]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
qmp: Report QOM type name on query-cpu-definitions
[mirror_qemu.git] / target / arm / helper.c
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23 int access_type, ARMMMUIdx mmu_idx,
24 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 target_ulong *page_size, uint32_t *fsr,
26 ARMMMUFaultInfo *fi);
27
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29 int access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31 target_ulong *page_size_ptr, uint32_t *fsr,
32 ARMMMUFaultInfo *fi);
33
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD 0x8
36 #define PMCRC 0x4
37 #define PMCRE 0x1
38 #endif
39
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 {
42 int nregs;
43
44 /* VFP data registers are always little-endian. */
45 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46 if (reg < nregs) {
47 stfq_le_p(buf, env->vfp.regs[reg]);
48 return 8;
49 }
50 if (arm_feature(env, ARM_FEATURE_NEON)) {
51 /* Aliases for Q regs. */
52 nregs += 16;
53 if (reg < nregs) {
54 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 }
64 return 0;
65 }
66
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69 int nregs;
70
71 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72 if (reg < nregs) {
73 env->vfp.regs[reg] = ldfq_le_p(buf);
74 return 8;
75 }
76 if (arm_feature(env, ARM_FEATURE_NEON)) {
77 nregs += 16;
78 if (reg < nregs) {
79 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81 return 16;
82 }
83 }
84 switch (reg - nregs) {
85 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88 }
89 return 0;
90 }
91
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94 switch (reg) {
95 case 0 ... 31:
96 /* 128 bit FP register */
97 stfq_le_p(buf, env->vfp.regs[reg * 2]);
98 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99 return 16;
100 case 32:
101 /* FPSR */
102 stl_p(buf, vfp_get_fpsr(env));
103 return 4;
104 case 33:
105 /* FPCR */
106 stl_p(buf, vfp_get_fpcr(env));
107 return 4;
108 default:
109 return 0;
110 }
111 }
112
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115 switch (reg) {
116 case 0 ... 31:
117 /* 128 bit FP register */
118 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120 return 16;
121 case 32:
122 /* FPSR */
123 vfp_set_fpsr(env, ldl_p(buf));
124 return 4;
125 case 33:
126 /* FPCR */
127 vfp_set_fpcr(env, ldl_p(buf));
128 return 4;
129 default:
130 return 0;
131 }
132 }
133
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 {
136 assert(ri->fieldoffset);
137 if (cpreg_field_is_64bit(ri)) {
138 return CPREG_FIELD64(env, ri);
139 } else {
140 return CPREG_FIELD32(env, ri);
141 }
142 }
143
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145 uint64_t value)
146 {
147 assert(ri->fieldoffset);
148 if (cpreg_field_is_64bit(ri)) {
149 CPREG_FIELD64(env, ri) = value;
150 } else {
151 CPREG_FIELD32(env, ri) = value;
152 }
153 }
154
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 {
157 return (char *)env + ri->fieldoffset;
158 }
159
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 {
162 /* Raw read of a coprocessor register (as needed for migration, etc). */
163 if (ri->type & ARM_CP_CONST) {
164 return ri->resetvalue;
165 } else if (ri->raw_readfn) {
166 return ri->raw_readfn(env, ri);
167 } else if (ri->readfn) {
168 return ri->readfn(env, ri);
169 } else {
170 return raw_read(env, ri);
171 }
172 }
173
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175 uint64_t v)
176 {
177 /* Raw write of a coprocessor register (as needed for migration, etc).
178 * Note that constant registers are treated as write-ignored; the
179 * caller should check for success by whether a readback gives the
180 * value written.
181 */
182 if (ri->type & ARM_CP_CONST) {
183 return;
184 } else if (ri->raw_writefn) {
185 ri->raw_writefn(env, ri, v);
186 } else if (ri->writefn) {
187 ri->writefn(env, ri, v);
188 } else {
189 raw_write(env, ri, v);
190 }
191 }
192
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 {
195 /* Return true if the regdef would cause an assertion if you called
196 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197 * program bug for it not to have the NO_RAW flag).
198 * NB that returning false here doesn't necessarily mean that calling
199 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200 * read/write access functions which are safe for raw use" from "has
201 * read/write access functions which have side effects but has forgotten
202 * to provide raw access functions".
203 * The tests here line up with the conditions in read/write_raw_cp_reg()
204 * and assertions in raw_read()/raw_write().
205 */
206 if ((ri->type & ARM_CP_CONST) ||
207 ri->fieldoffset ||
208 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209 return false;
210 }
211 return true;
212 }
213
214 bool write_cpustate_to_list(ARMCPU *cpu)
215 {
216 /* Write the coprocessor state from cpu->env to the (index,value) list. */
217 int i;
218 bool ok = true;
219
220 for (i = 0; i < cpu->cpreg_array_len; i++) {
221 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222 const ARMCPRegInfo *ri;
223
224 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 if (!ri) {
226 ok = false;
227 continue;
228 }
229 if (ri->type & ARM_CP_NO_RAW) {
230 continue;
231 }
232 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233 }
234 return ok;
235 }
236
237 bool write_list_to_cpustate(ARMCPU *cpu)
238 {
239 int i;
240 bool ok = true;
241
242 for (i = 0; i < cpu->cpreg_array_len; i++) {
243 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244 uint64_t v = cpu->cpreg_values[i];
245 const ARMCPRegInfo *ri;
246
247 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!ri) {
249 ok = false;
250 continue;
251 }
252 if (ri->type & ARM_CP_NO_RAW) {
253 continue;
254 }
255 /* Write value and confirm it reads back as written
256 * (to catch read-only registers and partially read-only
257 * registers where the incoming migration value doesn't match)
258 */
259 write_raw_cp_reg(&cpu->env, ri, v);
260 if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 ok = false;
262 }
263 }
264 return ok;
265 }
266
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 {
269 ARMCPU *cpu = opaque;
270 uint64_t regidx;
271 const ARMCPRegInfo *ri;
272
273 regidx = *(uint32_t *)key;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275
276 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278 /* The value array need not be initialized at this point */
279 cpu->cpreg_array_len++;
280 }
281 }
282
283 static void count_cpreg(gpointer key, gpointer opaque)
284 {
285 ARMCPU *cpu = opaque;
286 uint64_t regidx;
287 const ARMCPRegInfo *ri;
288
289 regidx = *(uint32_t *)key;
290 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291
292 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 cpu->cpreg_array_len++;
294 }
295 }
296
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 {
299 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301
302 if (aidx > bidx) {
303 return 1;
304 }
305 if (aidx < bidx) {
306 return -1;
307 }
308 return 0;
309 }
310
311 void init_cpreg_list(ARMCPU *cpu)
312 {
313 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 */
316 GList *keys;
317 int arraylen;
318
319 keys = g_hash_table_get_keys(cpu->cp_regs);
320 keys = g_list_sort(keys, cpreg_key_compare);
321
322 cpu->cpreg_array_len = 0;
323
324 g_list_foreach(keys, count_cpreg, cpu);
325
326 arraylen = cpu->cpreg_array_len;
327 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332 cpu->cpreg_array_len = 0;
333
334 g_list_foreach(keys, add_cpreg_to_list, cpu);
335
336 assert(cpu->cpreg_array_len == arraylen);
337
338 g_list_free(keys);
339 }
340
341 /*
342 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 *
345 * access_el3_aa32ns: Used to check AArch32 register views.
346 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 */
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 const ARMCPRegInfo *ri,
350 bool isread)
351 {
352 bool secure = arm_is_secure_below_el3(env);
353
354 assert(!arm_el_is_aa64(env, 3));
355 if (secure) {
356 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 }
358 return CP_ACCESS_OK;
359 }
360
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 const ARMCPRegInfo *ri,
363 bool isread)
364 {
365 if (!arm_el_is_aa64(env, 3)) {
366 return access_el3_aa32ns(env, ri, isread);
367 }
368 return CP_ACCESS_OK;
369 }
370
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374 * We assume that the .access field is set to PL1_RW.
375 */
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 const ARMCPRegInfo *ri,
378 bool isread)
379 {
380 if (arm_current_el(env) == 3) {
381 return CP_ACCESS_OK;
382 }
383 if (arm_is_secure_below_el3(env)) {
384 return CP_ACCESS_TRAP_EL3;
385 }
386 /* This will be EL1 NS and EL2 NS, which just UNDEF */
387 return CP_ACCESS_TRAP_UNCATEGORIZED;
388 }
389
390 /* Check for traps to "powerdown debug" registers, which are controlled
391 * by MDCR.TDOSA
392 */
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394 bool isread)
395 {
396 int el = arm_current_el(env);
397
398 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399 && !arm_is_secure_below_el3(env)) {
400 return CP_ACCESS_TRAP_EL2;
401 }
402 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403 return CP_ACCESS_TRAP_EL3;
404 }
405 return CP_ACCESS_OK;
406 }
407
408 /* Check for traps to "debug ROM" registers, which are controlled
409 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 */
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412 bool isread)
413 {
414 int el = arm_current_el(env);
415
416 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417 && !arm_is_secure_below_el3(env)) {
418 return CP_ACCESS_TRAP_EL2;
419 }
420 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421 return CP_ACCESS_TRAP_EL3;
422 }
423 return CP_ACCESS_OK;
424 }
425
426 /* Check for traps to general debug registers, which are controlled
427 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 */
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430 bool isread)
431 {
432 int el = arm_current_el(env);
433
434 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435 && !arm_is_secure_below_el3(env)) {
436 return CP_ACCESS_TRAP_EL2;
437 }
438 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439 return CP_ACCESS_TRAP_EL3;
440 }
441 return CP_ACCESS_OK;
442 }
443
444 /* Check for traps to performance monitor registers, which are controlled
445 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 */
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
449 {
450 int el = arm_current_el(env);
451
452 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453 && !arm_is_secure_below_el3(env)) {
454 return CP_ACCESS_TRAP_EL2;
455 }
456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457 return CP_ACCESS_TRAP_EL3;
458 }
459 return CP_ACCESS_OK;
460 }
461
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 {
464 ARMCPU *cpu = arm_env_get_cpu(env);
465
466 raw_write(env, ri, value);
467 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
468 }
469
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 {
472 ARMCPU *cpu = arm_env_get_cpu(env);
473
474 if (raw_read(env, ri) != value) {
475 /* Unlike real hardware the qemu TLB uses virtual addresses,
476 * not modified virtual addresses, so this causes a TLB flush.
477 */
478 tlb_flush(CPU(cpu), 1);
479 raw_write(env, ri, value);
480 }
481 }
482
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484 uint64_t value)
485 {
486 ARMCPU *cpu = arm_env_get_cpu(env);
487
488 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489 && !extended_addresses_enabled(env)) {
490 /* For VMSA (when not using the LPAE long descriptor page table
491 * format) this register includes the ASID, so do a TLB flush.
492 * For PMSA it is purely a process ID and no action is needed.
493 */
494 tlb_flush(CPU(cpu), 1);
495 }
496 raw_write(env, ri, value);
497 }
498
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate all (TLBIALL) */
503 ARMCPU *cpu = arm_env_get_cpu(env);
504
505 tlb_flush(CPU(cpu), 1);
506 }
507
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 uint64_t value)
510 {
511 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 ARMCPU *cpu = arm_env_get_cpu(env);
513
514 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 }
516
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518 uint64_t value)
519 {
520 /* Invalidate by ASID (TLBIASID) */
521 ARMCPU *cpu = arm_env_get_cpu(env);
522
523 tlb_flush(CPU(cpu), value == 0);
524 }
525
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 ARMCPU *cpu = arm_env_get_cpu(env);
531
532 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 }
534
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538 {
539 CPUState *other_cs;
540
541 CPU_FOREACH(other_cs) {
542 tlb_flush(other_cs, 1);
543 }
544 }
545
546 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
548 {
549 CPUState *other_cs;
550
551 CPU_FOREACH(other_cs) {
552 tlb_flush(other_cs, value == 0);
553 }
554 }
555
556 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *other_cs;
560
561 CPU_FOREACH(other_cs) {
562 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
563 }
564 }
565
566 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 uint64_t value)
568 {
569 CPUState *other_cs;
570
571 CPU_FOREACH(other_cs) {
572 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
573 }
574 }
575
576 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
578 {
579 CPUState *cs = ENV_GET_CPU(env);
580
581 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
582 ARMMMUIdx_S2NS, -1);
583 }
584
585 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
587 {
588 CPUState *other_cs;
589
590 CPU_FOREACH(other_cs) {
591 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
592 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
593 }
594 }
595
596 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 uint64_t value)
598 {
599 /* Invalidate by IPA. This has to invalidate any structures that
600 * contain only stage 2 translation information, but does not need
601 * to apply to structures that contain combined stage 1 and stage 2
602 * translation information.
603 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
604 */
605 CPUState *cs = ENV_GET_CPU(env);
606 uint64_t pageaddr;
607
608 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
609 return;
610 }
611
612 pageaddr = sextract64(value << 12, 0, 40);
613
614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
615 }
616
617 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619 {
620 CPUState *other_cs;
621 uint64_t pageaddr;
622
623 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
624 return;
625 }
626
627 pageaddr = sextract64(value << 12, 0, 40);
628
629 CPU_FOREACH(other_cs) {
630 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
631 }
632 }
633
634 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
635 uint64_t value)
636 {
637 CPUState *cs = ENV_GET_CPU(env);
638
639 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
640 }
641
642 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
643 uint64_t value)
644 {
645 CPUState *other_cs;
646
647 CPU_FOREACH(other_cs) {
648 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
649 }
650 }
651
652 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
653 uint64_t value)
654 {
655 CPUState *cs = ENV_GET_CPU(env);
656 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657
658 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
659 }
660
661 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
662 uint64_t value)
663 {
664 CPUState *other_cs;
665 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
666
667 CPU_FOREACH(other_cs) {
668 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
669 }
670 }
671
672 static const ARMCPRegInfo cp_reginfo[] = {
673 /* Define the secure and non-secure FCSE identifier CP registers
674 * separately because there is no secure bank in V8 (no _EL3). This allows
675 * the secure register to be properly reset and migrated. There is also no
676 * v8 EL1 version of the register so the non-secure instance stands alone.
677 */
678 { .name = "FCSEIDR(NS)",
679 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
680 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
681 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
682 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
683 { .name = "FCSEIDR(S)",
684 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
685 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
686 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
687 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
688 /* Define the secure and non-secure context identifier CP registers
689 * separately because there is no secure bank in V8 (no _EL3). This allows
690 * the secure register to be properly reset and migrated. In the
691 * non-secure case, the 32-bit register will have reset and migration
692 * disabled during registration as it is handled by the 64-bit instance.
693 */
694 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
695 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
696 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
697 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
698 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
699 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
700 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
701 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
702 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
703 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
704 REGINFO_SENTINEL
705 };
706
707 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
708 /* NB: Some of these registers exist in v8 but with more precise
709 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
710 */
711 /* MMU Domain access control / MPU write buffer control */
712 { .name = "DACR",
713 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
714 .access = PL1_RW, .resetvalue = 0,
715 .writefn = dacr_write, .raw_writefn = raw_write,
716 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
717 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
718 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
719 * For v6 and v5, these mappings are overly broad.
720 */
721 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
722 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
723 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
724 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
725 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
726 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
727 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
728 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729 /* Cache maintenance ops; some of this space may be overridden later. */
730 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
731 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
732 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
733 REGINFO_SENTINEL
734 };
735
736 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
737 /* Not all pre-v6 cores implemented this WFI, so this is slightly
738 * over-broad.
739 */
740 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
741 .access = PL1_W, .type = ARM_CP_WFI },
742 REGINFO_SENTINEL
743 };
744
745 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
746 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
747 * is UNPREDICTABLE; we choose to NOP as most implementations do).
748 */
749 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
750 .access = PL1_W, .type = ARM_CP_WFI },
751 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
752 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
753 * OMAPCP will override this space.
754 */
755 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
756 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
757 .resetvalue = 0 },
758 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
759 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
760 .resetvalue = 0 },
761 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
762 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
763 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
764 .resetvalue = 0 },
765 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
766 * implementing it as RAZ means the "debug architecture version" bits
767 * will read as a reserved value, which should cause Linux to not try
768 * to use the debug hardware.
769 */
770 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
771 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
772 /* MMU TLB control. Note that the wildcarding means we cover not just
773 * the unified TLB ops but also the dside/iside/inner-shareable variants.
774 */
775 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
776 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
777 .type = ARM_CP_NO_RAW },
778 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
779 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
780 .type = ARM_CP_NO_RAW },
781 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
782 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
783 .type = ARM_CP_NO_RAW },
784 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
785 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
786 .type = ARM_CP_NO_RAW },
787 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
788 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
789 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
790 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
791 REGINFO_SENTINEL
792 };
793
794 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
796 {
797 uint32_t mask = 0;
798
799 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
800 if (!arm_feature(env, ARM_FEATURE_V8)) {
801 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
802 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
803 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
804 */
805 if (arm_feature(env, ARM_FEATURE_VFP)) {
806 /* VFP coprocessor: cp10 & cp11 [23:20] */
807 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
808
809 if (!arm_feature(env, ARM_FEATURE_NEON)) {
810 /* ASEDIS [31] bit is RAO/WI */
811 value |= (1 << 31);
812 }
813
814 /* VFPv3 and upwards with NEON implement 32 double precision
815 * registers (D0-D31).
816 */
817 if (!arm_feature(env, ARM_FEATURE_NEON) ||
818 !arm_feature(env, ARM_FEATURE_VFP3)) {
819 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
820 value |= (1 << 30);
821 }
822 }
823 value &= mask;
824 }
825 env->cp15.cpacr_el1 = value;
826 }
827
828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
829 bool isread)
830 {
831 if (arm_feature(env, ARM_FEATURE_V8)) {
832 /* Check if CPACR accesses are to be trapped to EL2 */
833 if (arm_current_el(env) == 1 &&
834 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
835 return CP_ACCESS_TRAP_EL2;
836 /* Check if CPACR accesses are to be trapped to EL3 */
837 } else if (arm_current_el(env) < 3 &&
838 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
839 return CP_ACCESS_TRAP_EL3;
840 }
841 }
842
843 return CP_ACCESS_OK;
844 }
845
846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
847 bool isread)
848 {
849 /* Check if CPTR accesses are set to trap to EL3 */
850 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
852 }
853
854 return CP_ACCESS_OK;
855 }
856
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /* We need to break the TB after ISB to execute self-modifying code
863 * correctly and also to take any pending interrupts immediately.
864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
865 */
866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NOP },
870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW,
874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
875 offsetof(CPUARMState, cp15.ifar_ns) },
876 .resetvalue = 0, },
877 /* Watchpoint Fault Address Register : should actually only be present
878 * for 1136, 1176, 11MPCore.
879 */
880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885 .resetvalue = 0, .writefn = cpacr_write },
886 REGINFO_SENTINEL
887 };
888
889 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
890 bool isread)
891 {
892 /* Performance monitor registers user accessibility is controlled
893 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
894 * trapping to EL2 or EL3 for other accesses.
895 */
896 int el = arm_current_el(env);
897
898 if (el == 0 && !env->cp15.c9_pmuserenr) {
899 return CP_ACCESS_TRAP;
900 }
901 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
902 && !arm_is_secure_below_el3(env)) {
903 return CP_ACCESS_TRAP_EL2;
904 }
905 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
906 return CP_ACCESS_TRAP_EL3;
907 }
908
909 return CP_ACCESS_OK;
910 }
911
912 #ifndef CONFIG_USER_ONLY
913
914 static inline bool arm_ccnt_enabled(CPUARMState *env)
915 {
916 /* This does not support checking PMCCFILTR_EL0 register */
917
918 if (!(env->cp15.c9_pmcr & PMCRE)) {
919 return false;
920 }
921
922 return true;
923 }
924
925 void pmccntr_sync(CPUARMState *env)
926 {
927 uint64_t temp_ticks;
928
929 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
930 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
931
932 if (env->cp15.c9_pmcr & PMCRD) {
933 /* Increment once every 64 processor clock cycles */
934 temp_ticks /= 64;
935 }
936
937 if (arm_ccnt_enabled(env)) {
938 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
939 }
940 }
941
942 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
943 uint64_t value)
944 {
945 pmccntr_sync(env);
946
947 if (value & PMCRC) {
948 /* The counter has been reset */
949 env->cp15.c15_ccnt = 0;
950 }
951
952 /* only the DP, X, D and E bits are writable */
953 env->cp15.c9_pmcr &= ~0x39;
954 env->cp15.c9_pmcr |= (value & 0x39);
955
956 pmccntr_sync(env);
957 }
958
959 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
960 {
961 uint64_t total_ticks;
962
963 if (!arm_ccnt_enabled(env)) {
964 /* Counter is disabled, do not change value */
965 return env->cp15.c15_ccnt;
966 }
967
968 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
969 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
970
971 if (env->cp15.c9_pmcr & PMCRD) {
972 /* Increment once every 64 processor clock cycles */
973 total_ticks /= 64;
974 }
975 return total_ticks - env->cp15.c15_ccnt;
976 }
977
978 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
979 uint64_t value)
980 {
981 uint64_t total_ticks;
982
983 if (!arm_ccnt_enabled(env)) {
984 /* Counter is disabled, set the absolute value */
985 env->cp15.c15_ccnt = value;
986 return;
987 }
988
989 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
990 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
991
992 if (env->cp15.c9_pmcr & PMCRD) {
993 /* Increment once every 64 processor clock cycles */
994 total_ticks /= 64;
995 }
996 env->cp15.c15_ccnt = total_ticks - value;
997 }
998
999 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1000 uint64_t value)
1001 {
1002 uint64_t cur_val = pmccntr_read(env, NULL);
1003
1004 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1005 }
1006
1007 #else /* CONFIG_USER_ONLY */
1008
1009 void pmccntr_sync(CPUARMState *env)
1010 {
1011 }
1012
1013 #endif
1014
1015 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1016 uint64_t value)
1017 {
1018 pmccntr_sync(env);
1019 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1020 pmccntr_sync(env);
1021 }
1022
1023 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1024 uint64_t value)
1025 {
1026 value &= (1 << 31);
1027 env->cp15.c9_pmcnten |= value;
1028 }
1029
1030 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1031 uint64_t value)
1032 {
1033 value &= (1 << 31);
1034 env->cp15.c9_pmcnten &= ~value;
1035 }
1036
1037 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1038 uint64_t value)
1039 {
1040 env->cp15.c9_pmovsr &= ~value;
1041 }
1042
1043 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1044 uint64_t value)
1045 {
1046 env->cp15.c9_pmxevtyper = value & 0xff;
1047 }
1048
1049 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1050 uint64_t value)
1051 {
1052 env->cp15.c9_pmuserenr = value & 1;
1053 }
1054
1055 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1056 uint64_t value)
1057 {
1058 /* We have no event counters so only the C bit can be changed */
1059 value &= (1 << 31);
1060 env->cp15.c9_pminten |= value;
1061 }
1062
1063 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1064 uint64_t value)
1065 {
1066 value &= (1 << 31);
1067 env->cp15.c9_pminten &= ~value;
1068 }
1069
1070 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1071 uint64_t value)
1072 {
1073 /* Note that even though the AArch64 view of this register has bits
1074 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1075 * architectural requirements for bits which are RES0 only in some
1076 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1077 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1078 */
1079 raw_write(env, ri, value & ~0x1FULL);
1080 }
1081
1082 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1083 {
1084 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1085 * For bits that vary between AArch32/64, code needs to check the
1086 * current execution mode before directly using the feature bit.
1087 */
1088 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1089
1090 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1091 valid_mask &= ~SCR_HCE;
1092
1093 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1094 * supported if EL2 exists. The bit is UNK/SBZP when
1095 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1096 * when EL2 is unavailable.
1097 * On ARMv8, this bit is always available.
1098 */
1099 if (arm_feature(env, ARM_FEATURE_V7) &&
1100 !arm_feature(env, ARM_FEATURE_V8)) {
1101 valid_mask &= ~SCR_SMD;
1102 }
1103 }
1104
1105 /* Clear all-context RES0 bits. */
1106 value &= valid_mask;
1107 raw_write(env, ri, value);
1108 }
1109
1110 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1111 {
1112 ARMCPU *cpu = arm_env_get_cpu(env);
1113
1114 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1115 * bank
1116 */
1117 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1118 ri->secure & ARM_CP_SECSTATE_S);
1119
1120 return cpu->ccsidr[index];
1121 }
1122
1123 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
1125 {
1126 raw_write(env, ri, value & 0xf);
1127 }
1128
1129 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1130 {
1131 CPUState *cs = ENV_GET_CPU(env);
1132 uint64_t ret = 0;
1133
1134 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1135 ret |= CPSR_I;
1136 }
1137 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1138 ret |= CPSR_F;
1139 }
1140 /* External aborts are not possible in QEMU so A bit is always clear */
1141 return ret;
1142 }
1143
1144 static const ARMCPRegInfo v7_cp_reginfo[] = {
1145 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1146 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1147 .access = PL1_W, .type = ARM_CP_NOP },
1148 /* Performance monitors are implementation defined in v7,
1149 * but with an ARM recommended set of registers, which we
1150 * follow (although we don't actually implement any counters)
1151 *
1152 * Performance registers fall into three categories:
1153 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1154 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1155 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1156 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1157 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1158 */
1159 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1160 .access = PL0_RW, .type = ARM_CP_ALIAS,
1161 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1162 .writefn = pmcntenset_write,
1163 .accessfn = pmreg_access,
1164 .raw_writefn = raw_write },
1165 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1167 .access = PL0_RW, .accessfn = pmreg_access,
1168 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1169 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1170 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1171 .access = PL0_RW,
1172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1173 .accessfn = pmreg_access,
1174 .writefn = pmcntenclr_write,
1175 .type = ARM_CP_ALIAS },
1176 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1177 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1178 .access = PL0_RW, .accessfn = pmreg_access,
1179 .type = ARM_CP_ALIAS,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1181 .writefn = pmcntenclr_write },
1182 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1183 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1184 .accessfn = pmreg_access,
1185 .writefn = pmovsr_write,
1186 .raw_writefn = raw_write },
1187 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1188 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1189 .access = PL0_RW, .accessfn = pmreg_access,
1190 .type = ARM_CP_ALIAS,
1191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1192 .writefn = pmovsr_write,
1193 .raw_writefn = raw_write },
1194 /* Unimplemented so WI. */
1195 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1196 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1197 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1198 * We choose to RAZ/WI.
1199 */
1200 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1201 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1202 .accessfn = pmreg_access },
1203 #ifndef CONFIG_USER_ONLY
1204 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1205 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1206 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1207 .accessfn = pmreg_access },
1208 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1209 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1210 .access = PL0_RW, .accessfn = pmreg_access,
1211 .type = ARM_CP_IO,
1212 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1213 #endif
1214 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1215 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1216 .writefn = pmccfiltr_write,
1217 .access = PL0_RW, .accessfn = pmreg_access,
1218 .type = ARM_CP_IO,
1219 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1220 .resetvalue = 0, },
1221 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1222 .access = PL0_RW,
1223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1224 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1225 .raw_writefn = raw_write },
1226 /* Unimplemented, RAZ/WI. */
1227 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1228 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1229 .accessfn = pmreg_access },
1230 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1231 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1232 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1233 .resetvalue = 0,
1234 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1235 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1236 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1237 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1239 .resetvalue = 0,
1240 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1241 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1242 .access = PL1_RW, .accessfn = access_tpm,
1243 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1244 .resetvalue = 0,
1245 .writefn = pmintenset_write, .raw_writefn = raw_write },
1246 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1247 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1248 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1249 .writefn = pmintenclr_write, },
1250 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1251 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1252 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1254 .writefn = pmintenclr_write },
1255 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1256 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1257 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1258 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1259 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1260 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1261 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1262 offsetof(CPUARMState, cp15.csselr_ns) } },
1263 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1264 * just RAZ for all cores:
1265 */
1266 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1267 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1268 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1269 /* Auxiliary fault status registers: these also are IMPDEF, and we
1270 * choose to RAZ/WI for all cores.
1271 */
1272 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1273 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1274 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1275 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1276 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1277 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1278 /* MAIR can just read-as-written because we don't implement caches
1279 * and so don't need to care about memory attributes.
1280 */
1281 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1282 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1283 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1284 .resetvalue = 0 },
1285 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1286 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1287 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1288 .resetvalue = 0 },
1289 /* For non-long-descriptor page tables these are PRRR and NMRR;
1290 * regardless they still act as reads-as-written for QEMU.
1291 */
1292 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1293 * allows them to assign the correct fieldoffset based on the endianness
1294 * handled in the field definitions.
1295 */
1296 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1297 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1298 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1299 offsetof(CPUARMState, cp15.mair0_ns) },
1300 .resetfn = arm_cp_reset_ignore },
1301 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1302 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1304 offsetof(CPUARMState, cp15.mair1_ns) },
1305 .resetfn = arm_cp_reset_ignore },
1306 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1307 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1308 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1309 /* 32 bit ITLB invalidates */
1310 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1311 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1312 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1313 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1314 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1315 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1316 /* 32 bit DTLB invalidates */
1317 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1318 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1319 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1320 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1321 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1322 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1323 /* 32 bit TLB invalidates */
1324 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1325 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1326 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1327 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1328 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1329 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1330 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1331 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1332 REGINFO_SENTINEL
1333 };
1334
1335 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1336 /* 32 bit TLB invalidates, Inner Shareable */
1337 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1338 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1339 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1340 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1341 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1342 .type = ARM_CP_NO_RAW, .access = PL1_W,
1343 .writefn = tlbiasid_is_write },
1344 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1345 .type = ARM_CP_NO_RAW, .access = PL1_W,
1346 .writefn = tlbimvaa_is_write },
1347 REGINFO_SENTINEL
1348 };
1349
1350 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1351 uint64_t value)
1352 {
1353 value &= 1;
1354 env->teecr = value;
1355 }
1356
1357 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1358 bool isread)
1359 {
1360 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1361 return CP_ACCESS_TRAP;
1362 }
1363 return CP_ACCESS_OK;
1364 }
1365
1366 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1367 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1368 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1369 .resetvalue = 0,
1370 .writefn = teecr_write },
1371 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1372 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1373 .accessfn = teehbr_access, .resetvalue = 0 },
1374 REGINFO_SENTINEL
1375 };
1376
1377 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1378 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1379 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1380 .access = PL0_RW,
1381 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1382 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1383 .access = PL0_RW,
1384 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1385 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1386 .resetfn = arm_cp_reset_ignore },
1387 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1388 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1389 .access = PL0_R|PL1_W,
1390 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1391 .resetvalue = 0},
1392 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1393 .access = PL0_R|PL1_W,
1394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1396 .resetfn = arm_cp_reset_ignore },
1397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1399 .access = PL1_RW,
1400 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1401 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1402 .access = PL1_RW,
1403 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1404 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1405 .resetvalue = 0 },
1406 REGINFO_SENTINEL
1407 };
1408
1409 #ifndef CONFIG_USER_ONLY
1410
1411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1412 bool isread)
1413 {
1414 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1415 * Writable only at the highest implemented exception level.
1416 */
1417 int el = arm_current_el(env);
1418
1419 switch (el) {
1420 case 0:
1421 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1422 return CP_ACCESS_TRAP;
1423 }
1424 break;
1425 case 1:
1426 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1427 arm_is_secure_below_el3(env)) {
1428 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1429 return CP_ACCESS_TRAP_UNCATEGORIZED;
1430 }
1431 break;
1432 case 2:
1433 case 3:
1434 break;
1435 }
1436
1437 if (!isread && el < arm_highest_el(env)) {
1438 return CP_ACCESS_TRAP_UNCATEGORIZED;
1439 }
1440
1441 return CP_ACCESS_OK;
1442 }
1443
1444 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1445 bool isread)
1446 {
1447 unsigned int cur_el = arm_current_el(env);
1448 bool secure = arm_is_secure(env);
1449
1450 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1451 if (cur_el == 0 &&
1452 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1453 return CP_ACCESS_TRAP;
1454 }
1455
1456 if (arm_feature(env, ARM_FEATURE_EL2) &&
1457 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1458 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1459 return CP_ACCESS_TRAP_EL2;
1460 }
1461 return CP_ACCESS_OK;
1462 }
1463
1464 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1465 bool isread)
1466 {
1467 unsigned int cur_el = arm_current_el(env);
1468 bool secure = arm_is_secure(env);
1469
1470 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1471 * EL0[PV]TEN is zero.
