]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Don't include sysemu/tcg.h if it is not necessary
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42
43 #ifndef CONFIG_USER_ONLY
44
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46 MMUAccessType access_type, ARMMMUIdx mmu_idx,
47 bool s1_is_el0,
48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49 target_ulong *page_size_ptr,
50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51 __attribute__((nonnull));
52 #endif
53
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56
57 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59 assert(ri->fieldoffset);
60 if (cpreg_field_is_64bit(ri)) {
61 return CPREG_FIELD64(env, ri);
62 } else {
63 return CPREG_FIELD32(env, ri);
64 }
65 }
66
67 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
68 uint64_t value)
69 {
70 assert(ri->fieldoffset);
71 if (cpreg_field_is_64bit(ri)) {
72 CPREG_FIELD64(env, ri) = value;
73 } else {
74 CPREG_FIELD32(env, ri) = value;
75 }
76 }
77
78 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
79 {
80 return (char *)env + ri->fieldoffset;
81 }
82
83 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
84 {
85 /* Raw read of a coprocessor register (as needed for migration, etc). */
86 if (ri->type & ARM_CP_CONST) {
87 return ri->resetvalue;
88 } else if (ri->raw_readfn) {
89 return ri->raw_readfn(env, ri);
90 } else if (ri->readfn) {
91 return ri->readfn(env, ri);
92 } else {
93 return raw_read(env, ri);
94 }
95 }
96
97 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
98 uint64_t v)
99 {
100 /* Raw write of a coprocessor register (as needed for migration, etc).
101 * Note that constant registers are treated as write-ignored; the
102 * caller should check for success by whether a readback gives the
103 * value written.
104 */
105 if (ri->type & ARM_CP_CONST) {
106 return;
107 } else if (ri->raw_writefn) {
108 ri->raw_writefn(env, ri, v);
109 } else if (ri->writefn) {
110 ri->writefn(env, ri, v);
111 } else {
112 raw_write(env, ri, v);
113 }
114 }
115
116 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
117 {
118 /* Return true if the regdef would cause an assertion if you called
119 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
120 * program bug for it not to have the NO_RAW flag).
121 * NB that returning false here doesn't necessarily mean that calling
122 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
123 * read/write access functions which are safe for raw use" from "has
124 * read/write access functions which have side effects but has forgotten
125 * to provide raw access functions".
126 * The tests here line up with the conditions in read/write_raw_cp_reg()
127 * and assertions in raw_read()/raw_write().
128 */
129 if ((ri->type & ARM_CP_CONST) ||
130 ri->fieldoffset ||
131 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
132 return false;
133 }
134 return true;
135 }
136
137 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
138 {
139 /* Write the coprocessor state from cpu->env to the (index,value) list. */
140 int i;
141 bool ok = true;
142
143 for (i = 0; i < cpu->cpreg_array_len; i++) {
144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
145 const ARMCPRegInfo *ri;
146 uint64_t newval;
147
148 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
149 if (!ri) {
150 ok = false;
151 continue;
152 }
153 if (ri->type & ARM_CP_NO_RAW) {
154 continue;
155 }
156
157 newval = read_raw_cp_reg(&cpu->env, ri);
158 if (kvm_sync) {
159 /*
160 * Only sync if the previous list->cpustate sync succeeded.
161 * Rather than tracking the success/failure state for every
162 * item in the list, we just recheck "does the raw write we must
163 * have made in write_list_to_cpustate() read back OK" here.
164 */
165 uint64_t oldval = cpu->cpreg_values[i];
166
167 if (oldval == newval) {
168 continue;
169 }
170
171 write_raw_cp_reg(&cpu->env, ri, oldval);
172 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
173 continue;
174 }
175
176 write_raw_cp_reg(&cpu->env, ri, newval);
177 }
178 cpu->cpreg_values[i] = newval;
179 }
180 return ok;
181 }
182
183 bool write_list_to_cpustate(ARMCPU *cpu)
184 {
185 int i;
186 bool ok = true;
187
188 for (i = 0; i < cpu->cpreg_array_len; i++) {
189 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
190 uint64_t v = cpu->cpreg_values[i];
191 const ARMCPRegInfo *ri;
192
193 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
194 if (!ri) {
195 ok = false;
196 continue;
197 }
198 if (ri->type & ARM_CP_NO_RAW) {
199 continue;
200 }
201 /* Write value and confirm it reads back as written
202 * (to catch read-only registers and partially read-only
203 * registers where the incoming migration value doesn't match)
204 */
205 write_raw_cp_reg(&cpu->env, ri, v);
206 if (read_raw_cp_reg(&cpu->env, ri) != v) {
207 ok = false;
208 }
209 }
210 return ok;
211 }
212
213 static void add_cpreg_to_list(gpointer key, gpointer opaque)
214 {
215 ARMCPU *cpu = opaque;
216 uint64_t regidx;
217 const ARMCPRegInfo *ri;
218
219 regidx = *(uint32_t *)key;
220 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
221
222 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
223 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
224 /* The value array need not be initialized at this point */
225 cpu->cpreg_array_len++;
226 }
227 }
228
229 static void count_cpreg(gpointer key, gpointer opaque)
230 {
231 ARMCPU *cpu = opaque;
232 uint64_t regidx;
233 const ARMCPRegInfo *ri;
234
235 regidx = *(uint32_t *)key;
236 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
237
238 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
239 cpu->cpreg_array_len++;
240 }
241 }
242
243 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
244 {
245 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
246 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
247
248 if (aidx > bidx) {
249 return 1;
250 }
251 if (aidx < bidx) {
252 return -1;
253 }
254 return 0;
255 }
256
257 void init_cpreg_list(ARMCPU *cpu)
258 {
259 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
260 * Note that we require cpreg_tuples[] to be sorted by key ID.
261 */
262 GList *keys;
263 int arraylen;
264
265 keys = g_hash_table_get_keys(cpu->cp_regs);
266 keys = g_list_sort(keys, cpreg_key_compare);
267
268 cpu->cpreg_array_len = 0;
269
270 g_list_foreach(keys, count_cpreg, cpu);
271
272 arraylen = cpu->cpreg_array_len;
273 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
274 cpu->cpreg_values = g_new(uint64_t, arraylen);
275 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
276 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
277 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
278 cpu->cpreg_array_len = 0;
279
280 g_list_foreach(keys, add_cpreg_to_list, cpu);
281
282 assert(cpu->cpreg_array_len == arraylen);
283
284 g_list_free(keys);
285 }
286
287 /*
288 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
289 */
290 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
291 const ARMCPRegInfo *ri,
292 bool isread)
293 {
294 if (!is_a64(env) && arm_current_el(env) == 3 &&
295 arm_is_secure_below_el3(env)) {
296 return CP_ACCESS_TRAP_UNCATEGORIZED;
297 }
298 return CP_ACCESS_OK;
299 }
300
301 /* Some secure-only AArch32 registers trap to EL3 if used from
302 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
303 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
304 * We assume that the .access field is set to PL1_RW.
305 */
306 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
307 const ARMCPRegInfo *ri,
308 bool isread)
309 {
310 if (arm_current_el(env) == 3) {
311 return CP_ACCESS_OK;
312 }
313 if (arm_is_secure_below_el3(env)) {
314 if (env->cp15.scr_el3 & SCR_EEL2) {
315 return CP_ACCESS_TRAP_EL2;
316 }
317 return CP_ACCESS_TRAP_EL3;
318 }
319 /* This will be EL1 NS and EL2 NS, which just UNDEF */
320 return CP_ACCESS_TRAP_UNCATEGORIZED;
321 }
322
323 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
324 {
325 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
326 }
327
328 /* Check for traps to "powerdown debug" registers, which are controlled
329 * by MDCR.TDOSA
330 */
331 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
332 bool isread)
333 {
334 int el = arm_current_el(env);
335 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
336 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
337 (arm_hcr_el2_eff(env) & HCR_TGE);
338
339 if (el < 2 && mdcr_el2_tdosa) {
340 return CP_ACCESS_TRAP_EL2;
341 }
342 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
343 return CP_ACCESS_TRAP_EL3;
344 }
345 return CP_ACCESS_OK;
346 }
347
348 /* Check for traps to "debug ROM" registers, which are controlled
349 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
350 */
351 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
352 bool isread)
353 {
354 int el = arm_current_el(env);
355 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
356 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
357 (arm_hcr_el2_eff(env) & HCR_TGE);
358
359 if (el < 2 && mdcr_el2_tdra) {
360 return CP_ACCESS_TRAP_EL2;
361 }
362 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
363 return CP_ACCESS_TRAP_EL3;
364 }
365 return CP_ACCESS_OK;
366 }
367
368 /* Check for traps to general debug registers, which are controlled
369 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
370 */
371 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
372 bool isread)
373 {
374 int el = arm_current_el(env);
375 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
376 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
377 (arm_hcr_el2_eff(env) & HCR_TGE);
378
379 if (el < 2 && mdcr_el2_tda) {
380 return CP_ACCESS_TRAP_EL2;
381 }
382 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
383 return CP_ACCESS_TRAP_EL3;
384 }
385 return CP_ACCESS_OK;
386 }
387
388 /* Check for traps to performance monitor registers, which are controlled
389 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
390 */
391 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
393 {
394 int el = arm_current_el(env);
395 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
396
397 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
398 return CP_ACCESS_TRAP_EL2;
399 }
400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
401 return CP_ACCESS_TRAP_EL3;
402 }
403 return CP_ACCESS_OK;
404 }
405
406 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
407 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
408 bool isread)
409 {
410 if (arm_current_el(env) == 1) {
411 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
412 if (arm_hcr_el2_eff(env) & trap) {
413 return CP_ACCESS_TRAP_EL2;
414 }
415 }
416 return CP_ACCESS_OK;
417 }
418
419 /* Check for traps from EL1 due to HCR_EL2.TSW. */
420 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
421 bool isread)
422 {
423 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
424 return CP_ACCESS_TRAP_EL2;
425 }
426 return CP_ACCESS_OK;
427 }
428
429 /* Check for traps from EL1 due to HCR_EL2.TACR. */
430 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
431 bool isread)
432 {
433 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
434 return CP_ACCESS_TRAP_EL2;
435 }
436 return CP_ACCESS_OK;
437 }
438
439 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
440 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
441 bool isread)
442 {
443 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
444 return CP_ACCESS_TRAP_EL2;
445 }
446 return CP_ACCESS_OK;
447 }
448
449 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
450 {
451 ARMCPU *cpu = env_archcpu(env);
452
453 raw_write(env, ri, value);
454 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
455 }
456
457 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
458 {
459 ARMCPU *cpu = env_archcpu(env);
460
461 if (raw_read(env, ri) != value) {
462 /* Unlike real hardware the qemu TLB uses virtual addresses,
463 * not modified virtual addresses, so this causes a TLB flush.
464 */
465 tlb_flush(CPU(cpu));
466 raw_write(env, ri, value);
467 }
468 }
469
470 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
471 uint64_t value)
472 {
473 ARMCPU *cpu = env_archcpu(env);
474
475 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
476 && !extended_addresses_enabled(env)) {
477 /* For VMSA (when not using the LPAE long descriptor page table
478 * format) this register includes the ASID, so do a TLB flush.
479 * For PMSA it is purely a process ID and no action is needed.
480 */
481 tlb_flush(CPU(cpu));
482 }
483 raw_write(env, ri, value);
484 }
485
486 /* IS variants of TLB operations must affect all cores */
487 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 uint64_t value)
489 {
490 CPUState *cs = env_cpu(env);
491
492 tlb_flush_all_cpus_synced(cs);
493 }
494
495 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
496 uint64_t value)
497 {
498 CPUState *cs = env_cpu(env);
499
500 tlb_flush_all_cpus_synced(cs);
501 }
502
503 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
504 uint64_t value)
505 {
506 CPUState *cs = env_cpu(env);
507
508 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
509 }
510
511 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
512 uint64_t value)
513 {
514 CPUState *cs = env_cpu(env);
515
516 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
517 }
518
519 /*
520 * Non-IS variants of TLB operations are upgraded to
521 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
522 * force broadcast of these operations.
523 */
524 static bool tlb_force_broadcast(CPUARMState *env)
525 {
526 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
527 }
528
529 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
530 uint64_t value)
531 {
532 /* Invalidate all (TLBIALL) */
533 CPUState *cs = env_cpu(env);
534
535 if (tlb_force_broadcast(env)) {
536 tlb_flush_all_cpus_synced(cs);
537 } else {
538 tlb_flush(cs);
539 }
540 }
541
542 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
543 uint64_t value)
544 {
545 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
546 CPUState *cs = env_cpu(env);
547
548 value &= TARGET_PAGE_MASK;
549 if (tlb_force_broadcast(env)) {
550 tlb_flush_page_all_cpus_synced(cs, value);
551 } else {
552 tlb_flush_page(cs, value);
553 }
554 }
555
556 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 /* Invalidate by ASID (TLBIASID) */
560 CPUState *cs = env_cpu(env);
561
562 if (tlb_force_broadcast(env)) {
563 tlb_flush_all_cpus_synced(cs);
564 } else {
565 tlb_flush(cs);
566 }
567 }
568
569 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
570 uint64_t value)
571 {
572 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
573 CPUState *cs = env_cpu(env);
574
575 value &= TARGET_PAGE_MASK;
576 if (tlb_force_broadcast(env)) {
577 tlb_flush_page_all_cpus_synced(cs, value);
578 } else {
579 tlb_flush_page(cs, value);
580 }
581 }
582
583 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
584 uint64_t value)
585 {
586 CPUState *cs = env_cpu(env);
587
588 tlb_flush_by_mmuidx(cs,
589 ARMMMUIdxBit_E10_1 |
590 ARMMMUIdxBit_E10_1_PAN |
591 ARMMMUIdxBit_E10_0);
592 }
593
594 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
596 {
597 CPUState *cs = env_cpu(env);
598
599 tlb_flush_by_mmuidx_all_cpus_synced(cs,
600 ARMMMUIdxBit_E10_1 |
601 ARMMMUIdxBit_E10_1_PAN |
602 ARMMMUIdxBit_E10_0);
603 }
604
605
606 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
608 {
609 CPUState *cs = env_cpu(env);
610
611 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
612 }
613
614 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 uint64_t value)
616 {
617 CPUState *cs = env_cpu(env);
618
619 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
620 }
621
622 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
623 uint64_t value)
624 {
625 CPUState *cs = env_cpu(env);
626 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
627
628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
629 }
630
631 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633 {
634 CPUState *cs = env_cpu(env);
635 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
636
637 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
638 ARMMMUIdxBit_E2);
639 }
640
641 static const ARMCPRegInfo cp_reginfo[] = {
642 /* Define the secure and non-secure FCSE identifier CP registers
643 * separately because there is no secure bank in V8 (no _EL3). This allows
644 * the secure register to be properly reset and migrated. There is also no
645 * v8 EL1 version of the register so the non-secure instance stands alone.
646 */
647 { .name = "FCSEIDR",
648 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
649 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
650 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
651 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
652 { .name = "FCSEIDR_S",
653 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
654 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
655 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
656 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
657 /* Define the secure and non-secure context identifier CP registers
658 * separately because there is no secure bank in V8 (no _EL3). This allows
659 * the secure register to be properly reset and migrated. In the
660 * non-secure case, the 32-bit register will have reset and migration
661 * disabled during registration as it is handled by the 64-bit instance.
662 */
663 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
664 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
665 .access = PL1_RW, .accessfn = access_tvm_trvm,
666 .secure = ARM_CP_SECSTATE_NS,
667 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
668 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
669 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
670 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
671 .access = PL1_RW, .accessfn = access_tvm_trvm,
672 .secure = ARM_CP_SECSTATE_S,
673 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
674 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
675 REGINFO_SENTINEL
676 };
677
678 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
679 /* NB: Some of these registers exist in v8 but with more precise
680 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
681 */
682 /* MMU Domain access control / MPU write buffer control */
683 { .name = "DACR",
684 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
685 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
686 .writefn = dacr_write, .raw_writefn = raw_write,
687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
688 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
689 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
690 * For v6 and v5, these mappings are overly broad.
691 */
692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
694 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
695 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
696 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
697 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
698 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
699 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
700 /* Cache maintenance ops; some of this space may be overridden later. */
701 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
702 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
703 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
704 REGINFO_SENTINEL
705 };
706
707 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
708 /* Not all pre-v6 cores implemented this WFI, so this is slightly
709 * over-broad.
710 */
711 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
712 .access = PL1_W, .type = ARM_CP_WFI },
713 REGINFO_SENTINEL
714 };
715
716 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
717 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
718 * is UNPREDICTABLE; we choose to NOP as most implementations do).
719 */
720 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
721 .access = PL1_W, .type = ARM_CP_WFI },
722 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
723 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
724 * OMAPCP will override this space.
725 */
726 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
727 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
728 .resetvalue = 0 },
729 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
730 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
731 .resetvalue = 0 },
732 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
733 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
734 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
735 .resetvalue = 0 },
736 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
737 * implementing it as RAZ means the "debug architecture version" bits
738 * will read as a reserved value, which should cause Linux to not try
739 * to use the debug hardware.
740 */
741 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
742 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
743 /* MMU TLB control. Note that the wildcarding means we cover not just
744 * the unified TLB ops but also the dside/iside/inner-shareable variants.
745 */
746 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
747 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
748 .type = ARM_CP_NO_RAW },
749 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
750 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
751 .type = ARM_CP_NO_RAW },
752 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
753 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
754 .type = ARM_CP_NO_RAW },
755 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
756 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
757 .type = ARM_CP_NO_RAW },
758 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
759 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
760 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
761 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
762 REGINFO_SENTINEL
763 };
764
765 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
766 uint64_t value)
767 {
768 uint32_t mask = 0;
769
770 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
771 if (!arm_feature(env, ARM_FEATURE_V8)) {
772 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
773 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
774 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
775 */
776 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
777 /* VFP coprocessor: cp10 & cp11 [23:20] */
778 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
779
780 if (!arm_feature(env, ARM_FEATURE_NEON)) {
781 /* ASEDIS [31] bit is RAO/WI */
782 value |= (1 << 31);
783 }
784
785 /* VFPv3 and upwards with NEON implement 32 double precision
786 * registers (D0-D31).
