]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
target/hppa: Update to SeaBIOS-hppa version 8
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34
35 static void switch_mode(CPUARMState *env, int mode);
36
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39 assert(ri->fieldoffset);
40 if (cpreg_field_is_64bit(ri)) {
41 return CPREG_FIELD64(env, ri);
42 } else {
43 return CPREG_FIELD32(env, ri);
44 }
45 }
46
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49 assert(ri->fieldoffset);
50 if (cpreg_field_is_64bit(ri)) {
51 CPREG_FIELD64(env, ri) = value;
52 } else {
53 CPREG_FIELD32(env, ri) = value;
54 }
55 }
56
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59 return (char *)env + ri->fieldoffset;
60 }
61
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64 /* Raw read of a coprocessor register (as needed for migration, etc). */
65 if (ri->type & ARM_CP_CONST) {
66 return ri->resetvalue;
67 } else if (ri->raw_readfn) {
68 return ri->raw_readfn(env, ri);
69 } else if (ri->readfn) {
70 return ri->readfn(env, ri);
71 } else {
72 return raw_read(env, ri);
73 }
74 }
75
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77 uint64_t v)
78 {
79 /*
80 * Raw write of a coprocessor register (as needed for migration, etc).
81 * Note that constant registers are treated as write-ignored; the
82 * caller should check for success by whether a readback gives the
83 * value written.
84 */
85 if (ri->type & ARM_CP_CONST) {
86 return;
87 } else if (ri->raw_writefn) {
88 ri->raw_writefn(env, ri, v);
89 } else if (ri->writefn) {
90 ri->writefn(env, ri, v);
91 } else {
92 raw_write(env, ri, v);
93 }
94 }
95
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98 /*
99 * Return true if the regdef would cause an assertion if you called
100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101 * program bug for it not to have the NO_RAW flag).
102 * NB that returning false here doesn't necessarily mean that calling
103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104 * read/write access functions which are safe for raw use" from "has
105 * read/write access functions which have side effects but has forgotten
106 * to provide raw access functions".
107 * The tests here line up with the conditions in read/write_raw_cp_reg()
108 * and assertions in raw_read()/raw_write().
109 */
110 if ((ri->type & ARM_CP_CONST) ||
111 ri->fieldoffset ||
112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113 return false;
114 }
115 return true;
116 }
117
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120 /* Write the coprocessor state from cpu->env to the (index,value) list. */
121 int i;
122 bool ok = true;
123
124 for (i = 0; i < cpu->cpreg_array_len; i++) {
125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126 const ARMCPRegInfo *ri;
127 uint64_t newval;
128
129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130 if (!ri) {
131 ok = false;
132 continue;
133 }
134 if (ri->type & ARM_CP_NO_RAW) {
135 continue;
136 }
137
138 newval = read_raw_cp_reg(&cpu->env, ri);
139 if (kvm_sync) {
140 /*
141 * Only sync if the previous list->cpustate sync succeeded.
142 * Rather than tracking the success/failure state for every
143 * item in the list, we just recheck "does the raw write we must
144 * have made in write_list_to_cpustate() read back OK" here.
145 */
146 uint64_t oldval = cpu->cpreg_values[i];
147
148 if (oldval == newval) {
149 continue;
150 }
151
152 write_raw_cp_reg(&cpu->env, ri, oldval);
153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154 continue;
155 }
156
157 write_raw_cp_reg(&cpu->env, ri, newval);
158 }
159 cpu->cpreg_values[i] = newval;
160 }
161 return ok;
162 }
163
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166 int i;
167 bool ok = true;
168
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 const ARMCPRegInfo *ri;
173
174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175 if (!ri) {
176 ok = false;
177 continue;
178 }
179 if (ri->type & ARM_CP_NO_RAW) {
180 continue;
181 }
182 /*
183 * Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
186 */
187 write_raw_cp_reg(&cpu->env, ri, v);
188 if (read_raw_cp_reg(&cpu->env, ri) != v) {
189 ok = false;
190 }
191 }
192 return ok;
193 }
194
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197 ARMCPU *cpu = opaque;
198 uint32_t regidx = (uintptr_t)key;
199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200
201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203 /* The value array need not be initialized at this point */
204 cpu->cpreg_array_len++;
205 }
206 }
207
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210 ARMCPU *cpu = opaque;
211 const ARMCPRegInfo *ri;
212
213 ri = g_hash_table_lookup(cpu->cp_regs, key);
214
215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216 cpu->cpreg_array_len++;
217 }
218 }
219
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224
225 if (aidx > bidx) {
226 return 1;
227 }
228 if (aidx < bidx) {
229 return -1;
230 }
231 return 0;
232 }
233
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236 /*
237 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238 * Note that we require cpreg_tuples[] to be sorted by key ID.
239 */
240 GList *keys;
241 int arraylen;
242
243 keys = g_hash_table_get_keys(cpu->cp_regs);
244 keys = g_list_sort(keys, cpreg_key_compare);
245
246 cpu->cpreg_array_len = 0;
247
248 g_list_foreach(keys, count_cpreg, cpu);
249
250 arraylen = cpu->cpreg_array_len;
251 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256 cpu->cpreg_array_len = 0;
257
258 g_list_foreach(keys, add_cpreg_to_list, cpu);
259
260 assert(cpu->cpreg_array_len == arraylen);
261
262 g_list_free(keys);
263 }
264
265 /*
266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267 */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269 const ARMCPRegInfo *ri,
270 bool isread)
271 {
272 if (!is_a64(env) && arm_current_el(env) == 3 &&
273 arm_is_secure_below_el3(env)) {
274 return CP_ACCESS_TRAP_UNCATEGORIZED;
275 }
276 return CP_ACCESS_OK;
277 }
278
279 /*
280 * Some secure-only AArch32 registers trap to EL3 if used from
281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283 * We assume that the .access field is set to PL1_RW.
284 */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286 const ARMCPRegInfo *ri,
287 bool isread)
288 {
289 if (arm_current_el(env) == 3) {
290 return CP_ACCESS_OK;
291 }
292 if (arm_is_secure_below_el3(env)) {
293 if (env->cp15.scr_el3 & SCR_EEL2) {
294 return CP_ACCESS_TRAP_EL2;
295 }
296 return CP_ACCESS_TRAP_EL3;
297 }
298 /* This will be EL1 NS and EL2 NS, which just UNDEF */
299 return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301
302 /*
303 * Check for traps to performance monitor registers, which are controlled
304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305 */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307 bool isread)
308 {
309 int el = arm_current_el(env);
310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311
312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313 return CP_ACCESS_TRAP_EL2;
314 }
315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316 return CP_ACCESS_TRAP_EL3;
317 }
318 return CP_ACCESS_OK;
319 }
320
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323 bool isread)
324 {
325 if (arm_current_el(env) == 1) {
326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327 if (arm_hcr_el2_eff(env) & trap) {
328 return CP_ACCESS_TRAP_EL2;
329 }
330 }
331 return CP_ACCESS_OK;
332 }
333
334 /* Check for traps from EL1 due to HCR_EL2.TSW. */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
337 {
338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339 return CP_ACCESS_TRAP_EL2;
340 }
341 return CP_ACCESS_OK;
342 }
343
344 /* Check for traps from EL1 due to HCR_EL2.TACR. */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346 bool isread)
347 {
348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349 return CP_ACCESS_TRAP_EL2;
350 }
351 return CP_ACCESS_OK;
352 }
353
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
357 {
358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359 return CP_ACCESS_TRAP_EL2;
360 }
361 return CP_ACCESS_OK;
362 }
363
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366 bool isread)
367 {
368 if (arm_current_el(env) == 1 &&
369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370 return CP_ACCESS_TRAP_EL2;
371 }
372 return CP_ACCESS_OK;
373 }
374
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378 bool isread)
379 {
380 if (arm_current_el(env) == 1 &&
381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382 return CP_ACCESS_TRAP_EL2;
383 }
384 return CP_ACCESS_OK;
385 }
386 #endif
387
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390 ARMCPU *cpu = env_archcpu(env);
391
392 raw_write(env, ri, value);
393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398 ARMCPU *cpu = env_archcpu(env);
399
400 if (raw_read(env, ri) != value) {
401 /*
402 * Unlike real hardware the qemu TLB uses virtual addresses,
403 * not modified virtual addresses, so this causes a TLB flush.
404 */
405 tlb_flush(CPU(cpu));
406 raw_write(env, ri, value);
407 }
408 }
409
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411 uint64_t value)
412 {
413 ARMCPU *cpu = env_archcpu(env);
414
415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416 && !extended_addresses_enabled(env)) {
417 /*
418 * For VMSA (when not using the LPAE long descriptor page table
419 * format) this register includes the ASID, so do a TLB flush.
420 * For PMSA it is purely a process ID and no action is needed.
421 */
422 tlb_flush(CPU(cpu));
423 }
424 raw_write(env, ri, value);
425 }
426
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429 /*
430 * Note that the 'ALL' scope must invalidate both stage 1 and
431 * stage 2 translations, whereas most other scopes only invalidate
432 * stage 1 translations.
433 */
434 return (ARMMMUIdxBit_E10_1 |
435 ARMMMUIdxBit_E10_1_PAN |
436 ARMMMUIdxBit_E10_0 |
437 ARMMMUIdxBit_Stage2 |
438 ARMMMUIdxBit_Stage2_S);
439 }
440
441
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 uint64_t value)
445 {
446 CPUState *cs = env_cpu(env);
447
448 tlb_flush_all_cpus_synced(cs);
449 }
450
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452 uint64_t value)
453 {
454 CPUState *cs = env_cpu(env);
455
456 tlb_flush_all_cpus_synced(cs);
457 }
458
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 uint64_t value)
461 {
462 CPUState *cs = env_cpu(env);
463
464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468 uint64_t value)
469 {
470 CPUState *cs = env_cpu(env);
471
472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474
475 /*
476 * Non-IS variants of TLB operations are upgraded to
477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478 * force broadcast of these operations.
479 */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
487 {
488 /* Invalidate all (TLBIALL) */
489 CPUState *cs = env_cpu(env);
490
491 if (tlb_force_broadcast(env)) {
492 tlb_flush_all_cpus_synced(cs);
493 } else {
494 tlb_flush(cs);
495 }
496 }
497
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
500 {
501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502 CPUState *cs = env_cpu(env);
503
504 value &= TARGET_PAGE_MASK;
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_page_all_cpus_synced(cs, value);
507 } else {
508 tlb_flush_page(cs, value);
509 }
510 }
511
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 /* Invalidate by ASID (TLBIASID) */
516 CPUState *cs = env_cpu(env);
517
518 if (tlb_force_broadcast(env)) {
519 tlb_flush_all_cpus_synced(cs);
520 } else {
521 tlb_flush(cs);
522 }
523 }
524
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
527 {
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 CPUState *cs = env_cpu(env);
530
531 value &= TARGET_PAGE_MASK;
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_page_all_cpus_synced(cs, value);
534 } else {
535 tlb_flush_page(cs, value);
536 }
537 }
538
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 CPUState *cs = env_cpu(env);
543
544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
549 {
550 CPUState *cs = env_cpu(env);
551
552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554
555
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = env_cpu(env);
560
561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = env_cpu(env);
568
569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574 {
575 CPUState *cs = env_cpu(env);
576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577
578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
583 {
584 CPUState *cs = env_cpu(env);
585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586
587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588 ARMMMUIdxBit_E2);
589 }
590
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
593 {
594 CPUState *cs = env_cpu(env);
595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596
597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
602 {
603 CPUState *cs = env_cpu(env);
604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605
606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608
609 static const ARMCPRegInfo cp_reginfo[] = {
610 /*
611 * Define the secure and non-secure FCSE identifier CP registers
612 * separately because there is no secure bank in V8 (no _EL3). This allows
613 * the secure register to be properly reset and migrated. There is also no
614 * v8 EL1 version of the register so the non-secure instance stands alone.
615 */
616 { .name = "FCSEIDR",
617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621 { .name = "FCSEIDR_S",
622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626 /*
627 * Define the secure and non-secure context identifier CP registers
628 * separately because there is no secure bank in V8 (no _EL3). This allows
629 * the secure register to be properly reset and migrated. In the
630 * non-secure case, the 32-bit register will have reset and migration
631 * disabled during registration as it is handled by the 64-bit instance.
632 */
633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635 .access = PL1_RW, .accessfn = access_tvm_trvm,
636 .fgt = FGT_CONTEXTIDR_EL1,
637 .secure = ARM_CP_SECSTATE_NS,
638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642 .access = PL1_RW, .accessfn = access_tvm_trvm,
643 .secure = ARM_CP_SECSTATE_S,
644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649 /*
650 * NB: Some of these registers exist in v8 but with more precise
651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652 */
653 /* MMU Domain access control / MPU write buffer control */
654 { .name = "DACR",
655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657 .writefn = dacr_write, .raw_writefn = raw_write,
658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660 /*
661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662 * For v6 and v5, these mappings are overly broad.
663 */
664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672 /* Cache maintenance ops; some of this space may be overridden later. */
673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679 /*
680 * Not all pre-v6 cores implemented this WFI, so this is slightly
681 * over-broad.
682 */
683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684 .access = PL1_W, .type = ARM_CP_WFI },
685 };
686
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688 /*
689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690 * is UNPREDICTABLE; we choose to NOP as most implementations do).
691 */
692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693 .access = PL1_W, .type = ARM_CP_WFI },
694 /*
695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697 * OMAPCP will override this space.
698 */
699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701 .resetvalue = 0 },
702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704 .resetvalue = 0 },
705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708 .resetvalue = 0 },
709 /*
710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711 * implementing it as RAZ means the "debug architecture version" bits
712 * will read as a reserved value, which should cause Linux to not try
713 * to use the debug hardware.
714 */
715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717 /*
718 * MMU TLB control. Note that the wildcarding means we cover not just
719 * the unified TLB ops but also the dside/iside/inner-shareable variants.
720 */
721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723 .type = ARM_CP_NO_RAW },
724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726 .type = ARM_CP_NO_RAW },
727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729 .type = ARM_CP_NO_RAW },
730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732 .type = ARM_CP_NO_RAW },
733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740 uint64_t value)
741 {
742 uint32_t mask = 0;
743
744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745 if (!arm_feature(env, ARM_FEATURE_V8)) {
746 /*
747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750 */
751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752 /* VFP coprocessor: cp10 & cp11 [23:20] */
753 mask |= R_CPACR_ASEDIS_MASK |
754 R_CPACR_D32DIS_MASK |
755 R_CPACR_CP11_MASK |
756 R_CPACR_CP10_MASK;
757
758 if (!arm_feature(env, ARM_FEATURE_NEON)) {
759 /* ASEDIS [31] bit is RAO/WI */
760 value |= R_CPACR_ASEDIS_MASK;
761 }
762
763 /*
764 * VFPv3 and upwards with NEON implement 32 double precision
765 * registers (D0-D31).
766 */
767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769 value |= R_CPACR_D32DIS_MASK;
770 }
771 }
772 value &= mask;
773 }
774
775 /*
776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778 */
779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783 }
784
785 env->cp15.cpacr_el1 = value;
786 }
787
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 uint64_t value = env->cp15.cpacr_el1;
795
796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799 }
800 return value;
801 }
802
803
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806 /*
807 * Call cpacr_write() so that we reset with the correct RAO bits set
808 * for our CPU features.
809 */
810 cpacr_write(env, ri, 0);
811 }
812
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814 bool isread)
815 {
816 if (arm_feature(env, ARM_FEATURE_V8)) {
817 /* Check if CPACR accesses are to be trapped to EL2 */
818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820 return CP_ACCESS_TRAP_EL2;
821 /* Check if CPACR accesses are to be trapped to EL3 */
822 } else if (arm_current_el(env) < 3 &&
823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824 return CP_ACCESS_TRAP_EL3;
825 }
826 }
827
828 return CP_ACCESS_OK;
829 }
830
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832 bool isread)
833 {
834 /* Check if CPTR accesses are set to trap to EL3 */
835 if (arm_current_el(env) == 2 &&
836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837 return CP_ACCESS_TRAP_EL3;
838 }
839
840 return CP_ACCESS_OK;
841 }
842
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844 /* prefetch by MVA in v6, NOP in v7 */
845 { .name = "MVA_prefetch",
846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847 .access = PL1_W, .type = ARM_CP_NOP },
848 /*
849 * We need to break the TB after ISB to execute self-modifying code
850 * correctly and also to take any pending interrupts immediately.
851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852 */
853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856 .access = PL0_W, .type = ARM_CP_NOP },
857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858 .access = PL0_W, .type = ARM_CP_NOP },
859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860 .access = PL1_RW, .accessfn = access_tvm_trvm,
861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862 offsetof(CPUARMState, cp15.ifar_ns) },
863 .resetvalue = 0, },
864 /*
865 * Watchpoint Fault Address Register : should actually only be present
866 * for 1136, 1176, 11MPCore.
867 */
868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872 .fgt = FGT_CPACR_EL1,
873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876
877 typedef struct pm_event {
878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880 bool (*supported)(CPUARMState *);
881 /*
882 * Retrieve the current count of the underlying event. The programmed
883 * counters hold a difference from the return value from this function
884 */
885 uint64_t (*get_count)(CPUARMState *);
886 /*
887 * Return how many nanoseconds it will take (at a minimum) for count events
888 * to occur. A negative value indicates the counter will never overflow, or
889 * that the counter has otherwise arranged for the overflow bit to be set
890 * and the PMU interrupt to be raised on overflow.
891 */
892 int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894
895 static bool event_always_supported(CPUARMState *env)
896 {
897 return true;
898 }
899
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902 /*
903 * SW_INCR events are written directly to the pmevcntr's by writes to
904 * PMSWINC, so there is no underlying count maintained by the PMU itself
905 */
906 return 0;
907 }
908
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911 return -1;
912 }
913
914 /*
915 * Return the underlying cycle count for the PMU cycle counters. If we're in
916 * usermode, simply return 0.
917 */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924 return cpu_get_host_ticks();
925 #endif
926 }
927
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933
934 static bool instructions_supported(CPUARMState *env)
935 {
936 return icount_enabled() == 1; /* Precise instruction counting */
937 }
938
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941 return (uint64_t)icount_get_raw();
942 }
943
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946 return icount_to_ns((int64_t)icount);
947 }
948 #endif
949
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952 /* For events which are supported in any v8.1 PMU */
953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958 /* For events which are supported in any v8.1 PMU */
959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964 /* For events which on QEMU never fire, so their count is always zero */
965 return 0;
966 }
967
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970 /* An event which never fires can never overflow */
971 return -1;
972 }
973
974 static const pm_event pm_events[] = {
975 { .number = 0x000, /* SW_INCR */
976 .supported = event_always_supported,
977 .get_count = swinc_get_count,
978 .ns_per_count = swinc_ns_per,
979 },
980 #ifndef CONFIG_USER_ONLY
981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982 .supported = instructions_supported,
983 .get_count = instructions_get_count,
984 .ns_per_count = instructions_ns_per,
985 },
986 { .number = 0x011, /* CPU_CYCLES, Cycle */
987 .supported = event_always_supported,
988 .get_count = cycles_get_count,
989 .ns_per_count = cycles_ns_per,
990 },
991 #endif
992 { .number = 0x023, /* STALL_FRONTEND */
993 .supported = pmuv3p1_events_supported,
994 .get_count = zero_event_get_count,
995 .ns_per_count = zero_event_ns_per,
996 },
997 { .number = 0x024, /* STALL_BACKEND */
998 .supported = pmuv3p1_events_supported,
999 .get_count = zero_event_get_count,
1000 .ns_per_count = zero_event_ns_per,
1001 },
1002 { .number = 0x03c, /* STALL */
1003 .supported = pmuv3p4_events_supported,
1004 .get_count = zero_event_get_count,
1005 .ns_per_count = zero_event_ns_per,
1006 },
1007 };
1008
1009 /*
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1014 */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018
1019 /*
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
1022 *
1023 * Note: Events in the 0x40XX range are not currently supported.
1024 */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027 unsigned int i;
1028
1029 /*
1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031 * events to them
1032 */
1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034 supported_event_map[i] = UNSUPPORTED_EVENT;
1035 }
1036 cpu->pmceid0 = 0;
1037 cpu->pmceid1 = 0;
1038
1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040 const pm_event *cnt = &pm_events[i];
1041 assert(cnt->number <= MAX_EVENT_ID);
1042 /* We do not currently support events in the 0x40xx range */
1043 assert(cnt->number <= 0x3f);
1044
1045 if (cnt->supported(&cpu->env)) {
1046 supported_event_map[cnt->number] = i;
1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048 if (cnt->number & 0x20) {
1049 cpu->pmceid1 |= event_mask;
1050 } else {
1051 cpu->pmceid0 |= event_mask;
1052 }
1053 }
1054 }
1055 }
1056
1057 /*
1058 * Check at runtime whether a PMU event is supported for the current machine
1059 */
1060 static bool event_supported(uint16_t number)
1061 {
1062 if (number > MAX_EVENT_ID) {
1063 return false;
1064 }
1065 return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069 bool isread)
1070 {
1071 /*
1072 * Performance monitor registers user accessibility is controlled
1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074 * trapping to EL2 or EL3 for other accesses.
1075 */
1076 int el = arm_current_el(env);
1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078
1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080 return CP_ACCESS_TRAP;
1081 }
1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083 return CP_ACCESS_TRAP_EL2;
1084 }
1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086 return CP_ACCESS_TRAP_EL3;
1087 }
1088
1089 return CP_ACCESS_OK;
1090 }
1091
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093 const ARMCPRegInfo *ri,
1094 bool isread)
1095 {
1096 /* ER: event counter read trap control */
1097 if (arm_feature(env, ARM_FEATURE_V8)
1098 && arm_current_el(env) == 0
1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100 && isread) {
1101 return CP_ACCESS_OK;
1102 }
1103
1104 return pmreg_access(env, ri, isread);
1105 }
1106
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108 const ARMCPRegInfo *ri,
1109 bool isread)
1110 {
1111 /* SW: software increment write trap control */
1112 if (arm_feature(env, ARM_FEATURE_V8)
1113 && arm_current_el(env) == 0
1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115 && !isread) {
1116 return CP_ACCESS_OK;
1117 }
1118
1119 return pmreg_access(env, ri, isread);
1120 }
1121
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123 const ARMCPRegInfo *ri,
1124 bool isread)
1125 {
1126 /* ER: event counter read trap control */
1127 if (arm_feature(env, ARM_FEATURE_V8)
1128 && arm_current_el(env) == 0
1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130 return CP_ACCESS_OK;
1131 }
1132
1133 return pmreg_access(env, ri, isread);
1134 }
1135
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137 const ARMCPRegInfo *ri,
1138 bool isread)
1139 {
1140 /* CR: cycle counter read trap control */
1141 if (arm_feature(env, ARM_FEATURE_V8)
1142 && arm_current_el(env) == 0
1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144 && isread) {
1145 return CP_ACCESS_OK;
1146 }
1147
1148 return pmreg_access(env, ri, isread);
1149 }
1150
1151 /*
1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153 * We use these to decide whether we need to wrap a write to MDCR_EL2
1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155 */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159
1160 /*
1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162 * the current EL, security state, and register configuration.
1163 */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166 uint64_t filter;
1167 bool e, p, u, nsk, nsu, nsh, m;
1168 bool enabled, prohibited = false, filtered;
1169 bool secure = arm_is_secure(env);
1170 int el = arm_current_el(env);
1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173
1174 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175 return false;
1176 }
1177
1178 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179 (counter < hpmn || counter == 31)) {
1180 e = env->cp15.c9_pmcr & PMCRE;
1181 } else {
1182 e = mdcr_el2 & MDCR_HPME;
1183 }
1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185
1186 /* Is event counting prohibited? */
1187 if (el == 2 && (counter < hpmn || counter == 31)) {
1188 prohibited = mdcr_el2 & MDCR_HPMD;
1189 }
1190 if (secure) {
1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192 }
1193
1194 if (counter == 31) {
1195 /*
1196 * The cycle counter defaults to running. PMCR.DP says "disable
1197 * the cycle counter when event counting is prohibited".
1198 * Some MDCR bits disable the cycle counter specifically.
1199 */
1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202 if (secure) {
1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204 }
1205 if (el == 2) {
1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207 }
1208 }
1209 }
1210
1211 if (counter == 31) {
1212 filter = env->cp15.pmccfiltr_el0;
1213 } else {
1214 filter = env->cp15.c14_pmevtyper[counter];
1215 }
1216
1217 p = filter & PMXEVTYPER_P;
1218 u = filter & PMXEVTYPER_U;
1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222 m = arm_el_is_aa64(env, 1) &&
1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224
1225 if (el == 0) {
1226 filtered = secure ? u : u != nsu;
1227 } else if (el == 1) {
1228 filtered = secure ? p : p != nsk;
1229 } else if (el == 2) {
1230 filtered = !nsh;
1231 } else { /* EL3 */
1232 filtered = m != p;
1233 }
1234
1235 if (counter != 31) {
1236 /*
1237 * If not checking PMCCNTR, ensure the counter is setup to an event we
1238 * support
1239 */
1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241 if (!event_supported(event)) {
1242 return false;
1243 }
1244 }
1245
1246 return enabled && !prohibited && !filtered;
1247 }
1248
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251 ARMCPU *cpu = env_archcpu(env);
1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258 /*
1259 * Return true if the clock divider is enabled and the cycle counter
1260 * is supposed to tick only once every 64 clock cycles. This is
1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262 * (64-bit) cycle counter PMCR.D has no effect.
1263 */
1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269 /* Return true if the specified event counter is configured to be 64 bit */
1270
1271 /* This isn't intended to be used with the cycle counter */
1272 assert(counter < 31);
1273
1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275 return false;
1276 }
1277
1278 if (arm_feature(env, ARM_FEATURE_EL2)) {
1279 /*
1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281 * current security state, so we don't use arm_mdcr_el2_eff() here.
1282 */
1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285
1286 if (hpmn != 0 && counter >= hpmn) {
1287 return hlp;
1288 }
1289 }
1290 return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292
1293 /*
1294 * Ensure c15_ccnt is the guest-visible count so that operations such as
1295 * enabling/disabling the counter or filtering, modifying the count itself,
1296 * etc. can be done logically. This is essentially a no-op if the counter is
1297 * not enabled at the time of the call.
1298 */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301 uint64_t cycles = cycles_get_count(env);
1302
1303 if (pmu_counter_enabled(env, 31)) {
1304 uint64_t eff_cycles = cycles;
1305 if (pmccntr_clockdiv_enabled(env)) {
1306 eff_cycles /= 64;
1307 }
1308
1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310
1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312 1ull << 63 : 1ull << 31;
1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314 env->cp15.c9_pmovsr |= (1ULL << 31);
1315 pmu_update_irq(env);
1316 }
1317
1318 env->cp15.c15_ccnt = new_pmccntr;
1319 }
1320 env->cp15.c15_ccnt_delta = cycles;
1321 }
1322
1323 /*
1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326 * pmccntr_op_start.
1327 */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330 if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332 /* Calculate when the counter will next overflow */
1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335 remaining_cycles = (uint32_t)remaining_cycles;
1336 }
1337 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338
1339 if (overflow_in > 0) {
1340 int64_t overflow_at;
1341
1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343 overflow_in, &overflow_at)) {
1344 ARMCPU *cpu = env_archcpu(env);
1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346 }
1347 }
1348 #endif
1349
1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351 if (pmccntr_clockdiv_enabled(env)) {
1352 prev_cycles /= 64;
1353 }
1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355 }
1356 }
1357
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360
1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362 uint64_t count = 0;
1363 if (event_supported(event)) {
1364 uint16_t event_idx = supported_event_map[event];
1365 count = pm_events[event_idx].get_count(env);
1366 }
1367
1368 if (pmu_counter_enabled(env, counter)) {
1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371 1ULL << 63 : 1ULL << 31;
1372
1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374 env->cp15.c9_pmovsr |= (1 << counter);
1375 pmu_update_irq(env);
1376 }
1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378 }
1379 env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384 if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387 uint16_t event_idx = supported_event_map[event];
1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389 int64_t overflow_in;
1390
1391 if (!pmevcntr_is_64_bit(env, counter)) {
1392 delta = (uint32_t)delta;
1393 }
1394 overflow_in = pm_events[event_idx].ns_per_count(delta);
1395
1396 if (overflow_in > 0) {
1397 int64_t overflow_at;
1398
1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400 overflow_in, &overflow_at)) {
1401 ARMCPU *cpu = env_archcpu(env);
1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403 }
1404 }
1405 #endif
1406
1407 env->cp15.c14_pmevcntr_delta[counter] -=
1408 env->cp15.c14_pmevcntr[counter];
1409 }
1410 }
1411
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414 unsigned int i;
1415 pmccntr_op_start(env);
1416 for (i = 0; i < pmu_num_counters(env); i++) {
1417 pmevcntr_op_start(env, i);
1418 }
1419 }
1420
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423 unsigned int i;
1424 pmccntr_op_finish(env);
1425 for (i = 0; i < pmu_num_counters(env); i++) {
1426 pmevcntr_op_finish(env, i);
1427 }
1428 }
1429
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432 pmu_op_start(&cpu->env);
1433 }
1434
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437 pmu_op_finish(&cpu->env);
1438 }
1439
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442 ARMCPU *cpu = opaque;
1443
1444 /*
1445 * Update all the counter values based on the current underlying counts,
1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448 * counter may expire.
1449 */
1450 pmu_op_start(&cpu->env);
1451 pmu_op_finish(&cpu->env);
1452 }
1453
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 uint64_t value)
1456 {
1457 pmu_op_start(env);
1458
1459 if (value & PMCRC) {
1460 /* The counter has been reset */
1461 env->cp15.c15_ccnt = 0;
1462 }
1463
1464 if (value & PMCRP) {
1465 unsigned int i;
1466 for (i = 0; i < pmu_num_counters(env); i++) {
1467 env->cp15.c14_pmevcntr[i] = 0;
1468 }
1469 }
1470
1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473
1474 pmu_op_finish(env);
1475 }
1476
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479 {
1480 unsigned int i;
1481 uint64_t overflow_mask, new_pmswinc;
1482
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 /* Increment a counter's count iff: */
1485 if ((value & (1 << i)) && /* counter's bit is set */
1486 /* counter is enabled and not filtered */
1487 pmu_counter_enabled(env, i) &&
1488 /* counter is SW_INCR */
1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490 pmevcntr_op_start(env, i);
1491
1492 /*
1493 * Detect if this write causes an overflow since we can't predict
1494 * PMSWINC overflows like we can for other events
1495 */
1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497
1498 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499 1ULL << 63 : 1ULL << 31;
1500
1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502 env->cp15.c9_pmovsr |= (1 << i);
1503 pmu_update_irq(env);
1504 }
1505
1506 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507
1508 pmevcntr_op_finish(env, i);
1509 }
1510 }
1511 }
1512
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515 uint64_t ret;
1516 pmccntr_op_start(env);
1517 ret = env->cp15.c15_ccnt;
1518 pmccntr_op_finish(env);
1519 return ret;
1520 }
1521
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1524 {
1525 /*
1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529 * accessed.
1530 */
1531 env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535 uint64_t value)
1536 {
1537 pmccntr_op_start(env);
1538 env->cp15.c15_ccnt = value;
1539 pmccntr_op_finish(env);
1540 }
1541
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543 uint64_t value)
1544 {
1545 uint64_t cur_val = pmccntr_read(env, NULL);
1546
1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551 uint64_t value)
1552 {
1553 pmccntr_op_start(env);
1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555 pmccntr_op_finish(env);
1556 }
1557
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559 uint64_t value)
1560 {
1561 pmccntr_op_start(env);
1562 /* M is not accessible from AArch32 */
1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564 (value & PMCCFILTR);
1565 pmccntr_op_finish(env);
1566 }
1567
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570 /* M is not visible in AArch32 */
1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575 uint64_t value)
1576 {
1577 pmu_op_start(env);
1578 value &= pmu_counter_mask(env);
1579 env->cp15.c9_pmcnten |= value;
1580 pmu_op_finish(env);
1581 }
1582
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584 uint64_t value)
1585 {
1586 pmu_op_start(env);
1587 value &= pmu_counter_mask(env);
1588 env->cp15.c9_pmcnten &= ~value;
1589 pmu_op_finish(env);
1590 }
1591
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
1594 {
1595 value &= pmu_counter_mask(env);
1596 env->cp15.c9_pmovsr &= ~value;
1597 pmu_update_irq(env);
1598 }
1599
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1602 {
1603 value &= pmu_counter_mask(env);
1604 env->cp15.c9_pmovsr |= value;
1605 pmu_update_irq(env);
1606 }
1607
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value, const uint8_t counter)
1610 {
1611 if (counter == 31) {
1612 pmccfiltr_write(env, ri, value);
1613 } else if (counter < pmu_num_counters(env)) {
1614 pmevcntr_op_start(env, counter);
1615
1616 /*
1617 * If this counter's event type is changing, store the current
1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619 * pmevcntr_op_finish has the correct baseline when it converts back to
1620 * a delta.
1621 */
1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623 PMXEVTYPER_EVTCOUNT;
1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625 if (old_event != new_event) {
1626 uint64_t count = 0;
1627 if (event_supported(new_event)) {
1628 uint16_t event_idx = supported_event_map[new_event];
1629 count = pm_events[event_idx].get_count(env);
1630 }
1631 env->cp15.c14_pmevcntr_delta[counter] = count;
1632 }
1633
1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635 pmevcntr_op_finish(env, counter);
1636 }
1637 /*
1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639 * PMSELR value is equal to or greater than the number of implemented
1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641 */
1642 }
1643
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645 const uint8_t counter)
1646 {
1647 if (counter == 31) {
1648 return env->cp15.pmccfiltr_el0;
1649 } else if (counter < pmu_num_counters(env)) {
1650 return env->cp15.c14_pmevtyper[counter];
1651 } else {
1652 /*
1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655 */
1656 return 0;
1657 }
1658 }
1659
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1662 {
1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664 pmevtyper_write(env, ri, value, counter);
1665 }
1666
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1669 {
1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671 env->cp15.c14_pmevtyper[counter] = value;
1672
1673 /*
1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675 * pmu_op_finish calls when loading saved state for a migration. Because
1676 * we're potentially updating the type of event here, the value written to
1677 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678 * different counter type. Therefore, we need to set this value to the
1679 * current count for the counter type we're writing so that pmu_op_finish
1680 * has the correct count for its calculation.
1681 */
1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683 if (event_supported(event)) {
1684 uint16_t event_idx = supported_event_map[event];
1685 env->cp15.c14_pmevcntr_delta[counter] =
1686 pm_events[event_idx].get_count(env);
1687 }
1688 }
1689
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693 return pmevtyper_read(env, ri, counter);
1694 }
1695
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 uint64_t value)
1698 {
1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value, uint8_t counter)
1709 {
1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712 value &= MAKE_64BIT_MASK(0, 32);
1713 }
1714 if (counter < pmu_num_counters(env)) {
1715 pmevcntr_op_start(env, counter);
1716 env->cp15.c14_pmevcntr[counter] = value;
1717 pmevcntr_op_finish(env, counter);
1718 }
1719 /*
1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721 * are CONSTRAINED UNPREDICTABLE.
1722 */
1723 }
1724
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint8_t counter)
1727 {
1728 if (counter < pmu_num_counters(env)) {
1729 uint64_t ret;
1730 pmevcntr_op_start(env, counter);
1731 ret = env->cp15.c14_pmevcntr[counter];
1732 pmevcntr_op_finish(env, counter);
1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735 ret &= MAKE_64BIT_MASK(0, 32);
1736 }
1737 return ret;
1738 } else {
1739 /*
1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741 * are CONSTRAINED UNPREDICTABLE.
1742 */
1743 return 0;
1744 }
1745 }
1746
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1749 {
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 pmevcntr_write(env, ri, value, counter);
1752 }
1753
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757 return pmevcntr_read(env, ri, counter);
1758 }
1759
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1762 {
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 assert(counter < pmu_num_counters(env));
1765 env->cp15.c14_pmevcntr[counter] = value;
1766 pmevcntr_write(env, ri, value, counter);
1767 }
1768
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772 assert(counter < pmu_num_counters(env));
1773 return env->cp15.c14_pmevcntr[counter];
1774 }
1775
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1778 {
1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788 uint64_t value)
1789 {
1790 if (arm_feature(env, ARM_FEATURE_V8)) {
1791 env->cp15.c9_pmuserenr = value & 0xf;
1792 } else {
1793 env->cp15.c9_pmuserenr = value & 1;
1794 }
1795 }
1796
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
1799 {
1800 /* We have no event counters so only the C bit can be changed */
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pminten |= value;
1803 pmu_update_irq(env);
1804 }
1805
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1808 {
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pminten &= ~value;
1811 pmu_update_irq(env);
1812 }
1813
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816 {
1817 /*
1818 * Note that even though the AArch64 view of this register has bits
1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820 * architectural requirements for bits which are RES0 only in some
1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823 */
1824 raw_write(env, ri, value & ~0x1FULL);
1825 }
1826
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829 /* Begin with base v8.0 state. */
1830 uint64_t valid_mask = 0x3fff;
1831 ARMCPU *cpu = env_archcpu(env);
1832 uint64_t changed;
1833
1834 /*
1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837 * Instead, choose the format based on the mode of EL3.
1838 */
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* RES1 */
1841 valid_mask &= ~SCR_NET; /* RES0 */
1842
1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845 value |= SCR_RW; /* RAO/WI */
1846 }
1847 if (cpu_isar_feature(aa64_ras, cpu)) {
1848 valid_mask |= SCR_TERR;
1849 }
1850 if (cpu_isar_feature(aa64_lor, cpu)) {
1851 valid_mask |= SCR_TLOR;
1852 }
1853 if (cpu_isar_feature(aa64_pauth, cpu)) {
1854 valid_mask |= SCR_API | SCR_APK;
1855 }
1856 if (cpu_isar_feature(aa64_sel2, cpu)) {
1857 valid_mask |= SCR_EEL2;
1858 }
1859 if (cpu_isar_feature(aa64_mte, cpu)) {
1860 valid_mask |= SCR_ATA;
1861 }
1862 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1863 valid_mask |= SCR_ENSCXT;
1864 }
1865 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1866 valid_mask |= SCR_EASE | SCR_NMEA;
1867 }
1868 if (cpu_isar_feature(aa64_sme, cpu)) {
1869 valid_mask |= SCR_ENTP2;
1870 }
1871 if (cpu_isar_feature(aa64_hcx, cpu)) {
1872 valid_mask |= SCR_HXEN;
1873 }
1874 if (cpu_isar_feature(aa64_fgt, cpu)) {
1875 valid_mask |= SCR_FGTEN;
1876 }
1877 } else {
1878 valid_mask &= ~(SCR_RW | SCR_ST);
1879 if (cpu_isar_feature(aa32_ras, cpu)) {
1880 valid_mask |= SCR_TERR;
1881 }
1882 }
1883
1884 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1885 valid_mask &= ~SCR_HCE;
1886
1887 /*
1888 * On ARMv7, SMD (or SCD as it is called in v7) is only
1889 * supported if EL2 exists. The bit is UNK/SBZP when
1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891 * when EL2 is unavailable.
1892 * On ARMv8, this bit is always available.
1893 */
1894 if (arm_feature(env, ARM_FEATURE_V7) &&
1895 !arm_feature(env, ARM_FEATURE_V8)) {
1896 valid_mask &= ~SCR_SMD;
1897 }
1898 }
1899
1900 /* Clear all-context RES0 bits. */
1901 value &= valid_mask;
1902 changed = env->cp15.scr_el3 ^ value;
1903 env->cp15.scr_el3 = value;
1904
1905 /*
1906 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1907 * we must invalidate all TLBs below EL3.
