rw;
7088 } else {
7089 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7090 }
7091
7092 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7093 return prot_rw;
7094 }
7095
7096 /* TODO have_wxn should be replaced with
7097 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7098 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7099 * compatible processors have EL2, which is required for [U]WXN.
7100 */
7101 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7102
7103 if (have_wxn) {
7104 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7105 }
7106
7107 if (is_aa64) {
7108 switch (regime_el(env, mmu_idx)) {
7109 case 1:
7110 if (!is_user) {
7111 xn = pxn || (user_rw & PAGE_WRITE);
7112 }
7113 break;
7114 case 2:
7115 case 3:
7116 break;
7117 }
7118 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7119 switch (regime_el(env, mmu_idx)) {
7120 case 1:
7121 case 3:
7122 if (is_user) {
7123 xn = xn || !(user_rw & PAGE_READ);
7124 } else {
7125 int uwxn = 0;
7126 if (have_wxn) {
7127 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7128 }
7129 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7130 (uwxn && (user_rw & PAGE_WRITE));
7131 }
7132 break;
7133 case 2:
7134 break;
7135 }
7136 } else {
7137 xn = wxn = 0;
7138 }
7139
7140 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7141 return prot_rw;
7142 }
7143 return prot_rw | PAGE_EXEC;
7144 }
7145
7146 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7147 uint32_t *table, uint32_t address)
7148 {
7149 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7150 TCR *tcr = regime_tcr(env, mmu_idx);
7151
7152 if (address & tcr->mask) {
7153 if (tcr->raw_tcr & TTBCR_PD1) {
7154 /* Translation table walk disabled for TTBR1 */
7155 return false;
7156 }
7157 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7158 } else {
7159 if (tcr->raw_tcr & TTBCR_PD0) {
7160 /* Translation table walk disabled for TTBR0 */
7161 return false;
7162 }
7163 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7164 }
7165 *table |= (address >> 18) & 0x3ffc;
7166 return true;
7167 }
7168
7169 /* Translate a S1 pagetable walk through S2 if needed. */
7170 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7171 hwaddr addr, MemTxAttrs txattrs,
7172 uint32_t *fsr,
7173 ARMMMUFaultInfo *fi)
7174 {
7175 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7176 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7177 target_ulong s2size;
7178 hwaddr s2pa;
7179 int s2prot;
7180 int ret;
7181
7182 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7183 &txattrs, &s2prot, &s2size, fsr, fi);
7184 if (ret) {
7185 fi->s2addr = addr;
7186 fi->stage2 = true;
7187 fi->s1ptw = true;
7188 return ~0;
7189 }
7190 addr = s2pa;
7191 }
7192 return addr;
7193 }
7194
7195 /* All loads done in the course of a page table walk go through here.
7196 * TODO: rather than ignoring errors from physical memory reads (which
7197 * are external aborts in ARM terminology) we should propagate this
7198 * error out so that we can turn it into a Data Abort if this walk
7199 * was being done for a CPU load/store or an address translation instruction
7200 * (but not if it was for a debug access).
7201 */
7202 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7203 ARMMMUIdx mmu_idx, uint32_t *fsr,
7204 ARMMMUFaultInfo *fi)
7205 {
7206 ARMCPU *cpu = ARM_CPU(cs);
7207 CPUARMState *env = &cpu->env;
7208 MemTxAttrs attrs = {};
7209 AddressSpace *as;
7210
7211 attrs.secure = is_secure;
7212 as = arm_addressspace(cs, attrs);
7213 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7214 if (fi->s1ptw) {
7215 return 0;
7216 }
7217 if (regime_translation_big_endian(env, mmu_idx)) {
7218 return address_space_ldl_be(as, addr, attrs, NULL);
7219 } else {
7220 return address_space_ldl_le(as, addr, attrs, NULL);
7221 }
7222 }
7223
7224 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7225 ARMMMUIdx mmu_idx, uint32_t *fsr,
7226 ARMMMUFaultInfo *fi)
7227 {
7228 ARMCPU *cpu = ARM_CPU(cs);
7229 CPUARMState *env = &cpu->env;
7230 MemTxAttrs attrs = {};
7231 AddressSpace *as;
7232
7233 attrs.secure = is_secure;
7234 as = arm_addressspace(cs, attrs);
7235 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7236 if (fi->s1ptw) {
7237 return 0;
7238 }
7239 if (regime_translation_big_endian(env, mmu_idx)) {
7240 return address_space_ldq_be(as, addr, attrs, NULL);
7241 } else {
7242 return address_space_ldq_le(as, addr, attrs, NULL);
7243 }
7244 }
7245
7246 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7247 int access_type, ARMMMUIdx mmu_idx,
7248 hwaddr *phys_ptr, int *prot,
7249 target_ulong *page_size, uint32_t *fsr,
7250 ARMMMUFaultInfo *fi)
7251 {
7252 CPUState *cs = CPU(arm_env_get_cpu(env));
7253 int code;
7254 uint32_t table;
7255 uint32_t desc;
7256 int type;
7257 int ap;
7258 int domain = 0;
7259 int domain_prot;
7260 hwaddr phys_addr;
7261 uint32_t dacr;
7262
7263 /* Pagetable walk. */
7264 /* Lookup l1 descriptor. */
7265 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7266 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7267 code = 5;
7268 goto do_fault;
7269 }
7270 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7271 mmu_idx, fsr, fi);
7272 type = (desc & 3);
7273 domain = (desc >> 5) & 0x0f;
7274 if (regime_el(env, mmu_idx) == 1) {
7275 dacr = env->cp15.dacr_ns;
7276 } else {
7277 dacr = env->cp15.dacr_s;
7278 }
7279 domain_prot = (dacr >> (domain * 2)) & 3;
7280 if (type == 0) {
7281 /* Section translation fault. */
7282 code = 5;
7283 goto do_fault;
7284 }
7285 if (domain_prot == 0 || domain_prot == 2) {
7286 if (type == 2)
7287 code = 9; /* Section domain fault. */
7288 else
7289 code = 11; /* Page domain fault. */
7290 goto do_fault;
7291 }
7292 if (type == 2) {
7293 /* 1Mb section. */
7294 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7295 ap = (desc >> 10) & 3;
7296 code = 13;
7297 *page_size = 1024 * 1024;
7298 } else {
7299 /* Lookup l2 entry. */
7300 if (type == 1) {
7301 /* Coarse pagetable. */
7302 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7303 } else {
7304 /* Fine pagetable. */
7305 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7306 }
7307 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7308 mmu_idx, fsr, fi);
7309 switch (desc & 3) {
7310 case 0: /* Page translation fault. */
7311 code = 7;
7312 goto do_fault;
7313 case 1: /* 64k page. */
7314 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7315 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7316 *page_size = 0x10000;
7317 break;
7318 case 2: /* 4k page. */
7319 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7320 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7321 *page_size = 0x1000;
7322 break;
7323 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7324 if (type == 1) {
7325 /* ARMv6/XScale extended small page format */
7326 if (arm_feature(env, ARM_FEATURE_XSCALE)
7327 || arm_feature(env, ARM_FEATURE_V6)) {
7328 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7329 *page_size = 0x1000;
7330 } else {
7331 /* UNPREDICTABLE in ARMv5; we choose to take a
7332 * page translation fault.
7333 */
7334 code = 7;
7335 goto do_fault;
7336 }
7337 } else {
7338 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7339 *page_size = 0x400;
7340 }
7341 ap = (desc >> 4) & 3;
7342 break;
7343 default:
7344 /* Never happens, but compiler isn't smart enough to tell. */
7345 abort();
7346 }
7347 code = 15;
7348 }
7349 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7350 *prot |= *prot ? PAGE_EXEC : 0;
7351 if (!(*prot & (1 << access_type))) {
7352 /* Access permission fault. */
7353 goto do_fault;
7354 }
7355 *phys_ptr = phys_addr;
7356 return false;
7357 do_fault:
7358 *fsr = code | (domain << 4);
7359 return true;
7360 }
7361
7362 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7363 int access_type, ARMMMUIdx mmu_idx,
7364 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7365 target_ulong *page_size, uint32_t *fsr,
7366 ARMMMUFaultInfo *fi)
7367 {
7368 CPUState *cs = CPU(arm_env_get_cpu(env));
7369 int code;
7370 uint32_t table;
7371 uint32_t desc;
7372 uint32_t xn;
7373 uint32_t pxn = 0;
7374 int type;
7375 int ap;
7376 int domain = 0;
7377 int domain_prot;
7378 hwaddr phys_addr;
7379 uint32_t dacr;
7380 bool ns;
7381
7382 /* Pagetable walk. */
7383 /* Lookup l1 descriptor. */
7384 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7385 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7386 code = 5;
7387 goto do_fault;
7388 }
7389 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7390 mmu_idx, fsr, fi);
7391 type = (desc & 3);
7392 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7393 /* Section translation fault, or attempt to use the encoding
7394 * which is Reserved on implementations without PXN.