787 */
788 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
789 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
790 value |= (1 << 30);
791 }
792 }
793 value &= mask;
794 }
795
796 /*
797 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
798 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
799 */
800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
801 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
802 value &= ~(0xf << 20);
803 value |= env->cp15.cpacr_el1 & (0xf << 20);
804 }
805
806 env->cp15.cpacr_el1 = value;
807 }
808
809 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
810 {
811 /*
812 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
813 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
814 */
815 uint64_t value = env->cp15.cpacr_el1;
816
817 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
818 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
819 value &= ~(0xf << 20);
820 }
821 return value;
822 }
823
824
825 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
826 {
827 /* Call cpacr_write() so that we reset with the correct RAO bits set
828 * for our CPU features.
829 */
830 cpacr_write(env, ri, 0);
831 }
832
833 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
834 bool isread)
835 {
836 if (arm_feature(env, ARM_FEATURE_V8)) {
837 /* Check if CPACR accesses are to be trapped to EL2 */
838 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
839 (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
840 return CP_ACCESS_TRAP_EL2;
841 /* Check if CPACR accesses are to be trapped to EL3 */
842 } else if (arm_current_el(env) < 3 &&
843 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
844 return CP_ACCESS_TRAP_EL3;
845 }
846 }
847
848 return CP_ACCESS_OK;
849 }
850
851 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
852 bool isread)
853 {
854 /* Check if CPTR accesses are set to trap to EL3 */
855 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
856 return CP_ACCESS_TRAP_EL3;
857 }
858
859 return CP_ACCESS_OK;
860 }
861
862 static const ARMCPRegInfo v6_cp_reginfo[] = {
863 /* prefetch by MVA in v6, NOP in v7 */
864 { .name = "MVA_prefetch",
865 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
866 .access = PL1_W, .type = ARM_CP_NOP },
867 /* We need to break the TB after ISB to execute self-modifying code
868 * correctly and also to take any pending interrupts immediately.
869 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
870 */
871 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
872 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
873 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
874 .access = PL0_W, .type = ARM_CP_NOP },
875 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
876 .access = PL0_W, .type = ARM_CP_NOP },
877 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
878 .access = PL1_RW, .accessfn = access_tvm_trvm,
879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
880 offsetof(CPUARMState, cp15.ifar_ns) },
881 .resetvalue = 0, },
882 /* Watchpoint Fault Address Register : should actually only be present
883 * for 1136, 1176, 11MPCore.
884 */
885 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
886 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
887 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
888 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
891 REGINFO_SENTINEL
892 };
893
894 typedef struct pm_event {
895 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
896 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
897 bool (*supported)(CPUARMState *);
898 /*
899 * Retrieve the current count of the underlying event. The programmed
900 * counters hold a difference from the return value from this function
901 */
902 uint64_t (*get_count)(CPUARMState *);
903 /*
904 * Return how many nanoseconds it will take (at a minimum) for count events
905 * to occur. A negative value indicates the counter will never overflow, or
906 * that the counter has otherwise arranged for the overflow bit to be set
907 * and the PMU interrupt to be raised on overflow.
908 */
909 int64_t (*ns_per_count)(uint64_t);
910 } pm_event;
911
912 static bool event_always_supported(CPUARMState *env)
913 {
914 return true;
915 }
916
917 static uint64_t swinc_get_count(CPUARMState *env)
918 {
919 /*
920 * SW_INCR events are written directly to the pmevcntr's by writes to
921 * PMSWINC, so there is no underlying count maintained by the PMU itself
922 */
923 return 0;
924 }
925
926 static int64_t swinc_ns_per(uint64_t ignored)
927 {
928 return -1;
929 }
930
931 /*
932 * Return the underlying cycle count for the PMU cycle counters. If we're in
933 * usermode, simply return 0.
934 */
935 static uint64_t cycles_get_count(CPUARMState *env)
936 {
937 #ifndef CONFIG_USER_ONLY
938 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
939 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
940 #else
941 return cpu_get_host_ticks();
942 #endif
943 }
944
945 #ifndef CONFIG_USER_ONLY
946 static int64_t cycles_ns_per(uint64_t cycles)
947 {
948 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
949 }
950
951 static bool instructions_supported(CPUARMState *env)
952 {
953 return icount_enabled() == 1; /* Precise instruction counting */
954 }
955
956 static uint64_t instructions_get_count(CPUARMState *env)
957 {
958 return (uint64_t)icount_get_raw();
959 }
960
961 static int64_t instructions_ns_per(uint64_t icount)
962 {
963 return icount_to_ns((int64_t)icount);
964 }
965 #endif
966
967 static bool pmu_8_1_events_supported(CPUARMState *env)
968 {
969 /* For events which are supported in any v8.1 PMU */
970 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
971 }
972
973 static bool pmu_8_4_events_supported(CPUARMState *env)
974 {
975 /* For events which are supported in any v8.1 PMU */
976 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
977 }
978
979 static uint64_t zero_event_get_count(CPUARMState *env)
980 {
981 /* For events which on QEMU never fire, so their count is always zero */
982 return 0;
983 }
984
985 static int64_t zero_event_ns_per(uint64_t cycles)
986 {
987 /* An event which never fires can never overflow */
988 return -1;
989 }
990
991 static const pm_event pm_events[] = {
992 { .number = 0x000, /* SW_INCR */
993 .supported = event_always_supported,
994 .get_count = swinc_get_count,
995 .ns_per_count = swinc_ns_per,
996 },
997 #ifndef CONFIG_USER_ONLY
998 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
999 .supported = instructions_supported,
1000 .get_count = instructions_get_count,
1001 .ns_per_count = instructions_ns_per,
1002 },
1003 { .number = 0x011, /* CPU_CYCLES, Cycle */
1004 .supported = event_always_supported,
1005 .get_count = cycles_get_count,
1006 .ns_per_count = cycles_ns_per,
1007 },
1008 #endif
1009 { .number = 0x023, /* STALL_FRONTEND */
1010 .supported = pmu_8_1_events_supported,
1011 .get_count = zero_event_get_count,
1012 .ns_per_count = zero_event_ns_per,
1013 },
1014 { .number = 0x024, /* STALL_BACKEND */
1015 .supported = pmu_8_1_events_supported,
1016 .get_count = zero_event_get_count,
1017 .ns_per_count = zero_event_ns_per,
1018 },
1019 { .number = 0x03c, /* STALL */
1020 .supported = pmu_8_4_events_supported,
1021 .get_count = zero_event_get_count,
1022 .ns_per_count = zero_event_ns_per,
1023 },
1024 };
1025
1026 /*
1027 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1028 * events (i.e. the statistical profiling extension), this implementation
1029 * should first be updated to something sparse instead of the current
1030 * supported_event_map[] array.
1031 */
1032 #define MAX_EVENT_ID 0x3c
1033 #define UNSUPPORTED_EVENT UINT16_MAX
1034 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1035
1036 /*
1037 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1038 * of ARM event numbers to indices in our pm_events array.
1039 *
1040 * Note: Events in the 0x40XX range are not currently supported.
1041 */
1042 void pmu_init(ARMCPU *cpu)
1043 {
1044 unsigned int i;
1045
1046 /*
1047 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1048 * events to them
1049 */
1050 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1051 supported_event_map[i] = UNSUPPORTED_EVENT;
1052 }
1053 cpu->pmceid0 = 0;
1054 cpu->pmceid1 = 0;
1055
1056 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1057 const pm_event *cnt = &pm_events[i];
1058 assert(cnt->number <= MAX_EVENT_ID);
1059 /* We do not currently support events in the 0x40xx range */
1060 assert(cnt->number <= 0x3f);
1061
1062 if (cnt->supported(&cpu->env)) {
1063 supported_event_map[cnt->number] = i;
1064 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1065 if (cnt->number & 0x20) {
1066 cpu->pmceid1 |= event_mask;
1067 } else {
1068 cpu->pmceid0 |= event_mask;
1069 }
1070 }
1071 }
1072 }
1073
1074 /*
1075 * Check at runtime whether a PMU event is supported for the current machine
1076 */
1077 static bool event_supported(uint16_t number)
1078 {
1079 if (number > MAX_EVENT_ID) {
1080 return false;
1081 }
1082 return supported_event_map[number] != UNSUPPORTED_EVENT;
1083 }
1084
1085 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1086 bool isread)
1087 {
1088 /* Performance monitor registers user accessibility is controlled
1089 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1090 * trapping to EL2 or EL3 for other accesses.
1091 */
1092 int el = arm_current_el(env);
1093 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1094
1095 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1096 return CP_ACCESS_TRAP;
1097 }
1098 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1099 return CP_ACCESS_TRAP_EL2;
1100 }
1101 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1102 return CP_ACCESS_TRAP_EL3;
1103 }
1104
1105 return CP_ACCESS_OK;
1106 }
1107
1108 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1111 {
1112 /* ER: event counter read trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1116 && isread) {
1117 return CP_ACCESS_OK;
1118 }
1119
1120 return pmreg_access(env, ri, isread);
1121 }
1122
1123 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1126 {
1127 /* SW: software increment write trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1131 && !isread) {
1132 return CP_ACCESS_OK;
1133 }
1134
1135 return pmreg_access(env, ri, isread);
1136 }
1137
1138 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1139 const ARMCPRegInfo *ri,
1140 bool isread)
1141 {
1142 /* ER: event counter read trap control */
1143 if (arm_feature(env, ARM_FEATURE_V8)
1144 && arm_current_el(env) == 0
1145 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1146 return CP_ACCESS_OK;
1147 }
1148
1149 return pmreg_access(env, ri, isread);
1150 }
1151
1152 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1153 const ARMCPRegInfo *ri,
1154 bool isread)
1155 {
1156 /* CR: cycle counter read trap control */
1157 if (arm_feature(env, ARM_FEATURE_V8)
1158 && arm_current_el(env) == 0
1159 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1160 && isread) {
1161 return CP_ACCESS_OK;
1162 }
1163
1164 return pmreg_access(env, ri, isread);
1165 }
1166
1167 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1168 * the current EL, security state, and register configuration.
1169 */
1170 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1171 {
1172 uint64_t filter;
1173 bool e, p, u, nsk, nsu, nsh, m;
1174 bool enabled, prohibited, filtered;
1175 bool secure = arm_is_secure(env);
1176 int el = arm_current_el(env);
1177 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1178 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1179
1180 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1181 return false;
1182 }
1183
1184 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1185 (counter < hpmn || counter == 31)) {
1186 e = env->cp15.c9_pmcr & PMCRE;
1187 } else {
1188 e = mdcr_el2 & MDCR_HPME;
1189 }
1190 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1191
1192 if (!secure) {
1193 if (el == 2 && (counter < hpmn || counter == 31)) {
1194 prohibited = mdcr_el2 & MDCR_HPMD;
1195 } else {
1196 prohibited = false;
1197 }
1198 } else {
1199 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1200 !(env->cp15.mdcr_el3 & MDCR_SPME);
1201 }
1202
1203 if (prohibited && counter == 31) {
1204 prohibited = env->cp15.c9_pmcr & PMCRDP;
1205 }
1206
1207 if (counter == 31) {
1208 filter = env->cp15.pmccfiltr_el0;
1209 } else {
1210 filter = env->cp15.c14_pmevtyper[counter];
1211 }
1212
1213 p = filter & PMXEVTYPER_P;
1214 u = filter & PMXEVTYPER_U;
1215 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1216 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1217 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1218 m = arm_el_is_aa64(env, 1) &&
1219 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1220
1221 if (el == 0) {
1222 filtered = secure ? u : u != nsu;
1223 } else if (el == 1) {
1224 filtered = secure ? p : p != nsk;
1225 } else if (el == 2) {
1226 filtered = !nsh;
1227 } else { /* EL3 */
1228 filtered = m != p;
1229 }
1230
1231 if (counter != 31) {
1232 /*
1233 * If not checking PMCCNTR, ensure the counter is setup to an event we
1234 * support
1235 */
1236 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1237 if (!event_supported(event)) {
1238 return false;
1239 }
1240 }
1241
1242 return enabled && !prohibited && !filtered;
1243 }
1244
1245 static void pmu_update_irq(CPUARMState *env)
1246 {
1247 ARMCPU *cpu = env_archcpu(env);
1248 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1249 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1250 }
1251
1252 /*
1253 * Ensure c15_ccnt is the guest-visible count so that operations such as
1254 * enabling/disabling the counter or filtering, modifying the count itself,
1255 * etc. can be done logically. This is essentially a no-op if the counter is
1256 * not enabled at the time of the call.
1257 */
1258 static void pmccntr_op_start(CPUARMState *env)
1259 {
1260 uint64_t cycles = cycles_get_count(env);
1261
1262 if (pmu_counter_enabled(env, 31)) {
1263 uint64_t eff_cycles = cycles;
1264 if (env->cp15.c9_pmcr & PMCRD) {
1265 /* Increment once every 64 processor clock cycles */
1266 eff_cycles /= 64;
1267 }
1268
1269 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1270
1271 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1272 1ull << 63 : 1ull << 31;
1273 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1274 env->cp15.c9_pmovsr |= (1 << 31);
1275 pmu_update_irq(env);
1276 }
1277
1278 env->cp15.c15_ccnt = new_pmccntr;
1279 }
1280 env->cp15.c15_ccnt_delta = cycles;
1281 }
1282
1283 /*
1284 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1285 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1286 * pmccntr_op_start.
1287 */
1288 static void pmccntr_op_finish(CPUARMState *env)
1289 {
1290 if (pmu_counter_enabled(env, 31)) {
1291 #ifndef CONFIG_USER_ONLY
1292 /* Calculate when the counter will next overflow */
1293 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1294 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1295 remaining_cycles = (uint32_t)remaining_cycles;
1296 }
1297 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1298
1299 if (overflow_in > 0) {
1300 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1301 overflow_in;
1302 ARMCPU *cpu = env_archcpu(env);
1303 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1304 }
1305 #endif
1306
1307 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1308 if (env->cp15.c9_pmcr & PMCRD) {
1309 /* Increment once every 64 processor clock cycles */
1310 prev_cycles /= 64;
1311 }
1312 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1313 }
1314 }
1315
1316 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1317 {
1318
1319 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1320 uint64_t count = 0;
1321 if (event_supported(event)) {
1322 uint16_t event_idx = supported_event_map[event];
1323 count = pm_events[event_idx].get_count(env);
1324 }
1325
1326 if (pmu_counter_enabled(env, counter)) {
1327 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1328
1329 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1330 env->cp15.c9_pmovsr |= (1 << counter);
1331 pmu_update_irq(env);
1332 }
1333 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1334 }
1335 env->cp15.c14_pmevcntr_delta[counter] = count;
1336 }
1337
1338 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1339 {
1340 if (pmu_counter_enabled(env, counter)) {
1341 #ifndef CONFIG_USER_ONLY
1342 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1343 uint16_t event_idx = supported_event_map[event];
1344 uint64_t delta = UINT32_MAX -
1345 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1346 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1347
1348 if (overflow_in > 0) {
1349 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1350 overflow_in;
1351 ARMCPU *cpu = env_archcpu(env);
1352 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1353 }
1354 #endif
1355
1356 env->cp15.c14_pmevcntr_delta[counter] -=
1357 env->cp15.c14_pmevcntr[counter];
1358 }
1359 }
1360
1361 void pmu_op_start(CPUARMState *env)
1362 {
1363 unsigned int i;
1364 pmccntr_op_start(env);
1365 for (i = 0; i < pmu_num_counters(env); i++) {
1366 pmevcntr_op_start(env, i);
1367 }
1368 }
1369
1370 void pmu_op_finish(CPUARMState *env)
1371 {
1372 unsigned int i;
1373 pmccntr_op_finish(env);
1374 for (i = 0; i < pmu_num_counters(env); i++) {
1375 pmevcntr_op_finish(env, i);
1376 }
1377 }
1378
1379 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1380 {
1381 pmu_op_start(&cpu->env);
1382 }
1383
1384 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1385 {
1386 pmu_op_finish(&cpu->env);
1387 }
1388
1389 void arm_pmu_timer_cb(void *opaque)
1390 {
1391 ARMCPU *cpu = opaque;
1392
1393 /*
1394 * Update all the counter values based on the current underlying counts,
1395 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1396 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1397 * counter may expire.
1398 */
1399 pmu_op_start(&cpu->env);
1400 pmu_op_finish(&cpu->env);
1401 }
1402
1403 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1404 uint64_t value)
1405 {
1406 pmu_op_start(env);
1407
1408 if (value & PMCRC) {
1409 /* The counter has been reset */
1410 env->cp15.c15_ccnt = 0;
1411 }
1412
1413 if (value & PMCRP) {
1414 unsigned int i;
1415 for (i = 0; i < pmu_num_counters(env); i++) {
1416 env->cp15.c14_pmevcntr[i] = 0;
1417 }
1418 }
1419
1420 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1421 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1422
1423 pmu_op_finish(env);
1424 }
1425
1426 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1427 uint64_t value)
1428 {
1429 unsigned int i;
1430 for (i = 0; i < pmu_num_counters(env); i++) {
1431 /* Increment a counter's count iff: */
1432 if ((value & (1 << i)) && /* counter's bit is set */
1433 /* counter is enabled and not filtered */
1434 pmu_counter_enabled(env, i) &&
1435 /* counter is SW_INCR */
1436 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1437 pmevcntr_op_start(env, i);
1438
1439 /*
1440 * Detect if this write causes an overflow since we can't predict
1441 * PMSWINC overflows like we can for other events
1442 */
1443 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1444
1445 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1446 env->cp15.c9_pmovsr |= (1 << i);
1447 pmu_update_irq(env);
1448 }
1449
1450 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1451
1452 pmevcntr_op_finish(env, i);
1453 }
1454 }
1455 }
1456
1457 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1458 {
1459 uint64_t ret;
1460 pmccntr_op_start(env);
1461 ret = env->cp15.c15_ccnt;
1462 pmccntr_op_finish(env);
1463 return ret;
1464 }
1465
1466 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467 uint64_t value)
1468 {
1469 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1470 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1471 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1472 * accessed.