1908 */
1909 if (changed & SCR_NS) {
1910 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1911 ARMMMUIdxBit_E20_0 |
1912 ARMMMUIdxBit_E10_1 |
1913 ARMMMUIdxBit_E20_2 |
1914 ARMMMUIdxBit_E10_1_PAN |
1915 ARMMMUIdxBit_E20_2_PAN |
1916 ARMMMUIdxBit_E2));
1917 }
1918 }
1919
1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921 {
1922 /*
1923 * scr_write will set the RES1 bits on an AArch64-only CPU.
1924 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1925 */
1926 scr_write(env, ri, 0);
1927 }
1928
1929 static CPAccessResult access_tid4(CPUARMState *env,
1930 const ARMCPRegInfo *ri,
1931 bool isread)
1932 {
1933 if (arm_current_el(env) == 1 &&
1934 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1935 return CP_ACCESS_TRAP_EL2;
1936 }
1937
1938 return CP_ACCESS_OK;
1939 }
1940
1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1942 {
1943 ARMCPU *cpu = env_archcpu(env);
1944
1945 /*
1946 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1947 * bank
1948 */
1949 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1950 ri->secure & ARM_CP_SECSTATE_S);
1951
1952 return cpu->ccsidr[index];
1953 }
1954
1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1956 uint64_t value)
1957 {
1958 raw_write(env, ri, value & 0xf);
1959 }
1960
1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1962 {
1963 CPUState *cs = env_cpu(env);
1964 bool el1 = arm_current_el(env) == 1;
1965 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1966 uint64_t ret = 0;
1967
1968 if (hcr_el2 & HCR_IMO) {
1969 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1970 ret |= CPSR_I;
1971 }
1972 } else {
1973 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1974 ret |= CPSR_I;
1975 }
1976 }
1977
1978 if (hcr_el2 & HCR_FMO) {
1979 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1980 ret |= CPSR_F;
1981 }
1982 } else {
1983 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1984 ret |= CPSR_F;
1985 }
1986 }
1987
1988 if (hcr_el2 & HCR_AMO) {
1989 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1990 ret |= CPSR_A;
1991 }
1992 }
1993
1994 return ret;
1995 }
1996
1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1998 bool isread)
1999 {
2000 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2001 return CP_ACCESS_TRAP_EL2;
2002 }
2003
2004 return CP_ACCESS_OK;
2005 }
2006
2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2008 bool isread)
2009 {
2010 if (arm_feature(env, ARM_FEATURE_V8)) {
2011 return access_aa64_tid1(env, ri, isread);
2012 }
2013
2014 return CP_ACCESS_OK;
2015 }
2016
2017 static const ARMCPRegInfo v7_cp_reginfo[] = {
2018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2019 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2020 .access = PL1_W, .type = ARM_CP_NOP },
2021 /*
2022 * Performance monitors are implementation defined in v7,
2023 * but with an ARM recommended set of registers, which we
2024 * follow.
2025 *
2026 * Performance registers fall into three categories:
2027 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2028 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2029 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2030 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2031 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2032 */
2033 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2034 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2035 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2036 .writefn = pmcntenset_write,
2037 .accessfn = pmreg_access,
2038 .fgt = FGT_PMCNTEN,
2039 .raw_writefn = raw_write },
2040 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2042 .access = PL0_RW, .accessfn = pmreg_access,
2043 .fgt = FGT_PMCNTEN,
2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2045 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2046 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2047 .access = PL0_RW,
2048 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2049 .accessfn = pmreg_access,
2050 .fgt = FGT_PMCNTEN,
2051 .writefn = pmcntenclr_write,
2052 .type = ARM_CP_ALIAS | ARM_CP_IO },
2053 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2055 .access = PL0_RW, .accessfn = pmreg_access,
2056 .fgt = FGT_PMCNTEN,
2057 .type = ARM_CP_ALIAS | ARM_CP_IO,
2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2059 .writefn = pmcntenclr_write },
2060 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2061 .access = PL0_RW, .type = ARM_CP_IO,
2062 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2063 .accessfn = pmreg_access,
2064 .fgt = FGT_PMOVS,
2065 .writefn = pmovsr_write,
2066 .raw_writefn = raw_write },
2067 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2068 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2069 .access = PL0_RW, .accessfn = pmreg_access,
2070 .fgt = FGT_PMOVS,
2071 .type = ARM_CP_ALIAS | ARM_CP_IO,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2073 .writefn = pmovsr_write,
2074 .raw_writefn = raw_write },
2075 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2076 .access = PL0_W, .accessfn = pmreg_access_swinc,
2077 .fgt = FGT_PMSWINC_EL0,
2078 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2079 .writefn = pmswinc_write },
2080 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2082 .access = PL0_W, .accessfn = pmreg_access_swinc,
2083 .fgt = FGT_PMSWINC_EL0,
2084 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085 .writefn = pmswinc_write },
2086 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2087 .access = PL0_RW, .type = ARM_CP_ALIAS,
2088 .fgt = FGT_PMSELR_EL0,
2089 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2090 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2091 .raw_writefn = raw_write},
2092 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2094 .access = PL0_RW, .accessfn = pmreg_access_selr,
2095 .fgt = FGT_PMSELR_EL0,
2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2097 .writefn = pmselr_write, .raw_writefn = raw_write, },
2098 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2099 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100 .fgt = FGT_PMCCNTR_EL0,
2101 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2102 .accessfn = pmreg_access_ccntr },
2103 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2105 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2106 .fgt = FGT_PMCCNTR_EL0,
2107 .type = ARM_CP_IO,
2108 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2109 .readfn = pmccntr_read, .writefn = pmccntr_write,
2110 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2111 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2112 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2113 .access = PL0_RW, .accessfn = pmreg_access,
2114 .fgt = FGT_PMCCFILTR_EL0,
2115 .type = ARM_CP_ALIAS | ARM_CP_IO,
2116 .resetvalue = 0, },
2117 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2119 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2120 .access = PL0_RW, .accessfn = pmreg_access,
2121 .fgt = FGT_PMCCFILTR_EL0,
2122 .type = ARM_CP_IO,
2123 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2124 .resetvalue = 0, },
2125 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2126 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2127 .accessfn = pmreg_access,
2128 .fgt = FGT_PMEVTYPERN_EL0,
2129 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2130 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2131 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133 .accessfn = pmreg_access,
2134 .fgt = FGT_PMEVTYPERN_EL0,
2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2137 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2138 .accessfn = pmreg_access_xevcntr,
2139 .fgt = FGT_PMEVCNTRN_EL0,
2140 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2141 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2142 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .accessfn = pmreg_access_xevcntr,
2145 .fgt = FGT_PMEVCNTRN_EL0,
2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2148 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2149 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2150 .resetvalue = 0,
2151 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2152 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2153 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2155 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2156 .resetvalue = 0,
2157 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2159 .access = PL1_RW, .accessfn = access_tpm,
2160 .fgt = FGT_PMINTEN,
2161 .type = ARM_CP_ALIAS | ARM_CP_IO,
2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2163 .resetvalue = 0,
2164 .writefn = pmintenset_write, .raw_writefn = raw_write },
2165 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2166 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2167 .access = PL1_RW, .accessfn = access_tpm,
2168 .fgt = FGT_PMINTEN,
2169 .type = ARM_CP_IO,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2171 .writefn = pmintenset_write, .raw_writefn = raw_write,
2172 .resetvalue = 0x0 },
2173 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2174 .access = PL1_RW, .accessfn = access_tpm,
2175 .fgt = FGT_PMINTEN,
2176 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178 .writefn = pmintenclr_write, },
2179 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2181 .access = PL1_RW, .accessfn = access_tpm,
2182 .fgt = FGT_PMINTEN,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185 .writefn = pmintenclr_write },
2186 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2187 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2188 .access = PL1_R,
2189 .accessfn = access_tid4,
2190 .fgt = FGT_CCSIDR_EL1,
2191 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2192 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2194 .access = PL1_RW,
2195 .accessfn = access_tid4,
2196 .fgt = FGT_CSSELR_EL1,
2197 .writefn = csselr_write, .resetvalue = 0,
2198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2199 offsetof(CPUARMState, cp15.csselr_ns) } },
2200 /*
2201 * Auxiliary ID register: this actually has an IMPDEF value but for now
2202 * just RAZ for all cores:
2203 */
2204 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2205 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2206 .access = PL1_R, .type = ARM_CP_CONST,
2207 .accessfn = access_aa64_tid1,
2208 .fgt = FGT_AIDR_EL1,
2209 .resetvalue = 0 },
2210 /*
2211 * Auxiliary fault status registers: these also are IMPDEF, and we
2212 * choose to RAZ/WI for all cores.
2213 */
2214 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2215 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2216 .access = PL1_RW, .accessfn = access_tvm_trvm,
2217 .fgt = FGT_AFSR0_EL1,
2218 .type = ARM_CP_CONST, .resetvalue = 0 },
2219 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2220 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2221 .access = PL1_RW, .accessfn = access_tvm_trvm,
2222 .fgt = FGT_AFSR1_EL1,
2223 .type = ARM_CP_CONST, .resetvalue = 0 },
2224 /*
2225 * MAIR can just read-as-written because we don't implement caches
2226 * and so don't need to care about memory attributes.
2227 */
2228 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2229 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2230 .access = PL1_RW, .accessfn = access_tvm_trvm,
2231 .fgt = FGT_MAIR_EL1,
2232 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2233 .resetvalue = 0 },
2234 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2236 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2237 .resetvalue = 0 },
2238 /*
2239 * For non-long-descriptor page tables these are PRRR and NMRR;
2240 * regardless they still act as reads-as-written for QEMU.
2241 */
2242 /*
2243 * MAIR0/1 are defined separately from their 64-bit counterpart which
2244 * allows them to assign the correct fieldoffset based on the endianness
2245 * handled in the field definitions.
2246 */
2247 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2248 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2249 .access = PL1_RW, .accessfn = access_tvm_trvm,
2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2251 offsetof(CPUARMState, cp15.mair0_ns) },
2252 .resetfn = arm_cp_reset_ignore },
2253 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2255 .access = PL1_RW, .accessfn = access_tvm_trvm,
2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2257 offsetof(CPUARMState, cp15.mair1_ns) },
2258 .resetfn = arm_cp_reset_ignore },
2259 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2260 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2261 .fgt = FGT_ISR_EL1,
2262 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2263 /* 32 bit ITLB invalidates */
2264 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2265 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2266 .writefn = tlbiall_write },
2267 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2268 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2269 .writefn = tlbimva_write },
2270 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272 .writefn = tlbiasid_write },
2273 /* 32 bit DTLB invalidates */
2274 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276 .writefn = tlbiall_write },
2277 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279 .writefn = tlbimva_write },
2280 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282 .writefn = tlbiasid_write },
2283 /* 32 bit TLB invalidates */
2284 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286 .writefn = tlbiall_write },
2287 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbimva_write },
2290 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbiasid_write },
2293 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbimvaa_write },
2296 };
2297
2298 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2299 /* 32 bit TLB invalidates, Inner Shareable */
2300 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2302 .writefn = tlbiall_is_write },
2303 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2305 .writefn = tlbimva_is_write },
2306 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308 .writefn = tlbiasid_is_write },
2309 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311 .writefn = tlbimvaa_is_write },
2312 };
2313
2314 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2315 /* PMOVSSET is not implemented in v7 before v7ve */
2316 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2317 .access = PL0_RW, .accessfn = pmreg_access,
2318 .fgt = FGT_PMOVS,
2319 .type = ARM_CP_ALIAS | ARM_CP_IO,
2320 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2321 .writefn = pmovsset_write,
2322 .raw_writefn = raw_write },
2323 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2324 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2325 .access = PL0_RW, .accessfn = pmreg_access,
2326 .fgt = FGT_PMOVS,
2327 .type = ARM_CP_ALIAS | ARM_CP_IO,
2328 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2329 .writefn = pmovsset_write,
2330 .raw_writefn = raw_write },
2331 };
2332
2333 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2334 uint64_t value)
2335 {
2336 value &= 1;
2337 env->teecr = value;
2338 }
2339
2340 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2341 bool isread)
2342 {
2343 /*
2344 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2345 * at all, so we don't need to check whether we're v8A.
2346 */
2347 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2348 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2349 return CP_ACCESS_TRAP_EL2;
2350 }
2351 return CP_ACCESS_OK;
2352 }
2353
2354 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2355 bool isread)
2356 {
2357 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2358 return CP_ACCESS_TRAP;
2359 }
2360 return teecr_access(env, ri, isread);
2361 }
2362
2363 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2364 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2365 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2366 .resetvalue = 0,
2367 .writefn = teecr_write, .accessfn = teecr_access },
2368 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2369 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2370 .accessfn = teehbr_access, .resetvalue = 0 },
2371 };
2372
2373 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2374 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2375 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2376 .access = PL0_RW,
2377 .fgt = FGT_TPIDR_EL0,
2378 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2379 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2380 .access = PL0_RW,
2381 .fgt = FGT_TPIDR_EL0,
2382 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2383 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2384 .resetfn = arm_cp_reset_ignore },
2385 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2386 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2387 .access = PL0_R | PL1_W,
2388 .fgt = FGT_TPIDRRO_EL0,
2389 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2390 .resetvalue = 0},
2391 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2392 .access = PL0_R | PL1_W,
2393 .fgt = FGT_TPIDRRO_EL0,
2394 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2395 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2396 .resetfn = arm_cp_reset_ignore },
2397 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2398 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2399 .access = PL1_RW,
2400 .fgt = FGT_TPIDR_EL1,
2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2402 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2403 .access = PL1_RW,
2404 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2405 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2406 .resetvalue = 0 },
2407 };
2408
2409 #ifndef CONFIG_USER_ONLY
2410
2411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412 bool isread)
2413 {
2414 /*
2415 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2416 * Writable only at the highest implemented exception level.
2417 */
2418 int el = arm_current_el(env);
2419 uint64_t hcr;
2420 uint32_t cntkctl;
2421
2422 switch (el) {
2423 case 0:
2424 hcr = arm_hcr_el2_eff(env);
2425 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2426 cntkctl = env->cp15.cnthctl_el2;
2427 } else {
2428 cntkctl = env->cp15.c14_cntkctl;
2429 }
2430 if (!extract32(cntkctl, 0, 2)) {
2431 return CP_ACCESS_TRAP;
2432 }
2433 break;
2434 case 1:
2435 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2436 arm_is_secure_below_el3(env)) {
2437 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2438 return CP_ACCESS_TRAP_UNCATEGORIZED;
2439 }
2440 break;
2441 case 2:
2442 case 3:
2443 break;
2444 }
2445
2446 if (!isread && el < arm_highest_el(env)) {
2447 return CP_ACCESS_TRAP_UNCATEGORIZED;
2448 }
2449
2450 return CP_ACCESS_OK;
2451 }
2452
2453 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2454 bool isread)
2455 {
2456 unsigned int cur_el = arm_current_el(env);
2457 bool has_el2 = arm_is_el2_enabled(env);
2458 uint64_t hcr = arm_hcr_el2_eff(env);
2459
2460 switch (cur_el) {
2461 case 0:
2462 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2463 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2464 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2465 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2466 }
2467
2468 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2469 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2470 return CP_ACCESS_TRAP;
2471 }
2472
2473 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2474 if (hcr & HCR_E2H) {
2475 if (timeridx == GTIMER_PHYS &&
2476 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2477 return CP_ACCESS_TRAP_EL2;
2478 }
2479 } else {
2480 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2481 if (has_el2 && timeridx == GTIMER_PHYS &&
2482 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2483 return CP_ACCESS_TRAP_EL2;
2484 }
2485 }
2486 break;
2487
2488 case 1:
2489 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2490 if (has_el2 && timeridx == GTIMER_PHYS &&
2491 (hcr & HCR_E2H
2492 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2493 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2494 return CP_ACCESS_TRAP_EL2;
2495 }
2496 break;
2497 }
2498 return CP_ACCESS_OK;
2499 }
2500
2501 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2502 bool isread)
2503 {
2504 unsigned int cur_el = arm_current_el(env);
2505 bool has_el2 = arm_is_el2_enabled(env);
2506 uint64_t hcr = arm_hcr_el2_eff(env);
2507
2508 switch (cur_el) {
2509 case 0:
2510 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2511 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2512 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2513 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2514 }
2515
2516 /*
2517 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2518 * EL0 if EL0[PV]TEN is zero.
2519 */
2520 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2521 return CP_ACCESS_TRAP;
2522 }
2523 /* fall through */
2524
2525 case 1:
2526 if (has_el2 && timeridx == GTIMER_PHYS) {
2527 if (hcr & HCR_E2H) {
2528 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2529 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2530 return CP_ACCESS_TRAP_EL2;
2531 }
2532 } else {
2533 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2534 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2535 return CP_ACCESS_TRAP_EL2;
2536 }
2537 }
2538 }
2539 break;
2540 }
2541 return CP_ACCESS_OK;
2542 }
2543
2544 static CPAccessResult gt_pct_access(CPUARMState *env,
2545 const ARMCPRegInfo *ri,
2546 bool isread)
2547 {
2548 return gt_counter_access(env, GTIMER_PHYS, isread);
2549 }
2550
2551 static CPAccessResult gt_vct_access(CPUARMState *env,
2552 const ARMCPRegInfo *ri,
2553 bool isread)
2554 {
2555 return gt_counter_access(env, GTIMER_VIRT, isread);
2556 }
2557
2558 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2559 bool isread)
2560 {
2561 return gt_timer_access(env, GTIMER_PHYS, isread);
2562 }
2563
2564 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565 bool isread)
2566 {
2567 return gt_timer_access(env, GTIMER_VIRT, isread);
2568 }
2569
2570 static CPAccessResult gt_stimer_access(CPUARMState *env,
2571 const ARMCPRegInfo *ri,
2572 bool isread)
2573 {
2574 /*
2575 * The AArch64 register view of the secure physical timer is
2576 * always accessible from EL3, and configurably accessible from
2577 * Secure EL1.
2578 */
2579 switch (arm_current_el(env)) {
2580 case 1:
2581 if (!arm_is_secure(env)) {
2582 return CP_ACCESS_TRAP;
2583 }
2584 if (!(env->cp15.scr_el3 & SCR_ST)) {
2585 return CP_ACCESS_TRAP_EL3;
2586 }
2587 return CP_ACCESS_OK;
2588 case 0:
2589 case 2:
2590 return CP_ACCESS_TRAP;
2591 case 3:
2592 return CP_ACCESS_OK;
2593 default:
2594 g_assert_not_reached();
2595 }
2596 }
2597
2598 static uint64_t gt_get_countervalue(CPUARMState *env)
2599 {
2600 ARMCPU *cpu = env_archcpu(env);
2601
2602 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2603 }
2604
2605 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2606 {
2607 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2608
2609 if (gt->ctl & 1) {
2610 /*
2611 * Timer enabled: calculate and set current ISTATUS, irq, and
2612 * reset timer to when ISTATUS next has to change
2613 */
2614 uint64_t offset = timeridx == GTIMER_VIRT ?
2615 cpu->env.cp15.cntvoff_el2 : 0;
2616 uint64_t count = gt_get_countervalue(&cpu->env);
2617 /* Note that this must be unsigned 64 bit arithmetic: */
2618 int istatus = count - offset >= gt->cval;
2619 uint64_t nexttick;
2620 int irqstate;
2621
2622 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2623
2624 irqstate = (istatus && !(gt->ctl & 2));
2625 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2626
2627 if (istatus) {
2628 /* Next transition is when count rolls back over to zero */
2629 nexttick = UINT64_MAX;
2630 } else {
2631 /* Next transition is when we hit cval */
2632 nexttick = gt->cval + offset;
2633 }
2634 /*
2635 * Note that the desired next expiry time might be beyond the
2636 * signed-64-bit range of a QEMUTimer -- in this case we just
2637 * set the timer for as far in the future as possible. When the
2638 * timer expires we will reset the timer for any remaining period.
2639 */
2640 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2641 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2642 } else {
2643 timer_mod(cpu->gt_timer[timeridx], nexttick);
2644 }
2645 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2646 } else {
2647 /* Timer disabled: ISTATUS and timer output always clear */
2648 gt->ctl &= ~4;
2649 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2650 timer_del(cpu->gt_timer[timeridx]);
2651 trace_arm_gt_recalc_disabled(timeridx);
2652 }
2653 }
2654
2655 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2656 int timeridx)
2657 {
2658 ARMCPU *cpu = env_archcpu(env);
2659
2660 timer_del(cpu->gt_timer[timeridx]);
2661 }
2662
2663 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2664 {
2665 return gt_get_countervalue(env);
2666 }
2667
2668 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2669 {
2670 uint64_t hcr;
2671
2672 switch (arm_current_el(env)) {
2673 case 2:
2674 hcr = arm_hcr_el2_eff(env);
2675 if (hcr & HCR_E2H) {
2676 return 0;
2677 }
2678 break;
2679 case 0:
2680 hcr = arm_hcr_el2_eff(env);
2681 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2682 return 0;
2683 }
2684 break;
2685 }
2686
2687 return env->cp15.cntvoff_el2;
2688 }
2689
2690 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2691 {
2692 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2693 }
2694
2695 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696 int timeridx,
2697 uint64_t value)
2698 {
2699 trace_arm_gt_cval_write(timeridx, value);
2700 env->cp15.c14_timer[timeridx].cval = value;
2701 gt_recalc_timer(env_archcpu(env), timeridx);
2702 }
2703
2704 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2705 int timeridx)
2706 {
2707 uint64_t offset = 0;
2708
2709 switch (timeridx) {
2710 case GTIMER_VIRT:
2711 case GTIMER_HYPVIRT:
2712 offset = gt_virt_cnt_offset(env);
2713 break;
2714 }
2715
2716 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2717 (gt_get_countervalue(env) - offset));
2718 }
2719
2720 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721 int timeridx,
2722 uint64_t value)
2723 {
2724 uint64_t offset = 0;
2725
2726 switch (timeridx) {
2727 case GTIMER_VIRT:
2728 case GTIMER_HYPVIRT:
2729 offset = gt_virt_cnt_offset(env);
2730 break;
2731 }
2732
2733 trace_arm_gt_tval_write(timeridx, value);
2734 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2735 sextract64(value, 0, 32);
2736 gt_recalc_timer(env_archcpu(env), timeridx);
2737 }
2738
2739 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2740 int timeridx,
2741 uint64_t value)
2742 {
2743 ARMCPU *cpu = env_archcpu(env);
2744 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2745
2746 trace_arm_gt_ctl_write(timeridx, value);
2747 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2748 if ((oldval ^ value) & 1) {
2749 /* Enable toggled */
2750 gt_recalc_timer(cpu, timeridx);
2751 } else if ((oldval ^ value) & 2) {
2752 /*
2753 * IMASK toggled: don't need to recalculate,
2754 * just set the interrupt line based on ISTATUS
2755 */
2756 int irqstate = (oldval & 4) && !(value & 2);
2757
2758 trace_arm_gt_imask_toggle(timeridx, irqstate);
2759 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2760 }
2761 }
2762
2763 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2764 {
2765 gt_timer_reset(env, ri, GTIMER_PHYS);
2766 }
2767
2768 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2769 uint64_t value)
2770 {
2771 gt_cval_write(env, ri, GTIMER_PHYS, value);
2772 }
2773
2774 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2775 {
2776 return gt_tval_read(env, ri, GTIMER_PHYS);
2777 }
2778
2779 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2780 uint64_t value)
2781 {
2782 gt_tval_write(env, ri, GTIMER_PHYS, value);
2783 }
2784
2785 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786 uint64_t value)
2787 {
2788 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2789 }
2790
2791 static int gt_phys_redir_timeridx(CPUARMState *env)
2792 {
2793 switch (arm_mmu_idx(env)) {
2794 case ARMMMUIdx_E20_0:
2795 case ARMMMUIdx_E20_2:
2796 case ARMMMUIdx_E20_2_PAN:
2797 return GTIMER_HYP;
2798 default:
2799 return GTIMER_PHYS;
2800 }
2801 }
2802
2803 static int gt_virt_redir_timeridx(CPUARMState *env)
2804 {
2805 switch (arm_mmu_idx(env)) {
2806 case ARMMMUIdx_E20_0:
2807 case ARMMMUIdx_E20_2:
2808 case ARMMMUIdx_E20_2_PAN:
2809 return GTIMER_HYPVIRT;
2810 default:
2811 return GTIMER_VIRT;
2812 }
2813 }
2814
2815 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2816 const ARMCPRegInfo *ri)
2817 {
2818 int timeridx = gt_phys_redir_timeridx(env);
2819 return env->cp15.c14_timer[timeridx].cval;
2820 }
2821
2822 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823 uint64_t value)
2824 {
2825 int timeridx = gt_phys_redir_timeridx(env);
2826 gt_cval_write(env, ri, timeridx, value);
2827 }
2828
2829 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2830 const ARMCPRegInfo *ri)
2831 {
2832 int timeridx = gt_phys_redir_timeridx(env);
2833 return gt_tval_read(env, ri, timeridx);
2834 }
2835
2836 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837 uint64_t value)
2838 {
2839 int timeridx = gt_phys_redir_timeridx(env);
2840 gt_tval_write(env, ri, timeridx, value);
2841 }
2842
2843 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2844 const ARMCPRegInfo *ri)
2845 {
2846 int timeridx = gt_phys_redir_timeridx(env);
2847 return env->cp15.c14_timer[timeridx].ctl;
2848 }
2849
2850 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851 uint64_t value)
2852 {
2853 int timeridx = gt_phys_redir_timeridx(env);
2854 gt_ctl_write(env, ri, timeridx, value);
2855 }
2856
2857 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2858 {
2859 gt_timer_reset(env, ri, GTIMER_VIRT);
2860 }
2861
2862 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863 uint64_t value)
2864 {
2865 gt_cval_write(env, ri, GTIMER_VIRT, value);
2866 }
2867
2868 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2869 {
2870 return gt_tval_read(env, ri, GTIMER_VIRT);
2871 }
2872
2873 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874 uint64_t value)
2875 {
2876 gt_tval_write(env, ri, GTIMER_VIRT, value);
2877 }
2878
2879 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880 uint64_t value)
2881 {
2882 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2883 }
2884
2885 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886 uint64_t value)
2887 {
2888 ARMCPU *cpu = env_archcpu(env);
2889
2890 trace_arm_gt_cntvoff_write(value);
2891 raw_write(env, ri, value);
2892 gt_recalc_timer(cpu, GTIMER_VIRT);
2893 }
2894
2895 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2896 const ARMCPRegInfo *ri)
2897 {
2898 int timeridx = gt_virt_redir_timeridx(env);
2899 return env->cp15.c14_timer[timeridx].cval;
2900 }
2901
2902 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903 uint64_t value)
2904 {
2905 int timeridx = gt_virt_redir_timeridx(env);
2906 gt_cval_write(env, ri, timeridx, value);
2907 }
2908
2909 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2910 const ARMCPRegInfo *ri)
2911 {
2912 int timeridx = gt_virt_redir_timeridx(env);
2913 return gt_tval_read(env, ri, timeridx);
2914 }
2915
2916 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917 uint64_t value)
2918 {
2919 int timeridx = gt_virt_redir_timeridx(env);
2920 gt_tval_write(env, ri, timeridx, value);
2921 }
2922
2923 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2924 const ARMCPRegInfo *ri)
2925 {
2926 int timeridx = gt_virt_redir_timeridx(env);
2927 return env->cp15.c14_timer[timeridx].ctl;
2928 }
2929
2930 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931 uint64_t value)
2932 {
2933 int timeridx = gt_virt_redir_timeridx(env);
2934 gt_ctl_write(env, ri, timeridx, value);
2935 }
2936
2937 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2938 {
2939 gt_timer_reset(env, ri, GTIMER_HYP);
2940 }
2941
2942 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943 uint64_t value)
2944 {
2945 gt_cval_write(env, ri, GTIMER_HYP, value);
2946 }
2947
2948 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2949 {
2950 return gt_tval_read(env, ri, GTIMER_HYP);
2951 }
2952
2953 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954 uint64_t value)
2955 {
2956 gt_tval_write(env, ri, GTIMER_HYP, value);
2957 }
2958
2959 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2961 {
2962 gt_ctl_write(env, ri, GTIMER_HYP, value);
2963 }
2964
2965 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2966 {
2967 gt_timer_reset(env, ri, GTIMER_SEC);
2968 }
2969
2970 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2971 uint64_t value)
2972 {
2973 gt_cval_write(env, ri, GTIMER_SEC, value);
2974 }
2975
2976 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977 {
2978 return gt_tval_read(env, ri, GTIMER_SEC);
2979 }
2980
2981 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2983 {
2984 gt_tval_write(env, ri, GTIMER_SEC, value);
2985 }
2986
2987 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2989 {
2990 gt_ctl_write(env, ri, GTIMER_SEC, value);
2991 }
2992
2993 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2994 {
2995 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2996 }
2997
2998 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999 uint64_t value)
3000 {
3001 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3002 }
3003
3004 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3005 {
3006 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3007 }
3008
3009 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3011 {
3012 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3013 }
3014
3015 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017 {
3018 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020
3021 void arm_gt_ptimer_cb(void *opaque)
3022 {
3023 ARMCPU *cpu = opaque;
3024
3025 gt_recalc_timer(cpu, GTIMER_PHYS);
3026 }
3027
3028 void arm_gt_vtimer_cb(void *opaque)
3029 {
3030 ARMCPU *cpu = opaque;
3031
3032 gt_recalc_timer(cpu, GTIMER_VIRT);
3033 }
3034
3035 void arm_gt_htimer_cb(void *opaque)
3036 {
3037 ARMCPU *cpu = opaque;
3038
3039 gt_recalc_timer(cpu, GTIMER_HYP);
3040 }
3041
3042 void arm_gt_stimer_cb(void *opaque)
3043 {
3044 ARMCPU *cpu = opaque;
3045
3046 gt_recalc_timer(cpu, GTIMER_SEC);
3047 }
3048
3049 void arm_gt_hvtimer_cb(void *opaque)
3050 {
3051 ARMCPU *cpu = opaque;
3052
3053 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3054 }
3055
3056 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3057 {
3058 ARMCPU *cpu = env_archcpu(env);
3059
3060 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3061 }
3062
3063 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3064 /*
3065 * Note that CNTFRQ is purely reads-as-written for the benefit
3066 * of software; writing it doesn't actually change the timer frequency.
3067 * Our reset value matches the fixed frequency we implement the timer at.
3068 */
3069 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3070 .type = ARM_CP_ALIAS,
3071 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3072 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3073 },
3074 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3076 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3077 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3078 .resetfn = arm_gt_cntfrq_reset,
3079 },
3080 /* overall control: mostly access permissions */
3081 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3082 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3083 .access = PL1_RW,
3084 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3085 .resetvalue = 0,
3086 },
3087 /* per-timer control */
3088 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3089 .secure = ARM_CP_SECSTATE_NS,
3090 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3091 .accessfn = gt_ptimer_access,
3092 .fieldoffset = offsetoflow32(CPUARMState,
3093 cp15.c14_timer[GTIMER_PHYS].ctl),
3094 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3095 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3096 },
3097 { .name = "CNTP_CTL_S",
3098 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3099 .secure = ARM_CP_SECSTATE_S,
3100 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3101 .accessfn = gt_ptimer_access,
3102 .fieldoffset = offsetoflow32(CPUARMState,
3103 cp15.c14_timer[GTIMER_SEC].ctl),
3104 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3105 },
3106 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3108 .type = ARM_CP_IO, .access = PL0_RW,
3109 .accessfn = gt_ptimer_access,
3110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3111 .resetvalue = 0,
3112 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3113 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3114 },
3115 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3116 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3117 .accessfn = gt_vtimer_access,
3118 .fieldoffset = offsetoflow32(CPUARMState,
3119 cp15.c14_timer[GTIMER_VIRT].ctl),
3120 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3121 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3122 },
3123 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3125 .type = ARM_CP_IO, .access = PL0_RW,
3126 .accessfn = gt_vtimer_access,
3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3128 .resetvalue = 0,
3129 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3130 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3131 },
3132 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3133 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3134 .secure = ARM_CP_SECSTATE_NS,
3135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3136 .accessfn = gt_ptimer_access,
3137 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3138 },
3139 { .name = "CNTP_TVAL_S",
3140 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3141 .secure = ARM_CP_SECSTATE_S,
3142 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3143 .accessfn = gt_ptimer_access,
3144 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3145 },
3146 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3147 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3150 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3151 },
3152 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3153 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3154 .accessfn = gt_vtimer_access,
3155 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3156 },
3157 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162 },
3163 /* The counter itself */
3164 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3165 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3166 .accessfn = gt_pct_access,
3167 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3168 },
3169 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3171 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3172 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3173 },
3174 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3175 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3176 .accessfn = gt_vct_access,
3177 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3178 },
3179 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3180 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3181 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3182 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3183 },
3184 /* Comparison value, indicating when the timer goes off */
3185 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3186 .secure = ARM_CP_SECSTATE_NS,
3187 .access = PL0_RW,
3188 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3189 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3190 .accessfn = gt_ptimer_access,
3191 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3192 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3193 },
3194 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3195 .secure = ARM_CP_SECSTATE_S,
3196 .access = PL0_RW,
3197 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3198 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3199 .accessfn = gt_ptimer_access,
3200 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3201 },
3202 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3203 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3204 .access = PL0_RW,
3205 .type = ARM_CP_IO,
3206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3207 .resetvalue = 0, .accessfn = gt_ptimer_access,
3208 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3209 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3210 },
3211 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3212 .access = PL0_RW,
3213 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3214 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3215 .accessfn = gt_vtimer_access,
3216 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3217 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3218 },
3219 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3220 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3221 .access = PL0_RW,
3222 .type = ARM_CP_IO,
3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3224 .resetvalue = 0, .accessfn = gt_vtimer_access,
3225 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3226 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3227 },
3228 /*
3229 * Secure timer -- this is actually restricted to only EL3
3230 * and configurably Secure-EL1 via the accessfn.
3231 */
3232 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3233 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3235 .accessfn = gt_stimer_access,
3236 .readfn = gt_sec_tval_read,
3237 .writefn = gt_sec_tval_write,
3238 .resetfn = gt_sec_timer_reset,
3239 },
3240 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3241 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3242 .type = ARM_CP_IO, .access = PL1_RW,
3243 .accessfn = gt_stimer_access,
3244 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3245 .resetvalue = 0,
3246 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3247 },
3248 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3249 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3250 .type = ARM_CP_IO, .access = PL1_RW,
3251 .accessfn = gt_stimer_access,
3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3253 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3254 },
3255 };
3256
3257 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258 bool isread)
3259 {
3260 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3261 return CP_ACCESS_TRAP;
3262 }
3263 return CP_ACCESS_OK;
3264 }
3265
3266 #else
3267
3268 /*
3269 * In user-mode most of the generic timer registers are inaccessible
3270 * however modern kernels (4.12+) allow access to cntvct_el0
3271 */
3272
3273 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3274 {
3275 ARMCPU *cpu = env_archcpu(env);
3276
3277 /*
3278 * Currently we have no support for QEMUTimer in linux-user so we
3279 * can't call gt_get_countervalue(env), instead we directly
3280 * call the lower level functions.
3281 */
3282 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3283 }
3284
3285 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3286 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3288 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3290 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3291 },
3292 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3294 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3295 .readfn = gt_virt_cnt_read,
3296 },
3297 };
3298
3299 #endif
3300
3301 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3302 {
3303 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3304 raw_write(env, ri, value);
3305 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3306 raw_write(env, ri, value & 0xfffff6ff);
3307 } else {
3308 raw_write(env, ri, value & 0xfffff1ff);
3309 }
3310 }
3311
3312 #ifndef CONFIG_USER_ONLY
3313 /* get_phys_addr() isn't present for user-mode-only targets */
3314
3315 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3316 bool isread)
3317 {
3318 if (ri->opc2 & 4) {
3319 /*
3320 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3321 * Secure EL1 (which can only happen if EL3 is AArch64).
3322 * They are simply UNDEF if executed from NS EL1.
3323 * They function normally from EL2 or EL3.
3324 */
3325 if (arm_current_el(env) == 1) {
3326 if (arm_is_secure_below_el3(env)) {
3327 if (env->cp15.scr_el3 & SCR_EEL2) {
3328 return CP_ACCESS_TRAP_EL2;
3329 }
3330 return CP_ACCESS_TRAP_EL3;
3331 }
3332 return CP_ACCESS_TRAP_UNCATEGORIZED;
3333 }
3334 }
3335 return CP_ACCESS_OK;
3336 }
3337
3338 #ifdef CONFIG_TCG
3339 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3340 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3341 bool is_secure)
3342 {
3343 bool ret;
3344 uint64_t par64;
3345 bool format64 = false;
3346 ARMMMUFaultInfo fi = {};
3347 GetPhysAddrResult res = {};
3348
3349 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3350 is_secure, &res, &fi);
3351
3352 /*
3353 * ATS operations only do S1 or S1+S2 translations, so we never
3354 * have to deal with the ARMCacheAttrs format for S2 only.
3355 */
3356 assert(!res.cacheattrs.is_s2_format);
3357
3358 if (ret) {
3359 /*
3360 * Some kinds of translation fault must cause exceptions rather
3361 * than being reported in the PAR.
3362 */
3363 int current_el = arm_current_el(env);
3364 int target_el;
3365 uint32_t syn, fsr, fsc;
3366 bool take_exc = false;
3367
3368 if (fi.s1ptw && current_el == 1
3369 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3370 /*
3371 * Synchronous stage 2 fault on an access made as part of the
3372 * translation table walk for AT S1E0* or AT S1E1* insn
3373 * executed from NS EL1. If this is a synchronous external abort
3374 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3375 * to EL3. Otherwise the fault is taken as an exception to EL2,
3376 * and HPFAR_EL2 holds the faulting IPA.
3377 */
3378 if (fi.type == ARMFault_SyncExternalOnWalk &&
3379 (env->cp15.scr_el3 & SCR_EA)) {
3380 target_el = 3;
3381 } else {
3382 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3383 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3384 env->cp15.hpfar_el2 |= HPFAR_NS;
3385 }
3386 target_el = 2;
3387 }
3388 take_exc = true;
3389 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3390 /*
3391 * Synchronous external aborts during a translation table walk
3392 * are taken as Data Abort exceptions.
3393 */
3394 if (fi.stage2) {
3395 if (current_el == 3) {
3396 target_el = 3;
3397 } else {
3398 target_el = 2;
3399 }
3400 } else {
3401 target_el = exception_target_el(env);
3402 }
3403 take_exc = true;
3404 }
3405
3406 if (take_exc) {
3407 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3408 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3409 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3410 fsr = arm_fi_to_lfsc(&fi);
3411 fsc = extract32(fsr, 0, 6);
3412 } else {
3413 fsr = arm_fi_to_sfsc(&fi);
3414 fsc = 0x3f;
3415 }
3416 /*
3417 * Report exception with ESR indicating a fault due to a
3418 * translation table walk for a cache maintenance instruction.
3419 */
3420 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3421 fi.ea, 1, fi.s1ptw, 1, fsc);
3422 env->exception.vaddress = value;
3423 env->exception.fsr = fsr;
3424 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3425 }
3426 }
3427
3428 if (is_a64(env)) {
3429 format64 = true;
3430 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3431 /*
3432 * ATS1Cxx:
3433 * * TTBCR.EAE determines whether the result is returned using the
3434 * 32-bit or the 64-bit PAR format
3435 * * Instructions executed in Hyp mode always use the 64bit format
3436 *
3437 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3438 * * The Non-secure TTBCR.EAE bit is set to 1
3439 * * The implementation includes EL2, and the value of HCR.VM is 1
3440 *
3441 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3442 *
3443 * ATS1Hx always uses the 64bit format.