7395 */
7396 code = 5;
7397 goto do_fault;
7398 }
7399 if ((type == 1) || !(desc & (1 << 18))) {
7400 /* Page or Section. */
7401 domain = (desc >> 5) & 0x0f;
7402 }
7403 if (regime_el(env, mmu_idx) == 1) {
7404 dacr = env->cp15.dacr_ns;
7405 } else {
7406 dacr = env->cp15.dacr_s;
7407 }
7408 domain_prot = (dacr >> (domain * 2)) & 3;
7409 if (domain_prot == 0 || domain_prot == 2) {
7410 if (type != 1) {
7411 code = 9; /* Section domain fault. */
7412 } else {
7413 code = 11; /* Page domain fault. */
7414 }
7415 goto do_fault;
7416 }
7417 if (type != 1) {
7418 if (desc & (1 << 18)) {
7419 /* Supersection. */
7420 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7421 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7422 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7423 *page_size = 0x1000000;
7424 } else {
7425 /* Section. */
7426 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7427 *page_size = 0x100000;
7428 }
7429 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7430 xn = desc & (1 << 4);
7431 pxn = desc & 1;
7432 code = 13;
7433 ns = extract32(desc, 19, 1);
7434 } else {
7435 if (arm_feature(env, ARM_FEATURE_PXN)) {
7436 pxn = (desc >> 2) & 1;
7437 }
7438 ns = extract32(desc, 3, 1);
7439 /* Lookup l2 entry. */
7440 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7441 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7442 mmu_idx, fsr, fi);
7443 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7444 switch (desc & 3) {
7445 case 0: /* Page translation fault. */
7446 code = 7;
7447 goto do_fault;
7448 case 1: /* 64k page. */
7449 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7450 xn = desc & (1 << 15);
7451 *page_size = 0x10000;
7452 break;
7453 case 2: case 3: /* 4k page. */
7454 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7455 xn = desc & 1;
7456 *page_size = 0x1000;
7457 break;
7458 default:
7459 /* Never happens, but compiler isn't smart enough to tell. */
7460 abort();
7461 }
7462 code = 15;
7463 }
7464 if (domain_prot == 3) {
7465 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7466 } else {
7467 if (pxn && !regime_is_user(env, mmu_idx)) {
7468 xn = 1;
7469 }
7470 if (xn && access_type == 2)
7471 goto do_fault;
7472
7473 if (arm_feature(env, ARM_FEATURE_V6K) &&
7474 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7475 /* The simplified model uses AP[0] as an access control bit. */
7476 if ((ap & 1) == 0) {
7477 /* Access flag fault. */
7478 code = (code == 15) ? 6 : 3;
7479 goto do_fault;
7480 }
7481 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7482 } else {
7483 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7484 }
7485 if (*prot && !xn) {
7486 *prot |= PAGE_EXEC;
7487 }
7488 if (!(*prot & (1 << access_type))) {
7489 /* Access permission fault. */
7490 goto do_fault;
7491 }
7492 }
7493 if (ns) {
7494 /* The NS bit will (as required by the architecture) have no effect if
7495 * the CPU doesn't support TZ or this is a non-secure translation
7496 * regime, because the attribute will already be non-secure.
7497 */
7498 attrs->secure = false;
7499 }
7500 *phys_ptr = phys_addr;
7501 return false;
7502 do_fault:
7503 *fsr = code | (domain << 4);
7504 return true;
7505 }
7506
7507 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7508 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7509 */
7510 typedef enum {
7511 translation_fault = 1,
7512 access_fault = 2,
7513 permission_fault = 3,
7514 } MMUFaultType;
7515
7516 /*
7517 * check_s2_mmu_setup
7518 * @cpu: ARMCPU
7519 * @is_aa64: True if the translation regime is in AArch64 state
7520 * @startlevel: Suggested starting level
7521 * @inputsize: Bitsize of IPAs
7522 * @stride: Page-table stride (See the ARM ARM)
7523 *
7524 * Returns true if the suggested S2 translation parameters are OK and
7525 * false otherwise.
7526 */
7527 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7528 int inputsize, int stride)
7529 {
7530 const int grainsize = stride + 3;
7531 int startsizecheck;
7532
7533 /* Negative levels are never allowed. */
7534 if (level < 0) {
7535 return false;
7536 }
7537
7538 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7539 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7540 return false;
7541 }
7542
7543 if (is_aa64) {
7544 CPUARMState *env = &cpu->env;
7545 unsigned int pamax = arm_pamax(cpu);
7546
7547 switch (stride) {
7548 case 13: /* 64KB Pages. */
7549 if (level == 0 || (level == 1 && pamax <= 42)) {
7550 return false;
7551 }
7552 break;
7553 case 11: /* 16KB Pages. */
7554 if (level == 0 || (level == 1 && pamax <= 40)) {
7555 return false;
7556 }
7557 break;
7558 case 9: /* 4KB Pages. */
7559 if (level == 0 && pamax <= 42) {
7560 return false;
7561 }
7562 break;
7563 default:
7564 g_assert_not_reached();
7565 }
7566
7567 /* Inputsize checks. */
7568 if (inputsize > pamax &&
7569 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7570 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7571 return false;
7572 }
7573 } else {
7574 /* AArch32 only supports 4KB pages. Assert on that. */
7575 assert(stride == 9);
7576
7577 if (level == 0) {
7578 return false;
7579 }
7580 }
7581 return true;
7582 }
7583
7584 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7585 int access_type, ARMMMUIdx mmu_idx,
7586 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7587 target_ulong *page_size_ptr, uint32_t *fsr,
7588 ARMMMUFaultInfo *fi)
7589 {
7590 ARMCPU *cpu = arm_env_get_cpu(env);
7591 CPUState *cs = CPU(cpu);
7592 /* Read an LPAE long-descriptor translation table. */
7593 MMUFaultType fault_type = translation_fault;
7594 uint32_t level;
7595 uint32_t epd = 0;
7596 int32_t t0sz, t1sz;
7597 uint32_t tg;
7598 uint64_t ttbr;
7599 int ttbr_select;
7600 hwaddr descaddr, indexmask, indexmask_grainsize;
7601 uint32_t tableattrs;
7602 target_ulong page_size;
7603 uint32_t attrs;
7604 int32_t stride = 9;
7605 int32_t addrsize;
7606 int inputsize;
7607 int32_t tbi = 0;
7608 TCR *tcr = regime_tcr(env, mmu_idx);
7609 int ap, ns, xn, pxn;
7610 uint32_t el = regime_el(env, mmu_idx);
7611 bool ttbr1_valid = true;
7612 uint64_t descaddrmask;
7613 bool aarch64 = arm_el_is_aa64(env, el);
7614
7615 /* TODO:
7616 * This code does not handle the different format TCR for VTCR_EL2.
7617 * This code also does not support shareability levels.
7618 * Attribute and permission bit handling should also be checked when adding
7619 * support for those page table walks.
7620 */
7621 if (aarch64) {
7622 level = 0;
7623 addrsize = 64;
7624 if (el > 1) {
7625 if (mmu_idx != ARMMMUIdx_S2NS) {
7626 tbi = extract64(tcr->raw_tcr, 20, 1);
7627 }
7628 } else {
7629 if (extract64(address, 55, 1)) {
7630 tbi = extract64(tcr->raw_tcr, 38, 1);
7631 } else {
7632 tbi = extract64(tcr->raw_tcr, 37, 1);
7633 }
7634 }
7635 tbi *= 8;
7636
7637 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7638 * invalid.
7639 */
7640 if (el > 1) {
7641 ttbr1_valid = false;
7642 }
7643 } else {
7644 level = 1;
7645 addrsize = 32;
7646 /* There is no TTBR1 for EL2 */
7647 if (el == 2) {
7648 ttbr1_valid = false;
7649 }
7650 }
7651
7652 /* Determine whether this address is in the region controlled by
7653 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7654 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7655 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7656 */
7657 if (aarch64) {
7658 /* AArch64 translation. */
7659 t0sz = extract32(tcr->raw_tcr, 0, 6);
7660 t0sz = MIN(t0sz, 39);
7661 t0sz = MAX(t0sz, 16);
7662 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7663 /* AArch32 stage 1 translation. */
7664 t0sz = extract32(tcr->raw_tcr, 0, 3);
7665 } else {
7666 /* AArch32 stage 2 translation. */
7667 bool sext = extract32(tcr->raw_tcr, 4, 1);
7668 bool sign = extract32(tcr->raw_tcr, 3, 1);
7669 /* Address size is 40-bit for a stage 2 translation,
7670 * and t0sz can be negative (from -8 to 7),
7671 * so we need to adjust it to use the TTBR selecting logic below.
7672 */
7673 addrsize = 40;
7674 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7675
7676 /* If the sign-extend bit is not the same as t0sz[3], the result
7677 * is unpredictable. Flag this as a guest error. */
7678 if (sign != sext) {
7679 qemu_log_mask(LOG_GUEST_ERROR,
7680 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7681 }
7682 }
7683 t1sz = extract32(tcr->raw_tcr, 16, 6);
7684 if (aarch64) {
7685 t1sz = MIN(t1sz, 39);
7686 t1sz = MAX(t1sz, 16);
7687 }
7688 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7689 /* there is a ttbr0 region and we are in it (high bits all zero) */
7690 ttbr_select = 0;
7691 } else if (ttbr1_valid && t1sz &&
7692 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7693 /* there is a ttbr1 region and we are in it (high bits all one) */
7694 ttbr_select = 1;
7695 } else if (!t0sz) {
7696 /* ttbr0 region is "everything not in the ttbr1 region" */
7697 ttbr_select = 0;
7698 } else if (!t1sz && ttbr1_valid) {
7699 /* ttbr1 region is "everything not in the ttbr0 region" */
7700 ttbr_select = 1;
7701 } else {
7702 /* in the gap between the two regions, this is a Translation fault */
7703 fault_type = translation_fault;
7704 goto do_fault;
7705 }
7706
7707 /* Note that QEMU ignores shareability and cacheability attributes,
7708 * so we don't need to do anything with the SH, ORGN, IRGN fields
7709 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7710 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7711 * implement any ASID-like capability so we can ignore it (instead
7712 * we will always flush the TLB any time the ASID is changed).
7713 */
7714 if (ttbr_select == 0) {
7715 ttbr = regime_ttbr(env, mmu_idx, 0);
7716 if (el < 2) {
7717 epd = extract32(tcr->raw_tcr, 7, 1);
7718 }
7719 inputsize = addrsize - t0sz;
7720
7721 tg = extract32(tcr->raw_tcr, 14, 2);
7722 if (tg == 1) { /* 64KB pages */
7723 stride = 13;
7724 }
7725 if (tg == 2) { /* 16KB pages */
7726 stride = 11;
7727 }
7728 } else {
7729 /* We should only be here if TTBR1 is valid */
7730 assert(ttbr1_valid);
7731
7732 ttbr = regime_ttbr(env, mmu_idx, 1);
7733 epd = extract32(tcr->raw_tcr, 23, 1);
7734 inputsize = addrsize - t1sz;
7735
7736 tg = extract32(tcr->raw_tcr, 30, 2);
7737 if (tg == 3) { /* 64KB pages */
7738 stride = 13;
7739 }
7740 if (tg == 1) { /* 16KB pages */
7741 stride = 11;
7742 }
7743 }
7744
7745 /* Here we should have set up all the parameters for the translation:
7746 * inputsize, ttbr, epd, stride, tbi
7747 */
7748
7749 if (epd) {
7750 /* Translation table walk disabled => Translation fault on TLB miss
7751 * Note: This is always 0 on 64-bit EL2 and EL3.