1472 */
1473 if (cur_el == 0 &&
1474 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1475 return CP_ACCESS_TRAP;
1476 }
1477
1478 if (arm_feature(env, ARM_FEATURE_EL2) &&
1479 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1480 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1481 return CP_ACCESS_TRAP_EL2;
1482 }
1483 return CP_ACCESS_OK;
1484 }
1485
1486 static CPAccessResult gt_pct_access(CPUARMState *env,
1487 const ARMCPRegInfo *ri,
1488 bool isread)
1489 {
1490 return gt_counter_access(env, GTIMER_PHYS, isread);
1491 }
1492
1493 static CPAccessResult gt_vct_access(CPUARMState *env,
1494 const ARMCPRegInfo *ri,
1495 bool isread)
1496 {
1497 return gt_counter_access(env, GTIMER_VIRT, isread);
1498 }
1499
1500 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1501 bool isread)
1502 {
1503 return gt_timer_access(env, GTIMER_PHYS, isread);
1504 }
1505
1506 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1507 bool isread)
1508 {
1509 return gt_timer_access(env, GTIMER_VIRT, isread);
1510 }
1511
1512 static CPAccessResult gt_stimer_access(CPUARMState *env,
1513 const ARMCPRegInfo *ri,
1514 bool isread)
1515 {
1516 /* The AArch64 register view of the secure physical timer is
1517 * always accessible from EL3, and configurably accessible from
1518 * Secure EL1.
1519 */
1520 switch (arm_current_el(env)) {
1521 case 1:
1522 if (!arm_is_secure(env)) {
1523 return CP_ACCESS_TRAP;
1524 }
1525 if (!(env->cp15.scr_el3 & SCR_ST)) {
1526 return CP_ACCESS_TRAP_EL3;
1527 }
1528 return CP_ACCESS_OK;
1529 case 0:
1530 case 2:
1531 return CP_ACCESS_TRAP;
1532 case 3:
1533 return CP_ACCESS_OK;
1534 default:
1535 g_assert_not_reached();
1536 }
1537 }
1538
1539 static uint64_t gt_get_countervalue(CPUARMState *env)
1540 {
1541 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1542 }
1543
1544 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1545 {
1546 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1547
1548 if (gt->ctl & 1) {
1549 /* Timer enabled: calculate and set current ISTATUS, irq, and
1550 * reset timer to when ISTATUS next has to change
1551 */
1552 uint64_t offset = timeridx == GTIMER_VIRT ?
1553 cpu->env.cp15.cntvoff_el2 : 0;
1554 uint64_t count = gt_get_countervalue(&cpu->env);
1555 /* Note that this must be unsigned 64 bit arithmetic: */
1556 int istatus = count - offset >= gt->cval;
1557 uint64_t nexttick;
1558 int irqstate;
1559
1560 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1561
1562 irqstate = (istatus && !(gt->ctl & 2));
1563 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1564
1565 if (istatus) {
1566 /* Next transition is when count rolls back over to zero */
1567 nexttick = UINT64_MAX;
1568 } else {
1569 /* Next transition is when we hit cval */
1570 nexttick = gt->cval + offset;
1571 }
1572 /* Note that the desired next expiry time might be beyond the
1573 * signed-64-bit range of a QEMUTimer -- in this case we just
1574 * set the timer for as far in the future as possible. When the
1575 * timer expires we will reset the timer for any remaining period.
1576 */
1577 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1578 nexttick = INT64_MAX / GTIMER_SCALE;
1579 }
1580 timer_mod(cpu->gt_timer[timeridx], nexttick);
1581 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1582 } else {
1583 /* Timer disabled: ISTATUS and timer output always clear */
1584 gt->ctl &= ~4;
1585 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1586 timer_del(cpu->gt_timer[timeridx]);
1587 trace_arm_gt_recalc_disabled(timeridx);
1588 }
1589 }
1590
1591 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1592 int timeridx)
1593 {
1594 ARMCPU *cpu = arm_env_get_cpu(env);
1595
1596 timer_del(cpu->gt_timer[timeridx]);
1597 }
1598
1599 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1600 {
1601 return gt_get_countervalue(env);
1602 }
1603
1604 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1605 {
1606 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1607 }
1608
1609 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 int timeridx,
1611 uint64_t value)
1612 {
1613 trace_arm_gt_cval_write(timeridx, value);
1614 env->cp15.c14_timer[timeridx].cval = value;
1615 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1616 }
1617
1618 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1619 int timeridx)
1620 {
1621 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1622
1623 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1624 (gt_get_countervalue(env) - offset));
1625 }
1626
1627 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628 int timeridx,
1629 uint64_t value)
1630 {
1631 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1632
1633 trace_arm_gt_tval_write(timeridx, value);
1634 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1635 sextract64(value, 0, 32);
1636 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1637 }
1638
1639 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1640 int timeridx,
1641 uint64_t value)
1642 {
1643 ARMCPU *cpu = arm_env_get_cpu(env);
1644 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1645
1646 trace_arm_gt_ctl_write(timeridx, value);
1647 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1648 if ((oldval ^ value) & 1) {
1649 /* Enable toggled */
1650 gt_recalc_timer(cpu, timeridx);
1651 } else if ((oldval ^ value) & 2) {
1652 /* IMASK toggled: don't need to recalculate,
1653 * just set the interrupt line based on ISTATUS
1654 */
1655 int irqstate = (oldval & 4) && !(value & 2);
1656
1657 trace_arm_gt_imask_toggle(timeridx, irqstate);
1658 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1659 }
1660 }
1661
1662 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1663 {
1664 gt_timer_reset(env, ri, GTIMER_PHYS);
1665 }
1666
1667 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1669 {
1670 gt_cval_write(env, ri, GTIMER_PHYS, value);
1671 }
1672
1673 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1674 {
1675 return gt_tval_read(env, ri, GTIMER_PHYS);
1676 }
1677
1678 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679 uint64_t value)
1680 {
1681 gt_tval_write(env, ri, GTIMER_PHYS, value);
1682 }
1683
1684 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1686 {
1687 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1688 }
1689
1690 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692 gt_timer_reset(env, ri, GTIMER_VIRT);
1693 }
1694
1695 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1696 uint64_t value)
1697 {
1698 gt_cval_write(env, ri, GTIMER_VIRT, value);
1699 }
1700
1701 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1702 {
1703 return gt_tval_read(env, ri, GTIMER_VIRT);
1704 }
1705
1706 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1707 uint64_t value)
1708 {
1709 gt_tval_write(env, ri, GTIMER_VIRT, value);
1710 }
1711
1712 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1713 uint64_t value)
1714 {
1715 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1716 }
1717
1718 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1720 {
1721 ARMCPU *cpu = arm_env_get_cpu(env);
1722
1723 trace_arm_gt_cntvoff_write(value);
1724 raw_write(env, ri, value);
1725 gt_recalc_timer(cpu, GTIMER_VIRT);
1726 }
1727
1728 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1729 {
1730 gt_timer_reset(env, ri, GTIMER_HYP);
1731 }
1732
1733 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1735 {
1736 gt_cval_write(env, ri, GTIMER_HYP, value);
1737 }
1738
1739 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1740 {
1741 return gt_tval_read(env, ri, GTIMER_HYP);
1742 }
1743
1744 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1746 {
1747 gt_tval_write(env, ri, GTIMER_HYP, value);
1748 }
1749
1750 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value)
1752 {
1753 gt_ctl_write(env, ri, GTIMER_HYP, value);
1754 }
1755
1756 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1757 {
1758 gt_timer_reset(env, ri, GTIMER_SEC);
1759 }
1760
1761 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1763 {
1764 gt_cval_write(env, ri, GTIMER_SEC, value);
1765 }
1766
1767 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1768 {
1769 return gt_tval_read(env, ri, GTIMER_SEC);
1770 }
1771
1772 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1774 {
1775 gt_tval_write(env, ri, GTIMER_SEC, value);
1776 }
1777
1778 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1779 uint64_t value)
1780 {
1781 gt_ctl_write(env, ri, GTIMER_SEC, value);
1782 }
1783
1784 void arm_gt_ptimer_cb(void *opaque)
1785 {
1786 ARMCPU *cpu = opaque;
1787
1788 gt_recalc_timer(cpu, GTIMER_PHYS);
1789 }
1790
1791 void arm_gt_vtimer_cb(void *opaque)
1792 {
1793 ARMCPU *cpu = opaque;
1794
1795 gt_recalc_timer(cpu, GTIMER_VIRT);
1796 }
1797
1798 void arm_gt_htimer_cb(void *opaque)
1799 {
1800 ARMCPU *cpu = opaque;
1801
1802 gt_recalc_timer(cpu, GTIMER_HYP);
1803 }
1804
1805 void arm_gt_stimer_cb(void *opaque)
1806 {
1807 ARMCPU *cpu = opaque;
1808
1809 gt_recalc_timer(cpu, GTIMER_SEC);
1810 }
1811
1812 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1813 /* Note that CNTFRQ is purely reads-as-written for the benefit
1814 * of software; writing it doesn't actually change the timer frequency.
1815 * Our reset value matches the fixed frequency we implement the timer at.
1816 */
1817 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1818 .type = ARM_CP_ALIAS,
1819 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1820 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1821 },
1822 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1823 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1824 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1825 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1826 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1827 },
1828 /* overall control: mostly access permissions */
1829 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1830 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1831 .access = PL1_RW,
1832 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1833 .resetvalue = 0,
1834 },
1835 /* per-timer control */
1836 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1837 .secure = ARM_CP_SECSTATE_NS,
1838 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1839 .accessfn = gt_ptimer_access,
1840 .fieldoffset = offsetoflow32(CPUARMState,
1841 cp15.c14_timer[GTIMER_PHYS].ctl),
1842 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1843 },
1844 { .name = "CNTP_CTL(S)",
1845 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1846 .secure = ARM_CP_SECSTATE_S,
1847 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1848 .accessfn = gt_ptimer_access,
1849 .fieldoffset = offsetoflow32(CPUARMState,
1850 cp15.c14_timer[GTIMER_SEC].ctl),
1851 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1852 },
1853 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1854 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1855 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1856 .accessfn = gt_ptimer_access,
1857 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1858 .resetvalue = 0,
1859 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1860 },
1861 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1862 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1863 .accessfn = gt_vtimer_access,
1864 .fieldoffset = offsetoflow32(CPUARMState,
1865 cp15.c14_timer[GTIMER_VIRT].ctl),
1866 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1867 },
1868 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1869 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1870 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1871 .accessfn = gt_vtimer_access,
1872 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1873 .resetvalue = 0,
1874 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1875 },
1876 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1877 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1878 .secure = ARM_CP_SECSTATE_NS,
1879 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1880 .accessfn = gt_ptimer_access,
1881 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1882 },
1883 { .name = "CNTP_TVAL(S)",
1884 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1885 .secure = ARM_CP_SECSTATE_S,
1886 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1887 .accessfn = gt_ptimer_access,
1888 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1889 },
1890 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1892 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1893 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1894 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1895 },
1896 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1897 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1898 .accessfn = gt_vtimer_access,
1899 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1900 },
1901 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1902 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1903 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1904 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1905 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1906 },
1907 /* The counter itself */
1908 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1909 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1910 .accessfn = gt_pct_access,
1911 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1912 },
1913 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1915 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1916 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1917 },
1918 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1919 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1920 .accessfn = gt_vct_access,
1921 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1922 },
1923 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1924 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1925 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1926 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1927 },
1928 /* Comparison value, indicating when the timer goes off */
1929 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1930 .secure = ARM_CP_SECSTATE_NS,
1931 .access = PL1_RW | PL0_R,
1932 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1933 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1934 .accessfn = gt_ptimer_access,
1935 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1936 },
1937 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1938 .secure = ARM_CP_SECSTATE_S,
1939 .access = PL1_RW | PL0_R,
1940 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1942 .accessfn = gt_ptimer_access,
1943 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1944 },
1945 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1947 .access = PL1_RW | PL0_R,
1948 .type = ARM_CP_IO,
1949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1950 .resetvalue = 0, .accessfn = gt_ptimer_access,
1951 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1952 },
1953 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1954 .access = PL1_RW | PL0_R,
1955 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1956 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1957 .accessfn = gt_vtimer_access,
1958 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1959 },
1960 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1961 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1962 .access = PL1_RW | PL0_R,
1963 .type = ARM_CP_IO,
1964 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1965 .resetvalue = 0, .accessfn = gt_vtimer_access,
1966 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1967 },
1968 /* Secure timer -- this is actually restricted to only EL3
1969 * and configurably Secure-EL1 via the accessfn.
1970 */
1971 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1972 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1973 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1974 .accessfn = gt_stimer_access,
1975 .readfn = gt_sec_tval_read,
1976 .writefn = gt_sec_tval_write,
1977 .resetfn = gt_sec_timer_reset,
1978 },
1979 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1980 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1981 .type = ARM_CP_IO, .access = PL1_RW,
1982 .accessfn = gt_stimer_access,
1983 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1984 .resetvalue = 0,
1985 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1986 },
1987 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1988 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1989 .type = ARM_CP_IO, .access = PL1_RW,
1990 .accessfn = gt_stimer_access,
1991 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1992 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1993 },
1994 REGINFO_SENTINEL
1995 };
1996
1997 #else
1998 /* In user-mode none of the generic timer registers are accessible,
1999 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2000 * so instead just don't register any of them.
2001 */
2002 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2003 REGINFO_SENTINEL
2004 };
2005
2006 #endif
2007
2008 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2009 {
2010 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2011 raw_write(env, ri, value);
2012 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2013 raw_write(env, ri, value & 0xfffff6ff);
2014 } else {
2015 raw_write(env, ri, value & 0xfffff1ff);
2016 }
2017 }
2018
2019 #ifndef CONFIG_USER_ONLY
2020 /* get_phys_addr() isn't present for user-mode-only targets */
2021
2022 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2023 bool isread)
2024 {
2025 if (ri->opc2 & 4) {
2026 /* The ATS12NSO* operations must trap to EL3 if executed in
2027 * Secure EL1 (which can only happen if EL3 is AArch64).
2028 * They are simply UNDEF if executed from NS EL1.
2029 * They function normally from EL2 or EL3.
2030 */
2031 if (arm_current_el(env) == 1) {
2032 if (arm_is_secure_below_el3(env)) {
2033 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2034 }
2035 return CP_ACCESS_TRAP_UNCATEGORIZED;
2036 }
2037 }
2038 return CP_ACCESS_OK;
2039 }
2040
2041 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2042 int access_type, ARMMMUIdx mmu_idx)
2043 {
2044 hwaddr phys_addr;
2045 target_ulong page_size;
2046 int prot;
2047 uint32_t fsr;
2048 bool ret;
2049 uint64_t par64;
2050 MemTxAttrs attrs = {};
2051 ARMMMUFaultInfo fi = {};
2052
2053 ret = get_phys_addr(env, value, access_type, mmu_idx,
2054 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2055 if (extended_addresses_enabled(env)) {
2056 /* fsr is a DFSR/IFSR value for the long descriptor
2057 * translation table format, but with WnR always clear.
2058 * Convert it to a 64-bit PAR.
2059 */
2060 par64 = (1 << 11); /* LPAE bit always set */
2061 if (!ret) {
2062 par64 |= phys_addr & ~0xfffULL;
2063 if (!attrs.secure) {
2064 par64 |= (1 << 9); /* NS */
2065 }
2066 /* We don't set the ATTR or SH fields in the PAR. */
2067 } else {
2068 par64 |= 1; /* F */
2069 par64 |= (fsr & 0x3f) << 1; /* FS */
2070 /* Note that S2WLK and FSTAGE are always zero, because we don't
2071 * implement virtualization and therefore there can't be a stage 2
2072 * fault.
2073 */
2074 }
2075 } else {
2076 /* fsr is a DFSR/IFSR value for the short descriptor
2077 * translation table format (with WnR always clear).
2078 * Convert it to a 32-bit PAR.
2079 */
2080 if (!ret) {
2081 /* We do not set any attribute bits in the PAR */
2082 if (page_size == (1 << 24)
2083 && arm_feature(env, ARM_FEATURE_V7)) {
2084 par64 = (phys_addr & 0xff000000) | (1 << 1);
2085 } else {
2086 par64 = phys_addr & 0xfffff000;
2087 }
2088 if (!attrs.secure) {
2089 par64 |= (1 << 9); /* NS */
2090 }
2091 } else {
2092 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2093 ((fsr & 0xf) << 1) | 1;
2094 }
2095 }
2096 return par64;
2097 }
2098
2099 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2100 {
2101 int access_type = ri->opc2 & 1;
2102 uint64_t par64;
2103 ARMMMUIdx mmu_idx;
2104 int el = arm_current_el(env);
2105 bool secure = arm_is_secure_below_el3(env);
2106
2107 switch (ri->opc2 & 6) {
2108 case 0:
2109 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2110 switch (el) {
2111 case 3:
2112 mmu_idx = ARMMMUIdx_S1E3;
2113 break;
2114 case 2:
2115 mmu_idx = ARMMMUIdx_S1NSE1;
2116 break;
2117 case 1:
2118 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2119 break;
2120 default:
2121 g_assert_not_reached();
2122 }
2123 break;
2124 case 2:
2125 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2126 switch (el) {
2127 case 3:
2128 mmu_idx = ARMMMUIdx_S1SE0;
2129 break;
2130 case 2:
2131 mmu_idx = ARMMMUIdx_S1NSE0;
2132 break;
2133 case 1:
2134 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2135 break;
2136 default:
2137 g_assert_not_reached();
2138 }
2139 break;
2140 case 4:
2141 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2142 mmu_idx = ARMMMUIdx_S12NSE1;
2143 break;
2144 case 6:
2145 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2146 mmu_idx = ARMMMUIdx_S12NSE0;
2147 break;
2148 default:
2149 g_assert_not_reached();
2150 }
2151
2152 par64 = do_ats_write(env, value, access_type, mmu_idx);
2153
2154 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2155 }
2156
2157 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2158 uint64_t value)
2159 {
2160 int access_type = ri->opc2 & 1;
2161 uint64_t par64;
2162
2163 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2164
2165 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2166 }
2167
2168 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2169 bool isread)
2170 {
2171 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2172 return CP_ACCESS_TRAP;
2173 }
2174 return CP_ACCESS_OK;
2175 }
2176
2177 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2178 uint64_t value)
2179 {
2180 int access_type = ri->opc2 & 1;
2181 ARMMMUIdx mmu_idx;
2182 int secure = arm_is_secure_below_el3(env);
2183
2184 switch (ri->opc2 & 6) {
2185 case 0:
2186 switch (ri->opc1) {
2187 case 0: /* AT S1E1R, AT S1E1W */
2188 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2189 break;
2190 case 4: /* AT S1E2R, AT S1E2W */
2191 mmu_idx = ARMMMUIdx_S1E2;
2192 break;
2193 case 6: /* AT S1E3R, AT S1E3W */
2194 mmu_idx = ARMMMUIdx_S1E3;
2195 break;
2196 default:
2197 g_assert_not_reached();
2198 }
2199 break;
2200 case 2: /* AT S1E0R, AT S1E0W */
2201 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2202 break;
2203 case 4: /* AT S12E1R, AT S12E1W */
2204 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2205 break;
2206 case 6: /* AT S12E0R, AT S12E0W */
2207 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2208 break;
2209 default:
2210 g_assert_not_reached();
2211 }
2212
2213 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2214 }
2215 #endif
2216
2217 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2218 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2219 .access = PL1_RW, .resetvalue = 0,
2220 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2221 offsetoflow32(CPUARMState, cp15.par_ns) },
2222 .writefn = par_write },
2223 #ifndef CONFIG_USER_ONLY
2224 /* This underdecoding is safe because the reginfo is NO_RAW. */
2225 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2226 .access = PL1_W, .accessfn = ats_access,
2227 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2228 #endif
2229 REGINFO_SENTINEL
2230 };
2231
2232 /* Return basic MPU access permission bits. */
2233 static uint32_t simple_mpu_ap_bits(uint32_t val)
2234 {
2235 uint32_t ret;
2236 uint32_t mask;
2237 int i;
2238 ret = 0;
2239 mask = 3;
2240 for (i = 0; i < 16; i += 2) {
2241 ret |= (val >> i) & mask;
2242 mask <<= 2;
2243 }
2244 return ret;
2245 }
2246
2247 /* Pad basic MPU access permission bits to extended format. */
2248 static uint32_t extended_mpu_ap_bits(uint32_t val)
2249 {
2250 uint32_t ret;
2251 uint32_t mask;
2252 int i;
2253 ret = 0;
2254 mask = 3;
2255 for (i = 0; i < 16; i += 2) {
2256 ret |= (val & mask) << i;
2257 mask <<= 2;
2258 }
2259 return ret;
2260 }
2261
2262 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2263 uint64_t value)
2264 {
2265 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2266 }
2267
2268 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2269 {
2270 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2271 }
2272
2273 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2274 uint64_t value)
2275 {
2276 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2277 }
2278
2279 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2280 {
2281 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2282 }
2283
2284 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2285 {
2286 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2287
2288 if (!u32p) {
2289 return 0;
2290 }
2291
2292 u32p += env->cp15.c6_rgnr;
2293 return *u32p;
2294 }
2295
2296 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2297 uint64_t value)
2298 {
2299 ARMCPU *cpu = arm_env_get_cpu(env);
2300 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2301
2302 if (!u32p) {
2303 return;
2304 }
2305
2306 u32p += env->cp15.c6_rgnr;
2307 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2308 *u32p = value;
2309 }
2310
2311 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2312 {
2313 ARMCPU *cpu = arm_env_get_cpu(env);
2314 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2315
2316 if (!u32p) {
2317 return;
2318 }
2319
2320 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2321 }
2322
2323 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2324 uint64_t value)
2325 {
2326 ARMCPU *cpu = arm_env_get_cpu(env);
2327 uint32_t nrgs = cpu->pmsav7_dregion;
2328
2329 if (value >= nrgs) {
2330 qemu_log_mask(LOG_GUEST_ERROR,
2331 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2332 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2333 return;
2334 }
2335
2336 raw_write(env, ri, value);
2337 }
2338
2339 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2340 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2341 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2342 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2343 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2344 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2345 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2346 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2347 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2348 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2349 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2350 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2351 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2352 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2353 .access = PL1_RW,
2354 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2355 .writefn = pmsav7_rgnr_write },
2356 REGINFO_SENTINEL
2357 };
2358
2359 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2360 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2361 .access = PL1_RW, .type = ARM_CP_ALIAS,
2362 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2363 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2364 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2365 .access = PL1_RW, .type = ARM_CP_ALIAS,
2366 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2367 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2368 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2369 .access = PL1_RW,
2370 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2371 .resetvalue = 0, },
2372 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2373 .access = PL1_RW,
2374 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2375 .resetvalue = 0, },
2376 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2377 .access = PL1_RW,
2378 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2379 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2380 .access = PL1_RW,
2381 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2382 /* Protection region base and size registers */
2383 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2384 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2385 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2386 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2387 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2388 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2389 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2390 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2391 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2392 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2393 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2394 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2395 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2396 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2398 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2399 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2400 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2401 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2402 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2403 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2404 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2405 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2406 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2407 REGINFO_SENTINEL
2408 };
2409
2410 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2411 uint64_t value)
2412 {
2413 TCR *tcr = raw_ptr(env, ri);
2414 int maskshift = extract32(value, 0, 3);
2415
2416 if (!arm_feature(env, ARM_FEATURE_V8)) {
2417 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2418 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2419 * using Long-desciptor translation table format */
2420 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2421 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2422 /* In an implementation that includes the Security Extensions
2423 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2424 * Short-descriptor translation table format.
2425 */
2426 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2427 } else {
2428 value &= TTBCR_N;
2429 }
2430 }
2431
2432 /* Update the masks corresponding to the TCR bank being written
2433 * Note that we always calculate mask and base_mask, but
2434 * they are only used for short-descriptor tables (ie if EAE is 0);
2435 * for long-descriptor tables the TCR fields are used differently
2436 * and the mask and base_mask values are meaningless.
2437 */
2438 tcr->raw_tcr = value;
2439 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2440 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2441 }
2442
2443 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2444 uint64_t value)
2445 {
2446 ARMCPU *cpu = arm_env_get_cpu(env);
2447
2448 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2449 /* With LPAE the TTBCR could result in a change of ASID
2450 * via the TTBCR.A1 bit, so do a TLB flush.
2451 */
2452 tlb_flush(CPU(cpu), 1);
2453 }
2454 vmsa_ttbcr_raw_write(env, ri, value);
2455 }
2456
2457 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2458 {
2459 TCR *tcr = raw_ptr(env, ri);
2460
2461 /* Reset both the TCR as well as the masks corresponding to the bank of
2462 * the TCR being reset.
2463 */
2464 tcr->raw_tcr = 0;
2465 tcr->mask = 0;
2466 tcr->base_mask = 0xffffc000u;
2467 }
2468
2469 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2470 uint64_t value)
2471 {
2472 ARMCPU *cpu = arm_env_get_cpu(env);
2473 TCR *tcr = raw_ptr(env, ri);
2474
2475 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2476 tlb_flush(CPU(cpu), 1);
2477 tcr->raw_tcr = value;
2478 }
2479
2480 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481 uint64_t value)
2482 {
2483 /* 64 bit accesses to the TTBRs can change the ASID and so we
2484 * must flush the TLB.
2485 */
2486 if (cpreg_field_is_64bit(ri)) {
2487 ARMCPU *cpu = arm_env_get_cpu(env);
2488
2489 tlb_flush(CPU(cpu), 1);
2490 }
2491 raw_write(env, ri, value);
2492 }
2493
2494 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2495 uint64_t value)
2496 {
2497 ARMCPU *cpu = arm_env_get_cpu(env);
2498 CPUState *cs = CPU(cpu);
2499
2500 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2501 if (raw_read(env, ri) != value) {
2502 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2503 ARMMMUIdx_S2NS, -1);
2504 raw_write(env, ri, value);
2505 }
2506 }
2507
2508 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2509 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2510 .access = PL1_RW, .type = ARM_CP_ALIAS,
2511 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2512 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2513 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2514 .access = PL1_RW, .resetvalue = 0,
2515 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2516 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2517 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2518 .access = PL1_RW, .resetvalue = 0,
2519 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2520 offsetof(CPUARMState, cp15.dfar_ns) } },
2521 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2522 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2523 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2524 .resetvalue = 0, },
2525 REGINFO_SENTINEL
2526 };
2527
2528 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2529 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2530 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2531 .access = PL1_RW,
2532 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2533 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2534 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2535 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2536 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2537 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2538 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2539 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2540 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2541 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2542 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2543 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2544 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2545 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2546 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2547 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2548 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2549 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2550 .raw_writefn = vmsa_ttbcr_raw_write,
2551 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2552 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2553 REGINFO_SENTINEL
2554 };
2555
2556 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557 uint64_t value)
2558 {
2559 env->cp15.c15_ticonfig = value & 0xe7;
2560 /* The OS_TYPE bit in this register changes the reported CPUID! */
2561 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2562 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2563 }
2564
2565 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2567 {
2568 env->cp15.c15_threadid = value & 0xffff;
2569 }
2570
2571 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572 uint64_t value)
2573 {
2574 /* Wait-for-interrupt (deprecated) */
2575 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2576 }
2577
2578 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2579 uint64_t value)
2580 {
2581 /* On OMAP there are registers indicating the max/min index of dcache lines
2582 * containing a dirty line; cache flush operations have to reset these.
2583 */
2584 env->cp15.c15_i_max = 0x000;
2585 env->cp15.c15_i_min = 0xff0;
2586 }
2587
2588 static const ARMCPRegInfo omap_cp_reginfo[] = {
2589 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2590 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2591 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2592 .resetvalue = 0, },
2593 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2594 .access = PL1_RW, .type = ARM_CP_NOP },
2595 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2596 .access = PL1_RW,
2597 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2598 .writefn = omap_ticonfig_write },
2599 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2600 .access = PL1_RW,
2601 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2602 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2603 .access = PL1_RW, .resetvalue = 0xff0,
2604 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2605 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2606 .access = PL1_RW,
2607 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2608 .writefn = omap_threadid_write },
2609 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2610 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2611 .type = ARM_CP_NO_RAW,
2612 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2613 /* TODO: Peripheral port remap register:
2614 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2615 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2616 * when MMU is off.
2617 */
2618 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2619 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2620 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2621 .writefn = omap_cachemaint_write },
2622 { .name = "C9", .cp = 15, .crn = 9,
2623 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2624 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2625 REGINFO_SENTINEL
2626 };
2627
2628 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2629 uint64_t value)
2630 {
2631 env->cp15.c15_cpar = value & 0x3fff;
2632 }
2633
2634 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2635 { .name = "XSCALE_CPAR",
2636 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2637 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2638 .writefn = xscale_cpar_write, },
2639 { .name = "XSCALE_AUXCR",
2640 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2641 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2642 .resetvalue = 0, },
2643 /* XScale specific cache-lockdown: since we have no cache we NOP these
2644 * and hope the guest does not really rely on cache behaviour.
2645 */
2646 { .name = "XSCALE_LOCK_ICACHE_LINE",
2647 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2648 .access = PL1_W, .type = ARM_CP_NOP },
2649 { .name = "XSCALE_UNLOCK_ICACHE",
2650 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2651 .access = PL1_W, .type = ARM_CP_NOP },
2652 { .name = "XSCALE_DCACHE_LOCK",
2653 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2654 .access = PL1_RW, .type = ARM_CP_NOP },
2655 { .name = "XSCALE_UNLOCK_DCACHE",
2656 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2657 .access = PL1_W, .type = ARM_CP_NOP },
2658 REGINFO_SENTINEL
2659 };
2660
2661 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2662 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2663 * implementation of this implementation-defined space.
2664 * Ideally this should eventually disappear in favour of actually
2665 * implementing the correct behaviour for all cores.
2666 */
2667 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2668 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2669 .access = PL1_RW,
2670 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2671 .resetvalue = 0 },
2672 REGINFO_SENTINEL
2673 };
2674
2675 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2676 /* Cache status: RAZ because we have no cache so it's always clean */
2677 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2678 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2679 .resetvalue = 0 },
2680 REGINFO_SENTINEL
2681 };
2682
2683 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2684 /* We never have a a block transfer operation in progress */
2685 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2686 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2687 .resetvalue = 0 },
2688 /* The cache ops themselves: these all NOP for QEMU */
2689 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2690 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2691 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2692 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2693 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2694 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2695 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2696 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2697 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2698 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2699 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2700 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2701 REGINFO_SENTINEL
2702 };
2703
2704 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2705 /* The cache test-and-clean instructions always return (1 << 30)
2706 * to indicate that there are no dirty cache lines.
2707 */
2708 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2709 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2710 .resetvalue = (1 << 30) },
2711 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2712 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2713 .resetvalue = (1 << 30) },
2714 REGINFO_SENTINEL
2715 };
2716
2717 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2718 /* Ignore ReadBuffer accesses */
2719 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2720 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2721 .access = PL1_RW, .resetvalue = 0,
2722 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2723 REGINFO_SENTINEL
2724 };
2725
2726 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2727 {
2728 ARMCPU *cpu = arm_env_get_cpu(env);
2729 unsigned int cur_el = arm_current_el(env);
2730 bool secure = arm_is_secure(env);
2731
2732 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2733 return env->cp15.vpidr_el2;
2734 }
2735 return raw_read(env, ri);
2736 }
2737
2738 static uint64_t mpidr_read_val(CPUARMState *env)
2739 {
2740 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2741 uint64_t mpidr = cpu->mp_affinity;
2742
2743 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2744 mpidr |= (1U << 31);
2745 /* Cores which are uniprocessor (non-coherent)
2746 * but still implement the MP extensions set
2747 * bit 30. (For instance, Cortex-R5).
2748 */
2749 if (cpu->mp_is_up) {
2750 mpidr |= (1u << 30);
2751 }
2752 }
2753 return mpidr;
2754 }
2755
2756 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2757 {
2758 unsigned int cur_el = arm_current_el(env);
2759 bool secure = arm_is_secure(env);
2760
2761 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2762 return env->cp15.vmpidr_el2;
2763 }
2764 return mpidr_read_val(env);
2765 }
2766
2767 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2768 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2769 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2770 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2771 REGINFO_SENTINEL
2772 };
2773
2774 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2775 /* NOP AMAIR0/1 */
2776 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2777 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2778 .access = PL1_RW, .type = ARM_CP_CONST,
2779 .resetvalue = 0 },
2780 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2781 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2782 .access = PL1_RW, .type = ARM_CP_CONST,
2783 .resetvalue = 0 },
2784 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2785 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2786 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2787 offsetof(CPUARMState, cp15.par_ns)} },
2788 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2789 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2791 offsetof(CPUARMState, cp15.ttbr0_ns) },
2792 .writefn = vmsa_ttbr_write, },
2793 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2794 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2796 offsetof(CPUARMState, cp15.ttbr1_ns) },
2797 .writefn = vmsa_ttbr_write, },
2798 REGINFO_SENTINEL
2799 };
2800
2801 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2802 {
2803 return vfp_get_fpcr(env);
2804 }
2805
2806 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807 uint64_t value)
2808 {
2809 vfp_set_fpcr(env, value);
2810 }
2811
2812 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2813 {
2814 return vfp_get_fpsr(env);
2815 }
2816
2817 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2818 uint64_t value)
2819 {
2820 vfp_set_fpsr(env, value);
2821 }
2822
2823 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2824 bool isread)
2825 {
2826 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2827 return CP_ACCESS_TRAP;
2828 }
2829 return CP_ACCESS_OK;
2830 }
2831
2832 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2833 uint64_t value)
2834 {
2835 env->daif = value & PSTATE_DAIF;
2836 }
2837
2838 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2839 const ARMCPRegInfo *ri,
2840 bool isread)
2841 {
2842 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2843 * SCTLR_EL1.UCI is set.