1473 */
1474 env->cp15.c9_pmselr = value & 0x1f;
1475 }
1476
1477 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479 {
1480 pmccntr_op_start(env);
1481 env->cp15.c15_ccnt = value;
1482 pmccntr_op_finish(env);
1483 }
1484
1485 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1486 uint64_t value)
1487 {
1488 uint64_t cur_val = pmccntr_read(env, NULL);
1489
1490 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1491 }
1492
1493 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1494 uint64_t value)
1495 {
1496 pmccntr_op_start(env);
1497 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1498 pmccntr_op_finish(env);
1499 }
1500
1501 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1502 uint64_t value)
1503 {
1504 pmccntr_op_start(env);
1505 /* M is not accessible from AArch32 */
1506 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1507 (value & PMCCFILTR);
1508 pmccntr_op_finish(env);
1509 }
1510
1511 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1512 {
1513 /* M is not visible in AArch32 */
1514 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1515 }
1516
1517 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1518 uint64_t value)
1519 {
1520 value &= pmu_counter_mask(env);
1521 env->cp15.c9_pmcnten |= value;
1522 }
1523
1524 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1525 uint64_t value)
1526 {
1527 value &= pmu_counter_mask(env);
1528 env->cp15.c9_pmcnten &= ~value;
1529 }
1530
1531 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1532 uint64_t value)
1533 {
1534 value &= pmu_counter_mask(env);
1535 env->cp15.c9_pmovsr &= ~value;
1536 pmu_update_irq(env);
1537 }
1538
1539 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540 uint64_t value)
1541 {
1542 value &= pmu_counter_mask(env);
1543 env->cp15.c9_pmovsr |= value;
1544 pmu_update_irq(env);
1545 }
1546
1547 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1548 uint64_t value, const uint8_t counter)
1549 {
1550 if (counter == 31) {
1551 pmccfiltr_write(env, ri, value);
1552 } else if (counter < pmu_num_counters(env)) {
1553 pmevcntr_op_start(env, counter);
1554
1555 /*
1556 * If this counter's event type is changing, store the current
1557 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1558 * pmevcntr_op_finish has the correct baseline when it converts back to
1559 * a delta.
1560 */
1561 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1562 PMXEVTYPER_EVTCOUNT;
1563 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1564 if (old_event != new_event) {
1565 uint64_t count = 0;
1566 if (event_supported(new_event)) {
1567 uint16_t event_idx = supported_event_map[new_event];
1568 count = pm_events[event_idx].get_count(env);
1569 }
1570 env->cp15.c14_pmevcntr_delta[counter] = count;
1571 }
1572
1573 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1574 pmevcntr_op_finish(env, counter);
1575 }
1576 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1577 * PMSELR value is equal to or greater than the number of implemented
1578 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1579 */
1580 }
1581
1582 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1583 const uint8_t counter)
1584 {
1585 if (counter == 31) {
1586 return env->cp15.pmccfiltr_el0;
1587 } else if (counter < pmu_num_counters(env)) {
1588 return env->cp15.c14_pmevtyper[counter];
1589 } else {
1590 /*
1591 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1592 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1593 */
1594 return 0;
1595 }
1596 }
1597
1598 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1599 uint64_t value)
1600 {
1601 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1602 pmevtyper_write(env, ri, value, counter);
1603 }
1604
1605 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1607 {
1608 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1609 env->cp15.c14_pmevtyper[counter] = value;
1610
1611 /*
1612 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1613 * pmu_op_finish calls when loading saved state for a migration. Because
1614 * we're potentially updating the type of event here, the value written to
1615 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1616 * different counter type. Therefore, we need to set this value to the
1617 * current count for the counter type we're writing so that pmu_op_finish
1618 * has the correct count for its calculation.
1619 */
1620 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1621 if (event_supported(event)) {
1622 uint16_t event_idx = supported_event_map[event];
1623 env->cp15.c14_pmevcntr_delta[counter] =
1624 pm_events[event_idx].get_count(env);
1625 }
1626 }
1627
1628 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1629 {
1630 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1631 return pmevtyper_read(env, ri, counter);
1632 }
1633
1634 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1635 uint64_t value)
1636 {
1637 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1638 }
1639
1640 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1641 {
1642 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1643 }
1644
1645 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1646 uint64_t value, uint8_t counter)
1647 {
1648 if (counter < pmu_num_counters(env)) {
1649 pmevcntr_op_start(env, counter);
1650 env->cp15.c14_pmevcntr[counter] = value;
1651 pmevcntr_op_finish(env, counter);
1652 }
1653 /*
1654 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1655 * are CONSTRAINED UNPREDICTABLE.
1656 */
1657 }
1658
1659 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint8_t counter)
1661 {
1662 if (counter < pmu_num_counters(env)) {
1663 uint64_t ret;
1664 pmevcntr_op_start(env, counter);
1665 ret = env->cp15.c14_pmevcntr[counter];
1666 pmevcntr_op_finish(env, counter);
1667 return ret;
1668 } else {
1669 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1670 * are CONSTRAINED UNPREDICTABLE. */
1671 return 0;
1672 }
1673 }
1674
1675 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1676 uint64_t value)
1677 {
1678 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1679 pmevcntr_write(env, ri, value, counter);
1680 }
1681
1682 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1683 {
1684 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1685 return pmevcntr_read(env, ri, counter);
1686 }
1687
1688 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1689 uint64_t value)
1690 {
1691 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1692 assert(counter < pmu_num_counters(env));
1693 env->cp15.c14_pmevcntr[counter] = value;
1694 pmevcntr_write(env, ri, value, counter);
1695 }
1696
1697 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1698 {
1699 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1700 assert(counter < pmu_num_counters(env));
1701 return env->cp15.c14_pmevcntr[counter];
1702 }
1703
1704 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1705 uint64_t value)
1706 {
1707 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1708 }
1709
1710 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1711 {
1712 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1713 }
1714
1715 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1716 uint64_t value)
1717 {
1718 if (arm_feature(env, ARM_FEATURE_V8)) {
1719 env->cp15.c9_pmuserenr = value & 0xf;
1720 } else {
1721 env->cp15.c9_pmuserenr = value & 1;
1722 }
1723 }
1724
1725 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1727 {
1728 /* We have no event counters so only the C bit can be changed */
1729 value &= pmu_counter_mask(env);
1730 env->cp15.c9_pminten |= value;
1731 pmu_update_irq(env);
1732 }
1733
1734 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735 uint64_t value)
1736 {
1737 value &= pmu_counter_mask(env);
1738 env->cp15.c9_pminten &= ~value;
1739 pmu_update_irq(env);
1740 }
1741
1742 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1743 uint64_t value)
1744 {
1745 /* Note that even though the AArch64 view of this register has bits
1746 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1747 * architectural requirements for bits which are RES0 only in some
1748 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1749 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1750 */
1751 raw_write(env, ri, value & ~0x1FULL);
1752 }
1753
1754 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1755 {
1756 /* Begin with base v8.0 state. */
1757 uint32_t valid_mask = 0x3fff;
1758 ARMCPU *cpu = env_archcpu(env);
1759
1760 if (ri->state == ARM_CP_STATE_AA64) {
1761 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1762 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1763 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1764 }
1765 valid_mask &= ~SCR_NET;
1766
1767 if (cpu_isar_feature(aa64_lor, cpu)) {
1768 valid_mask |= SCR_TLOR;
1769 }
1770 if (cpu_isar_feature(aa64_pauth, cpu)) {
1771 valid_mask |= SCR_API | SCR_APK;
1772 }
1773 if (cpu_isar_feature(aa64_sel2, cpu)) {
1774 valid_mask |= SCR_EEL2;
1775 }
1776 if (cpu_isar_feature(aa64_mte, cpu)) {
1777 valid_mask |= SCR_ATA;
1778 }
1779 } else {
1780 valid_mask &= ~(SCR_RW | SCR_ST);
1781 }
1782
1783 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1784 valid_mask &= ~SCR_HCE;
1785
1786 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1787 * supported if EL2 exists. The bit is UNK/SBZP when
1788 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1789 * when EL2 is unavailable.
1790 * On ARMv8, this bit is always available.
1791 */
1792 if (arm_feature(env, ARM_FEATURE_V7) &&
1793 !arm_feature(env, ARM_FEATURE_V8)) {
1794 valid_mask &= ~SCR_SMD;
1795 }
1796 }
1797
1798 /* Clear all-context RES0 bits. */
1799 value &= valid_mask;
1800 raw_write(env, ri, value);
1801 }
1802
1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1804 {
1805 /*
1806 * scr_write will set the RES1 bits on an AArch64-only CPU.
1807 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1808 */
1809 scr_write(env, ri, 0);
1810 }
1811
1812 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1813 const ARMCPRegInfo *ri,
1814 bool isread)
1815 {
1816 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1817 return CP_ACCESS_TRAP_EL2;
1818 }
1819
1820 return CP_ACCESS_OK;
1821 }
1822
1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1824 {
1825 ARMCPU *cpu = env_archcpu(env);
1826
1827 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1828 * bank
1829 */
1830 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1831 ri->secure & ARM_CP_SECSTATE_S);
1832
1833 return cpu->ccsidr[index];
1834 }
1835
1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837 uint64_t value)
1838 {
1839 raw_write(env, ri, value & 0xf);
1840 }
1841
1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1843 {
1844 CPUState *cs = env_cpu(env);
1845 bool el1 = arm_current_el(env) == 1;
1846 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1847 uint64_t ret = 0;
1848
1849 if (hcr_el2 & HCR_IMO) {
1850 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1851 ret |= CPSR_I;
1852 }
1853 } else {
1854 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1855 ret |= CPSR_I;
1856 }
1857 }
1858
1859 if (hcr_el2 & HCR_FMO) {
1860 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1861 ret |= CPSR_F;
1862 }
1863 } else {
1864 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1865 ret |= CPSR_F;
1866 }
1867 }
1868
1869 /* External aborts are not possible in QEMU so A bit is always clear */
1870 return ret;
1871 }
1872
1873 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1874 bool isread)
1875 {
1876 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1877 return CP_ACCESS_TRAP_EL2;
1878 }
1879
1880 return CP_ACCESS_OK;
1881 }
1882
1883 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1884 bool isread)
1885 {
1886 if (arm_feature(env, ARM_FEATURE_V8)) {
1887 return access_aa64_tid1(env, ri, isread);
1888 }
1889
1890 return CP_ACCESS_OK;
1891 }
1892
1893 static const ARMCPRegInfo v7_cp_reginfo[] = {
1894 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1895 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1896 .access = PL1_W, .type = ARM_CP_NOP },
1897 /* Performance monitors are implementation defined in v7,
1898 * but with an ARM recommended set of registers, which we
1899 * follow.
1900 *
1901 * Performance registers fall into three categories:
1902 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1903 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1904 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1905 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1906 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1907 */
1908 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1909 .access = PL0_RW, .type = ARM_CP_ALIAS,
1910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1911 .writefn = pmcntenset_write,
1912 .accessfn = pmreg_access,
1913 .raw_writefn = raw_write },
1914 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1915 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1916 .access = PL0_RW, .accessfn = pmreg_access,
1917 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1918 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1919 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1920 .access = PL0_RW,
1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1922 .accessfn = pmreg_access,
1923 .writefn = pmcntenclr_write,
1924 .type = ARM_CP_ALIAS },
1925 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1927 .access = PL0_RW, .accessfn = pmreg_access,
1928 .type = ARM_CP_ALIAS,
1929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1930 .writefn = pmcntenclr_write },
1931 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1932 .access = PL0_RW, .type = ARM_CP_IO,
1933 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1934 .accessfn = pmreg_access,
1935 .writefn = pmovsr_write,
1936 .raw_writefn = raw_write },
1937 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1938 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1939 .access = PL0_RW, .accessfn = pmreg_access,
1940 .type = ARM_CP_ALIAS | ARM_CP_IO,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1942 .writefn = pmovsr_write,
1943 .raw_writefn = raw_write },
1944 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1945 .access = PL0_W, .accessfn = pmreg_access_swinc,
1946 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1947 .writefn = pmswinc_write },
1948 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1950 .access = PL0_W, .accessfn = pmreg_access_swinc,
1951 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1952 .writefn = pmswinc_write },
1953 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1954 .access = PL0_RW, .type = ARM_CP_ALIAS,
1955 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1956 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1957 .raw_writefn = raw_write},
1958 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1960 .access = PL0_RW, .accessfn = pmreg_access_selr,
1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1962 .writefn = pmselr_write, .raw_writefn = raw_write, },
1963 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1964 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1965 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1966 .accessfn = pmreg_access_ccntr },
1967 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1968 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1969 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1970 .type = ARM_CP_IO,
1971 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1972 .readfn = pmccntr_read, .writefn = pmccntr_write,
1973 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1974 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1975 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1976 .access = PL0_RW, .accessfn = pmreg_access,
1977 .type = ARM_CP_ALIAS | ARM_CP_IO,
1978 .resetvalue = 0, },
1979 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1980 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1981 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1982 .access = PL0_RW, .accessfn = pmreg_access,
1983 .type = ARM_CP_IO,
1984 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1985 .resetvalue = 0, },
1986 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1988 .accessfn = pmreg_access,
1989 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1990 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1993 .accessfn = pmreg_access,
1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1995 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1996 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1997 .accessfn = pmreg_access_xevcntr,
1998 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1999 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2002 .accessfn = pmreg_access_xevcntr,
2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2004 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2006 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2007 .resetvalue = 0,
2008 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2009 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2011 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2013 .resetvalue = 0,
2014 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2015 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2016 .access = PL1_RW, .accessfn = access_tpm,
2017 .type = ARM_CP_ALIAS | ARM_CP_IO,
2018 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2019 .resetvalue = 0,
2020 .writefn = pmintenset_write, .raw_writefn = raw_write },
2021 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2022 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2023 .access = PL1_RW, .accessfn = access_tpm,
2024 .type = ARM_CP_IO,
2025 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2026 .writefn = pmintenset_write, .raw_writefn = raw_write,
2027 .resetvalue = 0x0 },
2028 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2029 .access = PL1_RW, .accessfn = access_tpm,
2030 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2031 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2032 .writefn = pmintenclr_write, },
2033 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2034 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2035 .access = PL1_RW, .accessfn = access_tpm,
2036 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2038 .writefn = pmintenclr_write },
2039 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2040 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2041 .access = PL1_R,
2042 .accessfn = access_aa64_tid2,
2043 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2044 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2046 .access = PL1_RW,
2047 .accessfn = access_aa64_tid2,
2048 .writefn = csselr_write, .resetvalue = 0,
2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2050 offsetof(CPUARMState, cp15.csselr_ns) } },
2051 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2052 * just RAZ for all cores:
2053 */
2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2056 .access = PL1_R, .type = ARM_CP_CONST,
2057 .accessfn = access_aa64_tid1,
2058 .resetvalue = 0 },
2059 /* Auxiliary fault status registers: these also are IMPDEF, and we
2060 * choose to RAZ/WI for all cores.
2061 */
2062 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2063 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2064 .access = PL1_RW, .accessfn = access_tvm_trvm,
2065 .type = ARM_CP_CONST, .resetvalue = 0 },
2066 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2068 .access = PL1_RW, .accessfn = access_tvm_trvm,
2069 .type = ARM_CP_CONST, .resetvalue = 0 },
2070 /* MAIR can just read-as-written because we don't implement caches
2071 * and so don't need to care about memory attributes.
2072 */
2073 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2074 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2075 .access = PL1_RW, .accessfn = access_tvm_trvm,
2076 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2077 .resetvalue = 0 },
2078 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2079 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2080 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2081 .resetvalue = 0 },
2082 /* For non-long-descriptor page tables these are PRRR and NMRR;
2083 * regardless they still act as reads-as-written for QEMU.
2084 */
2085 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2086 * allows them to assign the correct fieldoffset based on the endianness
2087 * handled in the field definitions.
2088 */
2089 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2090 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2091 .access = PL1_RW, .accessfn = access_tvm_trvm,
2092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2093 offsetof(CPUARMState, cp15.mair0_ns) },
2094 .resetfn = arm_cp_reset_ignore },
2095 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2096 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2097 .access = PL1_RW, .accessfn = access_tvm_trvm,
2098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2099 offsetof(CPUARMState, cp15.mair1_ns) },
2100 .resetfn = arm_cp_reset_ignore },
2101 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2103 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2104 /* 32 bit ITLB invalidates */
2105 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2106 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2107 .writefn = tlbiall_write },
2108 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2109 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2110 .writefn = tlbimva_write },
2111 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2112 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2113 .writefn = tlbiasid_write },
2114 /* 32 bit DTLB invalidates */
2115 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2117 .writefn = tlbiall_write },
2118 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2119 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2120 .writefn = tlbimva_write },
2121 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2123 .writefn = tlbiasid_write },
2124 /* 32 bit TLB invalidates */
2125 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2127 .writefn = tlbiall_write },
2128 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2129 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2130 .writefn = tlbimva_write },
2131 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2133 .writefn = tlbiasid_write },
2134 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2135 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2136 .writefn = tlbimvaa_write },
2137 REGINFO_SENTINEL
2138 };
2139
2140 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2141 /* 32 bit TLB invalidates, Inner Shareable */
2142 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2144 .writefn = tlbiall_is_write },
2145 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2147 .writefn = tlbimva_is_write },
2148 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2149 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2150 .writefn = tlbiasid_is_write },
2151 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2153 .writefn = tlbimvaa_is_write },
2154 REGINFO_SENTINEL
2155 };
2156
2157 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2158 /* PMOVSSET is not implemented in v7 before v7ve */
2159 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2160 .access = PL0_RW, .accessfn = pmreg_access,
2161 .type = ARM_CP_ALIAS | ARM_CP_IO,
2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2163 .writefn = pmovsset_write,
2164 .raw_writefn = raw_write },
2165 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2166 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2167 .access = PL0_RW, .accessfn = pmreg_access,
2168 .type = ARM_CP_ALIAS | ARM_CP_IO,
2169 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2170 .writefn = pmovsset_write,
2171 .raw_writefn = raw_write },
2172 REGINFO_SENTINEL
2173 };
2174
2175 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2176 uint64_t value)
2177 {
2178 value &= 1;
2179 env->teecr = value;
2180 }
2181
2182 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2183 bool isread)
2184 {
2185 /*
2186 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2187 * at all, so we don't need to check whether we're v8A.