7752 */
7753 goto do_fault;
7754 }
7755
7756 if (mmu_idx != ARMMMUIdx_S2NS) {
7757 /* The starting level depends on the virtual address size (which can
7758 * be up to 48 bits) and the translation granule size. It indicates
7759 * the number of strides (stride bits at a time) needed to
7760 * consume the bits of the input address. In the pseudocode this is:
7761 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7762 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7763 * our 'stride + 3' and 'stride' is our 'stride'.
7764 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7765 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7766 * = 4 - (inputsize - 4) / stride;
7767 */
7768 level = 4 - (inputsize - 4) / stride;
7769 } else {
7770 /* For stage 2 translations the starting level is specified by the
7771 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7772 */
7773 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7774 uint32_t startlevel;
7775 bool ok;
7776
7777 if (!aarch64 || stride == 9) {
7778 /* AArch32 or 4KB pages */
7779 startlevel = 2 - sl0;
7780 } else {
7781 /* 16KB or 64KB pages */
7782 startlevel = 3 - sl0;
7783 }
7784
7785 /* Check that the starting level is valid. */
7786 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7787 inputsize, stride);
7788 if (!ok) {
7789 fault_type = translation_fault;
7790 goto do_fault;
7791 }
7792 level = startlevel;
7793 }
7794
7795 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7796 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7797
7798 /* Now we can extract the actual base address from the TTBR */
7799 descaddr = extract64(ttbr, 0, 48);
7800 descaddr &= ~indexmask;
7801
7802 /* The address field in the descriptor goes up to bit 39 for ARMv7
7803 * but up to bit 47 for ARMv8, but we use the descaddrmask
7804 * up to bit 39 for AArch32, because we don't need other bits in that case
7805 * to construct next descriptor address (anyway they should be all zeroes).
7806 */
7807 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7808 ~indexmask_grainsize;
7809
7810 /* Secure accesses start with the page table in secure memory and
7811 * can be downgraded to non-secure at any step. Non-secure accesses
7812 * remain non-secure. We implement this by just ORing in the NSTable/NS
7813 * bits at each step.
7814 */
7815 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7816 for (;;) {
7817 uint64_t descriptor;
7818 bool nstable;
7819
7820 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7821 descaddr &= ~7ULL;
7822 nstable = extract32(tableattrs, 4, 1);
7823 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7824 if (fi->s1ptw) {
7825 goto do_fault;
7826 }
7827
7828 if (!(descriptor & 1) ||
7829 (!(descriptor & 2) && (level == 3))) {
7830 /* Invalid, or the Reserved level 3 encoding */
7831 goto do_fault;
7832 }
7833 descaddr = descriptor & descaddrmask;
7834
7835 if ((descriptor & 2) && (level < 3)) {
7836 /* Table entry. The top five bits are attributes which may
7837 * propagate down through lower levels of the table (and
7838 * which are all arranged so that 0 means "no effect", so
7839 * we can gather them up by ORing in the bits at each level).
7840 */
7841 tableattrs |= extract64(descriptor, 59, 5);
7842 level++;
7843 indexmask = indexmask_grainsize;
7844 continue;
7845 }
7846 /* Block entry at level 1 or 2, or page entry at level 3.
7847 * These are basically the same thing, although the number
7848 * of bits we pull in from the vaddr varies.
7849 */
7850 page_size = (1ULL << ((stride * (4 - level)) + 3));
7851 descaddr |= (address & (page_size - 1));
7852 /* Extract attributes from the descriptor */
7853 attrs = extract64(descriptor, 2, 10)
7854 | (extract64(descriptor, 52, 12) << 10);
7855
7856 if (mmu_idx == ARMMMUIdx_S2NS) {
7857 /* Stage 2 table descriptors do not include any attribute fields */
7858 break;
7859 }
7860 /* Merge in attributes from table descriptors */
7861 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7862 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7863 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7864 * means "force PL1 access only", which means forcing AP[1] to 0.
7865 */
7866 if (extract32(tableattrs, 2, 1)) {
7867 attrs &= ~(1 << 4);
7868 }
7869 attrs |= nstable << 3; /* NS */
7870 break;
7871 }
7872 /* Here descaddr is the final physical address, and attributes
7873 * are all in attrs.
7874 */
7875 fault_type = access_fault;
7876 if ((attrs & (1 << 8)) == 0) {
7877 /* Access flag */
7878 goto do_fault;
7879 }
7880
7881 ap = extract32(attrs, 4, 2);
7882 xn = extract32(attrs, 12, 1);
7883
7884 if (mmu_idx == ARMMMUIdx_S2NS) {
7885 ns = true;
7886 *prot = get_S2prot(env, ap, xn);
7887 } else {
7888 ns = extract32(attrs, 3, 1);
7889 pxn = extract32(attrs, 11, 1);
7890 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7891 }
7892
7893 fault_type = permission_fault;
7894 if (!(*prot & (1 << access_type))) {
7895 goto do_fault;
7896 }
7897
7898 if (ns) {
7899 /* The NS bit will (as required by the architecture) have no effect if
7900 * the CPU doesn't support TZ or this is a non-secure translation
7901 * regime, because the attribute will already be non-secure.
7902 */
7903 txattrs->secure = false;
7904 }
7905 *phys_ptr = descaddr;
7906 *page_size_ptr = page_size;
7907 return false;
7908
7909 do_fault:
7910 /* Long-descriptor format IFSR/DFSR value */
7911 *fsr = (1 << 9) | (fault_type << 2) | level;
7912 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7913 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7914 return true;
7915 }
7916
7917 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7918 ARMMMUIdx mmu_idx,
7919 int32_t address, int *prot)
7920 {
7921 *prot = PAGE_READ | PAGE_WRITE;
7922 switch (address) {
7923 case 0xF0000000 ... 0xFFFFFFFF:
7924 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7925 *prot |= PAGE_EXEC;
7926 }
7927 break;
7928 case 0x00000000 ... 0x7FFFFFFF:
7929 *prot |= PAGE_EXEC;
7930 break;
7931 }
7932
7933 }
7934
7935 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7936 int access_type, ARMMMUIdx mmu_idx,
7937 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7938 {
7939 ARMCPU *cpu = arm_env_get_cpu(env);
7940 int n;
7941 bool is_user = regime_is_user(env, mmu_idx);
7942
7943 *phys_ptr = address;
7944 *prot = 0;
7945
7946 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7947 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7948 } else { /* MPU enabled */
7949 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7950 /* region search */
7951 uint32_t base = env->pmsav7.drbar[n];
7952 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7953 uint32_t rmask;
7954 bool srdis = false;
7955
7956 if (!(env->pmsav7.drsr[n] & 0x1)) {
7957 continue;
7958 }
7959
7960 if (!rsize) {
7961 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7962 continue;
7963 }
7964 rsize++;
7965 rmask = (1ull << rsize) - 1;
7966
7967 if (base & rmask) {
7968 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7969 "to DRSR region size, mask = %" PRIx32,
7970 base, rmask);
7971 continue;
7972 }
7973
7974 if (address < base || address > base + rmask) {
7975 continue;
7976 }
7977
7978 /* Region matched */
7979
7980 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7981 int i, snd;
7982 uint32_t srdis_mask;
7983
7984 rsize -= 3; /* sub region size (power of 2) */
7985 snd = ((address - base) >> rsize) & 0x7;
7986 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7987
7988 srdis_mask = srdis ? 0x3 : 0x0;
7989 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7990 /* This will check in groups of 2, 4 and then 8, whether
7991 * the subregion bits are consistent. rsize is incremented
7992 * back up to give the region size, considering consistent
7993 * adjacent subregions as one region. Stop testing if rsize
7994 * is already big enough for an entire QEMU page.