3444 */
3445 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3446
3447 if (arm_feature(env, ARM_FEATURE_EL2)) {
3448 if (mmu_idx == ARMMMUIdx_E10_0 ||
3449 mmu_idx == ARMMMUIdx_E10_1 ||
3450 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3451 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3452 } else {
3453 format64 |= arm_current_el(env) == 2;
3454 }
3455 }
3456 }
3457
3458 if (format64) {
3459 /* Create a 64-bit PAR */
3460 par64 = (1 << 11); /* LPAE bit always set */
3461 if (!ret) {
3462 par64 |= res.f.phys_addr & ~0xfffULL;
3463 if (!res.f.attrs.secure) {
3464 par64 |= (1 << 9); /* NS */
3465 }
3466 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3467 par64 |= res.cacheattrs.shareability << 7; /* SH */
3468 } else {
3469 uint32_t fsr = arm_fi_to_lfsc(&fi);
3470
3471 par64 |= 1; /* F */
3472 par64 |= (fsr & 0x3f) << 1; /* FS */
3473 if (fi.stage2) {
3474 par64 |= (1 << 9); /* S */
3475 }
3476 if (fi.s1ptw) {
3477 par64 |= (1 << 8); /* PTW */
3478 }
3479 }
3480 } else {
3481 /*
3482 * fsr is a DFSR/IFSR value for the short descriptor
3483 * translation table format (with WnR always clear).
3484 * Convert it to a 32-bit PAR.
3485 */
3486 if (!ret) {
3487 /* We do not set any attribute bits in the PAR */
3488 if (res.f.lg_page_size == 24
3489 && arm_feature(env, ARM_FEATURE_V7)) {
3490 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3491 } else {
3492 par64 = res.f.phys_addr & 0xfffff000;
3493 }
3494 if (!res.f.attrs.secure) {
3495 par64 |= (1 << 9); /* NS */
3496 }
3497 } else {
3498 uint32_t fsr = arm_fi_to_sfsc(&fi);
3499
3500 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3501 ((fsr & 0xf) << 1) | 1;
3502 }
3503 }
3504 return par64;
3505 }
3506 #endif /* CONFIG_TCG */
3507
3508 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3509 {
3510 #ifdef CONFIG_TCG
3511 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3512 uint64_t par64;
3513 ARMMMUIdx mmu_idx;
3514 int el = arm_current_el(env);
3515 bool secure = arm_is_secure_below_el3(env);
3516
3517 switch (ri->opc2 & 6) {
3518 case 0:
3519 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3520 switch (el) {
3521 case 3:
3522 mmu_idx = ARMMMUIdx_E3;
3523 secure = true;
3524 break;
3525 case 2:
3526 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3527 /* fall through */
3528 case 1:
3529 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3530 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3531 } else {
3532 mmu_idx = ARMMMUIdx_Stage1_E1;
3533 }
3534 break;
3535 default:
3536 g_assert_not_reached();
3537 }
3538 break;
3539 case 2:
3540 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3541 switch (el) {
3542 case 3:
3543 mmu_idx = ARMMMUIdx_E10_0;
3544 secure = true;
3545 break;
3546 case 2:
3547 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3548 mmu_idx = ARMMMUIdx_Stage1_E0;
3549 break;
3550 case 1:
3551 mmu_idx = ARMMMUIdx_Stage1_E0;
3552 break;
3553 default:
3554 g_assert_not_reached();
3555 }
3556 break;
3557 case 4:
3558 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3559 mmu_idx = ARMMMUIdx_E10_1;
3560 secure = false;
3561 break;
3562 case 6:
3563 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3564 mmu_idx = ARMMMUIdx_E10_0;
3565 secure = false;
3566 break;
3567 default:
3568 g_assert_not_reached();
3569 }
3570
3571 par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3572
3573 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3574 #else
3575 /* Handled by hardware accelerator. */
3576 g_assert_not_reached();
3577 #endif /* CONFIG_TCG */
3578 }
3579
3580 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581 uint64_t value)
3582 {
3583 #ifdef CONFIG_TCG
3584 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3585 uint64_t par64;
3586
3587 /* There is no SecureEL2 for AArch32. */
3588 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3589
3590 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3591 #else
3592 /* Handled by hardware accelerator. */
3593 g_assert_not_reached();
3594 #endif /* CONFIG_TCG */
3595 }
3596
3597 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3598 bool isread)
3599 {
3600 if (arm_current_el(env) == 3 &&
3601 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3602 return CP_ACCESS_TRAP;
3603 }
3604 return CP_ACCESS_OK;
3605 }
3606
3607 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3608 uint64_t value)
3609 {
3610 #ifdef CONFIG_TCG
3611 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612 ARMMMUIdx mmu_idx;
3613 int secure = arm_is_secure_below_el3(env);
3614 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3615 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3616
3617 switch (ri->opc2 & 6) {
3618 case 0:
3619 switch (ri->opc1) {
3620 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3621 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3622 mmu_idx = regime_e20 ?
3623 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3624 } else {
3625 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3626 }
3627 break;
3628 case 4: /* AT S1E2R, AT S1E2W */
3629 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3630 break;
3631 case 6: /* AT S1E3R, AT S1E3W */
3632 mmu_idx = ARMMMUIdx_E3;
3633 secure = true;
3634 break;
3635 default:
3636 g_assert_not_reached();
3637 }
3638 break;
3639 case 2: /* AT S1E0R, AT S1E0W */
3640 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3641 break;
3642 case 4: /* AT S12E1R, AT S12E1W */
3643 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3644 break;
3645 case 6: /* AT S12E0R, AT S12E0W */
3646 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3647 break;
3648 default:
3649 g_assert_not_reached();
3650 }
3651
3652 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3653 mmu_idx, secure);
3654 #else
3655 /* Handled by hardware accelerator. */
3656 g_assert_not_reached();
3657 #endif /* CONFIG_TCG */
3658 }
3659 #endif
3660
3661 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3662 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3663 .access = PL1_RW, .resetvalue = 0,
3664 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3665 offsetoflow32(CPUARMState, cp15.par_ns) },
3666 .writefn = par_write },
3667 #ifndef CONFIG_USER_ONLY
3668 /* This underdecoding is safe because the reginfo is NO_RAW. */
3669 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3670 .access = PL1_W, .accessfn = ats_access,
3671 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3672 #endif
3673 };
3674
3675 /* Return basic MPU access permission bits. */
3676 static uint32_t simple_mpu_ap_bits(uint32_t val)
3677 {
3678 uint32_t ret;
3679 uint32_t mask;
3680 int i;
3681 ret = 0;
3682 mask = 3;
3683 for (i = 0; i < 16; i += 2) {
3684 ret |= (val >> i) & mask;
3685 mask <<= 2;
3686 }
3687 return ret;
3688 }
3689
3690 /* Pad basic MPU access permission bits to extended format. */
3691 static uint32_t extended_mpu_ap_bits(uint32_t val)
3692 {
3693 uint32_t ret;
3694 uint32_t mask;
3695 int i;
3696 ret = 0;
3697 mask = 3;
3698 for (i = 0; i < 16; i += 2) {
3699 ret |= (val & mask) << i;
3700 mask <<= 2;
3701 }
3702 return ret;
3703 }
3704
3705 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3706 uint64_t value)
3707 {
3708 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3709 }
3710
3711 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3712 {
3713 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3714 }
3715
3716 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717 uint64_t value)
3718 {
3719 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3720 }
3721
3722 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3723 {
3724 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3725 }
3726
3727 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3728 {
3729 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3730
3731 if (!u32p) {
3732 return 0;
3733 }
3734
3735 u32p += env->pmsav7.rnr[M_REG_NS];
3736 return *u32p;
3737 }
3738
3739 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740 uint64_t value)
3741 {
3742 ARMCPU *cpu = env_archcpu(env);
3743 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3744
3745 if (!u32p) {
3746 return;
3747 }
3748
3749 u32p += env->pmsav7.rnr[M_REG_NS];
3750 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3751 *u32p = value;
3752 }
3753
3754 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755 uint64_t value)
3756 {
3757 ARMCPU *cpu = env_archcpu(env);
3758 uint32_t nrgs = cpu->pmsav7_dregion;
3759
3760 if (value >= nrgs) {
3761 qemu_log_mask(LOG_GUEST_ERROR,
3762 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3763 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3764 return;
3765 }
3766
3767 raw_write(env, ri, value);
3768 }
3769
3770 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771 uint64_t value)
3772 {
3773 ARMCPU *cpu = env_archcpu(env);
3774
3775 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3776 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3777 }
3778
3779 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3780 {
3781 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3782 }
3783
3784 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3786 {
3787 ARMCPU *cpu = env_archcpu(env);
3788
3789 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3790 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3791 }
3792
3793 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3794 {
3795 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3796 }
3797
3798 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799 uint64_t value)
3800 {
3801 ARMCPU *cpu = env_archcpu(env);
3802
3803 /*
3804 * Ignore writes that would select not implemented region.
3805 * This is architecturally UNPREDICTABLE.
3806 */
3807 if (value >= cpu->pmsav7_dregion) {
3808 return;
3809 }
3810
3811 env->pmsav7.rnr[M_REG_NS] = value;
3812 }
3813
3814 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815 uint64_t value)
3816 {
3817 ARMCPU *cpu = env_archcpu(env);
3818
3819 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3820 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3821 }
3822
3823 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3824 {
3825 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3826 }
3827
3828 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829 uint64_t value)
3830 {
3831 ARMCPU *cpu = env_archcpu(env);
3832
3833 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3834 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3835 }
3836
3837 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3838 {
3839 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3840 }
3841
3842 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843 uint64_t value)
3844 {
3845 uint32_t n;
3846 uint32_t bit;
3847 ARMCPU *cpu = env_archcpu(env);
3848
3849 /* Ignore writes to unimplemented regions */
3850 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3851 value &= MAKE_64BIT_MASK(0, rmax);
3852
3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854
3855 /* Register alias is only valid for first 32 indexes */
3856 for (n = 0; n < rmax; ++n) {
3857 bit = extract32(value, n, 1);
3858 env->pmsav8.hprlar[n] = deposit32(
3859 env->pmsav8.hprlar[n], 0, 1, bit);
3860 }
3861 }
3862
3863 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3864 {
3865 uint32_t n;
3866 uint32_t result = 0x0;
3867 ARMCPU *cpu = env_archcpu(env);
3868
3869 /* Register alias is only valid for first 32 indexes */
3870 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3871 if (env->pmsav8.hprlar[n] & 0x1) {
3872 result |= (0x1 << n);
3873 }
3874 }
3875 return result;
3876 }
3877
3878 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3880 {
3881 ARMCPU *cpu = env_archcpu(env);
3882
3883 /*
3884 * Ignore writes that would select not implemented region.
3885 * This is architecturally UNPREDICTABLE.
3886 */
3887 if (value >= cpu->pmsav8r_hdregion) {
3888 return;
3889 }
3890
3891 env->pmsav8.hprselr = value;
3892 }
3893
3894 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895 uint64_t value)
3896 {
3897 ARMCPU *cpu = env_archcpu(env);
3898 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3899 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3900
3901 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3902
3903 if (ri->opc1 & 4) {
3904 if (index >= cpu->pmsav8r_hdregion) {
3905 return;
3906 }
3907 if (ri->opc2 & 0x1) {
3908 env->pmsav8.hprlar[index] = value;
3909 } else {
3910 env->pmsav8.hprbar[index] = value;
3911 }
3912 } else {
3913 if (index >= cpu->pmsav7_dregion) {
3914 return;
3915 }
3916 if (ri->opc2 & 0x1) {
3917 env->pmsav8.rlar[M_REG_NS][index] = value;
3918 } else {
3919 env->pmsav8.rbar[M_REG_NS][index] = value;
3920 }
3921 }
3922 }
3923
3924 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3925 {
3926 ARMCPU *cpu = env_archcpu(env);
3927 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3928 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3929
3930 if (ri->opc1 & 4) {
3931 if (index >= cpu->pmsav8r_hdregion) {
3932 return 0x0;
3933 }
3934 if (ri->opc2 & 0x1) {
3935 return env->pmsav8.hprlar[index];
3936 } else {
3937 return env->pmsav8.hprbar[index];
3938 }
3939 } else {
3940 if (index >= cpu->pmsav7_dregion) {
3941 return 0x0;
3942 }
3943 if (ri->opc2 & 0x1) {
3944 return env->pmsav8.rlar[M_REG_NS][index];
3945 } else {
3946 return env->pmsav8.rbar[M_REG_NS][index];
3947 }
3948 }
3949 }
3950
3951 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3952 { .name = "PRBAR",
3953 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3954 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3955 .accessfn = access_tvm_trvm,
3956 .readfn = prbar_read, .writefn = prbar_write },
3957 { .name = "PRLAR",
3958 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3959 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3960 .accessfn = access_tvm_trvm,
3961 .readfn = prlar_read, .writefn = prlar_write },
3962 { .name = "PRSELR", .resetvalue = 0,
3963 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3964 .access = PL1_RW, .accessfn = access_tvm_trvm,
3965 .writefn = prselr_write,
3966 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3967 { .name = "HPRBAR", .resetvalue = 0,
3968 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3969 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3970 .readfn = hprbar_read, .writefn = hprbar_write },
3971 { .name = "HPRLAR",
3972 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3973 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3974 .readfn = hprlar_read, .writefn = hprlar_write },
3975 { .name = "HPRSELR", .resetvalue = 0,
3976 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3977 .access = PL2_RW,
3978 .writefn = hprselr_write,
3979 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3980 { .name = "HPRENR",
3981 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3982 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3983 .readfn = hprenr_read, .writefn = hprenr_write },
3984 };
3985
3986 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3987 /*
3988 * Reset for all these registers is handled in arm_cpu_reset(),
3989 * because the PMSAv7 is also used by M-profile CPUs, which do
3990 * not register cpregs but still need the state to be reset.
3991 */
3992 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3993 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3994 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3995 .readfn = pmsav7_read, .writefn = pmsav7_write,
3996 .resetfn = arm_cp_reset_ignore },
3997 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3998 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3999 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4000 .readfn = pmsav7_read, .writefn = pmsav7_write,
4001 .resetfn = arm_cp_reset_ignore },
4002 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4003 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4004 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4005 .readfn = pmsav7_read, .writefn = pmsav7_write,
4006 .resetfn = arm_cp_reset_ignore },
4007 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4008 .access = PL1_RW,
4009 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4010 .writefn = pmsav7_rgnr_write,
4011 .resetfn = arm_cp_reset_ignore },
4012 };
4013
4014 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4015 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4016 .access = PL1_RW, .type = ARM_CP_ALIAS,
4017 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4018 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4019 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4020 .access = PL1_RW, .type = ARM_CP_ALIAS,
4021 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4022 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4023 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4024 .access = PL1_RW,
4025 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4026 .resetvalue = 0, },
4027 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4028 .access = PL1_RW,
4029 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4030 .resetvalue = 0, },
4031 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4032 .access = PL1_RW,
4033 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4034 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4035 .access = PL1_RW,
4036 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4037 /* Protection region base and size registers */
4038 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4039 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4040 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4041 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4042 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4043 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4044 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4045 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4047 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4048 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4050 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4051 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4053 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4054 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4056 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4057 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4059 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4060 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4062 };
4063
4064 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065 uint64_t value)
4066 {
4067 ARMCPU *cpu = env_archcpu(env);
4068
4069 if (!arm_feature(env, ARM_FEATURE_V8)) {
4070 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4071 /*
4072 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4073 * using Long-descriptor translation table format
4074 */
4075 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4076 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4077 /*
4078 * In an implementation that includes the Security Extensions
4079 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4080 * Short-descriptor translation table format.
4081 */
4082 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4083 } else {
4084 value &= TTBCR_N;
4085 }
4086 }
4087
4088 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4089 /*
4090 * With LPAE the TTBCR could result in a change of ASID
4091 * via the TTBCR.A1 bit, so do a TLB flush.
4092 */
4093 tlb_flush(CPU(cpu));
4094 }
4095 raw_write(env, ri, value);
4096 }
4097
4098 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4099 uint64_t value)
4100 {
4101 ARMCPU *cpu = env_archcpu(env);
4102
4103 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4104 tlb_flush(CPU(cpu));
4105 raw_write(env, ri, value);
4106 }
4107
4108 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109 uint64_t value)
4110 {
4111 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4112 if (cpreg_field_is_64bit(ri) &&
4113 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4114 ARMCPU *cpu = env_archcpu(env);
4115 tlb_flush(CPU(cpu));
4116 }
4117 raw_write(env, ri, value);
4118 }
4119
4120 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121 uint64_t value)
4122 {
4123 /*
4124 * If we are running with E2&0 regime, then an ASID is active.
4125 * Flush if that might be changing. Note we're not checking
4126 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4127 * holds the active ASID, only checking the field that might.
4128 */
4129 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4130 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4131 uint16_t mask = ARMMMUIdxBit_E20_2 |
4132 ARMMMUIdxBit_E20_2_PAN |
4133 ARMMMUIdxBit_E20_0;
4134 tlb_flush_by_mmuidx(env_cpu(env), mask);
4135 }
4136 raw_write(env, ri, value);
4137 }
4138
4139 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140 uint64_t value)
4141 {
4142 ARMCPU *cpu = env_archcpu(env);
4143 CPUState *cs = CPU(cpu);
4144
4145 /*
4146 * A change in VMID to the stage2 page table (Stage2) invalidates
4147 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4148 */
4149 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4150 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4151 }
4152 raw_write(env, ri, value);
4153 }
4154
4155 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4156 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4157 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4158 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4159 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4160 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4161 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4162 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4163 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4164 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4165 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4166 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4167 offsetof(CPUARMState, cp15.dfar_ns) } },
4168 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4169 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4170 .access = PL1_RW, .accessfn = access_tvm_trvm,
4171 .fgt = FGT_FAR_EL1,
4172 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4173 .resetvalue = 0, },
4174 };
4175
4176 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4177 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4179 .access = PL1_RW, .accessfn = access_tvm_trvm,
4180 .fgt = FGT_ESR_EL1,
4181 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4182 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4183 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4184 .access = PL1_RW, .accessfn = access_tvm_trvm,
4185 .fgt = FGT_TTBR0_EL1,
4186 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4187 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4188 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4189 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4190 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4191 .access = PL1_RW, .accessfn = access_tvm_trvm,
4192 .fgt = FGT_TTBR1_EL1,
4193 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4194 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4195 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4196 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4197 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4198 .access = PL1_RW, .accessfn = access_tvm_trvm,
4199 .fgt = FGT_TCR_EL1,
4200 .writefn = vmsa_tcr_el12_write,
4201 .raw_writefn = raw_write,
4202 .resetvalue = 0,
4203 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4204 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4205 .access = PL1_RW, .accessfn = access_tvm_trvm,
4206 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4207 .raw_writefn = raw_write,
4208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4209 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4210 };
4211
4212 /*
4213 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4214 * qemu tlbs nor adjusting cached masks.
4215 */
4216 static const ARMCPRegInfo ttbcr2_reginfo = {
4217 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4218 .access = PL1_RW, .accessfn = access_tvm_trvm,
4219 .type = ARM_CP_ALIAS,
4220 .bank_fieldoffsets = {
4221 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4222 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4223 },
4224 };
4225
4226 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227 uint64_t value)
4228 {
4229 env->cp15.c15_ticonfig = value & 0xe7;
4230 /* The OS_TYPE bit in this register changes the reported CPUID! */
4231 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4232 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4233 }
4234
4235 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4236 uint64_t value)
4237 {
4238 env->cp15.c15_threadid = value & 0xffff;
4239 }
4240
4241 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242 uint64_t value)
4243 {
4244 /* Wait-for-interrupt (deprecated) */
4245 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4246 }
4247
4248 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4249 uint64_t value)
4250 {
4251 /*
4252 * On OMAP there are registers indicating the max/min index of dcache lines
4253 * containing a dirty line; cache flush operations have to reset these.
4254 */
4255 env->cp15.c15_i_max = 0x000;
4256 env->cp15.c15_i_min = 0xff0;
4257 }
4258
4259 static const ARMCPRegInfo omap_cp_reginfo[] = {
4260 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4261 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4262 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4263 .resetvalue = 0, },
4264 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4265 .access = PL1_RW, .type = ARM_CP_NOP },
4266 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4267 .access = PL1_RW,
4268 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4269 .writefn = omap_ticonfig_write },
4270 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4271 .access = PL1_RW,
4272 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4273 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4274 .access = PL1_RW, .resetvalue = 0xff0,
4275 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4276 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4277 .access = PL1_RW,
4278 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4279 .writefn = omap_threadid_write },
4280 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4281 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4282 .type = ARM_CP_NO_RAW,
4283 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4284 /*
4285 * TODO: Peripheral port remap register:
4286 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4287 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4288 * when MMU is off.
4289 */
4290 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4291 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4292 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4293 .writefn = omap_cachemaint_write },
4294 { .name = "C9", .cp = 15, .crn = 9,
4295 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4296 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4297 };
4298
4299 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300 uint64_t value)
4301 {
4302 env->cp15.c15_cpar = value & 0x3fff;
4303 }
4304
4305 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4306 { .name = "XSCALE_CPAR",
4307 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4308 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4309 .writefn = xscale_cpar_write, },
4310 { .name = "XSCALE_AUXCR",
4311 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4312 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4313 .resetvalue = 0, },
4314 /*
4315 * XScale specific cache-lockdown: since we have no cache we NOP these
4316 * and hope the guest does not really rely on cache behaviour.
4317 */
4318 { .name = "XSCALE_LOCK_ICACHE_LINE",
4319 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4320 .access = PL1_W, .type = ARM_CP_NOP },
4321 { .name = "XSCALE_UNLOCK_ICACHE",
4322 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4323 .access = PL1_W, .type = ARM_CP_NOP },
4324 { .name = "XSCALE_DCACHE_LOCK",
4325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4326 .access = PL1_RW, .type = ARM_CP_NOP },
4327 { .name = "XSCALE_UNLOCK_DCACHE",
4328 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4329 .access = PL1_W, .type = ARM_CP_NOP },
4330 };
4331
4332 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4333 /*
4334 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4335 * implementation of this implementation-defined space.
4336 * Ideally this should eventually disappear in favour of actually
4337 * implementing the correct behaviour for all cores.
4338 */
4339 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4340 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4341 .access = PL1_RW,
4342 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4343 .resetvalue = 0 },
4344 };
4345
4346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4347 /* Cache status: RAZ because we have no cache so it's always clean */
4348 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4349 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4350 .resetvalue = 0 },
4351 };
4352
4353 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4354 /* We never have a block transfer operation in progress */
4355 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4356 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4357 .resetvalue = 0 },
4358 /* The cache ops themselves: these all NOP for QEMU */
4359 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4360 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4361 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4362 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4363 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4364 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4365 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4366 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4368 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4370 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371 };
4372
4373 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4374 /*
4375 * The cache test-and-clean instructions always return (1 << 30)
4376 * to indicate that there are no dirty cache lines.
4377 */
4378 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4379 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4380 .resetvalue = (1 << 30) },
4381 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4382 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4383 .resetvalue = (1 << 30) },
4384 };
4385
4386 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4387 /* Ignore ReadBuffer accesses */
4388 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4389 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4390 .access = PL1_RW, .resetvalue = 0,
4391 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4392 };
4393
4394 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4395 {
4396 unsigned int cur_el = arm_current_el(env);
4397
4398 if (arm_is_el2_enabled(env) && cur_el == 1) {
4399 return env->cp15.vpidr_el2;
4400 }
4401 return raw_read(env, ri);
4402 }
4403
4404 static uint64_t mpidr_read_val(CPUARMState *env)
4405 {
4406 ARMCPU *cpu = env_archcpu(env);
4407 uint64_t mpidr = cpu->mp_affinity;
4408
4409 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4410 mpidr |= (1U << 31);
4411 /*
4412 * Cores which are uniprocessor (non-coherent)
4413 * but still implement the MP extensions set
4414 * bit 30. (For instance, Cortex-R5).
4415 */
4416 if (cpu->mp_is_up) {
4417 mpidr |= (1u << 30);
4418 }
4419 }
4420 return mpidr;
4421 }
4422
4423 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4424 {
4425 unsigned int cur_el = arm_current_el(env);
4426
4427 if (arm_is_el2_enabled(env) && cur_el == 1) {
4428 return env->cp15.vmpidr_el2;
4429 }
4430 return mpidr_read_val(env);
4431 }
4432
4433 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4434 /* NOP AMAIR0/1 */
4435 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4436 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4437 .access = PL1_RW, .accessfn = access_tvm_trvm,
4438 .fgt = FGT_AMAIR_EL1,
4439 .type = ARM_CP_CONST, .resetvalue = 0 },
4440 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4441 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4442 .access = PL1_RW, .accessfn = access_tvm_trvm,
4443 .type = ARM_CP_CONST, .resetvalue = 0 },
4444 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4445 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4446 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4447 offsetof(CPUARMState, cp15.par_ns)} },
4448 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4449 .access = PL1_RW, .accessfn = access_tvm_trvm,
4450 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4451 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4452 offsetof(CPUARMState, cp15.ttbr0_ns) },
4453 .writefn = vmsa_ttbr_write, },
4454 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4455 .access = PL1_RW, .accessfn = access_tvm_trvm,
4456 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4458 offsetof(CPUARMState, cp15.ttbr1_ns) },
4459 .writefn = vmsa_ttbr_write, },
4460 };
4461
4462 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4463 {
4464 return vfp_get_fpcr(env);
4465 }
4466
4467 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468 uint64_t value)
4469 {
4470 vfp_set_fpcr(env, value);
4471 }
4472
4473 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4474 {
4475 return vfp_get_fpsr(env);
4476 }
4477
4478 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479 uint64_t value)
4480 {
4481 vfp_set_fpsr(env, value);
4482 }
4483
4484 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4485 bool isread)
4486 {
4487 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4488 return CP_ACCESS_TRAP;
4489 }
4490 return CP_ACCESS_OK;
4491 }
4492
4493 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4494 uint64_t value)
4495 {
4496 env->daif = value & PSTATE_DAIF;
4497 }
4498
4499 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4500 {
4501 return env->pstate & PSTATE_PAN;
4502 }
4503
4504 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4505 uint64_t value)
4506 {
4507 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4508 }
4509
4510 static const ARMCPRegInfo pan_reginfo = {
4511 .name = "PAN", .state = ARM_CP_STATE_AA64,
4512 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4513 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4514 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4515 };
4516
4517 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518 {
4519 return env->pstate & PSTATE_UAO;
4520 }
4521
4522 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523 uint64_t value)
4524 {
4525 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4526 }
4527
4528 static const ARMCPRegInfo uao_reginfo = {
4529 .name = "UAO", .state = ARM_CP_STATE_AA64,
4530 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4531 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4532 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4533 };
4534
4535 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4536 {
4537 return env->pstate & PSTATE_DIT;
4538 }
4539
4540 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4541 uint64_t value)
4542 {
4543 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4544 }
4545
4546 static const ARMCPRegInfo dit_reginfo = {
4547 .name = "DIT", .state = ARM_CP_STATE_AA64,
4548 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4549 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4550 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4551 };
4552
4553 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4554 {
4555 return env->pstate & PSTATE_SSBS;
4556 }
4557
4558 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4559 uint64_t value)
4560 {
4561 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4562 }
4563
4564 static const ARMCPRegInfo ssbs_reginfo = {
4565 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4566 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4567 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4568 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4569 };
4570
4571 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4572 const ARMCPRegInfo *ri,
4573 bool isread)
4574 {
4575 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4576 switch (arm_current_el(env)) {
4577 case 0:
4578 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4579 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4580 return CP_ACCESS_TRAP;
4581 }
4582 /* fall through */
4583 case 1:
4584 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4585 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4586 return CP_ACCESS_TRAP_EL2;
4587 }
4588 break;
4589 }
4590 return CP_ACCESS_OK;
4591 }
4592
4593 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4594 {
4595 /* Cache invalidate/clean to Point of Unification... */
4596 switch (arm_current_el(env)) {
4597 case 0:
4598 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4599 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4600 return CP_ACCESS_TRAP;
4601 }
4602 /* fall through */
4603 case 1:
4604 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4605 if (arm_hcr_el2_eff(env) & hcrflags) {
4606 return CP_ACCESS_TRAP_EL2;
4607 }
4608 break;
4609 }
4610 return CP_ACCESS_OK;
4611 }
4612
4613 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4614 bool isread)
4615 {
4616 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4617 }
4618
4619 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4620 bool isread)
4621 {
4622 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4623 }
4624
4625 /*
4626 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4627 * Page D4-1736 (DDI0487A.b)
4628 */
4629
4630 static int vae1_tlbmask(CPUARMState *env)
4631 {
4632 uint64_t hcr = arm_hcr_el2_eff(env);
4633 uint16_t mask;
4634
4635 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4636 mask = ARMMMUIdxBit_E20_2 |
4637 ARMMMUIdxBit_E20_2_PAN |
4638 ARMMMUIdxBit_E20_0;
4639 } else {
4640 mask = ARMMMUIdxBit_E10_1 |
4641 ARMMMUIdxBit_E10_1_PAN |
4642 ARMMMUIdxBit_E10_0;
4643 }
4644 return mask;
4645 }
4646
4647 /* Return 56 if TBI is enabled, 64 otherwise. */
4648 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4649 uint64_t addr)
4650 {
4651 uint64_t tcr = regime_tcr(env, mmu_idx);
4652 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4653 int select = extract64(addr, 55, 1);
4654
4655 return (tbi >> select) & 1 ? 56 : 64;
4656 }
4657
4658 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4659 {
4660 uint64_t hcr = arm_hcr_el2_eff(env);
4661 ARMMMUIdx mmu_idx;
4662
4663 /* Only the regime of the mmu_idx below is significant. */
4664 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4665 mmu_idx = ARMMMUIdx_E20_0;
4666 } else {
4667 mmu_idx = ARMMMUIdx_E10_0;
4668 }
4669
4670 return tlbbits_for_regime(env, mmu_idx, addr);
4671 }
4672
4673 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4674 uint64_t value)
4675 {
4676 CPUState *cs = env_cpu(env);
4677 int mask = vae1_tlbmask(env);
4678
4679 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4680 }
4681
4682 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683 uint64_t value)
4684 {
4685 CPUState *cs = env_cpu(env);
4686 int mask = vae1_tlbmask(env);
4687
4688 if (tlb_force_broadcast(env)) {
4689 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4690 } else {
4691 tlb_flush_by_mmuidx(cs, mask);
4692 }
4693 }
4694
4695 static int e2_tlbmask(CPUARMState *env)
4696 {
4697 return (ARMMMUIdxBit_E20_0 |
4698 ARMMMUIdxBit_E20_2 |
4699 ARMMMUIdxBit_E20_2_PAN |
4700 ARMMMUIdxBit_E2);
4701 }
4702
4703 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4704 uint64_t value)
4705 {
4706 CPUState *cs = env_cpu(env);
4707 int mask = alle1_tlbmask(env);
4708
4709 tlb_flush_by_mmuidx(cs, mask);
4710 }
4711
4712 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4713 uint64_t value)
4714 {
4715 CPUState *cs = env_cpu(env);
4716 int mask = e2_tlbmask(env);
4717
4718 tlb_flush_by_mmuidx(cs, mask);
4719 }
4720
4721 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722 uint64_t value)
4723 {
4724 ARMCPU *cpu = env_archcpu(env);
4725 CPUState *cs = CPU(cpu);
4726
4727 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4728 }
4729
4730 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4731 uint64_t value)
4732 {
4733 CPUState *cs = env_cpu(env);
4734 int mask = alle1_tlbmask(env);
4735
4736 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4737 }
4738
4739 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740 uint64_t value)
4741 {
4742 CPUState *cs = env_cpu(env);
4743 int mask = e2_tlbmask(env);
4744
4745 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4746 }
4747
4748 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4749 uint64_t value)
4750 {
4751 CPUState *cs = env_cpu(env);
4752
4753 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4754 }
4755
4756 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757 uint64_t value)
4758 {
4759 /*
4760 * Invalidate by VA, EL2
4761 * Currently handles both VAE2 and VALE2, since we don't support
4762 * flush-last-level-only.
4763 */
4764 CPUState *cs = env_cpu(env);
4765 int mask = e2_tlbmask(env);
4766 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4767
4768 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4769 }
4770
4771 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4772 uint64_t value)
4773 {
4774 /*
4775 * Invalidate by VA, EL3
4776 * Currently handles both VAE3 and VALE3, since we don't support
4777 * flush-last-level-only.
4778 */
4779 ARMCPU *cpu = env_archcpu(env);
4780 CPUState *cs = CPU(cpu);
4781 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4782
4783 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4784 }
4785
4786 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4787 uint64_t value)
4788 {
4789 CPUState *cs = env_cpu(env);
4790 int mask = vae1_tlbmask(env);
4791 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4792 int bits = vae1_tlbbits(env, pageaddr);
4793
4794 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4795 }
4796
4797 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798 uint64_t value)
4799 {
4800 /*
4801 * Invalidate by VA, EL1&0 (AArch64 version).
4802 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4803 * since we don't support flush-for-specific-ASID-only or
4804 * flush-last-level-only.
4805 */
4806 CPUState *cs = env_cpu(env);
4807 int mask = vae1_tlbmask(env);
4808 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4809 int bits = vae1_tlbbits(env, pageaddr);
4810
4811 if (tlb_force_broadcast(env)) {
4812 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4813 } else {
4814 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4815 }
4816 }
4817
4818 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4819 uint64_t value)
4820 {
4821 CPUState *cs = env_cpu(env);
4822 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4823 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4824
4825 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4826 ARMMMUIdxBit_E2, bits);
4827 }
4828
4829 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4831 {
4832 CPUState *cs = env_cpu(env);
4833 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4834 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4835
4836 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4837 ARMMMUIdxBit_E3, bits);
4838 }
4839
4840 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4841 {
4842 /*
4843 * The MSB of value is the NS field, which only applies if SEL2
4844 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4845 */
4846 return (value >= 0
4847 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4848 && arm_is_secure_below_el3(env)
4849 ? ARMMMUIdxBit_Stage2_S
4850 : ARMMMUIdxBit_Stage2);
4851 }
4852
4853 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4854 uint64_t value)
4855 {
4856 CPUState *cs = env_cpu(env);
4857 int mask = ipas2e1_tlbmask(env, value);
4858 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4859
4860 if (tlb_force_broadcast(env)) {
4861 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4862 } else {
4863 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4864 }
4865 }
4866
4867 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4868 uint64_t value)
4869 {
4870 CPUState *cs = env_cpu(env);
4871 int mask = ipas2e1_tlbmask(env, value);
4872 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4873
4874 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4875 }
4876
4877 #ifdef TARGET_AARCH64
4878 typedef struct {
4879 uint64_t base;
4880 uint64_t length;
4881 } TLBIRange;
4882
4883 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4884 {
4885 /*
4886 * Note that the TLBI range TG field encoding differs from both
4887 * TG0 and TG1 encodings.
4888 */
4889 switch (tg) {
4890 case 1:
4891 return Gran4K;
4892 case 2:
4893 return Gran16K;
4894 case 3:
4895 return Gran64K;
4896 default:
4897 return GranInvalid;
4898 }
4899 }
4900
4901 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4902 uint64_t value)
4903 {
4904 unsigned int page_size_granule, page_shift, num, scale, exponent;
4905 /* Extract one bit to represent the va selector in use. */
4906 uint64_t select = sextract64(value, 36, 1);
4907 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4908 TLBIRange ret = { };
4909 ARMGranuleSize gran;
4910
4911 page_size_granule = extract64(value, 46, 2);
4912 gran = tlbi_range_tg_to_gran_size(page_size_granule);
4913
4914 /* The granule encoded in value must match the granule in use. */
4915 if (gran != param.gran) {
4916 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4917 page_size_granule);
4918 return ret;
4919 }
4920
4921 page_shift = arm_granule_bits(gran);
4922 num = extract64(value, 39, 5);
4923 scale = extract64(value, 44, 2);
4924 exponent = (5 * scale) + 1;
4925
4926 ret.length = (num + 1) << (exponent + page_shift);
4927
4928 if (param.select) {
4929 ret.base = sextract64(value, 0, 37);
4930 } else {
4931 ret.base = extract64(value, 0, 37);
4932 }
4933 if (param.ds) {
4934 /*
4935 * With DS=1, BaseADDR is always shifted 16 so that it is able
4936 * to address all 52 va bits. The input address is perforce
4937 * aligned on a 64k boundary regardless of translation granule.
4938 */
4939 page_shift = 16;
4940 }
4941 ret.base <<= page_shift;
4942
4943 return ret;
4944 }
4945
4946 static void do_rvae_write(CPUARMState *env, uint64_t value,
4947 int idxmap, bool synced)
4948 {
4949 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4950 TLBIRange range;
4951 int bits;
4952
4953 range = tlbi_aa64_get_range(env, one_idx, value);
4954 bits = tlbbits_for_regime(env, one_idx, range.base);
4955
4956 if (synced) {
4957 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4958 range.base,
4959 range.length,
4960 idxmap,
4961 bits);
4962 } else {
4963 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4964 range.length, idxmap, bits);
4965 }
4966 }
4967
4968 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4969 const ARMCPRegInfo *ri,
4970 uint64_t value)
4971 {
4972 /*
4973 * Invalidate by VA range, EL1&0.
4974 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4975 * since we don't support flush-for-specific-ASID-only or
4976 * flush-last-level-only.
4977 */
4978
4979 do_rvae_write(env, value, vae1_tlbmask(env),
4980 tlb_force_broadcast(env));
4981 }
4982
4983 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4984 const ARMCPRegInfo *ri,
4985 uint64_t value)
4986 {
4987 /*
4988 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4989 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4990 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4991 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4992 * shareable specific flushes.
4993 */
4994
4995 do_rvae_write(env, value, vae1_tlbmask(env), true);
4996 }
4997
4998 static int vae2_tlbmask(CPUARMState *env)
4999 {
5000 return ARMMMUIdxBit_E2;
5001 }
5002
5003 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5004 const ARMCPRegInfo *ri,
5005 uint64_t value)
5006 {
5007 /*
5008 * Invalidate by VA range, EL2.
5009 * Currently handles all of RVAE2 and RVALE2,
5010 * since we don't support flush-for-specific-ASID-only or
5011 * flush-last-level-only.
5012 */
5013
5014 do_rvae_write(env, value, vae2_tlbmask(env),
5015 tlb_force_broadcast(env));
5016
5017
5018 }
5019
5020 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5021 const ARMCPRegInfo *ri,
5022 uint64_t value)
5023 {
5024 /*
5025 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5026 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5027 * since we don't support flush-for-specific-ASID-only,
5028 * flush-last-level-only or inner/outer shareable specific flushes.
5029 */
5030
5031 do_rvae_write(env, value, vae2_tlbmask(env), true);
5032
5033 }
5034
5035 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5036 const ARMCPRegInfo *ri,
5037 uint64_t value)
5038 {
5039 /*
5040 * Invalidate by VA range, EL3.
5041 * Currently handles all of RVAE3 and RVALE3,
5042 * since we don't support flush-for-specific-ASID-only or
5043 * flush-last-level-only.
5044 */
5045
5046 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5047 }
5048
5049 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5050 const ARMCPRegInfo *ri,
5051 uint64_t value)
5052 {
5053 /*
5054 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5055 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5056 * since we don't support flush-for-specific-ASID-only,
5057 * flush-last-level-only or inner/outer specific flushes.
5058 */
5059
5060 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5061 }
5062
5063 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064 uint64_t value)
5065 {
5066 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5067 tlb_force_broadcast(env));
5068 }
5069
5070 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5071 const ARMCPRegInfo *ri,
5072 uint64_t value)
5073 {
5074 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5075 }
5076 #endif
5077
5078 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5079 bool isread)
5080 {
5081 int cur_el = arm_current_el(env);
5082
5083 if (cur_el < 2) {
5084 uint64_t hcr = arm_hcr_el2_eff(env);
5085
5086 if (cur_el == 0) {
5087 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5088 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5089 return CP_ACCESS_TRAP_EL2;
5090 }
5091 } else {
5092 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5093 return CP_ACCESS_TRAP;
5094 }
5095 if (hcr & HCR_TDZ) {
5096 return CP_ACCESS_TRAP_EL2;
5097 }
5098 }
5099 } else if (hcr & HCR_TDZ) {
5100 return CP_ACCESS_TRAP_EL2;
5101 }
5102 }
5103 return CP_ACCESS_OK;
5104 }
5105
5106 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5107 {
5108 ARMCPU *cpu = env_archcpu(env);
5109 int dzp_bit = 1 << 4;
5110
5111 /* DZP indicates whether DC ZVA access is allowed */
5112 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5113 dzp_bit = 0;
5114 }
5115 return cpu->dcz_blocksize | dzp_bit;
5116 }
5117
5118 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5119 bool isread)
5120 {
5121 if (!(env->pstate & PSTATE_SP)) {
5122 /*
5123 * Access to SP_EL0 is undefined if it's being used as
5124 * the stack pointer.