2188 */
2189 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2190 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2191 return CP_ACCESS_TRAP_EL2;
2192 }
2193 return CP_ACCESS_OK;
2194 }
2195
2196 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2197 bool isread)
2198 {
2199 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2200 return CP_ACCESS_TRAP;
2201 }
2202 return teecr_access(env, ri, isread);
2203 }
2204
2205 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2206 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2207 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2208 .resetvalue = 0,
2209 .writefn = teecr_write, .accessfn = teecr_access },
2210 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2211 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2212 .accessfn = teehbr_access, .resetvalue = 0 },
2213 REGINFO_SENTINEL
2214 };
2215
2216 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2217 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2219 .access = PL0_RW,
2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2221 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2222 .access = PL0_RW,
2223 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2224 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2225 .resetfn = arm_cp_reset_ignore },
2226 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2227 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2228 .access = PL0_R|PL1_W,
2229 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2230 .resetvalue = 0},
2231 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2232 .access = PL0_R|PL1_W,
2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2234 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2235 .resetfn = arm_cp_reset_ignore },
2236 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2237 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2238 .access = PL1_RW,
2239 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2240 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2241 .access = PL1_RW,
2242 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2243 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2244 .resetvalue = 0 },
2245 REGINFO_SENTINEL
2246 };
2247
2248 #ifndef CONFIG_USER_ONLY
2249
2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2251 bool isread)
2252 {
2253 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2254 * Writable only at the highest implemented exception level.
2255 */
2256 int el = arm_current_el(env);
2257 uint64_t hcr;
2258 uint32_t cntkctl;
2259
2260 switch (el) {
2261 case 0:
2262 hcr = arm_hcr_el2_eff(env);
2263 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2264 cntkctl = env->cp15.cnthctl_el2;
2265 } else {
2266 cntkctl = env->cp15.c14_cntkctl;
2267 }
2268 if (!extract32(cntkctl, 0, 2)) {
2269 return CP_ACCESS_TRAP;
2270 }
2271 break;
2272 case 1:
2273 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2274 arm_is_secure_below_el3(env)) {
2275 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2276 return CP_ACCESS_TRAP_UNCATEGORIZED;
2277 }
2278 break;
2279 case 2:
2280 case 3:
2281 break;
2282 }
2283
2284 if (!isread && el < arm_highest_el(env)) {
2285 return CP_ACCESS_TRAP_UNCATEGORIZED;
2286 }
2287
2288 return CP_ACCESS_OK;
2289 }
2290
2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2292 bool isread)
2293 {
2294 unsigned int cur_el = arm_current_el(env);
2295 bool has_el2 = arm_is_el2_enabled(env);
2296 uint64_t hcr = arm_hcr_el2_eff(env);
2297
2298 switch (cur_el) {
2299 case 0:
2300 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2301 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2302 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2303 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2304 }
2305
2306 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2307 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2308 return CP_ACCESS_TRAP;
2309 }
2310
2311 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2312 if (hcr & HCR_E2H) {
2313 if (timeridx == GTIMER_PHYS &&
2314 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2315 return CP_ACCESS_TRAP_EL2;
2316 }
2317 } else {
2318 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2319 if (has_el2 && timeridx == GTIMER_PHYS &&
2320 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2321 return CP_ACCESS_TRAP_EL2;
2322 }
2323 }
2324 break;
2325
2326 case 1:
2327 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2328 if (has_el2 && timeridx == GTIMER_PHYS &&
2329 (hcr & HCR_E2H
2330 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2331 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2332 return CP_ACCESS_TRAP_EL2;
2333 }
2334 break;
2335 }
2336 return CP_ACCESS_OK;
2337 }
2338
2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2340 bool isread)
2341 {
2342 unsigned int cur_el = arm_current_el(env);
2343 bool has_el2 = arm_is_el2_enabled(env);
2344 uint64_t hcr = arm_hcr_el2_eff(env);
2345
2346 switch (cur_el) {
2347 case 0:
2348 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2349 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2350 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2351 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2352 }
2353
2354 /*
2355 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2356 * EL0 if EL0[PV]TEN is zero.
2357 */
2358 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2359 return CP_ACCESS_TRAP;
2360 }
2361 /* fall through */
2362
2363 case 1:
2364 if (has_el2 && timeridx == GTIMER_PHYS) {
2365 if (hcr & HCR_E2H) {
2366 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2367 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2368 return CP_ACCESS_TRAP_EL2;
2369 }
2370 } else {
2371 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2372 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2373 return CP_ACCESS_TRAP_EL2;
2374 }
2375 }
2376 }
2377 break;
2378 }
2379 return CP_ACCESS_OK;
2380 }
2381
2382 static CPAccessResult gt_pct_access(CPUARMState *env,
2383 const ARMCPRegInfo *ri,
2384 bool isread)
2385 {
2386 return gt_counter_access(env, GTIMER_PHYS, isread);
2387 }
2388
2389 static CPAccessResult gt_vct_access(CPUARMState *env,
2390 const ARMCPRegInfo *ri,
2391 bool isread)
2392 {
2393 return gt_counter_access(env, GTIMER_VIRT, isread);
2394 }
2395
2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2397 bool isread)
2398 {
2399 return gt_timer_access(env, GTIMER_PHYS, isread);
2400 }
2401
2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2403 bool isread)
2404 {
2405 return gt_timer_access(env, GTIMER_VIRT, isread);
2406 }
2407
2408 static CPAccessResult gt_stimer_access(CPUARMState *env,
2409 const ARMCPRegInfo *ri,
2410 bool isread)
2411 {
2412 /* The AArch64 register view of the secure physical timer is
2413 * always accessible from EL3, and configurably accessible from
2414 * Secure EL1.
2415 */
2416 switch (arm_current_el(env)) {
2417 case 1:
2418 if (!arm_is_secure(env)) {
2419 return CP_ACCESS_TRAP;
2420 }
2421 if (!(env->cp15.scr_el3 & SCR_ST)) {
2422 return CP_ACCESS_TRAP_EL3;
2423 }
2424 return CP_ACCESS_OK;
2425 case 0:
2426 case 2:
2427 return CP_ACCESS_TRAP;
2428 case 3:
2429 return CP_ACCESS_OK;
2430 default:
2431 g_assert_not_reached();
2432 }
2433 }
2434
2435 static uint64_t gt_get_countervalue(CPUARMState *env)
2436 {
2437 ARMCPU *cpu = env_archcpu(env);
2438
2439 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2440 }
2441
2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2443 {
2444 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2445
2446 if (gt->ctl & 1) {
2447 /* Timer enabled: calculate and set current ISTATUS, irq, and
2448 * reset timer to when ISTATUS next has to change
2449 */
2450 uint64_t offset = timeridx == GTIMER_VIRT ?
2451 cpu->env.cp15.cntvoff_el2 : 0;
2452 uint64_t count = gt_get_countervalue(&cpu->env);
2453 /* Note that this must be unsigned 64 bit arithmetic: */
2454 int istatus = count - offset >= gt->cval;
2455 uint64_t nexttick;
2456 int irqstate;
2457
2458 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2459
2460 irqstate = (istatus && !(gt->ctl & 2));
2461 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2462
2463 if (istatus) {
2464 /* Next transition is when count rolls back over to zero */
2465 nexttick = UINT64_MAX;
2466 } else {
2467 /* Next transition is when we hit cval */
2468 nexttick = gt->cval + offset;
2469 }
2470 /* Note that the desired next expiry time might be beyond the
2471 * signed-64-bit range of a QEMUTimer -- in this case we just
2472 * set the timer for as far in the future as possible. When the
2473 * timer expires we will reset the timer for any remaining period.
2474 */
2475 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2476 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2477 } else {
2478 timer_mod(cpu->gt_timer[timeridx], nexttick);
2479 }
2480 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2481 } else {
2482 /* Timer disabled: ISTATUS and timer output always clear */
2483 gt->ctl &= ~4;
2484 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2485 timer_del(cpu->gt_timer[timeridx]);
2486 trace_arm_gt_recalc_disabled(timeridx);
2487 }
2488 }
2489
2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2491 int timeridx)
2492 {
2493 ARMCPU *cpu = env_archcpu(env);
2494
2495 timer_del(cpu->gt_timer[timeridx]);
2496 }
2497
2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2499 {
2500 return gt_get_countervalue(env);
2501 }
2502
2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2504 {
2505 uint64_t hcr;
2506
2507 switch (arm_current_el(env)) {
2508 case 2:
2509 hcr = arm_hcr_el2_eff(env);
2510 if (hcr & HCR_E2H) {
2511 return 0;
2512 }
2513 break;
2514 case 0:
2515 hcr = arm_hcr_el2_eff(env);
2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517 return 0;
2518 }
2519 break;
2520 }
2521
2522 return env->cp15.cntvoff_el2;
2523 }
2524
2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2526 {
2527 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2528 }
2529
2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531 int timeridx,
2532 uint64_t value)
2533 {
2534 trace_arm_gt_cval_write(timeridx, value);
2535 env->cp15.c14_timer[timeridx].cval = value;
2536 gt_recalc_timer(env_archcpu(env), timeridx);
2537 }
2538
2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2540 int timeridx)
2541 {
2542 uint64_t offset = 0;
2543
2544 switch (timeridx) {
2545 case GTIMER_VIRT:
2546 case GTIMER_HYPVIRT:
2547 offset = gt_virt_cnt_offset(env);
2548 break;
2549 }
2550
2551 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2552 (gt_get_countervalue(env) - offset));
2553 }
2554
2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556 int timeridx,
2557 uint64_t value)
2558 {
2559 uint64_t offset = 0;
2560
2561 switch (timeridx) {
2562 case GTIMER_VIRT:
2563 case GTIMER_HYPVIRT:
2564 offset = gt_virt_cnt_offset(env);
2565 break;
2566 }
2567
2568 trace_arm_gt_tval_write(timeridx, value);
2569 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2570 sextract64(value, 0, 32);
2571 gt_recalc_timer(env_archcpu(env), timeridx);
2572 }
2573
2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2575 int timeridx,
2576 uint64_t value)
2577 {
2578 ARMCPU *cpu = env_archcpu(env);
2579 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2580
2581 trace_arm_gt_ctl_write(timeridx, value);
2582 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2583 if ((oldval ^ value) & 1) {
2584 /* Enable toggled */
2585 gt_recalc_timer(cpu, timeridx);
2586 } else if ((oldval ^ value) & 2) {
2587 /* IMASK toggled: don't need to recalculate,
2588 * just set the interrupt line based on ISTATUS
2589 */
2590 int irqstate = (oldval & 4) && !(value & 2);
2591
2592 trace_arm_gt_imask_toggle(timeridx, irqstate);
2593 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2594 }
2595 }
2596
2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2598 {
2599 gt_timer_reset(env, ri, GTIMER_PHYS);
2600 }
2601
2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603 uint64_t value)
2604 {
2605 gt_cval_write(env, ri, GTIMER_PHYS, value);
2606 }
2607
2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2609 {
2610 return gt_tval_read(env, ri, GTIMER_PHYS);
2611 }
2612
2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2615 {
2616 gt_tval_write(env, ri, GTIMER_PHYS, value);
2617 }
2618
2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620 uint64_t value)
2621 {
2622 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2623 }
2624
2625 static int gt_phys_redir_timeridx(CPUARMState *env)
2626 {
2627 switch (arm_mmu_idx(env)) {
2628 case ARMMMUIdx_E20_0:
2629 case ARMMMUIdx_E20_2:
2630 case ARMMMUIdx_E20_2_PAN:
2631 case ARMMMUIdx_SE20_0:
2632 case ARMMMUIdx_SE20_2:
2633 case ARMMMUIdx_SE20_2_PAN:
2634 return GTIMER_HYP;
2635 default:
2636 return GTIMER_PHYS;
2637 }
2638 }
2639
2640 static int gt_virt_redir_timeridx(CPUARMState *env)
2641 {
2642 switch (arm_mmu_idx(env)) {
2643 case ARMMMUIdx_E20_0:
2644 case ARMMMUIdx_E20_2:
2645 case ARMMMUIdx_E20_2_PAN:
2646 case ARMMMUIdx_SE20_0:
2647 case ARMMMUIdx_SE20_2:
2648 case ARMMMUIdx_SE20_2_PAN:
2649 return GTIMER_HYPVIRT;
2650 default:
2651 return GTIMER_VIRT;
2652 }
2653 }
2654
2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2656 const ARMCPRegInfo *ri)
2657 {
2658 int timeridx = gt_phys_redir_timeridx(env);
2659 return env->cp15.c14_timer[timeridx].cval;
2660 }
2661
2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2663 uint64_t value)
2664 {
2665 int timeridx = gt_phys_redir_timeridx(env);
2666 gt_cval_write(env, ri, timeridx, value);
2667 }
2668
2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2670 const ARMCPRegInfo *ri)
2671 {
2672 int timeridx = gt_phys_redir_timeridx(env);
2673 return gt_tval_read(env, ri, timeridx);
2674 }
2675
2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677 uint64_t value)
2678 {
2679 int timeridx = gt_phys_redir_timeridx(env);
2680 gt_tval_write(env, ri, timeridx, value);
2681 }
2682
2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2684 const ARMCPRegInfo *ri)
2685 {
2686 int timeridx = gt_phys_redir_timeridx(env);
2687 return env->cp15.c14_timer[timeridx].ctl;
2688 }
2689
2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2691 uint64_t value)
2692 {
2693 int timeridx = gt_phys_redir_timeridx(env);
2694 gt_ctl_write(env, ri, timeridx, value);
2695 }
2696
2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2698 {
2699 gt_timer_reset(env, ri, GTIMER_VIRT);
2700 }
2701
2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2703 uint64_t value)
2704 {
2705 gt_cval_write(env, ri, GTIMER_VIRT, value);
2706 }
2707
2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2709 {
2710 return gt_tval_read(env, ri, GTIMER_VIRT);
2711 }
2712
2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2714 uint64_t value)
2715 {
2716 gt_tval_write(env, ri, GTIMER_VIRT, value);
2717 }
2718
2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2720 uint64_t value)
2721 {
2722 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2723 }
2724
2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726 uint64_t value)
2727 {
2728 ARMCPU *cpu = env_archcpu(env);
2729
2730 trace_arm_gt_cntvoff_write(value);
2731 raw_write(env, ri, value);
2732 gt_recalc_timer(cpu, GTIMER_VIRT);
2733 }
2734
2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2736 const ARMCPRegInfo *ri)
2737 {
2738 int timeridx = gt_virt_redir_timeridx(env);
2739 return env->cp15.c14_timer[timeridx].cval;
2740 }
2741
2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2743 uint64_t value)
2744 {
2745 int timeridx = gt_virt_redir_timeridx(env);
2746 gt_cval_write(env, ri, timeridx, value);
2747 }
2748
2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2750 const ARMCPRegInfo *ri)
2751 {
2752 int timeridx = gt_virt_redir_timeridx(env);
2753 return gt_tval_read(env, ri, timeridx);
2754 }
2755
2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2757 uint64_t value)
2758 {
2759 int timeridx = gt_virt_redir_timeridx(env);
2760 gt_tval_write(env, ri, timeridx, value);
2761 }
2762
2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2764 const ARMCPRegInfo *ri)
2765 {
2766 int timeridx = gt_virt_redir_timeridx(env);
2767 return env->cp15.c14_timer[timeridx].ctl;
2768 }
2769
2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771 uint64_t value)
2772 {
2773 int timeridx = gt_virt_redir_timeridx(env);
2774 gt_ctl_write(env, ri, timeridx, value);
2775 }
2776
2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2778 {
2779 gt_timer_reset(env, ri, GTIMER_HYP);
2780 }
2781
2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783 uint64_t value)
2784 {
2785 gt_cval_write(env, ri, GTIMER_HYP, value);
2786 }
2787
2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2789 {
2790 return gt_tval_read(env, ri, GTIMER_HYP);
2791 }
2792
2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 uint64_t value)
2795 {
2796 gt_tval_write(env, ri, GTIMER_HYP, value);
2797 }
2798
2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800 uint64_t value)
2801 {
2802 gt_ctl_write(env, ri, GTIMER_HYP, value);
2803 }
2804
2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2806 {
2807 gt_timer_reset(env, ri, GTIMER_SEC);
2808 }
2809
2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2811 uint64_t value)
2812 {
2813 gt_cval_write(env, ri, GTIMER_SEC, value);
2814 }
2815
2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2817 {
2818 return gt_tval_read(env, ri, GTIMER_SEC);
2819 }
2820
2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822 uint64_t value)
2823 {
2824 gt_tval_write(env, ri, GTIMER_SEC, value);
2825 }
2826
2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 uint64_t value)
2829 {
2830 gt_ctl_write(env, ri, GTIMER_SEC, value);
2831 }
2832
2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2834 {
2835 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2836 }
2837
2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2839 uint64_t value)
2840 {
2841 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2842 }
2843
2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2845 {
2846 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2847 }
2848
2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850 uint64_t value)
2851 {
2852 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2853 }
2854
2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2857 {
2858 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2859 }
2860
2861 void arm_gt_ptimer_cb(void *opaque)
2862 {
2863 ARMCPU *cpu = opaque;
2864
2865 gt_recalc_timer(cpu, GTIMER_PHYS);
2866 }
2867
2868 void arm_gt_vtimer_cb(void *opaque)
2869 {
2870 ARMCPU *cpu = opaque;
2871
2872 gt_recalc_timer(cpu, GTIMER_VIRT);
2873 }
2874
2875 void arm_gt_htimer_cb(void *opaque)
2876 {
2877 ARMCPU *cpu = opaque;
2878
2879 gt_recalc_timer(cpu, GTIMER_HYP);
2880 }
2881
2882 void arm_gt_stimer_cb(void *opaque)
2883 {
2884 ARMCPU *cpu = opaque;
2885
2886 gt_recalc_timer(cpu, GTIMER_SEC);
2887 }
2888
2889 void arm_gt_hvtimer_cb(void *opaque)
2890 {
2891 ARMCPU *cpu = opaque;
2892
2893 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2894 }
2895
2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2897 {
2898 ARMCPU *cpu = env_archcpu(env);
2899
2900 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2901 }
2902
2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2904 /* Note that CNTFRQ is purely reads-as-written for the benefit
2905 * of software; writing it doesn't actually change the timer frequency.
2906 * Our reset value matches the fixed frequency we implement the timer at.