2844 */
2845 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2846 return CP_ACCESS_TRAP;
2847 }
2848 return CP_ACCESS_OK;
2849 }
2850
2851 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2852 * Page D4-1736 (DDI0487A.b)
2853 */
2854
2855 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2857 {
2858 ARMCPU *cpu = arm_env_get_cpu(env);
2859 CPUState *cs = CPU(cpu);
2860
2861 if (arm_is_secure_below_el3(env)) {
2862 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2863 } else {
2864 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2865 }
2866 }
2867
2868 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869 uint64_t value)
2870 {
2871 bool sec = arm_is_secure_below_el3(env);
2872 CPUState *other_cs;
2873
2874 CPU_FOREACH(other_cs) {
2875 if (sec) {
2876 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2877 } else {
2878 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2879 ARMMMUIdx_S12NSE0, -1);
2880 }
2881 }
2882 }
2883
2884 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2885 uint64_t value)
2886 {
2887 /* Note that the 'ALL' scope must invalidate both stage 1 and
2888 * stage 2 translations, whereas most other scopes only invalidate
2889 * stage 1 translations.
2890 */
2891 ARMCPU *cpu = arm_env_get_cpu(env);
2892 CPUState *cs = CPU(cpu);
2893
2894 if (arm_is_secure_below_el3(env)) {
2895 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2896 } else {
2897 if (arm_feature(env, ARM_FEATURE_EL2)) {
2898 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2899 ARMMMUIdx_S2NS, -1);
2900 } else {
2901 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2902 }
2903 }
2904 }
2905
2906 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 uint64_t value)
2908 {
2909 ARMCPU *cpu = arm_env_get_cpu(env);
2910 CPUState *cs = CPU(cpu);
2911
2912 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2913 }
2914
2915 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2917 {
2918 ARMCPU *cpu = arm_env_get_cpu(env);
2919 CPUState *cs = CPU(cpu);
2920
2921 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2922 }
2923
2924 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2925 uint64_t value)
2926 {
2927 /* Note that the 'ALL' scope must invalidate both stage 1 and
2928 * stage 2 translations, whereas most other scopes only invalidate
2929 * stage 1 translations.
2930 */
2931 bool sec = arm_is_secure_below_el3(env);
2932 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2933 CPUState *other_cs;
2934
2935 CPU_FOREACH(other_cs) {
2936 if (sec) {
2937 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2938 } else if (has_el2) {
2939 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2940 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2941 } else {
2942 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2943 ARMMMUIdx_S12NSE0, -1);
2944 }
2945 }
2946 }
2947
2948 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2950 {
2951 CPUState *other_cs;
2952
2953 CPU_FOREACH(other_cs) {
2954 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2955 }
2956 }
2957
2958 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2959 uint64_t value)
2960 {
2961 CPUState *other_cs;
2962
2963 CPU_FOREACH(other_cs) {
2964 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2965 }
2966 }
2967
2968 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2969 uint64_t value)
2970 {
2971 /* Invalidate by VA, EL1&0 (AArch64 version).
2972 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2973 * since we don't support flush-for-specific-ASID-only or
2974 * flush-last-level-only.
2975 */
2976 ARMCPU *cpu = arm_env_get_cpu(env);
2977 CPUState *cs = CPU(cpu);
2978 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2979
2980 if (arm_is_secure_below_el3(env)) {
2981 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2982 ARMMMUIdx_S1SE0, -1);
2983 } else {
2984 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2985 ARMMMUIdx_S12NSE0, -1);
2986 }
2987 }
2988
2989 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2990 uint64_t value)
2991 {
2992 /* Invalidate by VA, EL2
2993 * Currently handles both VAE2 and VALE2, since we don't support
2994 * flush-last-level-only.
2995 */
2996 ARMCPU *cpu = arm_env_get_cpu(env);
2997 CPUState *cs = CPU(cpu);
2998 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2999
3000 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
3001 }
3002
3003 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3004 uint64_t value)
3005 {
3006 /* Invalidate by VA, EL3
3007 * Currently handles both VAE3 and VALE3, since we don't support
3008 * flush-last-level-only.
3009 */
3010 ARMCPU *cpu = arm_env_get_cpu(env);
3011 CPUState *cs = CPU(cpu);
3012 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3013
3014 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
3015 }
3016
3017 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3018 uint64_t value)
3019 {
3020 bool sec = arm_is_secure_below_el3(env);
3021 CPUState *other_cs;
3022 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3023
3024 CPU_FOREACH(other_cs) {
3025 if (sec) {
3026 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
3027 ARMMMUIdx_S1SE0, -1);
3028 } else {
3029 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
3030 ARMMMUIdx_S12NSE0, -1);
3031 }
3032 }
3033 }
3034
3035 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3037 {
3038 CPUState *other_cs;
3039 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3040
3041 CPU_FOREACH(other_cs) {
3042 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3043 }
3044 }
3045
3046 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3048 {
3049 CPUState *other_cs;
3050 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3051
3052 CPU_FOREACH(other_cs) {
3053 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
3054 }
3055 }
3056
3057 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3058 uint64_t value)
3059 {
3060 /* Invalidate by IPA. This has to invalidate any structures that
3061 * contain only stage 2 translation information, but does not need
3062 * to apply to structures that contain combined stage 1 and stage 2
3063 * translation information.
3064 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3065 */
3066 ARMCPU *cpu = arm_env_get_cpu(env);
3067 CPUState *cs = CPU(cpu);
3068 uint64_t pageaddr;
3069
3070 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3071 return;
3072 }
3073
3074 pageaddr = sextract64(value << 12, 0, 48);
3075
3076 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
3077 }
3078
3079 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3080 uint64_t value)
3081 {
3082 CPUState *other_cs;
3083 uint64_t pageaddr;
3084
3085 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3086 return;
3087 }
3088
3089 pageaddr = sextract64(value << 12, 0, 48);
3090
3091 CPU_FOREACH(other_cs) {
3092 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
3093 }
3094 }
3095
3096 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3097 bool isread)
3098 {
3099 /* We don't implement EL2, so the only control on DC ZVA is the
3100 * bit in the SCTLR which can prohibit access for EL0.
3101 */
3102 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3103 return CP_ACCESS_TRAP;
3104 }
3105 return CP_ACCESS_OK;
3106 }
3107
3108 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3109 {
3110 ARMCPU *cpu = arm_env_get_cpu(env);
3111 int dzp_bit = 1 << 4;
3112
3113 /* DZP indicates whether DC ZVA access is allowed */
3114 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3115 dzp_bit = 0;
3116 }
3117 return cpu->dcz_blocksize | dzp_bit;
3118 }
3119
3120 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3121 bool isread)
3122 {
3123 if (!(env->pstate & PSTATE_SP)) {
3124 /* Access to SP_EL0 is undefined if it's being used as
3125 * the stack pointer.
3126 */
3127 return CP_ACCESS_TRAP_UNCATEGORIZED;
3128 }
3129 return CP_ACCESS_OK;
3130 }
3131
3132 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3133 {
3134 return env->pstate & PSTATE_SP;
3135 }
3136
3137 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3138 {
3139 update_spsel(env, val);
3140 }
3141
3142 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3143 uint64_t value)
3144 {
3145 ARMCPU *cpu = arm_env_get_cpu(env);
3146
3147 if (raw_read(env, ri) == value) {
3148 /* Skip the TLB flush if nothing actually changed; Linux likes
3149 * to do a lot of pointless SCTLR writes.
3150 */
3151 return;
3152 }
3153
3154 raw_write(env, ri, value);
3155 /* ??? Lots of these bits are not implemented. */
3156 /* This may enable/disable the MMU, so do a TLB flush. */
3157 tlb_flush(CPU(cpu), 1);
3158 }
3159
3160 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3161 bool isread)
3162 {
3163 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3164 return CP_ACCESS_TRAP_FP_EL2;
3165 }
3166 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3167 return CP_ACCESS_TRAP_FP_EL3;
3168 }
3169 return CP_ACCESS_OK;
3170 }
3171
3172 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173 uint64_t value)
3174 {
3175 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3176 }
3177
3178 static const ARMCPRegInfo v8_cp_reginfo[] = {
3179 /* Minimal set of EL0-visible registers. This will need to be expanded
3180 * significantly for system emulation of AArch64 CPUs.
3181 */
3182 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3183 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3184 .access = PL0_RW, .type = ARM_CP_NZCV },
3185 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3187 .type = ARM_CP_NO_RAW,
3188 .access = PL0_RW, .accessfn = aa64_daif_access,
3189 .fieldoffset = offsetof(CPUARMState, daif),
3190 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3191 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3193 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3194 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3195 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3196 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3197 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3198 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3199 .access = PL0_R, .type = ARM_CP_NO_RAW,
3200 .readfn = aa64_dczid_read },
3201 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3203 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3204 #ifndef CONFIG_USER_ONLY
3205 /* Avoid overhead of an access check that always passes in user-mode */
3206 .accessfn = aa64_zva_access,
3207 #endif
3208 },
3209 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3210 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3211 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3212 /* Cache ops: all NOPs since we don't emulate caches */
3213 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3215 .access = PL1_W, .type = ARM_CP_NOP },
3216 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3218 .access = PL1_W, .type = ARM_CP_NOP },
3219 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3220 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3221 .access = PL0_W, .type = ARM_CP_NOP,
3222 .accessfn = aa64_cacheop_access },
3223 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3224 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3225 .access = PL1_W, .type = ARM_CP_NOP },
3226 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3228 .access = PL1_W, .type = ARM_CP_NOP },
3229 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3230 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3231 .access = PL0_W, .type = ARM_CP_NOP,
3232 .accessfn = aa64_cacheop_access },
3233 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3235 .access = PL1_W, .type = ARM_CP_NOP },
3236 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3238 .access = PL0_W, .type = ARM_CP_NOP,
3239 .accessfn = aa64_cacheop_access },
3240 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3241 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3242 .access = PL0_W, .type = ARM_CP_NOP,
3243 .accessfn = aa64_cacheop_access },
3244 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3245 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3246 .access = PL1_W, .type = ARM_CP_NOP },
3247 /* TLBI operations */
3248 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3250 .access = PL1_W, .type = ARM_CP_NO_RAW,
3251 .writefn = tlbi_aa64_vmalle1is_write },
3252 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3253 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3254 .access = PL1_W, .type = ARM_CP_NO_RAW,
3255 .writefn = tlbi_aa64_vae1is_write },
3256 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3257 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3258 .access = PL1_W, .type = ARM_CP_NO_RAW,
3259 .writefn = tlbi_aa64_vmalle1is_write },
3260 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3261 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3262 .access = PL1_W, .type = ARM_CP_NO_RAW,
3263 .writefn = tlbi_aa64_vae1is_write },
3264 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3265 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3266 .access = PL1_W, .type = ARM_CP_NO_RAW,
3267 .writefn = tlbi_aa64_vae1is_write },
3268 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3269 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3270 .access = PL1_W, .type = ARM_CP_NO_RAW,
3271 .writefn = tlbi_aa64_vae1is_write },
3272 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3273 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3274 .access = PL1_W, .type = ARM_CP_NO_RAW,
3275 .writefn = tlbi_aa64_vmalle1_write },
3276 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3277 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3278 .access = PL1_W, .type = ARM_CP_NO_RAW,
3279 .writefn = tlbi_aa64_vae1_write },
3280 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3281 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3282 .access = PL1_W, .type = ARM_CP_NO_RAW,
3283 .writefn = tlbi_aa64_vmalle1_write },
3284 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3285 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3286 .access = PL1_W, .type = ARM_CP_NO_RAW,
3287 .writefn = tlbi_aa64_vae1_write },
3288 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3289 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3290 .access = PL1_W, .type = ARM_CP_NO_RAW,
3291 .writefn = tlbi_aa64_vae1_write },
3292 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3294 .access = PL1_W, .type = ARM_CP_NO_RAW,
3295 .writefn = tlbi_aa64_vae1_write },
3296 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3297 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3298 .access = PL2_W, .type = ARM_CP_NO_RAW,
3299 .writefn = tlbi_aa64_ipas2e1is_write },
3300 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3302 .access = PL2_W, .type = ARM_CP_NO_RAW,
3303 .writefn = tlbi_aa64_ipas2e1is_write },
3304 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3306 .access = PL2_W, .type = ARM_CP_NO_RAW,
3307 .writefn = tlbi_aa64_alle1is_write },
3308 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3310 .access = PL2_W, .type = ARM_CP_NO_RAW,
3311 .writefn = tlbi_aa64_alle1is_write },
3312 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3314 .access = PL2_W, .type = ARM_CP_NO_RAW,
3315 .writefn = tlbi_aa64_ipas2e1_write },
3316 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3317 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3318 .access = PL2_W, .type = ARM_CP_NO_RAW,
3319 .writefn = tlbi_aa64_ipas2e1_write },
3320 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3322 .access = PL2_W, .type = ARM_CP_NO_RAW,
3323 .writefn = tlbi_aa64_alle1_write },
3324 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3326 .access = PL2_W, .type = ARM_CP_NO_RAW,
3327 .writefn = tlbi_aa64_alle1is_write },
3328 #ifndef CONFIG_USER_ONLY
3329 /* 64 bit address translation operations */
3330 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3332 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3333 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3335 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3336 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3338 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3339 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3341 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3342 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3343 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3344 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3345 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3347 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3348 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3350 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3351 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3352 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3353 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3354 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3355 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3357 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3358 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3359 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3360 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3361 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3362 .type = ARM_CP_ALIAS,
3363 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3364 .access = PL1_RW, .resetvalue = 0,
3365 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3366 .writefn = par_write },
3367 #endif
3368 /* TLB invalidate last level of translation table walk */
3369 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3370 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3371 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3372 .type = ARM_CP_NO_RAW, .access = PL1_W,
3373 .writefn = tlbimvaa_is_write },
3374 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3375 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3376 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3377 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3378 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3379 .type = ARM_CP_NO_RAW, .access = PL2_W,
3380 .writefn = tlbimva_hyp_write },
3381 { .name = "TLBIMVALHIS",
3382 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3383 .type = ARM_CP_NO_RAW, .access = PL2_W,
3384 .writefn = tlbimva_hyp_is_write },
3385 { .name = "TLBIIPAS2",
3386 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3387 .type = ARM_CP_NO_RAW, .access = PL2_W,
3388 .writefn = tlbiipas2_write },
3389 { .name = "TLBIIPAS2IS",
3390 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3391 .type = ARM_CP_NO_RAW, .access = PL2_W,
3392 .writefn = tlbiipas2_is_write },
3393 { .name = "TLBIIPAS2L",
3394 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3395 .type = ARM_CP_NO_RAW, .access = PL2_W,
3396 .writefn = tlbiipas2_write },
3397 { .name = "TLBIIPAS2LIS",
3398 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3399 .type = ARM_CP_NO_RAW, .access = PL2_W,
3400 .writefn = tlbiipas2_is_write },
3401 /* 32 bit cache operations */
3402 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3403 .type = ARM_CP_NOP, .access = PL1_W },
3404 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3405 .type = ARM_CP_NOP, .access = PL1_W },
3406 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3407 .type = ARM_CP_NOP, .access = PL1_W },
3408 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3409 .type = ARM_CP_NOP, .access = PL1_W },
3410 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3411 .type = ARM_CP_NOP, .access = PL1_W },
3412 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3413 .type = ARM_CP_NOP, .access = PL1_W },
3414 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3415 .type = ARM_CP_NOP, .access = PL1_W },
3416 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3417 .type = ARM_CP_NOP, .access = PL1_W },
3418 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3419 .type = ARM_CP_NOP, .access = PL1_W },
3420 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3421 .type = ARM_CP_NOP, .access = PL1_W },
3422 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3423 .type = ARM_CP_NOP, .access = PL1_W },
3424 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3425 .type = ARM_CP_NOP, .access = PL1_W },
3426 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3427 .type = ARM_CP_NOP, .access = PL1_W },
3428 /* MMU Domain access control / MPU write buffer control */
3429 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3430 .access = PL1_RW, .resetvalue = 0,
3431 .writefn = dacr_write, .raw_writefn = raw_write,
3432 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3433 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3434 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3435 .type = ARM_CP_ALIAS,
3436 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3437 .access = PL1_RW,
3438 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3439 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3440 .type = ARM_CP_ALIAS,
3441 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3442 .access = PL1_RW,
3443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3444 /* We rely on the access checks not allowing the guest to write to the
3445 * state field when SPSel indicates that it's being used as the stack
3446 * pointer.
3447 */
3448 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3450 .access = PL1_RW, .accessfn = sp_el0_access,
3451 .type = ARM_CP_ALIAS,
3452 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3453 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3455 .access = PL2_RW, .type = ARM_CP_ALIAS,
3456 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3457 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3459 .type = ARM_CP_NO_RAW,
3460 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3461 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3463 .type = ARM_CP_ALIAS,
3464 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3465 .access = PL2_RW, .accessfn = fpexc32_access },
3466 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3468 .access = PL2_RW, .resetvalue = 0,
3469 .writefn = dacr_write, .raw_writefn = raw_write,
3470 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3471 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3472 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3473 .access = PL2_RW, .resetvalue = 0,
3474 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3475 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3476 .type = ARM_CP_ALIAS,
3477 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3478 .access = PL2_RW,
3479 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3480 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3481 .type = ARM_CP_ALIAS,
3482 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3483 .access = PL2_RW,
3484 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3485 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3486 .type = ARM_CP_ALIAS,
3487 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3488 .access = PL2_RW,
3489 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3490 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3491 .type = ARM_CP_ALIAS,
3492 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3493 .access = PL2_RW,
3494 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3495 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3496 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3497 .resetvalue = 0,
3498 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3499 { .name = "SDCR", .type = ARM_CP_ALIAS,
3500 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3501 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3502 .writefn = sdcr_write,
3503 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3504 REGINFO_SENTINEL
3505 };
3506
3507 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3508 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3509 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3511 .access = PL2_RW,
3512 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3513 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3514 .type = ARM_CP_NO_RAW,
3515 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3516 .access = PL2_RW,
3517 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3518 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3519 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3520 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3521 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3522 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3523 .access = PL2_RW, .type = ARM_CP_CONST,
3524 .resetvalue = 0 },
3525 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3526 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3527 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3528 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3529 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3530 .access = PL2_RW, .type = ARM_CP_CONST,
3531 .resetvalue = 0 },
3532 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3533 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3534 .access = PL2_RW, .type = ARM_CP_CONST,
3535 .resetvalue = 0 },
3536 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3537 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3538 .access = PL2_RW, .type = ARM_CP_CONST,
3539 .resetvalue = 0 },
3540 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3541 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3542 .access = PL2_RW, .type = ARM_CP_CONST,
3543 .resetvalue = 0 },
3544 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3545 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3547 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3548 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3549 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3550 .type = ARM_CP_CONST, .resetvalue = 0 },
3551 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3552 .cp = 15, .opc1 = 6, .crm = 2,
3553 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3554 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3555 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3557 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3558 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3560 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3561 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3562 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3564 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3566 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3567 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3568 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3569 .resetvalue = 0 },
3570 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3571 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3572 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3573 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3576 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3577 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3578 .resetvalue = 0 },
3579 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3580 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3581 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3582 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3583 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3584 .resetvalue = 0 },
3585 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3586 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3587 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3588 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3589 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3590 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3591 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3592 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3593 .access = PL2_RW, .accessfn = access_tda,
3594 .type = ARM_CP_CONST, .resetvalue = 0 },
3595 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3596 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3597 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3598 .type = ARM_CP_CONST, .resetvalue = 0 },
3599 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3600 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3601 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3602 REGINFO_SENTINEL
3603 };
3604
3605 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3606 {
3607 ARMCPU *cpu = arm_env_get_cpu(env);
3608 uint64_t valid_mask = HCR_MASK;
3609
3610 if (arm_feature(env, ARM_FEATURE_EL3)) {
3611 valid_mask &= ~HCR_HCD;
3612 } else {
3613 valid_mask &= ~HCR_TSC;
3614 }
3615
3616 /* Clear RES0 bits. */
3617 value &= valid_mask;
3618
3619 /* These bits change the MMU setup:
3620 * HCR_VM enables stage 2 translation
3621 * HCR_PTW forbids certain page-table setups
3622 * HCR_DC Disables stage1 and enables stage2 translation
3623 */
3624 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3625 tlb_flush(CPU(cpu), 1);
3626 }
3627 raw_write(env, ri, value);
3628 }
3629
3630 static const ARMCPRegInfo el2_cp_reginfo[] = {
3631 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3632 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3633 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3634 .writefn = hcr_write },
3635 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3636 .type = ARM_CP_ALIAS,
3637 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3638 .access = PL2_RW,
3639 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3640 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3642 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3643 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3644 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3645 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3646 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3647 .type = ARM_CP_ALIAS,
3648 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3649 .access = PL2_RW,
3650 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3651 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3652 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3653 .access = PL2_RW, .writefn = vbar_write,
3654 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3655 .resetvalue = 0 },
3656 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3658 .access = PL3_RW, .type = ARM_CP_ALIAS,
3659 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3660 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3661 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3662 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3663 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3664 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3665 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3666 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3667 .resetvalue = 0 },
3668 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3669 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3670 .access = PL2_RW, .type = ARM_CP_ALIAS,
3671 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3672 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3673 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3674 .access = PL2_RW, .type = ARM_CP_CONST,
3675 .resetvalue = 0 },
3676 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3677 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3678 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3679 .access = PL2_RW, .type = ARM_CP_CONST,
3680 .resetvalue = 0 },
3681 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3682 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3683 .access = PL2_RW, .type = ARM_CP_CONST,
3684 .resetvalue = 0 },
3685 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3686 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3687 .access = PL2_RW, .type = ARM_CP_CONST,
3688 .resetvalue = 0 },
3689 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3690 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3691 .access = PL2_RW,
3692 /* no .writefn needed as this can't cause an ASID change;
3693 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3694 */
3695 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3696 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3697 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3698 .type = ARM_CP_ALIAS,
3699 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3700 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3701 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3702 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3703 .access = PL2_RW,
3704 /* no .writefn needed as this can't cause an ASID change;
3705 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3706 */
3707 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3708 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3709 .cp = 15, .opc1 = 6, .crm = 2,
3710 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3711 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3712 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3713 .writefn = vttbr_write },
3714 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3716 .access = PL2_RW, .writefn = vttbr_write,
3717 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3718 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3719 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3720 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3721 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3722 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3723 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3724 .access = PL2_RW, .resetvalue = 0,
3725 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3726 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3727 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3728 .access = PL2_RW, .resetvalue = 0,
3729 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3730 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3731 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3732 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3733 { .name = "TLBIALLNSNH",
3734 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3735 .type = ARM_CP_NO_RAW, .access = PL2_W,
3736 .writefn = tlbiall_nsnh_write },
3737 { .name = "TLBIALLNSNHIS",
3738 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3739 .type = ARM_CP_NO_RAW, .access = PL2_W,
3740 .writefn = tlbiall_nsnh_is_write },
3741 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3742 .type = ARM_CP_NO_RAW, .access = PL2_W,
3743 .writefn = tlbiall_hyp_write },
3744 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3745 .type = ARM_CP_NO_RAW, .access = PL2_W,
3746 .writefn = tlbiall_hyp_is_write },
3747 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3748 .type = ARM_CP_NO_RAW, .access = PL2_W,
3749 .writefn = tlbimva_hyp_write },
3750 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3751 .type = ARM_CP_NO_RAW, .access = PL2_W,
3752 .writefn = tlbimva_hyp_is_write },
3753 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3754 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3755 .type = ARM_CP_NO_RAW, .access = PL2_W,
3756 .writefn = tlbi_aa64_alle2_write },
3757 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3758 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3759 .type = ARM_CP_NO_RAW, .access = PL2_W,
3760 .writefn = tlbi_aa64_vae2_write },
3761 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3762 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3763 .access = PL2_W, .type = ARM_CP_NO_RAW,
3764 .writefn = tlbi_aa64_vae2_write },
3765 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3767 .access = PL2_W, .type = ARM_CP_NO_RAW,
3768 .writefn = tlbi_aa64_alle2is_write },
3769 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3770 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3771 .type = ARM_CP_NO_RAW, .access = PL2_W,
3772 .writefn = tlbi_aa64_vae2is_write },
3773 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3774 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3775 .access = PL2_W, .type = ARM_CP_NO_RAW,
3776 .writefn = tlbi_aa64_vae2is_write },
3777 #ifndef CONFIG_USER_ONLY
3778 /* Unlike the other EL2-related AT operations, these must
3779 * UNDEF from EL3 if EL2 is not implemented, which is why we
3780 * define them here rather than with the rest of the AT ops.
3781 */
3782 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3783 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3784 .access = PL2_W, .accessfn = at_s1e2_access,
3785 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3786 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3787 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3788 .access = PL2_W, .accessfn = at_s1e2_access,
3789 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3790 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3791 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3792 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3793 * to behave as if SCR.NS was 1.
3794 */
3795 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3796 .access = PL2_W,
3797 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3798 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3799 .access = PL2_W,
3800 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3801 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3802 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3803 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3804 * reset values as IMPDEF. We choose to reset to 3 to comply with
3805 * both ARMv7 and ARMv8.
3806 */
3807 .access = PL2_RW, .resetvalue = 3,
3808 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3809 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3810 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3811 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3812 .writefn = gt_cntvoff_write,
3813 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3814 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3815 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3816 .writefn = gt_cntvoff_write,
3817 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3818 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3819 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3821 .type = ARM_CP_IO, .access = PL2_RW,
3822 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3823 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3824 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3825 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3826 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3827 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3828 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3829 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3830 .resetfn = gt_hyp_timer_reset,
3831 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3832 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3833 .type = ARM_CP_IO,
3834 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3835 .access = PL2_RW,
3836 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3837 .resetvalue = 0,
3838 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3839 #endif
3840 /* The only field of MDCR_EL2 that has a defined architectural reset value
3841 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3842 * don't impelment any PMU event counters, so using zero as a reset
3843 * value for MDCR_EL2 is okay
3844 */
3845 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3846 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3847 .access = PL2_RW, .resetvalue = 0,
3848 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3849 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3850 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3851 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3852 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3853 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3854 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3855 .access = PL2_RW,
3856 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3857 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3858 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3859 .access = PL2_RW,
3860 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3861 REGINFO_SENTINEL
3862 };
3863
3864 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3865 bool isread)
3866 {
3867 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3868 * At Secure EL1 it traps to EL3.
3869 */
3870 if (arm_current_el(env) == 3) {
3871 return CP_ACCESS_OK;
3872 }
3873 if (arm_is_secure_below_el3(env)) {
3874 return CP_ACCESS_TRAP_EL3;
3875 }
3876 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3877 if (isread) {
3878 return CP_ACCESS_OK;
3879 }
3880 return CP_ACCESS_TRAP_UNCATEGORIZED;
3881 }
3882
3883 static const ARMCPRegInfo el3_cp_reginfo[] = {
3884 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3885 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3886 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3887 .resetvalue = 0, .writefn = scr_write },
3888 { .name = "SCR", .type = ARM_CP_ALIAS,
3889 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3890 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3891 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3892 .writefn = scr_write },
3893 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3894 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3895 .access = PL3_RW, .resetvalue = 0,
3896 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3897 { .name = "SDER",
3898 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3899 .access = PL3_RW, .resetvalue = 0,
3900 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3901 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3902 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3903 .writefn = vbar_write, .resetvalue = 0,
3904 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3905 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3906 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3907 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3908 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3909 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3910 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3911 .access = PL3_RW,
3912 /* no .writefn needed as this can't cause an ASID change;
3913 * we must provide a .raw_writefn and .resetfn because we handle
3914 * reset and migration for the AArch32 TTBCR(S), which might be
3915 * using mask and base_mask.
3916 */
3917 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3918 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3919 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3920 .type = ARM_CP_ALIAS,
3921 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3922 .access = PL3_RW,
3923 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3924 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3925 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3926 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3927 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3928 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3929 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3930 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3931 .type = ARM_CP_ALIAS,
3932 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3933 .access = PL3_RW,
3934 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3935 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3936 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3937 .access = PL3_RW, .writefn = vbar_write,
3938 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3939 .resetvalue = 0 },
3940 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3941 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3942 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3943 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3944 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3945 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3946 .access = PL3_RW, .resetvalue = 0,
3947 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3948 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3949 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3950 .access = PL3_RW, .type = ARM_CP_CONST,
3951 .resetvalue = 0 },
3952 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3953 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3954 .access = PL3_RW, .type = ARM_CP_CONST,
3955 .resetvalue = 0 },
3956 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3957 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3958 .access = PL3_RW, .type = ARM_CP_CONST,
3959 .resetvalue = 0 },
3960 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3961 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3962 .access = PL3_W, .type = ARM_CP_NO_RAW,
3963 .writefn = tlbi_aa64_alle3is_write },
3964 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3965 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3966 .access = PL3_W, .type = ARM_CP_NO_RAW,
3967 .writefn = tlbi_aa64_vae3is_write },
3968 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3969 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3970 .access = PL3_W, .type = ARM_CP_NO_RAW,
3971 .writefn = tlbi_aa64_vae3is_write },
3972 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3973 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3974 .access = PL3_W, .type = ARM_CP_NO_RAW,
3975 .writefn = tlbi_aa64_alle3_write },
3976 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3977 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3978 .access = PL3_W, .type = ARM_CP_NO_RAW,
3979 .writefn = tlbi_aa64_vae3_write },
3980 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3982 .access = PL3_W, .type = ARM_CP_NO_RAW,
3983 .writefn = tlbi_aa64_vae3_write },
3984 REGINFO_SENTINEL
3985 };
3986
3987 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3988 bool isread)
3989 {
3990 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3991 * but the AArch32 CTR has its own reginfo struct)
3992 */
3993 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3994 return CP_ACCESS_TRAP;
3995 }
3996 return CP_ACCESS_OK;
3997 }
3998
3999 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4000 uint64_t value)
4001 {
4002 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4003 * read via a bit in OSLSR_EL1.
4004 */
4005 int oslock;
4006
4007 if (ri->state == ARM_CP_STATE_AA32) {
4008 oslock = (value == 0xC5ACCE55);
4009 } else {
4010 oslock = value & 1;
4011 }
4012
4013 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4014 }
4015
4016 static const ARMCPRegInfo debug_cp_reginfo[] = {
4017 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4018 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4019 * unlike DBGDRAR it is never accessible from EL0.
4020 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4021 * accessor.
4022 */
4023 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4024 .access = PL0_R, .accessfn = access_tdra,
4025 .type = ARM_CP_CONST, .resetvalue = 0 },
4026 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4027 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4028 .access = PL1_R, .accessfn = access_tdra,
4029 .type = ARM_CP_CONST, .resetvalue = 0 },
4030 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4031 .access = PL0_R, .accessfn = access_tdra,
4032 .type = ARM_CP_CONST, .resetvalue = 0 },
4033 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4034 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4035 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4036 .access = PL1_RW, .accessfn = access_tda,
4037 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4038 .resetvalue = 0 },
4039 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4040 * We don't implement the configurable EL0 access.
4041 */
4042 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4043 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4044 .type = ARM_CP_ALIAS,
4045 .access = PL1_R, .accessfn = access_tda,
4046 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4047 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4048 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4049 .access = PL1_W, .type = ARM_CP_NO_RAW,
4050 .accessfn = access_tdosa,
4051 .writefn = oslar_write },
4052 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4053 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4054 .access = PL1_R, .resetvalue = 10,
4055 .accessfn = access_tdosa,
4056 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4057 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4058 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4060 .access = PL1_RW, .accessfn = access_tdosa,
4061 .type = ARM_CP_NOP },
4062 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4063 * implement vector catch debug events yet.
4064 */
4065 { .name = "DBGVCR",
4066 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4067 .access = PL1_RW, .accessfn = access_tda,
4068 .type = ARM_CP_NOP },
4069 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4070 * Channel but Linux may try to access this register. The 32-bit
4071 * alias is DBGDCCINT.
4072 */
4073 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4074 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4075 .access = PL1_RW, .accessfn = access_tda,
4076 .type = ARM_CP_NOP },
4077 REGINFO_SENTINEL
4078 };
4079
4080 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4081 /* 64 bit access versions of the (dummy) debug registers */
4082 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4083 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4084 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4085 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4086 REGINFO_SENTINEL
4087 };
4088
4089 void hw_watchpoint_update(ARMCPU *cpu, int n)
4090 {
4091 CPUARMState *env = &cpu->env;
4092 vaddr len = 0;
4093 vaddr wvr = env->cp15.dbgwvr[n];
4094 uint64_t wcr = env->cp15.dbgwcr[n];
4095 int mask;
4096 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4097
4098 if (env->cpu_watchpoint[n]) {
4099 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4100 env->cpu_watchpoint[n] = NULL;
4101 }
4102
4103 if (!extract64(wcr, 0, 1)) {
4104 /* E bit clear : watchpoint disabled */
4105 return;
4106 }
4107
4108 switch (extract64(wcr, 3, 2)) {
4109 case 0:
4110 /* LSC 00 is reserved and must behave as if the wp is disabled */
4111 return;
4112 case 1:
4113 flags |= BP_MEM_READ;
4114 break;
4115 case 2:
4116 flags |= BP_MEM_WRITE;
4117 break;
4118 case 3:
4119 flags |= BP_MEM_ACCESS;
4120 break;
4121 }
4122
4123 /* Attempts to use both MASK and BAS fields simultaneously are
4124 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4125 * thus generating a watchpoint for every byte in the masked region.