5125 */
5126 return CP_ACCESS_TRAP_UNCATEGORIZED;
5127 }
5128 return CP_ACCESS_OK;
5129 }
5130
5131 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5132 {
5133 return env->pstate & PSTATE_SP;
5134 }
5135
5136 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5137 {
5138 update_spsel(env, val);
5139 }
5140
5141 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5142 uint64_t value)
5143 {
5144 ARMCPU *cpu = env_archcpu(env);
5145
5146 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5147 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5148 value &= ~SCTLR_M;
5149 }
5150
5151 /* ??? Lots of these bits are not implemented. */
5152
5153 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5154 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5155 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5156 } else {
5157 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5158 SCTLR_ATA0 | SCTLR_ATA);
5159 }
5160 }
5161
5162 if (raw_read(env, ri) == value) {
5163 /*
5164 * Skip the TLB flush if nothing actually changed; Linux likes
5165 * to do a lot of pointless SCTLR writes.
5166 */
5167 return;
5168 }
5169
5170 raw_write(env, ri, value);
5171
5172 /* This may enable/disable the MMU, so do a TLB flush. */
5173 tlb_flush(CPU(cpu));
5174
5175 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5176 /*
5177 * Normally we would always end the TB on an SCTLR write; see the
5178 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5179 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5180 * of hflags from the translator, so do it here.
5181 */
5182 arm_rebuild_hflags(env);
5183 }
5184 }
5185
5186 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5187 uint64_t value)
5188 {
5189 /*
5190 * Some MDCR_EL3 bits affect whether PMU counters are running:
5191 * if we are trying to change any of those then we must
5192 * bracket this update with PMU start/finish calls.
5193 */
5194 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5195
5196 if (pmu_op) {
5197 pmu_op_start(env);
5198 }
5199 env->cp15.mdcr_el3 = value;
5200 if (pmu_op) {
5201 pmu_op_finish(env);
5202 }
5203 }
5204
5205 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5206 uint64_t value)
5207 {
5208 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5209 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5210 }
5211
5212 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5213 uint64_t value)
5214 {
5215 /*
5216 * Some MDCR_EL2 bits affect whether PMU counters are running:
5217 * if we are trying to change any of those then we must
5218 * bracket this update with PMU start/finish calls.
5219 */
5220 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5221
5222 if (pmu_op) {
5223 pmu_op_start(env);
5224 }
5225 env->cp15.mdcr_el2 = value;
5226 if (pmu_op) {
5227 pmu_op_finish(env);
5228 }
5229 }
5230
5231 static const ARMCPRegInfo v8_cp_reginfo[] = {
5232 /*
5233 * Minimal set of EL0-visible registers. This will need to be expanded
5234 * significantly for system emulation of AArch64 CPUs.
5235 */
5236 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5237 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5238 .access = PL0_RW, .type = ARM_CP_NZCV },
5239 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5240 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5241 .type = ARM_CP_NO_RAW,
5242 .access = PL0_RW, .accessfn = aa64_daif_access,
5243 .fieldoffset = offsetof(CPUARMState, daif),
5244 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5245 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5246 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5247 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5248 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5249 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5250 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5251 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5252 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5253 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5254 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5255 .access = PL0_R, .type = ARM_CP_NO_RAW,
5256 .fgt = FGT_DCZID_EL0,
5257 .readfn = aa64_dczid_read },
5258 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5260 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5261 #ifndef CONFIG_USER_ONLY
5262 /* Avoid overhead of an access check that always passes in user-mode */
5263 .accessfn = aa64_zva_access,
5264 .fgt = FGT_DCZVA,
5265 #endif
5266 },
5267 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5268 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5269 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5270 /* Cache ops: all NOPs since we don't emulate caches */
5271 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5272 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5273 .access = PL1_W, .type = ARM_CP_NOP,
5274 .fgt = FGT_ICIALLUIS,
5275 .accessfn = access_ticab },
5276 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5278 .access = PL1_W, .type = ARM_CP_NOP,
5279 .fgt = FGT_ICIALLU,
5280 .accessfn = access_tocu },
5281 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5283 .access = PL0_W, .type = ARM_CP_NOP,
5284 .fgt = FGT_ICIVAU,
5285 .accessfn = access_tocu },
5286 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5287 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5288 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5289 .fgt = FGT_DCIVAC,
5290 .type = ARM_CP_NOP },
5291 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5293 .fgt = FGT_DCISW,
5294 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5295 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5296 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5297 .access = PL0_W, .type = ARM_CP_NOP,
5298 .fgt = FGT_DCCVAC,
5299 .accessfn = aa64_cacheop_poc_access },
5300 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5301 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5302 .fgt = FGT_DCCSW,
5303 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5304 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5306 .access = PL0_W, .type = ARM_CP_NOP,
5307 .fgt = FGT_DCCVAU,
5308 .accessfn = access_tocu },
5309 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5311 .access = PL0_W, .type = ARM_CP_NOP,
5312 .fgt = FGT_DCCIVAC,
5313 .accessfn = aa64_cacheop_poc_access },
5314 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5315 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5316 .fgt = FGT_DCCISW,
5317 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5318 /* TLBI operations */
5319 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5321 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5322 .fgt = FGT_TLBIVMALLE1IS,
5323 .writefn = tlbi_aa64_vmalle1is_write },
5324 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5325 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5326 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5327 .fgt = FGT_TLBIVAE1IS,
5328 .writefn = tlbi_aa64_vae1is_write },
5329 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5330 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5331 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5332 .fgt = FGT_TLBIASIDE1IS,
5333 .writefn = tlbi_aa64_vmalle1is_write },
5334 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5335 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5336 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5337 .fgt = FGT_TLBIVAAE1IS,
5338 .writefn = tlbi_aa64_vae1is_write },
5339 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5341 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5342 .fgt = FGT_TLBIVALE1IS,
5343 .writefn = tlbi_aa64_vae1is_write },
5344 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5345 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5346 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5347 .fgt = FGT_TLBIVAALE1IS,
5348 .writefn = tlbi_aa64_vae1is_write },
5349 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5350 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5351 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5352 .fgt = FGT_TLBIVMALLE1,
5353 .writefn = tlbi_aa64_vmalle1_write },
5354 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5355 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5356 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5357 .fgt = FGT_TLBIVAE1,
5358 .writefn = tlbi_aa64_vae1_write },
5359 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5361 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5362 .fgt = FGT_TLBIASIDE1,
5363 .writefn = tlbi_aa64_vmalle1_write },
5364 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5365 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5366 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5367 .fgt = FGT_TLBIVAAE1,
5368 .writefn = tlbi_aa64_vae1_write },
5369 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5370 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5371 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5372 .fgt = FGT_TLBIVALE1,
5373 .writefn = tlbi_aa64_vae1_write },
5374 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5375 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5376 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5377 .fgt = FGT_TLBIVAALE1,
5378 .writefn = tlbi_aa64_vae1_write },
5379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5381 .access = PL2_W, .type = ARM_CP_NO_RAW,
5382 .writefn = tlbi_aa64_ipas2e1is_write },
5383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5385 .access = PL2_W, .type = ARM_CP_NO_RAW,
5386 .writefn = tlbi_aa64_ipas2e1is_write },
5387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5389 .access = PL2_W, .type = ARM_CP_NO_RAW,
5390 .writefn = tlbi_aa64_alle1is_write },
5391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5393 .access = PL2_W, .type = ARM_CP_NO_RAW,
5394 .writefn = tlbi_aa64_alle1is_write },
5395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5397 .access = PL2_W, .type = ARM_CP_NO_RAW,
5398 .writefn = tlbi_aa64_ipas2e1_write },
5399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5401 .access = PL2_W, .type = ARM_CP_NO_RAW,
5402 .writefn = tlbi_aa64_ipas2e1_write },
5403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5405 .access = PL2_W, .type = ARM_CP_NO_RAW,
5406 .writefn = tlbi_aa64_alle1_write },
5407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5409 .access = PL2_W, .type = ARM_CP_NO_RAW,
5410 .writefn = tlbi_aa64_alle1is_write },
5411 #ifndef CONFIG_USER_ONLY
5412 /* 64 bit address translation operations */
5413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5416 .fgt = FGT_ATS1E1R,
5417 .writefn = ats_write64 },
5418 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5419 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5420 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5421 .fgt = FGT_ATS1E1W,
5422 .writefn = ats_write64 },
5423 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5424 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5425 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5426 .fgt = FGT_ATS1E0R,
5427 .writefn = ats_write64 },
5428 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5430 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5431 .fgt = FGT_ATS1E0W,
5432 .writefn = ats_write64 },
5433 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5436 .writefn = ats_write64 },
5437 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5440 .writefn = ats_write64 },
5441 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5444 .writefn = ats_write64 },
5445 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5446 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5447 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5448 .writefn = ats_write64 },
5449 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5450 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5453 .writefn = ats_write64 },
5454 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5456 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5457 .writefn = ats_write64 },
5458 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5459 .type = ARM_CP_ALIAS,
5460 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5461 .access = PL1_RW, .resetvalue = 0,
5462 .fgt = FGT_PAR_EL1,
5463 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5464 .writefn = par_write },
5465 #endif
5466 /* TLB invalidate last level of translation table walk */
5467 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5468 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5469 .writefn = tlbimva_is_write },
5470 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5471 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5472 .writefn = tlbimvaa_is_write },
5473 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5474 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5475 .writefn = tlbimva_write },
5476 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5477 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5478 .writefn = tlbimvaa_write },
5479 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5480 .type = ARM_CP_NO_RAW, .access = PL2_W,
5481 .writefn = tlbimva_hyp_write },
5482 { .name = "TLBIMVALHIS",
5483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5484 .type = ARM_CP_NO_RAW, .access = PL2_W,
5485 .writefn = tlbimva_hyp_is_write },
5486 { .name = "TLBIIPAS2",
5487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5488 .type = ARM_CP_NO_RAW, .access = PL2_W,
5489 .writefn = tlbiipas2_hyp_write },
5490 { .name = "TLBIIPAS2IS",
5491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5492 .type = ARM_CP_NO_RAW, .access = PL2_W,
5493 .writefn = tlbiipas2is_hyp_write },
5494 { .name = "TLBIIPAS2L",
5495 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5496 .type = ARM_CP_NO_RAW, .access = PL2_W,
5497 .writefn = tlbiipas2_hyp_write },
5498 { .name = "TLBIIPAS2LIS",
5499 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5500 .type = ARM_CP_NO_RAW, .access = PL2_W,
5501 .writefn = tlbiipas2is_hyp_write },
5502 /* 32 bit cache operations */
5503 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5504 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5505 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5506 .type = ARM_CP_NOP, .access = PL1_W },
5507 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5508 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5509 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5510 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5511 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5512 .type = ARM_CP_NOP, .access = PL1_W },
5513 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5514 .type = ARM_CP_NOP, .access = PL1_W },
5515 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5516 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5517 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5518 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5519 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5520 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5521 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5522 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5523 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5524 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5525 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5526 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5528 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529 /* MMU Domain access control / MPU write buffer control */
5530 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5531 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5532 .writefn = dacr_write, .raw_writefn = raw_write,
5533 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5534 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5535 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5536 .type = ARM_CP_ALIAS,
5537 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5538 .access = PL1_RW,
5539 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5540 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5541 .type = ARM_CP_ALIAS,
5542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5543 .access = PL1_RW,
5544 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5545 /*
5546 * We rely on the access checks not allowing the guest to write to the
5547 * state field when SPSel indicates that it's being used as the stack
5548 * pointer.
5549 */
5550 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5552 .access = PL1_RW, .accessfn = sp_el0_access,
5553 .type = ARM_CP_ALIAS,
5554 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5555 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5556 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5557 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5558 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5559 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5560 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5561 .type = ARM_CP_NO_RAW,
5562 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5563 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5564 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5565 .access = PL2_RW,
5566 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5567 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5568 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5570 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5571 .writefn = dacr_write, .raw_writefn = raw_write,
5572 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5573 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5574 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5575 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5576 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5577 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5578 .type = ARM_CP_ALIAS,
5579 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5580 .access = PL2_RW,
5581 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5582 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5583 .type = ARM_CP_ALIAS,
5584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5585 .access = PL2_RW,
5586 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5587 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5588 .type = ARM_CP_ALIAS,
5589 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5590 .access = PL2_RW,
5591 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5592 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5593 .type = ARM_CP_ALIAS,
5594 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5595 .access = PL2_RW,
5596 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5597 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5598 .type = ARM_CP_IO,
5599 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5600 .resetvalue = 0,
5601 .access = PL3_RW,
5602 .writefn = mdcr_el3_write,
5603 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5604 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5605 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5606 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5607 .writefn = sdcr_write,
5608 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5609 };
5610
5611 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5612 {
5613 ARMCPU *cpu = env_archcpu(env);
5614
5615 if (arm_feature(env, ARM_FEATURE_V8)) {
5616 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5617 } else {
5618 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5619 }
5620
5621 if (arm_feature(env, ARM_FEATURE_EL3)) {
5622 valid_mask &= ~HCR_HCD;
5623 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5624 /*
5625 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5626 * However, if we're using the SMC PSCI conduit then QEMU is
5627 * effectively acting like EL3 firmware and so the guest at
5628 * EL2 should retain the ability to prevent EL1 from being
5629 * able to make SMC calls into the ersatz firmware, so in
5630 * that case HCR.TSC should be read/write.
5631 */
5632 valid_mask &= ~HCR_TSC;
5633 }
5634
5635 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5636 if (cpu_isar_feature(aa64_vh, cpu)) {
5637 valid_mask |= HCR_E2H;
5638 }
5639 if (cpu_isar_feature(aa64_ras, cpu)) {
5640 valid_mask |= HCR_TERR | HCR_TEA;
5641 }
5642 if (cpu_isar_feature(aa64_lor, cpu)) {
5643 valid_mask |= HCR_TLOR;
5644 }
5645 if (cpu_isar_feature(aa64_pauth, cpu)) {
5646 valid_mask |= HCR_API | HCR_APK;
5647 }
5648 if (cpu_isar_feature(aa64_mte, cpu)) {
5649 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5650 }
5651 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5652 valid_mask |= HCR_ENSCXT;
5653 }
5654 if (cpu_isar_feature(aa64_fwb, cpu)) {
5655 valid_mask |= HCR_FWB;
5656 }
5657 }
5658
5659 if (cpu_isar_feature(any_evt, cpu)) {
5660 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5661 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5662 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5663 }
5664
5665 /* Clear RES0 bits. */
5666 value &= valid_mask;
5667
5668 /*
5669 * These bits change the MMU setup:
5670 * HCR_VM enables stage 2 translation
5671 * HCR_PTW forbids certain page-table setups
5672 * HCR_DC disables stage1 and enables stage2 translation
5673 * HCR_DCT enables tagging on (disabled) stage1 translation
5674 * HCR_FWB changes the interpretation of stage2 descriptor bits
5675 */
5676 if ((env->cp15.hcr_el2 ^ value) &
5677 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5678 tlb_flush(CPU(cpu));
5679 }
5680 env->cp15.hcr_el2 = value;
5681
5682 /*
5683 * Updates to VI and VF require us to update the status of
5684 * virtual interrupts, which are the logical OR of these bits
5685 * and the state of the input lines from the GIC. (This requires
5686 * that we have the iothread lock, which is done by marking the
5687 * reginfo structs as ARM_CP_IO.)
5688 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5689 * possible for it to be taken immediately, because VIRQ and
5690 * VFIQ are masked unless running at EL0 or EL1, and HCR
5691 * can only be written at EL2.
5692 */
5693 g_assert(qemu_mutex_iothread_locked());
5694 arm_cpu_update_virq(cpu);
5695 arm_cpu_update_vfiq(cpu);
5696 arm_cpu_update_vserr(cpu);
5697 }
5698
5699 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5700 {
5701 do_hcr_write(env, value, 0);
5702 }
5703
5704 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5705 uint64_t value)
5706 {
5707 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5708 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5709 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5710 }
5711
5712 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5713 uint64_t value)
5714 {
5715 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5716 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5717 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5718 }
5719
5720 /*
5721 * Return the effective value of HCR_EL2, at the given security state.
5722 * Bits that are not included here:
5723 * RW (read from SCR_EL3.RW as needed)
5724 */
5725 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5726 {
5727 uint64_t ret = env->cp15.hcr_el2;
5728
5729 if (!arm_is_el2_enabled_secstate(env, secure)) {
5730 /*
5731 * "This register has no effect if EL2 is not enabled in the
5732 * current Security state". This is ARMv8.4-SecEL2 speak for
5733 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5734 *
5735 * Prior to that, the language was "In an implementation that
5736 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5737 * as if this field is 0 for all purposes other than a direct
5738 * read or write access of HCR_EL2". With lots of enumeration
5739 * on a per-field basis. In current QEMU, this is condition
5740 * is arm_is_secure_below_el3.
5741 *
5742 * Since the v8.4 language applies to the entire register, and
5743 * appears to be backward compatible, use that.
5744 */
5745 return 0;
5746 }
5747
5748 /*
5749 * For a cpu that supports both aarch64 and aarch32, we can set bits
5750 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5751 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5752 */
5753 if (!arm_el_is_aa64(env, 2)) {
5754 uint64_t aa32_valid;
5755
5756 /*
5757 * These bits are up-to-date as of ARMv8.6.
5758 * For HCR, it's easiest to list just the 2 bits that are invalid.
5759 * For HCR2, list those that are valid.
5760 */
5761 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5762 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5763 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5764 ret &= aa32_valid;
5765 }
5766
5767 if (ret & HCR_TGE) {
5768 /* These bits are up-to-date as of ARMv8.6. */
5769 if (ret & HCR_E2H) {
5770 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5771 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5772 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5773 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5774 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5775 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5776 } else {
5777 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5778 }
5779 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5780 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5781 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5782 HCR_TLOR);
5783 }
5784
5785 return ret;
5786 }
5787
5788 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5789 {
5790 if (arm_feature(env, ARM_FEATURE_M)) {
5791 return 0;
5792 }
5793 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5794 }
5795
5796 /*
5797 * Corresponds to ARM pseudocode function ELIsInHost().
5798 */
5799 bool el_is_in_host(CPUARMState *env, int el)
5800 {
5801 uint64_t mask;
5802
5803 /*
5804 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5805 * Perform the simplest bit tests first, and validate EL2 afterward.
5806 */
5807 if (el & 1) {
5808 return false; /* EL1 or EL3 */
5809 }
5810
5811 /*
5812 * Note that hcr_write() checks isar_feature_aa64_vh(),
5813 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5814 */
5815 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5816 if ((env->cp15.hcr_el2 & mask) != mask) {
5817 return false;
5818 }
5819
5820 /* TGE and/or E2H set: double check those bits are currently legal. */
5821 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5822 }
5823
5824 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5825 uint64_t value)
5826 {
5827 uint64_t valid_mask = 0;
5828
5829 /* No features adding bits to HCRX are implemented. */
5830
5831 /* Clear RES0 bits. */
5832 env->cp15.hcrx_el2 = value & valid_mask;
5833 }
5834
5835 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5836 bool isread)
5837 {
5838 if (arm_current_el(env) < 3
5839 && arm_feature(env, ARM_FEATURE_EL3)
5840 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5841 return CP_ACCESS_TRAP_EL3;
5842 }
5843 return CP_ACCESS_OK;
5844 }
5845
5846 static const ARMCPRegInfo hcrx_el2_reginfo = {
5847 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5848 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5849 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5850 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5851 };
5852
5853 /* Return the effective value of HCRX_EL2. */
5854 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5855 {
5856 /*
5857 * The bits in this register behave as 0 for all purposes other than
5858 * direct reads of the register if:
5859 * - EL2 is not enabled in the current security state,
5860 * - SCR_EL3.HXEn is 0.
5861 */
5862 if (!arm_is_el2_enabled(env)
5863 || (arm_feature(env, ARM_FEATURE_EL3)
5864 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5865 return 0;
5866 }
5867 return env->cp15.hcrx_el2;
5868 }
5869
5870 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5871 uint64_t value)
5872 {
5873 /*
5874 * For A-profile AArch32 EL3, if NSACR.CP10
5875 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5876 */
5877 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5878 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5879 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5880 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5881 }
5882 env->cp15.cptr_el[2] = value;
5883 }
5884
5885 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5886 {
5887 /*
5888 * For A-profile AArch32 EL3, if NSACR.CP10
5889 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5890 */
5891 uint64_t value = env->cp15.cptr_el[2];
5892
5893 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5894 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5895 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5896 }
5897 return value;
5898 }
5899
5900 static const ARMCPRegInfo el2_cp_reginfo[] = {
5901 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5902 .type = ARM_CP_IO,
5903 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5904 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5905 .writefn = hcr_write },
5906 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5907 .type = ARM_CP_ALIAS | ARM_CP_IO,
5908 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5909 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5910 .writefn = hcr_writelow },
5911 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5912 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5913 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5914 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5915 .type = ARM_CP_ALIAS,
5916 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5917 .access = PL2_RW,
5918 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5919 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5920 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5921 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5922 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5923 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5924 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5925 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5926 .type = ARM_CP_ALIAS,
5927 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5928 .access = PL2_RW,
5929 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5930 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5931 .type = ARM_CP_ALIAS,
5932 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5933 .access = PL2_RW,
5934 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5935 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5936 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5937 .access = PL2_RW, .writefn = vbar_write,
5938 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5939 .resetvalue = 0 },
5940 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5941 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5942 .access = PL3_RW, .type = ARM_CP_ALIAS,
5943 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5944 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5945 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5946 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5947 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5948 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5949 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5950 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5951 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5952 .resetvalue = 0 },
5953 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5954 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5955 .access = PL2_RW, .type = ARM_CP_ALIAS,
5956 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5957 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5958 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5959 .access = PL2_RW, .type = ARM_CP_CONST,
5960 .resetvalue = 0 },
5961 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5962 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5963 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5964 .access = PL2_RW, .type = ARM_CP_CONST,
5965 .resetvalue = 0 },
5966 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5967 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5968 .access = PL2_RW, .type = ARM_CP_CONST,
5969 .resetvalue = 0 },
5970 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5971 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5972 .access = PL2_RW, .type = ARM_CP_CONST,
5973 .resetvalue = 0 },
5974 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5975 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5976 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5977 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5978 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5979 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5980 .type = ARM_CP_ALIAS,
5981 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5982 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5983 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5984 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5985 .access = PL2_RW,
5986 /* no .writefn needed as this can't cause an ASID change */
5987 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5988 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5989 .cp = 15, .opc1 = 6, .crm = 2,
5990 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5991 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5992 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5993 .writefn = vttbr_write },
5994 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5995 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5996 .access = PL2_RW, .writefn = vttbr_write,
5997 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5998 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5999 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6000 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6001 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6002 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6003 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6004 .access = PL2_RW, .resetvalue = 0,
6005 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6006 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6007 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6008 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6009 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6010 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6011 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6012 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6013 { .name = "TLBIALLNSNH",
6014 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6015 .type = ARM_CP_NO_RAW, .access = PL2_W,
6016 .writefn = tlbiall_nsnh_write },
6017 { .name = "TLBIALLNSNHIS",
6018 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6019 .type = ARM_CP_NO_RAW, .access = PL2_W,
6020 .writefn = tlbiall_nsnh_is_write },
6021 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6022 .type = ARM_CP_NO_RAW, .access = PL2_W,
6023 .writefn = tlbiall_hyp_write },
6024 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6025 .type = ARM_CP_NO_RAW, .access = PL2_W,
6026 .writefn = tlbiall_hyp_is_write },
6027 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6028 .type = ARM_CP_NO_RAW, .access = PL2_W,
6029 .writefn = tlbimva_hyp_write },
6030 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6031 .type = ARM_CP_NO_RAW, .access = PL2_W,
6032 .writefn = tlbimva_hyp_is_write },
6033 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6034 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6035 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6036 .writefn = tlbi_aa64_alle2_write },
6037 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6038 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6039 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6040 .writefn = tlbi_aa64_vae2_write },
6041 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6042 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6043 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6044 .writefn = tlbi_aa64_vae2_write },
6045 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6046 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6047 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6048 .writefn = tlbi_aa64_alle2is_write },
6049 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6050 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6051 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6052 .writefn = tlbi_aa64_vae2is_write },
6053 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6054 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6055 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6056 .writefn = tlbi_aa64_vae2is_write },
6057 #ifndef CONFIG_USER_ONLY
6058 /*
6059 * Unlike the other EL2-related AT operations, these must
6060 * UNDEF from EL3 if EL2 is not implemented, which is why we
6061 * define them here rather than with the rest of the AT ops.
6062 */
6063 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6064 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6065 .access = PL2_W, .accessfn = at_s1e2_access,
6066 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6067 .writefn = ats_write64 },
6068 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6069 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6070 .access = PL2_W, .accessfn = at_s1e2_access,
6071 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6072 .writefn = ats_write64 },
6073 /*
6074 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6075 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6076 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6077 * to behave as if SCR.NS was 1.
6078 */
6079 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6080 .access = PL2_W,
6081 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6082 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6083 .access = PL2_W,
6084 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6085 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6086 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6087 /*
6088 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6089 * reset values as IMPDEF. We choose to reset to 3 to comply with
6090 * both ARMv7 and ARMv8.
6091 */
6092 .access = PL2_RW, .resetvalue = 3,
6093 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6094 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6096 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6097 .writefn = gt_cntvoff_write,
6098 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6099 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6100 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6101 .writefn = gt_cntvoff_write,
6102 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6103 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6104 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6105 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6106 .type = ARM_CP_IO, .access = PL2_RW,
6107 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6108 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6110 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6111 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6112 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6113 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6114 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6115 .resetfn = gt_hyp_timer_reset,
6116 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6117 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6118 .type = ARM_CP_IO,
6119 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6120 .access = PL2_RW,
6121 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6122 .resetvalue = 0,
6123 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6124 #endif
6125 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6126 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6127 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6128 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6129 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6130 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6131 .access = PL2_RW,
6132 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6133 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6134 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6135 .access = PL2_RW,
6136 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6137 };
6138
6139 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6140 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6141 .type = ARM_CP_ALIAS | ARM_CP_IO,
6142 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6143 .access = PL2_RW,
6144 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6145 .writefn = hcr_writehigh },
6146 };
6147
6148 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6149 bool isread)
6150 {
6151 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6152 return CP_ACCESS_OK;
6153 }
6154 return CP_ACCESS_TRAP_UNCATEGORIZED;
6155 }
6156
6157 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6158 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6159 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6160 .access = PL2_RW, .accessfn = sel2_access,
6161 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6162 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6163 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6164 .access = PL2_RW, .accessfn = sel2_access,
6165 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6166 };
6167
6168 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6169 bool isread)
6170 {
6171 /*
6172 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6173 * At Secure EL1 it traps to EL3 or EL2.
6174 */
6175 if (arm_current_el(env) == 3) {
6176 return CP_ACCESS_OK;
6177 }
6178 if (arm_is_secure_below_el3(env)) {
6179 if (env->cp15.scr_el3 & SCR_EEL2) {
6180 return CP_ACCESS_TRAP_EL2;
6181 }
6182 return CP_ACCESS_TRAP_EL3;
6183 }
6184 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6185 if (isread) {
6186 return CP_ACCESS_OK;
6187 }
6188 return CP_ACCESS_TRAP_UNCATEGORIZED;
6189 }
6190
6191 static const ARMCPRegInfo el3_cp_reginfo[] = {
6192 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6193 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6194 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6195 .resetfn = scr_reset, .writefn = scr_write },
6196 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6197 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6198 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6199 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6200 .writefn = scr_write },
6201 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6202 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6203 .access = PL3_RW, .resetvalue = 0,
6204 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6205 { .name = "SDER",
6206 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6207 .access = PL3_RW, .resetvalue = 0,
6208 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6209 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6210 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6211 .writefn = vbar_write, .resetvalue = 0,
6212 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6213 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6214 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6215 .access = PL3_RW, .resetvalue = 0,
6216 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6217 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6218 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6219 .access = PL3_RW,
6220 /* no .writefn needed as this can't cause an ASID change */
6221 .resetvalue = 0,
6222 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6223 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6224 .type = ARM_CP_ALIAS,
6225 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6226 .access = PL3_RW,
6227 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6228 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6229 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6230 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6231 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6233 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6234 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6235 .type = ARM_CP_ALIAS,
6236 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6237 .access = PL3_RW,
6238 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6239 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6240 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6241 .access = PL3_RW, .writefn = vbar_write,
6242 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6243 .resetvalue = 0 },
6244 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6245 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6246 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6247 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6248 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6249 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6250 .access = PL3_RW, .resetvalue = 0,
6251 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6252 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6253 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6254 .access = PL3_RW, .type = ARM_CP_CONST,
6255 .resetvalue = 0 },
6256 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6257 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6258 .access = PL3_RW, .type = ARM_CP_CONST,
6259 .resetvalue = 0 },
6260 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6261 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6262 .access = PL3_RW, .type = ARM_CP_CONST,
6263 .resetvalue = 0 },
6264 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6265 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6266 .access = PL3_W, .type = ARM_CP_NO_RAW,
6267 .writefn = tlbi_aa64_alle3is_write },
6268 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6269 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6270 .access = PL3_W, .type = ARM_CP_NO_RAW,
6271 .writefn = tlbi_aa64_vae3is_write },
6272 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6273 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6274 .access = PL3_W, .type = ARM_CP_NO_RAW,
6275 .writefn = tlbi_aa64_vae3is_write },
6276 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6277 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6278 .access = PL3_W, .type = ARM_CP_NO_RAW,
6279 .writefn = tlbi_aa64_alle3_write },
6280 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6281 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6282 .access = PL3_W, .type = ARM_CP_NO_RAW,
6283 .writefn = tlbi_aa64_vae3_write },
6284 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6285 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6286 .access = PL3_W, .type = ARM_CP_NO_RAW,
6287 .writefn = tlbi_aa64_vae3_write },
6288 };
6289
6290 #ifndef CONFIG_USER_ONLY
6291 /* Test if system register redirection is to occur in the current state. */
6292 static bool redirect_for_e2h(CPUARMState *env)
6293 {
6294 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6295 }
6296
6297 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6298 {
6299 CPReadFn *readfn;
6300
6301 if (redirect_for_e2h(env)) {
6302 /* Switch to the saved EL2 version of the register. */
6303 ri = ri->opaque;
6304 readfn = ri->readfn;
6305 } else {
6306 readfn = ri->orig_readfn;
6307 }
6308 if (readfn == NULL) {
6309 readfn = raw_read;
6310 }
6311 return readfn(env, ri);
6312 }
6313
6314 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6315 uint64_t value)
6316 {
6317 CPWriteFn *writefn;
6318
6319 if (redirect_for_e2h(env)) {
6320 /* Switch to the saved EL2 version of the register. */
6321 ri = ri->opaque;
6322 writefn = ri->writefn;
6323 } else {
6324 writefn = ri->orig_writefn;
6325 }
6326 if (writefn == NULL) {
6327 writefn = raw_write;
6328 }
6329 writefn(env, ri, value);
6330 }
6331
6332 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6333 {
6334 struct E2HAlias {
6335 uint32_t src_key, dst_key, new_key;
6336 const char *src_name, *dst_name, *new_name;
6337 bool (*feature)(const ARMISARegisters *id);
6338 };
6339
6340 #define K(op0, op1, crn, crm, op2) \
6341 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6342
6343 static const struct E2HAlias aliases[] = {
6344 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6345 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6346 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6347 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6348 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6349 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6350 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6351 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6352 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6353 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6354 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6355 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6356 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6357 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6358 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6359 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6360 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6361 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6362 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6363 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6364 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6365 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6366 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6367 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6368 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6369 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6370 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6371 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6372 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6373 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6374 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6375 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6376
6377 /*
6378 * Note that redirection of ZCR is mentioned in the description
6379 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6380 * not in the summary table.
6381 */
6382 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6383 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6384 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6385 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6386
6387 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6388 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6389
6390 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6391 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6392 isar_feature_aa64_scxtnum },
6393
6394 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6395 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6396 };
6397 #undef K
6398
6399 size_t i;
6400
6401 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6402 const struct E2HAlias *a = &aliases[i];
6403 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6404 bool ok;
6405
6406 if (a->feature && !a->feature(&cpu->isar)) {
6407 continue;
6408 }
6409
6410 src_reg = g_hash_table_lookup(cpu->cp_regs,
6411 (gpointer)(uintptr_t)a->src_key);
6412 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6413 (gpointer)(uintptr_t)a->dst_key);
6414 g_assert(src_reg != NULL);
6415 g_assert(dst_reg != NULL);
6416
6417 /* Cross-compare names to detect typos in the keys. */
6418 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6419 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6420
6421 /* None of the core system registers use opaque; we will. */
6422 g_assert(src_reg->opaque == NULL);
6423
6424 /* Create alias before redirection so we dup the right data. */
6425 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6426
6427 new_reg->name = a->new_name;
6428 new_reg->type |= ARM_CP_ALIAS;
6429 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6430 new_reg->access &= PL2_RW | PL3_RW;
6431
6432 ok = g_hash_table_insert(cpu->cp_regs,
6433 (gpointer)(uintptr_t)a->new_key, new_reg);
6434 g_assert(ok);
6435
6436 src_reg->opaque = dst_reg;
6437 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6438 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6439 if (!src_reg->raw_readfn) {
6440 src_reg->raw_readfn = raw_read;
6441 }
6442 if (!src_reg->raw_writefn) {
6443 src_reg->raw_writefn = raw_write;
6444 }
6445 src_reg->readfn = el2_e2h_read;
6446 src_reg->writefn = el2_e2h_write;
6447 }
6448 }
6449 #endif
6450
6451 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6452 bool isread)
6453 {
6454 int cur_el = arm_current_el(env);
6455
6456 if (cur_el < 2) {
6457 uint64_t hcr = arm_hcr_el2_eff(env);
6458
6459 if (cur_el == 0) {
6460 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6461 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6462 return CP_ACCESS_TRAP_EL2;
6463 }
6464 } else {
6465 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6466 return CP_ACCESS_TRAP;
6467 }
6468 if (hcr & HCR_TID2) {
6469 return CP_ACCESS_TRAP_EL2;
6470 }
6471 }
6472 } else if (hcr & HCR_TID2) {
6473 return CP_ACCESS_TRAP_EL2;
6474 }
6475 }
6476
6477 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6478 return CP_ACCESS_TRAP_EL2;
6479 }
6480
6481 return CP_ACCESS_OK;
6482 }
6483
6484 /*
6485 * Check for traps to RAS registers, which are controlled
6486 * by HCR_EL2.TERR and SCR_EL3.TERR.
6487 */
6488 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6489 bool isread)
6490 {
6491 int el = arm_current_el(env);
6492
6493 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6494 return CP_ACCESS_TRAP_EL2;
6495 }
6496 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6497 return CP_ACCESS_TRAP_EL3;
6498 }
6499 return CP_ACCESS_OK;
6500 }
6501
6502 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6503 {
6504 int el = arm_current_el(env);
6505
6506 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6507 return env->cp15.vdisr_el2;
6508 }
6509 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6510 return 0; /* RAZ/WI */
6511 }
6512 return env->cp15.disr_el1;
6513 }
6514
6515 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6516 {
6517 int el = arm_current_el(env);
6518
6519 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6520 env->cp15.vdisr_el2 = val;
6521 return;
6522 }
6523 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6524 return; /* RAZ/WI */
6525 }
6526 env->cp15.disr_el1 = val;
6527 }
6528
6529 /*
6530 * Minimal RAS implementation with no Error Records.
6531 * Which means that all of the Error Record registers:
6532 * ERXADDR_EL1
6533 * ERXCTLR_EL1
6534 * ERXFR_EL1
6535 * ERXMISC0_EL1
6536 * ERXMISC1_EL1
6537 * ERXMISC2_EL1
6538 * ERXMISC3_EL1
6539 * ERXPFGCDN_EL1 (RASv1p1)
6540 * ERXPFGCTL_EL1 (RASv1p1)
6541 * ERXPFGF_EL1 (RASv1p1)
6542 * ERXSTATUS_EL1
6543 * and
6544 * ERRSELR_EL1
6545 * may generate UNDEFINED, which is the effect we get by not
6546 * listing them at all.
6547 *
6548 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6549 * is higher priority than FGT-to-EL2 so we do not need to list them
6550 * in order to check for an FGT.
6551 */
6552 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6553 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6554 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6555 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6556 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6557 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6558 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6559 .access = PL1_R, .accessfn = access_terr,
6560 .fgt = FGT_ERRIDR_EL1,
6561 .type = ARM_CP_CONST, .resetvalue = 0 },
6562 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6563 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6564 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6565 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6566 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6567 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6568 };
6569
6570 /*
6571 * Return the exception level to which exceptions should be taken
6572 * via SVEAccessTrap. This excludes the check for whether the exception
6573 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6574 * be found by testing 0 < fp_exception_el < sve_exception_el.
6575 *
6576 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6577 * pseudocode does *not* separate out the FP trap checks, but has them
6578 * all in one function.
6579 */
6580 int sve_exception_el(CPUARMState *env, int el)
6581 {
6582 #ifndef CONFIG_USER_ONLY
6583 if (el <= 1 && !el_is_in_host(env, el)) {
6584 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6585 case 1:
6586 if (el != 0) {
6587 break;
6588 }
6589 /* fall through */
6590 case 0:
6591 case 2:
6592 return 1;
6593 }
6594 }
6595
6596 if (el <= 2 && arm_is_el2_enabled(env)) {
6597 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6598 if (env->cp15.hcr_el2 & HCR_E2H) {
6599 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6600 case 1:
6601 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6602 break;
6603 }
6604 /* fall through */
6605 case 0:
6606 case 2:
6607 return 2;
6608 }
6609 } else {
6610 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6611 return 2;
6612 }
6613 }
6614 }
6615
6616 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6617 if (arm_feature(env, ARM_FEATURE_EL3)
6618 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6619 return 3;
6620 }
6621 #endif
6622 return 0;
6623 }
6624
6625 /*
6626 * Return the exception level to which exceptions should be taken for SME.
6627 * C.f. the ARM pseudocode function CheckSMEAccess.
6628 */
6629 int sme_exception_el(CPUARMState *env, int el)
6630 {
6631 #ifndef CONFIG_USER_ONLY
6632 if (el <= 1 && !el_is_in_host(env, el)) {
6633 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6634 case 1:
6635 if (el != 0) {
6636 break;
6637 }
6638 /* fall through */
6639 case 0:
6640 case 2:
6641 return 1;
6642 }
6643 }
6644
6645 if (el <= 2 && arm_is_el2_enabled(env)) {
6646 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6647 if (env->cp15.hcr_el2 & HCR_E2H) {
6648 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6649 case 1:
6650 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6651 break;
6652 }
6653 /* fall through */
6654 case 0:
6655 case 2:
6656 return 2;
6657 }
6658 } else {
6659 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6660 return 2;
6661 }
6662 }
6663 }
6664
6665 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6666 if (arm_feature(env, ARM_FEATURE_EL3)
6667 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6668 return 3;
6669 }
6670 #endif
6671 return 0;
6672 }
6673
6674 /*
6675 * Given that SVE is enabled, return the vector length for EL.