2907 */
2908 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2909 .type = ARM_CP_ALIAS,
2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2912 },
2913 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2914 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2915 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2916 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2917 .resetfn = arm_gt_cntfrq_reset,
2918 },
2919 /* overall control: mostly access permissions */
2920 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2921 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2922 .access = PL1_RW,
2923 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2924 .resetvalue = 0,
2925 },
2926 /* per-timer control */
2927 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2928 .secure = ARM_CP_SECSTATE_NS,
2929 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2930 .accessfn = gt_ptimer_access,
2931 .fieldoffset = offsetoflow32(CPUARMState,
2932 cp15.c14_timer[GTIMER_PHYS].ctl),
2933 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2934 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2935 },
2936 { .name = "CNTP_CTL_S",
2937 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2938 .secure = ARM_CP_SECSTATE_S,
2939 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2940 .accessfn = gt_ptimer_access,
2941 .fieldoffset = offsetoflow32(CPUARMState,
2942 cp15.c14_timer[GTIMER_SEC].ctl),
2943 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2944 },
2945 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2946 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2947 .type = ARM_CP_IO, .access = PL0_RW,
2948 .accessfn = gt_ptimer_access,
2949 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2950 .resetvalue = 0,
2951 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2952 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2953 },
2954 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2956 .accessfn = gt_vtimer_access,
2957 .fieldoffset = offsetoflow32(CPUARMState,
2958 cp15.c14_timer[GTIMER_VIRT].ctl),
2959 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2960 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2961 },
2962 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2964 .type = ARM_CP_IO, .access = PL0_RW,
2965 .accessfn = gt_vtimer_access,
2966 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2967 .resetvalue = 0,
2968 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2969 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2970 },
2971 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2972 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2973 .secure = ARM_CP_SECSTATE_NS,
2974 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2975 .accessfn = gt_ptimer_access,
2976 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2977 },
2978 { .name = "CNTP_TVAL_S",
2979 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2980 .secure = ARM_CP_SECSTATE_S,
2981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2982 .accessfn = gt_ptimer_access,
2983 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2984 },
2985 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2988 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2989 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2990 },
2991 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2992 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2993 .accessfn = gt_vtimer_access,
2994 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2995 },
2996 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2997 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2999 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3001 },
3002 /* The counter itself */
3003 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3004 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3005 .accessfn = gt_pct_access,
3006 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3007 },
3008 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3010 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3011 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3012 },
3013 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3014 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3015 .accessfn = gt_vct_access,
3016 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3017 },
3018 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3020 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3021 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3022 },
3023 /* Comparison value, indicating when the timer goes off */
3024 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3025 .secure = ARM_CP_SECSTATE_NS,
3026 .access = PL0_RW,
3027 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3029 .accessfn = gt_ptimer_access,
3030 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3031 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3032 },
3033 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3034 .secure = ARM_CP_SECSTATE_S,
3035 .access = PL0_RW,
3036 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3037 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3038 .accessfn = gt_ptimer_access,
3039 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3040 },
3041 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3043 .access = PL0_RW,
3044 .type = ARM_CP_IO,
3045 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3046 .resetvalue = 0, .accessfn = gt_ptimer_access,
3047 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3048 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3049 },
3050 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3051 .access = PL0_RW,
3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3054 .accessfn = gt_vtimer_access,
3055 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3056 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3057 },
3058 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3059 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3060 .access = PL0_RW,
3061 .type = ARM_CP_IO,
3062 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3063 .resetvalue = 0, .accessfn = gt_vtimer_access,
3064 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3065 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3066 },
3067 /* Secure timer -- this is actually restricted to only EL3
3068 * and configurably Secure-EL1 via the accessfn.
3069 */
3070 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3071 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3073 .accessfn = gt_stimer_access,
3074 .readfn = gt_sec_tval_read,
3075 .writefn = gt_sec_tval_write,
3076 .resetfn = gt_sec_timer_reset,
3077 },
3078 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3079 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3080 .type = ARM_CP_IO, .access = PL1_RW,
3081 .accessfn = gt_stimer_access,
3082 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3083 .resetvalue = 0,
3084 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3085 },
3086 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3088 .type = ARM_CP_IO, .access = PL1_RW,
3089 .accessfn = gt_stimer_access,
3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3091 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3092 },
3093 REGINFO_SENTINEL
3094 };
3095
3096 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3097 bool isread)
3098 {
3099 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3100 return CP_ACCESS_TRAP;
3101 }
3102 return CP_ACCESS_OK;
3103 }
3104
3105 #else
3106
3107 /* In user-mode most of the generic timer registers are inaccessible
3108 * however modern kernels (4.12+) allow access to cntvct_el0
3109 */
3110
3111 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3112 {
3113 ARMCPU *cpu = env_archcpu(env);
3114
3115 /* Currently we have no support for QEMUTimer in linux-user so we
3116 * can't call gt_get_countervalue(env), instead we directly
3117 * call the lower level functions.
3118 */
3119 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3120 }
3121
3122 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3123 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3125 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3126 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3127 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3128 },
3129 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3131 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3132 .readfn = gt_virt_cnt_read,
3133 },
3134 REGINFO_SENTINEL
3135 };
3136
3137 #endif
3138
3139 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3140 {
3141 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3142 raw_write(env, ri, value);
3143 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3144 raw_write(env, ri, value & 0xfffff6ff);
3145 } else {
3146 raw_write(env, ri, value & 0xfffff1ff);
3147 }
3148 }
3149
3150 #ifndef CONFIG_USER_ONLY
3151 /* get_phys_addr() isn't present for user-mode-only targets */
3152
3153 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3154 bool isread)
3155 {
3156 if (ri->opc2 & 4) {
3157 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3158 * Secure EL1 (which can only happen if EL3 is AArch64).
3159 * They are simply UNDEF if executed from NS EL1.
3160 * They function normally from EL2 or EL3.
3161 */
3162 if (arm_current_el(env) == 1) {
3163 if (arm_is_secure_below_el3(env)) {
3164 if (env->cp15.scr_el3 & SCR_EEL2) {
3165 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3166 }
3167 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3168 }
3169 return CP_ACCESS_TRAP_UNCATEGORIZED;
3170 }
3171 }
3172 return CP_ACCESS_OK;
3173 }
3174
3175 #ifdef CONFIG_TCG
3176 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3177 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3178 {
3179 hwaddr phys_addr;
3180 target_ulong page_size;
3181 int prot;
3182 bool ret;
3183 uint64_t par64;
3184 bool format64 = false;
3185 MemTxAttrs attrs = {};
3186 ARMMMUFaultInfo fi = {};
3187 ARMCacheAttrs cacheattrs = {};
3188
3189 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3190 &prot, &page_size, &fi, &cacheattrs);
3191
3192 if (ret) {
3193 /*
3194 * Some kinds of translation fault must cause exceptions rather
3195 * than being reported in the PAR.
3196 */
3197 int current_el = arm_current_el(env);
3198 int target_el;
3199 uint32_t syn, fsr, fsc;
3200 bool take_exc = false;
3201
3202 if (fi.s1ptw && current_el == 1
3203 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3204 /*
3205 * Synchronous stage 2 fault on an access made as part of the
3206 * translation table walk for AT S1E0* or AT S1E1* insn
3207 * executed from NS EL1. If this is a synchronous external abort
3208 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3209 * to EL3. Otherwise the fault is taken as an exception to EL2,
3210 * and HPFAR_EL2 holds the faulting IPA.
3211 */
3212 if (fi.type == ARMFault_SyncExternalOnWalk &&
3213 (env->cp15.scr_el3 & SCR_EA)) {
3214 target_el = 3;
3215 } else {
3216 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3217 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3218 env->cp15.hpfar_el2 |= HPFAR_NS;
3219 }
3220 target_el = 2;
3221 }
3222 take_exc = true;
3223 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3224 /*
3225 * Synchronous external aborts during a translation table walk
3226 * are taken as Data Abort exceptions.
3227 */
3228 if (fi.stage2) {
3229 if (current_el == 3) {
3230 target_el = 3;
3231 } else {
3232 target_el = 2;
3233 }
3234 } else {
3235 target_el = exception_target_el(env);
3236 }
3237 take_exc = true;
3238 }
3239
3240 if (take_exc) {
3241 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3242 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3243 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3244 fsr = arm_fi_to_lfsc(&fi);
3245 fsc = extract32(fsr, 0, 6);
3246 } else {
3247 fsr = arm_fi_to_sfsc(&fi);
3248 fsc = 0x3f;
3249 }
3250 /*
3251 * Report exception with ESR indicating a fault due to a
3252 * translation table walk for a cache maintenance instruction.
3253 */
3254 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3255 fi.ea, 1, fi.s1ptw, 1, fsc);
3256 env->exception.vaddress = value;
3257 env->exception.fsr = fsr;
3258 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3259 }
3260 }
3261
3262 if (is_a64(env)) {
3263 format64 = true;
3264 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3265 /*
3266 * ATS1Cxx:
3267 * * TTBCR.EAE determines whether the result is returned using the
3268 * 32-bit or the 64-bit PAR format
3269 * * Instructions executed in Hyp mode always use the 64bit format
3270 *
3271 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3272 * * The Non-secure TTBCR.EAE bit is set to 1
3273 * * The implementation includes EL2, and the value of HCR.VM is 1
3274 *
3275 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3276 *
3277 * ATS1Hx always uses the 64bit format.
3278 */
3279 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3280
3281 if (arm_feature(env, ARM_FEATURE_EL2)) {
3282 if (mmu_idx == ARMMMUIdx_E10_0 ||
3283 mmu_idx == ARMMMUIdx_E10_1 ||
3284 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3285 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3286 } else {
3287 format64 |= arm_current_el(env) == 2;
3288 }
3289 }
3290 }
3291
3292 if (format64) {
3293 /* Create a 64-bit PAR */
3294 par64 = (1 << 11); /* LPAE bit always set */
3295 if (!ret) {
3296 par64 |= phys_addr & ~0xfffULL;
3297 if (!attrs.secure) {
3298 par64 |= (1 << 9); /* NS */
3299 }
3300 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3301 par64 |= cacheattrs.shareability << 7; /* SH */
3302 } else {
3303 uint32_t fsr = arm_fi_to_lfsc(&fi);
3304
3305 par64 |= 1; /* F */
3306 par64 |= (fsr & 0x3f) << 1; /* FS */
3307 if (fi.stage2) {
3308 par64 |= (1 << 9); /* S */
3309 }
3310 if (fi.s1ptw) {
3311 par64 |= (1 << 8); /* PTW */
3312 }
3313 }
3314 } else {
3315 /* fsr is a DFSR/IFSR value for the short descriptor
3316 * translation table format (with WnR always clear).
3317 * Convert it to a 32-bit PAR.
3318 */
3319 if (!ret) {
3320 /* We do not set any attribute bits in the PAR */
3321 if (page_size == (1 << 24)
3322 && arm_feature(env, ARM_FEATURE_V7)) {
3323 par64 = (phys_addr & 0xff000000) | (1 << 1);
3324 } else {
3325 par64 = phys_addr & 0xfffff000;
3326 }
3327 if (!attrs.secure) {
3328 par64 |= (1 << 9); /* NS */
3329 }
3330 } else {
3331 uint32_t fsr = arm_fi_to_sfsc(&fi);
3332
3333 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3334 ((fsr & 0xf) << 1) | 1;
3335 }
3336 }
3337 return par64;
3338 }
3339 #endif /* CONFIG_TCG */
3340
3341 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3342 {
3343 #ifdef CONFIG_TCG
3344 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3345 uint64_t par64;
3346 ARMMMUIdx mmu_idx;
3347 int el = arm_current_el(env);
3348 bool secure = arm_is_secure_below_el3(env);
3349
3350 switch (ri->opc2 & 6) {
3351 case 0:
3352 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3353 switch (el) {
3354 case 3:
3355 mmu_idx = ARMMMUIdx_SE3;
3356 break;
3357 case 2:
3358 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3359 /* fall through */
3360 case 1:
3361 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3362 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3363 : ARMMMUIdx_Stage1_E1_PAN);
3364 } else {
3365 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3366 }
3367 break;
3368 default:
3369 g_assert_not_reached();
3370 }
3371 break;
3372 case 2:
3373 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3374 switch (el) {
3375 case 3:
3376 mmu_idx = ARMMMUIdx_SE10_0;
3377 break;
3378 case 2:
3379 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3380 mmu_idx = ARMMMUIdx_Stage1_E0;
3381 break;
3382 case 1:
3383 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3384 break;
3385 default:
3386 g_assert_not_reached();
3387 }
3388 break;
3389 case 4:
3390 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3391 mmu_idx = ARMMMUIdx_E10_1;
3392 break;
3393 case 6:
3394 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3395 mmu_idx = ARMMMUIdx_E10_0;
3396 break;
3397 default:
3398 g_assert_not_reached();
3399 }
3400
3401 par64 = do_ats_write(env, value, access_type, mmu_idx);
3402
3403 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3404 #else
3405 /* Handled by hardware accelerator. */
3406 g_assert_not_reached();
3407 #endif /* CONFIG_TCG */
3408 }
3409
3410 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3411 uint64_t value)
3412 {
3413 #ifdef CONFIG_TCG
3414 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3415 uint64_t par64;
3416
3417 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3418
3419 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3420 #else
3421 /* Handled by hardware accelerator. */
3422 g_assert_not_reached();
3423 #endif /* CONFIG_TCG */
3424 }
3425
3426 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3427 bool isread)
3428 {
3429 if (arm_current_el(env) == 3 &&
3430 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3431 return CP_ACCESS_TRAP;
3432 }
3433 return CP_ACCESS_OK;
3434 }
3435
3436 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3437 uint64_t value)
3438 {
3439 #ifdef CONFIG_TCG
3440 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3441 ARMMMUIdx mmu_idx;
3442 int secure = arm_is_secure_below_el3(env);
3443
3444 switch (ri->opc2 & 6) {
3445 case 0:
3446 switch (ri->opc1) {
3447 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3448 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3449 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3450 : ARMMMUIdx_Stage1_E1_PAN);
3451 } else {
3452 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3453 }
3454 break;
3455 case 4: /* AT S1E2R, AT S1E2W */
3456 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3457 break;
3458 case 6: /* AT S1E3R, AT S1E3W */
3459 mmu_idx = ARMMMUIdx_SE3;
3460 break;
3461 default:
3462 g_assert_not_reached();
3463 }
3464 break;
3465 case 2: /* AT S1E0R, AT S1E0W */
3466 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3467 break;
3468 case 4: /* AT S12E1R, AT S12E1W */
3469 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3470 break;
3471 case 6: /* AT S12E0R, AT S12E0W */
3472 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3473 break;
3474 default:
3475 g_assert_not_reached();
3476 }
3477
3478 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3479 #else
3480 /* Handled by hardware accelerator. */
3481 g_assert_not_reached();
3482 #endif /* CONFIG_TCG */
3483 }
3484 #endif
3485
3486 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3487 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3488 .access = PL1_RW, .resetvalue = 0,
3489 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3490 offsetoflow32(CPUARMState, cp15.par_ns) },
3491 .writefn = par_write },
3492 #ifndef CONFIG_USER_ONLY
3493 /* This underdecoding is safe because the reginfo is NO_RAW. */
3494 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3495 .access = PL1_W, .accessfn = ats_access,
3496 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3497 #endif
3498 REGINFO_SENTINEL
3499 };
3500
3501 /* Return basic MPU access permission bits. */
3502 static uint32_t simple_mpu_ap_bits(uint32_t val)
3503 {
3504 uint32_t ret;
3505 uint32_t mask;
3506 int i;
3507 ret = 0;
3508 mask = 3;
3509 for (i = 0; i < 16; i += 2) {
3510 ret |= (val >> i) & mask;
3511 mask <<= 2;
3512 }
3513 return ret;
3514 }
3515
3516 /* Pad basic MPU access permission bits to extended format. */
3517 static uint32_t extended_mpu_ap_bits(uint32_t val)
3518 {
3519 uint32_t ret;
3520 uint32_t mask;
3521 int i;
3522 ret = 0;
3523 mask = 3;
3524 for (i = 0; i < 16; i += 2) {
3525 ret |= (val & mask) << i;
3526 mask <<= 2;
3527 }
3528 return ret;
3529 }
3530
3531 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3532 uint64_t value)
3533 {
3534 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3535 }
3536
3537 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3538 {
3539 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3540 }
3541
3542 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3543 uint64_t value)
3544 {
3545 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3546 }
3547
3548 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3549 {
3550 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3551 }
3552
3553 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3554 {
3555 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3556
3557 if (!u32p) {
3558 return 0;
3559 }
3560
3561 u32p += env->pmsav7.rnr[M_REG_NS];
3562 return *u32p;
3563 }
3564
3565 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3566 uint64_t value)
3567 {
3568 ARMCPU *cpu = env_archcpu(env);
3569 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3570
3571 if (!u32p) {
3572 return;
3573 }
3574
3575 u32p += env->pmsav7.rnr[M_REG_NS];
3576 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3577 *u32p = value;
3578 }
3579
3580 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581 uint64_t value)
3582 {
3583 ARMCPU *cpu = env_archcpu(env);
3584 uint32_t nrgs = cpu->pmsav7_dregion;
3585
3586 if (value >= nrgs) {
3587 qemu_log_mask(LOG_GUEST_ERROR,
3588 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3589 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3590 return;
3591 }
3592
3593 raw_write(env, ri, value);
3594 }
3595
3596 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3597 /* Reset for all these registers is handled in arm_cpu_reset(),
3598 * because the PMSAv7 is also used by M-profile CPUs, which do
3599 * not register cpregs but still need the state to be reset.