7995 */
7996 int snd_rounded = snd & ~(i - 1);
7997 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7998 snd_rounded + 8, i);
7999 if (srdis_mask ^ srdis_multi) {
8000 break;
8001 }
8002 srdis_mask = (srdis_mask << i) | srdis_mask;
8003 rsize++;
8004 }
8005 }
8006 if (rsize < TARGET_PAGE_BITS) {
8007 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
8008 "alignment of %" PRIu32 " bits. Minimum is %d\n",
8009 rsize, TARGET_PAGE_BITS);
8010 continue;
8011 }
8012 if (srdis) {
8013 continue;
8014 }
8015 break;
8016 }
8017
8018 if (n == -1) { /* no hits */
8019 if (cpu->pmsav7_dregion &&
8020 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
8021 /* background fault */
8022 *fsr = 0;
8023 return true;
8024 }
8025 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8026 } else { /* a MPU hit! */
8027 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8028
8029 if (is_user) { /* User mode AP bit decoding */
8030 switch (ap) {
8031 case 0:
8032 case 1:
8033 case 5:
8034 break; /* no access */
8035 case 3:
8036 *prot |= PAGE_WRITE;
8037 /* fall through */
8038 case 2:
8039 case 6:
8040 *prot |= PAGE_READ | PAGE_EXEC;
8041 break;
8042 default:
8043 qemu_log_mask(LOG_GUEST_ERROR,
8044 "Bad value for AP bits in DRACR %"
8045 PRIx32 "\n", ap);
8046 }
8047 } else { /* Priv. mode AP bits decoding */
8048 switch (ap) {
8049 case 0:
8050 break; /* no access */
8051 case 1:
8052 case 2:
8053 case 3:
8054 *prot |= PAGE_WRITE;
8055 /* fall through */
8056 case 5:
8057 case 6:
8058 *prot |= PAGE_READ | PAGE_EXEC;
8059 break;
8060 default:
8061 qemu_log_mask(LOG_GUEST_ERROR,
8062 "Bad value for AP bits in DRACR %"
8063 PRIx32 "\n", ap);
8064 }
8065 }
8066
8067 /* execute never */
8068 if (env->pmsav7.dracr[n] & (1 << 12)) {
8069 *prot &= ~PAGE_EXEC;
8070 }
8071 }
8072 }
8073
8074 *fsr = 0x00d; /* Permission fault */
8075 return !(*prot & (1 << access_type));
8076 }
8077
8078 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8079 int access_type, ARMMMUIdx mmu_idx,
8080 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8081 {
8082 int n;
8083 uint32_t mask;
8084 uint32_t base;
8085 bool is_user = regime_is_user(env, mmu_idx);
8086
8087 *phys_ptr = address;
8088 for (n = 7; n >= 0; n--) {
8089 base = env->cp15.c6_region[n];
8090 if ((base & 1) == 0) {
8091 continue;
8092 }
8093 mask = 1 << ((base >> 1) & 0x1f);
8094 /* Keep this shift separate from the above to avoid an
8095 (undefined) << 32. */
8096 mask = (mask << 1) - 1;
8097 if (((base ^ address) & ~mask) == 0) {
8098 break;
8099 }
8100 }
8101 if (n < 0) {
8102 *fsr = 2;
8103 return true;
8104 }
8105
8106 if (access_type == 2) {
8107 mask = env->cp15.pmsav5_insn_ap;
8108 } else {
8109 mask = env->cp15.pmsav5_data_ap;
8110 }
8111 mask = (mask >> (n * 4)) & 0xf;
8112 switch (mask) {
8113 case 0:
8114 *fsr = 1;
8115 return true;
8116 case 1:
8117 if (is_user) {
8118 *fsr = 1;
8119 return true;
8120 }
8121 *prot = PAGE_READ | PAGE_WRITE;
8122 break;
8123 case 2:
8124 *prot = PAGE_READ;
8125 if (!is_user) {
8126 *prot |= PAGE_WRITE;
8127 }
8128 break;
8129 case 3:
8130 *prot = PAGE_READ | PAGE_WRITE;
8131 break;
8132 case 5:
8133 if (is_user) {
8134 *fsr = 1;
8135 return true;
8136 }
8137 *prot = PAGE_READ;
8138 break;
8139 case 6:
8140 *prot = PAGE_READ;
8141 break;
8142 default:
8143 /* Bad permission. */
8144 *fsr = 1;
8145 return true;
8146 }
8147 *prot |= PAGE_EXEC;
8148 return false;
8149 }
8150
8151 /* get_phys_addr - get the physical address for this virtual address
8152 *
8153 * Find the physical address corresponding to the given virtual address,
8154 * by doing a translation table walk on MMU based systems or using the
8155 * MPU state on MPU based systems.
8156 *
8157 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8158 * prot and page_size may not be filled in, and the populated fsr value provides
8159 * information on why the translation aborted, in the format of a
8160 * DFSR/IFSR fault register, with the following caveats:
8161 * * we honour the short vs long DFSR format differences.
8162 * * the WnR bit is never set (the caller must do this).
8163 * * for PSMAv5 based systems we don't bother to return a full FSR format
8164 * value.
8165 *
8166 * @env: CPUARMState
8167 * @address: virtual address to get physical address for
8168 * @access_type: 0 for read, 1 for write, 2 for execute
8169 * @mmu_idx: MMU index indicating required translation regime
8170 * @phys_ptr: set to the physical address corresponding to the virtual address
8171 * @attrs: set to the memory transaction attributes to use
8172 * @prot: set to the permissions for the page containing phys_ptr
8173 * @page_size: set to the size of the page containing phys_ptr
8174 * @fsr: set to the DFSR/IFSR value on failure
8175 */
8176 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8177 int access_type, ARMMMUIdx mmu_idx,
8178 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8179 target_ulong *page_size, uint32_t *fsr,
8180 ARMMMUFaultInfo *fi)
8181 {
8182 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8183 /* Call ourselves recursively to do the stage 1 and then stage 2
8184 * translations.
8185 */
8186 if (arm_feature(env, ARM_FEATURE_EL2)) {
8187 hwaddr ipa;
8188 int s2_prot;
8189 int ret;
8190
8191 ret = get_phys_addr(env, address, access_type,
8192 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8193 prot, page_size, fsr, fi);
8194
8195 /* If S1 fails or S2 is disabled, return early. */
8196 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8197 *phys_ptr = ipa;
8198 return ret;
8199 }
8200
8201 /* S1 is done. Now do S2 translation. */
8202 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8203 phys_ptr, attrs, &s2_prot,
8204 page_size, fsr, fi);
8205 fi->s2addr = ipa;
8206 /* Combine the S1 and S2 perms. */
8207 *prot &= s2_prot;
8208 return ret;
8209 } else {
8210 /*
8211 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8212 */
8213 mmu_idx += ARMMMUIdx_S1NSE0;
8214 }
8215 }
8216
8217 /* The page table entries may downgrade secure to non-secure, but
8218 * cannot upgrade an non-secure translation regime's attributes
8219 * to secure.
8220 */
8221 attrs->secure = regime_is_secure(env, mmu_idx);
8222 attrs->user = regime_is_user(env, mmu_idx);
8223
8224 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8225 * In v7 and earlier it affects all stage 1 translations.
8226 */
8227 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8228 && !arm_feature(env, ARM_FEATURE_V8)) {
8229 if (regime_el(env, mmu_idx) == 3) {
8230 address += env->cp15.fcseidr_s;
8231 } else {
8232 address += env->cp15.fcseidr_ns;
8233 }
8234 }
8235
8236 /* pmsav7 has special handling for when MPU is disabled so call it before
8237 * the common MMU/MPU disabled check below.
8238 */
8239 if (arm_feature(env, ARM_FEATURE_MPU) &&
8240 arm_feature(env, ARM_FEATURE_V7)) {
8241 *page_size = TARGET_PAGE_SIZE;
8242 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8243 phys_ptr, prot, fsr);
8244 }
8245
8246 if (regime_translation_disabled(env, mmu_idx)) {
8247 /* MMU/MPU disabled. */
8248 *phys_ptr = address;
8249 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8250 *page_size = TARGET_PAGE_SIZE;
8251 return 0;
8252 }
8253
8254 if (arm_feature(env, ARM_FEATURE_MPU)) {
8255 /* Pre-v7 MPU */
8256 *page_size = TARGET_PAGE_SIZE;
8257 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8258 phys_ptr, prot, fsr);
8259 }
8260
8261 if (regime_using_lpae_format(env, mmu_idx)) {
8262 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8263 attrs, prot, page_size, fsr, fi);
8264 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8265 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8266 attrs, prot, page_size, fsr, fi);
8267 } else {
8268 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8269 prot, page_size, fsr, fi);
8270 }
8271 }
8272
8273 /* Walk the page table and (if the mapping exists) add the page
8274 * to the TLB. Return false on success, or true on failure. Populate
8275 * fsr with ARM DFSR/IFSR fault register format value on failure.
8276 */
8277 bool arm_tlb_fill(CPUState *cs, vaddr address,
8278 int access_type, int mmu_idx, uint32_t *fsr,
8279 ARMMMUFaultInfo *fi)
8280 {
8281 ARMCPU *cpu = ARM_CPU(cs);
8282 CPUARMState *env = &cpu->env;
8283 hwaddr phys_addr;
8284 target_ulong page_size;
8285 int prot;
8286 int ret;
8287 MemTxAttrs attrs = {};
8288
8289 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8290 &attrs, &prot, &page_size, fsr, fi);
8291 if (!ret) {
8292 /* Map a single [sub]page. */
8293 phys_addr &= TARGET_PAGE_MASK;
8294 address &= TARGET_PAGE_MASK;
8295 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8296 prot, mmu_idx, page_size);
8297 return 0;
8298 }
8299
8300 return ret;
8301 }
8302
8303 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8304 MemTxAttrs *attrs)
8305 {
8306 ARMCPU *cpu = ARM_CPU(cs);
8307 CPUARMState *env = &cpu->env;
8308 hwaddr phys_addr;
8309 target_ulong page_size;
8310 int prot;
8311 bool ret;
8312 uint32_t fsr;
8313 ARMMMUFaultInfo fi = {};
8314
8315 *attrs = (MemTxAttrs) {};
8316
8317 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8318 attrs, &prot, &page_size, &fsr, &fi);
8319
8320 if (ret) {
8321 return -1;
8322 }
8323 return phys_addr;
8324 }
8325
8326 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8327 {
8328 uint32_t mask;
8329 unsigned el = arm_current_el(env);
8330
8331 /* First handle registers which unprivileged can read */
8332
8333 switch (reg) {
8334 case 0 ... 7: /* xPSR sub-fields */
8335 mask = 0;
8336 if ((reg & 1) && el) {
8337 mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
8338 }
8339 if (!(reg & 4)) {
8340 mask |= 0xf8000000; /* APSR */
8341 }
8342 /* EPSR reads as zero */
8343 return xpsr_read(env) & mask;
8344 break;
8345 case 20: /* CONTROL */
8346 return env->v7m.control;
8347 }
8348
8349 if (el == 0) {
8350 return 0; /* unprivileged reads others as zero */
8351 }
8352
8353 switch (reg) {
8354 case 8: /* MSP */
8355 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8356 env->v7m.other_sp : env->regs[13];
8357 case 9: /* PSP */
8358 return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
8359 env->regs[13] : env->v7m.other_sp;
8360 case 16: /* PRIMASK */
8361 return (env->daif & PSTATE_I) != 0;
8362 case 17: /* BASEPRI */
8363 case 18: /* BASEPRI_MAX */
8364 return env->v7m.basepri;
8365 case 19: /* FAULTMASK */
8366 return (env->daif & PSTATE_F) != 0;
8367 default:
8368 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8369 " register %d\n", reg);
8370 return 0;
8371 }
8372 }
8373
8374 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8375 {
8376 if (arm_current_el(env) == 0 && reg > 7) {
8377 /* only xPSR sub-fields may be written by unprivileged */
8378 return;
8379 }
8380
8381 switch (reg) {
8382 case 0 ... 7: /* xPSR sub-fields */
8383 /* only APSR is actually writable */
8384 if (reg & 4) {
8385 xpsr_write(env, val, 0xf8000000); /* APSR */
8386 }
8387 break;
8388 case 8: /* MSP */
8389 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8390 env->v7m.other_sp = val;
8391 } else {
8392 env->regs[13] = val;
8393 }
8394 break;
8395 case 9: /* PSP */
8396 if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
8397 env->regs[13] = val;
8398 } else {
8399 env->v7m.other_sp = val;
8400 }
8401 break;
8402 case 16: /* PRIMASK */
8403 if (val & 1) {
8404 env->daif |= PSTATE_I;
8405 } else {
8406 env->daif &= ~PSTATE_I;
8407 }
8408 break;
8409 case 17: /* BASEPRI */
8410 env->v7m.basepri = val & 0xff;
8411 break;
8412 case 18: /* BASEPRI_MAX */
8413 val &= 0xff;
8414 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8415 env->v7m.basepri = val;
8416 break;
8417 case 19: /* FAULTMASK */
8418 if (val & 1) {
8419 env->daif |= PSTATE_F;
8420 } else {
8421 env->daif &= ~PSTATE_F;
8422 }
8423 break;
8424 case 20: /* CONTROL */
8425 switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
8426 env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
8427 R_V7M_CONTROL_NPRIV_MASK);
8428 break;
8429 default:
8430 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
8431 " register %d\n", reg);
8432 return;
8433 }
8434 }
8435
8436 #endif
8437
8438 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8439 {
8440 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8441 * Note that we do not implement the (architecturally mandated)
8442 * alignment fault for attempts to use this on Device memory
8443 * (which matches the usual QEMU behaviour of not implementing either
8444 * alignment faults or any memory attribute handling).