6676 */
6677 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6678 {
6679 ARMCPU *cpu = env_archcpu(env);
6680 uint64_t *cr = env->vfp.zcr_el;
6681 uint32_t map = cpu->sve_vq.map;
6682 uint32_t len = ARM_MAX_VQ - 1;
6683
6684 if (sm) {
6685 cr = env->vfp.smcr_el;
6686 map = cpu->sme_vq.map;
6687 }
6688
6689 if (el <= 1 && !el_is_in_host(env, el)) {
6690 len = MIN(len, 0xf & (uint32_t)cr[1]);
6691 }
6692 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6693 len = MIN(len, 0xf & (uint32_t)cr[2]);
6694 }
6695 if (arm_feature(env, ARM_FEATURE_EL3)) {
6696 len = MIN(len, 0xf & (uint32_t)cr[3]);
6697 }
6698
6699 map &= MAKE_64BIT_MASK(0, len + 1);
6700 if (map != 0) {
6701 return 31 - clz32(map);
6702 }
6703
6704 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6705 assert(sm);
6706 return ctz32(cpu->sme_vq.map);
6707 }
6708
6709 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6710 {
6711 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6712 }
6713
6714 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6715 uint64_t value)
6716 {
6717 int cur_el = arm_current_el(env);
6718 int old_len = sve_vqm1_for_el(env, cur_el);
6719 int new_len;
6720
6721 /* Bits other than [3:0] are RAZ/WI. */
6722 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6723 raw_write(env, ri, value & 0xf);
6724
6725 /*
6726 * Because we arrived here, we know both FP and SVE are enabled;
6727 * otherwise we would have trapped access to the ZCR_ELn register.
6728 */
6729 new_len = sve_vqm1_for_el(env, cur_el);
6730 if (new_len < old_len) {
6731 aarch64_sve_narrow_vq(env, new_len + 1);
6732 }
6733 }
6734
6735 static const ARMCPRegInfo zcr_reginfo[] = {
6736 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6737 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6738 .access = PL1_RW, .type = ARM_CP_SVE,
6739 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6740 .writefn = zcr_write, .raw_writefn = raw_write },
6741 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6742 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6743 .access = PL2_RW, .type = ARM_CP_SVE,
6744 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6745 .writefn = zcr_write, .raw_writefn = raw_write },
6746 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6747 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6748 .access = PL3_RW, .type = ARM_CP_SVE,
6749 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6750 .writefn = zcr_write, .raw_writefn = raw_write },
6751 };
6752
6753 #ifdef TARGET_AARCH64
6754 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6755 bool isread)
6756 {
6757 int el = arm_current_el(env);
6758
6759 if (el == 0) {
6760 uint64_t sctlr = arm_sctlr(env, el);
6761 if (!(sctlr & SCTLR_EnTP2)) {
6762 return CP_ACCESS_TRAP;
6763 }
6764 }
6765 /* TODO: FEAT_FGT */
6766 if (el < 3
6767 && arm_feature(env, ARM_FEATURE_EL3)
6768 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6769 return CP_ACCESS_TRAP_EL3;
6770 }
6771 return CP_ACCESS_OK;
6772 }
6773
6774 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6775 bool isread)
6776 {
6777 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6778 if (arm_current_el(env) < 3
6779 && arm_feature(env, ARM_FEATURE_EL3)
6780 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6781 return CP_ACCESS_TRAP_EL3;
6782 }
6783 return CP_ACCESS_OK;
6784 }
6785
6786 /* ResetSVEState */
6787 static void arm_reset_sve_state(CPUARMState *env)
6788 {
6789 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6790 /* Recall that FFR is stored as pregs[16]. */
6791 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6792 vfp_set_fpcr(env, 0x0800009f);
6793 }
6794
6795 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6796 {
6797 uint64_t change = (env->svcr ^ new) & mask;
6798
6799 if (change == 0) {
6800 return;
6801 }
6802 env->svcr ^= change;
6803
6804 if (change & R_SVCR_SM_MASK) {
6805 arm_reset_sve_state(env);
6806 }
6807
6808 /*
6809 * ResetSMEState.
6810 *
6811 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6812 * on enable: while disabled, the storage is inaccessible and the
6813 * value does not matter. We're not saving the storage in vmstate
6814 * when disabled either.
6815 */
6816 if (change & new & R_SVCR_ZA_MASK) {
6817 memset(env->zarray, 0, sizeof(env->zarray));
6818 }
6819
6820 if (tcg_enabled()) {
6821 arm_rebuild_hflags(env);
6822 }
6823 }
6824
6825 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6826 uint64_t value)
6827 {
6828 aarch64_set_svcr(env, value, -1);
6829 }
6830
6831 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6832 uint64_t value)
6833 {
6834 int cur_el = arm_current_el(env);
6835 int old_len = sve_vqm1_for_el(env, cur_el);
6836 int new_len;
6837
6838 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6839 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6840 raw_write(env, ri, value);
6841
6842 /*
6843 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6844 * when SVL is widened (old values kept, or zeros). Choose to keep the
6845 * current values for simplicity. But for QEMU internals, we must still
6846 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6847 * above aarch64_sve_narrow_vq.
6848 */
6849 new_len = sve_vqm1_for_el(env, cur_el);
6850 if (new_len < old_len) {
6851 aarch64_sve_narrow_vq(env, new_len + 1);
6852 }
6853 }
6854
6855 static const ARMCPRegInfo sme_reginfo[] = {
6856 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6857 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6858 .access = PL0_RW, .accessfn = access_tpidr2,
6859 .fgt = FGT_NTPIDR2_EL0,
6860 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6861 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6862 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6863 .access = PL0_RW, .type = ARM_CP_SME,
6864 .fieldoffset = offsetof(CPUARMState, svcr),
6865 .writefn = svcr_write, .raw_writefn = raw_write },
6866 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6867 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6868 .access = PL1_RW, .type = ARM_CP_SME,
6869 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6870 .writefn = smcr_write, .raw_writefn = raw_write },
6871 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6872 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6873 .access = PL2_RW, .type = ARM_CP_SME,
6874 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6875 .writefn = smcr_write, .raw_writefn = raw_write },
6876 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6877 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6878 .access = PL3_RW, .type = ARM_CP_SME,
6879 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6880 .writefn = smcr_write, .raw_writefn = raw_write },
6881 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6882 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6883 .access = PL1_R, .accessfn = access_aa64_tid1,
6884 /*
6885 * IMPLEMENTOR = 0 (software)
6886 * REVISION = 0 (implementation defined)
6887 * SMPS = 0 (no streaming execution priority in QEMU)
6888 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6889 */
6890 .type = ARM_CP_CONST, .resetvalue = 0, },
6891 /*
6892 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6893 */
6894 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6895 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6896 .access = PL1_RW, .accessfn = access_esm,
6897 .fgt = FGT_NSMPRI_EL1,
6898 .type = ARM_CP_CONST, .resetvalue = 0 },
6899 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6900 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6901 .access = PL2_RW, .accessfn = access_esm,
6902 .type = ARM_CP_CONST, .resetvalue = 0 },
6903 };
6904 #endif /* TARGET_AARCH64 */
6905
6906 static void define_pmu_regs(ARMCPU *cpu)
6907 {
6908 /*
6909 * v7 performance monitor control register: same implementor
6910 * field as main ID register, and we implement four counters in
6911 * addition to the cycle count register.
6912 */
6913 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6914 ARMCPRegInfo pmcr = {
6915 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6916 .access = PL0_RW,
6917 .fgt = FGT_PMCR_EL0,
6918 .type = ARM_CP_IO | ARM_CP_ALIAS,
6919 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6920 .accessfn = pmreg_access, .writefn = pmcr_write,
6921 .raw_writefn = raw_write,
6922 };
6923 ARMCPRegInfo pmcr64 = {
6924 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6925 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6926 .access = PL0_RW, .accessfn = pmreg_access,
6927 .fgt = FGT_PMCR_EL0,
6928 .type = ARM_CP_IO,
6929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6930 .resetvalue = cpu->isar.reset_pmcr_el0,
6931 .writefn = pmcr_write, .raw_writefn = raw_write,
6932 };
6933
6934 define_one_arm_cp_reg(cpu, &pmcr);
6935 define_one_arm_cp_reg(cpu, &pmcr64);
6936 for (i = 0; i < pmcrn; i++) {
6937 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6938 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6939 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6940 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6941 ARMCPRegInfo pmev_regs[] = {
6942 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6943 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6944 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6945 .fgt = FGT_PMEVCNTRN_EL0,
6946 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6947 .accessfn = pmreg_access_xevcntr },
6948 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6949 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6950 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6951 .type = ARM_CP_IO,
6952 .fgt = FGT_PMEVCNTRN_EL0,
6953 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6954 .raw_readfn = pmevcntr_rawread,
6955 .raw_writefn = pmevcntr_rawwrite },
6956 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6957 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6958 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6959 .fgt = FGT_PMEVTYPERN_EL0,
6960 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6961 .accessfn = pmreg_access },
6962 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6964 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6965 .fgt = FGT_PMEVTYPERN_EL0,
6966 .type = ARM_CP_IO,
6967 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6968 .raw_writefn = pmevtyper_rawwrite },
6969 };
6970 define_arm_cp_regs(cpu, pmev_regs);
6971 g_free(pmevcntr_name);
6972 g_free(pmevcntr_el0_name);
6973 g_free(pmevtyper_name);
6974 g_free(pmevtyper_el0_name);
6975 }
6976 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6977 ARMCPRegInfo v81_pmu_regs[] = {
6978 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6979 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6980 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6981 .fgt = FGT_PMCEIDN_EL0,
6982 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6983 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6984 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6985 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6986 .fgt = FGT_PMCEIDN_EL0,
6987 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6988 };
6989 define_arm_cp_regs(cpu, v81_pmu_regs);
6990 }
6991 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6992 static const ARMCPRegInfo v84_pmmir = {
6993 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6994 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6995 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6996 .fgt = FGT_PMMIR_EL1,
6997 .resetvalue = 0
6998 };
6999 define_one_arm_cp_reg(cpu, &v84_pmmir);
7000 }
7001 }
7002
7003 #ifndef CONFIG_USER_ONLY
7004 /*
7005 * We don't know until after realize whether there's a GICv3
7006 * attached, and that is what registers the gicv3 sysregs.
7007 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7008 * at runtime.
7009 */
7010 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7011 {
7012 ARMCPU *cpu = env_archcpu(env);
7013 uint64_t pfr1 = cpu->isar.id_pfr1;
7014
7015 if (env->gicv3state) {
7016 pfr1 |= 1 << 28;
7017 }
7018 return pfr1;
7019 }
7020
7021 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7022 {
7023 ARMCPU *cpu = env_archcpu(env);
7024 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7025
7026 if (env->gicv3state) {
7027 pfr0 |= 1 << 24;
7028 }
7029 return pfr0;
7030 }
7031 #endif
7032
7033 /*
7034 * Shared logic between LORID and the rest of the LOR* registers.
7035 * Secure state exclusion has already been dealt with.
7036 */
7037 static CPAccessResult access_lor_ns(CPUARMState *env,
7038 const ARMCPRegInfo *ri, bool isread)
7039 {
7040 int el = arm_current_el(env);
7041
7042 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7043 return CP_ACCESS_TRAP_EL2;
7044 }
7045 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7046 return CP_ACCESS_TRAP_EL3;
7047 }
7048 return CP_ACCESS_OK;
7049 }
7050
7051 static CPAccessResult access_lor_other(CPUARMState *env,
7052 const ARMCPRegInfo *ri, bool isread)
7053 {
7054 if (arm_is_secure_below_el3(env)) {
7055 /* Access denied in secure mode. */
7056 return CP_ACCESS_TRAP;
7057 }
7058 return access_lor_ns(env, ri, isread);
7059 }
7060
7061 /*
7062 * A trivial implementation of ARMv8.1-LOR leaves all of these
7063 * registers fixed at 0, which indicates that there are zero
7064 * supported Limited Ordering regions.
7065 */
7066 static const ARMCPRegInfo lor_reginfo[] = {
7067 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7068 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7069 .access = PL1_RW, .accessfn = access_lor_other,
7070 .fgt = FGT_LORSA_EL1,
7071 .type = ARM_CP_CONST, .resetvalue = 0 },
7072 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7073 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7074 .access = PL1_RW, .accessfn = access_lor_other,
7075 .fgt = FGT_LOREA_EL1,
7076 .type = ARM_CP_CONST, .resetvalue = 0 },
7077 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7078 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7079 .access = PL1_RW, .accessfn = access_lor_other,
7080 .fgt = FGT_LORN_EL1,
7081 .type = ARM_CP_CONST, .resetvalue = 0 },
7082 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7083 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7084 .access = PL1_RW, .accessfn = access_lor_other,
7085 .fgt = FGT_LORC_EL1,
7086 .type = ARM_CP_CONST, .resetvalue = 0 },
7087 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7088 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7089 .access = PL1_R, .accessfn = access_lor_ns,
7090 .fgt = FGT_LORID_EL1,
7091 .type = ARM_CP_CONST, .resetvalue = 0 },
7092 };
7093
7094 #ifdef TARGET_AARCH64
7095 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7096 bool isread)
7097 {
7098 int el = arm_current_el(env);
7099
7100 if (el < 2 &&
7101 arm_is_el2_enabled(env) &&
7102 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7103 return CP_ACCESS_TRAP_EL2;
7104 }
7105 if (el < 3 &&
7106 arm_feature(env, ARM_FEATURE_EL3) &&
7107 !(env->cp15.scr_el3 & SCR_APK)) {
7108 return CP_ACCESS_TRAP_EL3;
7109 }
7110 return CP_ACCESS_OK;
7111 }
7112
7113 static const ARMCPRegInfo pauth_reginfo[] = {
7114 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7116 .access = PL1_RW, .accessfn = access_pauth,
7117 .fgt = FGT_APDAKEY,
7118 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7119 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7120 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7121 .access = PL1_RW, .accessfn = access_pauth,
7122 .fgt = FGT_APDAKEY,
7123 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7124 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7125 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7126 .access = PL1_RW, .accessfn = access_pauth,
7127 .fgt = FGT_APDBKEY,
7128 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7129 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7130 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7131 .access = PL1_RW, .accessfn = access_pauth,
7132 .fgt = FGT_APDBKEY,
7133 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7134 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7135 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7136 .access = PL1_RW, .accessfn = access_pauth,
7137 .fgt = FGT_APGAKEY,
7138 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7139 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7140 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7141 .access = PL1_RW, .accessfn = access_pauth,
7142 .fgt = FGT_APGAKEY,
7143 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7144 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7145 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7146 .access = PL1_RW, .accessfn = access_pauth,
7147 .fgt = FGT_APIAKEY,
7148 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7149 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7150 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7151 .access = PL1_RW, .accessfn = access_pauth,
7152 .fgt = FGT_APIAKEY,
7153 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7154 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7155 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7156 .access = PL1_RW, .accessfn = access_pauth,
7157 .fgt = FGT_APIBKEY,
7158 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7159 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7160 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7161 .access = PL1_RW, .accessfn = access_pauth,
7162 .fgt = FGT_APIBKEY,
7163 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7164 };
7165
7166 static const ARMCPRegInfo tlbirange_reginfo[] = {
7167 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7168 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7169 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7170 .fgt = FGT_TLBIRVAE1IS,
7171 .writefn = tlbi_aa64_rvae1is_write },
7172 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7173 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7174 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7175 .fgt = FGT_TLBIRVAAE1IS,
7176 .writefn = tlbi_aa64_rvae1is_write },
7177 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7179 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7180 .fgt = FGT_TLBIRVALE1IS,
7181 .writefn = tlbi_aa64_rvae1is_write },
7182 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7183 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7184 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7185 .fgt = FGT_TLBIRVAALE1IS,
7186 .writefn = tlbi_aa64_rvae1is_write },
7187 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7188 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7189 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7190 .fgt = FGT_TLBIRVAE1OS,
7191 .writefn = tlbi_aa64_rvae1is_write },
7192 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7193 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7194 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7195 .fgt = FGT_TLBIRVAAE1OS,
7196 .writefn = tlbi_aa64_rvae1is_write },
7197 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7198 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7199 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7200 .fgt = FGT_TLBIRVALE1OS,
7201 .writefn = tlbi_aa64_rvae1is_write },
7202 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7204 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7205 .fgt = FGT_TLBIRVAALE1OS,
7206 .writefn = tlbi_aa64_rvae1is_write },
7207 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7209 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7210 .fgt = FGT_TLBIRVAE1,
7211 .writefn = tlbi_aa64_rvae1_write },
7212 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7214 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7215 .fgt = FGT_TLBIRVAAE1,
7216 .writefn = tlbi_aa64_rvae1_write },
7217 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7218 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7219 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7220 .fgt = FGT_TLBIRVALE1,
7221 .writefn = tlbi_aa64_rvae1_write },
7222 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7223 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7224 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7225 .fgt = FGT_TLBIRVAALE1,
7226 .writefn = tlbi_aa64_rvae1_write },
7227 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7228 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7229 .access = PL2_W, .type = ARM_CP_NO_RAW,
7230 .writefn = tlbi_aa64_ripas2e1is_write },
7231 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7233 .access = PL2_W, .type = ARM_CP_NO_RAW,
7234 .writefn = tlbi_aa64_ripas2e1is_write },
7235 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7237 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7238 .writefn = tlbi_aa64_rvae2is_write },
7239 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7240 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7241 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7242 .writefn = tlbi_aa64_rvae2is_write },
7243 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7245 .access = PL2_W, .type = ARM_CP_NO_RAW,
7246 .writefn = tlbi_aa64_ripas2e1_write },
7247 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7248 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7249 .access = PL2_W, .type = ARM_CP_NO_RAW,
7250 .writefn = tlbi_aa64_ripas2e1_write },
7251 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7252 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7253 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7254 .writefn = tlbi_aa64_rvae2is_write },
7255 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7256 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7257 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7258 .writefn = tlbi_aa64_rvae2is_write },
7259 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7260 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7261 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7262 .writefn = tlbi_aa64_rvae2_write },
7263 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7264 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7265 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7266 .writefn = tlbi_aa64_rvae2_write },
7267 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7268 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7269 .access = PL3_W, .type = ARM_CP_NO_RAW,
7270 .writefn = tlbi_aa64_rvae3is_write },
7271 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7272 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7273 .access = PL3_W, .type = ARM_CP_NO_RAW,
7274 .writefn = tlbi_aa64_rvae3is_write },
7275 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7276 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7277 .access = PL3_W, .type = ARM_CP_NO_RAW,
7278 .writefn = tlbi_aa64_rvae3is_write },
7279 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7280 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7281 .access = PL3_W, .type = ARM_CP_NO_RAW,
7282 .writefn = tlbi_aa64_rvae3is_write },
7283 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7284 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7285 .access = PL3_W, .type = ARM_CP_NO_RAW,
7286 .writefn = tlbi_aa64_rvae3_write },
7287 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7288 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7289 .access = PL3_W, .type = ARM_CP_NO_RAW,
7290 .writefn = tlbi_aa64_rvae3_write },
7291 };
7292
7293 static const ARMCPRegInfo tlbios_reginfo[] = {
7294 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7295 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7296 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7297 .fgt = FGT_TLBIVMALLE1OS,
7298 .writefn = tlbi_aa64_vmalle1is_write },
7299 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7300 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7301 .fgt = FGT_TLBIVAE1OS,
7302 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7303 .writefn = tlbi_aa64_vae1is_write },
7304 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7305 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7306 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7307 .fgt = FGT_TLBIASIDE1OS,
7308 .writefn = tlbi_aa64_vmalle1is_write },
7309 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7310 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7311 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7312 .fgt = FGT_TLBIVAAE1OS,
7313 .writefn = tlbi_aa64_vae1is_write },
7314 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7315 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7316 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7317 .fgt = FGT_TLBIVALE1OS,
7318 .writefn = tlbi_aa64_vae1is_write },
7319 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7320 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7321 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7322 .fgt = FGT_TLBIVAALE1OS,
7323 .writefn = tlbi_aa64_vae1is_write },
7324 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7325 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7326 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7327 .writefn = tlbi_aa64_alle2is_write },
7328 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7329 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7330 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7331 .writefn = tlbi_aa64_vae2is_write },
7332 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7334 .access = PL2_W, .type = ARM_CP_NO_RAW,
7335 .writefn = tlbi_aa64_alle1is_write },
7336 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7337 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7338 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7339 .writefn = tlbi_aa64_vae2is_write },
7340 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7341 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7342 .access = PL2_W, .type = ARM_CP_NO_RAW,
7343 .writefn = tlbi_aa64_alle1is_write },
7344 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7345 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7346 .access = PL2_W, .type = ARM_CP_NOP },
7347 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7348 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7349 .access = PL2_W, .type = ARM_CP_NOP },
7350 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7351 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7352 .access = PL2_W, .type = ARM_CP_NOP },
7353 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7354 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7355 .access = PL2_W, .type = ARM_CP_NOP },
7356 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7357 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7358 .access = PL3_W, .type = ARM_CP_NO_RAW,
7359 .writefn = tlbi_aa64_alle3is_write },
7360 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7361 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7362 .access = PL3_W, .type = ARM_CP_NO_RAW,
7363 .writefn = tlbi_aa64_vae3is_write },
7364 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7365 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7366 .access = PL3_W, .type = ARM_CP_NO_RAW,
7367 .writefn = tlbi_aa64_vae3is_write },
7368 };
7369
7370 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7371 {
7372 Error *err = NULL;
7373 uint64_t ret;
7374
7375 /* Success sets NZCV = 0000. */
7376 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7377
7378 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7379 /*
7380 * ??? Failed, for unknown reasons in the crypto subsystem.
7381 * The best we can do is log the reason and return the
7382 * timed-out indication to the guest. There is no reason
7383 * we know to expect this failure to be transitory, so the
7384 * guest may well hang retrying the operation.
7385 */
7386 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7387 ri->name, error_get_pretty(err));
7388 error_free(err);
7389
7390 env->ZF = 0; /* NZCF = 0100 */
7391 return 0;
7392 }
7393 return ret;
7394 }
7395
7396 /* We do not support re-seeding, so the two registers operate the same. */
7397 static const ARMCPRegInfo rndr_reginfo[] = {
7398 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7399 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7400 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7401 .access = PL0_R, .readfn = rndr_readfn },
7402 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7403 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7404 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7405 .access = PL0_R, .readfn = rndr_readfn },
7406 };
7407
7408 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7409 uint64_t value)
7410 {
7411 ARMCPU *cpu = env_archcpu(env);
7412 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7413 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7414 uint64_t vaddr_in = (uint64_t) value;
7415 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7416 void *haddr;
7417 int mem_idx = cpu_mmu_index(env, false);
7418
7419 /* This won't be crossing page boundaries */
7420 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7421 if (haddr) {
7422 #ifndef CONFIG_USER_ONLY
7423
7424 ram_addr_t offset;
7425 MemoryRegion *mr;
7426
7427 /* RCU lock is already being held */
7428 mr = memory_region_from_host(haddr, &offset);
7429
7430 if (mr) {
7431 memory_region_writeback(mr, offset, dline_size);
7432 }
7433 #endif /*CONFIG_USER_ONLY*/
7434 }
7435 }
7436
7437 static const ARMCPRegInfo dcpop_reg[] = {
7438 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7439 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7440 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7441 .fgt = FGT_DCCVAP,
7442 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7443 };
7444
7445 static const ARMCPRegInfo dcpodp_reg[] = {
7446 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7448 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7449 .fgt = FGT_DCCVADP,
7450 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7451 };
7452
7453 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7454 bool isread)
7455 {
7456 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7457 return CP_ACCESS_TRAP_EL2;
7458 }
7459
7460 return CP_ACCESS_OK;
7461 }
7462
7463 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7464 bool isread)
7465 {
7466 int el = arm_current_el(env);
7467
7468 if (el < 2 && arm_is_el2_enabled(env)) {
7469 uint64_t hcr = arm_hcr_el2_eff(env);
7470 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7471 return CP_ACCESS_TRAP_EL2;
7472 }
7473 }
7474 if (el < 3 &&
7475 arm_feature(env, ARM_FEATURE_EL3) &&
7476 !(env->cp15.scr_el3 & SCR_ATA)) {
7477 return CP_ACCESS_TRAP_EL3;
7478 }
7479 return CP_ACCESS_OK;
7480 }
7481
7482 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7483 {
7484 return env->pstate & PSTATE_TCO;
7485 }
7486
7487 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7488 {
7489 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7490 }
7491
7492 static const ARMCPRegInfo mte_reginfo[] = {
7493 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7494 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7495 .access = PL1_RW, .accessfn = access_mte,
7496 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7497 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7498 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7499 .access = PL1_RW, .accessfn = access_mte,
7500 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7501 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7503 .access = PL2_RW, .accessfn = access_mte,
7504 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7505 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7506 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7507 .access = PL3_RW,
7508 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7509 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7510 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7511 .access = PL1_RW, .accessfn = access_mte,
7512 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7513 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7514 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7515 .access = PL1_RW, .accessfn = access_mte,
7516 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7517 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7518 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7519 .access = PL1_R, .accessfn = access_aa64_tid5,
7520 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7521 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7522 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7523 .type = ARM_CP_NO_RAW,
7524 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7525 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7526 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7527 .type = ARM_CP_NOP, .access = PL1_W,
7528 .fgt = FGT_DCIVAC,
7529 .accessfn = aa64_cacheop_poc_access },
7530 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7531 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7532 .fgt = FGT_DCISW,
7533 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7534 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7536 .type = ARM_CP_NOP, .access = PL1_W,
7537 .fgt = FGT_DCIVAC,
7538 .accessfn = aa64_cacheop_poc_access },
7539 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7540 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7541 .fgt = FGT_DCISW,
7542 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7543 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7544 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7545 .fgt = FGT_DCCSW,
7546 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7547 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7548 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7549 .fgt = FGT_DCCSW,
7550 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7551 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7553 .fgt = FGT_DCCISW,
7554 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7555 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7557 .fgt = FGT_DCCISW,
7558 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7559 };
7560
7561 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7562 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7563 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7564 .type = ARM_CP_CONST, .access = PL0_RW, },
7565 };
7566
7567 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7568 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7569 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7570 .type = ARM_CP_NOP, .access = PL0_W,
7571 .fgt = FGT_DCCVAC,
7572 .accessfn = aa64_cacheop_poc_access },
7573 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7575 .type = ARM_CP_NOP, .access = PL0_W,
7576 .fgt = FGT_DCCVAC,
7577 .accessfn = aa64_cacheop_poc_access },
7578 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7580 .type = ARM_CP_NOP, .access = PL0_W,
7581 .fgt = FGT_DCCVAP,
7582 .accessfn = aa64_cacheop_poc_access },
7583 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7585 .type = ARM_CP_NOP, .access = PL0_W,
7586 .fgt = FGT_DCCVAP,
7587 .accessfn = aa64_cacheop_poc_access },
7588 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7590 .type = ARM_CP_NOP, .access = PL0_W,
7591 .fgt = FGT_DCCVADP,
7592 .accessfn = aa64_cacheop_poc_access },
7593 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7595 .type = ARM_CP_NOP, .access = PL0_W,
7596 .fgt = FGT_DCCVADP,
7597 .accessfn = aa64_cacheop_poc_access },
7598 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7600 .type = ARM_CP_NOP, .access = PL0_W,
7601 .fgt = FGT_DCCIVAC,
7602 .accessfn = aa64_cacheop_poc_access },
7603 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7604 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7605 .type = ARM_CP_NOP, .access = PL0_W,
7606 .fgt = FGT_DCCIVAC,
7607 .accessfn = aa64_cacheop_poc_access },
7608 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7610 .access = PL0_W, .type = ARM_CP_DC_GVA,
7611 #ifndef CONFIG_USER_ONLY
7612 /* Avoid overhead of an access check that always passes in user-mode */
7613 .accessfn = aa64_zva_access,
7614 .fgt = FGT_DCZVA,
7615 #endif
7616 },
7617 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7618 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7619 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7620 #ifndef CONFIG_USER_ONLY
7621 /* Avoid overhead of an access check that always passes in user-mode */
7622 .accessfn = aa64_zva_access,
7623 .fgt = FGT_DCZVA,
7624 #endif
7625 },
7626 };
7627
7628 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7629 bool isread)
7630 {
7631 uint64_t hcr = arm_hcr_el2_eff(env);
7632 int el = arm_current_el(env);
7633
7634 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7635 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7636 if (hcr & HCR_TGE) {
7637 return CP_ACCESS_TRAP_EL2;
7638 }
7639 return CP_ACCESS_TRAP;
7640 }
7641 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7642 return CP_ACCESS_TRAP_EL2;
7643 }
7644 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7645 return CP_ACCESS_TRAP_EL2;
7646 }
7647 if (el < 3
7648 && arm_feature(env, ARM_FEATURE_EL3)
7649 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7650 return CP_ACCESS_TRAP_EL3;
7651 }
7652 return CP_ACCESS_OK;
7653 }
7654
7655 static const ARMCPRegInfo scxtnum_reginfo[] = {
7656 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7657 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7658 .access = PL0_RW, .accessfn = access_scxtnum,
7659 .fgt = FGT_SCXTNUM_EL0,
7660 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7661 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7662 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7663 .access = PL1_RW, .accessfn = access_scxtnum,
7664 .fgt = FGT_SCXTNUM_EL1,
7665 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7666 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7667 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7668 .access = PL2_RW, .accessfn = access_scxtnum,
7669 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7670 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7671 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7672 .access = PL3_RW,
7673 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7674 };
7675
7676 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7677 bool isread)
7678 {
7679 if (arm_current_el(env) == 2 &&
7680 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7681 return CP_ACCESS_TRAP_EL3;
7682 }
7683 return CP_ACCESS_OK;
7684 }
7685
7686 static const ARMCPRegInfo fgt_reginfo[] = {
7687 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7688 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7689 .access = PL2_RW, .accessfn = access_fgt,
7690 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7691 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7693 .access = PL2_RW, .accessfn = access_fgt,
7694 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7695 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7696 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7697 .access = PL2_RW, .accessfn = access_fgt,
7698 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7699 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7700 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7701 .access = PL2_RW, .accessfn = access_fgt,
7702 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7703 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7704 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7705 .access = PL2_RW, .accessfn = access_fgt,
7706 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7707 };
7708 #endif /* TARGET_AARCH64 */
7709
7710 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7711 bool isread)
7712 {
7713 int el = arm_current_el(env);
7714
7715 if (el == 0) {
7716 uint64_t sctlr = arm_sctlr(env, el);
7717 if (!(sctlr & SCTLR_EnRCTX)) {
7718 return CP_ACCESS_TRAP;
7719 }
7720 } else if (el == 1) {
7721 uint64_t hcr = arm_hcr_el2_eff(env);
7722 if (hcr & HCR_NV) {
7723 return CP_ACCESS_TRAP_EL2;
7724 }
7725 }
7726 return CP_ACCESS_OK;
7727 }
7728
7729 static const ARMCPRegInfo predinv_reginfo[] = {
7730 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7732 .fgt = FGT_CFPRCTX,
7733 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7734 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7735 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7736 .fgt = FGT_DVPRCTX,
7737 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7738 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7740 .fgt = FGT_CPPRCTX,
7741 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7742 /*
7743 * Note the AArch32 opcodes have a different OPC1.
7744 */
7745 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7746 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7747 .fgt = FGT_CFPRCTX,
7748 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7749 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7750 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7751 .fgt = FGT_DVPRCTX,
7752 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7753 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7754 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7755 .fgt = FGT_CPPRCTX,
7756 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7757 };
7758
7759 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7760 {
7761 /* Read the high 32 bits of the current CCSIDR */
7762 return extract64(ccsidr_read(env, ri), 32, 32);
7763 }
7764
7765 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7766 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7767 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7768 .access = PL1_R,
7769 .accessfn = access_tid4,
7770 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7771 };
7772
7773 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7774 bool isread)
7775 {
7776 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7777 return CP_ACCESS_TRAP_EL2;
7778 }
7779
7780 return CP_ACCESS_OK;
7781 }
7782
7783 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7784 bool isread)
7785 {
7786 if (arm_feature(env, ARM_FEATURE_V8)) {
7787 return access_aa64_tid3(env, ri, isread);
7788 }
7789
7790 return CP_ACCESS_OK;
7791 }
7792
7793 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7794 bool isread)
7795 {
7796 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7797 return CP_ACCESS_TRAP_EL2;
7798 }
7799
7800 return CP_ACCESS_OK;
7801 }
7802
7803 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7804 const ARMCPRegInfo *ri, bool isread)
7805 {
7806 /*
7807 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7808 * in v7A, not in v8A.
7809 */
7810 if (!arm_feature(env, ARM_FEATURE_V8) &&
7811 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7812 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7813 return CP_ACCESS_TRAP_EL2;
7814 }
7815 return CP_ACCESS_OK;
7816 }
7817
7818 static const ARMCPRegInfo jazelle_regs[] = {
7819 { .name = "JIDR",
7820 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7821 .access = PL1_R, .accessfn = access_jazelle,
7822 .type = ARM_CP_CONST, .resetvalue = 0 },
7823 { .name = "JOSCR",
7824 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7825 .accessfn = access_joscr_jmcr,
7826 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7827 { .name = "JMCR",
7828 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7829 .accessfn = access_joscr_jmcr,
7830 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7831 };
7832
7833 static const ARMCPRegInfo contextidr_el2 = {
7834 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7835 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7836 .access = PL2_RW,
7837 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7838 };
7839
7840 static const ARMCPRegInfo vhe_reginfo[] = {
7841 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7842 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7843 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7844 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7845 #ifndef CONFIG_USER_ONLY
7846 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7847 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7848 .fieldoffset =
7849 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7850 .type = ARM_CP_IO, .access = PL2_RW,
7851 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7852 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7853 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7854 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7855 .resetfn = gt_hv_timer_reset,
7856 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7857 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7858 .type = ARM_CP_IO,
7859 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7860 .access = PL2_RW,
7861 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7862 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7863 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7865 .type = ARM_CP_IO | ARM_CP_ALIAS,
7866 .access = PL2_RW, .accessfn = e2h_access,
7867 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7868 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7869 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7870 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7871 .type = ARM_CP_IO | ARM_CP_ALIAS,
7872 .access = PL2_RW, .accessfn = e2h_access,
7873 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7874 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7875 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7876 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7877 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7878 .access = PL2_RW, .accessfn = e2h_access,
7879 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7880 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7881 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7882 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7883 .access = PL2_RW, .accessfn = e2h_access,
7884 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7885 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7886 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7887 .type = ARM_CP_IO | ARM_CP_ALIAS,
7888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7889 .access = PL2_RW, .accessfn = e2h_access,
7890 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7891 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7892 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7893 .type = ARM_CP_IO | ARM_CP_ALIAS,
7894 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7895 .access = PL2_RW, .accessfn = e2h_access,
7896 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7897 #endif
7898 };
7899
7900 #ifndef CONFIG_USER_ONLY
7901 static const ARMCPRegInfo ats1e1_reginfo[] = {
7902 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7903 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7904 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7905 .fgt = FGT_ATS1E1RP,
7906 .writefn = ats_write64 },
7907 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7908 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7909 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7910 .fgt = FGT_ATS1E1WP,
7911 .writefn = ats_write64 },
7912 };
7913
7914 static const ARMCPRegInfo ats1cp_reginfo[] = {
7915 { .name = "ATS1CPRP",
7916 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7917 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7918 .writefn = ats_write },
7919 { .name = "ATS1CPWP",
7920 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7921 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7922 .writefn = ats_write },
7923 };
7924 #endif
7925
7926 /*
7927 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7928 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7929 * is non-zero, which is never for ARMv7, optionally in ARMv8
7930 * and mandatorily for ARMv8.2 and up.
7931 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7932 * implementation is RAZ/WI we can ignore this detail, as we
7933 * do for ACTLR.
7934 */
7935 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7936 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7937 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7938 .access = PL1_RW, .accessfn = access_tacr,
7939 .type = ARM_CP_CONST, .resetvalue = 0 },
7940 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7941 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7942 .access = PL2_RW, .type = ARM_CP_CONST,
7943 .resetvalue = 0 },
7944 };
7945
7946 void register_cp_regs_for_features(ARMCPU *cpu)
7947 {
7948 /* Register all the coprocessor registers based on feature bits */
7949 CPUARMState *env = &cpu->env;
7950 if (arm_feature(env, ARM_FEATURE_M)) {
7951 /* M profile has no coprocessor registers */
7952 return;
7953 }
7954
7955 define_arm_cp_regs(cpu, cp_reginfo);
7956 if (!arm_feature(env, ARM_FEATURE_V8)) {
7957 /*
7958 * Must go early as it is full of wildcards that may be
7959 * overridden by later definitions.
7960 */
7961 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7962 }
7963
7964 if (arm_feature(env, ARM_FEATURE_V6)) {
7965 /* The ID registers all have impdef reset values */
7966 ARMCPRegInfo v6_idregs[] = {
7967 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7968 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7969 .access = PL1_R, .type = ARM_CP_CONST,
7970 .accessfn = access_aa32_tid3,
7971 .resetvalue = cpu->isar.id_pfr0 },
7972 /*
7973 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7974 * the value of the GIC field until after we define these regs.
7975 */
7976 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7978 .access = PL1_R, .type = ARM_CP_NO_RAW,
7979 .accessfn = access_aa32_tid3,
7980 #ifdef CONFIG_USER_ONLY
7981 .type = ARM_CP_CONST,
7982 .resetvalue = cpu->isar.id_pfr1,
7983 #else
7984 .type = ARM_CP_NO_RAW,
7985 .accessfn = access_aa32_tid3,
7986 .readfn = id_pfr1_read,
7987 .writefn = arm_cp_write_ignore
7988 #endif
7989 },
7990 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7992 .access = PL1_R, .type = ARM_CP_CONST,
7993 .accessfn = access_aa32_tid3,
7994 .resetvalue = cpu->isar.id_dfr0 },
7995 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7996 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7997 .access = PL1_R, .type = ARM_CP_CONST,
7998 .accessfn = access_aa32_tid3,
7999 .resetvalue = cpu->id_afr0 },
8000 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8002 .access = PL1_R, .type = ARM_CP_CONST,
8003 .accessfn = access_aa32_tid3,
8004 .resetvalue = cpu->isar.id_mmfr0 },
8005 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8007 .access = PL1_R, .type = ARM_CP_CONST,
8008 .accessfn = access_aa32_tid3,
8009 .resetvalue = cpu->isar.id_mmfr1 },
8010 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8012 .access = PL1_R, .type = ARM_CP_CONST,
8013 .accessfn = access_aa32_tid3,
8014 .resetvalue = cpu->isar.id_mmfr2 },
8015 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8017 .access = PL1_R, .type = ARM_CP_CONST,
8018 .accessfn = access_aa32_tid3,
8019 .resetvalue = cpu->isar.id_mmfr3 },
8020 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8022 .access = PL1_R, .type = ARM_CP_CONST,
8023 .accessfn = access_aa32_tid3,
8024 .resetvalue = cpu->isar.id_isar0 },
8025 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8027 .access = PL1_R, .type = ARM_CP_CONST,
8028 .accessfn = access_aa32_tid3,
8029 .resetvalue = cpu->isar.id_isar1 },
8030 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8032 .access = PL1_R, .type = ARM_CP_CONST,
8033 .accessfn = access_aa32_tid3,
8034 .resetvalue = cpu->isar.id_isar2 },
8035 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8037 .access = PL1_R, .type = ARM_CP_CONST,
8038 .accessfn = access_aa32_tid3,
8039 .resetvalue = cpu->isar.id_isar3 },
8040 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8042 .access = PL1_R, .type = ARM_CP_CONST,
8043 .accessfn = access_aa32_tid3,
8044 .resetvalue = cpu->isar.id_isar4 },
8045 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8047 .access = PL1_R, .type = ARM_CP_CONST,
8048 .accessfn = access_aa32_tid3,
8049 .resetvalue = cpu->isar.id_isar5 },
8050 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8051 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8052 .access = PL1_R, .type = ARM_CP_CONST,
8053 .accessfn = access_aa32_tid3,
8054 .resetvalue = cpu->isar.id_mmfr4 },
8055 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8056 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8057 .access = PL1_R, .type = ARM_CP_CONST,
8058 .accessfn = access_aa32_tid3,
8059 .resetvalue = cpu->isar.id_isar6 },
8060 };
8061 define_arm_cp_regs(cpu, v6_idregs);
8062 define_arm_cp_regs(cpu, v6_cp_reginfo);
8063 } else {
8064 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8065 }
8066 if (arm_feature(env, ARM_FEATURE_V6K)) {
8067 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8068 }
8069 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8070 !arm_feature(env, ARM_FEATURE_PMSA)) {
8071 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8072 }
8073 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8074 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8075 }
8076 if (arm_feature(env, ARM_FEATURE_V7)) {
8077 ARMCPRegInfo clidr = {
8078 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8079 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8080 .access = PL1_R, .type = ARM_CP_CONST,
8081 .accessfn = access_tid4,
8082 .fgt = FGT_CLIDR_EL1,
8083 .resetvalue = cpu->clidr
8084 };
8085 define_one_arm_cp_reg(cpu, &clidr);
8086 define_arm_cp_regs(cpu, v7_cp_reginfo);
8087 define_debug_regs(cpu);
8088 define_pmu_regs(cpu);
8089 } else {
8090 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8091 }
8092 if (arm_feature(env, ARM_FEATURE_V8)) {
8093 /*
8094 * v8 ID registers, which all have impdef reset values.