4126 */
4127 mask = extract64(wcr, 24, 4);
4128 if (mask == 1 || mask == 2) {
4129 /* Reserved values of MASK; we must act as if the mask value was
4130 * some non-reserved value, or as if the watchpoint were disabled.
4131 * We choose the latter.
4132 */
4133 return;
4134 } else if (mask) {
4135 /* Watchpoint covers an aligned area up to 2GB in size */
4136 len = 1ULL << mask;
4137 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4138 * whether the watchpoint fires when the unmasked bits match; we opt
4139 * to generate the exceptions.
4140 */
4141 wvr &= ~(len - 1);
4142 } else {
4143 /* Watchpoint covers bytes defined by the byte address select bits */
4144 int bas = extract64(wcr, 5, 8);
4145 int basstart;
4146
4147 if (bas == 0) {
4148 /* This must act as if the watchpoint is disabled */
4149 return;
4150 }
4151
4152 if (extract64(wvr, 2, 1)) {
4153 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4154 * ignored, and BAS[3:0] define which bytes to watch.
4155 */
4156 bas &= 0xf;
4157 }
4158 /* The BAS bits are supposed to be programmed to indicate a contiguous
4159 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4160 * we fire for each byte in the word/doubleword addressed by the WVR.
4161 * We choose to ignore any non-zero bits after the first range of 1s.
4162 */
4163 basstart = ctz32(bas);
4164 len = cto32(bas >> basstart);
4165 wvr += basstart;
4166 }
4167
4168 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4169 &env->cpu_watchpoint[n]);
4170 }
4171
4172 void hw_watchpoint_update_all(ARMCPU *cpu)
4173 {
4174 int i;
4175 CPUARMState *env = &cpu->env;
4176
4177 /* Completely clear out existing QEMU watchpoints and our array, to
4178 * avoid possible stale entries following migration load.
4179 */
4180 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4181 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4182
4183 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4184 hw_watchpoint_update(cpu, i);
4185 }
4186 }
4187
4188 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4189 uint64_t value)
4190 {
4191 ARMCPU *cpu = arm_env_get_cpu(env);
4192 int i = ri->crm;
4193
4194 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4195 * register reads and behaves as if values written are sign extended.
4196 * Bits [1:0] are RES0.
4197 */
4198 value = sextract64(value, 0, 49) & ~3ULL;
4199
4200 raw_write(env, ri, value);
4201 hw_watchpoint_update(cpu, i);
4202 }
4203
4204 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4205 uint64_t value)
4206 {
4207 ARMCPU *cpu = arm_env_get_cpu(env);
4208 int i = ri->crm;
4209
4210 raw_write(env, ri, value);
4211 hw_watchpoint_update(cpu, i);
4212 }
4213
4214 void hw_breakpoint_update(ARMCPU *cpu, int n)
4215 {
4216 CPUARMState *env = &cpu->env;
4217 uint64_t bvr = env->cp15.dbgbvr[n];
4218 uint64_t bcr = env->cp15.dbgbcr[n];
4219 vaddr addr;
4220 int bt;
4221 int flags = BP_CPU;
4222
4223 if (env->cpu_breakpoint[n]) {
4224 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4225 env->cpu_breakpoint[n] = NULL;
4226 }
4227
4228 if (!extract64(bcr, 0, 1)) {
4229 /* E bit clear : watchpoint disabled */
4230 return;
4231 }
4232
4233 bt = extract64(bcr, 20, 4);
4234
4235 switch (bt) {
4236 case 4: /* unlinked address mismatch (reserved if AArch64) */
4237 case 5: /* linked address mismatch (reserved if AArch64) */
4238 qemu_log_mask(LOG_UNIMP,
4239 "arm: address mismatch breakpoint types not implemented");
4240 return;
4241 case 0: /* unlinked address match */
4242 case 1: /* linked address match */
4243 {
4244 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4245 * we behave as if the register was sign extended. Bits [1:0] are
4246 * RES0. The BAS field is used to allow setting breakpoints on 16
4247 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4248 * a bp will fire if the addresses covered by the bp and the addresses
4249 * covered by the insn overlap but the insn doesn't start at the
4250 * start of the bp address range. We choose to require the insn and
4251 * the bp to have the same address. The constraints on writing to
4252 * BAS enforced in dbgbcr_write mean we have only four cases:
4253 * 0b0000 => no breakpoint
4254 * 0b0011 => breakpoint on addr
4255 * 0b1100 => breakpoint on addr + 2
4256 * 0b1111 => breakpoint on addr
4257 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4258 */
4259 int bas = extract64(bcr, 5, 4);
4260 addr = sextract64(bvr, 0, 49) & ~3ULL;
4261 if (bas == 0) {
4262 return;
4263 }
4264 if (bas == 0xc) {
4265 addr += 2;
4266 }
4267 break;
4268 }
4269 case 2: /* unlinked context ID match */
4270 case 8: /* unlinked VMID match (reserved if no EL2) */
4271 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4272 qemu_log_mask(LOG_UNIMP,
4273 "arm: unlinked context breakpoint types not implemented");
4274 return;
4275 case 9: /* linked VMID match (reserved if no EL2) */
4276 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4277 case 3: /* linked context ID match */
4278 default:
4279 /* We must generate no events for Linked context matches (unless
4280 * they are linked to by some other bp/wp, which is handled in
4281 * updates for the linking bp/wp). We choose to also generate no events
4282 * for reserved values.
4283 */
4284 return;
4285 }
4286
4287 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4288 }
4289
4290 void hw_breakpoint_update_all(ARMCPU *cpu)
4291 {
4292 int i;
4293 CPUARMState *env = &cpu->env;
4294
4295 /* Completely clear out existing QEMU breakpoints and our array, to
4296 * avoid possible stale entries following migration load.
4297 */
4298 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4299 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4300
4301 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4302 hw_breakpoint_update(cpu, i);
4303 }
4304 }
4305
4306 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4307 uint64_t value)
4308 {
4309 ARMCPU *cpu = arm_env_get_cpu(env);
4310 int i = ri->crm;
4311
4312 raw_write(env, ri, value);
4313 hw_breakpoint_update(cpu, i);
4314 }
4315
4316 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4317 uint64_t value)
4318 {
4319 ARMCPU *cpu = arm_env_get_cpu(env);
4320 int i = ri->crm;
4321
4322 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4323 * copy of BAS[0].
4324 */
4325 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4326 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4327
4328 raw_write(env, ri, value);
4329 hw_breakpoint_update(cpu, i);
4330 }
4331
4332 static void define_debug_regs(ARMCPU *cpu)
4333 {
4334 /* Define v7 and v8 architectural debug registers.
4335 * These are just dummy implementations for now.
4336 */
4337 int i;
4338 int wrps, brps, ctx_cmps;
4339 ARMCPRegInfo dbgdidr = {
4340 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4341 .access = PL0_R, .accessfn = access_tda,
4342 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4343 };
4344
4345 /* Note that all these register fields hold "number of Xs minus 1". */
4346 brps = extract32(cpu->dbgdidr, 24, 4);
4347 wrps = extract32(cpu->dbgdidr, 28, 4);
4348 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4349
4350 assert(ctx_cmps <= brps);
4351
4352 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4353 * of the debug registers such as number of breakpoints;
4354 * check that if they both exist then they agree.
4355 */
4356 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4357 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4358 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4359 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4360 }
4361
4362 define_one_arm_cp_reg(cpu, &dbgdidr);
4363 define_arm_cp_regs(cpu, debug_cp_reginfo);
4364
4365 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4366 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4367 }
4368
4369 for (i = 0; i < brps + 1; i++) {
4370 ARMCPRegInfo dbgregs[] = {
4371 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4372 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4373 .access = PL1_RW, .accessfn = access_tda,
4374 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4375 .writefn = dbgbvr_write, .raw_writefn = raw_write
4376 },
4377 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4378 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4379 .access = PL1_RW, .accessfn = access_tda,
4380 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4381 .writefn = dbgbcr_write, .raw_writefn = raw_write
4382 },
4383 REGINFO_SENTINEL
4384 };
4385 define_arm_cp_regs(cpu, dbgregs);
4386 }
4387
4388 for (i = 0; i < wrps + 1; i++) {
4389 ARMCPRegInfo dbgregs[] = {
4390 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4391 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4392 .access = PL1_RW, .accessfn = access_tda,
4393 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4394 .writefn = dbgwvr_write, .raw_writefn = raw_write
4395 },
4396 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4397 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4398 .access = PL1_RW, .accessfn = access_tda,
4399 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4400 .writefn = dbgwcr_write, .raw_writefn = raw_write
4401 },
4402 REGINFO_SENTINEL
4403 };
4404 define_arm_cp_regs(cpu, dbgregs);
4405 }
4406 }
4407
4408 void register_cp_regs_for_features(ARMCPU *cpu)
4409 {
4410 /* Register all the coprocessor registers based on feature bits */
4411 CPUARMState *env = &cpu->env;
4412 if (arm_feature(env, ARM_FEATURE_M)) {
4413 /* M profile has no coprocessor registers */
4414 return;
4415 }
4416
4417 define_arm_cp_regs(cpu, cp_reginfo);
4418 if (!arm_feature(env, ARM_FEATURE_V8)) {
4419 /* Must go early as it is full of wildcards that may be
4420 * overridden by later definitions.
4421 */
4422 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4423 }
4424
4425 if (arm_feature(env, ARM_FEATURE_V6)) {
4426 /* The ID registers all have impdef reset values */
4427 ARMCPRegInfo v6_idregs[] = {
4428 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4429 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4430 .access = PL1_R, .type = ARM_CP_CONST,
4431 .resetvalue = cpu->id_pfr0 },
4432 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4434 .access = PL1_R, .type = ARM_CP_CONST,
4435 .resetvalue = cpu->id_pfr1 },
4436 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4438 .access = PL1_R, .type = ARM_CP_CONST,
4439 .resetvalue = cpu->id_dfr0 },
4440 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4442 .access = PL1_R, .type = ARM_CP_CONST,
4443 .resetvalue = cpu->id_afr0 },
4444 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4446 .access = PL1_R, .type = ARM_CP_CONST,
4447 .resetvalue = cpu->id_mmfr0 },
4448 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4450 .access = PL1_R, .type = ARM_CP_CONST,
4451 .resetvalue = cpu->id_mmfr1 },
4452 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4453 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4454 .access = PL1_R, .type = ARM_CP_CONST,
4455 .resetvalue = cpu->id_mmfr2 },
4456 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4458 .access = PL1_R, .type = ARM_CP_CONST,
4459 .resetvalue = cpu->id_mmfr3 },
4460 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4462 .access = PL1_R, .type = ARM_CP_CONST,
4463 .resetvalue = cpu->id_isar0 },
4464 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4466 .access = PL1_R, .type = ARM_CP_CONST,
4467 .resetvalue = cpu->id_isar1 },
4468 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4470 .access = PL1_R, .type = ARM_CP_CONST,
4471 .resetvalue = cpu->id_isar2 },
4472 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4473 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4474 .access = PL1_R, .type = ARM_CP_CONST,
4475 .resetvalue = cpu->id_isar3 },
4476 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4478 .access = PL1_R, .type = ARM_CP_CONST,
4479 .resetvalue = cpu->id_isar4 },
4480 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4482 .access = PL1_R, .type = ARM_CP_CONST,
4483 .resetvalue = cpu->id_isar5 },
4484 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4486 .access = PL1_R, .type = ARM_CP_CONST,
4487 .resetvalue = cpu->id_mmfr4 },
4488 /* 7 is as yet unallocated and must RAZ */
4489 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4491 .access = PL1_R, .type = ARM_CP_CONST,
4492 .resetvalue = 0 },
4493 REGINFO_SENTINEL
4494 };
4495 define_arm_cp_regs(cpu, v6_idregs);
4496 define_arm_cp_regs(cpu, v6_cp_reginfo);
4497 } else {
4498 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4499 }
4500 if (arm_feature(env, ARM_FEATURE_V6K)) {
4501 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4502 }
4503 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4504 !arm_feature(env, ARM_FEATURE_MPU)) {
4505 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4506 }
4507 if (arm_feature(env, ARM_FEATURE_V7)) {
4508 /* v7 performance monitor control register: same implementor
4509 * field as main ID register, and we implement only the cycle
4510 * count register.
4511 */
4512 #ifndef CONFIG_USER_ONLY
4513 ARMCPRegInfo pmcr = {
4514 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4515 .access = PL0_RW,
4516 .type = ARM_CP_IO | ARM_CP_ALIAS,
4517 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4518 .accessfn = pmreg_access, .writefn = pmcr_write,
4519 .raw_writefn = raw_write,
4520 };
4521 ARMCPRegInfo pmcr64 = {
4522 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4523 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4524 .access = PL0_RW, .accessfn = pmreg_access,
4525 .type = ARM_CP_IO,
4526 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4527 .resetvalue = cpu->midr & 0xff000000,
4528 .writefn = pmcr_write, .raw_writefn = raw_write,
4529 };
4530 define_one_arm_cp_reg(cpu, &pmcr);
4531 define_one_arm_cp_reg(cpu, &pmcr64);
4532 #endif
4533 ARMCPRegInfo clidr = {
4534 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4535 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4536 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4537 };
4538 define_one_arm_cp_reg(cpu, &clidr);
4539 define_arm_cp_regs(cpu, v7_cp_reginfo);
4540 define_debug_regs(cpu);
4541 } else {
4542 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4543 }
4544 if (arm_feature(env, ARM_FEATURE_V8)) {
4545 /* AArch64 ID registers, which all have impdef reset values.
4546 * Note that within the ID register ranges the unused slots
4547 * must all RAZ, not UNDEF; future architecture versions may
4548 * define new registers here.
4549 */
4550 ARMCPRegInfo v8_idregs[] = {
4551 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4553 .access = PL1_R, .type = ARM_CP_CONST,
4554 .resetvalue = cpu->id_aa64pfr0 },
4555 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4557 .access = PL1_R, .type = ARM_CP_CONST,
4558 .resetvalue = cpu->id_aa64pfr1},
4559 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4561 .access = PL1_R, .type = ARM_CP_CONST,
4562 .resetvalue = 0 },
4563 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4565 .access = PL1_R, .type = ARM_CP_CONST,
4566 .resetvalue = 0 },
4567 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4569 .access = PL1_R, .type = ARM_CP_CONST,
4570 .resetvalue = 0 },
4571 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4573 .access = PL1_R, .type = ARM_CP_CONST,
4574 .resetvalue = 0 },
4575 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4577 .access = PL1_R, .type = ARM_CP_CONST,
4578 .resetvalue = 0 },
4579 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4581 .access = PL1_R, .type = ARM_CP_CONST,
4582 .resetvalue = 0 },
4583 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4585 .access = PL1_R, .type = ARM_CP_CONST,
4586 /* We mask out the PMUVer field, because we don't currently
4587 * implement the PMU. Not advertising it prevents the guest
4588 * from trying to use it and getting UNDEFs on registers we
4589 * don't implement.
4590 */
4591 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4592 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4594 .access = PL1_R, .type = ARM_CP_CONST,
4595 .resetvalue = cpu->id_aa64dfr1 },
4596 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4598 .access = PL1_R, .type = ARM_CP_CONST,
4599 .resetvalue = 0 },
4600 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4601 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4602 .access = PL1_R, .type = ARM_CP_CONST,
4603 .resetvalue = 0 },
4604 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4606 .access = PL1_R, .type = ARM_CP_CONST,
4607 .resetvalue = cpu->id_aa64afr0 },
4608 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4610 .access = PL1_R, .type = ARM_CP_CONST,
4611 .resetvalue = cpu->id_aa64afr1 },
4612 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4614 .access = PL1_R, .type = ARM_CP_CONST,
4615 .resetvalue = 0 },
4616 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4618 .access = PL1_R, .type = ARM_CP_CONST,
4619 .resetvalue = 0 },
4620 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4622 .access = PL1_R, .type = ARM_CP_CONST,
4623 .resetvalue = cpu->id_aa64isar0 },
4624 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4626 .access = PL1_R, .type = ARM_CP_CONST,
4627 .resetvalue = cpu->id_aa64isar1 },
4628 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4630 .access = PL1_R, .type = ARM_CP_CONST,
4631 .resetvalue = 0 },
4632 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4634 .access = PL1_R, .type = ARM_CP_CONST,
4635 .resetvalue = 0 },
4636 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4638 .access = PL1_R, .type = ARM_CP_CONST,
4639 .resetvalue = 0 },
4640 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4642 .access = PL1_R, .type = ARM_CP_CONST,
4643 .resetvalue = 0 },
4644 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4646 .access = PL1_R, .type = ARM_CP_CONST,
4647 .resetvalue = 0 },
4648 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4649 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4650 .access = PL1_R, .type = ARM_CP_CONST,
4651 .resetvalue = 0 },
4652 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4654 .access = PL1_R, .type = ARM_CP_CONST,
4655 .resetvalue = cpu->id_aa64mmfr0 },
4656 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4658 .access = PL1_R, .type = ARM_CP_CONST,
4659 .resetvalue = cpu->id_aa64mmfr1 },
4660 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4662 .access = PL1_R, .type = ARM_CP_CONST,
4663 .resetvalue = 0 },
4664 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4666 .access = PL1_R, .type = ARM_CP_CONST,
4667 .resetvalue = 0 },
4668 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4669 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4670 .access = PL1_R, .type = ARM_CP_CONST,
4671 .resetvalue = 0 },
4672 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4673 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4674 .access = PL1_R, .type = ARM_CP_CONST,
4675 .resetvalue = 0 },
4676 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4678 .access = PL1_R, .type = ARM_CP_CONST,
4679 .resetvalue = 0 },
4680 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4681 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4682 .access = PL1_R, .type = ARM_CP_CONST,
4683 .resetvalue = 0 },
4684 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4686 .access = PL1_R, .type = ARM_CP_CONST,
4687 .resetvalue = cpu->mvfr0 },
4688 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4689 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4690 .access = PL1_R, .type = ARM_CP_CONST,
4691 .resetvalue = cpu->mvfr1 },
4692 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4694 .access = PL1_R, .type = ARM_CP_CONST,
4695 .resetvalue = cpu->mvfr2 },
4696 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4698 .access = PL1_R, .type = ARM_CP_CONST,
4699 .resetvalue = 0 },
4700 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4701 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4702 .access = PL1_R, .type = ARM_CP_CONST,
4703 .resetvalue = 0 },
4704 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4706 .access = PL1_R, .type = ARM_CP_CONST,
4707 .resetvalue = 0 },
4708 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4709 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4710 .access = PL1_R, .type = ARM_CP_CONST,
4711 .resetvalue = 0 },
4712 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4713 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4714 .access = PL1_R, .type = ARM_CP_CONST,
4715 .resetvalue = 0 },
4716 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4717 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4718 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4719 .resetvalue = cpu->pmceid0 },
4720 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4721 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4722 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4723 .resetvalue = cpu->pmceid0 },
4724 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4725 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4726 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4727 .resetvalue = cpu->pmceid1 },
4728 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4729 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4730 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4731 .resetvalue = cpu->pmceid1 },
4732 REGINFO_SENTINEL
4733 };
4734 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4735 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4736 !arm_feature(env, ARM_FEATURE_EL2)) {
4737 ARMCPRegInfo rvbar = {
4738 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4740 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4741 };
4742 define_one_arm_cp_reg(cpu, &rvbar);
4743 }
4744 define_arm_cp_regs(cpu, v8_idregs);
4745 define_arm_cp_regs(cpu, v8_cp_reginfo);
4746 }
4747 if (arm_feature(env, ARM_FEATURE_EL2)) {
4748 uint64_t vmpidr_def = mpidr_read_val(env);
4749 ARMCPRegInfo vpidr_regs[] = {
4750 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4751 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4752 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4753 .resetvalue = cpu->midr,
4754 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4755 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4756 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4757 .access = PL2_RW, .resetvalue = cpu->midr,
4758 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4759 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4760 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4761 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4762 .resetvalue = vmpidr_def,
4763 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4764 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4765 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4766 .access = PL2_RW,
4767 .resetvalue = vmpidr_def,
4768 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4769 REGINFO_SENTINEL
4770 };
4771 define_arm_cp_regs(cpu, vpidr_regs);
4772 define_arm_cp_regs(cpu, el2_cp_reginfo);
4773 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4774 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4775 ARMCPRegInfo rvbar = {
4776 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4777 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4778 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4779 };
4780 define_one_arm_cp_reg(cpu, &rvbar);
4781 }
4782 } else {
4783 /* If EL2 is missing but higher ELs are enabled, we need to
4784 * register the no_el2 reginfos.
4785 */
4786 if (arm_feature(env, ARM_FEATURE_EL3)) {
4787 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4788 * of MIDR_EL1 and MPIDR_EL1.
4789 */
4790 ARMCPRegInfo vpidr_regs[] = {
4791 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4792 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4793 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4794 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4795 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4796 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4797 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4798 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4799 .type = ARM_CP_NO_RAW,
4800 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4801 REGINFO_SENTINEL
4802 };
4803 define_arm_cp_regs(cpu, vpidr_regs);
4804 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4805 }
4806 }
4807 if (arm_feature(env, ARM_FEATURE_EL3)) {
4808 define_arm_cp_regs(cpu, el3_cp_reginfo);
4809 ARMCPRegInfo el3_regs[] = {
4810 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4812 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4813 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4815 .access = PL3_RW,
4816 .raw_writefn = raw_write, .writefn = sctlr_write,
4817 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4818 .resetvalue = cpu->reset_sctlr },
4819 REGINFO_SENTINEL
4820 };
4821
4822 define_arm_cp_regs(cpu, el3_regs);
4823 }
4824 /* The behaviour of NSACR is sufficiently various that we don't
4825 * try to describe it in a single reginfo:
4826 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4827 * reads as constant 0xc00 from NS EL1 and NS EL2
4828 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4829 * if v7 without EL3, register doesn't exist
4830 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4831 */
4832 if (arm_feature(env, ARM_FEATURE_EL3)) {
4833 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4834 ARMCPRegInfo nsacr = {
4835 .name = "NSACR", .type = ARM_CP_CONST,
4836 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4837 .access = PL1_RW, .accessfn = nsacr_access,
4838 .resetvalue = 0xc00
4839 };
4840 define_one_arm_cp_reg(cpu, &nsacr);
4841 } else {
4842 ARMCPRegInfo nsacr = {
4843 .name = "NSACR",
4844 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4845 .access = PL3_RW | PL1_R,
4846 .resetvalue = 0,
4847 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4848 };
4849 define_one_arm_cp_reg(cpu, &nsacr);
4850 }
4851 } else {
4852 if (arm_feature(env, ARM_FEATURE_V8)) {
4853 ARMCPRegInfo nsacr = {
4854 .name = "NSACR", .type = ARM_CP_CONST,
4855 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4856 .access = PL1_R,
4857 .resetvalue = 0xc00
4858 };
4859 define_one_arm_cp_reg(cpu, &nsacr);
4860 }
4861 }
4862
4863 if (arm_feature(env, ARM_FEATURE_MPU)) {
4864 if (arm_feature(env, ARM_FEATURE_V6)) {
4865 /* PMSAv6 not implemented */
4866 assert(arm_feature(env, ARM_FEATURE_V7));
4867 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4868 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4869 } else {
4870 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4871 }
4872 } else {
4873 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4874 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4875 }
4876 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4877 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4878 }
4879 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4880 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4881 }
4882 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4883 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4884 }
4885 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4886 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4887 }
4888 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4889 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4890 }
4891 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4892 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4893 }
4894 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4895 define_arm_cp_regs(cpu, omap_cp_reginfo);
4896 }
4897 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4898 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4899 }
4900 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4901 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4902 }
4903 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4904 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4905 }
4906 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4907 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4908 }
4909 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4910 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4911 * be read-only (ie write causes UNDEF exception).
4912 */
4913 {
4914 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4915 /* Pre-v8 MIDR space.
4916 * Note that the MIDR isn't a simple constant register because
4917 * of the TI925 behaviour where writes to another register can
4918 * cause the MIDR value to change.
4919 *
4920 * Unimplemented registers in the c15 0 0 0 space default to
4921 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4922 * and friends override accordingly.
4923 */
4924 { .name = "MIDR",
4925 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4926 .access = PL1_R, .resetvalue = cpu->midr,
4927 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4928 .readfn = midr_read,
4929 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4930 .type = ARM_CP_OVERRIDE },
4931 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4932 { .name = "DUMMY",
4933 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4934 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4935 { .name = "DUMMY",
4936 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4937 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4938 { .name = "DUMMY",
4939 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4940 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4941 { .name = "DUMMY",
4942 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4943 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4944 { .name = "DUMMY",
4945 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4946 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4947 REGINFO_SENTINEL
4948 };
4949 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4950 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4952 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4953 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4954 .readfn = midr_read },
4955 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4956 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4957 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4958 .access = PL1_R, .resetvalue = cpu->midr },
4959 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4960 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4961 .access = PL1_R, .resetvalue = cpu->midr },
4962 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4964 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4965 REGINFO_SENTINEL
4966 };
4967 ARMCPRegInfo id_cp_reginfo[] = {
4968 /* These are common to v8 and pre-v8 */
4969 { .name = "CTR",
4970 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4971 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4972 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4973 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4974 .access = PL0_R, .accessfn = ctr_el0_access,
4975 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4976 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4977 { .name = "TCMTR",
4978 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4979 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4980 REGINFO_SENTINEL
4981 };
4982 /* TLBTR is specific to VMSA */
4983 ARMCPRegInfo id_tlbtr_reginfo = {
4984 .name = "TLBTR",
4985 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4986 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4987 };
4988 /* MPUIR is specific to PMSA V6+ */
4989 ARMCPRegInfo id_mpuir_reginfo = {
4990 .name = "MPUIR",
4991 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4992 .access = PL1_R, .type = ARM_CP_CONST,
4993 .resetvalue = cpu->pmsav7_dregion << 8
4994 };
4995 ARMCPRegInfo crn0_wi_reginfo = {
4996 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4997 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4998 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4999 };
5000 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5001 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5002 ARMCPRegInfo *r;
5003 /* Register the blanket "writes ignored" value first to cover the
5004 * whole space. Then update the specific ID registers to allow write
5005 * access, so that they ignore writes rather than causing them to
5006 * UNDEF.
5007 */
5008 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5009 for (r = id_pre_v8_midr_cp_reginfo;
5010 r->type != ARM_CP_SENTINEL; r++) {
5011 r->access = PL1_RW;
5012 }
5013 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5014 r->access = PL1_RW;
5015 }
5016 id_tlbtr_reginfo.access = PL1_RW;
5017 id_tlbtr_reginfo.access = PL1_RW;
5018 }
5019 if (arm_feature(env, ARM_FEATURE_V8)) {
5020 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5021 } else {
5022 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5023 }
5024 define_arm_cp_regs(cpu, id_cp_reginfo);
5025 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5026 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5027 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5028 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5029 }
5030 }
5031
5032 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5033 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5034 }
5035
5036 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5037 ARMCPRegInfo auxcr_reginfo[] = {
5038 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5039 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5040 .access = PL1_RW, .type = ARM_CP_CONST,
5041 .resetvalue = cpu->reset_auxcr },
5042 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5043 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5044 .access = PL2_RW, .type = ARM_CP_CONST,
5045 .resetvalue = 0 },
5046 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5047 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5048 .access = PL3_RW, .type = ARM_CP_CONST,
5049 .resetvalue = 0 },
5050 REGINFO_SENTINEL
5051 };
5052 define_arm_cp_regs(cpu, auxcr_reginfo);
5053 }
5054
5055 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5056 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5057 /* 32 bit view is [31:18] 0...0 [43:32]. */
5058 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5059 | extract64(cpu->reset_cbar, 32, 12);
5060 ARMCPRegInfo cbar_reginfo[] = {
5061 { .name = "CBAR",
5062 .type = ARM_CP_CONST,
5063 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5064 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5065 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5066 .type = ARM_CP_CONST,
5067 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5068 .access = PL1_R, .resetvalue = cbar32 },
5069 REGINFO_SENTINEL
5070 };
5071 /* We don't implement a r/w 64 bit CBAR currently */
5072 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5073 define_arm_cp_regs(cpu, cbar_reginfo);
5074 } else {
5075 ARMCPRegInfo cbar = {
5076 .name = "CBAR",
5077 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5078 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5079 .fieldoffset = offsetof(CPUARMState,
5080 cp15.c15_config_base_address)
5081 };
5082 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5083 cbar.access = PL1_R;
5084 cbar.fieldoffset = 0;
5085 cbar.type = ARM_CP_CONST;
5086 }
5087 define_one_arm_cp_reg(cpu, &cbar);
5088 }
5089 }
5090
5091 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5092 ARMCPRegInfo vbar_cp_reginfo[] = {
5093 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5094 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5095 .access = PL1_RW, .writefn = vbar_write,
5096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5097 offsetof(CPUARMState, cp15.vbar_ns) },
5098 .resetvalue = 0 },
5099 REGINFO_SENTINEL
5100 };
5101 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5102 }
5103
5104 /* Generic registers whose values depend on the implementation */
5105 {
5106 ARMCPRegInfo sctlr = {
5107 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5108 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5109 .access = PL1_RW,
5110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5111 offsetof(CPUARMState, cp15.sctlr_ns) },
5112 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5113 .raw_writefn = raw_write,
5114 };
5115 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5116 /* Normally we would always end the TB on an SCTLR write, but Linux
5117 * arch/arm/mach-pxa/sleep.S expects two instructions following
5118 * an MMU enable to execute from cache. Imitate this behaviour.
5119 */
5120 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5121 }
5122 define_one_arm_cp_reg(cpu, &sctlr);
5123 }
5124 }
5125
5126 ARMCPU *cpu_arm_init(const char *cpu_model)
5127 {
5128 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5129 }
5130
5131 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5132 {
5133 CPUState *cs = CPU(cpu);
5134 CPUARMState *env = &cpu->env;
5135
5136 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5137 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5138 aarch64_fpu_gdb_set_reg,
5139 34, "aarch64-fpu.xml", 0);
5140 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5141 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5142 51, "arm-neon.xml", 0);
5143 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5144 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5145 35, "arm-vfp3.xml", 0);
5146 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5147 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5148 19, "arm-vfp.xml", 0);
5149 }
5150 }
5151
5152 /* Sort alphabetically by type name, except for "any". */
5153 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5154 {
5155 ObjectClass *class_a = (ObjectClass *)a;
5156 ObjectClass *class_b = (ObjectClass *)b;
5157 const char *name_a, *name_b;
5158
5159 name_a = object_class_get_name(class_a);
5160 name_b = object_class_get_name(class_b);
5161 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5162 return 1;
5163 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5164 return -1;
5165 } else {
5166 return strcmp(name_a, name_b);
5167 }
5168 }
5169
5170 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5171 {
5172 ObjectClass *oc = data;
5173 CPUListState *s = user_data;
5174 const char *typename;
5175 char *name;
5176
5177 typename = object_class_get_name(oc);
5178 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5179 (*s->cpu_fprintf)(s->file, " %s\n",
5180 name);
5181 g_free(name);
5182 }
5183
5184 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5185 {
5186 CPUListState s = {
5187 .file = f,
5188 .cpu_fprintf = cpu_fprintf,
5189 };
5190 GSList *list;
5191
5192 list = object_class_get_list(TYPE_ARM_CPU, false);
5193 list = g_slist_sort(list, arm_cpu_list_compare);
5194 (*cpu_fprintf)(f, "Available CPUs:\n");
5195 g_slist_foreach(list, arm_cpu_list_entry, &s);
5196 g_slist_free(list);
5197 #ifdef CONFIG_KVM
5198 /* The 'host' CPU type is dynamically registered only if KVM is
5199 * enabled, so we have to special-case it here:
5200 */
5201 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5202 #endif
5203 }
5204
5205 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5206 {
5207 ObjectClass *oc = data;
5208 CpuDefinitionInfoList **cpu_list = user_data;
5209 CpuDefinitionInfoList *entry;
5210 CpuDefinitionInfo *info;
5211 const char *typename;
5212
5213 typename = object_class_get_name(oc);
5214 info = g_malloc0(sizeof(*info));
5215 info->name = g_strndup(typename,
5216 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5217 info->q_typename = g_strdup(typename);
5218
5219 entry = g_malloc0(sizeof(*entry));
5220 entry->value = info;
5221 entry->next = *cpu_list;
5222 *cpu_list = entry;
5223 }
5224
5225 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5226 {
5227 CpuDefinitionInfoList *cpu_list = NULL;
5228 GSList *list;
5229
5230 list = object_class_get_list(TYPE_ARM_CPU, false);
5231 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5232 g_slist_free(list);
5233
5234 return cpu_list;
5235 }
5236
5237 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5238 void *opaque, int state, int secstate,
5239 int crm, int opc1, int opc2)
5240 {
5241 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5242 * add a single reginfo struct to the hash table.