8445 */
8446
8447 ARMCPU *cpu = arm_env_get_cpu(env);
8448 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8449 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8450
8451 #ifndef CONFIG_USER_ONLY
8452 {
8453 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8454 * the block size so we might have to do more than one TLB lookup.
8455 * We know that in fact for any v8 CPU the page size is at least 4K
8456 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8457 * 1K as an artefact of legacy v5 subpage support being present in the
8458 * same QEMU executable.
8459 */
8460 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8461 void *hostaddr[maxidx];
8462 int try, i;
8463 unsigned mmu_idx = cpu_mmu_index(env, false);
8464 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8465
8466 for (try = 0; try < 2; try++) {
8467
8468 for (i = 0; i < maxidx; i++) {
8469 hostaddr[i] = tlb_vaddr_to_host(env,
8470 vaddr + TARGET_PAGE_SIZE * i,
8471 1, mmu_idx);
8472 if (!hostaddr[i]) {
8473 break;
8474 }
8475 }
8476 if (i == maxidx) {
8477 /* If it's all in the TLB it's fair game for just writing to;
8478 * we know we don't need to update dirty status, etc.
8479 */
8480 for (i = 0; i < maxidx - 1; i++) {
8481 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8482 }
8483 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8484 return;
8485 }
8486 /* OK, try a store and see if we can populate the tlb. This
8487 * might cause an exception if the memory isn't writable,
8488 * in which case we will longjmp out of here. We must for
8489 * this purpose use the actual register value passed to us
8490 * so that we get the fault address right.
8491 */
8492 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8493 /* Now we can populate the other TLB entries, if any */
8494 for (i = 0; i < maxidx; i++) {
8495 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8496 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8497 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8498 }
8499 }
8500 }
8501
8502 /* Slow path (probably attempt to do this to an I/O device or
8503 * similar, or clearing of a block of code we have translations
8504 * cached for). Just do a series of byte writes as the architecture
8505 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8506 * memset(), unmap() sequence here because:
8507 * + we'd need to account for the blocksize being larger than a page
8508 * + the direct-RAM access case is almost always going to be dealt
8509 * with in the fastpath code above, so there's no speed benefit
8510 * + we would have to deal with the map returning NULL because the
8511 * bounce buffer was in use
8512 */
8513 for (i = 0; i < blocklen; i++) {
8514 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8515 }
8516 }
8517 #else
8518 memset(g2h(vaddr), 0, blocklen);
8519 #endif
8520 }
8521
8522 /* Note that signed overflow is undefined in C. The following routines are
8523 careful to use unsigned types where modulo arithmetic is required.
8524 Failure to do so _will_ break on newer gcc. */
8525
8526 /* Signed saturating arithmetic. */
8527
8528 /* Perform 16-bit signed saturating addition. */
8529 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8530 {
8531 uint16_t res;
8532
8533 res = a + b;
8534 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8535 if (a & 0x8000)
8536 res = 0x8000;
8537 else
8538 res = 0x7fff;
8539 }
8540 return res;
8541 }
8542
8543 /* Perform 8-bit signed saturating addition. */
8544 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8545 {
8546 uint8_t res;
8547
8548 res = a + b;
8549 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8550 if (a & 0x80)
8551 res = 0x80;
8552 else
8553 res = 0x7f;
8554 }
8555 return res;
8556 }
8557
8558 /* Perform 16-bit signed saturating subtraction. */
8559 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8560 {
8561 uint16_t res;
8562
8563 res = a - b;
8564 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8565 if (a & 0x8000)
8566 res = 0x8000;
8567 else
8568 res = 0x7fff;
8569 }
8570 return res;
8571 }
8572
8573 /* Perform 8-bit signed saturating subtraction. */
8574 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8575 {
8576 uint8_t res;
8577
8578 res = a - b;
8579 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8580 if (a & 0x80)
8581 res = 0x80;
8582 else
8583 res = 0x7f;
8584 }
8585 return res;
8586 }
8587
8588 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8589 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8590 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8591 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8592 #define PFX q
8593
8594 #include "op_addsub.h"
8595
8596 /* Unsigned saturating arithmetic. */
8597 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8598 {
8599 uint16_t res;
8600 res = a + b;
8601 if (res < a)
8602 res = 0xffff;
8603 return res;
8604 }
8605
8606 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8607 {
8608 if (a > b)
8609 return a - b;
8610 else
8611 return 0;
8612 }
8613
8614 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8615 {
8616 uint8_t res;
8617 res = a + b;
8618 if (res < a)
8619 res = 0xff;
8620 return res;
8621 }
8622
8623 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8624 {
8625 if (a > b)
8626 return a - b;
8627 else
8628 return 0;
8629 }
8630
8631 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8632 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8633 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8634 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8635 #define PFX uq
8636
8637 #include "op_addsub.h"
8638
8639 /* Signed modulo arithmetic. */
8640 #define SARITH16(a, b, n, op) do { \
8641 int32_t sum; \
8642 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8643 RESULT(sum, n, 16); \
8644 if (sum >= 0) \
8645 ge |= 3 << (n * 2); \
8646 } while(0)
8647
8648 #define SARITH8(a, b, n, op) do { \
8649 int32_t sum; \
8650 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8651 RESULT(sum, n, 8); \
8652 if (sum >= 0) \
8653 ge |= 1 << n; \
8654 } while(0)
8655
8656
8657 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8658 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8659 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8660 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8661 #define PFX s
8662 #define ARITH_GE
8663
8664 #include "op_addsub.h"
8665
8666 /* Unsigned modulo arithmetic. */
8667 #define ADD16(a, b, n) do { \
8668 uint32_t sum; \
8669 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8670 RESULT(sum, n, 16); \
8671 if ((sum >> 16) == 1) \
8672 ge |= 3 << (n * 2); \
8673 } while(0)
8674
8675 #define ADD8(a, b, n) do { \
8676 uint32_t sum; \
8677 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8678 RESULT(sum, n, 8); \
8679 if ((sum >> 8) == 1) \
8680 ge |= 1 << n; \
8681 } while(0)
8682
8683 #define SUB16(a, b, n) do { \
8684 uint32_t sum; \
8685 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8686 RESULT(sum, n, 16); \
8687 if ((sum >> 16) == 0) \
8688 ge |= 3 << (n * 2); \
8689 } while(0)
8690
8691 #define SUB8(a, b, n) do { \
8692 uint32_t sum; \
8693 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8694 RESULT(sum, n, 8); \
8695 if ((sum >> 8) == 0) \
8696 ge |= 1 << n; \
8697 } while(0)
8698
8699 #define PFX u
8700 #define ARITH_GE
8701
8702 #include "op_addsub.h"
8703
8704 /* Halved signed arithmetic. */
8705 #define ADD16(a, b, n) \
8706 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8707 #define SUB16(a, b, n) \
8708 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8709 #define ADD8(a, b, n) \
8710 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8711 #define SUB8(a, b, n) \
8712 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8713 #define PFX sh
8714
8715 #include "op_addsub.h"
8716
8717 /* Halved unsigned arithmetic. */
8718 #define ADD16(a, b, n) \
8719 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8720 #define SUB16(a, b, n) \
8721 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8722 #define ADD8(a, b, n) \
8723 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8724 #define SUB8(a, b, n) \
8725 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8726 #define PFX uh
8727
8728 #include "op_addsub.h"
8729
8730 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8731 {
8732 if (a > b)
8733 return a - b;
8734 else
8735 return b - a;
8736 }
8737
8738 /* Unsigned sum of absolute byte differences. */
8739 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8740 {
8741 uint32_t sum;
8742 sum = do_usad(a, b);
8743 sum += do_usad(a >> 8, b >> 8);
8744 sum += do_usad(a >> 16, b >>16);
8745 sum += do_usad(a >> 24, b >> 24);
8746 return sum;
8747 }
8748
8749 /* For ARMv6 SEL instruction. */
8750 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8751 {
8752 uint32_t mask;
8753
8754 mask = 0;
8755 if (flags & 1)
8756 mask |= 0xff;
8757 if (flags & 2)
8758 mask |= 0xff00;
8759 if (flags & 4)
8760 mask |= 0xff0000;
8761 if (flags & 8)
8762 mask |= 0xff000000;
8763 return (a & mask) | (b & ~mask);
8764 }
8765
8766 /* VFP support. We follow the convention used for VFP instructions:
8767 Single precision routines have a "s" suffix, double precision a
8768 "d" suffix. */
8769
8770 /* Convert host exception flags to vfp form. */
8771 static inline int vfp_exceptbits_from_host(int host_bits)
8772 {
8773 int target_bits = 0;
8774
8775 if (host_bits & float_flag_invalid)
8776 target_bits |= 1;
8777 if (host_bits & float_flag_divbyzero)
8778 target_bits |= 2;
8779 if (host_bits & float_flag_overflow)
8780 target_bits |= 4;
8781 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8782 target_bits |= 8;
8783 if (host_bits & float_flag_inexact)