8095 * Note that within the ID register ranges the unused slots
8096 * must all RAZ, not UNDEF; future architecture versions may
8097 * define new registers here.
8098 * ID registers which are AArch64 views of the AArch32 ID registers
8099 * which already existed in v6 and v7 are handled elsewhere,
8100 * in v6_idregs[].
8101 */
8102 int i;
8103 ARMCPRegInfo v8_idregs[] = {
8104 /*
8105 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8106 * emulation because we don't know the right value for the
8107 * GIC field until after we define these regs.
8108 */
8109 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8111 .access = PL1_R,
8112 #ifdef CONFIG_USER_ONLY
8113 .type = ARM_CP_CONST,
8114 .resetvalue = cpu->isar.id_aa64pfr0
8115 #else
8116 .type = ARM_CP_NO_RAW,
8117 .accessfn = access_aa64_tid3,
8118 .readfn = id_aa64pfr0_read,
8119 .writefn = arm_cp_write_ignore
8120 #endif
8121 },
8122 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8123 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8124 .access = PL1_R, .type = ARM_CP_CONST,
8125 .accessfn = access_aa64_tid3,
8126 .resetvalue = cpu->isar.id_aa64pfr1},
8127 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8128 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8129 .access = PL1_R, .type = ARM_CP_CONST,
8130 .accessfn = access_aa64_tid3,
8131 .resetvalue = 0 },
8132 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8134 .access = PL1_R, .type = ARM_CP_CONST,
8135 .accessfn = access_aa64_tid3,
8136 .resetvalue = 0 },
8137 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8139 .access = PL1_R, .type = ARM_CP_CONST,
8140 .accessfn = access_aa64_tid3,
8141 .resetvalue = cpu->isar.id_aa64zfr0 },
8142 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8143 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8144 .access = PL1_R, .type = ARM_CP_CONST,
8145 .accessfn = access_aa64_tid3,
8146 .resetvalue = cpu->isar.id_aa64smfr0 },
8147 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8148 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8149 .access = PL1_R, .type = ARM_CP_CONST,
8150 .accessfn = access_aa64_tid3,
8151 .resetvalue = 0 },
8152 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8153 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8154 .access = PL1_R, .type = ARM_CP_CONST,
8155 .accessfn = access_aa64_tid3,
8156 .resetvalue = 0 },
8157 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8159 .access = PL1_R, .type = ARM_CP_CONST,
8160 .accessfn = access_aa64_tid3,
8161 .resetvalue = cpu->isar.id_aa64dfr0 },
8162 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8163 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8164 .access = PL1_R, .type = ARM_CP_CONST,
8165 .accessfn = access_aa64_tid3,
8166 .resetvalue = cpu->isar.id_aa64dfr1 },
8167 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8168 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8169 .access = PL1_R, .type = ARM_CP_CONST,
8170 .accessfn = access_aa64_tid3,
8171 .resetvalue = 0 },
8172 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8174 .access = PL1_R, .type = ARM_CP_CONST,
8175 .accessfn = access_aa64_tid3,
8176 .resetvalue = 0 },
8177 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8179 .access = PL1_R, .type = ARM_CP_CONST,
8180 .accessfn = access_aa64_tid3,
8181 .resetvalue = cpu->id_aa64afr0 },
8182 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8183 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8184 .access = PL1_R, .type = ARM_CP_CONST,
8185 .accessfn = access_aa64_tid3,
8186 .resetvalue = cpu->id_aa64afr1 },
8187 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8188 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8189 .access = PL1_R, .type = ARM_CP_CONST,
8190 .accessfn = access_aa64_tid3,
8191 .resetvalue = 0 },
8192 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8194 .access = PL1_R, .type = ARM_CP_CONST,
8195 .accessfn = access_aa64_tid3,
8196 .resetvalue = 0 },
8197 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8199 .access = PL1_R, .type = ARM_CP_CONST,
8200 .accessfn = access_aa64_tid3,
8201 .resetvalue = cpu->isar.id_aa64isar0 },
8202 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8203 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8204 .access = PL1_R, .type = ARM_CP_CONST,
8205 .accessfn = access_aa64_tid3,
8206 .resetvalue = cpu->isar.id_aa64isar1 },
8207 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8209 .access = PL1_R, .type = ARM_CP_CONST,
8210 .accessfn = access_aa64_tid3,
8211 .resetvalue = 0 },
8212 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8214 .access = PL1_R, .type = ARM_CP_CONST,
8215 .accessfn = access_aa64_tid3,
8216 .resetvalue = 0 },
8217 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8219 .access = PL1_R, .type = ARM_CP_CONST,
8220 .accessfn = access_aa64_tid3,
8221 .resetvalue = 0 },
8222 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8223 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8224 .access = PL1_R, .type = ARM_CP_CONST,
8225 .accessfn = access_aa64_tid3,
8226 .resetvalue = 0 },
8227 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8229 .access = PL1_R, .type = ARM_CP_CONST,
8230 .accessfn = access_aa64_tid3,
8231 .resetvalue = 0 },
8232 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8234 .access = PL1_R, .type = ARM_CP_CONST,
8235 .accessfn = access_aa64_tid3,
8236 .resetvalue = 0 },
8237 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8239 .access = PL1_R, .type = ARM_CP_CONST,
8240 .accessfn = access_aa64_tid3,
8241 .resetvalue = cpu->isar.id_aa64mmfr0 },
8242 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8244 .access = PL1_R, .type = ARM_CP_CONST,
8245 .accessfn = access_aa64_tid3,
8246 .resetvalue = cpu->isar.id_aa64mmfr1 },
8247 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8249 .access = PL1_R, .type = ARM_CP_CONST,
8250 .accessfn = access_aa64_tid3,
8251 .resetvalue = cpu->isar.id_aa64mmfr2 },
8252 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8254 .access = PL1_R, .type = ARM_CP_CONST,
8255 .accessfn = access_aa64_tid3,
8256 .resetvalue = 0 },
8257 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8259 .access = PL1_R, .type = ARM_CP_CONST,
8260 .accessfn = access_aa64_tid3,
8261 .resetvalue = 0 },
8262 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8264 .access = PL1_R, .type = ARM_CP_CONST,
8265 .accessfn = access_aa64_tid3,
8266 .resetvalue = 0 },
8267 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8269 .access = PL1_R, .type = ARM_CP_CONST,
8270 .accessfn = access_aa64_tid3,
8271 .resetvalue = 0 },
8272 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8274 .access = PL1_R, .type = ARM_CP_CONST,
8275 .accessfn = access_aa64_tid3,
8276 .resetvalue = 0 },
8277 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8279 .access = PL1_R, .type = ARM_CP_CONST,
8280 .accessfn = access_aa64_tid3,
8281 .resetvalue = cpu->isar.mvfr0 },
8282 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8284 .access = PL1_R, .type = ARM_CP_CONST,
8285 .accessfn = access_aa64_tid3,
8286 .resetvalue = cpu->isar.mvfr1 },
8287 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8289 .access = PL1_R, .type = ARM_CP_CONST,
8290 .accessfn = access_aa64_tid3,
8291 .resetvalue = cpu->isar.mvfr2 },
8292 /*
8293 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8294 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8295 * as RAZ, since it is in the "reserved for future ID
8296 * registers, RAZ" part of the AArch32 encoding space.
8297 */
8298 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8299 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8300 .access = PL1_R, .type = ARM_CP_CONST,
8301 .accessfn = access_aa64_tid3,
8302 .resetvalue = 0 },
8303 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8304 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8305 .access = PL1_R, .type = ARM_CP_CONST,
8306 .accessfn = access_aa64_tid3,
8307 .resetvalue = 0 },
8308 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8309 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8310 .access = PL1_R, .type = ARM_CP_CONST,
8311 .accessfn = access_aa64_tid3,
8312 .resetvalue = 0 },
8313 /*
8314 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8315 * they're also RAZ for AArch64, and in v8 are gradually
8316 * being filled with AArch64-view-of-AArch32-ID-register
8317 * for new ID registers.
8318 */
8319 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8321 .access = PL1_R, .type = ARM_CP_CONST,
8322 .accessfn = access_aa64_tid3,
8323 .resetvalue = 0 },
8324 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8326 .access = PL1_R, .type = ARM_CP_CONST,
8327 .accessfn = access_aa64_tid3,
8328 .resetvalue = cpu->isar.id_pfr2 },
8329 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8330 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8331 .access = PL1_R, .type = ARM_CP_CONST,
8332 .accessfn = access_aa64_tid3,
8333 .resetvalue = cpu->isar.id_dfr1 },
8334 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8335 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8336 .access = PL1_R, .type = ARM_CP_CONST,
8337 .accessfn = access_aa64_tid3,
8338 .resetvalue = cpu->isar.id_mmfr5 },
8339 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8341 .access = PL1_R, .type = ARM_CP_CONST,
8342 .accessfn = access_aa64_tid3,
8343 .resetvalue = 0 },
8344 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8345 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8346 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8347 .fgt = FGT_PMCEIDN_EL0,
8348 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8349 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8350 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8351 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8352 .fgt = FGT_PMCEIDN_EL0,
8353 .resetvalue = cpu->pmceid0 },
8354 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8355 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8356 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8357 .fgt = FGT_PMCEIDN_EL0,
8358 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8359 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8360 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8361 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8362 .fgt = FGT_PMCEIDN_EL0,
8363 .resetvalue = cpu->pmceid1 },
8364 };
8365 #ifdef CONFIG_USER_ONLY
8366 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8367 { .name = "ID_AA64PFR0_EL1",
8368 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8369 R_ID_AA64PFR0_ADVSIMD_MASK |
8370 R_ID_AA64PFR0_SVE_MASK |
8371 R_ID_AA64PFR0_DIT_MASK,
8372 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8373 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8374 { .name = "ID_AA64PFR1_EL1",
8375 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8376 R_ID_AA64PFR1_SSBS_MASK |
8377 R_ID_AA64PFR1_MTE_MASK |
8378 R_ID_AA64PFR1_SME_MASK },
8379 { .name = "ID_AA64PFR*_EL1_RESERVED",
8380 .is_glob = true },
8381 { .name = "ID_AA64ZFR0_EL1",
8382 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8383 R_ID_AA64ZFR0_AES_MASK |
8384 R_ID_AA64ZFR0_BITPERM_MASK |
8385 R_ID_AA64ZFR0_BFLOAT16_MASK |
8386 R_ID_AA64ZFR0_SHA3_MASK |
8387 R_ID_AA64ZFR0_SM4_MASK |
8388 R_ID_AA64ZFR0_I8MM_MASK |
8389 R_ID_AA64ZFR0_F32MM_MASK |
8390 R_ID_AA64ZFR0_F64MM_MASK },
8391 { .name = "ID_AA64SMFR0_EL1",
8392 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8393 R_ID_AA64SMFR0_B16F32_MASK |
8394 R_ID_AA64SMFR0_F16F32_MASK |
8395 R_ID_AA64SMFR0_I8I32_MASK |
8396 R_ID_AA64SMFR0_F64F64_MASK |
8397 R_ID_AA64SMFR0_I16I64_MASK |
8398 R_ID_AA64SMFR0_FA64_MASK },
8399 { .name = "ID_AA64MMFR0_EL1",
8400 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8401 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8402 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8403 { .name = "ID_AA64MMFR1_EL1",
8404 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8405 { .name = "ID_AA64MMFR2_EL1",
8406 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8407 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8408 .is_glob = true },
8409 { .name = "ID_AA64DFR0_EL1",
8410 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8411 { .name = "ID_AA64DFR1_EL1" },
8412 { .name = "ID_AA64DFR*_EL1_RESERVED",
8413 .is_glob = true },
8414 { .name = "ID_AA64AFR*",
8415 .is_glob = true },
8416 { .name = "ID_AA64ISAR0_EL1",
8417 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8418 R_ID_AA64ISAR0_SHA1_MASK |
8419 R_ID_AA64ISAR0_SHA2_MASK |
8420 R_ID_AA64ISAR0_CRC32_MASK |
8421 R_ID_AA64ISAR0_ATOMIC_MASK |
8422 R_ID_AA64ISAR0_RDM_MASK |
8423 R_ID_AA64ISAR0_SHA3_MASK |
8424 R_ID_AA64ISAR0_SM3_MASK |
8425 R_ID_AA64ISAR0_SM4_MASK |
8426 R_ID_AA64ISAR0_DP_MASK |
8427 R_ID_AA64ISAR0_FHM_MASK |
8428 R_ID_AA64ISAR0_TS_MASK |
8429 R_ID_AA64ISAR0_RNDR_MASK },
8430 { .name = "ID_AA64ISAR1_EL1",
8431 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8432 R_ID_AA64ISAR1_APA_MASK |
8433 R_ID_AA64ISAR1_API_MASK |
8434 R_ID_AA64ISAR1_JSCVT_MASK |
8435 R_ID_AA64ISAR1_FCMA_MASK |
8436 R_ID_AA64ISAR1_LRCPC_MASK |
8437 R_ID_AA64ISAR1_GPA_MASK |
8438 R_ID_AA64ISAR1_GPI_MASK |
8439 R_ID_AA64ISAR1_FRINTTS_MASK |
8440 R_ID_AA64ISAR1_SB_MASK |
8441 R_ID_AA64ISAR1_BF16_MASK |
8442 R_ID_AA64ISAR1_DGH_MASK |
8443 R_ID_AA64ISAR1_I8MM_MASK },
8444 { .name = "ID_AA64ISAR2_EL1",
8445 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8446 R_ID_AA64ISAR2_RPRES_MASK |
8447 R_ID_AA64ISAR2_GPA3_MASK |
8448 R_ID_AA64ISAR2_APA3_MASK },
8449 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8450 .is_glob = true },
8451 };
8452 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8453 #endif
8454 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8455 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8456 !arm_feature(env, ARM_FEATURE_EL2)) {
8457 ARMCPRegInfo rvbar = {
8458 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8459 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8460 .access = PL1_R,
8461 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8462 };
8463 define_one_arm_cp_reg(cpu, &rvbar);
8464 }
8465 define_arm_cp_regs(cpu, v8_idregs);
8466 define_arm_cp_regs(cpu, v8_cp_reginfo);
8467
8468 for (i = 4; i < 16; i++) {
8469 /*
8470 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8471 * For pre-v8 cores there are RAZ patterns for these in
8472 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8473 * v8 extends the "must RAZ" part of the ID register space
8474 * to also cover c0, 0, c{8-15}, {0-7}.
8475 * These are STATE_AA32 because in the AArch64 sysreg space
8476 * c4-c7 is where the AArch64 ID registers live (and we've
8477 * already defined those in v8_idregs[]), and c8-c15 are not
8478 * "must RAZ" for AArch64.
8479 */
8480 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8481 ARMCPRegInfo v8_aa32_raz_idregs = {
8482 .name = name,
8483 .state = ARM_CP_STATE_AA32,
8484 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8485 .access = PL1_R, .type = ARM_CP_CONST,
8486 .accessfn = access_aa64_tid3,
8487 .resetvalue = 0 };
8488 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8489 }
8490 }
8491
8492 /*
8493 * Register the base EL2 cpregs.
8494 * Pre v8, these registers are implemented only as part of the
8495 * Virtualization Extensions (EL2 present). Beginning with v8,
8496 * if EL2 is missing but EL3 is enabled, mostly these become
8497 * RES0 from EL3, with some specific exceptions.
8498 */
8499 if (arm_feature(env, ARM_FEATURE_EL2)
8500 || (arm_feature(env, ARM_FEATURE_EL3)
8501 && arm_feature(env, ARM_FEATURE_V8))) {
8502 uint64_t vmpidr_def = mpidr_read_val(env);
8503 ARMCPRegInfo vpidr_regs[] = {
8504 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8505 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8506 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8507 .resetvalue = cpu->midr,
8508 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8509 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8510 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8511 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8512 .access = PL2_RW, .resetvalue = cpu->midr,
8513 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8514 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8515 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8516 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8517 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8518 .resetvalue = vmpidr_def,
8519 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8520 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8521 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8522 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8523 .access = PL2_RW, .resetvalue = vmpidr_def,
8524 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8525 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8526 };
8527 /*
8528 * The only field of MDCR_EL2 that has a defined architectural reset
8529 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8530 */
8531 ARMCPRegInfo mdcr_el2 = {
8532 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8533 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8534 .writefn = mdcr_el2_write,
8535 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8536 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8537 };
8538 define_one_arm_cp_reg(cpu, &mdcr_el2);
8539 define_arm_cp_regs(cpu, vpidr_regs);
8540 define_arm_cp_regs(cpu, el2_cp_reginfo);
8541 if (arm_feature(env, ARM_FEATURE_V8)) {
8542 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8543 }
8544 if (cpu_isar_feature(aa64_sel2, cpu)) {
8545 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8546 }
8547 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8548 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8549 ARMCPRegInfo rvbar[] = {
8550 {
8551 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8552 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8553 .access = PL2_R,
8554 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8555 },
8556 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8557 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8558 .access = PL2_R,
8559 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8560 },
8561 };
8562 define_arm_cp_regs(cpu, rvbar);
8563 }
8564 }
8565
8566 /* Register the base EL3 cpregs. */
8567 if (arm_feature(env, ARM_FEATURE_EL3)) {
8568 define_arm_cp_regs(cpu, el3_cp_reginfo);
8569 ARMCPRegInfo el3_regs[] = {
8570 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8571 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8572 .access = PL3_R,
8573 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8574 },
8575 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8576 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8577 .access = PL3_RW,
8578 .raw_writefn = raw_write, .writefn = sctlr_write,
8579 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8580 .resetvalue = cpu->reset_sctlr },
8581 };
8582
8583 define_arm_cp_regs(cpu, el3_regs);
8584 }
8585 /*
8586 * The behaviour of NSACR is sufficiently various that we don't
8587 * try to describe it in a single reginfo:
8588 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8589 * reads as constant 0xc00 from NS EL1 and NS EL2
8590 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8591 * if v7 without EL3, register doesn't exist
8592 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8593 */
8594 if (arm_feature(env, ARM_FEATURE_EL3)) {
8595 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8596 static const ARMCPRegInfo nsacr = {
8597 .name = "NSACR", .type = ARM_CP_CONST,
8598 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8599 .access = PL1_RW, .accessfn = nsacr_access,
8600 .resetvalue = 0xc00
8601 };
8602 define_one_arm_cp_reg(cpu, &nsacr);
8603 } else {
8604 static const ARMCPRegInfo nsacr = {
8605 .name = "NSACR",
8606 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8607 .access = PL3_RW | PL1_R,
8608 .resetvalue = 0,
8609 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8610 };
8611 define_one_arm_cp_reg(cpu, &nsacr);
8612 }
8613 } else {
8614 if (arm_feature(env, ARM_FEATURE_V8)) {
8615 static const ARMCPRegInfo nsacr = {
8616 .name = "NSACR", .type = ARM_CP_CONST,
8617 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8618 .access = PL1_R,
8619 .resetvalue = 0xc00
8620 };
8621 define_one_arm_cp_reg(cpu, &nsacr);
8622 }
8623 }
8624
8625 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8626 if (arm_feature(env, ARM_FEATURE_V6)) {
8627 /* PMSAv6 not implemented */
8628 assert(arm_feature(env, ARM_FEATURE_V7));
8629 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8630 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8631 } else {
8632 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8633 }
8634 } else {
8635 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8636 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8637 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8638 if (cpu_isar_feature(aa32_hpd, cpu)) {
8639 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8640 }
8641 }
8642 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8643 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8644 }
8645 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8646 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8647 }
8648 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8649 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8650 }
8651 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8652 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8653 }
8654 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8655 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8656 }
8657 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8658 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8659 }
8660 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8661 define_arm_cp_regs(cpu, omap_cp_reginfo);
8662 }
8663 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8664 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8665 }
8666 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8667 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8668 }
8669 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8670 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8671 }
8672 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8673 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8674 }
8675 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8676 define_arm_cp_regs(cpu, jazelle_regs);
8677 }
8678 /*
8679 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8680 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8681 * be read-only (ie write causes UNDEF exception).
8682 */
8683 {
8684 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8685 /*
8686 * Pre-v8 MIDR space.
8687 * Note that the MIDR isn't a simple constant register because
8688 * of the TI925 behaviour where writes to another register can
8689 * cause the MIDR value to change.
8690 *
8691 * Unimplemented registers in the c15 0 0 0 space default to
8692 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8693 * and friends override accordingly.
8694 */
8695 { .name = "MIDR",
8696 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8697 .access = PL1_R, .resetvalue = cpu->midr,
8698 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8699 .readfn = midr_read,
8700 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8701 .type = ARM_CP_OVERRIDE },
8702 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8703 { .name = "DUMMY",
8704 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8705 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8706 { .name = "DUMMY",
8707 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8708 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8709 { .name = "DUMMY",
8710 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8711 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8712 { .name = "DUMMY",
8713 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8714 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8715 { .name = "DUMMY",
8716 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8717 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8718 };
8719 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8720 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8722 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8723 .fgt = FGT_MIDR_EL1,
8724 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8725 .readfn = midr_read },
8726 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8727 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8728 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8729 .access = PL1_R, .resetvalue = cpu->midr },
8730 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8732 .access = PL1_R,
8733 .accessfn = access_aa64_tid1,
8734 .fgt = FGT_REVIDR_EL1,
8735 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8736 };
8737 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8738 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8739 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8740 .access = PL1_R, .resetvalue = cpu->midr
8741 };
8742 ARMCPRegInfo id_cp_reginfo[] = {
8743 /* These are common to v8 and pre-v8 */
8744 { .name = "CTR",
8745 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8746 .access = PL1_R, .accessfn = ctr_el0_access,
8747 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8748 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8749 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8750 .access = PL0_R, .accessfn = ctr_el0_access,
8751 .fgt = FGT_CTR_EL0,
8752 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8753 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8754 { .name = "TCMTR",
8755 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8756 .access = PL1_R,
8757 .accessfn = access_aa32_tid1,
8758 .type = ARM_CP_CONST, .resetvalue = 0 },
8759 };
8760 /* TLBTR is specific to VMSA */
8761 ARMCPRegInfo id_tlbtr_reginfo = {
8762 .name = "TLBTR",
8763 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8764 .access = PL1_R,
8765 .accessfn = access_aa32_tid1,
8766 .type = ARM_CP_CONST, .resetvalue = 0,
8767 };
8768 /* MPUIR is specific to PMSA V6+ */
8769 ARMCPRegInfo id_mpuir_reginfo = {
8770 .name = "MPUIR",
8771 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8772 .access = PL1_R, .type = ARM_CP_CONST,
8773 .resetvalue = cpu->pmsav7_dregion << 8
8774 };
8775 /* HMPUIR is specific to PMSA V8 */
8776 ARMCPRegInfo id_hmpuir_reginfo = {
8777 .name = "HMPUIR",
8778 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8779 .access = PL2_R, .type = ARM_CP_CONST,
8780 .resetvalue = cpu->pmsav8r_hdregion
8781 };
8782 static const ARMCPRegInfo crn0_wi_reginfo = {
8783 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8785 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8786 };
8787 #ifdef CONFIG_USER_ONLY
8788 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8789 { .name = "MIDR_EL1",
8790 .exported_bits = R_MIDR_EL1_REVISION_MASK |
8791 R_MIDR_EL1_PARTNUM_MASK |
8792 R_MIDR_EL1_ARCHITECTURE_MASK |
8793 R_MIDR_EL1_VARIANT_MASK |
8794 R_MIDR_EL1_IMPLEMENTER_MASK },
8795 { .name = "REVIDR_EL1" },
8796 };
8797 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8798 #endif
8799 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8800 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8801 size_t i;
8802 /*
8803 * Register the blanket "writes ignored" value first to cover the
8804 * whole space. Then update the specific ID registers to allow write
8805 * access, so that they ignore writes rather than causing them to
8806 * UNDEF.
8807 */
8808 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8809 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8810 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8811 }
8812 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8813 id_cp_reginfo[i].access = PL1_RW;
8814 }
8815 id_mpuir_reginfo.access = PL1_RW;
8816 id_tlbtr_reginfo.access = PL1_RW;
8817 }
8818 if (arm_feature(env, ARM_FEATURE_V8)) {
8819 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8820 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8821 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8822 }
8823 } else {
8824 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8825 }
8826 define_arm_cp_regs(cpu, id_cp_reginfo);
8827 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8828 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8829 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8830 arm_feature(env, ARM_FEATURE_V8)) {
8831 uint32_t i = 0;
8832 char *tmp_string;
8833
8834 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8835 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8836 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8837
8838 /* Register alias is only valid for first 32 indexes */
8839 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8840 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8841 uint8_t opc1 = extract32(i, 4, 1);
8842 uint8_t opc2 = extract32(i, 0, 1) << 2;
8843
8844 tmp_string = g_strdup_printf("PRBAR%u", i);
8845 ARMCPRegInfo tmp_prbarn_reginfo = {
8846 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8847 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8848 .access = PL1_RW, .resetvalue = 0,
8849 .accessfn = access_tvm_trvm,
8850 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8851 };
8852 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8853 g_free(tmp_string);
8854
8855 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8856 tmp_string = g_strdup_printf("PRLAR%u", i);
8857 ARMCPRegInfo tmp_prlarn_reginfo = {
8858 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8859 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8860 .access = PL1_RW, .resetvalue = 0,
8861 .accessfn = access_tvm_trvm,
8862 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8863 };
8864 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8865 g_free(tmp_string);
8866 }
8867
8868 /* Register alias is only valid for first 32 indexes */
8869 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8870 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8871 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8872 uint8_t opc2 = extract32(i, 0, 1) << 2;
8873
8874 tmp_string = g_strdup_printf("HPRBAR%u", i);
8875 ARMCPRegInfo tmp_hprbarn_reginfo = {
8876 .name = tmp_string,
8877 .type = ARM_CP_NO_RAW,
8878 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8879 .access = PL2_RW, .resetvalue = 0,
8880 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8881 };
8882 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8883 g_free(tmp_string);
8884
8885 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8886 tmp_string = g_strdup_printf("HPRLAR%u", i);
8887 ARMCPRegInfo tmp_hprlarn_reginfo = {
8888 .name = tmp_string,
8889 .type = ARM_CP_NO_RAW,
8890 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8891 .access = PL2_RW, .resetvalue = 0,
8892 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8893 };
8894 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8895 g_free(tmp_string);
8896 }
8897 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8898 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8899 }
8900 }
8901
8902 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8903 ARMCPRegInfo mpidr_cp_reginfo[] = {
8904 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8905 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8906 .fgt = FGT_MPIDR_EL1,
8907 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8908 };
8909 #ifdef CONFIG_USER_ONLY
8910 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8911 { .name = "MPIDR_EL1",
8912 .fixed_bits = 0x0000000080000000 },
8913 };
8914 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8915 #endif
8916 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8917 }
8918
8919 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8920 ARMCPRegInfo auxcr_reginfo[] = {
8921 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8922 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8923 .access = PL1_RW, .accessfn = access_tacr,
8924 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8925 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8926 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8927 .access = PL2_RW, .type = ARM_CP_CONST,
8928 .resetvalue = 0 },
8929 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8930 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8931 .access = PL3_RW, .type = ARM_CP_CONST,
8932 .resetvalue = 0 },
8933 };
8934 define_arm_cp_regs(cpu, auxcr_reginfo);
8935 if (cpu_isar_feature(aa32_ac2, cpu)) {
8936 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8937 }
8938 }
8939
8940 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8941 /*
8942 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8943 * There are two flavours:
8944 * (1) older 32-bit only cores have a simple 32-bit CBAR
8945 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8946 * 32-bit register visible to AArch32 at a different encoding
8947 * to the "flavour 1" register and with the bits rearranged to
8948 * be able to squash a 64-bit address into the 32-bit view.
8949 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8950 * in future if we support AArch32-only configs of some of the
8951 * AArch64 cores we might need to add a specific feature flag
8952 * to indicate cores with "flavour 2" CBAR.
8953 */
8954 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8955 /* 32 bit view is [31:18] 0...0 [43:32]. */
8956 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8957 | extract64(cpu->reset_cbar, 32, 12);
8958 ARMCPRegInfo cbar_reginfo[] = {
8959 { .name = "CBAR",
8960 .type = ARM_CP_CONST,
8961 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8962 .access = PL1_R, .resetvalue = cbar32 },
8963 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8964 .type = ARM_CP_CONST,
8965 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8966 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8967 };
8968 /* We don't implement a r/w 64 bit CBAR currently */
8969 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8970 define_arm_cp_regs(cpu, cbar_reginfo);
8971 } else {
8972 ARMCPRegInfo cbar = {
8973 .name = "CBAR",
8974 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8975 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8976 .fieldoffset = offsetof(CPUARMState,
8977 cp15.c15_config_base_address)
8978 };
8979 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8980 cbar.access = PL1_R;
8981 cbar.fieldoffset = 0;
8982 cbar.type = ARM_CP_CONST;
8983 }
8984 define_one_arm_cp_reg(cpu, &cbar);
8985 }
8986 }
8987
8988 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8989 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8990 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8991 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8992 .access = PL1_RW, .writefn = vbar_write,
8993 .fgt = FGT_VBAR_EL1,
8994 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8995 offsetof(CPUARMState, cp15.vbar_ns) },
8996 .resetvalue = 0 },
8997 };
8998 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8999 }
9000
9001 /* Generic registers whose values depend on the implementation */
9002 {
9003 ARMCPRegInfo sctlr = {
9004 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9005 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9006 .access = PL1_RW, .accessfn = access_tvm_trvm,
9007 .fgt = FGT_SCTLR_EL1,
9008 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9009 offsetof(CPUARMState, cp15.sctlr_ns) },
9010 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9011 .raw_writefn = raw_write,
9012 };
9013 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9014 /*
9015 * Normally we would always end the TB on an SCTLR write, but Linux
9016 * arch/arm/mach-pxa/sleep.S expects two instructions following
9017 * an MMU enable to execute from cache. Imitate this behaviour.
9018 */
9019 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9020 }
9021 define_one_arm_cp_reg(cpu, &sctlr);
9022
9023 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9024 arm_feature(env, ARM_FEATURE_V8)) {
9025 ARMCPRegInfo vsctlr = {
9026 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9027 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9028 .access = PL2_RW, .resetvalue = 0x0,
9029 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9030 };
9031 define_one_arm_cp_reg(cpu, &vsctlr);
9032 }
9033 }
9034
9035 if (cpu_isar_feature(aa64_lor, cpu)) {
9036 define_arm_cp_regs(cpu, lor_reginfo);
9037 }
9038 if (cpu_isar_feature(aa64_pan, cpu)) {
9039 define_one_arm_cp_reg(cpu, &pan_reginfo);
9040 }
9041 #ifndef CONFIG_USER_ONLY
9042 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9043 define_arm_cp_regs(cpu, ats1e1_reginfo);
9044 }
9045 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9046 define_arm_cp_regs(cpu, ats1cp_reginfo);
9047 }
9048 #endif
9049 if (cpu_isar_feature(aa64_uao, cpu)) {
9050 define_one_arm_cp_reg(cpu, &uao_reginfo);
9051 }
9052
9053 if (cpu_isar_feature(aa64_dit, cpu)) {
9054 define_one_arm_cp_reg(cpu, &dit_reginfo);
9055 }
9056 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9057 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9058 }
9059 if (cpu_isar_feature(any_ras, cpu)) {
9060 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9061 }
9062
9063 if (cpu_isar_feature(aa64_vh, cpu) ||
9064 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9065 define_one_arm_cp_reg(cpu, &contextidr_el2);
9066 }
9067 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9068 define_arm_cp_regs(cpu, vhe_reginfo);
9069 }
9070
9071 if (cpu_isar_feature(aa64_sve, cpu)) {
9072 define_arm_cp_regs(cpu, zcr_reginfo);
9073 }
9074
9075 if (cpu_isar_feature(aa64_hcx, cpu)) {
9076 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9077 }
9078
9079 #ifdef TARGET_AARCH64
9080 if (cpu_isar_feature(aa64_sme, cpu)) {
9081 define_arm_cp_regs(cpu, sme_reginfo);
9082 }
9083 if (cpu_isar_feature(aa64_pauth, cpu)) {
9084 define_arm_cp_regs(cpu, pauth_reginfo);
9085 }
9086 if (cpu_isar_feature(aa64_rndr, cpu)) {
9087 define_arm_cp_regs(cpu, rndr_reginfo);
9088 }
9089 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9090 define_arm_cp_regs(cpu, tlbirange_reginfo);
9091 }
9092 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9093 define_arm_cp_regs(cpu, tlbios_reginfo);
9094 }
9095 /* Data Cache clean instructions up to PoP */
9096 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9097 define_one_arm_cp_reg(cpu, dcpop_reg);
9098
9099 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9100 define_one_arm_cp_reg(cpu, dcpodp_reg);
9101 }
9102 }
9103
9104 /*
9105 * If full MTE is enabled, add all of the system registers.
9106 * If only "instructions available at EL0" are enabled,
9107 * then define only a RAZ/WI version of PSTATE.TCO.
9108 */
9109 if (cpu_isar_feature(aa64_mte, cpu)) {
9110 define_arm_cp_regs(cpu, mte_reginfo);
9111 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9112 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9113 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9114 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9115 }
9116
9117 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9118 define_arm_cp_regs(cpu, scxtnum_reginfo);
9119 }
9120
9121 if (cpu_isar_feature(aa64_fgt, cpu)) {
9122 define_arm_cp_regs(cpu, fgt_reginfo);
9123 }
9124 #endif
9125
9126 if (cpu_isar_feature(any_predinv, cpu)) {
9127 define_arm_cp_regs(cpu, predinv_reginfo);
9128 }
9129
9130 if (cpu_isar_feature(any_ccidx, cpu)) {
9131 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9132 }
9133
9134 #ifndef CONFIG_USER_ONLY
9135 /*
9136 * Register redirections and aliases must be done last,
9137 * after the registers from the other extensions have been defined.
9138 */
9139 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9140 define_arm_vh_e2h_redirects_aliases(cpu);
9141 }
9142 #endif
9143 }
9144
9145 /* Sort alphabetically by type name, except for "any". */
9146 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9147 {
9148 ObjectClass *class_a = (ObjectClass *)a;
9149 ObjectClass *class_b = (ObjectClass *)b;
9150 const char *name_a, *name_b;
9151
9152 name_a = object_class_get_name(class_a);
9153 name_b = object_class_get_name(class_b);
9154 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9155 return 1;
9156 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9157 return -1;
9158 } else {
9159 return strcmp(name_a, name_b);
9160 }
9161 }
9162
9163 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9164 {
9165 ObjectClass *oc = data;
9166 CPUClass *cc = CPU_CLASS(oc);
9167 const char *typename;
9168 char *name;
9169
9170 typename = object_class_get_name(oc);
9171 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9172 if (cc->deprecation_note) {
9173 qemu_printf(" %s (deprecated)\n", name);
9174 } else {
9175 qemu_printf(" %s\n", name);
9176 }
9177 g_free(name);
9178 }
9179
9180 void arm_cpu_list(void)
9181 {
9182 GSList *list;
9183
9184 list = object_class_get_list(TYPE_ARM_CPU, false);
9185 list = g_slist_sort(list, arm_cpu_list_compare);
9186 qemu_printf("Available CPUs:\n");
9187 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9188 g_slist_free(list);
9189 }
9190
9191 /*
9192 * Private utility function for define_one_arm_cp_reg_with_opaque():
9193 * add a single reginfo struct to the hash table.
9194 */
9195 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9196 void *opaque, CPState state,
9197 CPSecureState secstate,
9198 int crm, int opc1, int opc2,
9199 const char *name)
9200 {
9201 CPUARMState *env = &cpu->env;
9202 uint32_t key;
9203 ARMCPRegInfo *r2;
9204 bool is64 = r->type & ARM_CP_64BIT;
9205 bool ns = secstate & ARM_CP_SECSTATE_NS;
9206 int cp = r->cp;
9207 size_t name_len;
9208 bool make_const;
9209
9210 switch (state) {
9211 case ARM_CP_STATE_AA32:
9212 /* We assume it is a cp15 register if the .cp field is left unset. */
9213 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9214 cp = 15;
9215 }
9216 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9217 break;
9218 case ARM_CP_STATE_AA64:
9219 /*
9220 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9221 * cp == 0 as equivalent to the value for "standard guest-visible
9222 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9223 * in their AArch64 view (the .cp value may be non-zero for the
9224 * benefit of the AArch32 view).
9225 */
9226 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9227 cp = CP_REG_ARM64_SYSREG_CP;
9228 }
9229 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9230 break;
9231 default:
9232 g_assert_not_reached();
9233 }
9234
9235 /* Overriding of an existing definition must be explicitly requested. */
9236 if (!(r->type & ARM_CP_OVERRIDE)) {
9237 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9238 if (oldreg) {
9239 assert(oldreg->type & ARM_CP_OVERRIDE);
9240 }
9241 }
9242
9243 /*
9244 * Eliminate registers that are not present because the EL is missing.
9245 * Doing this here makes it easier to put all registers for a given
9246 * feature into the same ARMCPRegInfo array and define them all at once.
9247 */
9248 make_const = false;
9249 if (arm_feature(env, ARM_FEATURE_EL3)) {
9250 /*
9251 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9252 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9253 */
9254 int min_el = ctz32(r->access) / 2;
9255 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9256 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9257 return;
9258 }
9259 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9260 }
9261 } else {
9262 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9263 ? PL2_RW : PL1_RW);
9264 if ((r->access & max_el) == 0) {
9265 return;
9266 }
9267 }
9268
9269 /* Combine cpreg and name into one allocation. */
9270 name_len = strlen(name) + 1;
9271 r2 = g_malloc(sizeof(*r2) + name_len);
9272 *r2 = *r;
9273 r2->name = memcpy(r2 + 1, name, name_len);
9274
9275 /*
9276 * Update fields to match the instantiation, overwiting wildcards
9277 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9278 */
9279 r2->cp = cp;
9280 r2->crm = crm;
9281 r2->opc1 = opc1;
9282 r2->opc2 = opc2;
9283 r2->state = state;
9284 r2->secure = secstate;
9285 if (opaque) {
9286 r2->opaque = opaque;
9287 }
9288
9289 if (make_const) {
9290 /* This should not have been a very special register to begin. */
9291 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9292 assert(old_special == 0 || old_special == ARM_CP_NOP);
9293 /*
9294 * Set the special function to CONST, retaining the other flags.