5243 */
5244 uint32_t *key = g_new(uint32_t, 1);
5245 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5246 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5247 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5248
5249 /* Reset the secure state to the specific incoming state. This is
5250 * necessary as the register may have been defined with both states.
5251 */
5252 r2->secure = secstate;
5253
5254 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5255 /* Register is banked (using both entries in array).
5256 * Overwriting fieldoffset as the array is only used to define
5257 * banked registers but later only fieldoffset is used.
5258 */
5259 r2->fieldoffset = r->bank_fieldoffsets[ns];
5260 }
5261
5262 if (state == ARM_CP_STATE_AA32) {
5263 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5264 /* If the register is banked then we don't need to migrate or
5265 * reset the 32-bit instance in certain cases:
5266 *
5267 * 1) If the register has both 32-bit and 64-bit instances then we
5268 * can count on the 64-bit instance taking care of the
5269 * non-secure bank.
5270 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5271 * taking care of the secure bank. This requires that separate
5272 * 32 and 64-bit definitions are provided.
5273 */
5274 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5275 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5276 r2->type |= ARM_CP_ALIAS;
5277 }
5278 } else if ((secstate != r->secure) && !ns) {
5279 /* The register is not banked so we only want to allow migration of
5280 * the non-secure instance.
5281 */
5282 r2->type |= ARM_CP_ALIAS;
5283 }
5284
5285 if (r->state == ARM_CP_STATE_BOTH) {
5286 /* We assume it is a cp15 register if the .cp field is left unset.
5287 */
5288 if (r2->cp == 0) {
5289 r2->cp = 15;
5290 }
5291
5292 #ifdef HOST_WORDS_BIGENDIAN
5293 if (r2->fieldoffset) {
5294 r2->fieldoffset += sizeof(uint32_t);
5295 }
5296 #endif
5297 }
5298 }
5299 if (state == ARM_CP_STATE_AA64) {
5300 /* To allow abbreviation of ARMCPRegInfo
5301 * definitions, we treat cp == 0 as equivalent to
5302 * the value for "standard guest-visible sysreg".
5303 * STATE_BOTH definitions are also always "standard
5304 * sysreg" in their AArch64 view (the .cp value may
5305 * be non-zero for the benefit of the AArch32 view).
5306 */
5307 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5308 r2->cp = CP_REG_ARM64_SYSREG_CP;
5309 }
5310 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5311 r2->opc0, opc1, opc2);
5312 } else {
5313 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5314 }
5315 if (opaque) {
5316 r2->opaque = opaque;
5317 }
5318 /* reginfo passed to helpers is correct for the actual access,
5319 * and is never ARM_CP_STATE_BOTH:
5320 */
5321 r2->state = state;
5322 /* Make sure reginfo passed to helpers for wildcarded regs
5323 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5324 */
5325 r2->crm = crm;
5326 r2->opc1 = opc1;
5327 r2->opc2 = opc2;
5328 /* By convention, for wildcarded registers only the first
5329 * entry is used for migration; the others are marked as
5330 * ALIAS so we don't try to transfer the register
5331 * multiple times. Special registers (ie NOP/WFI) are
5332 * never migratable and not even raw-accessible.
5333 */
5334 if ((r->type & ARM_CP_SPECIAL)) {
5335 r2->type |= ARM_CP_NO_RAW;
5336 }
5337 if (((r->crm == CP_ANY) && crm != 0) ||
5338 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5339 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5340 r2->type |= ARM_CP_ALIAS;
5341 }
5342
5343 /* Check that raw accesses are either forbidden or handled. Note that
5344 * we can't assert this earlier because the setup of fieldoffset for
5345 * banked registers has to be done first.
5346 */
5347 if (!(r2->type & ARM_CP_NO_RAW)) {
5348 assert(!raw_accessors_invalid(r2));
5349 }
5350
5351 /* Overriding of an existing definition must be explicitly
5352 * requested.
5353 */
5354 if (!(r->type & ARM_CP_OVERRIDE)) {
5355 ARMCPRegInfo *oldreg;
5356 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5357 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5358 fprintf(stderr, "Register redefined: cp=%d %d bit "
5359 "crn=%d crm=%d opc1=%d opc2=%d, "
5360 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5361 r2->crn, r2->crm, r2->opc1, r2->opc2,
5362 oldreg->name, r2->name);
5363 g_assert_not_reached();
5364 }
5365 }
5366 g_hash_table_insert(cpu->cp_regs, key, r2);
5367 }
5368
5369
5370 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5371 const ARMCPRegInfo *r, void *opaque)
5372 {
5373 /* Define implementations of coprocessor registers.
5374 * We store these in a hashtable because typically
5375 * there are less than 150 registers in a space which
5376 * is 16*16*16*8*8 = 262144 in size.
5377 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5378 * If a register is defined twice then the second definition is
5379 * used, so this can be used to define some generic registers and
5380 * then override them with implementation specific variations.
5381 * At least one of the original and the second definition should
5382 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5383 * against accidental use.
5384 *
5385 * The state field defines whether the register is to be
5386 * visible in the AArch32 or AArch64 execution state. If the
5387 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5388 * reginfo structure for the AArch32 view, which sees the lower
5389 * 32 bits of the 64 bit register.
5390 *
5391 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5392 * be wildcarded. AArch64 registers are always considered to be 64
5393 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5394 * the register, if any.
5395 */
5396 int crm, opc1, opc2, state;
5397 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5398 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5399 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5400 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5401 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5402 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5403 /* 64 bit registers have only CRm and Opc1 fields */
5404 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5405 /* op0 only exists in the AArch64 encodings */
5406 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5407 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5408 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5409 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5410 * encodes a minimum access level for the register. We roll this
5411 * runtime check into our general permission check code, so check
5412 * here that the reginfo's specified permissions are strict enough
5413 * to encompass the generic architectural permission check.
5414 */
5415 if (r->state != ARM_CP_STATE_AA32) {
5416 int mask = 0;
5417 switch (r->opc1) {
5418 case 0: case 1: case 2:
5419 /* min_EL EL1 */
5420 mask = PL1_RW;
5421 break;
5422 case 3:
5423 /* min_EL EL0 */
5424 mask = PL0_RW;
5425 break;
5426 case 4:
5427 /* min_EL EL2 */
5428 mask = PL2_RW;
5429 break;
5430 case 5:
5431 /* unallocated encoding, so not possible */
5432 assert(false);
5433 break;
5434 case 6:
5435 /* min_EL EL3 */
5436 mask = PL3_RW;
5437 break;
5438 case 7:
5439 /* min_EL EL1, secure mode only (we don't check the latter) */
5440 mask = PL1_RW;
5441 break;
5442 default:
5443 /* broken reginfo with out-of-range opc1 */
5444 assert(false);
5445 break;
5446 }
5447 /* assert our permissions are not too lax (stricter is fine) */
5448 assert((r->access & ~mask) == 0);
5449 }
5450
5451 /* Check that the register definition has enough info to handle
5452 * reads and writes if they are permitted.
5453 */
5454 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5455 if (r->access & PL3_R) {
5456 assert((r->fieldoffset ||
5457 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5458 r->readfn);
5459 }
5460 if (r->access & PL3_W) {
5461 assert((r->fieldoffset ||
5462 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5463 r->writefn);
5464 }
5465 }
5466 /* Bad type field probably means missing sentinel at end of reg list */
5467 assert(cptype_valid(r->type));
5468 for (crm = crmmin; crm <= crmmax; crm++) {
5469 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5470 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5471 for (state = ARM_CP_STATE_AA32;
5472 state <= ARM_CP_STATE_AA64; state++) {
5473 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5474 continue;
5475 }
5476 if (state == ARM_CP_STATE_AA32) {
5477 /* Under AArch32 CP registers can be common
5478 * (same for secure and non-secure world) or banked.
5479 */
5480 switch (r->secure) {
5481 case ARM_CP_SECSTATE_S:
5482 case ARM_CP_SECSTATE_NS:
5483 add_cpreg_to_hashtable(cpu, r, opaque, state,
5484 r->secure, crm, opc1, opc2);
5485 break;
5486 default:
5487 add_cpreg_to_hashtable(cpu, r, opaque, state,
5488 ARM_CP_SECSTATE_S,
5489 crm, opc1, opc2);
5490 add_cpreg_to_hashtable(cpu, r, opaque, state,
5491 ARM_CP_SECSTATE_NS,
5492 crm, opc1, opc2);
5493 break;
5494 }
5495 } else {
5496 /* AArch64 registers get mapped to non-secure instance
5497 * of AArch32 */
5498 add_cpreg_to_hashtable(cpu, r, opaque, state,
5499 ARM_CP_SECSTATE_NS,
5500 crm, opc1, opc2);
5501 }
5502 }
5503 }
5504 }
5505 }
5506 }
5507
5508 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5509 const ARMCPRegInfo *regs, void *opaque)
5510 {
5511 /* Define a whole list of registers */
5512 const ARMCPRegInfo *r;
5513 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5514 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5515 }
5516 }
5517
5518 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5519 {
5520 return g_hash_table_lookup(cpregs, &encoded_cp);
5521 }
5522
5523 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5524 uint64_t value)
5525 {
5526 /* Helper coprocessor write function for write-ignore registers */
5527 }
5528
5529 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5530 {
5531 /* Helper coprocessor write function for read-as-zero registers */
5532 return 0;
5533 }
5534
5535 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5536 {
5537 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5538 }
5539
5540 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5541 {
5542 /* Return true if it is not valid for us to switch to
5543 * this CPU mode (ie all the UNPREDICTABLE cases in
5544 * the ARM ARM CPSRWriteByInstr pseudocode).
5545 */
5546
5547 /* Changes to or from Hyp via MSR and CPS are illegal. */
5548 if (write_type == CPSRWriteByInstr &&
5549 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5550 mode == ARM_CPU_MODE_HYP)) {
5551 return 1;
5552 }
5553
5554 switch (mode) {
5555 case ARM_CPU_MODE_USR:
5556 return 0;
5557 case ARM_CPU_MODE_SYS:
5558 case ARM_CPU_MODE_SVC:
5559 case ARM_CPU_MODE_ABT:
5560 case ARM_CPU_MODE_UND:
5561 case ARM_CPU_MODE_IRQ:
5562 case ARM_CPU_MODE_FIQ:
5563 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5564 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5565 */
5566 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5567 * and CPS are treated as illegal mode changes.
5568 */
5569 if (write_type == CPSRWriteByInstr &&
5570 (env->cp15.hcr_el2 & HCR_TGE) &&
5571 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5572 !arm_is_secure_below_el3(env)) {
5573 return 1;
5574 }
5575 return 0;
5576 case ARM_CPU_MODE_HYP:
5577 return !arm_feature(env, ARM_FEATURE_EL2)
5578 || arm_current_el(env) < 2 || arm_is_secure(env);
5579 case ARM_CPU_MODE_MON:
5580 return arm_current_el(env) < 3;
5581 default:
5582 return 1;
5583 }
5584 }
5585
5586 uint32_t cpsr_read(CPUARMState *env)
5587 {
5588 int ZF;
5589 ZF = (env->ZF == 0);
5590 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5591 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5592 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5593 | ((env->condexec_bits & 0xfc) << 8)
5594 | (env->GE << 16) | (env->daif & CPSR_AIF);
5595 }
5596
5597 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5598 CPSRWriteType write_type)
5599 {
5600 uint32_t changed_daif;
5601
5602 if (mask & CPSR_NZCV) {
5603 env->ZF = (~val) & CPSR_Z;
5604 env->NF = val;
5605 env->CF = (val >> 29) & 1;
5606 env->VF = (val << 3) & 0x80000000;
5607 }
5608 if (mask & CPSR_Q)
5609 env->QF = ((val & CPSR_Q) != 0);
5610 if (mask & CPSR_T)
5611 env->thumb = ((val & CPSR_T) != 0);
5612 if (mask & CPSR_IT_0_1) {
5613 env->condexec_bits &= ~3;
5614 env->condexec_bits |= (val >> 25) & 3;
5615 }
5616 if (mask & CPSR_IT_2_7) {
5617 env->condexec_bits &= 3;
5618 env->condexec_bits |= (val >> 8) & 0xfc;
5619 }
5620 if (mask & CPSR_GE) {
5621 env->GE = (val >> 16) & 0xf;
5622 }
5623
5624 /* In a V7 implementation that includes the security extensions but does
5625 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5626 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5627 * bits respectively.
5628 *
5629 * In a V8 implementation, it is permitted for privileged software to
5630 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5631 */
5632 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5633 arm_feature(env, ARM_FEATURE_EL3) &&
5634 !arm_feature(env, ARM_FEATURE_EL2) &&
5635 !arm_is_secure(env)) {
5636
5637 changed_daif = (env->daif ^ val) & mask;
5638
5639 if (changed_daif & CPSR_A) {
5640 /* Check to see if we are allowed to change the masking of async
5641 * abort exceptions from a non-secure state.
5642 */
5643 if (!(env->cp15.scr_el3 & SCR_AW)) {
5644 qemu_log_mask(LOG_GUEST_ERROR,
5645 "Ignoring attempt to switch CPSR_A flag from "
5646 "non-secure world with SCR.AW bit clear\n");
5647 mask &= ~CPSR_A;
5648 }
5649 }
5650
5651 if (changed_daif & CPSR_F) {
5652 /* Check to see if we are allowed to change the masking of FIQ
5653 * exceptions from a non-secure state.
5654 */
5655 if (!(env->cp15.scr_el3 & SCR_FW)) {
5656 qemu_log_mask(LOG_GUEST_ERROR,
5657 "Ignoring attempt to switch CPSR_F flag from "
5658 "non-secure world with SCR.FW bit clear\n");
5659 mask &= ~CPSR_F;
5660 }
5661
5662 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5663 * If this bit is set software is not allowed to mask
5664 * FIQs, but is allowed to set CPSR_F to 0.
5665 */
5666 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5667 (val & CPSR_F)) {
5668 qemu_log_mask(LOG_GUEST_ERROR,
5669 "Ignoring attempt to enable CPSR_F flag "
5670 "(non-maskable FIQ [NMFI] support enabled)\n");
5671 mask &= ~CPSR_F;
5672 }
5673 }
5674 }
5675
5676 env->daif &= ~(CPSR_AIF & mask);
5677 env->daif |= val & CPSR_AIF & mask;
5678
5679 if (write_type != CPSRWriteRaw &&
5680 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5681 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5682 /* Note that we can only get here in USR mode if this is a
5683 * gdb stub write; for this case we follow the architectural
5684 * behaviour for guest writes in USR mode of ignoring an attempt
5685 * to switch mode. (Those are caught by translate.c for writes
5686 * triggered by guest instructions.)
5687 */
5688 mask &= ~CPSR_M;
5689 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5690 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5691 * v7, and has defined behaviour in v8:
5692 * + leave CPSR.M untouched
5693 * + allow changes to the other CPSR fields
5694 * + set PSTATE.IL
5695 * For user changes via the GDB stub, we don't set PSTATE.IL,
5696 * as this would be unnecessarily harsh for a user error.
5697 */
5698 mask &= ~CPSR_M;
5699 if (write_type != CPSRWriteByGDBStub &&
5700 arm_feature(env, ARM_FEATURE_V8)) {
5701 mask |= CPSR_IL;
5702 val |= CPSR_IL;
5703 }
5704 } else {
5705 switch_mode(env, val & CPSR_M);
5706 }
5707 }
5708 mask &= ~CACHED_CPSR_BITS;
5709 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5710 }
5711
5712 /* Sign/zero extend */
5713 uint32_t HELPER(sxtb16)(uint32_t x)
5714 {
5715 uint32_t res;
5716 res = (uint16_t)(int8_t)x;
5717 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5718 return res;
5719 }
5720
5721 uint32_t HELPER(uxtb16)(uint32_t x)
5722 {
5723 uint32_t res;
5724 res = (uint16_t)(uint8_t)x;
5725 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5726 return res;
5727 }
5728
5729 uint32_t HELPER(clz)(uint32_t x)
5730 {
5731 return clz32(x);
5732 }
5733
5734 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5735 {
5736 if (den == 0)
5737 return 0;
5738 if (num == INT_MIN && den == -1)
5739 return INT_MIN;
5740 return num / den;
5741 }
5742
5743 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5744 {
5745 if (den == 0)
5746 return 0;
5747 return num / den;
5748 }
5749
5750 uint32_t HELPER(rbit)(uint32_t x)
5751 {
5752 return revbit32(x);
5753 }
5754
5755 #if defined(CONFIG_USER_ONLY)
5756
5757 /* These should probably raise undefined insn exceptions. */
5758 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5759 {
5760 ARMCPU *cpu = arm_env_get_cpu(env);
5761
5762 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5763 }
5764
5765 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5766 {
5767 ARMCPU *cpu = arm_env_get_cpu(env);
5768
5769 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5770 return 0;
5771 }
5772
5773 void switch_mode(CPUARMState *env, int mode)
5774 {
5775 ARMCPU *cpu = arm_env_get_cpu(env);
5776
5777 if (mode != ARM_CPU_MODE_USR) {
5778 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5779 }
5780 }
5781
5782 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5783 uint32_t cur_el, bool secure)
5784 {
5785 return 1;
5786 }
5787
5788 void aarch64_sync_64_to_32(CPUARMState *env)
5789 {
5790 g_assert_not_reached();
5791 }
5792
5793 #else
5794
5795 void switch_mode(CPUARMState *env, int mode)
5796 {
5797 int old_mode;
5798 int i;
5799
5800 old_mode = env->uncached_cpsr & CPSR_M;
5801 if (mode == old_mode)
5802 return;
5803
5804 if (old_mode == ARM_CPU_MODE_FIQ) {
5805 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5806 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5807 } else if (mode == ARM_CPU_MODE_FIQ) {
5808 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5809 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5810 }
5811
5812 i = bank_number(old_mode);
5813 env->banked_r13[i] = env->regs[13];
5814 env->banked_r14[i] = env->regs[14];
5815 env->banked_spsr[i] = env->spsr;
5816
5817 i = bank_number(mode);
5818 env->regs[13] = env->banked_r13[i];
5819 env->regs[14] = env->banked_r14[i];
5820 env->spsr = env->banked_spsr[i];
5821 }
5822
5823 /* Physical Interrupt Target EL Lookup Table
5824 *
5825 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5826 *
5827 * The below multi-dimensional table is used for looking up the target
5828 * exception level given numerous condition criteria. Specifically, the
5829 * target EL is based on SCR and HCR routing controls as well as the
5830 * currently executing EL and secure state.
5831 *
5832 * Dimensions:
5833 * target_el_table[2][2][2][2][2][4]
5834 * | | | | | +--- Current EL
5835 * | | | | +------ Non-secure(0)/Secure(1)
5836 * | | | +--------- HCR mask override
5837 * | | +------------ SCR exec state control
5838 * | +--------------- SCR mask override
5839 * +------------------ 32-bit(0)/64-bit(1) EL3
5840 *
5841 * The table values are as such:
5842 * 0-3 = EL0-EL3
5843 * -1 = Cannot occur
5844 *
5845 * The ARM ARM target EL table includes entries indicating that an "exception
5846 * is not taken". The two cases where this is applicable are:
5847 * 1) An exception is taken from EL3 but the SCR does not have the exception
5848 * routed to EL3.
5849 * 2) An exception is taken from EL2 but the HCR does not have the exception
5850 * routed to EL2.
5851 * In these two cases, the below table contain a target of EL1. This value is
5852 * returned as it is expected that the consumer of the table data will check
5853 * for "target EL >= current EL" to ensure the exception is not taken.
5854 *
5855 * SCR HCR
5856 * 64 EA AMO From
5857 * BIT IRQ IMO Non-secure Secure
5858 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5859 */
5860 static const int8_t target_el_table[2][2][2][2][2][4] = {
5861 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5862 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5863 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5864 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5865 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5866 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5867 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5868 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5869 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5870 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5871 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5872 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5873 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5874 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5875 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5876 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5877 };
5878
5879 /*
5880 * Determine the target EL for physical exceptions
5881 */
5882 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5883 uint32_t cur_el, bool secure)
5884 {
5885 CPUARMState *env = cs->env_ptr;
5886 int rw;
5887 int scr;
5888 int hcr;
5889 int target_el;
5890 /* Is the highest EL AArch64? */
5891 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5892
5893 if (arm_feature(env, ARM_FEATURE_EL3)) {
5894 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5895 } else {
5896 /* Either EL2 is the highest EL (and so the EL2 register width
5897 * is given by is64); or there is no EL2 or EL3, in which case
5898 * the value of 'rw' does not affect the table lookup anyway.
5899 */
5900 rw = is64;
5901 }
5902
5903 switch (excp_idx) {
5904 case EXCP_IRQ:
5905 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5906 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5907 break;
5908 case EXCP_FIQ:
5909 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5910 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5911 break;
5912 default:
5913 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5914 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5915 break;
5916 };
5917
5918 /* If HCR.TGE is set then HCR is treated as being 1 */
5919 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5920
5921 /* Perform a table-lookup for the target EL given the current state */
5922 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5923
5924 assert(target_el > 0);
5925
5926 return target_el;
5927 }
5928
5929 static void v7m_push(CPUARMState *env, uint32_t val)
5930 {
5931 CPUState *cs = CPU(arm_env_get_cpu(env));
5932
5933 env->regs[13] -= 4;
5934 stl_phys(cs->as, env->regs[13], val);
5935 }
5936
5937 static uint32_t v7m_pop(CPUARMState *env)
5938 {
5939 CPUState *cs = CPU(arm_env_get_cpu(env));
5940 uint32_t val;
5941
5942 val = ldl_phys(cs->as, env->regs[13]);
5943 env->regs[13] += 4;
5944 return val;
5945 }
5946
5947 /* Switch to V7M main or process stack pointer. */
5948 static void switch_v7m_sp(CPUARMState *env, int process)
5949 {
5950 uint32_t tmp;
5951 if (env->v7m.current_sp != process) {
5952 tmp = env->v7m.other_sp;
5953 env->v7m.other_sp = env->regs[13];
5954 env->regs[13] = tmp;
5955 env->v7m.current_sp = process;
5956 }
5957 }
5958
5959 static void do_v7m_exception_exit(CPUARMState *env)
5960 {
5961 uint32_t type;
5962 uint32_t xpsr;
5963
5964 type = env->regs[15];
5965 if (env->v7m.exception != 0)
5966 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5967
5968 /* Switch to the target stack. */
5969 switch_v7m_sp(env, (type & 4) != 0);
5970 /* Pop registers. */
5971 env->regs[0] = v7m_pop(env);
5972 env->regs[1] = v7m_pop(env);
5973 env->regs[2] = v7m_pop(env);
5974 env->regs[3] = v7m_pop(env);
5975 env->regs[12] = v7m_pop(env);
5976 env->regs[14] = v7m_pop(env);
5977 env->regs[15] = v7m_pop(env);
5978 if (env->regs[15] & 1) {
5979 qemu_log_mask(LOG_GUEST_ERROR,
5980 "M profile return from interrupt with misaligned "
5981 "PC is UNPREDICTABLE\n");
5982 /* Actual hardware seems to ignore the lsbit, and there are several
5983 * RTOSes out there which incorrectly assume the r15 in the stack
5984 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5985 */
5986 env->regs[15] &= ~1U;
5987 }
5988 xpsr = v7m_pop(env);
5989 xpsr_write(env, xpsr, 0xfffffdff);
5990 /* Undo stack alignment. */
5991 if (xpsr & 0x200)
5992 env->regs[13] |= 4;
5993 /* ??? The exception return type specifies Thread/Handler mode. However
5994 this is also implied by the xPSR value. Not sure what to do
5995 if there is a mismatch. */
5996 /* ??? Likewise for mismatches between the CONTROL register and the stack
5997 pointer. */
5998 }
5999
6000 static void arm_log_exception(int idx)
6001 {
6002 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6003 const char *exc = NULL;
6004
6005 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6006 exc = excnames[idx];
6007 }
6008 if (!exc) {
6009 exc = "unknown";
6010 }
6011 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6012 }
6013 }
6014
6015 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6016 {
6017 ARMCPU *cpu = ARM_CPU(cs);
6018 CPUARMState *env = &cpu->env;
6019 uint32_t xpsr = xpsr_read(env);
6020 uint32_t lr;
6021 uint32_t addr;
6022
6023 arm_log_exception(cs->exception_index);
6024
6025 lr = 0xfffffff1;
6026 if (env->v7m.current_sp)
6027 lr |= 4;
6028 if (env->v7m.exception == 0)
6029 lr |= 8;
6030
6031 /* For exceptions we just mark as pending on the NVIC, and let that
6032 handle it. */
6033 /* TODO: Need to escalate if the current priority is higher than the
6034 one we're raising. */
6035 switch (cs->exception_index) {
6036 case EXCP_UDEF:
6037 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6038 return;
6039 case EXCP_SWI:
6040 /* The PC already points to the next instruction. */
6041 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6042 return;
6043 case EXCP_PREFETCH_ABORT:
6044 case EXCP_DATA_ABORT:
6045 /* TODO: if we implemented the MPU registers, this is where we
6046 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6047 */
6048 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6049 return;
6050 case EXCP_BKPT:
6051 if (semihosting_enabled()) {
6052 int nr;
6053 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6054 if (nr == 0xab) {
6055 env->regs[15] += 2;
6056 qemu_log_mask(CPU_LOG_INT,
6057 "...handling as semihosting call 0x%x\n",
6058 env->regs[0]);
6059 env->regs[0] = do_arm_semihosting(env);
6060 return;
6061 }
6062 }
6063 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6064 return;
6065 case EXCP_IRQ:
6066 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
6067 break;
6068 case EXCP_EXCEPTION_EXIT:
6069 do_v7m_exception_exit(env);
6070 return;
6071 default:
6072 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6073 return; /* Never happens. Keep compiler happy. */
6074 }
6075
6076 /* Align stack pointer. */
6077 /* ??? Should only do this if Configuration Control Register
6078 STACKALIGN bit is set. */
6079 if (env->regs[13] & 4) {
6080 env->regs[13] -= 4;
6081 xpsr |= 0x200;
6082 }
6083 /* Switch to the handler mode. */
6084 v7m_push(env, xpsr);
6085 v7m_push(env, env->regs[15]);
6086 v7m_push(env, env->regs[14]);
6087 v7m_push(env, env->regs[12]);
6088 v7m_push(env, env->regs[3]);
6089 v7m_push(env, env->regs[2]);
6090 v7m_push(env, env->regs[1]);
6091 v7m_push(env, env->regs[0]);
6092 switch_v7m_sp(env, 0);
6093 /* Clear IT bits */
6094 env->condexec_bits = 0;
6095 env->regs[14] = lr;
6096 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
6097 env->regs[15] = addr & 0xfffffffe;
6098 env->thumb = addr & 1;
6099 }
6100
6101 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6102 * register set. This is necessary when switching between AArch32 and AArch64
6103 * execution state.
6104 */
6105 void aarch64_sync_32_to_64(CPUARMState *env)
6106 {
6107 int i;
6108 uint32_t mode = env->uncached_cpsr & CPSR_M;
6109
6110 /* We can blanket copy R[0:7] to X[0:7] */
6111 for (i = 0; i < 8; i++) {
6112 env->xregs[i] = env->regs[i];
6113 }
6114
6115 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6116 * Otherwise, they come from the banked user regs.
6117 */
6118 if (mode == ARM_CPU_MODE_FIQ) {
6119 for (i = 8; i < 13; i++) {
6120 env->xregs[i] = env->usr_regs[i - 8];
6121 }
6122 } else {
6123 for (i = 8; i < 13; i++) {
6124 env->xregs[i] = env->regs[i];
6125 }
6126 }
6127
6128 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6129 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6130 * from the mode banked register.
6131 */
6132 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6133 env->xregs[13] = env->regs[13];
6134 env->xregs[14] = env->regs[14];
6135 } else {
6136 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6137 /* HYP is an exception in that it is copied from r14 */
6138 if (mode == ARM_CPU_MODE_HYP) {
6139 env->xregs[14] = env->regs[14];
6140 } else {
6141 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6142 }
6143 }
6144
6145 if (mode == ARM_CPU_MODE_HYP) {
6146 env->xregs[15] = env->regs[13];
6147 } else {
6148 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6149 }
6150
6151 if (mode == ARM_CPU_MODE_IRQ) {
6152 env->xregs[16] = env->regs[14];
6153 env->xregs[17] = env->regs[13];
6154 } else {
6155 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6156 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6157 }
6158
6159 if (mode == ARM_CPU_MODE_SVC) {
6160 env->xregs[18] = env->regs[14];
6161 env->xregs[19] = env->regs[13];
6162 } else {
6163 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6164 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6165 }
6166
6167 if (mode == ARM_CPU_MODE_ABT) {
6168 env->xregs[20] = env->regs[14];
6169 env->xregs[21] = env->regs[13];
6170 } else {
6171 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6172 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6173 }
6174
6175 if (mode == ARM_CPU_MODE_UND) {
6176 env->xregs[22] = env->regs[14];
6177 env->xregs[23] = env->regs[13];
6178 } else {
6179 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6180 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6181 }
6182
6183 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6184 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6185 * FIQ bank for r8-r14.
6186 */
6187 if (mode == ARM_CPU_MODE_FIQ) {
6188 for (i = 24; i < 31; i++) {
6189 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6190 }
6191 } else {
6192 for (i = 24; i < 29; i++) {
6193 env->xregs[i] = env->fiq_regs[i - 24];
6194 }
6195 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6196 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6197 }
6198
6199 env->pc = env->regs[15];
6200 }
6201
6202 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6203 * register set. This is necessary when switching between AArch32 and AArch64
6204 * execution state.
6205 */
6206 void aarch64_sync_64_to_32(CPUARMState *env)
6207 {
6208 int i;
6209 uint32_t mode = env->uncached_cpsr & CPSR_M;
6210
6211 /* We can blanket copy X[0:7] to R[0:7] */
6212 for (i = 0; i < 8; i++) {
6213 env->regs[i] = env->xregs[i];
6214 }
6215
6216 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6217 * Otherwise, we copy x8-x12 into the banked user regs.
6218 */
6219 if (mode == ARM_CPU_MODE_FIQ) {
6220 for (i = 8; i < 13; i++) {
6221 env->usr_regs[i - 8] = env->xregs[i];
6222 }
6223 } else {
6224 for (i = 8; i < 13; i++) {
6225 env->regs[i] = env->xregs[i];
6226 }
6227 }
6228
6229 /* Registers r13 & r14 depend on the current mode.
6230 * If we are in a given mode, we copy the corresponding x registers to r13
6231 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6232 * for the mode.
6233 */
6234 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6235 env->regs[13] = env->xregs[13];
6236 env->regs[14] = env->xregs[14];
6237 } else {
6238 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6239
6240 /* HYP is an exception in that it does not have its own banked r14 but
6241 * shares the USR r14
6242 */
6243 if (mode == ARM_CPU_MODE_HYP) {
6244 env->regs[14] = env->xregs[14];
6245 } else {
6246 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6247 }
6248 }
6249
6250 if (mode == ARM_CPU_MODE_HYP) {
6251 env->regs[13] = env->xregs[15];
6252 } else {
6253 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6254 }
6255
6256 if (mode == ARM_CPU_MODE_IRQ) {
6257 env->regs[14] = env->xregs[16];
6258 env->regs[13] = env->xregs[17];
6259 } else {
6260 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6261 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6262 }
6263
6264 if (mode == ARM_CPU_MODE_SVC) {
6265 env->regs[14] = env->xregs[18];
6266 env->regs[13] = env->xregs[19];
6267 } else {
6268 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6269 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6270 }
6271
6272 if (mode == ARM_CPU_MODE_ABT) {
6273 env->regs[14] = env->xregs[20];
6274 env->regs[13] = env->xregs[21];
6275 } else {
6276 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6277 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6278 }
6279
6280 if (mode == ARM_CPU_MODE_UND) {
6281 env->regs[14] = env->xregs[22];
6282 env->regs[13] = env->xregs[23];
6283 } else {
6284 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6285 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6286 }
6287
6288 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6289 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6290 * FIQ bank for r8-r14.