8784 target_bits |= 0x10;
8785 if (host_bits & float_flag_input_denormal)
8786 target_bits |= 0x80;
8787 return target_bits;
8788 }
8789
8790 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8791 {
8792 int i;
8793 uint32_t fpscr;
8794
8795 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8796 | (env->vfp.vec_len << 16)
8797 | (env->vfp.vec_stride << 20);
8798 i = get_float_exception_flags(&env->vfp.fp_status);
8799 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8800 fpscr |= vfp_exceptbits_from_host(i);
8801 return fpscr;
8802 }
8803
8804 uint32_t vfp_get_fpscr(CPUARMState *env)
8805 {
8806 return HELPER(vfp_get_fpscr)(env);
8807 }
8808
8809 /* Convert vfp exception flags to target form. */
8810 static inline int vfp_exceptbits_to_host(int target_bits)
8811 {
8812 int host_bits = 0;
8813
8814 if (target_bits & 1)
8815 host_bits |= float_flag_invalid;
8816 if (target_bits & 2)
8817 host_bits |= float_flag_divbyzero;
8818 if (target_bits & 4)
8819 host_bits |= float_flag_overflow;
8820 if (target_bits & 8)
8821 host_bits |= float_flag_underflow;
8822 if (target_bits & 0x10)
8823 host_bits |= float_flag_inexact;
8824 if (target_bits & 0x80)
8825 host_bits |= float_flag_input_denormal;
8826 return host_bits;
8827 }
8828
8829 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8830 {
8831 int i;
8832 uint32_t changed;
8833
8834 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8835 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8836 env->vfp.vec_len = (val >> 16) & 7;
8837 env->vfp.vec_stride = (val >> 20) & 3;
8838
8839 changed ^= val;
8840 if (changed & (3 << 22)) {
8841 i = (val >> 22) & 3;
8842 switch (i) {
8843 case FPROUNDING_TIEEVEN:
8844 i = float_round_nearest_even;
8845 break;
8846 case FPROUNDING_POSINF:
8847 i = float_round_up;
8848 break;
8849 case FPROUNDING_NEGINF:
8850 i = float_round_down;
8851 break;
8852 case FPROUNDING_ZERO:
8853 i = float_round_to_zero;
8854 break;
8855 }
8856 set_float_rounding_mode(i, &env->vfp.fp_status);
8857 }
8858 if (changed & (1 << 24)) {
8859 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8860 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8861 }
8862 if (changed & (1 << 25))
8863 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8864
8865 i = vfp_exceptbits_to_host(val);
8866 set_float_exception_flags(i, &env->vfp.fp_status);
8867 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8868 }
8869
8870 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8871 {
8872 HELPER(vfp_set_fpscr)(env, val);
8873 }
8874
8875 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8876
8877 #define VFP_BINOP(name) \
8878 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8879 { \
8880 float_status *fpst = fpstp; \
8881 return float32_ ## name(a, b, fpst); \
8882 } \
8883 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8884 { \
8885 float_status *fpst = fpstp; \
8886 return float64_ ## name(a, b, fpst); \
8887 }
8888 VFP_BINOP(add)
8889 VFP_BINOP(sub)
8890 VFP_BINOP(mul)
8891 VFP_BINOP(div)
8892 VFP_BINOP(min)
8893 VFP_BINOP(max)
8894 VFP_BINOP(minnum)
8895 VFP_BINOP(maxnum)
8896 #undef VFP_BINOP
8897
8898 float32 VFP_HELPER(neg, s)(float32 a)
8899 {
8900 return float32_chs(a);
8901 }
8902
8903 float64 VFP_HELPER(neg, d)(float64 a)
8904 {
8905 return float64_chs(a);
8906 }
8907
8908 float32 VFP_HELPER(abs, s)(float32 a)
8909 {
8910 return float32_abs(a);
8911 }
8912
8913 float64 VFP_HELPER(abs, d)(float64 a)
8914 {
8915 return float64_abs(a);
8916 }
8917
8918 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8919 {
8920 return float32_sqrt(a, &env->vfp.fp_status);
8921 }
8922
8923 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8924 {
8925 return float64_sqrt(a, &env->vfp.fp_status);
8926 }
8927
8928 /* XXX: check quiet/signaling case */
8929 #define DO_VFP_cmp(p, type) \
8930 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8931 { \
8932 uint32_t flags; \
8933 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8934 case 0: flags = 0x6; break; \
8935 case -1: flags = 0x8; break; \
8936 case 1: flags = 0x2; break; \
8937 default: case 2: flags = 0x3; break; \
8938 } \
8939 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8940 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8941 } \
8942 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8943 { \
8944 uint32_t flags; \
8945 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8946 case 0: flags = 0x6; break; \
8947 case -1: flags = 0x8; break; \
8948 case 1: flags = 0x2; break; \
8949 default: case 2: flags = 0x3; break; \
8950 } \
8951 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8952 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8953 }
8954 DO_VFP_cmp(s, float32)
8955 DO_VFP_cmp(d, float64)
8956 #undef DO_VFP_cmp
8957
8958 /* Integer to float and float to integer conversions */
8959
8960 #define CONV_ITOF(name, fsz, sign) \
8961 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8962 { \
8963 float_status *fpst = fpstp; \
8964 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8965 }
8966
8967 #define CONV_FTOI(name, fsz, sign, round) \
8968 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8969 { \
8970 float_status *fpst = fpstp; \
8971 if (float##fsz##_is_any_nan(x)) { \
8972 float_raise(float_flag_invalid, fpst); \
8973 return 0; \
8974 } \
8975 return float##fsz##_to_##sign##int32##round(x, fpst); \
8976 }
8977
8978 #define FLOAT_CONVS(name, p, fsz, sign) \
8979 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8980 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8981 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8982
8983 FLOAT_CONVS(si, s, 32, )
8984 FLOAT_CONVS(si, d, 64, )
8985 FLOAT_CONVS(ui, s, 32, u)
8986 FLOAT_CONVS(ui, d, 64, u)
8987
8988 #undef CONV_ITOF
8989 #undef CONV_FTOI
8990 #undef FLOAT_CONVS
8991
8992 /* floating point conversion */
8993 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8994 {
8995 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8996 /* ARM requires that S<->D conversion of any kind of NaN generates
8997 * a quiet NaN by forcing the most significant frac bit to 1.
8998 */
8999 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9000 }
9001
9002 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9003 {
9004 float32 r = float64_to_float32(x, &env->vfp.fp_status);
9005 /* ARM requires that S<->D conversion of any kind of NaN generates
9006 * a quiet NaN by forcing the most significant frac bit to 1.
9007 */
9008 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9009 }
9010
9011 /* VFP3 fixed point conversion. */
9012 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9013 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
9014 void *fpstp) \
9015 { \
9016 float_status *fpst = fpstp; \
9017 float##fsz tmp; \
9018 tmp = itype##_to_##float##fsz(x, fpst); \
9019 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9020 }
9021
9022 /* Notice that we want only input-denormal exception flags from the
9023 * scalbn operation: the other possible flags (overflow+inexact if
9024 * we overflow to infinity, output-denormal) aren't correct for the
9025 * complete scale-and-convert operation.
9026 */
9027 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9028 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9029 uint32_t shift, \
9030 void *fpstp) \
9031 { \
9032 float_status *fpst = fpstp; \
9033 int old_exc_flags = get_float_exception_flags(fpst); \
9034 float##fsz tmp; \
9035 if (float##fsz##_is_any_nan(x)) { \
9036 float_raise(float_flag_invalid, fpst); \
9037 return 0; \
9038 } \
9039 tmp = float##fsz##_scalbn(x, shift, fpst); \
9040 old_exc_flags |= get_float_exception_flags(fpst) \
9041 & float_flag_input_denormal; \
9042 set_float_exception_flags(old_exc_flags, fpst); \
9043 return float##fsz##_to_##itype##round(tmp, fpst); \
9044 }
9045
9046 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
9047 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9048 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9049 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9050
9051 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
9052 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9053 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9054
9055 VFP_CONV_FIX(sh, d, 64, 64, int16)
9056 VFP_CONV_FIX(sl, d, 64, 64, int32)
9057 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9058 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9059 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9060 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9061 VFP_CONV_FIX(sh, s, 32, 32, int16)
9062 VFP_CONV_FIX(sl, s, 32, 32, int32)
9063 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9064 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9065 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9066 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9067 #undef VFP_CONV_FIX
9068 #undef VFP_CONV_FIX_FLOAT
9069 #undef VFP_CONV_FLOAT_FIX_ROUND
9070
9071 /* Set the current fp rounding mode and return the old one.
9072 * The argument is a softfloat float_round_ value.
9073 */
9074 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9075 {
9076 float_status *fp_status = &env->vfp.fp_status;
9077
9078 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9079 set_float_rounding_mode(rmode, fp_status);
9080
9081 return prev_rmode;
9082 }
9083
9084 /* Set the current fp rounding mode in the standard fp status and return
9085 * the old one. This is for NEON instructions that need to change the
9086 * rounding mode but wish to use the standard FPSCR values for everything
9087 * else. Always set the rounding mode back to the correct value after
9088 * modifying it.