3600 */
3601 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3602 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3603 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3604 .readfn = pmsav7_read, .writefn = pmsav7_write,
3605 .resetfn = arm_cp_reset_ignore },
3606 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3607 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3608 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3609 .readfn = pmsav7_read, .writefn = pmsav7_write,
3610 .resetfn = arm_cp_reset_ignore },
3611 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3612 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3613 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3614 .readfn = pmsav7_read, .writefn = pmsav7_write,
3615 .resetfn = arm_cp_reset_ignore },
3616 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3617 .access = PL1_RW,
3618 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3619 .writefn = pmsav7_rgnr_write,
3620 .resetfn = arm_cp_reset_ignore },
3621 REGINFO_SENTINEL
3622 };
3623
3624 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3625 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3626 .access = PL1_RW, .type = ARM_CP_ALIAS,
3627 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3628 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3629 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3630 .access = PL1_RW, .type = ARM_CP_ALIAS,
3631 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3632 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3633 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3634 .access = PL1_RW,
3635 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3636 .resetvalue = 0, },
3637 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3638 .access = PL1_RW,
3639 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3640 .resetvalue = 0, },
3641 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3642 .access = PL1_RW,
3643 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3644 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3645 .access = PL1_RW,
3646 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3647 /* Protection region base and size registers */
3648 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3649 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3650 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3651 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3652 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3653 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3654 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3655 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3656 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3657 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3658 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3659 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3660 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3661 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3662 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3663 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3666 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3669 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3670 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3671 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3672 REGINFO_SENTINEL
3673 };
3674
3675 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3676 uint64_t value)
3677 {
3678 TCR *tcr = raw_ptr(env, ri);
3679 int maskshift = extract32(value, 0, 3);
3680
3681 if (!arm_feature(env, ARM_FEATURE_V8)) {
3682 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3683 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3684 * using Long-desciptor translation table format */
3685 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3686 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3687 /* In an implementation that includes the Security Extensions
3688 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3689 * Short-descriptor translation table format.
3690 */
3691 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3692 } else {
3693 value &= TTBCR_N;
3694 }
3695 }
3696
3697 /* Update the masks corresponding to the TCR bank being written
3698 * Note that we always calculate mask and base_mask, but
3699 * they are only used for short-descriptor tables (ie if EAE is 0);
3700 * for long-descriptor tables the TCR fields are used differently
3701 * and the mask and base_mask values are meaningless.
3702 */
3703 tcr->raw_tcr = value;
3704 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3705 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3706 }
3707
3708 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3709 uint64_t value)
3710 {
3711 ARMCPU *cpu = env_archcpu(env);
3712 TCR *tcr = raw_ptr(env, ri);
3713
3714 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3715 /* With LPAE the TTBCR could result in a change of ASID
3716 * via the TTBCR.A1 bit, so do a TLB flush.
3717 */
3718 tlb_flush(CPU(cpu));
3719 }
3720 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3721 value = deposit64(tcr->raw_tcr, 0, 32, value);
3722 vmsa_ttbcr_raw_write(env, ri, value);
3723 }
3724
3725 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3726 {
3727 TCR *tcr = raw_ptr(env, ri);
3728
3729 /* Reset both the TCR as well as the masks corresponding to the bank of
3730 * the TCR being reset.
3731 */
3732 tcr->raw_tcr = 0;
3733 tcr->mask = 0;
3734 tcr->base_mask = 0xffffc000u;
3735 }
3736
3737 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3738 uint64_t value)
3739 {
3740 ARMCPU *cpu = env_archcpu(env);
3741 TCR *tcr = raw_ptr(env, ri);
3742
3743 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3744 tlb_flush(CPU(cpu));
3745 tcr->raw_tcr = value;
3746 }
3747
3748 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3749 uint64_t value)
3750 {
3751 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3752 if (cpreg_field_is_64bit(ri) &&
3753 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3754 ARMCPU *cpu = env_archcpu(env);
3755 tlb_flush(CPU(cpu));
3756 }
3757 raw_write(env, ri, value);
3758 }
3759
3760 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761 uint64_t value)
3762 {
3763 /*
3764 * If we are running with E2&0 regime, then an ASID is active.
3765 * Flush if that might be changing. Note we're not checking
3766 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3767 * holds the active ASID, only checking the field that might.
3768 */
3769 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3770 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3771 uint16_t mask = ARMMMUIdxBit_E20_2 |
3772 ARMMMUIdxBit_E20_2_PAN |
3773 ARMMMUIdxBit_E20_0;
3774
3775 if (arm_is_secure_below_el3(env)) {
3776 mask >>= ARM_MMU_IDX_A_NS;
3777 }
3778
3779 tlb_flush_by_mmuidx(env_cpu(env), mask);
3780 }
3781 raw_write(env, ri, value);
3782 }
3783
3784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3786 {
3787 ARMCPU *cpu = env_archcpu(env);
3788 CPUState *cs = CPU(cpu);
3789
3790 /*
3791 * A change in VMID to the stage2 page table (Stage2) invalidates
3792 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3793 */
3794 if (raw_read(env, ri) != value) {
3795 uint16_t mask = ARMMMUIdxBit_E10_1 |
3796 ARMMMUIdxBit_E10_1_PAN |
3797 ARMMMUIdxBit_E10_0;
3798
3799 if (arm_is_secure_below_el3(env)) {
3800 mask >>= ARM_MMU_IDX_A_NS;
3801 }
3802
3803 tlb_flush_by_mmuidx(cs, mask);
3804 raw_write(env, ri, value);
3805 }
3806 }
3807
3808 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3809 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3811 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3812 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3813 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3815 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3816 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3817 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3818 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3820 offsetof(CPUARMState, cp15.dfar_ns) } },
3821 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3822 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3823 .access = PL1_RW, .accessfn = access_tvm_trvm,
3824 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3825 .resetvalue = 0, },
3826 REGINFO_SENTINEL
3827 };
3828
3829 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3830 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3831 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3832 .access = PL1_RW, .accessfn = access_tvm_trvm,
3833 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3834 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3836 .access = PL1_RW, .accessfn = access_tvm_trvm,
3837 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3838 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3839 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3840 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3842 .access = PL1_RW, .accessfn = access_tvm_trvm,
3843 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3845 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3846 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3847 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3848 .access = PL1_RW, .accessfn = access_tvm_trvm,
3849 .writefn = vmsa_tcr_el12_write,
3850 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3851 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3852 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3853 .access = PL1_RW, .accessfn = access_tvm_trvm,
3854 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3855 .raw_writefn = vmsa_ttbcr_raw_write,
3856 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3857 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3858 offsetof(CPUARMState, cp15.tcr_el[1])} },
3859 REGINFO_SENTINEL
3860 };
3861
3862 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3863 * qemu tlbs nor adjusting cached masks.
3864 */
3865 static const ARMCPRegInfo ttbcr2_reginfo = {
3866 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3867 .access = PL1_RW, .accessfn = access_tvm_trvm,
3868 .type = ARM_CP_ALIAS,
3869 .bank_fieldoffsets = {
3870 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3871 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3872 },
3873 };
3874
3875 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3876 uint64_t value)
3877 {
3878 env->cp15.c15_ticonfig = value & 0xe7;
3879 /* The OS_TYPE bit in this register changes the reported CPUID! */
3880 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3881 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3882 }
3883
3884 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885 uint64_t value)
3886 {
3887 env->cp15.c15_threadid = value & 0xffff;
3888 }
3889
3890 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3891 uint64_t value)
3892 {
3893 /* Wait-for-interrupt (deprecated) */
3894 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3895 }
3896
3897 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3898 uint64_t value)
3899 {
3900 /* On OMAP there are registers indicating the max/min index of dcache lines
3901 * containing a dirty line; cache flush operations have to reset these.
3902 */
3903 env->cp15.c15_i_max = 0x000;
3904 env->cp15.c15_i_min = 0xff0;
3905 }
3906
3907 static const ARMCPRegInfo omap_cp_reginfo[] = {
3908 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3910 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3911 .resetvalue = 0, },
3912 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3913 .access = PL1_RW, .type = ARM_CP_NOP },
3914 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3915 .access = PL1_RW,
3916 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3917 .writefn = omap_ticonfig_write },
3918 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3919 .access = PL1_RW,
3920 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3921 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3922 .access = PL1_RW, .resetvalue = 0xff0,
3923 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3924 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3925 .access = PL1_RW,
3926 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3927 .writefn = omap_threadid_write },
3928 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3929 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3930 .type = ARM_CP_NO_RAW,
3931 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3932 /* TODO: Peripheral port remap register:
3933 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3934 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3935 * when MMU is off.
3936 */
3937 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3938 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3939 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3940 .writefn = omap_cachemaint_write },
3941 { .name = "C9", .cp = 15, .crn = 9,
3942 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3943 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3944 REGINFO_SENTINEL
3945 };
3946
3947 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3948 uint64_t value)
3949 {
3950 env->cp15.c15_cpar = value & 0x3fff;
3951 }
3952
3953 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3954 { .name = "XSCALE_CPAR",
3955 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3956 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3957 .writefn = xscale_cpar_write, },
3958 { .name = "XSCALE_AUXCR",
3959 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3960 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3961 .resetvalue = 0, },
3962 /* XScale specific cache-lockdown: since we have no cache we NOP these
3963 * and hope the guest does not really rely on cache behaviour.
3964 */
3965 { .name = "XSCALE_LOCK_ICACHE_LINE",
3966 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3967 .access = PL1_W, .type = ARM_CP_NOP },
3968 { .name = "XSCALE_UNLOCK_ICACHE",
3969 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3970 .access = PL1_W, .type = ARM_CP_NOP },
3971 { .name = "XSCALE_DCACHE_LOCK",
3972 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3973 .access = PL1_RW, .type = ARM_CP_NOP },
3974 { .name = "XSCALE_UNLOCK_DCACHE",
3975 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3976 .access = PL1_W, .type = ARM_CP_NOP },
3977 REGINFO_SENTINEL
3978 };
3979
3980 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3981 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3982 * implementation of this implementation-defined space.
3983 * Ideally this should eventually disappear in favour of actually
3984 * implementing the correct behaviour for all cores.
3985 */
3986 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3987 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3988 .access = PL1_RW,
3989 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3990 .resetvalue = 0 },
3991 REGINFO_SENTINEL
3992 };
3993
3994 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3995 /* Cache status: RAZ because we have no cache so it's always clean */
3996 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3997 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3998 .resetvalue = 0 },
3999 REGINFO_SENTINEL
4000 };
4001
4002 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4003 /* We never have a a block transfer operation in progress */
4004 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4005 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4006 .resetvalue = 0 },
4007 /* The cache ops themselves: these all NOP for QEMU */
4008 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4010 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4011 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4012 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4013 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4014 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4015 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4016 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4017 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4018 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4019 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4020 REGINFO_SENTINEL
4021 };
4022
4023 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4024 /* The cache test-and-clean instructions always return (1 << 30)
4025 * to indicate that there are no dirty cache lines.
4026 */
4027 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4028 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4029 .resetvalue = (1 << 30) },
4030 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4031 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4032 .resetvalue = (1 << 30) },
4033 REGINFO_SENTINEL
4034 };
4035
4036 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4037 /* Ignore ReadBuffer accesses */
4038 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4039 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4040 .access = PL1_RW, .resetvalue = 0,
4041 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4042 REGINFO_SENTINEL
4043 };
4044
4045 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4046 {
4047 unsigned int cur_el = arm_current_el(env);
4048
4049 if (arm_is_el2_enabled(env) && cur_el == 1) {
4050 return env->cp15.vpidr_el2;
4051 }
4052 return raw_read(env, ri);
4053 }
4054
4055 static uint64_t mpidr_read_val(CPUARMState *env)
4056 {
4057 ARMCPU *cpu = env_archcpu(env);
4058 uint64_t mpidr = cpu->mp_affinity;
4059
4060 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4061 mpidr |= (1U << 31);
4062 /* Cores which are uniprocessor (non-coherent)
4063 * but still implement the MP extensions set
4064 * bit 30. (For instance, Cortex-R5).
4065 */
4066 if (cpu->mp_is_up) {
4067 mpidr |= (1u << 30);
4068 }
4069 }
4070 return mpidr;
4071 }
4072
4073 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4074 {
4075 unsigned int cur_el = arm_current_el(env);
4076
4077 if (arm_is_el2_enabled(env) && cur_el == 1) {
4078 return env->cp15.vmpidr_el2;
4079 }
4080 return mpidr_read_val(env);
4081 }
4082
4083 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4084 /* NOP AMAIR0/1 */
4085 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4086 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4087 .access = PL1_RW, .accessfn = access_tvm_trvm,
4088 .type = ARM_CP_CONST, .resetvalue = 0 },
4089 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4090 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4091 .access = PL1_RW, .accessfn = access_tvm_trvm,
4092 .type = ARM_CP_CONST, .resetvalue = 0 },
4093 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4094 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4095 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4096 offsetof(CPUARMState, cp15.par_ns)} },
4097 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4098 .access = PL1_RW, .accessfn = access_tvm_trvm,
4099 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4100 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4101 offsetof(CPUARMState, cp15.ttbr0_ns) },
4102 .writefn = vmsa_ttbr_write, },
4103 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4104 .access = PL1_RW, .accessfn = access_tvm_trvm,
4105 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4106 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4107 offsetof(CPUARMState, cp15.ttbr1_ns) },
4108 .writefn = vmsa_ttbr_write, },
4109 REGINFO_SENTINEL
4110 };
4111
4112 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4113 {
4114 return vfp_get_fpcr(env);
4115 }
4116
4117 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4118 uint64_t value)
4119 {
4120 vfp_set_fpcr(env, value);
4121 }
4122
4123 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4124 {
4125 return vfp_get_fpsr(env);
4126 }
4127
4128 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129 uint64_t value)
4130 {
4131 vfp_set_fpsr(env, value);
4132 }
4133
4134 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4135 bool isread)
4136 {
4137 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4138 return CP_ACCESS_TRAP;
4139 }
4140 return CP_ACCESS_OK;
4141 }
4142
4143 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144 uint64_t value)
4145 {
4146 env->daif = value & PSTATE_DAIF;
4147 }
4148
4149 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4150 {
4151 return env->pstate & PSTATE_PAN;
4152 }
4153
4154 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4155 uint64_t value)
4156 {
4157 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4158 }
4159
4160 static const ARMCPRegInfo pan_reginfo = {
4161 .name = "PAN", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4163 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4164 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4165 };
4166
4167 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4168 {
4169 return env->pstate & PSTATE_UAO;
4170 }
4171
4172 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4173 uint64_t value)
4174 {
4175 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4176 }
4177
4178 static const ARMCPRegInfo uao_reginfo = {
4179 .name = "UAO", .state = ARM_CP_STATE_AA64,
4180 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4181 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4182 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4183 };
4184
4185 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4186 {
4187 return env->pstate & PSTATE_DIT;
4188 }
4189
4190 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4191 uint64_t value)
4192 {
4193 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4194 }
4195
4196 static const ARMCPRegInfo dit_reginfo = {
4197 .name = "DIT", .state = ARM_CP_STATE_AA64,
4198 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4199 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4200 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4201 };
4202
4203 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4204 {
4205 return env->pstate & PSTATE_SSBS;
4206 }
4207
4208 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4209 uint64_t value)
4210 {
4211 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4212 }
4213
4214 static const ARMCPRegInfo ssbs_reginfo = {
4215 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4216 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4217 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4218 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4219 };
4220
4221 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4222 const ARMCPRegInfo *ri,
4223 bool isread)
4224 {
4225 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4226 switch (arm_current_el(env)) {
4227 case 0:
4228 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4229 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4230 return CP_ACCESS_TRAP;
4231 }
4232 /* fall through */
4233 case 1:
4234 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4235 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4236 return CP_ACCESS_TRAP_EL2;
4237 }
4238 break;
4239 }
4240 return CP_ACCESS_OK;
4241 }
4242
4243 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4244 const ARMCPRegInfo *ri,
4245 bool isread)
4246 {
4247 /* Cache invalidate/clean to Point of Unification... */
4248 switch (arm_current_el(env)) {
4249 case 0:
4250 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4251 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4252 return CP_ACCESS_TRAP;
4253 }
4254 /* fall through */
4255 case 1:
4256 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4257 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4258 return CP_ACCESS_TRAP_EL2;
4259 }
4260 break;
4261 }
4262 return CP_ACCESS_OK;
4263 }
4264
4265 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4266 * Page D4-1736 (DDI0487A.b)
4267 */
4268
4269 static int vae1_tlbmask(CPUARMState *env)
4270 {
4271 uint64_t hcr = arm_hcr_el2_eff(env);
4272 uint16_t mask;
4273
4274 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4275 mask = ARMMMUIdxBit_E20_2 |
4276 ARMMMUIdxBit_E20_2_PAN |
4277 ARMMMUIdxBit_E20_0;
4278 } else {
4279 mask = ARMMMUIdxBit_E10_1 |
4280 ARMMMUIdxBit_E10_1_PAN |
4281 ARMMMUIdxBit_E10_0;
4282 }
4283
4284 if (arm_is_secure_below_el3(env)) {
4285 mask >>= ARM_MMU_IDX_A_NS;
4286 }
4287
4288 return mask;
4289 }
4290
4291 /* Return 56 if TBI is enabled, 64 otherwise. */
4292 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4293 uint64_t addr)
4294 {
4295 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4296 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4297 int select = extract64(addr, 55, 1);
4298
4299 return (tbi >> select) & 1 ? 56 : 64;
4300 }
4301
4302 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4303 {
4304 uint64_t hcr = arm_hcr_el2_eff(env);
4305 ARMMMUIdx mmu_idx;
4306
4307 /* Only the regime of the mmu_idx below is significant. */
4308 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4309 mmu_idx = ARMMMUIdx_E20_0;
4310 } else {
4311 mmu_idx = ARMMMUIdx_E10_0;
4312 }
4313
4314 if (arm_is_secure_below_el3(env)) {
4315 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4316 }
4317
4318 return tlbbits_for_regime(env, mmu_idx, addr);
4319 }
4320
4321 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4322 uint64_t value)
4323 {
4324 CPUState *cs = env_cpu(env);
4325 int mask = vae1_tlbmask(env);
4326
4327 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4328 }
4329
4330 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4331 uint64_t value)
4332 {
4333 CPUState *cs = env_cpu(env);
4334 int mask = vae1_tlbmask(env);
4335
4336 if (tlb_force_broadcast(env)) {
4337 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4338 } else {
4339 tlb_flush_by_mmuidx(cs, mask);
4340 }
4341 }
4342
4343 static int alle1_tlbmask(CPUARMState *env)
4344 {
4345 /*
4346 * Note that the 'ALL' scope must invalidate both stage 1 and
4347 * stage 2 translations, whereas most other scopes only invalidate
4348 * stage 1 translations.