9295 * This is important for e.g. ARM_CP_SVE so that we still
9296 * take the SVE trap if CPTR_EL3.EZ == 0.
9297 */
9298 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9299 /*
9300 * Usually, these registers become RES0, but there are a few
9301 * special cases like VPIDR_EL2 which have a constant non-zero
9302 * value with writes ignored.
9303 */
9304 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9305 r2->resetvalue = 0;
9306 }
9307 /*
9308 * ARM_CP_CONST has precedence, so removing the callbacks and
9309 * offsets are not strictly necessary, but it is potentially
9310 * less confusing to debug later.
9311 */
9312 r2->readfn = NULL;
9313 r2->writefn = NULL;
9314 r2->raw_readfn = NULL;
9315 r2->raw_writefn = NULL;
9316 r2->resetfn = NULL;
9317 r2->fieldoffset = 0;
9318 r2->bank_fieldoffsets[0] = 0;
9319 r2->bank_fieldoffsets[1] = 0;
9320 } else {
9321 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9322
9323 if (isbanked) {
9324 /*
9325 * Register is banked (using both entries in array).
9326 * Overwriting fieldoffset as the array is only used to define
9327 * banked registers but later only fieldoffset is used.
9328 */
9329 r2->fieldoffset = r->bank_fieldoffsets[ns];
9330 }
9331 if (state == ARM_CP_STATE_AA32) {
9332 if (isbanked) {
9333 /*
9334 * If the register is banked then we don't need to migrate or
9335 * reset the 32-bit instance in certain cases:
9336 *
9337 * 1) If the register has both 32-bit and 64-bit instances
9338 * then we can count on the 64-bit instance taking care
9339 * of the non-secure bank.
9340 * 2) If ARMv8 is enabled then we can count on a 64-bit
9341 * version taking care of the secure bank. This requires
9342 * that separate 32 and 64-bit definitions are provided.
9343 */
9344 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9345 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9346 r2->type |= ARM_CP_ALIAS;
9347 }
9348 } else if ((secstate != r->secure) && !ns) {
9349 /*
9350 * The register is not banked so we only want to allow
9351 * migration of the non-secure instance.
9352 */
9353 r2->type |= ARM_CP_ALIAS;
9354 }
9355
9356 if (HOST_BIG_ENDIAN &&
9357 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9358 r2->fieldoffset += sizeof(uint32_t);
9359 }
9360 }
9361 }
9362
9363 /*
9364 * By convention, for wildcarded registers only the first
9365 * entry is used for migration; the others are marked as
9366 * ALIAS so we don't try to transfer the register
9367 * multiple times. Special registers (ie NOP/WFI) are
9368 * never migratable and not even raw-accessible.
9369 */
9370 if (r2->type & ARM_CP_SPECIAL_MASK) {
9371 r2->type |= ARM_CP_NO_RAW;
9372 }
9373 if (((r->crm == CP_ANY) && crm != 0) ||
9374 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9375 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9376 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9377 }
9378
9379 /*
9380 * Check that raw accesses are either forbidden or handled. Note that
9381 * we can't assert this earlier because the setup of fieldoffset for
9382 * banked registers has to be done first.
9383 */
9384 if (!(r2->type & ARM_CP_NO_RAW)) {
9385 assert(!raw_accessors_invalid(r2));
9386 }
9387
9388 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9389 }
9390
9391
9392 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9393 const ARMCPRegInfo *r, void *opaque)
9394 {
9395 /*
9396 * Define implementations of coprocessor registers.
9397 * We store these in a hashtable because typically
9398 * there are less than 150 registers in a space which
9399 * is 16*16*16*8*8 = 262144 in size.
9400 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9401 * If a register is defined twice then the second definition is
9402 * used, so this can be used to define some generic registers and
9403 * then override them with implementation specific variations.
9404 * At least one of the original and the second definition should
9405 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9406 * against accidental use.
9407 *
9408 * The state field defines whether the register is to be
9409 * visible in the AArch32 or AArch64 execution state. If the
9410 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9411 * reginfo structure for the AArch32 view, which sees the lower
9412 * 32 bits of the 64 bit register.
9413 *
9414 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9415 * be wildcarded. AArch64 registers are always considered to be 64
9416 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9417 * the register, if any.
9418 */
9419 int crm, opc1, opc2;
9420 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9421 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9422 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9423 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9424 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9425 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9426 CPState state;
9427
9428 /* 64 bit registers have only CRm and Opc1 fields */
9429 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9430 /* op0 only exists in the AArch64 encodings */
9431 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9432 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9433 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9434 /*
9435 * This API is only for Arm's system coprocessors (14 and 15) or
9436 * (M-profile or v7A-and-earlier only) for implementation defined
9437 * coprocessors in the range 0..7. Our decode assumes this, since
9438 * 8..13 can be used for other insns including VFP and Neon. See
9439 * valid_cp() in translate.c. Assert here that we haven't tried
9440 * to use an invalid coprocessor number.
9441 */
9442 switch (r->state) {
9443 case ARM_CP_STATE_BOTH:
9444 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9445 if (r->cp == 0) {
9446 break;
9447 }
9448 /* fall through */
9449 case ARM_CP_STATE_AA32:
9450 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9451 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9452 assert(r->cp >= 14 && r->cp <= 15);
9453 } else {
9454 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9455 }
9456 break;
9457 case ARM_CP_STATE_AA64:
9458 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9459 break;
9460 default:
9461 g_assert_not_reached();
9462 }
9463 /*
9464 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9465 * encodes a minimum access level for the register. We roll this
9466 * runtime check into our general permission check code, so check
9467 * here that the reginfo's specified permissions are strict enough
9468 * to encompass the generic architectural permission check.
9469 */
9470 if (r->state != ARM_CP_STATE_AA32) {
9471 CPAccessRights mask;
9472 switch (r->opc1) {
9473 case 0:
9474 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9475 mask = PL0U_R | PL1_RW;
9476 break;
9477 case 1: case 2:
9478 /* min_EL EL1 */
9479 mask = PL1_RW;
9480 break;
9481 case 3:
9482 /* min_EL EL0 */
9483 mask = PL0_RW;
9484 break;
9485 case 4:
9486 case 5:
9487 /* min_EL EL2 */
9488 mask = PL2_RW;
9489 break;
9490 case 6:
9491 /* min_EL EL3 */
9492 mask = PL3_RW;
9493 break;
9494 case 7:
9495 /* min_EL EL1, secure mode only (we don't check the latter) */
9496 mask = PL1_RW;
9497 break;
9498 default:
9499 /* broken reginfo with out-of-range opc1 */
9500 g_assert_not_reached();
9501 }
9502 /* assert our permissions are not too lax (stricter is fine) */
9503 assert((r->access & ~mask) == 0);
9504 }
9505
9506 /*
9507 * Check that the register definition has enough info to handle
9508 * reads and writes if they are permitted.
9509 */
9510 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9511 if (r->access & PL3_R) {
9512 assert((r->fieldoffset ||
9513 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9514 r->readfn);
9515 }
9516 if (r->access & PL3_W) {
9517 assert((r->fieldoffset ||
9518 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9519 r->writefn);
9520 }
9521 }
9522
9523 for (crm = crmmin; crm <= crmmax; crm++) {
9524 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9525 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9526 for (state = ARM_CP_STATE_AA32;
9527 state <= ARM_CP_STATE_AA64; state++) {
9528 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9529 continue;
9530 }
9531 if (state == ARM_CP_STATE_AA32) {
9532 /*
9533 * Under AArch32 CP registers can be common
9534 * (same for secure and non-secure world) or banked.
9535 */
9536 char *name;
9537
9538 switch (r->secure) {
9539 case ARM_CP_SECSTATE_S:
9540 case ARM_CP_SECSTATE_NS:
9541 add_cpreg_to_hashtable(cpu, r, opaque, state,
9542 r->secure, crm, opc1, opc2,
9543 r->name);
9544 break;
9545 case ARM_CP_SECSTATE_BOTH:
9546 name = g_strdup_printf("%s_S", r->name);
9547 add_cpreg_to_hashtable(cpu, r, opaque, state,
9548 ARM_CP_SECSTATE_S,
9549 crm, opc1, opc2, name);
9550 g_free(name);
9551 add_cpreg_to_hashtable(cpu, r, opaque, state,
9552 ARM_CP_SECSTATE_NS,
9553 crm, opc1, opc2, r->name);
9554 break;
9555 default:
9556 g_assert_not_reached();
9557 }
9558 } else {
9559 /*
9560 * AArch64 registers get mapped to non-secure instance
9561 * of AArch32
9562 */
9563 add_cpreg_to_hashtable(cpu, r, opaque, state,
9564 ARM_CP_SECSTATE_NS,
9565 crm, opc1, opc2, r->name);
9566 }
9567 }
9568 }
9569 }
9570 }
9571 }
9572
9573 /* Define a whole list of registers */
9574 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9575 void *opaque, size_t len)
9576 {
9577 size_t i;
9578 for (i = 0; i < len; ++i) {
9579 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9580 }
9581 }
9582
9583 /*
9584 * Modify ARMCPRegInfo for access from userspace.
9585 *
9586 * This is a data driven modification directed by
9587 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9588 * user-space cannot alter any values and dynamic values pertaining to
9589 * execution state are hidden from user space view anyway.
9590 */
9591 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9592 const ARMCPRegUserSpaceInfo *mods,
9593 size_t mods_len)
9594 {
9595 for (size_t mi = 0; mi < mods_len; ++mi) {
9596 const ARMCPRegUserSpaceInfo *m = mods + mi;
9597 GPatternSpec *pat = NULL;
9598
9599 if (m->is_glob) {
9600 pat = g_pattern_spec_new(m->name);
9601 }
9602 for (size_t ri = 0; ri < regs_len; ++ri) {
9603 ARMCPRegInfo *r = regs + ri;
9604
9605 if (pat && g_pattern_match_string(pat, r->name)) {
9606 r->type = ARM_CP_CONST;
9607 r->access = PL0U_R;
9608 r->resetvalue = 0;
9609 /* continue */
9610 } else if (strcmp(r->name, m->name) == 0) {
9611 r->type = ARM_CP_CONST;
9612 r->access = PL0U_R;
9613 r->resetvalue &= m->exported_bits;
9614 r->resetvalue |= m->fixed_bits;
9615 break;
9616 }
9617 }
9618 if (pat) {
9619 g_pattern_spec_free(pat);
9620 }
9621 }
9622 }
9623
9624 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9625 {
9626 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9627 }
9628
9629 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9630 uint64_t value)
9631 {
9632 /* Helper coprocessor write function for write-ignore registers */
9633 }
9634
9635 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9636 {
9637 /* Helper coprocessor write function for read-as-zero registers */
9638 return 0;
9639 }
9640
9641 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9642 {
9643 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9644 }
9645
9646 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9647 {
9648 /*
9649 * Return true if it is not valid for us to switch to
9650 * this CPU mode (ie all the UNPREDICTABLE cases in
9651 * the ARM ARM CPSRWriteByInstr pseudocode).
9652 */
9653
9654 /* Changes to or from Hyp via MSR and CPS are illegal. */
9655 if (write_type == CPSRWriteByInstr &&
9656 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9657 mode == ARM_CPU_MODE_HYP)) {
9658 return 1;
9659 }
9660
9661 switch (mode) {
9662 case ARM_CPU_MODE_USR:
9663 return 0;
9664 case ARM_CPU_MODE_SYS:
9665 case ARM_CPU_MODE_SVC:
9666 case ARM_CPU_MODE_ABT:
9667 case ARM_CPU_MODE_UND:
9668 case ARM_CPU_MODE_IRQ:
9669 case ARM_CPU_MODE_FIQ:
9670 /*
9671 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9672 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9673 */
9674 /*
9675 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9676 * and CPS are treated as illegal mode changes.
9677 */
9678 if (write_type == CPSRWriteByInstr &&
9679 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9680 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9681 return 1;
9682 }
9683 return 0;
9684 case ARM_CPU_MODE_HYP:
9685 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9686 case ARM_CPU_MODE_MON:
9687 return arm_current_el(env) < 3;
9688 default:
9689 return 1;
9690 }
9691 }
9692
9693 uint32_t cpsr_read(CPUARMState *env)
9694 {
9695 int ZF;
9696 ZF = (env->ZF == 0);
9697 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9698 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9699 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9700 | ((env->condexec_bits & 0xfc) << 8)
9701 | (env->GE << 16) | (env->daif & CPSR_AIF);
9702 }
9703
9704 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9705 CPSRWriteType write_type)
9706 {
9707 uint32_t changed_daif;
9708 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9709 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9710
9711 if (mask & CPSR_NZCV) {
9712 env->ZF = (~val) & CPSR_Z;
9713 env->NF = val;
9714 env->CF = (val >> 29) & 1;
9715 env->VF = (val << 3) & 0x80000000;
9716 }
9717 if (mask & CPSR_Q) {
9718 env->QF = ((val & CPSR_Q) != 0);
9719 }
9720 if (mask & CPSR_T) {
9721 env->thumb = ((val & CPSR_T) != 0);
9722 }
9723 if (mask & CPSR_IT_0_1) {
9724 env->condexec_bits &= ~3;
9725 env->condexec_bits |= (val >> 25) & 3;
9726 }
9727 if (mask & CPSR_IT_2_7) {
9728 env->condexec_bits &= 3;
9729 env->condexec_bits |= (val >> 8) & 0xfc;
9730 }
9731 if (mask & CPSR_GE) {
9732 env->GE = (val >> 16) & 0xf;
9733 }
9734
9735 /*
9736 * In a V7 implementation that includes the security extensions but does
9737 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9738 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9739 * bits respectively.
9740 *
9741 * In a V8 implementation, it is permitted for privileged software to
9742 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9743 */
9744 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9745 arm_feature(env, ARM_FEATURE_EL3) &&
9746 !arm_feature(env, ARM_FEATURE_EL2) &&
9747 !arm_is_secure(env)) {
9748
9749 changed_daif = (env->daif ^ val) & mask;
9750
9751 if (changed_daif & CPSR_A) {
9752 /*
9753 * Check to see if we are allowed to change the masking of async
9754 * abort exceptions from a non-secure state.
9755 */
9756 if (!(env->cp15.scr_el3 & SCR_AW)) {
9757 qemu_log_mask(LOG_GUEST_ERROR,
9758 "Ignoring attempt to switch CPSR_A flag from "
9759 "non-secure world with SCR.AW bit clear\n");
9760 mask &= ~CPSR_A;
9761 }
9762 }
9763
9764 if (changed_daif & CPSR_F) {
9765 /*
9766 * Check to see if we are allowed to change the masking of FIQ
9767 * exceptions from a non-secure state.
9768 */
9769 if (!(env->cp15.scr_el3 & SCR_FW)) {
9770 qemu_log_mask(LOG_GUEST_ERROR,
9771 "Ignoring attempt to switch CPSR_F flag from "
9772 "non-secure world with SCR.FW bit clear\n");
9773 mask &= ~CPSR_F;
9774 }
9775
9776 /*
9777 * Check whether non-maskable FIQ (NMFI) support is enabled.
9778 * If this bit is set software is not allowed to mask
9779 * FIQs, but is allowed to set CPSR_F to 0.
9780 */
9781 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9782 (val & CPSR_F)) {
9783 qemu_log_mask(LOG_GUEST_ERROR,
9784 "Ignoring attempt to enable CPSR_F flag "
9785 "(non-maskable FIQ [NMFI] support enabled)\n");
9786 mask &= ~CPSR_F;
9787 }
9788 }
9789 }
9790
9791 env->daif &= ~(CPSR_AIF & mask);
9792 env->daif |= val & CPSR_AIF & mask;
9793
9794 if (write_type != CPSRWriteRaw &&
9795 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9796 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9797 /*
9798 * Note that we can only get here in USR mode if this is a
9799 * gdb stub write; for this case we follow the architectural
9800 * behaviour for guest writes in USR mode of ignoring an attempt
9801 * to switch mode. (Those are caught by translate.c for writes
9802 * triggered by guest instructions.)
9803 */
9804 mask &= ~CPSR_M;
9805 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9806 /*
9807 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9808 * v7, and has defined behaviour in v8:
9809 * + leave CPSR.M untouched
9810 * + allow changes to the other CPSR fields
9811 * + set PSTATE.IL
9812 * For user changes via the GDB stub, we don't set PSTATE.IL,
9813 * as this would be unnecessarily harsh for a user error.
9814 */
9815 mask &= ~CPSR_M;
9816 if (write_type != CPSRWriteByGDBStub &&
9817 arm_feature(env, ARM_FEATURE_V8)) {
9818 mask |= CPSR_IL;
9819 val |= CPSR_IL;
9820 }
9821 qemu_log_mask(LOG_GUEST_ERROR,
9822 "Illegal AArch32 mode switch attempt from %s to %s\n",
9823 aarch32_mode_name(env->uncached_cpsr),
9824 aarch32_mode_name(val));
9825 } else {
9826 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9827 write_type == CPSRWriteExceptionReturn ?
9828 "Exception return from AArch32" :
9829 "AArch32 mode switch from",
9830 aarch32_mode_name(env->uncached_cpsr),
9831 aarch32_mode_name(val), env->regs[15]);
9832 switch_mode(env, val & CPSR_M);
9833 }
9834 }
9835 mask &= ~CACHED_CPSR_BITS;
9836 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9837 if (tcg_enabled() && rebuild_hflags) {
9838 arm_rebuild_hflags(env);
9839 }
9840 }
9841
9842 /* Sign/zero extend */
9843 uint32_t HELPER(sxtb16)(uint32_t x)
9844 {
9845 uint32_t res;
9846 res = (uint16_t)(int8_t)x;
9847 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9848 return res;
9849 }
9850
9851 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9852 {
9853 /*
9854 * Take a division-by-zero exception if necessary; otherwise return
9855 * to get the usual non-trapping division behaviour (result of 0)
9856 */
9857 if (arm_feature(env, ARM_FEATURE_M)
9858 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9859 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9860 }
9861 }
9862
9863 uint32_t HELPER(uxtb16)(uint32_t x)
9864 {
9865 uint32_t res;
9866 res = (uint16_t)(uint8_t)x;
9867 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9868 return res;
9869 }
9870
9871 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9872 {
9873 if (den == 0) {
9874 handle_possible_div0_trap(env, GETPC());
9875 return 0;
9876 }
9877 if (num == INT_MIN && den == -1) {
9878 return INT_MIN;
9879 }
9880 return num / den;
9881 }
9882
9883 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9884 {
9885 if (den == 0) {
9886 handle_possible_div0_trap(env, GETPC());
9887 return 0;
9888 }
9889 return num / den;
9890 }
9891
9892 uint32_t HELPER(rbit)(uint32_t x)
9893 {
9894 return revbit32(x);
9895 }
9896
9897 #ifdef CONFIG_USER_ONLY
9898
9899 static void switch_mode(CPUARMState *env, int mode)
9900 {
9901 ARMCPU *cpu = env_archcpu(env);
9902
9903 if (mode != ARM_CPU_MODE_USR) {
9904 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9905 }
9906 }
9907
9908 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9909 uint32_t cur_el, bool secure)
9910 {
9911 return 1;
9912 }
9913
9914 void aarch64_sync_64_to_32(CPUARMState *env)
9915 {
9916 g_assert_not_reached();
9917 }
9918
9919 #else
9920
9921 static void switch_mode(CPUARMState *env, int mode)
9922 {
9923 int old_mode;
9924 int i;
9925
9926 old_mode = env->uncached_cpsr & CPSR_M;
9927 if (mode == old_mode) {
9928 return;
9929 }
9930
9931 if (old_mode == ARM_CPU_MODE_FIQ) {
9932 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9933 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9934 } else if (mode == ARM_CPU_MODE_FIQ) {
9935 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9936 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9937 }
9938
9939 i = bank_number(old_mode);
9940 env->banked_r13[i] = env->regs[13];
9941 env->banked_spsr[i] = env->spsr;
9942
9943 i = bank_number(mode);
9944 env->regs[13] = env->banked_r13[i];
9945 env->spsr = env->banked_spsr[i];
9946
9947 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9948 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9949 }
9950
9951 /*
9952 * Physical Interrupt Target EL Lookup Table
9953 *
9954 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9955 *
9956 * The below multi-dimensional table is used for looking up the target
9957 * exception level given numerous condition criteria. Specifically, the
9958 * target EL is based on SCR and HCR routing controls as well as the
9959 * currently executing EL and secure state.
9960 *
9961 * Dimensions:
9962 * target_el_table[2][2][2][2][2][4]
9963 * | | | | | +--- Current EL
9964 * | | | | +------ Non-secure(0)/Secure(1)
9965 * | | | +--------- HCR mask override
9966 * | | +------------ SCR exec state control
9967 * | +--------------- SCR mask override
9968 * +------------------ 32-bit(0)/64-bit(1) EL3
9969 *
9970 * The table values are as such:
9971 * 0-3 = EL0-EL3
9972 * -1 = Cannot occur
9973 *
9974 * The ARM ARM target EL table includes entries indicating that an "exception
9975 * is not taken". The two cases where this is applicable are:
9976 * 1) An exception is taken from EL3 but the SCR does not have the exception
9977 * routed to EL3.
9978 * 2) An exception is taken from EL2 but the HCR does not have the exception
9979 * routed to EL2.
9980 * In these two cases, the below table contain a target of EL1. This value is
9981 * returned as it is expected that the consumer of the table data will check
9982 * for "target EL >= current EL" to ensure the exception is not taken.
9983 *
9984 * SCR HCR
9985 * 64 EA AMO From
9986 * BIT IRQ IMO Non-secure Secure
9987 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9988 */
9989 static const int8_t target_el_table[2][2][2][2][2][4] = {
9990 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9991 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9992 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9993 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9994 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9995 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9996 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9997 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9998 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9999 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10000 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10001 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10002 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10003 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10004 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10005 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10006 };
10007
10008 /*
10009 * Determine the target EL for physical exceptions
10010 */
10011 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10012 uint32_t cur_el, bool secure)
10013 {
10014 CPUARMState *env = cs->env_ptr;
10015 bool rw;
10016 bool scr;
10017 bool hcr;
10018 int target_el;
10019 /* Is the highest EL AArch64? */
10020 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10021 uint64_t hcr_el2;
10022
10023 if (arm_feature(env, ARM_FEATURE_EL3)) {
10024 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10025 } else {
10026 /*
10027 * Either EL2 is the highest EL (and so the EL2 register width
10028 * is given by is64); or there is no EL2 or EL3, in which case
10029 * the value of 'rw' does not affect the table lookup anyway.
10030 */
10031 rw = is64;
10032 }
10033
10034 hcr_el2 = arm_hcr_el2_eff(env);
10035 switch (excp_idx) {
10036 case EXCP_IRQ:
10037 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10038 hcr = hcr_el2 & HCR_IMO;
10039 break;
10040 case EXCP_FIQ:
10041 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10042 hcr = hcr_el2 & HCR_FMO;
10043 break;
10044 default:
10045 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10046 hcr = hcr_el2 & HCR_AMO;
10047 break;
10048 };
10049
10050 /*
10051 * For these purposes, TGE and AMO/IMO/FMO both force the
10052 * interrupt to EL2. Fold TGE into the bit extracted above.
10053 */
10054 hcr |= (hcr_el2 & HCR_TGE) != 0;
10055
10056 /* Perform a table-lookup for the target EL given the current state */
10057 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10058
10059 assert(target_el > 0);
10060
10061 return target_el;
10062 }
10063
10064 void arm_log_exception(CPUState *cs)
10065 {
10066 int idx = cs->exception_index;
10067
10068 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10069 const char *exc = NULL;
10070 static const char * const excnames[] = {
10071 [EXCP_UDEF] = "Undefined Instruction",
10072 [EXCP_SWI] = "SVC",
10073 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10074 [EXCP_DATA_ABORT] = "Data Abort",
10075 [EXCP_IRQ] = "IRQ",
10076 [EXCP_FIQ] = "FIQ",
10077 [EXCP_BKPT] = "Breakpoint",
10078 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10079 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10080 [EXCP_HVC] = "Hypervisor Call",
10081 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10082 [EXCP_SMC] = "Secure Monitor Call",
10083 [EXCP_VIRQ] = "Virtual IRQ",
10084 [EXCP_VFIQ] = "Virtual FIQ",
10085 [EXCP_SEMIHOST] = "Semihosting call",
10086 [EXCP_NOCP] = "v7M NOCP UsageFault",
10087 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10088 [EXCP_STKOF] = "v8M STKOF UsageFault",
10089 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10090 [EXCP_LSERR] = "v8M LSERR UsageFault",
10091 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10092 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10093 [EXCP_VSERR] = "Virtual SERR",
10094 };
10095
10096 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10097 exc = excnames[idx];
10098 }
10099 if (!exc) {
10100 exc = "unknown";
10101 }
10102 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10103 idx, exc, cs->cpu_index);
10104 }
10105 }
10106
10107 /*
10108 * Function used to synchronize QEMU's AArch64 register set with AArch32
10109 * register set. This is necessary when switching between AArch32 and AArch64
10110 * execution state.
10111 */
10112 void aarch64_sync_32_to_64(CPUARMState *env)
10113 {
10114 int i;
10115 uint32_t mode = env->uncached_cpsr & CPSR_M;
10116
10117 /* We can blanket copy R[0:7] to X[0:7] */
10118 for (i = 0; i < 8; i++) {
10119 env->xregs[i] = env->regs[i];
10120 }
10121
10122 /*
10123 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10124 * Otherwise, they come from the banked user regs.
10125 */
10126 if (mode == ARM_CPU_MODE_FIQ) {
10127 for (i = 8; i < 13; i++) {
10128 env->xregs[i] = env->usr_regs[i - 8];
10129 }
10130 } else {
10131 for (i = 8; i < 13; i++) {
10132 env->xregs[i] = env->regs[i];
10133 }
10134 }
10135
10136 /*
10137 * Registers x13-x23 are the various mode SP and FP registers. Registers
10138 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10139 * from the mode banked register.
10140 */
10141 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10142 env->xregs[13] = env->regs[13];
10143 env->xregs[14] = env->regs[14];
10144 } else {
10145 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10146 /* HYP is an exception in that it is copied from r14 */
10147 if (mode == ARM_CPU_MODE_HYP) {
10148 env->xregs[14] = env->regs[14];
10149 } else {
10150 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10151 }
10152 }
10153
10154 if (mode == ARM_CPU_MODE_HYP) {
10155 env->xregs[15] = env->regs[13];
10156 } else {
10157 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10158 }
10159
10160 if (mode == ARM_CPU_MODE_IRQ) {
10161 env->xregs[16] = env->regs[14];
10162 env->xregs[17] = env->regs[13];
10163 } else {
10164 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10165 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10166 }
10167
10168 if (mode == ARM_CPU_MODE_SVC) {
10169 env->xregs[18] = env->regs[14];
10170 env->xregs[19] = env->regs[13];
10171 } else {
10172 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10173 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10174 }
10175
10176 if (mode == ARM_CPU_MODE_ABT) {
10177 env->xregs[20] = env->regs[14];
10178 env->xregs[21] = env->regs[13];
10179 } else {
10180 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10181 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10182 }
10183
10184 if (mode == ARM_CPU_MODE_UND) {
10185 env->xregs[22] = env->regs[14];
10186 env->xregs[23] = env->regs[13];
10187 } else {
10188 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10189 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10190 }
10191
10192 /*
10193 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10194 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10195 * FIQ bank for r8-r14.
10196 */
10197 if (mode == ARM_CPU_MODE_FIQ) {
10198 for (i = 24; i < 31; i++) {
10199 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10200 }
10201 } else {
10202 for (i = 24; i < 29; i++) {
10203 env->xregs[i] = env->fiq_regs[i - 24];
10204 }
10205 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10206 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10207 }
10208
10209 env->pc = env->regs[15];
10210 }
10211
10212 /*
10213 * Function used to synchronize QEMU's AArch32 register set with AArch64
10214 * register set. This is necessary when switching between AArch32 and AArch64
10215 * execution state.
10216 */
10217 void aarch64_sync_64_to_32(CPUARMState *env)
10218 {
10219 int i;
10220 uint32_t mode = env->uncached_cpsr & CPSR_M;
10221
10222 /* We can blanket copy X[0:7] to R[0:7] */
10223 for (i = 0; i < 8; i++) {
10224 env->regs[i] = env->xregs[i];
10225 }
10226
10227 /*
10228 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10229 * Otherwise, we copy x8-x12 into the banked user regs.
10230 */
10231 if (mode == ARM_CPU_MODE_FIQ) {
10232 for (i = 8; i < 13; i++) {
10233 env->usr_regs[i - 8] = env->xregs[i];
10234 }
10235 } else {
10236 for (i = 8; i < 13; i++) {
10237 env->regs[i] = env->xregs[i];
10238 }
10239 }
10240
10241 /*
10242 * Registers r13 & r14 depend on the current mode.
10243 * If we are in a given mode, we copy the corresponding x registers to r13
10244 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10245 * for the mode.
10246 */
10247 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10248 env->regs[13] = env->xregs[13];
10249 env->regs[14] = env->xregs[14];
10250 } else {
10251 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10252
10253 /*
10254 * HYP is an exception in that it does not have its own banked r14 but
10255 * shares the USR r14
10256 */
10257 if (mode == ARM_CPU_MODE_HYP) {
10258 env->regs[14] = env->xregs[14];
10259 } else {
10260 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10261 }
10262 }
10263
10264 if (mode == ARM_CPU_MODE_HYP) {
10265 env->regs[13] = env->xregs[15];
10266 } else {
10267 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10268 }
10269
10270 if (mode == ARM_CPU_MODE_IRQ) {
10271 env->regs[14] = env->xregs[16];
10272 env->regs[13] = env->xregs[17];
10273 } else {
10274 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10275 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10276 }
10277
10278 if (mode == ARM_CPU_MODE_SVC) {
10279 env->regs[14] = env->xregs[18];
10280 env->regs[13] = env->xregs[19];
10281 } else {
10282 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10283 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10284 }
10285
10286 if (mode == ARM_CPU_MODE_ABT) {
10287 env->regs[14] = env->xregs[20];
10288 env->regs[13] = env->xregs[21];
10289 } else {
10290 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10291 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10292 }
10293
10294 if (mode == ARM_CPU_MODE_UND) {
10295 env->regs[14] = env->xregs[22];
10296 env->regs[13] = env->xregs[23];
10297 } else {
10298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10299 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10300 }
10301
10302 /*
10303 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10304 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10305 * FIQ bank for r8-r14.
10306 */
10307 if (mode == ARM_CPU_MODE_FIQ) {
10308 for (i = 24; i < 31; i++) {
10309 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10310 }
10311 } else {
10312 for (i = 24; i < 29; i++) {
10313 env->fiq_regs[i - 24] = env->xregs[i];
10314 }
10315 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10316 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10317 }
10318
10319 env->regs[15] = env->pc;
10320 }
10321
10322 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10323 uint32_t mask, uint32_t offset,
10324 uint32_t newpc)
10325 {
10326 int new_el;
10327
10328 /* Change the CPU state so as to actually take the exception. */
10329 switch_mode(env, new_mode);
10330
10331 /*
10332 * For exceptions taken to AArch32 we must clear the SS bit in both
10333 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10334 */
10335 env->pstate &= ~PSTATE_SS;
10336 env->spsr = cpsr_read(env);
10337 /* Clear IT bits. */
10338 env->condexec_bits = 0;
10339 /* Switch to the new mode, and to the correct instruction set. */
10340 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10341
10342 /* This must be after mode switching. */
10343 new_el = arm_current_el(env);
10344
10345 /* Set new mode endianness */
10346 env->uncached_cpsr &= ~CPSR_E;
10347 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10348 env->uncached_cpsr |= CPSR_E;
10349 }
10350 /* J and IL must always be cleared for exception entry */
10351 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10352 env->daif |= mask;
10353
10354 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10355 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10356 env->uncached_cpsr |= CPSR_SSBS;
10357 } else {
10358 env->uncached_cpsr &= ~CPSR_SSBS;
10359 }
10360 }
10361
10362 if (new_mode == ARM_CPU_MODE_HYP) {
10363 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10364 env->elr_el[2] = env->regs[15];
10365 } else {
10366 /* CPSR.PAN is normally preserved preserved unless... */
10367 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10368 switch (new_el) {
10369 case 3:
10370 if (!arm_is_secure_below_el3(env)) {
10371 /* ... the target is EL3, from non-secure state. */
10372 env->uncached_cpsr &= ~CPSR_PAN;
10373 break;
10374 }
10375 /* ... the target is EL3, from secure state ... */
10376 /* fall through */
10377 case 1:
10378 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10379 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10380 env->uncached_cpsr |= CPSR_PAN;
10381 }
10382 break;
10383 }
10384 }
10385 /*
10386 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10387 * and we should just guard the thumb mode on V4
10388 */
10389 if (arm_feature(env, ARM_FEATURE_V4T)) {
10390 env->thumb =
10391 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10392 }
10393 env->regs[14] = env->regs[15] + offset;
10394 }
10395 env->regs[15] = newpc;
10396
10397 if (tcg_enabled()) {
10398 arm_rebuild_hflags(env);
10399 }
10400 }
10401
10402 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10403 {
10404 /*
10405 * Handle exception entry to Hyp mode; this is sufficiently
10406 * different to entry to other AArch32 modes that we handle it
10407 * separately here.
10408 *
10409 * The vector table entry used is always the 0x14 Hyp mode entry point,
10410 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10411 * The offset applied to the preferred return address is always zero
10412 * (see DDI0487C.a section G1.12.3).
10413 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10414 */
10415 uint32_t addr, mask;
10416 ARMCPU *cpu = ARM_CPU(cs);
10417 CPUARMState *env = &cpu->env;
10418
10419 switch (cs->exception_index) {
10420 case EXCP_UDEF:
10421 addr = 0x04;
10422 break;
10423 case EXCP_SWI:
10424 addr = 0x08;
10425 break;
10426 case EXCP_BKPT:
10427 /* Fall through to prefetch abort. */
10428 case EXCP_PREFETCH_ABORT:
10429 env->cp15.ifar_s = env->exception.vaddress;
10430 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10431 (uint32_t)env->exception.vaddress);
10432 addr = 0x0c;
10433 break;
10434 case EXCP_DATA_ABORT:
10435 env->cp15.dfar_s = env->exception.vaddress;
10436 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10437 (uint32_t)env->exception.vaddress);
10438 addr = 0x10;
10439 break;
10440 case EXCP_IRQ:
10441 addr = 0x18;
10442 break;
10443 case EXCP_FIQ:
10444 addr = 0x1c;
10445 break;
10446 case EXCP_HVC:
10447 addr = 0x08;
10448 break;
10449 case EXCP_HYP_TRAP:
10450 addr = 0x14;
10451 break;
10452 default:
10453 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10454 }
10455
10456 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10457 if (!arm_feature(env, ARM_FEATURE_V8)) {
10458 /*
10459 * QEMU syndrome values are v8-style. v7 has the IL bit
10460 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10461 * If this is a v7 CPU, squash the IL bit in those cases.
10462 */
10463 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10464 (cs->exception_index == EXCP_DATA_ABORT &&
10465 !(env->exception.syndrome & ARM_EL_ISV)) ||
10466 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10467 env->exception.syndrome &= ~ARM_EL_IL;
10468 }
10469 }
10470 env->cp15.esr_el[2] = env->exception.syndrome;
10471 }
10472
10473 if (arm_current_el(env) != 2 && addr < 0x14) {
10474 addr = 0x14;
10475 }
10476
10477 mask = 0;
10478 if (!(env->cp15.scr_el3 & SCR_EA)) {
10479 mask |= CPSR_A;
10480 }
10481 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10482 mask |= CPSR_I;
10483 }
10484 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10485 mask |= CPSR_F;
10486 }
10487
10488 addr += env->cp15.hvbar;
10489
10490 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10491 }
10492
10493 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10494 {
10495 ARMCPU *cpu = ARM_CPU(cs);
10496 CPUARMState *env = &cpu->env;
10497 uint32_t addr;
10498 uint32_t mask;
10499 int new_mode;
10500 uint32_t offset;
10501 uint32_t moe;
10502
10503 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10504 switch (syn_get_ec(env->exception.syndrome)) {
10505 case EC_BREAKPOINT:
10506 case EC_BREAKPOINT_SAME_EL:
10507 moe = 1;
10508 break;
10509 case EC_WATCHPOINT:
10510 case EC_WATCHPOINT_SAME_EL:
10511 moe = 10;
10512 break;
10513 case EC_AA32_BKPT:
10514 moe = 3;
10515 break;
10516 case EC_VECTORCATCH:
10517 moe = 5;
10518 break;
10519 default:
10520 moe = 0;
10521 break;
10522 }
10523
10524 if (moe) {
10525 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10526 }
10527
10528 if (env->exception.target_el == 2) {
10529 arm_cpu_do_interrupt_aarch32_hyp(cs);
10530 return;
10531 }
10532
10533 switch (cs->exception_index) {
10534 case EXCP_UDEF:
10535 new_mode = ARM_CPU_MODE_UND;
10536 addr = 0x04;
10537 mask = CPSR_I;
10538 if (env->thumb) {
10539 offset = 2;
10540 } else {
10541 offset = 4;
10542 }
10543 break;
10544 case EXCP_SWI:
10545 new_mode = ARM_CPU_MODE_SVC;
10546 addr = 0x08;
10547 mask = CPSR_I;
10548 /* The PC already points to the next instruction. */
10549 offset = 0;
10550 break;
10551 case EXCP_BKPT:
10552 /* Fall through to prefetch abort. */
10553 case EXCP_PREFETCH_ABORT:
10554 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10555 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10556 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10557 env->exception.fsr, (uint32_t)env->exception.vaddress);
10558 new_mode = ARM_CPU_MODE_ABT;
10559 addr = 0x0c;
10560 mask = CPSR_A | CPSR_I;
10561 offset = 4;
10562 break;
10563 case EXCP_DATA_ABORT:
10564 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10565 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10566 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10567 env->exception.fsr,
10568 (uint32_t)env->exception.vaddress);
10569 new_mode = ARM_CPU_MODE_ABT;
10570 addr = 0x10;
10571 mask = CPSR_A | CPSR_I;
10572 offset = 8;
10573 break;
10574 case EXCP_IRQ:
10575 new_mode = ARM_CPU_MODE_IRQ;
10576 addr = 0x18;
10577 /* Disable IRQ and imprecise data aborts. */
10578 mask = CPSR_A | CPSR_I;
10579 offset = 4;
10580 if (env->cp15.scr_el3 & SCR_IRQ) {
10581 /* IRQ routed to monitor mode */
10582 new_mode = ARM_CPU_MODE_MON;
10583 mask |= CPSR_F;
10584 }
10585 break;
10586 case EXCP_FIQ:
10587 new_mode = ARM_CPU_MODE_FIQ;
10588 addr = 0x1c;
10589 /* Disable FIQ, IRQ and imprecise data aborts. */
10590 mask = CPSR_A | CPSR_I | CPSR_F;
10591 if (env->cp15.scr_el3 & SCR_FIQ) {
10592 /* FIQ routed to monitor mode */
10593 new_mode = ARM_CPU_MODE_MON;
10594 }
10595 offset = 4;
10596 break;
10597 case EXCP_VIRQ:
10598 new_mode = ARM_CPU_MODE_IRQ;
10599 addr = 0x18;
10600 /* Disable IRQ and imprecise data aborts. */
10601 mask = CPSR_A | CPSR_I;
10602 offset = 4;
10603 break;
10604 case EXCP_VFIQ:
10605 new_mode = ARM_CPU_MODE_FIQ;
10606 addr = 0x1c;
10607 /* Disable FIQ, IRQ and imprecise data aborts. */
10608 mask = CPSR_A | CPSR_I | CPSR_F;
10609 offset = 4;
10610 break;
10611 case EXCP_VSERR:
10612 {
10613 /*
10614 * Note that this is reported as a data abort, but the DFAR
10615 * has an UNKNOWN value. Construct the SError syndrome from
10616 * AET and ExT fields.