9089 * The argument is a softfloat float_round_ value.
9090 */
9091 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9092 {
9093 float_status *fp_status = &env->vfp.standard_fp_status;
9094
9095 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9096 set_float_rounding_mode(rmode, fp_status);
9097
9098 return prev_rmode;
9099 }
9100
9101 /* Half precision conversions. */
9102 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9103 {
9104 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9105 float32 r = float16_to_float32(make_float16(a), ieee, s);
9106 if (ieee) {
9107 return float32_maybe_silence_nan(r, s);
9108 }
9109 return r;
9110 }
9111
9112 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9113 {
9114 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9115 float16 r = float32_to_float16(a, ieee, s);
9116 if (ieee) {
9117 r = float16_maybe_silence_nan(r, s);
9118 }
9119 return float16_val(r);
9120 }
9121
9122 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9123 {
9124 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9125 }
9126
9127 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9128 {
9129 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9130 }
9131
9132 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9133 {
9134 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9135 }
9136
9137 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9138 {
9139 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9140 }
9141
9142 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9143 {
9144 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9145 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9146 if (ieee) {
9147 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9148 }
9149 return r;
9150 }
9151
9152 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9153 {
9154 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9155 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9156 if (ieee) {
9157 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9158 }
9159 return float16_val(r);
9160 }
9161
9162 #define float32_two make_float32(0x40000000)
9163 #define float32_three make_float32(0x40400000)
9164 #define float32_one_point_five make_float32(0x3fc00000)
9165
9166 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9167 {
9168 float_status *s = &env->vfp.standard_fp_status;
9169 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9170 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9171 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9172 float_raise(float_flag_input_denormal, s);
9173 }
9174 return float32_two;
9175 }
9176 return float32_sub(float32_two, float32_mul(a, b, s), s);
9177 }
9178
9179 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9180 {
9181 float_status *s = &env->vfp.standard_fp_status;
9182 float32 product;
9183 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9184 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9185 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9186 float_raise(float_flag_input_denormal, s);
9187 }
9188 return float32_one_point_five;
9189 }
9190 product = float32_mul(a, b, s);
9191 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9192 }
9193
9194 /* NEON helpers. */
9195
9196 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9197 * int->float conversions at run-time. */
9198 #define float64_256 make_float64(0x4070000000000000LL)
9199 #define float64_512 make_float64(0x4080000000000000LL)
9200 #define float32_maxnorm make_float32(0x7f7fffff)
9201 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9202
9203 /* Reciprocal functions
9204 *
9205 * The algorithm that must be used to calculate the estimate
9206 * is specified by the ARM ARM, see FPRecipEstimate()
9207 */
9208
9209 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9210 {
9211 /* These calculations mustn't set any fp exception flags,
9212 * so we use a local copy of the fp_status.
9213 */
9214 float_status dummy_status = *real_fp_status;
9215 float_status *s = &dummy_status;
9216 /* q = (int)(a * 512.0) */
9217 float64 q = float64_mul(float64_512, a, s);
9218 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9219
9220 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9221 q = int64_to_float64(q_int, s);
9222 q = float64_add(q, float64_half, s);
9223 q = float64_div(q, float64_512, s);
9224 q = float64_div(float64_one, q, s);
9225
9226 /* s = (int)(256.0 * r + 0.5) */
9227 q = float64_mul(q, float64_256, s);
9228 q = float64_add(q, float64_half, s);
9229 q_int = float64_to_int64_round_to_zero(q, s);
9230
9231 /* return (double)s / 256.0 */
9232 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9233 }
9234
9235 /* Common wrapper to call recip_estimate */
9236 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9237 {
9238 uint64_t val64 = float64_val(num);
9239 uint64_t frac = extract64(val64, 0, 52);
9240 int64_t exp = extract64(val64, 52, 11);
9241 uint64_t sbit;
9242 float64 scaled, estimate;
9243
9244 /* Generate the scaled number for the estimate function */
9245 if (exp == 0) {
9246 if (extract64(frac, 51, 1) == 0) {
9247 exp = -1;
9248 frac = extract64(frac, 0, 50) << 2;
9249 } else {
9250 frac = extract64(frac, 0, 51) << 1;
9251 }
9252 }
9253
9254 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9255 scaled = make_float64((0x3feULL << 52)
9256 | extract64(frac, 44, 8) << 44);
9257
9258 estimate = recip_estimate(scaled, fpst);
9259
9260 /* Build new result */
9261 val64 = float64_val(estimate);
9262 sbit = 0x8000000000000000ULL & val64;
9263 exp = off - exp;
9264 frac = extract64(val64, 0, 52);
9265
9266 if (exp == 0) {
9267 frac = 1ULL << 51 | extract64(frac, 1, 51);
9268 } else if (exp == -1) {
9269 frac = 1ULL << 50 | extract64(frac, 2, 50);
9270 exp = 0;
9271 }
9272
9273 return make_float64(sbit | (exp << 52) | frac);
9274 }
9275
9276 static bool round_to_inf(float_status *fpst, bool sign_bit)
9277 {
9278 switch (fpst->float_rounding_mode) {
9279 case float_round_nearest_even: /* Round to Nearest */
9280 return true;
9281 case float_round_up: /* Round to +Inf */
9282 return !sign_bit;
9283 case float_round_down: /* Round to -Inf */
9284 return sign_bit;
9285 case float_round_to_zero: /* Round to Zero */
9286 return false;
9287 }
9288
9289 g_assert_not_reached();
9290 }
9291
9292 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9293 {
9294 float_status *fpst = fpstp;
9295 float32 f32 = float32_squash_input_denormal(input, fpst);
9296 uint32_t f32_val = float32_val(f32);
9297 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9298 int32_t f32_exp = extract32(f32_val, 23, 8);
9299 uint32_t f32_frac = extract32(f32_val, 0, 23);
9300 float64 f64, r64;
9301 uint64_t r64_val;
9302 int64_t r64_exp;
9303 uint64_t r64_frac;
9304
9305 if (float32_is_any_nan(f32)) {
9306 float32 nan = f32;
9307 if (float32_is_signaling_nan(f32, fpst)) {
9308 float_raise(float_flag_invalid, fpst);
9309 nan = float32_maybe_silence_nan(f32, fpst);
9310 }
9311 if (fpst->default_nan_mode) {
9312 nan = float32_default_nan(fpst);
9313 }
9314 return nan;
9315 } else if (float32_is_infinity(f32)) {
9316 return float32_set_sign(float32_zero, float32_is_neg(f32));
9317 } else if (float32_is_zero(f32)) {
9318 float_raise(float_flag_divbyzero, fpst);
9319 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9320 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9321 /* Abs(value) < 2.0^-128 */
9322 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9323 if (round_to_inf(fpst, f32_sbit)) {
9324 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9325 } else {
9326 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9327 }
9328 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9329 float_raise(float_flag_underflow, fpst);
9330 return float32_set_sign(float32_zero, float32_is_neg(f32));
9331 }
9332
9333
9334 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9335 r64 = call_recip_estimate(f64, 253, fpst);
9336 r64_val = float64_val(r64);
9337 r64_exp = extract64(r64_val, 52, 11);
9338 r64_frac = extract64(r64_val, 0, 52);
9339
9340 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9341 return make_float32(f32_sbit |
9342 (r64_exp & 0xff) << 23 |
9343 extract64(r64_frac, 29, 24));
9344 }
9345
9346 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9347 {
9348 float_status *fpst = fpstp;
9349 float64 f64 = float64_squash_input_denormal(input, fpst);
9350 uint64_t f64_val = float64_val(f64);
9351 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9352 int64_t f64_exp = extract64(f64_val, 52, 11);
9353 float64 r64;
9354 uint64_t r64_val;
9355 int64_t r64_exp;
9356 uint64_t r64_frac;
9357
9358 /* Deal with any special cases */
9359 if (float64_is_any_nan(f64)) {
9360 float64 nan = f64;
9361 if (float64_is_signaling_nan(f64, fpst)) {
9362 float_raise(float_flag_invalid, fpst);
9363 nan = float64_maybe_silence_nan(f64, fpst);
9364 }
9365 if (fpst->default_nan_mode) {
9366 nan = float64_default_nan(fpst);
9367 }
9368 return nan;
9369 } else if (float64_is_infinity(f64)) {
9370 return float64_set_sign(float64_zero, float64_is_neg(f64));
9371 } else if (float64_is_zero(f64)) {
9372 float_raise(float_flag_divbyzero, fpst);
9373 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9374 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9375 /* Abs(value) < 2.0^-1024 */
9376 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9377 if (round_to_inf(fpst, f64_sbit)) {
9378 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9379 } else {
9380 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9381 }
9382 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9383 float_raise(float_flag_underflow, fpst);
9384 return float64_set_sign(float64_zero, float64_is_neg(f64));
9385 }
9386
9387 r64 = call_recip_estimate(f64, 2045, fpst);
9388 r64_val = float64_val(r64);
9389 r64_exp = extract64(r64_val, 52, 11);
9390 r64_frac = extract64(r64_val, 0, 52);
9391
9392 /* result = sign : result_exp<10:0> : fraction<51:0> */
9393 return make_float64(f64_sbit |
9394 ((r64_exp & 0x7ff) << 52) |
9395 r64_frac);
9396 }
9397
9398 /* The algorithm that must be used to calculate the estimate
9399 * is specified by the ARM ARM.
9400 */
9401 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9402 {
9403 /* These calculations mustn't set any fp exception flags,
9404 * so we use a local copy of the fp_status.