4349 */
4350 if (arm_is_secure_below_el3(env)) {
4351 return ARMMMUIdxBit_SE10_1 |
4352 ARMMMUIdxBit_SE10_1_PAN |
4353 ARMMMUIdxBit_SE10_0;
4354 } else {
4355 return ARMMMUIdxBit_E10_1 |
4356 ARMMMUIdxBit_E10_1_PAN |
4357 ARMMMUIdxBit_E10_0;
4358 }
4359 }
4360
4361 static int e2_tlbmask(CPUARMState *env)
4362 {
4363 if (arm_is_secure_below_el3(env)) {
4364 return ARMMMUIdxBit_SE20_0 |
4365 ARMMMUIdxBit_SE20_2 |
4366 ARMMMUIdxBit_SE20_2_PAN |
4367 ARMMMUIdxBit_SE2;
4368 } else {
4369 return ARMMMUIdxBit_E20_0 |
4370 ARMMMUIdxBit_E20_2 |
4371 ARMMMUIdxBit_E20_2_PAN |
4372 ARMMMUIdxBit_E2;
4373 }
4374 }
4375
4376 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4377 uint64_t value)
4378 {
4379 CPUState *cs = env_cpu(env);
4380 int mask = alle1_tlbmask(env);
4381
4382 tlb_flush_by_mmuidx(cs, mask);
4383 }
4384
4385 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4386 uint64_t value)
4387 {
4388 CPUState *cs = env_cpu(env);
4389 int mask = e2_tlbmask(env);
4390
4391 tlb_flush_by_mmuidx(cs, mask);
4392 }
4393
4394 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4395 uint64_t value)
4396 {
4397 ARMCPU *cpu = env_archcpu(env);
4398 CPUState *cs = CPU(cpu);
4399
4400 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4401 }
4402
4403 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4404 uint64_t value)
4405 {
4406 CPUState *cs = env_cpu(env);
4407 int mask = alle1_tlbmask(env);
4408
4409 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4410 }
4411
4412 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4413 uint64_t value)
4414 {
4415 CPUState *cs = env_cpu(env);
4416 int mask = e2_tlbmask(env);
4417
4418 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4419 }
4420
4421 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422 uint64_t value)
4423 {
4424 CPUState *cs = env_cpu(env);
4425
4426 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4427 }
4428
4429 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4430 uint64_t value)
4431 {
4432 /* Invalidate by VA, EL2
4433 * Currently handles both VAE2 and VALE2, since we don't support
4434 * flush-last-level-only.
4435 */
4436 CPUState *cs = env_cpu(env);
4437 int mask = e2_tlbmask(env);
4438 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4439
4440 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4441 }
4442
4443 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444 uint64_t value)
4445 {
4446 /* Invalidate by VA, EL3
4447 * Currently handles both VAE3 and VALE3, since we don't support
4448 * flush-last-level-only.
4449 */
4450 ARMCPU *cpu = env_archcpu(env);
4451 CPUState *cs = CPU(cpu);
4452 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4453
4454 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4455 }
4456
4457 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4458 uint64_t value)
4459 {
4460 CPUState *cs = env_cpu(env);
4461 int mask = vae1_tlbmask(env);
4462 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4463 int bits = vae1_tlbbits(env, pageaddr);
4464
4465 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4466 }
4467
4468 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4469 uint64_t value)
4470 {
4471 /* Invalidate by VA, EL1&0 (AArch64 version).
4472 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4473 * since we don't support flush-for-specific-ASID-only or
4474 * flush-last-level-only.
4475 */
4476 CPUState *cs = env_cpu(env);
4477 int mask = vae1_tlbmask(env);
4478 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4479 int bits = vae1_tlbbits(env, pageaddr);
4480
4481 if (tlb_force_broadcast(env)) {
4482 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4483 } else {
4484 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4485 }
4486 }
4487
4488 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4489 uint64_t value)
4490 {
4491 CPUState *cs = env_cpu(env);
4492 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4493 bool secure = arm_is_secure_below_el3(env);
4494 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4495 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4496 pageaddr);
4497
4498 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4499 }
4500
4501 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4502 uint64_t value)
4503 {
4504 CPUState *cs = env_cpu(env);
4505 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4506 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4507
4508 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4509 ARMMMUIdxBit_SE3, bits);
4510 }
4511
4512 #ifdef TARGET_AARCH64
4513 typedef struct {
4514 uint64_t base;
4515 uint64_t length;
4516 } TLBIRange;
4517
4518 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4519 uint64_t value)
4520 {
4521 unsigned int page_size_granule, page_shift, num, scale, exponent;
4522 /* Extract one bit to represent the va selector in use. */
4523 uint64_t select = sextract64(value, 36, 1);
4524 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4525 TLBIRange ret = { };
4526
4527 page_size_granule = extract64(value, 46, 2);
4528
4529 /* The granule encoded in value must match the granule in use. */
4530 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4531 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4532 page_size_granule);
4533 return ret;
4534 }
4535
4536 page_shift = (page_size_granule - 1) * 2 + 12;
4537 num = extract64(value, 39, 5);
4538 scale = extract64(value, 44, 2);
4539 exponent = (5 * scale) + 1;
4540
4541 ret.length = (num + 1) << (exponent + page_shift);
4542
4543 if (param.select) {
4544 ret.base = sextract64(value, 0, 37);
4545 } else {
4546 ret.base = extract64(value, 0, 37);
4547 }
4548 if (param.ds) {
4549 /*
4550 * With DS=1, BaseADDR is always shifted 16 so that it is able
4551 * to address all 52 va bits. The input address is perforce
4552 * aligned on a 64k boundary regardless of translation granule.
4553 */
4554 page_shift = 16;
4555 }
4556 ret.base <<= page_shift;
4557
4558 return ret;
4559 }
4560
4561 static void do_rvae_write(CPUARMState *env, uint64_t value,
4562 int idxmap, bool synced)
4563 {
4564 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4565 TLBIRange range;
4566 int bits;
4567
4568 range = tlbi_aa64_get_range(env, one_idx, value);
4569 bits = tlbbits_for_regime(env, one_idx, range.base);
4570
4571 if (synced) {
4572 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4573 range.base,
4574 range.length,
4575 idxmap,
4576 bits);
4577 } else {
4578 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4579 range.length, idxmap, bits);
4580 }
4581 }
4582
4583 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4584 const ARMCPRegInfo *ri,
4585 uint64_t value)
4586 {
4587 /*
4588 * Invalidate by VA range, EL1&0.
4589 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4590 * since we don't support flush-for-specific-ASID-only or
4591 * flush-last-level-only.
4592 */
4593
4594 do_rvae_write(env, value, vae1_tlbmask(env),
4595 tlb_force_broadcast(env));
4596 }
4597
4598 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4599 const ARMCPRegInfo *ri,
4600 uint64_t value)
4601 {
4602 /*
4603 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4604 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4605 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4606 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4607 * shareable specific flushes.
4608 */
4609
4610 do_rvae_write(env, value, vae1_tlbmask(env), true);
4611 }
4612
4613 static int vae2_tlbmask(CPUARMState *env)
4614 {
4615 return (arm_is_secure_below_el3(env)
4616 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4617 }
4618
4619 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4620 const ARMCPRegInfo *ri,
4621 uint64_t value)
4622 {
4623 /*
4624 * Invalidate by VA range, EL2.
4625 * Currently handles all of RVAE2 and RVALE2,
4626 * since we don't support flush-for-specific-ASID-only or
4627 * flush-last-level-only.
4628 */
4629
4630 do_rvae_write(env, value, vae2_tlbmask(env),
4631 tlb_force_broadcast(env));
4632
4633
4634 }
4635
4636 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4637 const ARMCPRegInfo *ri,
4638 uint64_t value)
4639 {
4640 /*
4641 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4642 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4643 * since we don't support flush-for-specific-ASID-only,
4644 * flush-last-level-only or inner/outer shareable specific flushes.
4645 */
4646
4647 do_rvae_write(env, value, vae2_tlbmask(env), true);
4648
4649 }
4650
4651 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4652 const ARMCPRegInfo *ri,
4653 uint64_t value)
4654 {
4655 /*
4656 * Invalidate by VA range, EL3.
4657 * Currently handles all of RVAE3 and RVALE3,
4658 * since we don't support flush-for-specific-ASID-only or
4659 * flush-last-level-only.
4660 */
4661
4662 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4663 tlb_force_broadcast(env));
4664 }
4665
4666 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4667 const ARMCPRegInfo *ri,
4668 uint64_t value)
4669 {
4670 /*
4671 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4672 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4673 * since we don't support flush-for-specific-ASID-only,
4674 * flush-last-level-only or inner/outer specific flushes.
4675 */
4676
4677 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4678 }
4679 #endif
4680
4681 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4682 bool isread)
4683 {
4684 int cur_el = arm_current_el(env);
4685
4686 if (cur_el < 2) {
4687 uint64_t hcr = arm_hcr_el2_eff(env);
4688
4689 if (cur_el == 0) {
4690 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4691 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4692 return CP_ACCESS_TRAP_EL2;
4693 }
4694 } else {
4695 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4696 return CP_ACCESS_TRAP;
4697 }
4698 if (hcr & HCR_TDZ) {
4699 return CP_ACCESS_TRAP_EL2;
4700 }
4701 }
4702 } else if (hcr & HCR_TDZ) {
4703 return CP_ACCESS_TRAP_EL2;
4704 }
4705 }
4706 return CP_ACCESS_OK;
4707 }
4708
4709 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4710 {
4711 ARMCPU *cpu = env_archcpu(env);
4712 int dzp_bit = 1 << 4;
4713
4714 /* DZP indicates whether DC ZVA access is allowed */
4715 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4716 dzp_bit = 0;
4717 }
4718 return cpu->dcz_blocksize | dzp_bit;
4719 }
4720
4721 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4722 bool isread)
4723 {
4724 if (!(env->pstate & PSTATE_SP)) {
4725 /* Access to SP_EL0 is undefined if it's being used as
4726 * the stack pointer.
4727 */
4728 return CP_ACCESS_TRAP_UNCATEGORIZED;
4729 }
4730 return CP_ACCESS_OK;
4731 }
4732
4733 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4734 {
4735 return env->pstate & PSTATE_SP;
4736 }
4737
4738 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4739 {
4740 update_spsel(env, val);
4741 }
4742
4743 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4744 uint64_t value)
4745 {
4746 ARMCPU *cpu = env_archcpu(env);
4747
4748 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4749 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4750 value &= ~SCTLR_M;
4751 }
4752
4753 /* ??? Lots of these bits are not implemented. */
4754
4755 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4756 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4757 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4758 } else {
4759 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4760 SCTLR_ATA0 | SCTLR_ATA);
4761 }
4762 }
4763
4764 if (raw_read(env, ri) == value) {
4765 /* Skip the TLB flush if nothing actually changed; Linux likes
4766 * to do a lot of pointless SCTLR writes.
4767 */
4768 return;
4769 }
4770
4771 raw_write(env, ri, value);
4772
4773 /* This may enable/disable the MMU, so do a TLB flush. */
4774 tlb_flush(CPU(cpu));
4775
4776 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4777 /*
4778 * Normally we would always end the TB on an SCTLR write; see the
4779 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4780 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4781 * of hflags from the translator, so do it here.
4782 */
4783 arm_rebuild_hflags(env);
4784 }
4785 }
4786
4787 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4788 bool isread)
4789 {
4790 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4791 return CP_ACCESS_TRAP_FP_EL2;
4792 }
4793 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4794 return CP_ACCESS_TRAP_FP_EL3;
4795 }
4796 return CP_ACCESS_OK;
4797 }
4798
4799 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4800 uint64_t value)
4801 {
4802 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4803 }
4804
4805 static const ARMCPRegInfo v8_cp_reginfo[] = {
4806 /* Minimal set of EL0-visible registers. This will need to be expanded
4807 * significantly for system emulation of AArch64 CPUs.
4808 */
4809 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4811 .access = PL0_RW, .type = ARM_CP_NZCV },
4812 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4814 .type = ARM_CP_NO_RAW,
4815 .access = PL0_RW, .accessfn = aa64_daif_access,
4816 .fieldoffset = offsetof(CPUARMState, daif),
4817 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4818 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4820 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4821 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4822 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4824 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4825 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4826 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4827 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4828 .access = PL0_R, .type = ARM_CP_NO_RAW,
4829 .readfn = aa64_dczid_read },
4830 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4832 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4833 #ifndef CONFIG_USER_ONLY
4834 /* Avoid overhead of an access check that always passes in user-mode */
4835 .accessfn = aa64_zva_access,
4836 #endif
4837 },
4838 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4839 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4840 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4841 /* Cache ops: all NOPs since we don't emulate caches */
4842 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4843 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4844 .access = PL1_W, .type = ARM_CP_NOP,
4845 .accessfn = aa64_cacheop_pou_access },
4846 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4848 .access = PL1_W, .type = ARM_CP_NOP,
4849 .accessfn = aa64_cacheop_pou_access },
4850 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4852 .access = PL0_W, .type = ARM_CP_NOP,
4853 .accessfn = aa64_cacheop_pou_access },
4854 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4855 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4856 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4857 .type = ARM_CP_NOP },
4858 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4859 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4860 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4861 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4862 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4863 .access = PL0_W, .type = ARM_CP_NOP,
4864 .accessfn = aa64_cacheop_poc_access },
4865 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4867 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4868 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4869 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4870 .access = PL0_W, .type = ARM_CP_NOP,
4871 .accessfn = aa64_cacheop_pou_access },
4872 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4874 .access = PL0_W, .type = ARM_CP_NOP,
4875 .accessfn = aa64_cacheop_poc_access },
4876 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4877 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4878 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4879 /* TLBI operations */
4880 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4883 .writefn = tlbi_aa64_vmalle1is_write },
4884 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4887 .writefn = tlbi_aa64_vae1is_write },
4888 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4891 .writefn = tlbi_aa64_vmalle1is_write },
4892 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4895 .writefn = tlbi_aa64_vae1is_write },
4896 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4899 .writefn = tlbi_aa64_vae1is_write },
4900 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4903 .writefn = tlbi_aa64_vae1is_write },
4904 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4907 .writefn = tlbi_aa64_vmalle1_write },
4908 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4911 .writefn = tlbi_aa64_vae1_write },
4912 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4915 .writefn = tlbi_aa64_vmalle1_write },
4916 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4919 .writefn = tlbi_aa64_vae1_write },
4920 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4922 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4923 .writefn = tlbi_aa64_vae1_write },
4924 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4926 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4927 .writefn = tlbi_aa64_vae1_write },
4928 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4930 .access = PL2_W, .type = ARM_CP_NOP },
4931 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4933 .access = PL2_W, .type = ARM_CP_NOP },
4934 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4936 .access = PL2_W, .type = ARM_CP_NO_RAW,
4937 .writefn = tlbi_aa64_alle1is_write },
4938 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4940 .access = PL2_W, .type = ARM_CP_NO_RAW,
4941 .writefn = tlbi_aa64_alle1is_write },
4942 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4944 .access = PL2_W, .type = ARM_CP_NOP },
4945 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4947 .access = PL2_W, .type = ARM_CP_NOP },
4948 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4950 .access = PL2_W, .type = ARM_CP_NO_RAW,
4951 .writefn = tlbi_aa64_alle1_write },
4952 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4954 .access = PL2_W, .type = ARM_CP_NO_RAW,
4955 .writefn = tlbi_aa64_alle1is_write },
4956 #ifndef CONFIG_USER_ONLY
4957 /* 64 bit address translation operations */
4958 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4961 .writefn = ats_write64 },
4962 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4964 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4965 .writefn = ats_write64 },
4966 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4968 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4969 .writefn = ats_write64 },
4970 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4971 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4972 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4973 .writefn = ats_write64 },
4974 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4977 .writefn = ats_write64 },
4978 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4979 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4980 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4981 .writefn = ats_write64 },
4982 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4983 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4984 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4985 .writefn = ats_write64 },
4986 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4987 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4988 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4989 .writefn = ats_write64 },
4990 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4991 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4992 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4993 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4994 .writefn = ats_write64 },
4995 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4996 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4997 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4998 .writefn = ats_write64 },
4999 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5000 .type = ARM_CP_ALIAS,
5001 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5002 .access = PL1_RW, .resetvalue = 0,
5003 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5004 .writefn = par_write },
5005 #endif
5006 /* TLB invalidate last level of translation table walk */
5007 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5008 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5009 .writefn = tlbimva_is_write },
5010 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5011 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5012 .writefn = tlbimvaa_is_write },
5013 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5014 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5015 .writefn = tlbimva_write },
5016 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5017 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5018 .writefn = tlbimvaa_write },
5019 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5020 .type = ARM_CP_NO_RAW, .access = PL2_W,
5021 .writefn = tlbimva_hyp_write },
5022 { .name = "TLBIMVALHIS",
5023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5024 .type = ARM_CP_NO_RAW, .access = PL2_W,
5025 .writefn = tlbimva_hyp_is_write },
5026 { .name = "TLBIIPAS2",
5027 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5028 .type = ARM_CP_NOP, .access = PL2_W },
5029 { .name = "TLBIIPAS2IS",
5030 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5031 .type = ARM_CP_NOP, .access = PL2_W },
5032 { .name = "TLBIIPAS2L",
5033 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5034 .type = ARM_CP_NOP, .access = PL2_W },
5035 { .name = "TLBIIPAS2LIS",
5036 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5037 .type = ARM_CP_NOP, .access = PL2_W },
5038 /* 32 bit cache operations */
5039 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5040 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5041 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5042 .type = ARM_CP_NOP, .access = PL1_W },
5043 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5045 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5047 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5048 .type = ARM_CP_NOP, .access = PL1_W },
5049 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5050 .type = ARM_CP_NOP, .access = PL1_W },
5051 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5053 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5055 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5057 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5058 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5059 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5060 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5061 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5062 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5063 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5064 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5065 /* MMU Domain access control / MPU write buffer control */
5066 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5067 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5068 .writefn = dacr_write, .raw_writefn = raw_write,
5069 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5070 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5071 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5072 .type = ARM_CP_ALIAS,
5073 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5074 .access = PL1_RW,
5075 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5076 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5077 .type = ARM_CP_ALIAS,
5078 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5079 .access = PL1_RW,
5080 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5081 /* We rely on the access checks not allowing the guest to write to the
5082 * state field when SPSel indicates that it's being used as the stack
5083 * pointer.