6291 */
6292 if (mode == ARM_CPU_MODE_FIQ) {
6293 for (i = 24; i < 31; i++) {
6294 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6295 }
6296 } else {
6297 for (i = 24; i < 29; i++) {
6298 env->fiq_regs[i - 24] = env->xregs[i];
6299 }
6300 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6301 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6302 }
6303
6304 env->regs[15] = env->pc;
6305 }
6306
6307 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6308 {
6309 ARMCPU *cpu = ARM_CPU(cs);
6310 CPUARMState *env = &cpu->env;
6311 uint32_t addr;
6312 uint32_t mask;
6313 int new_mode;
6314 uint32_t offset;
6315 uint32_t moe;
6316
6317 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6318 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6319 case EC_BREAKPOINT:
6320 case EC_BREAKPOINT_SAME_EL:
6321 moe = 1;
6322 break;
6323 case EC_WATCHPOINT:
6324 case EC_WATCHPOINT_SAME_EL:
6325 moe = 10;
6326 break;
6327 case EC_AA32_BKPT:
6328 moe = 3;
6329 break;
6330 case EC_VECTORCATCH:
6331 moe = 5;
6332 break;
6333 default:
6334 moe = 0;
6335 break;
6336 }
6337
6338 if (moe) {
6339 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6340 }
6341
6342 /* TODO: Vectored interrupt controller. */
6343 switch (cs->exception_index) {
6344 case EXCP_UDEF:
6345 new_mode = ARM_CPU_MODE_UND;
6346 addr = 0x04;
6347 mask = CPSR_I;
6348 if (env->thumb)
6349 offset = 2;
6350 else
6351 offset = 4;
6352 break;
6353 case EXCP_SWI:
6354 new_mode = ARM_CPU_MODE_SVC;
6355 addr = 0x08;
6356 mask = CPSR_I;
6357 /* The PC already points to the next instruction. */
6358 offset = 0;
6359 break;
6360 case EXCP_BKPT:
6361 env->exception.fsr = 2;
6362 /* Fall through to prefetch abort. */
6363 case EXCP_PREFETCH_ABORT:
6364 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6365 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6366 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6367 env->exception.fsr, (uint32_t)env->exception.vaddress);
6368 new_mode = ARM_CPU_MODE_ABT;
6369 addr = 0x0c;
6370 mask = CPSR_A | CPSR_I;
6371 offset = 4;
6372 break;
6373 case EXCP_DATA_ABORT:
6374 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6375 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6376 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6377 env->exception.fsr,
6378 (uint32_t)env->exception.vaddress);
6379 new_mode = ARM_CPU_MODE_ABT;
6380 addr = 0x10;
6381 mask = CPSR_A | CPSR_I;
6382 offset = 8;
6383 break;
6384 case EXCP_IRQ:
6385 new_mode = ARM_CPU_MODE_IRQ;
6386 addr = 0x18;
6387 /* Disable IRQ and imprecise data aborts. */
6388 mask = CPSR_A | CPSR_I;
6389 offset = 4;
6390 if (env->cp15.scr_el3 & SCR_IRQ) {
6391 /* IRQ routed to monitor mode */
6392 new_mode = ARM_CPU_MODE_MON;
6393 mask |= CPSR_F;
6394 }
6395 break;
6396 case EXCP_FIQ:
6397 new_mode = ARM_CPU_MODE_FIQ;
6398 addr = 0x1c;
6399 /* Disable FIQ, IRQ and imprecise data aborts. */
6400 mask = CPSR_A | CPSR_I | CPSR_F;
6401 if (env->cp15.scr_el3 & SCR_FIQ) {
6402 /* FIQ routed to monitor mode */
6403 new_mode = ARM_CPU_MODE_MON;
6404 }
6405 offset = 4;
6406 break;
6407 case EXCP_SMC:
6408 new_mode = ARM_CPU_MODE_MON;
6409 addr = 0x08;
6410 mask = CPSR_A | CPSR_I | CPSR_F;
6411 offset = 0;
6412 break;
6413 default:
6414 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6415 return; /* Never happens. Keep compiler happy. */
6416 }
6417
6418 if (new_mode == ARM_CPU_MODE_MON) {
6419 addr += env->cp15.mvbar;
6420 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6421 /* High vectors. When enabled, base address cannot be remapped. */
6422 addr += 0xffff0000;
6423 } else {
6424 /* ARM v7 architectures provide a vector base address register to remap
6425 * the interrupt vector table.
6426 * This register is only followed in non-monitor mode, and is banked.
6427 * Note: only bits 31:5 are valid.
6428 */
6429 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6430 }
6431
6432 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6433 env->cp15.scr_el3 &= ~SCR_NS;
6434 }
6435
6436 switch_mode (env, new_mode);
6437 /* For exceptions taken to AArch32 we must clear the SS bit in both
6438 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6439 */
6440 env->uncached_cpsr &= ~PSTATE_SS;
6441 env->spsr = cpsr_read(env);
6442 /* Clear IT bits. */
6443 env->condexec_bits = 0;
6444 /* Switch to the new mode, and to the correct instruction set. */
6445 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6446 /* Set new mode endianness */
6447 env->uncached_cpsr &= ~CPSR_E;
6448 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6449 env->uncached_cpsr |= CPSR_E;
6450 }
6451 env->daif |= mask;
6452 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6453 * and we should just guard the thumb mode on V4 */
6454 if (arm_feature(env, ARM_FEATURE_V4T)) {
6455 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6456 }
6457 env->regs[14] = env->regs[15] + offset;
6458 env->regs[15] = addr;
6459 }
6460
6461 /* Handle exception entry to a target EL which is using AArch64 */
6462 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6463 {
6464 ARMCPU *cpu = ARM_CPU(cs);
6465 CPUARMState *env = &cpu->env;
6466 unsigned int new_el = env->exception.target_el;
6467 target_ulong addr = env->cp15.vbar_el[new_el];
6468 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6469
6470 if (arm_current_el(env) < new_el) {
6471 /* Entry vector offset depends on whether the implemented EL
6472 * immediately lower than the target level is using AArch32 or AArch64
6473 */
6474 bool is_aa64;
6475
6476 switch (new_el) {
6477 case 3:
6478 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6479 break;
6480 case 2:
6481 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6482 break;
6483 case 1:
6484 is_aa64 = is_a64(env);
6485 break;
6486 default:
6487 g_assert_not_reached();
6488 }
6489
6490 if (is_aa64) {
6491 addr += 0x400;
6492 } else {
6493 addr += 0x600;
6494 }
6495 } else if (pstate_read(env) & PSTATE_SP) {
6496 addr += 0x200;
6497 }
6498
6499 switch (cs->exception_index) {
6500 case EXCP_PREFETCH_ABORT:
6501 case EXCP_DATA_ABORT:
6502 env->cp15.far_el[new_el] = env->exception.vaddress;
6503 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6504 env->cp15.far_el[new_el]);
6505 /* fall through */
6506 case EXCP_BKPT:
6507 case EXCP_UDEF:
6508 case EXCP_SWI:
6509 case EXCP_HVC:
6510 case EXCP_HYP_TRAP:
6511 case EXCP_SMC:
6512 env->cp15.esr_el[new_el] = env->exception.syndrome;
6513 break;
6514 case EXCP_IRQ:
6515 case EXCP_VIRQ:
6516 addr += 0x80;
6517 break;
6518 case EXCP_FIQ:
6519 case EXCP_VFIQ:
6520 addr += 0x100;
6521 break;
6522 case EXCP_SEMIHOST:
6523 qemu_log_mask(CPU_LOG_INT,
6524 "...handling as semihosting call 0x%" PRIx64 "\n",
6525 env->xregs[0]);
6526 env->xregs[0] = do_arm_semihosting(env);
6527 return;
6528 default:
6529 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6530 }
6531
6532 if (is_a64(env)) {
6533 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6534 aarch64_save_sp(env, arm_current_el(env));
6535 env->elr_el[new_el] = env->pc;
6536 } else {
6537 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6538 env->elr_el[new_el] = env->regs[15];
6539
6540 aarch64_sync_32_to_64(env);
6541
6542 env->condexec_bits = 0;
6543 }
6544 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6545 env->elr_el[new_el]);
6546
6547 pstate_write(env, PSTATE_DAIF | new_mode);
6548 env->aarch64 = 1;
6549 aarch64_restore_sp(env, new_el);
6550
6551 env->pc = addr;
6552
6553 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6554 new_el, env->pc, pstate_read(env));
6555 }
6556
6557 static inline bool check_for_semihosting(CPUState *cs)
6558 {
6559 /* Check whether this exception is a semihosting call; if so
6560 * then handle it and return true; otherwise return false.
6561 */
6562 ARMCPU *cpu = ARM_CPU(cs);
6563 CPUARMState *env = &cpu->env;
6564
6565 if (is_a64(env)) {
6566 if (cs->exception_index == EXCP_SEMIHOST) {
6567 /* This is always the 64-bit semihosting exception.
6568 * The "is this usermode" and "is semihosting enabled"
6569 * checks have been done at translate time.
6570 */
6571 qemu_log_mask(CPU_LOG_INT,
6572 "...handling as semihosting call 0x%" PRIx64 "\n",
6573 env->xregs[0]);
6574 env->xregs[0] = do_arm_semihosting(env);
6575 return true;
6576 }
6577 return false;
6578 } else {
6579 uint32_t imm;
6580
6581 /* Only intercept calls from privileged modes, to provide some
6582 * semblance of security.
6583 */
6584 if (cs->exception_index != EXCP_SEMIHOST &&
6585 (!semihosting_enabled() ||
6586 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6587 return false;
6588 }
6589
6590 switch (cs->exception_index) {
6591 case EXCP_SEMIHOST:
6592 /* This is always a semihosting call; the "is this usermode"
6593 * and "is semihosting enabled" checks have been done at
6594 * translate time.
6595 */
6596 break;
6597 case EXCP_SWI:
6598 /* Check for semihosting interrupt. */
6599 if (env->thumb) {
6600 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6601 & 0xff;
6602 if (imm == 0xab) {
6603 break;
6604 }
6605 } else {
6606 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6607 & 0xffffff;
6608 if (imm == 0x123456) {
6609 break;
6610 }
6611 }
6612 return false;
6613 case EXCP_BKPT:
6614 /* See if this is a semihosting syscall. */
6615 if (env->thumb) {
6616 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6617 & 0xff;
6618 if (imm == 0xab) {
6619 env->regs[15] += 2;
6620 break;
6621 }
6622 }
6623 return false;
6624 default:
6625 return false;
6626 }
6627
6628 qemu_log_mask(CPU_LOG_INT,
6629 "...handling as semihosting call 0x%x\n",
6630 env->regs[0]);
6631 env->regs[0] = do_arm_semihosting(env);
6632 return true;
6633 }
6634 }
6635
6636 /* Handle a CPU exception for A and R profile CPUs.
6637 * Do any appropriate logging, handle PSCI calls, and then hand off
6638 * to the AArch64-entry or AArch32-entry function depending on the
6639 * target exception level's register width.
6640 */
6641 void arm_cpu_do_interrupt(CPUState *cs)
6642 {
6643 ARMCPU *cpu = ARM_CPU(cs);
6644 CPUARMState *env = &cpu->env;
6645 unsigned int new_el = env->exception.target_el;
6646
6647 assert(!IS_M(env));
6648
6649 arm_log_exception(cs->exception_index);
6650 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6651 new_el);
6652 if (qemu_loglevel_mask(CPU_LOG_INT)
6653 && !excp_is_internal(cs->exception_index)) {
6654 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6655 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6656 env->exception.syndrome);
6657 }
6658
6659 if (arm_is_psci_call(cpu, cs->exception_index)) {
6660 arm_handle_psci_call(cpu);
6661 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6662 return;
6663 }
6664
6665 /* Semihosting semantics depend on the register width of the
6666 * code that caused the exception, not the target exception level,
6667 * so must be handled here.
6668 */
6669 if (check_for_semihosting(cs)) {
6670 return;
6671 }
6672
6673 assert(!excp_is_internal(cs->exception_index));
6674 if (arm_el_is_aa64(env, new_el)) {
6675 arm_cpu_do_interrupt_aarch64(cs);
6676 } else {
6677 arm_cpu_do_interrupt_aarch32(cs);
6678 }
6679
6680 arm_call_el_change_hook(cpu);
6681
6682 if (!kvm_enabled()) {
6683 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6684 }
6685 }
6686
6687 /* Return the exception level which controls this address translation regime */
6688 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6689 {
6690 switch (mmu_idx) {
6691 case ARMMMUIdx_S2NS:
6692 case ARMMMUIdx_S1E2:
6693 return 2;
6694 case ARMMMUIdx_S1E3:
6695 return 3;
6696 case ARMMMUIdx_S1SE0:
6697 return arm_el_is_aa64(env, 3) ? 1 : 3;
6698 case ARMMMUIdx_S1SE1:
6699 case ARMMMUIdx_S1NSE0:
6700 case ARMMMUIdx_S1NSE1:
6701 return 1;
6702 default:
6703 g_assert_not_reached();
6704 }
6705 }
6706
6707 /* Return true if this address translation regime is secure */
6708 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6709 {
6710 switch (mmu_idx) {
6711 case ARMMMUIdx_S12NSE0:
6712 case ARMMMUIdx_S12NSE1:
6713 case ARMMMUIdx_S1NSE0:
6714 case ARMMMUIdx_S1NSE1:
6715 case ARMMMUIdx_S1E2:
6716 case ARMMMUIdx_S2NS:
6717 return false;
6718 case ARMMMUIdx_S1E3:
6719 case ARMMMUIdx_S1SE0:
6720 case ARMMMUIdx_S1SE1:
6721 return true;
6722 default:
6723 g_assert_not_reached();
6724 }
6725 }
6726
6727 /* Return the SCTLR value which controls this address translation regime */
6728 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6729 {
6730 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6731 }
6732
6733 /* Return true if the specified stage of address translation is disabled */
6734 static inline bool regime_translation_disabled(CPUARMState *env,
6735 ARMMMUIdx mmu_idx)
6736 {
6737 if (mmu_idx == ARMMMUIdx_S2NS) {
6738 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6739 }
6740 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6741 }
6742
6743 static inline bool regime_translation_big_endian(CPUARMState *env,
6744 ARMMMUIdx mmu_idx)
6745 {
6746 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6747 }
6748
6749 /* Return the TCR controlling this translation regime */
6750 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6751 {
6752 if (mmu_idx == ARMMMUIdx_S2NS) {
6753 return &env->cp15.vtcr_el2;
6754 }
6755 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6756 }
6757
6758 /* Returns TBI0 value for current regime el */
6759 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
6760 {
6761 TCR *tcr;
6762 uint32_t el;
6763
6764 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6765 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6766 */
6767 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6768 mmu_idx += ARMMMUIdx_S1NSE0;
6769 }
6770
6771 tcr = regime_tcr(env, mmu_idx);
6772 el = regime_el(env, mmu_idx);
6773
6774 if (el > 1) {
6775 return extract64(tcr->raw_tcr, 20, 1);
6776 } else {
6777 return extract64(tcr->raw_tcr, 37, 1);
6778 }
6779 }
6780
6781 /* Returns TBI1 value for current regime el */
6782 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
6783 {
6784 TCR *tcr;
6785 uint32_t el;
6786
6787 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
6788 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
6789 */
6790 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6791 mmu_idx += ARMMMUIdx_S1NSE0;
6792 }
6793
6794 tcr = regime_tcr(env, mmu_idx);
6795 el = regime_el(env, mmu_idx);
6796
6797 if (el > 1) {
6798 return 0;
6799 } else {
6800 return extract64(tcr->raw_tcr, 38, 1);
6801 }
6802 }
6803
6804 /* Return the TTBR associated with this translation regime */
6805 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6806 int ttbrn)
6807 {
6808 if (mmu_idx == ARMMMUIdx_S2NS) {
6809 return env->cp15.vttbr_el2;
6810 }
6811 if (ttbrn == 0) {
6812 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6813 } else {
6814 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6815 }
6816 }
6817
6818 /* Return true if the translation regime is using LPAE format page tables */
6819 static inline bool regime_using_lpae_format(CPUARMState *env,
6820 ARMMMUIdx mmu_idx)
6821 {
6822 int el = regime_el(env, mmu_idx);
6823 if (el == 2 || arm_el_is_aa64(env, el)) {
6824 return true;
6825 }
6826 if (arm_feature(env, ARM_FEATURE_LPAE)
6827 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6828 return true;
6829 }
6830 return false;
6831 }
6832
6833 /* Returns true if the stage 1 translation regime is using LPAE format page
6834 * tables. Used when raising alignment exceptions, whose FSR changes depending
6835 * on whether the long or short descriptor format is in use. */
6836 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6837 {
6838 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6839 mmu_idx += ARMMMUIdx_S1NSE0;
6840 }
6841
6842 return regime_using_lpae_format(env, mmu_idx);
6843 }
6844
6845 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6846 {
6847 switch (mmu_idx) {
6848 case ARMMMUIdx_S1SE0:
6849 case ARMMMUIdx_S1NSE0:
6850 return true;
6851 default:
6852 return false;
6853 case ARMMMUIdx_S12NSE0:
6854 case ARMMMUIdx_S12NSE1:
6855 g_assert_not_reached();
6856 }
6857 }
6858
6859 /* Translate section/page access permissions to page
6860 * R/W protection flags
6861 *
6862 * @env: CPUARMState
6863 * @mmu_idx: MMU index indicating required translation regime
6864 * @ap: The 3-bit access permissions (AP[2:0])
6865 * @domain_prot: The 2-bit domain access permissions
6866 */
6867 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6868 int ap, int domain_prot)
6869 {
6870 bool is_user = regime_is_user(env, mmu_idx);
6871
6872 if (domain_prot == 3) {
6873 return PAGE_READ | PAGE_WRITE;
6874 }
6875
6876 switch (ap) {
6877 case 0:
6878 if (arm_feature(env, ARM_FEATURE_V7)) {
6879 return 0;
6880 }
6881 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6882 case SCTLR_S:
6883 return is_user ? 0 : PAGE_READ;
6884 case SCTLR_R:
6885 return PAGE_READ;
6886 default:
6887 return 0;
6888 }
6889 case 1:
6890 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6891 case 2:
6892 if (is_user) {
6893 return PAGE_READ;
6894 } else {
6895 return PAGE_READ | PAGE_WRITE;
6896 }
6897 case 3:
6898 return PAGE_READ | PAGE_WRITE;
6899 case 4: /* Reserved. */
6900 return 0;
6901 case 5:
6902 return is_user ? 0 : PAGE_READ;
6903 case 6:
6904 return PAGE_READ;
6905 case 7:
6906 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6907 return 0;
6908 }
6909 return PAGE_READ;
6910 default:
6911 g_assert_not_reached();
6912 }
6913 }
6914
6915 /* Translate section/page access permissions to page
6916 * R/W protection flags.
6917 *
6918 * @ap: The 2-bit simple AP (AP[2:1])
6919 * @is_user: TRUE if accessing from PL0
6920 */
6921 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6922 {
6923 switch (ap) {
6924 case 0:
6925 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6926 case 1:
6927 return PAGE_READ | PAGE_WRITE;
6928 case 2:
6929 return is_user ? 0 : PAGE_READ;
6930 case 3:
6931 return PAGE_READ;
6932 default:
6933 g_assert_not_reached();
6934 }
6935 }
6936
6937 static inline int
6938 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6939 {
6940 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6941 }
6942
6943 /* Translate S2 section/page access permissions to protection flags
6944 *
6945 * @env: CPUARMState
6946 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6947 * @xn: XN (execute-never) bit
6948 */
6949 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6950 {
6951 int prot = 0;
6952
6953 if (s2ap & 1) {
6954 prot |= PAGE_READ;
6955 }
6956 if (s2ap & 2) {
6957 prot |= PAGE_WRITE;
6958 }
6959 if (!xn) {
6960 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
6961 prot |= PAGE_EXEC;
6962 }
6963 }
6964 return prot;
6965 }
6966
6967 /* Translate section/page access permissions to protection flags
6968 *
6969 * @env: CPUARMState
6970 * @mmu_idx: MMU index indicating required translation regime
6971 * @is_aa64: TRUE if AArch64
6972 * @ap: The 2-bit simple AP (AP[2:1])
6973 * @ns: NS (non-secure) bit
6974 * @xn: XN (execute-never) bit
6975 * @pxn: PXN (privileged execute-never) bit
6976 */
6977 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6978 int ap, int ns, int xn, int pxn)
6979 {
6980 bool is_user = regime_is_user(env, mmu_idx);
6981 int prot_rw, user_rw;
6982 bool have_wxn;
6983 int wxn = 0;
6984
6985 assert(mmu_idx != ARMMMUIdx_S2NS);
6986
6987 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6988 if (is_user) {
6989 prot_rw = user_rw;
6990 } else {
6991 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6992 }
6993
6994 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6995 return prot_rw;
6996 }
6997
6998 /* TODO have_wxn should be replaced with
6999 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7000 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7001 * compatible processors have EL2, which is required for [U]WXN.
7002 */
7003 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7004
7005 if (have_wxn) {
7006 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7007 }
7008
7009 if (is_aa64) {
7010 switch (regime_el(env, mmu_idx)) {
7011 case 1:
7012 if (!is_user) {
7013 xn = pxn || (user_rw & PAGE_WRITE);
7014 }
7015 break;
7016 case 2:
7017 case 3:
7018 break;
7019 }
7020 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7021 switch (regime_el(env, mmu_idx)) {
7022 case 1:
7023 case 3:
7024 if (is_user) {
7025 xn = xn || !(user_rw & PAGE_READ);
7026 } else {
7027 int uwxn = 0;
7028 if (have_wxn) {
7029 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7030 }
7031 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7032 (uwxn && (user_rw & PAGE_WRITE));
7033 }
7034 break;
7035 case 2:
7036 break;
7037 }
7038 } else {
7039 xn = wxn = 0;
7040 }
7041
7042 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7043 return prot_rw;
7044 }
7045 return prot_rw | PAGE_EXEC;
7046 }
7047
7048 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7049 uint32_t *table, uint32_t address)
7050 {
7051 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7052 TCR *tcr = regime_tcr(env, mmu_idx);
7053
7054 if (address & tcr->mask) {
7055 if (tcr->raw_tcr & TTBCR_PD1) {
7056 /* Translation table walk disabled for TTBR1 */
7057 return false;
7058 }
7059 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7060 } else {
7061 if (tcr->raw_tcr & TTBCR_PD0) {
7062 /* Translation table walk disabled for TTBR0 */
7063 return false;
7064 }
7065 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7066 }
7067 *table |= (address >> 18) & 0x3ffc;
7068 return true;
7069 }
7070
7071 /* Translate a S1 pagetable walk through S2 if needed. */
7072 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7073 hwaddr addr, MemTxAttrs txattrs,
7074 uint32_t *fsr,
7075 ARMMMUFaultInfo *fi)
7076 {
7077 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7078 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7079 target_ulong s2size;
7080 hwaddr s2pa;
7081 int s2prot;
7082 int ret;
7083
7084 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7085 &txattrs, &s2prot, &s2size, fsr, fi);
7086 if (ret) {
7087 fi->s2addr = addr;
7088 fi->stage2 = true;
7089 fi->s1ptw = true;
7090 return ~0;
7091 }
7092 addr = s2pa;
7093 }
7094 return addr;
7095 }
7096
7097 /* All loads done in the course of a page table walk go through here.
7098 * TODO: rather than ignoring errors from physical memory reads (which
7099 * are external aborts in ARM terminology) we should propagate this
7100 * error out so that we can turn it into a Data Abort if this walk
7101 * was being done for a CPU load/store or an address translation instruction
7102 * (but not if it was for a debug access).
7103 */
7104 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7105 ARMMMUIdx mmu_idx, uint32_t *fsr,
7106 ARMMMUFaultInfo *fi)
7107 {
7108 ARMCPU *cpu = ARM_CPU(cs);
7109 CPUARMState *env = &cpu->env;
7110 MemTxAttrs attrs = {};
7111 AddressSpace *as;
7112
7113 attrs.secure = is_secure;
7114 as = arm_addressspace(cs, attrs);
7115 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7116 if (fi->s1ptw) {
7117 return 0;
7118 }
7119 if (regime_translation_big_endian(env, mmu_idx)) {
7120 return address_space_ldl_be(as, addr, attrs, NULL);
7121 } else {
7122 return address_space_ldl_le(as, addr, attrs, NULL);
7123 }
7124 }
7125
7126 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7127 ARMMMUIdx mmu_idx, uint32_t *fsr,
7128 ARMMMUFaultInfo *fi)
7129 {
7130 ARMCPU *cpu = ARM_CPU(cs);
7131 CPUARMState *env = &cpu->env;
7132 MemTxAttrs attrs = {};
7133 AddressSpace *as;
7134
7135 attrs.secure = is_secure;
7136 as = arm_addressspace(cs, attrs);
7137 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7138 if (fi->s1ptw) {
7139 return 0;
7140 }
7141 if (regime_translation_big_endian(env, mmu_idx)) {
7142 return address_space_ldq_be(as, addr, attrs, NULL);
7143 } else {
7144 return address_space_ldq_le(as, addr, attrs, NULL);
7145 }
7146 }
7147
7148 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7149 int access_type, ARMMMUIdx mmu_idx,
7150 hwaddr *phys_ptr, int *prot,
7151 target_ulong *page_size, uint32_t *fsr,
7152 ARMMMUFaultInfo *fi)
7153 {
7154 CPUState *cs = CPU(arm_env_get_cpu(env));
7155 int code;
7156 uint32_t table;
7157 uint32_t desc;
7158 int type;
7159 int ap;
7160 int domain = 0;
7161 int domain_prot;
7162 hwaddr phys_addr;
7163 uint32_t dacr;
7164
7165 /* Pagetable walk. */
7166 /* Lookup l1 descriptor. */
7167 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7168 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7169 code = 5;
7170 goto do_fault;
7171 }
7172 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7173 mmu_idx, fsr, fi);
7174 type = (desc & 3);
7175 domain = (desc >> 5) & 0x0f;
7176 if (regime_el(env, mmu_idx) == 1) {
7177 dacr = env->cp15.dacr_ns;
7178 } else {
7179 dacr = env->cp15.dacr_s;
7180 }
7181 domain_prot = (dacr >> (domain * 2)) & 3;
7182 if (type == 0) {
7183 /* Section translation fault. */
7184 code = 5;
7185 goto do_fault;
7186 }
7187 if (domain_prot == 0 || domain_prot == 2) {
7188 if (type == 2)
7189 code = 9; /* Section domain fault. */
7190 else
7191 code = 11; /* Page domain fault. */
7192 goto do_fault;
7193 }
7194 if (type == 2) {
7195 /* 1Mb section. */
7196 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7197 ap = (desc >> 10) & 3;
7198 code = 13;
7199 *page_size = 1024 * 1024;
7200 } else {
7201 /* Lookup l2 entry. */
7202 if (type == 1) {
7203 /* Coarse pagetable. */
7204 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7205 } else {
7206 /* Fine pagetable. */
7207 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7208 }
7209 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7210 mmu_idx, fsr, fi);
7211 switch (desc & 3) {
7212 case 0: /* Page translation fault. */
7213 code = 7;
7214 goto do_fault;
7215 case 1: /* 64k page. */
7216 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7217 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7218 *page_size = 0x10000;
7219 break;
7220 case 2: /* 4k page. */
7221 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7222 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7223 *page_size = 0x1000;
7224 break;
7225 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7226 if (type == 1) {
7227 /* ARMv6/XScale extended small page format */
7228 if (arm_feature(env, ARM_FEATURE_XSCALE)
7229 || arm_feature(env, ARM_FEATURE_V6)) {
7230 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7231 *page_size = 0x1000;
7232 } else {
7233 /* UNPREDICTABLE in ARMv5; we choose to take a
7234 * page translation fault.
7235 */
7236 code = 7;
7237 goto do_fault;
7238 }
7239 } else {
7240 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7241 *page_size = 0x400;
7242 }
7243 ap = (desc >> 4) & 3;
7244 break;
7245 default:
7246 /* Never happens, but compiler isn't smart enough to tell. */
7247 abort();
7248 }
7249 code = 15;
7250 }
7251 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7252 *prot |= *prot ? PAGE_EXEC : 0;
7253 if (!(*prot & (1 << access_type))) {
7254 /* Access permission fault. */
7255 goto do_fault;
7256 }
7257 *phys_ptr = phys_addr;
7258 return false;
7259 do_fault:
7260 *fsr = code | (domain << 4);
7261 return true;
7262 }
7263
7264 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7265 int access_type, ARMMMUIdx mmu_idx,
7266 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7267 target_ulong *page_size, uint32_t *fsr,
7268 ARMMMUFaultInfo *fi)
7269 {
7270 CPUState *cs = CPU(arm_env_get_cpu(env));
7271 int code;
7272 uint32_t table;
7273 uint32_t desc;
7274 uint32_t xn;
7275 uint32_t pxn = 0;
7276 int type;
7277 int ap;
7278 int domain = 0;
7279 int domain_prot;
7280 hwaddr phys_addr;
7281 uint32_t dacr;
7282 bool ns;
7283
7284 /* Pagetable walk. */
7285 /* Lookup l1 descriptor. */
7286 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7287 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7288 code = 5;
7289 goto do_fault;
7290 }
7291 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7292 mmu_idx, fsr, fi);
7293 type = (desc & 3);
7294 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7295 /* Section translation fault, or attempt to use the encoding
7296 * which is Reserved on implementations without PXN.
7297 */
7298 code = 5;
7299 goto do_fault;
7300 }
7301 if ((type == 1) || !(desc & (1 << 18))) {
7302 /* Page or Section. */
7303 domain = (desc >> 5) & 0x0f;
7304 }
7305 if (regime_el(env, mmu_idx) == 1) {
7306 dacr = env->cp15.dacr_ns;
7307 } else {
7308 dacr = env->cp15.dacr_s;
7309 }
7310 domain_prot = (dacr >> (domain * 2)) & 3;
7311 if (domain_prot == 0 || domain_prot == 2) {
7312 if (type != 1) {
7313 code = 9; /* Section domain fault. */
7314 } else {
7315 code = 11; /* Page domain fault. */
7316 }
7317 goto do_fault;
7318 }
7319 if (type != 1) {
7320 if (desc & (1 << 18)) {
7321 /* Supersection. */
7322 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7323 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7324 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7325 *page_size = 0x1000000;
7326 } else {
7327 /* Section. */
7328 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7329 *page_size = 0x100000;
7330 }
7331 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7332 xn = desc & (1 << 4);
7333 pxn = desc & 1;
7334 code = 13;
7335 ns = extract32(desc, 19, 1);
7336 } else {
7337 if (arm_feature(env, ARM_FEATURE_PXN)) {
7338 pxn = (desc >> 2) & 1;
7339 }
7340 ns = extract32(desc, 3, 1);
7341 /* Lookup l2 entry. */
7342 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7343 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7344 mmu_idx, fsr, fi);
7345 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7346 switch (desc & 3) {
7347 case 0: /* Page translation fault. */
7348 code = 7;
7349 goto do_fault;
7350 case 1: /* 64k page. */
7351 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7352 xn = desc & (1 << 15);
7353 *page_size = 0x10000;
7354 break;
7355 case 2: case 3: /* 4k page. */
7356 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7357 xn = desc & 1;
7358 *page_size = 0x1000;
7359 break;
7360 default:
7361 /* Never happens, but compiler isn't smart enough to tell. */
7362 abort();
7363 }
7364 code = 15;
7365 }
7366 if (domain_prot == 3) {
7367 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7368 } else {
7369 if (pxn && !regime_is_user(env, mmu_idx)) {
7370 xn = 1;
7371 }
7372 if (xn && access_type == 2)
7373 goto do_fault;
7374
7375 if (arm_feature(env, ARM_FEATURE_V6K) &&
7376 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7377 /* The simplified model uses AP[0] as an access control bit. */
7378 if ((ap & 1) == 0) {
7379 /* Access flag fault. */
7380 code = (code == 15) ? 6 : 3;
7381 goto do_fault;
7382 }
7383 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7384 } else {
7385 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7386 }
7387 if (*prot && !xn) {
7388 *prot |= PAGE_EXEC;
7389 }
7390 if (!(*prot & (1 << access_type))) {
7391 /* Access permission fault. */
7392 goto do_fault;
7393 }
7394 }
7395 if (ns) {
7396 /* The NS bit will (as required by the architecture) have no effect if
7397 * the CPU doesn't support TZ or this is a non-secure translation
7398 * regime, because the attribute will already be non-secure.
7399 */
7400 attrs->secure = false;
7401 }
7402 *phys_ptr = phys_addr;
7403 return false;
7404 do_fault:
7405 *fsr = code | (domain << 4);
7406 return true;
7407 }
7408
7409 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7410 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7411 */
7412 typedef enum {
7413 translation_fault = 1,
7414 access_fault = 2,
7415 permission_fault = 3,
7416 } MMUFaultType;
7417
7418 /*
7419 * check_s2_mmu_setup
7420 * @cpu: ARMCPU
7421 * @is_aa64: True if the translation regime is in AArch64 state
7422 * @startlevel: Suggested starting level
7423 * @inputsize: Bitsize of IPAs
7424 * @stride: Page-table stride (See the ARM ARM)
7425 *
7426 * Returns true if the suggested S2 translation parameters are OK and
7427 * false otherwise.