9405 */
9406 float_status dummy_status = *real_fp_status;
9407 float_status *s = &dummy_status;
9408 float64 q;
9409 int64_t q_int;
9410
9411 if (float64_lt(a, float64_half, s)) {
9412 /* range 0.25 <= a < 0.5 */
9413
9414 /* a in units of 1/512 rounded down */
9415 /* q0 = (int)(a * 512.0); */
9416 q = float64_mul(float64_512, a, s);
9417 q_int = float64_to_int64_round_to_zero(q, s);
9418
9419 /* reciprocal root r */
9420 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9421 q = int64_to_float64(q_int, s);
9422 q = float64_add(q, float64_half, s);
9423 q = float64_div(q, float64_512, s);
9424 q = float64_sqrt(q, s);
9425 q = float64_div(float64_one, q, s);
9426 } else {
9427 /* range 0.5 <= a < 1.0 */
9428
9429 /* a in units of 1/256 rounded down */
9430 /* q1 = (int)(a * 256.0); */
9431 q = float64_mul(float64_256, a, s);
9432 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9433
9434 /* reciprocal root r */
9435 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9436 q = int64_to_float64(q_int, s);
9437 q = float64_add(q, float64_half, s);
9438 q = float64_div(q, float64_256, s);
9439 q = float64_sqrt(q, s);
9440 q = float64_div(float64_one, q, s);
9441 }
9442 /* r in units of 1/256 rounded to nearest */
9443 /* s = (int)(256.0 * r + 0.5); */
9444
9445 q = float64_mul(q, float64_256,s );
9446 q = float64_add(q, float64_half, s);
9447 q_int = float64_to_int64_round_to_zero(q, s);
9448
9449 /* return (double)s / 256.0;*/
9450 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9451 }
9452
9453 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9454 {
9455 float_status *s = fpstp;
9456 float32 f32 = float32_squash_input_denormal(input, s);
9457 uint32_t val = float32_val(f32);
9458 uint32_t f32_sbit = 0x80000000 & val;
9459 int32_t f32_exp = extract32(val, 23, 8);
9460 uint32_t f32_frac = extract32(val, 0, 23);
9461 uint64_t f64_frac;
9462 uint64_t val64;
9463 int result_exp;
9464 float64 f64;
9465
9466 if (float32_is_any_nan(f32)) {
9467 float32 nan = f32;
9468 if (float32_is_signaling_nan(f32, s)) {
9469 float_raise(float_flag_invalid, s);
9470 nan = float32_maybe_silence_nan(f32, s);
9471 }
9472 if (s->default_nan_mode) {
9473 nan = float32_default_nan(s);
9474 }
9475 return nan;
9476 } else if (float32_is_zero(f32)) {
9477 float_raise(float_flag_divbyzero, s);
9478 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9479 } else if (float32_is_neg(f32)) {
9480 float_raise(float_flag_invalid, s);
9481 return float32_default_nan(s);
9482 } else if (float32_is_infinity(f32)) {
9483 return float32_zero;
9484 }
9485
9486 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9487 * preserving the parity of the exponent. */
9488
9489 f64_frac = ((uint64_t) f32_frac) << 29;
9490 if (f32_exp == 0) {
9491 while (extract64(f64_frac, 51, 1) == 0) {
9492 f64_frac = f64_frac << 1;
9493 f32_exp = f32_exp-1;
9494 }
9495 f64_frac = extract64(f64_frac, 0, 51) << 1;
9496 }
9497
9498 if (extract64(f32_exp, 0, 1) == 0) {
9499 f64 = make_float64(((uint64_t) f32_sbit) << 32
9500 | (0x3feULL << 52)
9501 | f64_frac);
9502 } else {
9503 f64 = make_float64(((uint64_t) f32_sbit) << 32
9504 | (0x3fdULL << 52)
9505 | f64_frac);
9506 }
9507
9508 result_exp = (380 - f32_exp) / 2;
9509
9510 f64 = recip_sqrt_estimate(f64, s);
9511
9512 val64 = float64_val(f64);
9513
9514 val = ((result_exp & 0xff) << 23)
9515 | ((val64 >> 29) & 0x7fffff);
9516 return make_float32(val);
9517 }
9518
9519 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9520 {
9521 float_status *s = fpstp;
9522 float64 f64 = float64_squash_input_denormal(input, s);
9523 uint64_t val = float64_val(f64);
9524 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9525 int64_t f64_exp = extract64(val, 52, 11);
9526 uint64_t f64_frac = extract64(val, 0, 52);
9527 int64_t result_exp;
9528 uint64_t result_frac;
9529
9530 if (float64_is_any_nan(f64)) {
9531 float64 nan = f64;
9532 if (float64_is_signaling_nan(f64, s)) {
9533 float_raise(float_flag_invalid, s);
9534 nan = float64_maybe_silence_nan(f64, s);
9535 }
9536 if (s->default_nan_mode) {
9537 nan = float64_default_nan(s);
9538 }
9539 return nan;
9540 } else if (float64_is_zero(f64)) {
9541 float_raise(float_flag_divbyzero, s);
9542 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9543 } else if (float64_is_neg(f64)) {
9544 float_raise(float_flag_invalid, s);
9545 return float64_default_nan(s);
9546 } else if (float64_is_infinity(f64)) {
9547 return float64_zero;
9548 }
9549
9550 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9551 * preserving the parity of the exponent. */
9552
9553 if (f64_exp == 0) {
9554 while (extract64(f64_frac, 51, 1) == 0) {
9555 f64_frac = f64_frac << 1;
9556 f64_exp = f64_exp - 1;
9557 }
9558 f64_frac = extract64(f64_frac, 0, 51) << 1;
9559 }
9560
9561 if (extract64(f64_exp, 0, 1) == 0) {
9562 f64 = make_float64(f64_sbit
9563 | (0x3feULL << 52)
9564 | f64_frac);
9565 } else {
9566 f64 = make_float64(f64_sbit
9567 | (0x3fdULL << 52)
9568 | f64_frac);
9569 }
9570
9571 result_exp = (3068 - f64_exp) / 2;
9572
9573 f64 = recip_sqrt_estimate(f64, s);
9574
9575 result_frac = extract64(float64_val(f64), 0, 52);
9576
9577 return make_float64(f64_sbit |
9578 ((result_exp & 0x7ff) << 52) |
9579 result_frac);
9580 }
9581
9582 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9583 {
9584 float_status *s = fpstp;
9585 float64 f64;
9586
9587 if ((a & 0x80000000) == 0) {
9588 return 0xffffffff;
9589 }
9590
9591 f64 = make_float64((0x3feULL << 52)
9592 | ((int64_t)(a & 0x7fffffff) << 21));
9593
9594 f64 = recip_estimate(f64, s);
9595
9596 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9597 }
9598
9599 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9600 {
9601 float_status *fpst = fpstp;
9602 float64 f64;
9603
9604 if ((a & 0xc0000000) == 0) {
9605 return 0xffffffff;
9606 }
9607
9608 if (a & 0x80000000) {
9609 f64 = make_float64((0x3feULL << 52)
9610 | ((uint64_t)(a & 0x7fffffff) << 21));
9611 } else { /* bits 31-30 == '01' */
9612 f64 = make_float64((0x3fdULL << 52)
9613 | ((uint64_t)(a & 0x3fffffff) << 22));
9614 }
9615
9616 f64 = recip_sqrt_estimate(f64, fpst);
9617
9618 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9619 }
9620
9621 /* VFPv4 fused multiply-accumulate */
9622 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9623 {
9624 float_status *fpst = fpstp;
9625 return float32_muladd(a, b, c, 0, fpst);
9626 }
9627
9628 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9629 {
9630 float_status *fpst = fpstp;
9631 return float64_muladd(a, b, c, 0, fpst);
9632 }
9633
9634 /* ARMv8 round to integral */
9635 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9636 {
9637 return float32_round_to_int(x, fp_status);
9638 }
9639
9640 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9641 {
9642 return float64_round_to_int(x, fp_status);
9643 }
9644
9645 float32 HELPER(rints)(float32 x, void *fp_status)
9646 {
9647 int old_flags = get_float_exception_flags(fp_status), new_flags;
9648 float32 ret;
9649
9650 ret = float32_round_to_int(x, fp_status);
9651
9652 /* Suppress any inexact exceptions the conversion produced */
9653 if (!(old_flags & float_flag_inexact)) {
9654 new_flags = get_float_exception_flags(fp_status);
9655 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9656 }
9657
9658 return ret;
9659 }
9660
9661 float64 HELPER(rintd)(float64 x, void *fp_status)
9662 {
9663 int old_flags = get_float_exception_flags(fp_status), new_flags;
9664 float64 ret;
9665
9666 ret = float64_round_to_int(x, fp_status);
9667
9668 new_flags = get_float_exception_flags(fp_status);
9669
9670 /* Suppress any inexact exceptions the conversion produced */
9671 if (!(old_flags & float_flag_inexact)) {
9672 new_flags = get_float_exception_flags(fp_status);
9673 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9674 }
9675
9676 return ret;
9677 }
9678
9679 /* Convert ARM rounding mode to softfloat */
9680 int arm_rmode_to_sf(int rmode)
9681 {
9682 switch (rmode) {
9683 case FPROUNDING_TIEAWAY:
9684 rmode = float_round_ties_away;
9685 break;
9686 case FPROUNDING_ODD:
9687 /* FIXME: add support for TIEAWAY and ODD */
9688 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9689 rmode);
9690 case FPROUNDING_TIEEVEN:
9691 default:
9692 rmode = float_round_nearest_even;
9693 break;
9694 case FPROUNDING_POSINF:
9695 rmode = float_round_up;
9696 break;
9697 case FPROUNDING_NEGINF:
9698 rmode = float_round_down;
9699 break;
9700 case FPROUNDING_ZERO:
9701 rmode = float_round_to_zero;
9702 break;
9703 }
9704 return rmode;
9705 }
9706
9707 /* CRC helpers.
9708 * The upper bytes of val (above the number specified by 'bytes') must have
9709 * been zeroed out by the caller.
9710 */
9711 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9712 {
9713 uint8_t buf[4];
9714
9715 stl_le_p(buf, val);
9716
9717 /* zlib crc32 converts the accumulator and output to one's complement. */
9718 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9719 }
9720
9721 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9722 {
9723 uint8_t buf[4];
9724
9725 stl_le_p(buf, val);
9726
9727 /* Linux crc32c converts the output to one's complement. */
9728 return crc32c(acc, buf, bytes) ^ 0xffffffff;
9729 }