10617 */
10618 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10619
10620 if (extended_addresses_enabled(env)) {
10621 env->exception.fsr = arm_fi_to_lfsc(&fi);
10622 } else {
10623 env->exception.fsr = arm_fi_to_sfsc(&fi);
10624 }
10625 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10626 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10627 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10628 env->exception.fsr);
10629
10630 new_mode = ARM_CPU_MODE_ABT;
10631 addr = 0x10;
10632 mask = CPSR_A | CPSR_I;
10633 offset = 8;
10634 }
10635 break;
10636 case EXCP_SMC:
10637 new_mode = ARM_CPU_MODE_MON;
10638 addr = 0x08;
10639 mask = CPSR_A | CPSR_I | CPSR_F;
10640 offset = 0;
10641 break;
10642 default:
10643 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10644 return; /* Never happens. Keep compiler happy. */
10645 }
10646
10647 if (new_mode == ARM_CPU_MODE_MON) {
10648 addr += env->cp15.mvbar;
10649 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10650 /* High vectors. When enabled, base address cannot be remapped. */
10651 addr += 0xffff0000;
10652 } else {
10653 /*
10654 * ARM v7 architectures provide a vector base address register to remap
10655 * the interrupt vector table.
10656 * This register is only followed in non-monitor mode, and is banked.
10657 * Note: only bits 31:5 are valid.
10658 */
10659 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10660 }
10661
10662 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10663 env->cp15.scr_el3 &= ~SCR_NS;
10664 }
10665
10666 take_aarch32_exception(env, new_mode, mask, offset, addr);
10667 }
10668
10669 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10670 {
10671 /*
10672 * Return the register number of the AArch64 view of the AArch32
10673 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10674 * be that of the AArch32 mode the exception came from.
10675 */
10676 int mode = env->uncached_cpsr & CPSR_M;
10677
10678 switch (aarch32_reg) {
10679 case 0 ... 7:
10680 return aarch32_reg;
10681 case 8 ... 12:
10682 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10683 case 13:
10684 switch (mode) {
10685 case ARM_CPU_MODE_USR:
10686 case ARM_CPU_MODE_SYS:
10687 return 13;
10688 case ARM_CPU_MODE_HYP:
10689 return 15;
10690 case ARM_CPU_MODE_IRQ:
10691 return 17;
10692 case ARM_CPU_MODE_SVC:
10693 return 19;
10694 case ARM_CPU_MODE_ABT:
10695 return 21;
10696 case ARM_CPU_MODE_UND:
10697 return 23;
10698 case ARM_CPU_MODE_FIQ:
10699 return 29;
10700 default:
10701 g_assert_not_reached();
10702 }
10703 case 14:
10704 switch (mode) {
10705 case ARM_CPU_MODE_USR:
10706 case ARM_CPU_MODE_SYS:
10707 case ARM_CPU_MODE_HYP:
10708 return 14;
10709 case ARM_CPU_MODE_IRQ:
10710 return 16;
10711 case ARM_CPU_MODE_SVC:
10712 return 18;
10713 case ARM_CPU_MODE_ABT:
10714 return 20;
10715 case ARM_CPU_MODE_UND:
10716 return 22;
10717 case ARM_CPU_MODE_FIQ:
10718 return 30;
10719 default:
10720 g_assert_not_reached();
10721 }
10722 case 15:
10723 return 31;
10724 default:
10725 g_assert_not_reached();
10726 }
10727 }
10728
10729 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10730 {
10731 uint32_t ret = cpsr_read(env);
10732
10733 /* Move DIT to the correct location for SPSR_ELx */
10734 if (ret & CPSR_DIT) {
10735 ret &= ~CPSR_DIT;
10736 ret |= PSTATE_DIT;
10737 }
10738 /* Merge PSTATE.SS into SPSR_ELx */
10739 ret |= env->pstate & PSTATE_SS;
10740
10741 return ret;
10742 }
10743
10744 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10745 {
10746 /* Return true if this syndrome value is a synchronous external abort */
10747 switch (syn_get_ec(syndrome)) {
10748 case EC_INSNABORT:
10749 case EC_INSNABORT_SAME_EL:
10750 case EC_DATAABORT:
10751 case EC_DATAABORT_SAME_EL:
10752 /* Look at fault status code for all the synchronous ext abort cases */
10753 switch (syndrome & 0x3f) {
10754 case 0x10:
10755 case 0x13:
10756 case 0x14:
10757 case 0x15:
10758 case 0x16:
10759 case 0x17:
10760 return true;
10761 default:
10762 return false;
10763 }
10764 default:
10765 return false;
10766 }
10767 }
10768
10769 /* Handle exception entry to a target EL which is using AArch64 */
10770 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10771 {
10772 ARMCPU *cpu = ARM_CPU(cs);
10773 CPUARMState *env = &cpu->env;
10774 unsigned int new_el = env->exception.target_el;
10775 target_ulong addr = env->cp15.vbar_el[new_el];
10776 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10777 unsigned int old_mode;
10778 unsigned int cur_el = arm_current_el(env);
10779 int rt;
10780
10781 if (tcg_enabled()) {
10782 /*
10783 * Note that new_el can never be 0. If cur_el is 0, then
10784 * el0_a64 is is_a64(), else el0_a64 is ignored.
10785 */
10786 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10787 }
10788
10789 if (cur_el < new_el) {
10790 /*
10791 * Entry vector offset depends on whether the implemented EL
10792 * immediately lower than the target level is using AArch32 or AArch64
10793 */
10794 bool is_aa64;
10795 uint64_t hcr;
10796
10797 switch (new_el) {
10798 case 3:
10799 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10800 break;
10801 case 2:
10802 hcr = arm_hcr_el2_eff(env);
10803 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10804 is_aa64 = (hcr & HCR_RW) != 0;
10805 break;
10806 }
10807 /* fall through */
10808 case 1:
10809 is_aa64 = is_a64(env);
10810 break;
10811 default:
10812 g_assert_not_reached();
10813 }
10814
10815 if (is_aa64) {
10816 addr += 0x400;
10817 } else {
10818 addr += 0x600;
10819 }
10820 } else if (pstate_read(env) & PSTATE_SP) {
10821 addr += 0x200;
10822 }
10823
10824 switch (cs->exception_index) {
10825 case EXCP_PREFETCH_ABORT:
10826 case EXCP_DATA_ABORT:
10827 /*
10828 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10829 * to be taken to the SError vector entrypoint.
10830 */
10831 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10832 syndrome_is_sync_extabt(env->exception.syndrome)) {
10833 addr += 0x180;
10834 }
10835 env->cp15.far_el[new_el] = env->exception.vaddress;
10836 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10837 env->cp15.far_el[new_el]);
10838 /* fall through */
10839 case EXCP_BKPT:
10840 case EXCP_UDEF:
10841 case EXCP_SWI:
10842 case EXCP_HVC:
10843 case EXCP_HYP_TRAP:
10844 case EXCP_SMC:
10845 switch (syn_get_ec(env->exception.syndrome)) {
10846 case EC_ADVSIMDFPACCESSTRAP:
10847 /*
10848 * QEMU internal FP/SIMD syndromes from AArch32 include the
10849 * TA and coproc fields which are only exposed if the exception
10850 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10851 * AArch64 format syndrome.
10852 */
10853 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10854 break;
10855 case EC_CP14RTTRAP:
10856 case EC_CP15RTTRAP:
10857 case EC_CP14DTTRAP:
10858 /*
10859 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10860 * the raw register field from the insn; when taking this to
10861 * AArch64 we must convert it to the AArch64 view of the register
10862 * number. Notice that we read a 4-bit AArch32 register number and
10863 * write back a 5-bit AArch64 one.
10864 */
10865 rt = extract32(env->exception.syndrome, 5, 4);
10866 rt = aarch64_regnum(env, rt);
10867 env->exception.syndrome = deposit32(env->exception.syndrome,
10868 5, 5, rt);
10869 break;
10870 case EC_CP15RRTTRAP:
10871 case EC_CP14RRTTRAP:
10872 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10873 rt = extract32(env->exception.syndrome, 5, 4);
10874 rt = aarch64_regnum(env, rt);
10875 env->exception.syndrome = deposit32(env->exception.syndrome,
10876 5, 5, rt);
10877 rt = extract32(env->exception.syndrome, 10, 4);
10878 rt = aarch64_regnum(env, rt);
10879 env->exception.syndrome = deposit32(env->exception.syndrome,
10880 10, 5, rt);
10881 break;
10882 }
10883 env->cp15.esr_el[new_el] = env->exception.syndrome;
10884 break;
10885 case EXCP_IRQ:
10886 case EXCP_VIRQ:
10887 addr += 0x80;
10888 break;
10889 case EXCP_FIQ:
10890 case EXCP_VFIQ:
10891 addr += 0x100;
10892 break;
10893 case EXCP_VSERR:
10894 addr += 0x180;
10895 /* Construct the SError syndrome from IDS and ISS fields. */
10896 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10897 env->cp15.esr_el[new_el] = env->exception.syndrome;
10898 break;
10899 default:
10900 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10901 }
10902
10903 if (is_a64(env)) {
10904 old_mode = pstate_read(env);
10905 aarch64_save_sp(env, arm_current_el(env));
10906 env->elr_el[new_el] = env->pc;
10907 } else {
10908 old_mode = cpsr_read_for_spsr_elx(env);
10909 env->elr_el[new_el] = env->regs[15];
10910
10911 aarch64_sync_32_to_64(env);
10912
10913 env->condexec_bits = 0;
10914 }
10915 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10916
10917 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10918 env->elr_el[new_el]);
10919
10920 if (cpu_isar_feature(aa64_pan, cpu)) {
10921 /* The value of PSTATE.PAN is normally preserved, except when ... */
10922 new_mode |= old_mode & PSTATE_PAN;
10923 switch (new_el) {
10924 case 2:
10925 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10926 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10927 != (HCR_E2H | HCR_TGE)) {
10928 break;
10929 }
10930 /* fall through */
10931 case 1:
10932 /* ... the target is EL1 ... */
10933 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10934 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10935 new_mode |= PSTATE_PAN;
10936 }
10937 break;
10938 }
10939 }
10940 if (cpu_isar_feature(aa64_mte, cpu)) {
10941 new_mode |= PSTATE_TCO;
10942 }
10943
10944 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10945 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10946 new_mode |= PSTATE_SSBS;
10947 } else {
10948 new_mode &= ~PSTATE_SSBS;
10949 }
10950 }
10951
10952 pstate_write(env, PSTATE_DAIF | new_mode);
10953 env->aarch64 = true;
10954 aarch64_restore_sp(env, new_el);
10955
10956 if (tcg_enabled()) {
10957 helper_rebuild_hflags_a64(env, new_el);
10958 }
10959
10960 env->pc = addr;
10961
10962 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10963 new_el, env->pc, pstate_read(env));
10964 }
10965
10966 /*
10967 * Do semihosting call and set the appropriate return value. All the
10968 * permission and validity checks have been done at translate time.
10969 *
10970 * We only see semihosting exceptions in TCG only as they are not
10971 * trapped to the hypervisor in KVM.
10972 */
10973 #ifdef CONFIG_TCG
10974 static void tcg_handle_semihosting(CPUState *cs)
10975 {
10976 ARMCPU *cpu = ARM_CPU(cs);
10977 CPUARMState *env = &cpu->env;
10978
10979 if (is_a64(env)) {
10980 qemu_log_mask(CPU_LOG_INT,
10981 "...handling as semihosting call 0x%" PRIx64 "\n",
10982 env->xregs[0]);
10983 do_common_semihosting(cs);
10984 env->pc += 4;
10985 } else {
10986 qemu_log_mask(CPU_LOG_INT,
10987 "...handling as semihosting call 0x%x\n",
10988 env->regs[0]);
10989 do_common_semihosting(cs);
10990 env->regs[15] += env->thumb ? 2 : 4;
10991 }
10992 }
10993 #endif
10994
10995 /*
10996 * Handle a CPU exception for A and R profile CPUs.
10997 * Do any appropriate logging, handle PSCI calls, and then hand off
10998 * to the AArch64-entry or AArch32-entry function depending on the
10999 * target exception level's register width.
11000 *
11001 * Note: this is used for both TCG (as the do_interrupt tcg op),
11002 * and KVM to re-inject guest debug exceptions, and to
11003 * inject a Synchronous-External-Abort.
11004 */
11005 void arm_cpu_do_interrupt(CPUState *cs)
11006 {
11007 ARMCPU *cpu = ARM_CPU(cs);
11008 CPUARMState *env = &cpu->env;
11009 unsigned int new_el = env->exception.target_el;
11010
11011 assert(!arm_feature(env, ARM_FEATURE_M));
11012
11013 arm_log_exception(cs);
11014 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11015 new_el);
11016 if (qemu_loglevel_mask(CPU_LOG_INT)
11017 && !excp_is_internal(cs->exception_index)) {
11018 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11019 syn_get_ec(env->exception.syndrome),
11020 env->exception.syndrome);
11021 }
11022
11023 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11024 arm_handle_psci_call(cpu);
11025 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11026 return;
11027 }
11028
11029 /*
11030 * Semihosting semantics depend on the register width of the code
11031 * that caused the exception, not the target exception level, so
11032 * must be handled here.
11033 */
11034 #ifdef CONFIG_TCG
11035 if (cs->exception_index == EXCP_SEMIHOST) {
11036 tcg_handle_semihosting(cs);
11037 return;
11038 }
11039 #endif
11040
11041 /*
11042 * Hooks may change global state so BQL should be held, also the
11043 * BQL needs to be held for any modification of
11044 * cs->interrupt_request.
11045 */
11046 g_assert(qemu_mutex_iothread_locked());
11047
11048 arm_call_pre_el_change_hook(cpu);
11049
11050 assert(!excp_is_internal(cs->exception_index));
11051 if (arm_el_is_aa64(env, new_el)) {
11052 arm_cpu_do_interrupt_aarch64(cs);
11053 } else {
11054 arm_cpu_do_interrupt_aarch32(cs);
11055 }
11056
11057 arm_call_el_change_hook(cpu);
11058
11059 if (!kvm_enabled()) {
11060 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11061 }
11062 }
11063 #endif /* !CONFIG_USER_ONLY */
11064
11065 uint64_t arm_sctlr(CPUARMState *env, int el)
11066 {
11067 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11068 if (el == 0) {
11069 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11070 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11071 }
11072 return env->cp15.sctlr_el[el];
11073 }
11074
11075 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11076 {
11077 if (regime_has_2_ranges(mmu_idx)) {
11078 return extract64(tcr, 37, 2);
11079 } else if (regime_is_stage2(mmu_idx)) {
11080 return 0; /* VTCR_EL2 */
11081 } else {
11082 /* Replicate the single TBI bit so we always have 2 bits. */
11083 return extract32(tcr, 20, 1) * 3;
11084 }
11085 }
11086
11087 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11088 {
11089 if (regime_has_2_ranges(mmu_idx)) {
11090 return extract64(tcr, 51, 2);
11091 } else if (regime_is_stage2(mmu_idx)) {
11092 return 0; /* VTCR_EL2 */
11093 } else {
11094 /* Replicate the single TBID bit so we always have 2 bits. */
11095 return extract32(tcr, 29, 1) * 3;
11096 }
11097 }
11098
11099 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11100 {
11101 if (regime_has_2_ranges(mmu_idx)) {
11102 return extract64(tcr, 57, 2);
11103 } else {
11104 /* Replicate the single TCMA bit so we always have 2 bits. */
11105 return extract32(tcr, 30, 1) * 3;
11106 }
11107 }
11108
11109 static ARMGranuleSize tg0_to_gran_size(int tg)
11110 {
11111 switch (tg) {
11112 case 0:
11113 return Gran4K;
11114 case 1:
11115 return Gran64K;
11116 case 2:
11117 return Gran16K;
11118 default:
11119 return GranInvalid;
11120 }
11121 }
11122
11123 static ARMGranuleSize tg1_to_gran_size(int tg)
11124 {
11125 switch (tg) {
11126 case 1:
11127 return Gran16K;
11128 case 2:
11129 return Gran4K;
11130 case 3:
11131 return Gran64K;
11132 default:
11133 return GranInvalid;
11134 }
11135 }
11136
11137 static inline bool have4k(ARMCPU *cpu, bool stage2)
11138 {
11139 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11140 : cpu_isar_feature(aa64_tgran4, cpu);
11141 }
11142
11143 static inline bool have16k(ARMCPU *cpu, bool stage2)
11144 {
11145 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11146 : cpu_isar_feature(aa64_tgran16, cpu);
11147 }
11148
11149 static inline bool have64k(ARMCPU *cpu, bool stage2)
11150 {
11151 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11152 : cpu_isar_feature(aa64_tgran64, cpu);
11153 }
11154
11155 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11156 bool stage2)
11157 {
11158 switch (gran) {
11159 case Gran4K:
11160 if (have4k(cpu, stage2)) {
11161 return gran;
11162 }
11163 break;
11164 case Gran16K:
11165 if (have16k(cpu, stage2)) {
11166 return gran;
11167 }
11168 break;
11169 case Gran64K:
11170 if (have64k(cpu, stage2)) {
11171 return gran;
11172 }
11173 break;
11174 case GranInvalid:
11175 break;
11176 }
11177 /*
11178 * If the guest selects a granule size that isn't implemented,
11179 * the architecture requires that we behave as if it selected one
11180 * that is (with an IMPDEF choice of which one to pick). We choose
11181 * to implement the smallest supported granule size.
11182 */
11183 if (have4k(cpu, stage2)) {
11184 return Gran4K;
11185 }
11186 if (have16k(cpu, stage2)) {
11187 return Gran16K;
11188 }
11189 assert(have64k(cpu, stage2));
11190 return Gran64K;
11191 }
11192
11193 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11194 ARMMMUIdx mmu_idx, bool data,
11195 bool el1_is_aa32)
11196 {
11197 uint64_t tcr = regime_tcr(env, mmu_idx);
11198 bool epd, hpd, tsz_oob, ds, ha, hd;
11199 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11200 ARMGranuleSize gran;
11201 ARMCPU *cpu = env_archcpu(env);
11202 bool stage2 = regime_is_stage2(mmu_idx);
11203
11204 if (!regime_has_2_ranges(mmu_idx)) {
11205 select = 0;
11206 tsz = extract32(tcr, 0, 6);
11207 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11208 if (stage2) {
11209 /* VTCR_EL2 */
11210 hpd = false;
11211 } else {
11212 hpd = extract32(tcr, 24, 1);
11213 }
11214 epd = false;
11215 sh = extract32(tcr, 12, 2);
11216 ps = extract32(tcr, 16, 3);
11217 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11218 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11219 ds = extract64(tcr, 32, 1);
11220 } else {
11221 bool e0pd;
11222
11223 /*
11224 * Bit 55 is always between the two regions, and is canonical for
11225 * determining if address tagging is enabled.
11226 */
11227 select = extract64(va, 55, 1);
11228 if (!select) {
11229 tsz = extract32(tcr, 0, 6);
11230 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11231 epd = extract32(tcr, 7, 1);
11232 sh = extract32(tcr, 12, 2);
11233 hpd = extract64(tcr, 41, 1);
11234 e0pd = extract64(tcr, 55, 1);
11235 } else {
11236 tsz = extract32(tcr, 16, 6);
11237 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11238 epd = extract32(tcr, 23, 1);
11239 sh = extract32(tcr, 28, 2);
11240 hpd = extract64(tcr, 42, 1);
11241 e0pd = extract64(tcr, 56, 1);
11242 }
11243 ps = extract64(tcr, 32, 3);
11244 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11245 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11246 ds = extract64(tcr, 59, 1);
11247
11248 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11249 regime_is_user(env, mmu_idx)) {
11250 epd = true;
11251 }
11252 }
11253
11254 gran = sanitize_gran_size(cpu, gran, stage2);
11255
11256 if (cpu_isar_feature(aa64_st, cpu)) {
11257 max_tsz = 48 - (gran == Gran64K);
11258 } else {
11259 max_tsz = 39;
11260 }
11261
11262 /*
11263 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11264 * adjust the effective value of DS, as documented.
11265 */
11266 min_tsz = 16;
11267 if (gran == Gran64K) {
11268 if (cpu_isar_feature(aa64_lva, cpu)) {
11269 min_tsz = 12;
11270 }
11271 ds = false;
11272 } else if (ds) {
11273 if (regime_is_stage2(mmu_idx)) {
11274 if (gran == Gran16K) {
11275 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11276 } else {
11277 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11278 }
11279 } else {
11280 if (gran == Gran16K) {
11281 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11282 } else {
11283 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11284 }
11285 }
11286 if (ds) {
11287 min_tsz = 12;
11288 }
11289 }
11290
11291 if (stage2 && el1_is_aa32) {
11292 /*
11293 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11294 * are loosened: a configured IPA of 40 bits is permitted even if
11295 * the implemented PA is less than that (and so a 40 bit IPA would
11296 * fault for an AArch64 EL1). See R_DTLMN.
11297 */
11298 min_tsz = MIN(min_tsz, 24);
11299 }
11300
11301 if (tsz > max_tsz) {
11302 tsz = max_tsz;
11303 tsz_oob = true;
11304 } else if (tsz < min_tsz) {
11305 tsz = min_tsz;
11306 tsz_oob = true;
11307 } else {
11308 tsz_oob = false;
11309 }
11310
11311 /* Present TBI as a composite with TBID. */
11312 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11313 if (!data) {
11314 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11315 }
11316 tbi = (tbi >> select) & 1;
11317
11318 return (ARMVAParameters) {
11319 .tsz = tsz,
11320 .ps = ps,
11321 .sh = sh,
11322 .select = select,
11323 .tbi = tbi,
11324 .epd = epd,
11325 .hpd = hpd,
11326 .tsz_oob = tsz_oob,
11327 .ds = ds,
11328 .ha = ha,
11329 .hd = ha && hd,
11330 .gran = gran,
11331 };
11332 }
11333
11334 /*
11335 * Note that signed overflow is undefined in C. The following routines are
11336 * careful to use unsigned types where modulo arithmetic is required.
11337 * Failure to do so _will_ break on newer gcc.
11338 */
11339
11340 /* Signed saturating arithmetic. */
11341
11342 /* Perform 16-bit signed saturating addition. */
11343 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11344 {
11345 uint16_t res;
11346
11347 res = a + b;
11348 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11349 if (a & 0x8000) {
11350 res = 0x8000;
11351 } else {
11352 res = 0x7fff;
11353 }
11354 }
11355 return res;
11356 }
11357
11358 /* Perform 8-bit signed saturating addition. */
11359 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11360 {
11361 uint8_t res;
11362
11363 res = a + b;
11364 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11365 if (a & 0x80) {
11366 res = 0x80;
11367 } else {
11368 res = 0x7f;
11369 }
11370 }
11371 return res;
11372 }
11373
11374 /* Perform 16-bit signed saturating subtraction. */
11375 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11376 {
11377 uint16_t res;
11378
11379 res = a - b;
11380 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11381 if (a & 0x8000) {
11382 res = 0x8000;
11383 } else {
11384 res = 0x7fff;
11385 }
11386 }
11387 return res;
11388 }
11389
11390 /* Perform 8-bit signed saturating subtraction. */
11391 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11392 {
11393 uint8_t res;
11394
11395 res = a - b;
11396 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11397 if (a & 0x80) {
11398 res = 0x80;
11399 } else {
11400 res = 0x7f;
11401 }
11402 }
11403 return res;
11404 }
11405
11406 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11407 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11408 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11409 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11410 #define PFX q
11411
11412 #include "op_addsub.h"
11413
11414 /* Unsigned saturating arithmetic. */
11415 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11416 {
11417 uint16_t res;
11418 res = a + b;
11419 if (res < a) {
11420 res = 0xffff;
11421 }
11422 return res;
11423 }
11424
11425 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11426 {
11427 if (a > b) {
11428 return a - b;
11429 } else {
11430 return 0;
11431 }
11432 }
11433
11434 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11435 {
11436 uint8_t res;
11437 res = a + b;
11438 if (res < a) {
11439 res = 0xff;
11440 }
11441 return res;
11442 }
11443
11444 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11445 {
11446 if (a > b) {
11447 return a - b;
11448 } else {
11449 return 0;
11450 }
11451 }
11452
11453 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11454 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11455 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11456 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11457 #define PFX uq
11458
11459 #include "op_addsub.h"
11460
11461 /* Signed modulo arithmetic. */
11462 #define SARITH16(a, b, n, op) do { \
11463 int32_t sum; \
11464 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11465 RESULT(sum, n, 16); \
11466 if (sum >= 0) \
11467 ge |= 3 << (n * 2); \
11468 } while (0)
11469
11470 #define SARITH8(a, b, n, op) do { \
11471 int32_t sum; \
11472 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11473 RESULT(sum, n, 8); \
11474 if (sum >= 0) \
11475 ge |= 1 << n; \
11476 } while (0)
11477
11478
11479 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11480 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11481 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11482 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11483 #define PFX s
11484 #define ARITH_GE
11485
11486 #include "op_addsub.h"
11487
11488 /* Unsigned modulo arithmetic. */
11489 #define ADD16(a, b, n) do { \
11490 uint32_t sum; \
11491 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11492 RESULT(sum, n, 16); \
11493 if ((sum >> 16) == 1) \
11494 ge |= 3 << (n * 2); \
11495 } while (0)
11496
11497 #define ADD8(a, b, n) do { \
11498 uint32_t sum; \
11499 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11500 RESULT(sum, n, 8); \
11501 if ((sum >> 8) == 1) \
11502 ge |= 1 << n; \
11503 } while (0)
11504
11505 #define SUB16(a, b, n) do { \
11506 uint32_t sum; \
11507 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11508 RESULT(sum, n, 16); \
11509 if ((sum >> 16) == 0) \
11510 ge |= 3 << (n * 2); \
11511 } while (0)
11512
11513 #define SUB8(a, b, n) do { \
11514 uint32_t sum; \
11515 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11516 RESULT(sum, n, 8); \
11517 if ((sum >> 8) == 0) \
11518 ge |= 1 << n; \
11519 } while (0)
11520
11521 #define PFX u
11522 #define ARITH_GE
11523
11524 #include "op_addsub.h"
11525
11526 /* Halved signed arithmetic. */
11527 #define ADD16(a, b, n) \
11528 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11529 #define SUB16(a, b, n) \
11530 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11531 #define ADD8(a, b, n) \
11532 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11533 #define SUB8(a, b, n) \
11534 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11535 #define PFX sh
11536
11537 #include "op_addsub.h"
11538
11539 /* Halved unsigned arithmetic. */
11540 #define ADD16(a, b, n) \
11541 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11542 #define SUB16(a, b, n) \
11543 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11544 #define ADD8(a, b, n) \
11545 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11546 #define SUB8(a, b, n) \
11547 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11548 #define PFX uh
11549
11550 #include "op_addsub.h"
11551
11552 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11553 {
11554 if (a > b) {
11555 return a - b;
11556 } else {
11557 return b - a;
11558 }
11559 }
11560
11561 /* Unsigned sum of absolute byte differences. */
11562 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11563 {
11564 uint32_t sum;
11565 sum = do_usad(a, b);
11566 sum += do_usad(a >> 8, b >> 8);
11567 sum += do_usad(a >> 16, b >> 16);
11568 sum += do_usad(a >> 24, b >> 24);
11569 return sum;
11570 }
11571
11572 /* For ARMv6 SEL instruction. */
11573 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11574 {
11575 uint32_t mask;
11576
11577 mask = 0;
11578 if (flags & 1) {
11579 mask |= 0xff;
11580 }
11581 if (flags & 2) {
11582 mask |= 0xff00;
11583 }
11584 if (flags & 4) {
11585 mask |= 0xff0000;
11586 }
11587 if (flags & 8) {
11588 mask |= 0xff000000;
11589 }
11590 return (a & mask) | (b & ~mask);
11591 }
11592
11593 /*
11594 * CRC helpers.
11595 * The upper bytes of val (above the number specified by 'bytes') must have
11596 * been zeroed out by the caller.
11597 */
11598 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11599 {
11600 uint8_t buf[4];
11601
11602 stl_le_p(buf, val);
11603
11604 /* zlib crc32 converts the accumulator and output to one's complement. */
11605 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11606 }
11607
11608 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11609 {
11610 uint8_t buf[4];
11611
11612 stl_le_p(buf, val);
11613
11614 /* Linux crc32c converts the output to one's complement. */
11615 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11616 }
11617
11618 /*
11619 * Return the exception level to which FP-disabled exceptions should
11620 * be taken, or 0 if FP is enabled.
11621 */
11622 int fp_exception_el(CPUARMState *env, int cur_el)
11623 {
11624 #ifndef CONFIG_USER_ONLY
11625 uint64_t hcr_el2;
11626
11627 /*
11628 * CPACR and the CPTR registers don't exist before v6, so FP is
11629 * always accessible
11630 */
11631 if (!arm_feature(env, ARM_FEATURE_V6)) {
11632 return 0;
11633 }
11634
11635 if (arm_feature(env, ARM_FEATURE_M)) {
11636 /* CPACR can cause a NOCP UsageFault taken to current security state */
11637 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11638 return 1;
11639 }
11640
11641 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11642 if (!extract32(env->v7m.nsacr, 10, 1)) {
11643 /* FP insns cause a NOCP UsageFault taken to Secure */
11644 return 3;
11645 }
11646 }
11647
11648 return 0;
11649 }
11650
11651 hcr_el2 = arm_hcr_el2_eff(env);
11652
11653 /*
11654 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11655 * 0, 2 : trap EL0 and EL1/PL1 accesses
11656 * 1 : trap only EL0 accesses
11657 * 3 : trap no accesses
11658 * This register is ignored if E2H+TGE are both set.
11659 */
11660 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11661 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11662
11663 switch (fpen) {
11664 case 1:
11665 if (cur_el != 0) {
11666 break;
11667 }
11668 /* fall through */
11669 case 0:
11670 case 2:
11671 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11672 if (!arm_el_is_aa64(env, 3)
11673 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11674 return 3;
11675 }
11676 if (cur_el <= 1) {
11677 return 1;
11678 }
11679 break;
11680 }
11681 }
11682
11683 /*
11684 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11685 * to control non-secure access to the FPU. It doesn't have any
11686 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11687 */
11688 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11689 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11690 if (!extract32(env->cp15.nsacr, 10, 1)) {
11691 /* FP insns act as UNDEF */
11692 return cur_el == 2 ? 2 : 1;
11693 }
11694 }
11695
11696 /*
11697 * CPTR_EL2 is present in v7VE or v8, and changes format
11698 * with HCR_EL2.E2H (regardless of TGE).
11699 */
11700 if (cur_el <= 2) {
11701 if (hcr_el2 & HCR_E2H) {
11702 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11703 case 1:
11704 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11705 break;
11706 }
11707 /* fall through */
11708 case 0:
11709 case 2:
11710 return 2;
11711 }
11712 } else if (arm_is_el2_enabled(env)) {
11713 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11714 return 2;
11715 }
11716 }
11717 }
11718
11719 /* CPTR_EL3 : present in v8 */
11720 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11721 /* Trap all FP ops to EL3 */
11722 return 3;
11723 }
11724 #endif
11725 return 0;
11726 }
11727
11728 /* Return the exception level we're running at if this is our mmu_idx */
11729 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11730 {
11731 if (mmu_idx & ARM_MMU_IDX_M) {
11732 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11733 }
11734
11735 switch (mmu_idx) {
11736 case ARMMMUIdx_E10_0:
11737 case ARMMMUIdx_E20_0:
11738 return 0;
11739 case ARMMMUIdx_E10_1:
11740 case ARMMMUIdx_E10_1_PAN:
11741 return 1;
11742 case ARMMMUIdx_E2:
11743 case ARMMMUIdx_E20_2:
11744 case ARMMMUIdx_E20_2_PAN:
11745 return 2;
11746 case ARMMMUIdx_E3:
11747 return 3;
11748 default:
11749 g_assert_not_reached();
11750 }
11751 }
11752
11753 #ifndef CONFIG_TCG
11754 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11755 {
11756 g_assert_not_reached();
11757 }
11758 #endif
11759
11760 static bool arm_pan_enabled(CPUARMState *env)
11761 {
11762 if (is_a64(env)) {
11763 return env->pstate & PSTATE_PAN;
11764 } else {
11765 return env->uncached_cpsr & CPSR_PAN;
11766 }
11767 }
11768
11769 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11770 {
11771 ARMMMUIdx idx;
11772 uint64_t hcr;
11773
11774 if (arm_feature(env, ARM_FEATURE_M)) {
11775 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11776 }
11777
11778 /* See ARM pseudo-function ELIsInHost. */
11779 switch (el) {
11780 case 0:
11781 hcr = arm_hcr_el2_eff(env);
11782 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11783 idx = ARMMMUIdx_E20_0;
11784 } else {
11785 idx = ARMMMUIdx_E10_0;
11786 }
11787 break;
11788 case 1:
11789 if (arm_pan_enabled(env)) {
11790 idx = ARMMMUIdx_E10_1_PAN;
11791 } else {
11792 idx = ARMMMUIdx_E10_1;
11793 }
11794 break;
11795 case 2:
11796 /* Note that TGE does not apply at EL2. */
11797 if (arm_hcr_el2_eff(env) & HCR_E2H) {
11798 if (arm_pan_enabled(env)) {
11799 idx = ARMMMUIdx_E20_2_PAN;
11800 } else {
11801 idx = ARMMMUIdx_E20_2;
11802 }
11803 } else {
11804 idx = ARMMMUIdx_E2;
11805 }
11806 break;
11807 case 3:
11808 return ARMMMUIdx_E3;
11809 default:
11810 g_assert_not_reached();
11811 }
11812
11813 return idx;
11814 }
11815
11816 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11817 {
11818 return arm_mmu_idx_el(env, arm_current_el(env));
11819 }
11820
11821 static bool mve_no_pred(CPUARMState *env)
11822 {
11823 /*
11824 * Return true if there is definitely no predication of MVE
11825 * instructions by VPR or LTPSIZE. (Returning false even if there
11826 * isn't any predication is OK; generated code will just be
11827 * a little worse.)
11828 * If the CPU does not implement MVE then this TB flag is always 0.
11829 *
11830 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11831 * logic in gen_update_fp_context() needs to be updated to match.
11832 *
11833 * We do not include the effect of the ECI bits here -- they are
11834 * tracked in other TB flags. This simplifies the logic for
11835 * "when did we emit code that changes the MVE_NO_PRED TB flag
11836 * and thus need to end the TB?".
11837 */
11838 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11839 return false;
11840 }
11841 if (env->v7m.vpr) {
11842 return false;
11843 }
11844 if (env->v7m.ltpsize < 4) {
11845 return false;
11846 }
11847 return true;
11848 }
11849
11850 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11851 target_ulong *cs_base, uint32_t *pflags)
11852 {
11853 CPUARMTBFlags flags;
11854
11855 assert_hflags_rebuild_correctly(env);
11856 flags = env->hflags;
11857
11858 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11859 *pc = env->pc;
11860 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11861 DP_TBFLAG_A64(flags, BTYPE, env->btype);
11862 }
11863 } else {
11864 *pc = env->regs[15];
11865
11866 if (arm_feature(env, ARM_FEATURE_M)) {
11867 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11868 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11869 != env->v7m.secure) {
11870 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11871 }
11872
11873 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11874 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11875 (env->v7m.secure &&
11876 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11877 /*
11878 * ASPEN is set, but FPCA/SFPA indicate that there is no
11879 * active FP context; we must create a new FP context before
11880 * executing any FP insn.
11881 */
11882 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11883 }
11884
11885 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11886 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11887 DP_TBFLAG_M32(flags, LSPACT, 1);
11888 }
11889
11890 if (mve_no_pred(env)) {
11891 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11892 }
11893 } else {
11894 /*
11895 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11896 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11897 */
11898 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11899 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11900 } else {
11901 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11902 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11903 }
11904 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11905 DP_TBFLAG_A32(flags, VFPEN, 1);
11906 }
11907 }
11908
11909 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11910 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11911 }
11912
11913 /*
11914 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11915 * states defined in the ARM ARM for software singlestep:
11916 * SS_ACTIVE PSTATE.SS State
11917 * 0 x Inactive (the TB flag for SS is always 0)
11918 * 1 0 Active-pending
11919 * 1 1 Active-not-pending
11920 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11921 */
11922 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11923 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11924 }
11925
11926 *pflags = flags.flags;
11927 *cs_base = flags.flags2;
11928 }
11929
11930 #ifdef TARGET_AARCH64
11931 /*
11932 * The manual says that when SVE is enabled and VQ is widened the
11933 * implementation is allowed to zero the previously inaccessible
11934 * portion of the registers. The corollary to that is that when
11935 * SVE is enabled and VQ is narrowed we are also allowed to zero
11936 * the now inaccessible portion of the registers.
11937 *
11938 * The intent of this is that no predicate bit beyond VQ is ever set.
11939 * Which means that some operations on predicate registers themselves
11940 * may operate on full uint64_t or even unrolled across the maximum
11941 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11942 * may well be cheaper than conditionals to restrict the operation
11943 * to the relevant portion of a uint16_t[16].
11944 */
11945 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11946 {
11947 int i, j;
11948 uint64_t pmask;
11949
11950 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11951 assert(vq <= env_archcpu(env)->sve_max_vq);
11952
11953 /* Zap the high bits of the zregs. */
11954 for (i = 0; i < 32; i++) {
11955 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11956 }
11957
11958 /* Zap the high bits of the pregs and ffr. */
11959 pmask = 0;
11960 if (vq & 3) {
11961 pmask = ~(-1ULL << (16 * (vq & 3)));
11962 }
11963 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11964 for (i = 0; i < 17; ++i) {
11965 env->vfp.pregs[i].p[j] &= pmask;
11966 }
11967 pmask = 0;
11968 }
11969 }
11970
11971 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11972 {
11973 int exc_el;
11974
11975 if (sm) {
11976 exc_el = sme_exception_el(env, el);
11977 } else {
11978 exc_el = sve_exception_el(env, el);
11979 }
11980 if (exc_el) {
11981 return 0; /* disabled */
11982 }
11983 return sve_vqm1_for_el_sm(env, el, sm);
11984 }
11985
11986 /*
11987 * Notice a change in SVE vector size when changing EL.
11988 */
11989 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11990 int new_el, bool el0_a64)
11991 {
11992 ARMCPU *cpu = env_archcpu(env);
11993 int old_len, new_len;
11994 bool old_a64, new_a64, sm;
11995
11996 /* Nothing to do if no SVE. */
11997 if (!cpu_isar_feature(aa64_sve, cpu)) {
11998 return;
11999 }
12000
12001 /* Nothing to do if FP is disabled in either EL. */
12002 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12003 return;
12004 }
12005
12006 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12007 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12008
12009 /*
12010 * Both AArch64.TakeException and AArch64.ExceptionReturn
12011 * invoke ResetSVEState when taking an exception from, or
12012 * returning to, AArch32 state when PSTATE.SM is enabled.
12013 */
12014 sm = FIELD_EX64(env->svcr, SVCR, SM);
12015 if (old_a64 != new_a64 && sm) {
12016 arm_reset_sve_state(env);
12017 return;
12018 }
12019
12020 /*
12021 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12022 * at ELx, or not available because the EL is in AArch32 state, then
12023 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12024 * has an effective value of 0".
12025 *
12026 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12027 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12028 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12029 * we already have the correct register contents when encountering the
12030 * vq0->vq0 transition between EL0->EL1.
12031 */
12032 old_len = new_len = 0;
12033 if (old_a64) {
12034 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12035 }
12036 if (new_a64) {
12037 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12038 }
12039
12040 /* When changing vector length, clear inaccessible state. */
12041 if (new_len < old_len) {
12042 aarch64_sve_narrow_vq(env, new_len + 1);
12043 }
12044 }
12045 #endif