7428 */
7429 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7430 int inputsize, int stride)
7431 {
7432 const int grainsize = stride + 3;
7433 int startsizecheck;
7434
7435 /* Negative levels are never allowed. */
7436 if (level < 0) {
7437 return false;
7438 }
7439
7440 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7441 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7442 return false;
7443 }
7444
7445 if (is_aa64) {
7446 CPUARMState *env = &cpu->env;
7447 unsigned int pamax = arm_pamax(cpu);
7448
7449 switch (stride) {
7450 case 13: /* 64KB Pages. */
7451 if (level == 0 || (level == 1 && pamax <= 42)) {
7452 return false;
7453 }
7454 break;
7455 case 11: /* 16KB Pages. */
7456 if (level == 0 || (level == 1 && pamax <= 40)) {
7457 return false;
7458 }
7459 break;
7460 case 9: /* 4KB Pages. */
7461 if (level == 0 && pamax <= 42) {
7462 return false;
7463 }
7464 break;
7465 default:
7466 g_assert_not_reached();
7467 }
7468
7469 /* Inputsize checks. */
7470 if (inputsize > pamax &&
7471 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7472 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7473 return false;
7474 }
7475 } else {
7476 /* AArch32 only supports 4KB pages. Assert on that. */
7477 assert(stride == 9);
7478
7479 if (level == 0) {
7480 return false;
7481 }
7482 }
7483 return true;
7484 }
7485
7486 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7487 int access_type, ARMMMUIdx mmu_idx,
7488 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7489 target_ulong *page_size_ptr, uint32_t *fsr,
7490 ARMMMUFaultInfo *fi)
7491 {
7492 ARMCPU *cpu = arm_env_get_cpu(env);
7493 CPUState *cs = CPU(cpu);
7494 /* Read an LPAE long-descriptor translation table. */
7495 MMUFaultType fault_type = translation_fault;
7496 uint32_t level;
7497 uint32_t epd = 0;
7498 int32_t t0sz, t1sz;
7499 uint32_t tg;
7500 uint64_t ttbr;
7501 int ttbr_select;
7502 hwaddr descaddr, indexmask, indexmask_grainsize;
7503 uint32_t tableattrs;
7504 target_ulong page_size;
7505 uint32_t attrs;
7506 int32_t stride = 9;
7507 int32_t addrsize;
7508 int inputsize;
7509 int32_t tbi = 0;
7510 TCR *tcr = regime_tcr(env, mmu_idx);
7511 int ap, ns, xn, pxn;
7512 uint32_t el = regime_el(env, mmu_idx);
7513 bool ttbr1_valid = true;
7514 uint64_t descaddrmask;
7515 bool aarch64 = arm_el_is_aa64(env, el);
7516
7517 /* TODO:
7518 * This code does not handle the different format TCR for VTCR_EL2.
7519 * This code also does not support shareability levels.
7520 * Attribute and permission bit handling should also be checked when adding
7521 * support for those page table walks.
7522 */
7523 if (aarch64) {
7524 level = 0;
7525 addrsize = 64;
7526 if (el > 1) {
7527 if (mmu_idx != ARMMMUIdx_S2NS) {
7528 tbi = extract64(tcr->raw_tcr, 20, 1);
7529 }
7530 } else {
7531 if (extract64(address, 55, 1)) {
7532 tbi = extract64(tcr->raw_tcr, 38, 1);
7533 } else {
7534 tbi = extract64(tcr->raw_tcr, 37, 1);
7535 }
7536 }
7537 tbi *= 8;
7538
7539 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7540 * invalid.
7541 */
7542 if (el > 1) {
7543 ttbr1_valid = false;
7544 }
7545 } else {
7546 level = 1;
7547 addrsize = 32;
7548 /* There is no TTBR1 for EL2 */
7549 if (el == 2) {
7550 ttbr1_valid = false;
7551 }
7552 }
7553
7554 /* Determine whether this address is in the region controlled by
7555 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7556 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7557 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7558 */
7559 if (aarch64) {
7560 /* AArch64 translation. */
7561 t0sz = extract32(tcr->raw_tcr, 0, 6);
7562 t0sz = MIN(t0sz, 39);
7563 t0sz = MAX(t0sz, 16);
7564 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7565 /* AArch32 stage 1 translation. */
7566 t0sz = extract32(tcr->raw_tcr, 0, 3);
7567 } else {
7568 /* AArch32 stage 2 translation. */
7569 bool sext = extract32(tcr->raw_tcr, 4, 1);
7570 bool sign = extract32(tcr->raw_tcr, 3, 1);
7571 /* Address size is 40-bit for a stage 2 translation,
7572 * and t0sz can be negative (from -8 to 7),
7573 * so we need to adjust it to use the TTBR selecting logic below.
7574 */
7575 addrsize = 40;
7576 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7577
7578 /* If the sign-extend bit is not the same as t0sz[3], the result
7579 * is unpredictable. Flag this as a guest error. */
7580 if (sign != sext) {
7581 qemu_log_mask(LOG_GUEST_ERROR,
7582 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7583 }
7584 }
7585 t1sz = extract32(tcr->raw_tcr, 16, 6);
7586 if (aarch64) {
7587 t1sz = MIN(t1sz, 39);
7588 t1sz = MAX(t1sz, 16);
7589 }
7590 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7591 /* there is a ttbr0 region and we are in it (high bits all zero) */
7592 ttbr_select = 0;
7593 } else if (ttbr1_valid && t1sz &&
7594 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7595 /* there is a ttbr1 region and we are in it (high bits all one) */
7596 ttbr_select = 1;
7597 } else if (!t0sz) {
7598 /* ttbr0 region is "everything not in the ttbr1 region" */
7599 ttbr_select = 0;
7600 } else if (!t1sz && ttbr1_valid) {
7601 /* ttbr1 region is "everything not in the ttbr0 region" */
7602 ttbr_select = 1;
7603 } else {
7604 /* in the gap between the two regions, this is a Translation fault */
7605 fault_type = translation_fault;
7606 goto do_fault;
7607 }
7608
7609 /* Note that QEMU ignores shareability and cacheability attributes,
7610 * so we don't need to do anything with the SH, ORGN, IRGN fields
7611 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7612 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7613 * implement any ASID-like capability so we can ignore it (instead
7614 * we will always flush the TLB any time the ASID is changed).
7615 */
7616 if (ttbr_select == 0) {
7617 ttbr = regime_ttbr(env, mmu_idx, 0);
7618 if (el < 2) {
7619 epd = extract32(tcr->raw_tcr, 7, 1);
7620 }
7621 inputsize = addrsize - t0sz;
7622
7623 tg = extract32(tcr->raw_tcr, 14, 2);
7624 if (tg == 1) { /* 64KB pages */
7625 stride = 13;
7626 }
7627 if (tg == 2) { /* 16KB pages */
7628 stride = 11;
7629 }
7630 } else {
7631 /* We should only be here if TTBR1 is valid */
7632 assert(ttbr1_valid);
7633
7634 ttbr = regime_ttbr(env, mmu_idx, 1);
7635 epd = extract32(tcr->raw_tcr, 23, 1);
7636 inputsize = addrsize - t1sz;
7637
7638 tg = extract32(tcr->raw_tcr, 30, 2);
7639 if (tg == 3) { /* 64KB pages */
7640 stride = 13;
7641 }
7642 if (tg == 1) { /* 16KB pages */
7643 stride = 11;
7644 }
7645 }
7646
7647 /* Here we should have set up all the parameters for the translation:
7648 * inputsize, ttbr, epd, stride, tbi
7649 */
7650
7651 if (epd) {
7652 /* Translation table walk disabled => Translation fault on TLB miss
7653 * Note: This is always 0 on 64-bit EL2 and EL3.
7654 */
7655 goto do_fault;
7656 }
7657
7658 if (mmu_idx != ARMMMUIdx_S2NS) {
7659 /* The starting level depends on the virtual address size (which can
7660 * be up to 48 bits) and the translation granule size. It indicates
7661 * the number of strides (stride bits at a time) needed to
7662 * consume the bits of the input address. In the pseudocode this is:
7663 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7664 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7665 * our 'stride + 3' and 'stride' is our 'stride'.
7666 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7667 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7668 * = 4 - (inputsize - 4) / stride;
7669 */
7670 level = 4 - (inputsize - 4) / stride;
7671 } else {
7672 /* For stage 2 translations the starting level is specified by the
7673 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7674 */
7675 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7676 uint32_t startlevel;
7677 bool ok;
7678
7679 if (!aarch64 || stride == 9) {
7680 /* AArch32 or 4KB pages */
7681 startlevel = 2 - sl0;
7682 } else {
7683 /* 16KB or 64KB pages */
7684 startlevel = 3 - sl0;
7685 }
7686
7687 /* Check that the starting level is valid. */
7688 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7689 inputsize, stride);
7690 if (!ok) {
7691 fault_type = translation_fault;
7692 goto do_fault;
7693 }
7694 level = startlevel;
7695 }
7696
7697 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7698 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7699
7700 /* Now we can extract the actual base address from the TTBR */
7701 descaddr = extract64(ttbr, 0, 48);
7702 descaddr &= ~indexmask;
7703
7704 /* The address field in the descriptor goes up to bit 39 for ARMv7
7705 * but up to bit 47 for ARMv8, but we use the descaddrmask
7706 * up to bit 39 for AArch32, because we don't need other bits in that case
7707 * to construct next descriptor address (anyway they should be all zeroes).
7708 */
7709 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7710 ~indexmask_grainsize;
7711
7712 /* Secure accesses start with the page table in secure memory and
7713 * can be downgraded to non-secure at any step. Non-secure accesses
7714 * remain non-secure. We implement this by just ORing in the NSTable/NS
7715 * bits at each step.
7716 */
7717 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7718 for (;;) {
7719 uint64_t descriptor;
7720 bool nstable;
7721
7722 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7723 descaddr &= ~7ULL;
7724 nstable = extract32(tableattrs, 4, 1);
7725 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7726 if (fi->s1ptw) {
7727 goto do_fault;
7728 }
7729
7730 if (!(descriptor & 1) ||
7731 (!(descriptor & 2) && (level == 3))) {
7732 /* Invalid, or the Reserved level 3 encoding */
7733 goto do_fault;
7734 }
7735 descaddr = descriptor & descaddrmask;
7736
7737 if ((descriptor & 2) && (level < 3)) {
7738 /* Table entry. The top five bits are attributes which may
7739 * propagate down through lower levels of the table (and
7740 * which are all arranged so that 0 means "no effect", so
7741 * we can gather them up by ORing in the bits at each level).
7742 */
7743 tableattrs |= extract64(descriptor, 59, 5);
7744 level++;
7745 indexmask = indexmask_grainsize;
7746 continue;
7747 }
7748 /* Block entry at level 1 or 2, or page entry at level 3.
7749 * These are basically the same thing, although the number
7750 * of bits we pull in from the vaddr varies.
7751 */
7752 page_size = (1ULL << ((stride * (4 - level)) + 3));
7753 descaddr |= (address & (page_size - 1));
7754 /* Extract attributes from the descriptor */
7755 attrs = extract64(descriptor, 2, 10)
7756 | (extract64(descriptor, 52, 12) << 10);
7757
7758 if (mmu_idx == ARMMMUIdx_S2NS) {
7759 /* Stage 2 table descriptors do not include any attribute fields */
7760 break;
7761 }
7762 /* Merge in attributes from table descriptors */
7763 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7764 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7765 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7766 * means "force PL1 access only", which means forcing AP[1] to 0.
7767 */
7768 if (extract32(tableattrs, 2, 1)) {
7769 attrs &= ~(1 << 4);
7770 }
7771 attrs |= nstable << 3; /* NS */
7772 break;
7773 }
7774 /* Here descaddr is the final physical address, and attributes
7775 * are all in attrs.
7776 */
7777 fault_type = access_fault;
7778 if ((attrs & (1 << 8)) == 0) {
7779 /* Access flag */
7780 goto do_fault;
7781 }
7782
7783 ap = extract32(attrs, 4, 2);
7784 xn = extract32(attrs, 12, 1);
7785
7786 if (mmu_idx == ARMMMUIdx_S2NS) {
7787 ns = true;
7788 *prot = get_S2prot(env, ap, xn);
7789 } else {
7790 ns = extract32(attrs, 3, 1);
7791 pxn = extract32(attrs, 11, 1);
7792 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7793 }
7794
7795 fault_type = permission_fault;
7796 if (!(*prot & (1 << access_type))) {
7797 goto do_fault;
7798 }
7799
7800 if (ns) {
7801 /* The NS bit will (as required by the architecture) have no effect if
7802 * the CPU doesn't support TZ or this is a non-secure translation
7803 * regime, because the attribute will already be non-secure.
7804 */
7805 txattrs->secure = false;
7806 }
7807 *phys_ptr = descaddr;
7808 *page_size_ptr = page_size;
7809 return false;
7810
7811 do_fault:
7812 /* Long-descriptor format IFSR/DFSR value */
7813 *fsr = (1 << 9) | (fault_type << 2) | level;
7814 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7815 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7816 return true;
7817 }
7818
7819 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7820 ARMMMUIdx mmu_idx,
7821 int32_t address, int *prot)
7822 {
7823 *prot = PAGE_READ | PAGE_WRITE;
7824 switch (address) {
7825 case 0xF0000000 ... 0xFFFFFFFF:
7826 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7827 *prot |= PAGE_EXEC;
7828 }
7829 break;
7830 case 0x00000000 ... 0x7FFFFFFF:
7831 *prot |= PAGE_EXEC;
7832 break;
7833 }
7834
7835 }
7836
7837 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7838 int access_type, ARMMMUIdx mmu_idx,
7839 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7840 {
7841 ARMCPU *cpu = arm_env_get_cpu(env);
7842 int n;
7843 bool is_user = regime_is_user(env, mmu_idx);
7844
7845 *phys_ptr = address;
7846 *prot = 0;
7847
7848 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7849 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7850 } else { /* MPU enabled */
7851 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7852 /* region search */
7853 uint32_t base = env->pmsav7.drbar[n];
7854 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7855 uint32_t rmask;
7856 bool srdis = false;
7857
7858 if (!(env->pmsav7.drsr[n] & 0x1)) {
7859 continue;
7860 }
7861
7862 if (!rsize) {
7863 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7864 continue;
7865 }
7866 rsize++;
7867 rmask = (1ull << rsize) - 1;
7868
7869 if (base & rmask) {
7870 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7871 "to DRSR region size, mask = %" PRIx32,
7872 base, rmask);
7873 continue;
7874 }
7875
7876 if (address < base || address > base + rmask) {
7877 continue;
7878 }
7879
7880 /* Region matched */
7881
7882 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7883 int i, snd;
7884 uint32_t srdis_mask;
7885
7886 rsize -= 3; /* sub region size (power of 2) */
7887 snd = ((address - base) >> rsize) & 0x7;
7888 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7889
7890 srdis_mask = srdis ? 0x3 : 0x0;
7891 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7892 /* This will check in groups of 2, 4 and then 8, whether
7893 * the subregion bits are consistent. rsize is incremented
7894 * back up to give the region size, considering consistent
7895 * adjacent subregions as one region. Stop testing if rsize
7896 * is already big enough for an entire QEMU page.
7897 */
7898 int snd_rounded = snd & ~(i - 1);
7899 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7900 snd_rounded + 8, i);
7901 if (srdis_mask ^ srdis_multi) {
7902 break;
7903 }
7904 srdis_mask = (srdis_mask << i) | srdis_mask;
7905 rsize++;
7906 }
7907 }
7908 if (rsize < TARGET_PAGE_BITS) {
7909 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7910 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7911 rsize, TARGET_PAGE_BITS);
7912 continue;
7913 }
7914 if (srdis) {
7915 continue;
7916 }
7917 break;
7918 }
7919
7920 if (n == -1) { /* no hits */
7921 if (cpu->pmsav7_dregion &&
7922 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7923 /* background fault */
7924 *fsr = 0;
7925 return true;
7926 }
7927 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7928 } else { /* a MPU hit! */
7929 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7930
7931 if (is_user) { /* User mode AP bit decoding */
7932 switch (ap) {
7933 case 0:
7934 case 1:
7935 case 5:
7936 break; /* no access */
7937 case 3:
7938 *prot |= PAGE_WRITE;
7939 /* fall through */
7940 case 2:
7941 case 6:
7942 *prot |= PAGE_READ | PAGE_EXEC;
7943 break;
7944 default:
7945 qemu_log_mask(LOG_GUEST_ERROR,
7946 "Bad value for AP bits in DRACR %"
7947 PRIx32 "\n", ap);
7948 }
7949 } else { /* Priv. mode AP bits decoding */
7950 switch (ap) {
7951 case 0:
7952 break; /* no access */
7953 case 1:
7954 case 2:
7955 case 3:
7956 *prot |= PAGE_WRITE;
7957 /* fall through */
7958 case 5:
7959 case 6:
7960 *prot |= PAGE_READ | PAGE_EXEC;
7961 break;
7962 default:
7963 qemu_log_mask(LOG_GUEST_ERROR,
7964 "Bad value for AP bits in DRACR %"
7965 PRIx32 "\n", ap);
7966 }
7967 }
7968
7969 /* execute never */
7970 if (env->pmsav7.dracr[n] & (1 << 12)) {
7971 *prot &= ~PAGE_EXEC;
7972 }
7973 }
7974 }
7975
7976 *fsr = 0x00d; /* Permission fault */
7977 return !(*prot & (1 << access_type));
7978 }
7979
7980 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7981 int access_type, ARMMMUIdx mmu_idx,
7982 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7983 {
7984 int n;
7985 uint32_t mask;
7986 uint32_t base;
7987 bool is_user = regime_is_user(env, mmu_idx);
7988
7989 *phys_ptr = address;
7990 for (n = 7; n >= 0; n--) {
7991 base = env->cp15.c6_region[n];
7992 if ((base & 1) == 0) {
7993 continue;
7994 }
7995 mask = 1 << ((base >> 1) & 0x1f);
7996 /* Keep this shift separate from the above to avoid an
7997 (undefined) << 32. */
7998 mask = (mask << 1) - 1;
7999 if (((base ^ address) & ~mask) == 0) {
8000 break;
8001 }
8002 }
8003 if (n < 0) {
8004 *fsr = 2;
8005 return true;
8006 }
8007
8008 if (access_type == 2) {
8009 mask = env->cp15.pmsav5_insn_ap;
8010 } else {
8011 mask = env->cp15.pmsav5_data_ap;
8012 }
8013 mask = (mask >> (n * 4)) & 0xf;
8014 switch (mask) {
8015 case 0:
8016 *fsr = 1;
8017 return true;
8018 case 1:
8019 if (is_user) {
8020 *fsr = 1;
8021 return true;
8022 }
8023 *prot = PAGE_READ | PAGE_WRITE;
8024 break;
8025 case 2:
8026 *prot = PAGE_READ;
8027 if (!is_user) {
8028 *prot |= PAGE_WRITE;
8029 }
8030 break;
8031 case 3:
8032 *prot = PAGE_READ | PAGE_WRITE;
8033 break;
8034 case 5:
8035 if (is_user) {
8036 *fsr = 1;
8037 return true;
8038 }
8039 *prot = PAGE_READ;
8040 break;
8041 case 6:
8042 *prot = PAGE_READ;
8043 break;
8044 default:
8045 /* Bad permission. */
8046 *fsr = 1;
8047 return true;
8048 }
8049 *prot |= PAGE_EXEC;
8050 return false;
8051 }
8052
8053 /* get_phys_addr - get the physical address for this virtual address
8054 *
8055 * Find the physical address corresponding to the given virtual address,
8056 * by doing a translation table walk on MMU based systems or using the
8057 * MPU state on MPU based systems.
8058 *
8059 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8060 * prot and page_size may not be filled in, and the populated fsr value provides
8061 * information on why the translation aborted, in the format of a
8062 * DFSR/IFSR fault register, with the following caveats:
8063 * * we honour the short vs long DFSR format differences.
8064 * * the WnR bit is never set (the caller must do this).
8065 * * for PSMAv5 based systems we don't bother to return a full FSR format
8066 * value.
8067 *
8068 * @env: CPUARMState
8069 * @address: virtual address to get physical address for
8070 * @access_type: 0 for read, 1 for write, 2 for execute
8071 * @mmu_idx: MMU index indicating required translation regime
8072 * @phys_ptr: set to the physical address corresponding to the virtual address
8073 * @attrs: set to the memory transaction attributes to use
8074 * @prot: set to the permissions for the page containing phys_ptr
8075 * @page_size: set to the size of the page containing phys_ptr
8076 * @fsr: set to the DFSR/IFSR value on failure
8077 */
8078 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8079 int access_type, ARMMMUIdx mmu_idx,
8080 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8081 target_ulong *page_size, uint32_t *fsr,
8082 ARMMMUFaultInfo *fi)
8083 {
8084 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8085 /* Call ourselves recursively to do the stage 1 and then stage 2
8086 * translations.
8087 */
8088 if (arm_feature(env, ARM_FEATURE_EL2)) {
8089 hwaddr ipa;
8090 int s2_prot;
8091 int ret;
8092
8093 ret = get_phys_addr(env, address, access_type,
8094 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8095 prot, page_size, fsr, fi);
8096
8097 /* If S1 fails or S2 is disabled, return early. */
8098 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8099 *phys_ptr = ipa;
8100 return ret;
8101 }
8102
8103 /* S1 is done. Now do S2 translation. */
8104 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8105 phys_ptr, attrs, &s2_prot,
8106 page_size, fsr, fi);
8107 fi->s2addr = ipa;
8108 /* Combine the S1 and S2 perms. */
8109 *prot &= s2_prot;
8110 return ret;
8111 } else {
8112 /*
8113 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8114 */
8115 mmu_idx += ARMMMUIdx_S1NSE0;
8116 }
8117 }
8118
8119 /* The page table entries may downgrade secure to non-secure, but
8120 * cannot upgrade an non-secure translation regime's attributes
8121 * to secure.
8122 */
8123 attrs->secure = regime_is_secure(env, mmu_idx);
8124 attrs->user = regime_is_user(env, mmu_idx);
8125
8126 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8127 * In v7 and earlier it affects all stage 1 translations.
8128 */
8129 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8130 && !arm_feature(env, ARM_FEATURE_V8)) {
8131 if (regime_el(env, mmu_idx) == 3) {
8132 address += env->cp15.fcseidr_s;
8133 } else {
8134 address += env->cp15.fcseidr_ns;
8135 }
8136 }
8137
8138 /* pmsav7 has special handling for when MPU is disabled so call it before
8139 * the common MMU/MPU disabled check below.
8140 */
8141 if (arm_feature(env, ARM_FEATURE_MPU) &&
8142 arm_feature(env, ARM_FEATURE_V7)) {
8143 *page_size = TARGET_PAGE_SIZE;
8144 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8145 phys_ptr, prot, fsr);
8146 }
8147
8148 if (regime_translation_disabled(env, mmu_idx)) {
8149 /* MMU/MPU disabled. */
8150 *phys_ptr = address;
8151 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8152 *page_size = TARGET_PAGE_SIZE;
8153 return 0;
8154 }
8155
8156 if (arm_feature(env, ARM_FEATURE_MPU)) {
8157 /* Pre-v7 MPU */
8158 *page_size = TARGET_PAGE_SIZE;
8159 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8160 phys_ptr, prot, fsr);
8161 }
8162
8163 if (regime_using_lpae_format(env, mmu_idx)) {
8164 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8165 attrs, prot, page_size, fsr, fi);
8166 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8167 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8168 attrs, prot, page_size, fsr, fi);
8169 } else {
8170 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8171 prot, page_size, fsr, fi);
8172 }
8173 }
8174
8175 /* Walk the page table and (if the mapping exists) add the page
8176 * to the TLB. Return false on success, or true on failure. Populate
8177 * fsr with ARM DFSR/IFSR fault register format value on failure.
8178 */
8179 bool arm_tlb_fill(CPUState *cs, vaddr address,
8180 int access_type, int mmu_idx, uint32_t *fsr,
8181 ARMMMUFaultInfo *fi)
8182 {
8183 ARMCPU *cpu = ARM_CPU(cs);
8184 CPUARMState *env = &cpu->env;
8185 hwaddr phys_addr;
8186 target_ulong page_size;
8187 int prot;
8188 int ret;
8189 MemTxAttrs attrs = {};
8190
8191 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8192 &attrs, &prot, &page_size, fsr, fi);
8193 if (!ret) {
8194 /* Map a single [sub]page. */
8195 phys_addr &= TARGET_PAGE_MASK;
8196 address &= TARGET_PAGE_MASK;
8197 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8198 prot, mmu_idx, page_size);
8199 return 0;
8200 }
8201
8202 return ret;
8203 }
8204
8205 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8206 MemTxAttrs *attrs)
8207 {
8208 ARMCPU *cpu = ARM_CPU(cs);
8209 CPUARMState *env = &cpu->env;
8210 hwaddr phys_addr;
8211 target_ulong page_size;
8212 int prot;
8213 bool ret;
8214 uint32_t fsr;
8215 ARMMMUFaultInfo fi = {};
8216
8217 *attrs = (MemTxAttrs) {};
8218
8219 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8220 attrs, &prot, &page_size, &fsr, &fi);
8221
8222 if (ret) {
8223 return -1;
8224 }
8225 return phys_addr;
8226 }
8227
8228 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8229 {
8230 ARMCPU *cpu = arm_env_get_cpu(env);
8231
8232 switch (reg) {
8233 case 0: /* APSR */
8234 return xpsr_read(env) & 0xf8000000;
8235 case 1: /* IAPSR */
8236 return xpsr_read(env) & 0xf80001ff;
8237 case 2: /* EAPSR */
8238 return xpsr_read(env) & 0xff00fc00;
8239 case 3: /* xPSR */
8240 return xpsr_read(env) & 0xff00fdff;
8241 case 5: /* IPSR */
8242 return xpsr_read(env) & 0x000001ff;
8243 case 6: /* EPSR */
8244 return xpsr_read(env) & 0x0700fc00;
8245 case 7: /* IEPSR */
8246 return xpsr_read(env) & 0x0700edff;
8247 case 8: /* MSP */
8248 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
8249 case 9: /* PSP */
8250 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
8251 case 16: /* PRIMASK */
8252 return (env->daif & PSTATE_I) != 0;
8253 case 17: /* BASEPRI */
8254 case 18: /* BASEPRI_MAX */
8255 return env->v7m.basepri;
8256 case 19: /* FAULTMASK */
8257 return (env->daif & PSTATE_F) != 0;
8258 case 20: /* CONTROL */
8259 return env->v7m.control;
8260 default:
8261 /* ??? For debugging only. */
8262 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
8263 return 0;
8264 }
8265 }
8266
8267 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8268 {
8269 ARMCPU *cpu = arm_env_get_cpu(env);
8270
8271 switch (reg) {
8272 case 0: /* APSR */
8273 xpsr_write(env, val, 0xf8000000);
8274 break;
8275 case 1: /* IAPSR */
8276 xpsr_write(env, val, 0xf8000000);
8277 break;
8278 case 2: /* EAPSR */
8279 xpsr_write(env, val, 0xfe00fc00);
8280 break;
8281 case 3: /* xPSR */
8282 xpsr_write(env, val, 0xfe00fc00);
8283 break;
8284 case 5: /* IPSR */
8285 /* IPSR bits are readonly. */
8286 break;
8287 case 6: /* EPSR */
8288 xpsr_write(env, val, 0x0600fc00);
8289 break;
8290 case 7: /* IEPSR */
8291 xpsr_write(env, val, 0x0600fc00);
8292 break;
8293 case 8: /* MSP */
8294 if (env->v7m.current_sp)
8295 env->v7m.other_sp = val;
8296 else
8297 env->regs[13] = val;
8298 break;
8299 case 9: /* PSP */
8300 if (env->v7m.current_sp)
8301 env->regs[13] = val;
8302 else
8303 env->v7m.other_sp = val;
8304 break;
8305 case 16: /* PRIMASK */
8306 if (val & 1) {
8307 env->daif |= PSTATE_I;
8308 } else {
8309 env->daif &= ~PSTATE_I;
8310 }
8311 break;
8312 case 17: /* BASEPRI */
8313 env->v7m.basepri = val & 0xff;
8314 break;
8315 case 18: /* BASEPRI_MAX */
8316 val &= 0xff;
8317 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8318 env->v7m.basepri = val;
8319 break;
8320 case 19: /* FAULTMASK */
8321 if (val & 1) {
8322 env->daif |= PSTATE_F;
8323 } else {
8324 env->daif &= ~PSTATE_F;
8325 }
8326 break;
8327 case 20: /* CONTROL */
8328 env->v7m.control = val & 3;
8329 switch_v7m_sp(env, (val & 2) != 0);
8330 break;
8331 default:
8332 /* ??? For debugging only. */
8333 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
8334 return;
8335 }
8336 }
8337
8338 #endif
8339
8340 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8341 {
8342 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8343 * Note that we do not implement the (architecturally mandated)
8344 * alignment fault for attempts to use this on Device memory
8345 * (which matches the usual QEMU behaviour of not implementing either
8346 * alignment faults or any memory attribute handling).
8347 */
8348
8349 ARMCPU *cpu = arm_env_get_cpu(env);
8350 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8351 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8352
8353 #ifndef CONFIG_USER_ONLY
8354 {
8355 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8356 * the block size so we might have to do more than one TLB lookup.
8357 * We know that in fact for any v8 CPU the page size is at least 4K
8358 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8359 * 1K as an artefact of legacy v5 subpage support being present in the
8360 * same QEMU executable.
8361 */
8362 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8363 void *hostaddr[maxidx];
8364 int try, i;
8365 unsigned mmu_idx = cpu_mmu_index(env, false);
8366 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8367
8368 for (try = 0; try < 2; try++) {
8369
8370 for (i = 0; i < maxidx; i++) {
8371 hostaddr[i] = tlb_vaddr_to_host(env,
8372 vaddr + TARGET_PAGE_SIZE * i,
8373 1, mmu_idx);
8374 if (!hostaddr[i]) {
8375 break;
8376 }
8377 }
8378 if (i == maxidx) {
8379 /* If it's all in the TLB it's fair game for just writing to;
8380 * we know we don't need to update dirty status, etc.
8381 */
8382 for (i = 0; i < maxidx - 1; i++) {
8383 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8384 }
8385 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8386 return;
8387 }
8388 /* OK, try a store and see if we can populate the tlb. This
8389 * might cause an exception if the memory isn't writable,
8390 * in which case we will longjmp out of here. We must for
8391 * this purpose use the actual register value passed to us
8392 * so that we get the fault address right.
8393 */
8394 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8395 /* Now we can populate the other TLB entries, if any */
8396 for (i = 0; i < maxidx; i++) {
8397 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8398 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8399 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8400 }
8401 }
8402 }
8403
8404 /* Slow path (probably attempt to do this to an I/O device or
8405 * similar, or clearing of a block of code we have translations
8406 * cached for). Just do a series of byte writes as the architecture
8407 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8408 * memset(), unmap() sequence here because:
8409 * + we'd need to account for the blocksize being larger than a page
8410 * + the direct-RAM access case is almost always going to be dealt
8411 * with in the fastpath code above, so there's no speed benefit
8412 * + we would have to deal with the map returning NULL because the
8413 * bounce buffer was in use
8414 */
8415 for (i = 0; i < blocklen; i++) {
8416 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8417 }
8418 }
8419 #else
8420 memset(g2h(vaddr), 0, blocklen);
8421 #endif
8422 }
8423
8424 /* Note that signed overflow is undefined in C. The following routines are
8425 careful to use unsigned types where modulo arithmetic is required.
8426 Failure to do so _will_ break on newer gcc. */
8427
8428 /* Signed saturating arithmetic. */
8429
8430 /* Perform 16-bit signed saturating addition. */
8431 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8432 {
8433 uint16_t res;
8434
8435 res = a + b;
8436 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8437 if (a & 0x8000)
8438 res = 0x8000;
8439 else
8440 res = 0x7fff;
8441 }
8442 return res;
8443 }
8444
8445 /* Perform 8-bit signed saturating addition. */
8446 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8447 {
8448 uint8_t res;
8449
8450 res = a + b;
8451 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8452 if (a & 0x80)
8453 res = 0x80;
8454 else
8455 res = 0x7f;
8456 }
8457 return res;
8458 }
8459
8460 /* Perform 16-bit signed saturating subtraction. */
8461 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8462 {
8463 uint16_t res;
8464
8465 res = a - b;
8466 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8467 if (a & 0x8000)
8468 res = 0x8000;
8469 else
8470 res = 0x7fff;
8471 }
8472 return res;
8473 }
8474
8475 /* Perform 8-bit signed saturating subtraction. */
8476 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8477 {
8478 uint8_t res;
8479
8480 res = a - b;
8481 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8482 if (a & 0x80)
8483 res = 0x80;
8484 else
8485 res = 0x7f;
8486 }
8487 return res;
8488 }
8489
8490 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8491 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8492 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8493 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8494 #define PFX q
8495
8496 #include "op_addsub.h"
8497
8498 /* Unsigned saturating arithmetic. */
8499 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8500 {
8501 uint16_t res;
8502 res = a + b;
8503 if (res < a)
8504 res = 0xffff;
8505 return res;
8506 }
8507
8508 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8509 {
8510 if (a > b)
8511 return a - b;
8512 else
8513 return 0;
8514 }
8515
8516 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8517 {
8518 uint8_t res;
8519 res = a + b;
8520 if (res < a)
8521 res = 0xff;
8522 return res;
8523 }
8524
8525 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8526 {
8527 if (a > b)
8528 return a - b;
8529 else
8530 return 0;
8531 }
8532
8533 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8534 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8535 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8536 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8537 #define PFX uq
8538
8539 #include "op_addsub.h"
8540
8541 /* Signed modulo arithmetic. */
8542 #define SARITH16(a, b, n, op) do { \
8543 int32_t sum; \
8544 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8545 RESULT(sum, n, 16); \
8546 if (sum >= 0) \
8547 ge |= 3 << (n * 2); \
8548 } while(0)
8549
8550 #define SARITH8(a, b, n, op) do { \
8551 int32_t sum; \
8552 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8553 RESULT(sum, n, 8); \
8554 if (sum >= 0) \
8555 ge |= 1 << n; \
8556 } while(0)
8557
8558
8559 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8560 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8561 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8562 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8563 #define PFX s
8564 #define ARITH_GE
8565
8566 #include "op_addsub.h"
8567
8568 /* Unsigned modulo arithmetic. */
8569 #define ADD16(a, b, n) do { \
8570 uint32_t sum; \
8571 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8572 RESULT(sum, n, 16); \
8573 if ((sum >> 16) == 1) \
8574 ge |= 3 << (n * 2); \
8575 } while(0)
8576
8577 #define ADD8(a, b, n) do { \
8578 uint32_t sum; \
8579 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8580 RESULT(sum, n, 8); \
8581 if ((sum >> 8) == 1) \
8582 ge |= 1 << n; \
8583 } while(0)
8584
8585 #define SUB16(a, b, n) do { \
8586 uint32_t sum; \
8587 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8588 RESULT(sum, n, 16); \
8589 if ((sum >> 16) == 0) \
8590 ge |= 3 << (n * 2); \
8591 } while(0)
8592
8593 #define SUB8(a, b, n) do { \
8594 uint32_t sum; \
8595 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8596 RESULT(sum, n, 8); \
8597 if ((sum >> 8) == 0) \
8598 ge |= 1 << n; \
8599 } while(0)
8600
8601 #define PFX u
8602 #define ARITH_GE
8603
8604 #include "op_addsub.h"
8605
8606 /* Halved signed arithmetic. */
8607 #define ADD16(a, b, n) \
8608 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8609 #define SUB16(a, b, n) \
8610 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8611 #define ADD8(a, b, n) \
8612 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8613 #define SUB8(a, b, n) \
8614 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8615 #define PFX sh
8616
8617 #include "op_addsub.h"
8618
8619 /* Halved unsigned arithmetic. */
8620 #define ADD16(a, b, n) \
8621 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8622 #define SUB16(a, b, n) \
8623 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8624 #define ADD8(a, b, n) \
8625 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8626 #define SUB8(a, b, n) \
8627 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8628 #define PFX uh
8629
8630 #include "op_addsub.h"
8631
8632 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8633 {
8634 if (a > b)
8635 return a - b;
8636 else
8637 return b - a;
8638 }
8639
8640 /* Unsigned sum of absolute byte differences. */
8641 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8642 {
8643 uint32_t sum;
8644 sum = do_usad(a, b);
8645 sum += do_usad(a >> 8, b >> 8);
8646 sum += do_usad(a >> 16, b >>16);
8647 sum += do_usad(a >> 24, b >> 24);
8648 return sum;
8649 }
8650
8651 /* For ARMv6 SEL instruction. */
8652 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8653 {
8654 uint32_t mask;
8655
8656 mask = 0;
8657 if (flags & 1)
8658 mask |= 0xff;
8659 if (flags & 2)
8660 mask |= 0xff00;
8661 if (flags & 4)
8662 mask |= 0xff0000;
8663 if (flags & 8)
8664 mask |= 0xff000000;
8665 return (a & mask) | (b & ~mask);
8666 }
8667
8668 /* VFP support. We follow the convention used for VFP instructions:
8669 Single precision routines have a "s" suffix, double precision a
8670 "d" suffix. */
8671
8672 /* Convert host exception flags to vfp form. */
8673 static inline int vfp_exceptbits_from_host(int host_bits)
8674 {
8675 int target_bits = 0;
8676
8677 if (host_bits & float_flag_invalid)
8678 target_bits |= 1;
8679 if (host_bits & float_flag_divbyzero)
8680 target_bits |= 2;
8681 if (host_bits & float_flag_overflow)
8682 target_bits |= 4;
8683 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8684 target_bits |= 8;
8685 if (host_bits & float_flag_inexact)
8686 target_bits |= 0x10;
8687 if (host_bits & float_flag_input_denormal)
8688 target_bits |= 0x80;
8689 return target_bits;
8690 }
8691
8692 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8693 {
8694 int i;
8695 uint32_t fpscr;
8696
8697 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8698 | (env->vfp.vec_len << 16)
8699 | (env->vfp.vec_stride << 20);
8700 i = get_float_exception_flags(&env->vfp.fp_status);
8701 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8702 fpscr |= vfp_exceptbits_from_host(i);
8703 return fpscr;
8704 }
8705
8706 uint32_t vfp_get_fpscr(CPUARMState *env)
8707 {
8708 return HELPER(vfp_get_fpscr)(env);
8709 }
8710
8711 /* Convert vfp exception flags to target form. */
8712 static inline int vfp_exceptbits_to_host(int target_bits)
8713 {
8714 int host_bits = 0;
8715
8716 if (target_bits & 1)
8717 host_bits |= float_flag_invalid;
8718 if (target_bits & 2)
8719 host_bits |= float_flag_divbyzero;
8720 if (target_bits & 4)
8721 host_bits |= float_flag_overflow;
8722 if (target_bits & 8)
8723 host_bits |= float_flag_underflow;
8724 if (target_bits & 0x10)
8725 host_bits |= float_flag_inexact;
8726 if (target_bits & 0x80)
8727 host_bits |= float_flag_input_denormal;
8728 return host_bits;
8729 }
8730
8731 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8732 {
8733 int i;
8734 uint32_t changed;
8735
8736 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8737 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8738 env->vfp.vec_len = (val >> 16) & 7;
8739 env->vfp.vec_stride = (val >> 20) & 3;
8740
8741 changed ^= val;
8742 if (changed & (3 << 22)) {
8743 i = (val >> 22) & 3;
8744 switch (i) {
8745 case FPROUNDING_TIEEVEN:
8746 i = float_round_nearest_even;
8747 break;
8748 case FPROUNDING_POSINF:
8749 i = float_round_up;
8750 break;
8751 case FPROUNDING_NEGINF:
8752 i = float_round_down;
8753 break;
8754 case FPROUNDING_ZERO:
8755 i = float_round_to_zero;
8756 break;
8757 }
8758 set_float_rounding_mode(i, &env->vfp.fp_status);
8759 }
8760 if (changed & (1 << 24)) {
8761 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8762 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8763 }
8764 if (changed & (1 << 25))
8765 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8766
8767 i = vfp_exceptbits_to_host(val);
8768 set_float_exception_flags(i, &env->vfp.fp_status);
8769 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8770 }
8771
8772 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8773 {
8774 HELPER(vfp_set_fpscr)(env, val);
8775 }
8776
8777 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8778
8779 #define VFP_BINOP(name) \
8780 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8781 { \
8782 float_status *fpst = fpstp; \
8783 return float32_ ## name(a, b, fpst); \
8784 } \
8785 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8786 { \
8787 float_status *fpst = fpstp; \
8788 return float64_ ## name(a, b, fpst); \
8789 }
8790 VFP_BINOP(add)
8791 VFP_BINOP(sub)
8792 VFP_BINOP(mul)
8793 VFP_BINOP(div)
8794 VFP_BINOP(min)
8795 VFP_BINOP(max)
8796 VFP_BINOP(minnum)
8797 VFP_BINOP(maxnum)
8798 #undef VFP_BINOP
8799
8800 float32 VFP_HELPER(neg, s)(float32 a)
8801 {
8802 return float32_chs(a);
8803 }
8804
8805 float64 VFP_HELPER(neg, d)(float64 a)
8806 {
8807 return float64_chs(a);
8808 }
8809
8810 float32 VFP_HELPER(abs, s)(float32 a)
8811 {
8812 return float32_abs(a);
8813 }
8814
8815 float64 VFP_HELPER(abs, d)(float64 a)
8816 {
8817 return float64_abs(a);
8818 }
8819
8820 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8821 {
8822 return float32_sqrt(a, &env->vfp.fp_status);
8823 }
8824
8825 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8826 {
8827 return float64_sqrt(a, &env->vfp.fp_status);
8828 }
8829
8830 /* XXX: check quiet/signaling case */
8831 #define DO_VFP_cmp(p, type) \
8832 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8833 { \
8834 uint32_t flags; \
8835 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8836 case 0: flags = 0x6; break; \
8837 case -1: flags = 0x8; break; \
8838 case 1: flags = 0x2; break; \
8839 default: case 2: flags = 0x3; break; \
8840 } \
8841 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8842 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8843 } \
8844 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8845 { \
8846 uint32_t flags; \
8847 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8848 case 0: flags = 0x6; break; \
8849 case -1: flags = 0x8; break; \
8850 case 1: flags = 0x2; break; \
8851 default: case 2: flags = 0x3; break; \
8852 } \
8853 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8854 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8855 }
8856 DO_VFP_cmp(s, float32)
8857 DO_VFP_cmp(d, float64)
8858 #undef DO_VFP_cmp
8859
8860 /* Integer to float and float to integer conversions */
8861
8862 #define CONV_ITOF(name, fsz, sign) \
8863 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8864 { \
8865 float_status *fpst = fpstp; \
8866 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8867 }
8868
8869 #define CONV_FTOI(name, fsz, sign, round) \
8870 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8871 { \
8872 float_status *fpst = fpstp; \
8873 if (float##fsz##_is_any_nan(x)) { \
8874 float_raise(float_flag_invalid, fpst); \
8875 return 0; \
8876 } \
8877 return float##fsz##_to_##sign##int32##round(x, fpst); \
8878 }
8879
8880 #define FLOAT_CONVS(name, p, fsz, sign) \
8881 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8882 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8883 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8884
8885 FLOAT_CONVS(si, s, 32, )
8886 FLOAT_CONVS(si, d, 64, )
8887 FLOAT_CONVS(ui, s, 32, u)
8888 FLOAT_CONVS(ui, d, 64, u)
8889
8890 #undef CONV_ITOF
8891 #undef CONV_FTOI
8892 #undef FLOAT_CONVS
8893
8894 /* floating point conversion */
8895 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8896 {
8897 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8898 /* ARM requires that S<->D conversion of any kind of NaN generates
8899 * a quiet NaN by forcing the most significant frac bit to 1.
8900 */
8901 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8902 }
8903
8904 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8905 {
8906 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8907 /* ARM requires that S<->D conversion of any kind of NaN generates
8908 * a quiet NaN by forcing the most significant frac bit to 1.
8909 */
8910 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
8911 }
8912
8913 /* VFP3 fixed point conversion. */
8914 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8915 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8916 void *fpstp) \
8917 { \
8918 float_status *fpst = fpstp; \
8919 float##fsz tmp; \
8920 tmp = itype##_to_##float##fsz(x, fpst); \
8921 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8922 }
8923
8924 /* Notice that we want only input-denormal exception flags from the
8925 * scalbn operation: the other possible flags (overflow+inexact if
8926 * we overflow to infinity, output-denormal) aren't correct for the
8927 * complete scale-and-convert operation.
8928 */
8929 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8930 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8931 uint32_t shift, \
8932 void *fpstp) \
8933 { \
8934 float_status *fpst = fpstp; \
8935 int old_exc_flags = get_float_exception_flags(fpst); \
8936 float##fsz tmp; \
8937 if (float##fsz##_is_any_nan(x)) { \
8938 float_raise(float_flag_invalid, fpst); \
8939 return 0; \
8940 } \
8941 tmp = float##fsz##_scalbn(x, shift, fpst); \
8942 old_exc_flags |= get_float_exception_flags(fpst) \
8943 & float_flag_input_denormal; \
8944 set_float_exception_flags(old_exc_flags, fpst); \
8945 return float##fsz##_to_##itype##round(tmp, fpst); \
8946 }
8947
8948 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8949 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8950 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8951 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8952
8953 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8954 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8955 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8956
8957 VFP_CONV_FIX(sh, d, 64, 64, int16)
8958 VFP_CONV_FIX(sl, d, 64, 64, int32)
8959 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8960 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8961 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8962 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8963 VFP_CONV_FIX(sh, s, 32, 32, int16)
8964 VFP_CONV_FIX(sl, s, 32, 32, int32)
8965 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8966 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8967 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8968 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8969 #undef VFP_CONV_FIX
8970 #undef VFP_CONV_FIX_FLOAT
8971 #undef VFP_CONV_FLOAT_FIX_ROUND
8972
8973 /* Set the current fp rounding mode and return the old one.
8974 * The argument is a softfloat float_round_ value.
8975 */
8976 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8977 {
8978 float_status *fp_status = &env->vfp.fp_status;
8979
8980 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8981 set_float_rounding_mode(rmode, fp_status);
8982
8983 return prev_rmode;
8984 }
8985
8986 /* Set the current fp rounding mode in the standard fp status and return
8987 * the old one. This is for NEON instructions that need to change the
8988 * rounding mode but wish to use the standard FPSCR values for everything
8989 * else. Always set the rounding mode back to the correct value after
8990 * modifying it.
8991 * The argument is a softfloat float_round_ value.
8992 */
8993 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8994 {
8995 float_status *fp_status = &env->vfp.standard_fp_status;
8996
8997 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8998 set_float_rounding_mode(rmode, fp_status);
8999
9000 return prev_rmode;
9001 }
9002
9003 /* Half precision conversions. */
9004 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9005 {
9006 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9007 float32 r = float16_to_float32(make_float16(a), ieee, s);
9008 if (ieee) {
9009 return float32_maybe_silence_nan(r, s);
9010 }
9011 return r;
9012 }
9013
9014 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9015 {
9016 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9017 float16 r = float32_to_float16(a, ieee, s);
9018 if (ieee) {
9019 r = float16_maybe_silence_nan(r, s);
9020 }
9021 return float16_val(r);
9022 }
9023
9024 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9025 {
9026 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9027 }
9028
9029 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9030 {
9031 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9032 }
9033
9034 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9035 {
9036 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9037 }
9038
9039 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9040 {
9041 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9042 }
9043
9044 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9045 {
9046 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9047 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9048 if (ieee) {
9049 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9050 }
9051 return r;
9052 }
9053
9054 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9055 {
9056 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9057 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9058 if (ieee) {
9059 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9060 }
9061 return float16_val(r);
9062 }
9063
9064 #define float32_two make_float32(0x40000000)
9065 #define float32_three make_float32(0x40400000)
9066 #define float32_one_point_five make_float32(0x3fc00000)
9067
9068 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9069 {
9070 float_status *s = &env->vfp.standard_fp_status;
9071 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9072 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9073 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9074 float_raise(float_flag_input_denormal, s);
9075 }
9076 return float32_two;
9077 }
9078 return float32_sub(float32_two, float32_mul(a, b, s), s);
9079 }
9080
9081 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9082 {
9083 float_status *s = &env->vfp.standard_fp_status;
9084 float32 product;
9085 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9086 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9087 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9088 float_raise(float_flag_input_denormal, s);
9089 }
9090 return float32_one_point_five;
9091 }
9092 product = float32_mul(a, b, s);
9093 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9094 }
9095
9096 /* NEON helpers. */
9097
9098 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9099 * int->float conversions at run-time. */
9100 #define float64_256 make_float64(0x4070000000000000LL)
9101 #define float64_512 make_float64(0x4080000000000000LL)
9102 #define float32_maxnorm make_float32(0x7f7fffff)
9103 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9104
9105 /* Reciprocal functions
9106 *
9107 * The algorithm that must be used to calculate the estimate
9108 * is specified by the ARM ARM, see FPRecipEstimate()
9109 */
9110
9111 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9112 {
9113 /* These calculations mustn't set any fp exception flags,
9114 * so we use a local copy of the fp_status.
9115 */
9116 float_status dummy_status = *real_fp_status;
9117 float_status *s = &dummy_status;
9118 /* q = (int)(a * 512.0) */
9119 float64 q = float64_mul(float64_512, a, s);
9120 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9121
9122 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9123 q = int64_to_float64(q_int, s);
9124 q = float64_add(q, float64_half, s);
9125 q = float64_div(q, float64_512, s);
9126 q = float64_div(float64_one, q, s);
9127
9128 /* s = (int)(256.0 * r + 0.5) */
9129 q = float64_mul(q, float64_256, s);
9130 q = float64_add(q, float64_half, s);
9131 q_int = float64_to_int64_round_to_zero(q, s);
9132
9133 /* return (double)s / 256.0 */
9134 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9135 }
9136
9137 /* Common wrapper to call recip_estimate */
9138 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9139 {
9140 uint64_t val64 = float64_val(num);
9141 uint64_t frac = extract64(val64, 0, 52);
9142 int64_t exp = extract64(val64, 52, 11);
9143 uint64_t sbit;
9144 float64 scaled, estimate;
9145
9146 /* Generate the scaled number for the estimate function */
9147 if (exp == 0) {
9148 if (extract64(frac, 51, 1) == 0) {
9149 exp = -1;
9150 frac = extract64(frac, 0, 50) << 2;
9151 } else {
9152 frac = extract64(frac, 0, 51) << 1;
9153 }
9154 }
9155
9156 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9157 scaled = make_float64((0x3feULL << 52)
9158 | extract64(frac, 44, 8) << 44);
9159
9160 estimate = recip_estimate(scaled, fpst);
9161
9162 /* Build new result */
9163 val64 = float64_val(estimate);
9164 sbit = 0x8000000000000000ULL & val64;
9165 exp = off - exp;
9166 frac = extract64(val64, 0, 52);
9167
9168 if (exp == 0) {
9169 frac = 1ULL << 51 | extract64(frac, 1, 51);
9170 } else if (exp == -1) {
9171 frac = 1ULL << 50 | extract64(frac, 2, 50);
9172 exp = 0;
9173 }
9174
9175 return make_float64(sbit | (exp << 52) | frac);
9176 }
9177
9178 static bool round_to_inf(float_status *fpst, bool sign_bit)
9179 {
9180 switch (fpst->float_rounding_mode) {
9181 case float_round_nearest_even: /* Round to Nearest */
9182 return true;
9183 case float_round_up: /* Round to +Inf */
9184 return !sign_bit;
9185 case float_round_down: /* Round to -Inf */
9186 return sign_bit;
9187 case float_round_to_zero: /* Round to Zero */
9188 return false;
9189 }
9190
9191 g_assert_not_reached();
9192 }
9193
9194 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9195 {
9196 float_status *fpst = fpstp;
9197 float32 f32 = float32_squash_input_denormal(input, fpst);
9198 uint32_t f32_val = float32_val(f32);
9199 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9200 int32_t f32_exp = extract32(f32_val, 23, 8);
9201 uint32_t f32_frac = extract32(f32_val, 0, 23);
9202 float64 f64, r64;
9203 uint64_t r64_val;
9204 int64_t r64_exp;
9205 uint64_t r64_frac;
9206
9207 if (float32_is_any_nan(f32)) {
9208 float32 nan = f32;
9209 if (float32_is_signaling_nan(f32, fpst)) {
9210 float_raise(float_flag_invalid, fpst);
9211 nan = float32_maybe_silence_nan(f32, fpst);
9212 }
9213 if (fpst->default_nan_mode) {
9214 nan = float32_default_nan(fpst);
9215 }
9216 return nan;
9217 } else if (float32_is_infinity(f32)) {
9218 return float32_set_sign(float32_zero, float32_is_neg(f32));
9219 } else if (float32_is_zero(f32)) {
9220 float_raise(float_flag_divbyzero, fpst);
9221 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9222 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9223 /* Abs(value) < 2.0^-128 */
9224 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9225 if (round_to_inf(fpst, f32_sbit)) {
9226 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9227 } else {
9228 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9229 }
9230 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9231 float_raise(float_flag_underflow, fpst);
9232 return float32_set_sign(float32_zero, float32_is_neg(f32));
9233 }
9234
9235
9236 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9237 r64 = call_recip_estimate(f64, 253, fpst);
9238 r64_val = float64_val(r64);
9239 r64_exp = extract64(r64_val, 52, 11);
9240 r64_frac = extract64(r64_val, 0, 52);
9241
9242 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9243 return make_float32(f32_sbit |
9244 (r64_exp & 0xff) << 23 |
9245 extract64(r64_frac, 29, 24));
9246 }
9247
9248 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9249 {
9250 float_status *fpst = fpstp;
9251 float64 f64 = float64_squash_input_denormal(input, fpst);
9252 uint64_t f64_val = float64_val(f64);
9253 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9254 int64_t f64_exp = extract64(f64_val, 52, 11);
9255 float64 r64;
9256 uint64_t r64_val;
9257 int64_t r64_exp;
9258 uint64_t r64_frac;
9259
9260 /* Deal with any special cases */
9261 if (float64_is_any_nan(f64)) {
9262 float64 nan = f64;
9263 if (float64_is_signaling_nan(f64, fpst)) {
9264 float_raise(float_flag_invalid, fpst);
9265 nan = float64_maybe_silence_nan(f64, fpst);
9266 }
9267 if (fpst->default_nan_mode) {
9268 nan = float64_default_nan(fpst);
9269 }
9270 return nan;
9271 } else if (float64_is_infinity(f64)) {
9272 return float64_set_sign(float64_zero, float64_is_neg(f64));
9273 } else if (float64_is_zero(f64)) {
9274 float_raise(float_flag_divbyzero, fpst);
9275 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9276 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9277 /* Abs(value) < 2.0^-1024 */
9278 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9279 if (round_to_inf(fpst, f64_sbit)) {
9280 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9281 } else {
9282 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9283 }
9284 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9285 float_raise(float_flag_underflow, fpst);
9286 return float64_set_sign(float64_zero, float64_is_neg(f64));
9287 }
9288
9289 r64 = call_recip_estimate(f64, 2045, fpst);
9290 r64_val = float64_val(r64);
9291 r64_exp = extract64(r64_val, 52, 11);
9292 r64_frac = extract64(r64_val, 0, 52);
9293
9294 /* result = sign : result_exp<10:0> : fraction<51:0> */
9295 return make_float64(f64_sbit |
9296 ((r64_exp & 0x7ff) << 52) |
9297 r64_frac);
9298 }
9299
9300 /* The algorithm that must be used to calculate the estimate
9301 * is specified by the ARM ARM.
9302 */
9303 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9304 {
9305 /* These calculations mustn't set any fp exception flags,
9306 * so we use a local copy of the fp_status.
9307 */
9308 float_status dummy_status = *real_fp_status;
9309 float_status *s = &dummy_status;
9310 float64 q;
9311 int64_t q_int;
9312
9313 if (float64_lt(a, float64_half, s)) {
9314 /* range 0.25 <= a < 0.5 */
9315
9316 /* a in units of 1/512 rounded down */
9317 /* q0 = (int)(a * 512.0); */
9318 q = float64_mul(float64_512, a, s);
9319 q_int = float64_to_int64_round_to_zero(q, s);
9320
9321 /* reciprocal root r */
9322 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9323 q = int64_to_float64(q_int, s);
9324 q = float64_add(q, float64_half, s);
9325 q = float64_div(q, float64_512, s);
9326 q = float64_sqrt(q, s);
9327 q = float64_div(float64_one, q, s);
9328 } else {
9329 /* range 0.5 <= a < 1.0 */
9330
9331 /* a in units of 1/256 rounded down */
9332 /* q1 = (int)(a * 256.0); */
9333 q = float64_mul(float64_256, a, s);
9334 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9335
9336 /* reciprocal root r */
9337 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9338 q = int64_to_float64(q_int, s);
9339 q = float64_add(q, float64_half, s);
9340 q = float64_div(q, float64_256, s);
9341 q = float64_sqrt(q, s);
9342 q = float64_div(float64_one, q, s);
9343 }
9344 /* r in units of 1/256 rounded to nearest */
9345 /* s = (int)(256.0 * r + 0.5); */
9346
9347 q = float64_mul(q, float64_256,s );
9348 q = float64_add(q, float64_half, s);
9349 q_int = float64_to_int64_round_to_zero(q, s);
9350
9351 /* return (double)s / 256.0;*/
9352 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9353 }
9354
9355 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9356 {
9357 float_status *s = fpstp;
9358 float32 f32 = float32_squash_input_denormal(input, s);
9359 uint32_t val = float32_val(f32);
9360 uint32_t f32_sbit = 0x80000000 & val;
9361 int32_t f32_exp = extract32(val, 23, 8);
9362 uint32_t f32_frac = extract32(val, 0, 23);
9363 uint64_t f64_frac;
9364 uint64_t val64;
9365 int result_exp;
9366 float64 f64;
9367
9368 if (float32_is_any_nan(f32)) {
9369 float32 nan = f32;
9370 if (float32_is_signaling_nan(f32, s)) {
9371 float_raise(float_flag_invalid, s);
9372 nan = float32_maybe_silence_nan(f32, s);
9373 }
9374 if (s->default_nan_mode) {
9375 nan = float32_default_nan(s);
9376 }
9377 return nan;
9378 } else if (float32_is_zero(f32)) {
9379 float_raise(float_flag_divbyzero, s);
9380 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9381 } else if (float32_is_neg(f32)) {
9382 float_raise(float_flag_invalid, s);
9383 return float32_default_nan(s);
9384 } else if (float32_is_infinity(f32)) {
9385 return float32_zero;
9386 }
9387
9388 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9389 * preserving the parity of the exponent. */
9390
9391 f64_frac = ((uint64_t) f32_frac) << 29;
9392 if (f32_exp == 0) {
9393 while (extract64(f64_frac, 51, 1) == 0) {
9394 f64_frac = f64_frac << 1;
9395 f32_exp = f32_exp-1;
9396 }
9397 f64_frac = extract64(f64_frac, 0, 51) << 1;
9398 }
9399
9400 if (extract64(f32_exp, 0, 1) == 0) {
9401 f64 = make_float64(((uint64_t) f32_sbit) << 32
9402 | (0x3feULL << 52)
9403 | f64_frac);
9404 } else {
9405 f64 = make_float64(((uint64_t) f32_sbit) << 32
9406 | (0x3fdULL << 52)
9407 | f64_frac);
9408 }
9409
9410 result_exp = (380 - f32_exp) / 2;
9411
9412 f64 = recip_sqrt_estimate(f64, s);
9413
9414 val64 = float64_val(f64);
9415
9416 val = ((result_exp & 0xff) << 23)
9417 | ((val64 >> 29) & 0x7fffff);
9418 return make_float32(val);
9419 }
9420
9421 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9422 {
9423 float_status *s = fpstp;
9424 float64 f64 = float64_squash_input_denormal(input, s);
9425 uint64_t val = float64_val(f64);
9426 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9427 int64_t f64_exp = extract64(val, 52, 11);
9428 uint64_t f64_frac = extract64(val, 0, 52);
9429 int64_t result_exp;
9430 uint64_t result_frac;
9431
9432 if (float64_is_any_nan(f64)) {
9433 float64 nan = f64;
9434 if (float64_is_signaling_nan(f64, s)) {
9435 float_raise(float_flag_invalid, s);
9436 nan = float64_maybe_silence_nan(f64, s);
9437 }
9438 if (s->default_nan_mode) {
9439 nan = float64_default_nan(s);
9440 }
9441 return nan;
9442 } else if (float64_is_zero(f64)) {
9443 float_raise(float_flag_divbyzero, s);
9444 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9445 } else if (float64_is_neg(f64)) {
9446 float_raise(float_flag_invalid, s);
9447 return float64_default_nan(s);
9448 } else if (float64_is_infinity(f64)) {
9449 return float64_zero;
9450 }
9451
9452 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9453 * preserving the parity of the exponent. */
9454
9455 if (f64_exp == 0) {
9456 while (extract64(f64_frac, 51, 1) == 0) {
9457 f64_frac = f64_frac << 1;
9458 f64_exp = f64_exp - 1;
9459 }
9460 f64_frac = extract64(f64_frac, 0, 51) << 1;
9461 }
9462
9463 if (extract64(f64_exp, 0, 1) == 0) {
9464 f64 = make_float64(f64_sbit
9465 | (0x3feULL << 52)
9466 | f64_frac);
9467 } else {
9468 f64 = make_float64(f64_sbit
9469 | (0x3fdULL << 52)
9470 | f64_frac);
9471 }
9472
9473 result_exp = (3068 - f64_exp) / 2;
9474
9475 f64 = recip_sqrt_estimate(f64, s);
9476
9477 result_frac = extract64(float64_val(f64), 0, 52);
9478
9479 return make_float64(f64_sbit |
9480 ((result_exp & 0x7ff) << 52) |
9481 result_frac);
9482 }
9483
9484 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9485 {
9486 float_status *s = fpstp;
9487 float64 f64;
9488
9489 if ((a & 0x80000000) == 0) {
9490 return 0xffffffff;
9491 }
9492
9493 f64 = make_float64((0x3feULL << 52)
9494 | ((int64_t)(a & 0x7fffffff) << 21));
9495
9496 f64 = recip_estimate(f64, s);
9497
9498 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9499 }
9500
9501 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9502 {
9503 float_status *fpst = fpstp;
9504 float64 f64;
9505
9506 if ((a & 0xc0000000) == 0) {
9507 return 0xffffffff;
9508 }
9509
9510 if (a & 0x80000000) {
9511 f64 = make_float64((0x3feULL << 52)
9512 | ((uint64_t)(a & 0x7fffffff) << 21));
9513 } else { /* bits 31-30 == '01' */
9514 f64 = make_float64((0x3fdULL << 52)
9515 | ((uint64_t)(a & 0x3fffffff) << 22));
9516 }
9517
9518 f64 = recip_sqrt_estimate(f64, fpst);
9519
9520 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9521 }
9522
9523 /* VFPv4 fused multiply-accumulate */
9524 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9525 {
9526 float_status *fpst = fpstp;
9527 return float32_muladd(a, b, c, 0, fpst);
9528 }
9529
9530 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9531 {
9532 float_status *fpst = fpstp;
9533 return float64_muladd(a, b, c, 0, fpst);
9534 }
9535
9536 /* ARMv8 round to integral */
9537 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9538 {
9539 return float32_round_to_int(x, fp_status);
9540 }
9541
9542 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9543 {
9544 return float64_round_to_int(x, fp_status);
9545 }
9546
9547 float32 HELPER(rints)(float32 x, void *fp_status)
9548 {
9549 int old_flags = get_float_exception_flags(fp_status), new_flags;
9550 float32 ret;
9551
9552 ret = float32_round_to_int(x, fp_status);
9553
9554 /* Suppress any inexact exceptions the conversion produced */
9555 if (!(old_flags & float_flag_inexact)) {
9556 new_flags = get_float_exception_flags(fp_status);
9557 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9558 }
9559
9560 return ret;
9561 }
9562
9563 float64 HELPER(rintd)(float64 x, void *fp_status)
9564 {
9565 int old_flags = get_float_exception_flags(fp_status), new_flags;
9566 float64 ret;
9567
9568 ret = float64_round_to_int(x, fp_status);
9569
9570 new_flags = get_float_exception_flags(fp_status);
9571
9572 /* Suppress any inexact exceptions the conversion produced */
9573 if (!(old_flags & float_flag_inexact)) {
9574 new_flags = get_float_exception_flags(fp_status);
9575 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9576 }
9577
9578 return ret;
9579 }
9580
9581 /* Convert ARM rounding mode to softfloat */
9582 int arm_rmode_to_sf(int rmode)
9583 {
9584 switch (rmode) {
9585 case FPROUNDING_TIEAWAY:
9586 rmode = float_round_ties_away;
9587 break;
9588 case FPROUNDING_ODD:
9589 /* FIXME: add support for TIEAWAY and ODD */
9590 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9591 rmode);
9592 case FPROUNDING_TIEEVEN:
9593 default:
9594 rmode = float_round_nearest_even;
9595 break;
9596 case FPROUNDING_POSINF:
9597 rmode = float_round_up;
9598 break;
9599 case FPROUNDING_NEGINF:
9600 rmode = float_round_down;
9601 break;
9602 case FPROUNDING_ZERO:
9603 rmode = float_round_to_zero;
9604 break;
9605 }
9606 return rmode;
9607 }
9608
9609 /* CRC helpers.
9610 * The upper bytes of val (above the number specified by 'bytes') must have
9611 * been zeroed out by the caller.
9612 */
9613 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9614 {
9615 uint8_t buf[4];
9616
9617 stl_le_p(buf, val);
9618
9619 /* zlib crc32 converts the accumulator and output to one's complement. */
9620 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9621 }
9622
9623 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9624 {
9625 uint8_t buf[4];
9626
9627 stl_le_p(buf, val);
9628
9629 /* Linux crc32c converts the output to one's complement. */
9630 return crc32c(acc, buf, bytes) ^ 0xffffffff;
9631 }