5084 */
5085 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5087 .access = PL1_RW, .accessfn = sp_el0_access,
5088 .type = ARM_CP_ALIAS,
5089 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5090 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5091 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5092 .access = PL2_RW, .type = ARM_CP_ALIAS,
5093 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5094 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5095 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5096 .type = ARM_CP_NO_RAW,
5097 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5098 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5100 .type = ARM_CP_ALIAS,
5101 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5102 .access = PL2_RW, .accessfn = fpexc32_access },
5103 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5104 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5105 .access = PL2_RW, .resetvalue = 0,
5106 .writefn = dacr_write, .raw_writefn = raw_write,
5107 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5108 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5109 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5110 .access = PL2_RW, .resetvalue = 0,
5111 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5112 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5113 .type = ARM_CP_ALIAS,
5114 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5115 .access = PL2_RW,
5116 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5117 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5118 .type = ARM_CP_ALIAS,
5119 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5120 .access = PL2_RW,
5121 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5122 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5123 .type = ARM_CP_ALIAS,
5124 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5125 .access = PL2_RW,
5126 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5127 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5128 .type = ARM_CP_ALIAS,
5129 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5130 .access = PL2_RW,
5131 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5132 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5133 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5134 .resetvalue = 0,
5135 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5136 { .name = "SDCR", .type = ARM_CP_ALIAS,
5137 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5138 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5139 .writefn = sdcr_write,
5140 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5141 REGINFO_SENTINEL
5142 };
5143
5144 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5145 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5146 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5147 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5148 .access = PL2_RW,
5149 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5150 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5151 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5152 .access = PL2_RW,
5153 .type = ARM_CP_CONST, .resetvalue = 0 },
5154 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5155 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5156 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5157 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5158 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5159 .access = PL2_RW,
5160 .type = ARM_CP_CONST, .resetvalue = 0 },
5161 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5162 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5163 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5164 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5165 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5166 .access = PL2_RW, .type = ARM_CP_CONST,
5167 .resetvalue = 0 },
5168 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5169 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5170 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5171 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5172 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5173 .access = PL2_RW, .type = ARM_CP_CONST,
5174 .resetvalue = 0 },
5175 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5176 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5177 .access = PL2_RW, .type = ARM_CP_CONST,
5178 .resetvalue = 0 },
5179 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5180 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5181 .access = PL2_RW, .type = ARM_CP_CONST,
5182 .resetvalue = 0 },
5183 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5184 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5185 .access = PL2_RW, .type = ARM_CP_CONST,
5186 .resetvalue = 0 },
5187 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5188 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5189 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5190 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5191 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5192 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5193 .type = ARM_CP_CONST, .resetvalue = 0 },
5194 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5195 .cp = 15, .opc1 = 6, .crm = 2,
5196 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5197 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5198 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5199 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5200 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5201 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5202 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5203 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5204 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5205 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5206 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5207 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5208 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5209 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5210 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5211 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5212 .resetvalue = 0 },
5213 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5214 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5215 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5216 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5217 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5218 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5219 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5220 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5221 .resetvalue = 0 },
5222 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5223 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5224 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5225 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5226 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5227 .resetvalue = 0 },
5228 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5229 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5230 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5231 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5232 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5233 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5234 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5235 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5236 .access = PL2_RW, .accessfn = access_tda,
5237 .type = ARM_CP_CONST, .resetvalue = 0 },
5238 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5239 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5240 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5241 .type = ARM_CP_CONST, .resetvalue = 0 },
5242 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5243 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5244 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5245 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5246 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5247 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5248 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5249 .type = ARM_CP_CONST,
5250 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5251 .access = PL2_RW, .resetvalue = 0 },
5252 REGINFO_SENTINEL
5253 };
5254
5255 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5256 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5257 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5258 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5259 .access = PL2_RW,
5260 .type = ARM_CP_CONST, .resetvalue = 0 },
5261 REGINFO_SENTINEL
5262 };
5263
5264 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5265 {
5266 ARMCPU *cpu = env_archcpu(env);
5267
5268 if (arm_feature(env, ARM_FEATURE_V8)) {
5269 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5270 } else {
5271 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5272 }
5273
5274 if (arm_feature(env, ARM_FEATURE_EL3)) {
5275 valid_mask &= ~HCR_HCD;
5276 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5277 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5278 * However, if we're using the SMC PSCI conduit then QEMU is
5279 * effectively acting like EL3 firmware and so the guest at
5280 * EL2 should retain the ability to prevent EL1 from being
5281 * able to make SMC calls into the ersatz firmware, so in
5282 * that case HCR.TSC should be read/write.
5283 */
5284 valid_mask &= ~HCR_TSC;
5285 }
5286
5287 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5288 if (cpu_isar_feature(aa64_vh, cpu)) {
5289 valid_mask |= HCR_E2H;
5290 }
5291 if (cpu_isar_feature(aa64_lor, cpu)) {
5292 valid_mask |= HCR_TLOR;
5293 }
5294 if (cpu_isar_feature(aa64_pauth, cpu)) {
5295 valid_mask |= HCR_API | HCR_APK;
5296 }
5297 if (cpu_isar_feature(aa64_mte, cpu)) {
5298 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5299 }
5300 }
5301
5302 /* Clear RES0 bits. */
5303 value &= valid_mask;
5304
5305 /*
5306 * These bits change the MMU setup:
5307 * HCR_VM enables stage 2 translation
5308 * HCR_PTW forbids certain page-table setups
5309 * HCR_DC disables stage1 and enables stage2 translation
5310 * HCR_DCT enables tagging on (disabled) stage1 translation
5311 */
5312 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5313 tlb_flush(CPU(cpu));
5314 }
5315 env->cp15.hcr_el2 = value;
5316
5317 /*
5318 * Updates to VI and VF require us to update the status of
5319 * virtual interrupts, which are the logical OR of these bits
5320 * and the state of the input lines from the GIC. (This requires
5321 * that we have the iothread lock, which is done by marking the
5322 * reginfo structs as ARM_CP_IO.)
5323 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5324 * possible for it to be taken immediately, because VIRQ and
5325 * VFIQ are masked unless running at EL0 or EL1, and HCR
5326 * can only be written at EL2.
5327 */
5328 g_assert(qemu_mutex_iothread_locked());
5329 arm_cpu_update_virq(cpu);
5330 arm_cpu_update_vfiq(cpu);
5331 }
5332
5333 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5334 {
5335 do_hcr_write(env, value, 0);
5336 }
5337
5338 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5339 uint64_t value)
5340 {
5341 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5342 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5343 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5344 }
5345
5346 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5347 uint64_t value)
5348 {
5349 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5350 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5351 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5352 }
5353
5354 /*
5355 * Return the effective value of HCR_EL2.
5356 * Bits that are not included here:
5357 * RW (read from SCR_EL3.RW as needed)
5358 */
5359 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5360 {
5361 uint64_t ret = env->cp15.hcr_el2;
5362
5363 if (!arm_is_el2_enabled(env)) {
5364 /*
5365 * "This register has no effect if EL2 is not enabled in the
5366 * current Security state". This is ARMv8.4-SecEL2 speak for
5367 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5368 *
5369 * Prior to that, the language was "In an implementation that
5370 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5371 * as if this field is 0 for all purposes other than a direct
5372 * read or write access of HCR_EL2". With lots of enumeration
5373 * on a per-field basis. In current QEMU, this is condition
5374 * is arm_is_secure_below_el3.
5375 *
5376 * Since the v8.4 language applies to the entire register, and
5377 * appears to be backward compatible, use that.
5378 */
5379 return 0;
5380 }
5381
5382 /*
5383 * For a cpu that supports both aarch64 and aarch32, we can set bits
5384 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5385 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5386 */
5387 if (!arm_el_is_aa64(env, 2)) {
5388 uint64_t aa32_valid;
5389
5390 /*
5391 * These bits are up-to-date as of ARMv8.6.
5392 * For HCR, it's easiest to list just the 2 bits that are invalid.
5393 * For HCR2, list those that are valid.
5394 */
5395 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5396 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5397 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5398 ret &= aa32_valid;
5399 }
5400
5401 if (ret & HCR_TGE) {
5402 /* These bits are up-to-date as of ARMv8.6. */
5403 if (ret & HCR_E2H) {
5404 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5405 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5406 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5407 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5408 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5409 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5410 } else {
5411 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5412 }
5413 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5414 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5415 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5416 HCR_TLOR);
5417 }
5418
5419 return ret;
5420 }
5421
5422 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5423 uint64_t value)
5424 {
5425 /*
5426 * For A-profile AArch32 EL3, if NSACR.CP10
5427 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5428 */
5429 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5430 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5431 value &= ~(0x3 << 10);
5432 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5433 }
5434 env->cp15.cptr_el[2] = value;
5435 }
5436
5437 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5438 {
5439 /*
5440 * For A-profile AArch32 EL3, if NSACR.CP10
5441 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5442 */
5443 uint64_t value = env->cp15.cptr_el[2];
5444
5445 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5446 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5447 value |= 0x3 << 10;
5448 }
5449 return value;
5450 }
5451
5452 static const ARMCPRegInfo el2_cp_reginfo[] = {
5453 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5454 .type = ARM_CP_IO,
5455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5456 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5457 .writefn = hcr_write },
5458 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5459 .type = ARM_CP_ALIAS | ARM_CP_IO,
5460 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5461 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5462 .writefn = hcr_writelow },
5463 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5464 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5467 .type = ARM_CP_ALIAS,
5468 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5469 .access = PL2_RW,
5470 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5471 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5472 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5473 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5474 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5475 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5476 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5477 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5478 .type = ARM_CP_ALIAS,
5479 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5480 .access = PL2_RW,
5481 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5482 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5483 .type = ARM_CP_ALIAS,
5484 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5485 .access = PL2_RW,
5486 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5487 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5489 .access = PL2_RW, .writefn = vbar_write,
5490 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5491 .resetvalue = 0 },
5492 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5493 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5494 .access = PL3_RW, .type = ARM_CP_ALIAS,
5495 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5496 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5498 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5499 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5500 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5501 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5502 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5503 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5504 .resetvalue = 0 },
5505 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5506 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5507 .access = PL2_RW, .type = ARM_CP_ALIAS,
5508 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5509 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5510 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5511 .access = PL2_RW, .type = ARM_CP_CONST,
5512 .resetvalue = 0 },
5513 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5514 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5515 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5516 .access = PL2_RW, .type = ARM_CP_CONST,
5517 .resetvalue = 0 },
5518 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5519 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5520 .access = PL2_RW, .type = ARM_CP_CONST,
5521 .resetvalue = 0 },
5522 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5523 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5524 .access = PL2_RW, .type = ARM_CP_CONST,
5525 .resetvalue = 0 },
5526 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5527 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5528 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5529 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5530 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5531 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5532 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5533 .type = ARM_CP_ALIAS,
5534 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5535 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5536 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5537 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5538 .access = PL2_RW,
5539 /* no .writefn needed as this can't cause an ASID change;
5540 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5541 */
5542 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5543 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5544 .cp = 15, .opc1 = 6, .crm = 2,
5545 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5546 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5547 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5548 .writefn = vttbr_write },
5549 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5550 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5551 .access = PL2_RW, .writefn = vttbr_write,
5552 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5553 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5554 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5555 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5556 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5557 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5558 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5559 .access = PL2_RW, .resetvalue = 0,
5560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5561 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5563 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5564 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5565 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5566 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5567 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5568 { .name = "TLBIALLNSNH",
5569 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5570 .type = ARM_CP_NO_RAW, .access = PL2_W,
5571 .writefn = tlbiall_nsnh_write },
5572 { .name = "TLBIALLNSNHIS",
5573 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5574 .type = ARM_CP_NO_RAW, .access = PL2_W,
5575 .writefn = tlbiall_nsnh_is_write },
5576 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5577 .type = ARM_CP_NO_RAW, .access = PL2_W,
5578 .writefn = tlbiall_hyp_write },
5579 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5580 .type = ARM_CP_NO_RAW, .access = PL2_W,
5581 .writefn = tlbiall_hyp_is_write },
5582 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5583 .type = ARM_CP_NO_RAW, .access = PL2_W,
5584 .writefn = tlbimva_hyp_write },
5585 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5586 .type = ARM_CP_NO_RAW, .access = PL2_W,
5587 .writefn = tlbimva_hyp_is_write },
5588 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5589 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5590 .type = ARM_CP_NO_RAW, .access = PL2_W,
5591 .writefn = tlbi_aa64_alle2_write },
5592 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5593 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5594 .type = ARM_CP_NO_RAW, .access = PL2_W,
5595 .writefn = tlbi_aa64_vae2_write },
5596 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5597 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5598 .access = PL2_W, .type = ARM_CP_NO_RAW,
5599 .writefn = tlbi_aa64_vae2_write },
5600 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5601 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5602 .access = PL2_W, .type = ARM_CP_NO_RAW,
5603 .writefn = tlbi_aa64_alle2is_write },
5604 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5605 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5606 .type = ARM_CP_NO_RAW, .access = PL2_W,
5607 .writefn = tlbi_aa64_vae2is_write },
5608 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5609 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5610 .access = PL2_W, .type = ARM_CP_NO_RAW,
5611 .writefn = tlbi_aa64_vae2is_write },
5612 #ifndef CONFIG_USER_ONLY
5613 /* Unlike the other EL2-related AT operations, these must
5614 * UNDEF from EL3 if EL2 is not implemented, which is why we
5615 * define them here rather than with the rest of the AT ops.
5616 */
5617 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5618 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5619 .access = PL2_W, .accessfn = at_s1e2_access,
5620 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5621 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5622 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5623 .access = PL2_W, .accessfn = at_s1e2_access,
5624 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5625 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5626 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5627 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5628 * to behave as if SCR.NS was 1.
5629 */
5630 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5631 .access = PL2_W,
5632 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5633 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5634 .access = PL2_W,
5635 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5636 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5637 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5638 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5639 * reset values as IMPDEF. We choose to reset to 3 to comply with
5640 * both ARMv7 and ARMv8.
5641 */
5642 .access = PL2_RW, .resetvalue = 3,
5643 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5644 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5645 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5646 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5647 .writefn = gt_cntvoff_write,
5648 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5649 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5650 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5651 .writefn = gt_cntvoff_write,
5652 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5653 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5654 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5656 .type = ARM_CP_IO, .access = PL2_RW,
5657 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5658 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5659 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5660 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5661 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5662 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5663 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5664 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5665 .resetfn = gt_hyp_timer_reset,
5666 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5667 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5668 .type = ARM_CP_IO,
5669 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5670 .access = PL2_RW,
5671 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5672 .resetvalue = 0,
5673 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5674 #endif
5675 /* The only field of MDCR_EL2 that has a defined architectural reset value
5676 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5677 */
5678 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5679 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5680 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5681 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5682 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5683 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5684 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5685 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5686 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5687 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5688 .access = PL2_RW,
5689 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5690 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5691 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5692 .access = PL2_RW,
5693 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5694 REGINFO_SENTINEL
5695 };
5696
5697 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5698 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5699 .type = ARM_CP_ALIAS | ARM_CP_IO,
5700 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5701 .access = PL2_RW,
5702 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5703 .writefn = hcr_writehigh },
5704 REGINFO_SENTINEL
5705 };
5706
5707 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5708 bool isread)
5709 {
5710 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5711 return CP_ACCESS_OK;
5712 }
5713 return CP_ACCESS_TRAP_UNCATEGORIZED;
5714 }
5715
5716 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5717 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5718 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5719 .access = PL2_RW, .accessfn = sel2_access,
5720 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5721 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5722 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5723 .access = PL2_RW, .accessfn = sel2_access,
5724 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5725 REGINFO_SENTINEL
5726 };
5727
5728 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5729 bool isread)
5730 {
5731 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5732 * At Secure EL1 it traps to EL3 or EL2.
5733 */
5734 if (arm_current_el(env) == 3) {
5735 return CP_ACCESS_OK;
5736 }
5737 if (arm_is_secure_below_el3(env)) {
5738 if (env->cp15.scr_el3 & SCR_EEL2) {
5739 return CP_ACCESS_TRAP_EL2;
5740 }
5741 return CP_ACCESS_TRAP_EL3;
5742 }
5743 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5744 if (isread) {
5745 return CP_ACCESS_OK;
5746 }
5747 return CP_ACCESS_TRAP_UNCATEGORIZED;
5748 }
5749
5750 static const ARMCPRegInfo el3_cp_reginfo[] = {
5751 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5752 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5753 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5754 .resetfn = scr_reset, .writefn = scr_write },
5755 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5756 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5757 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5758 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5759 .writefn = scr_write },
5760 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5761 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5762 .access = PL3_RW, .resetvalue = 0,
5763 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5764 { .name = "SDER",
5765 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5766 .access = PL3_RW, .resetvalue = 0,
5767 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5768 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5769 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5770 .writefn = vbar_write, .resetvalue = 0,
5771 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5772 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5773 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5774 .access = PL3_RW, .resetvalue = 0,
5775 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5776 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5777 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5778 .access = PL3_RW,
5779 /* no .writefn needed as this can't cause an ASID change;
5780 * we must provide a .raw_writefn and .resetfn because we handle
5781 * reset and migration for the AArch32 TTBCR(S), which might be
5782 * using mask and base_mask.
5783 */
5784 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5785 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5786 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5787 .type = ARM_CP_ALIAS,
5788 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5789 .access = PL3_RW,
5790 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5791 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5792 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5793 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5794 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5795 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5796 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5797 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5798 .type = ARM_CP_ALIAS,
5799 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5800 .access = PL3_RW,
5801 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5802 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5803 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5804 .access = PL3_RW, .writefn = vbar_write,
5805 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5806 .resetvalue = 0 },
5807 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5808 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5809 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5810 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5811 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5812 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5813 .access = PL3_RW, .resetvalue = 0,
5814 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5815 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5817 .access = PL3_RW, .type = ARM_CP_CONST,
5818 .resetvalue = 0 },
5819 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5820 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5821 .access = PL3_RW, .type = ARM_CP_CONST,
5822 .resetvalue = 0 },
5823 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5824 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5825 .access = PL3_RW, .type = ARM_CP_CONST,
5826 .resetvalue = 0 },
5827 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5828 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5829 .access = PL3_W, .type = ARM_CP_NO_RAW,
5830 .writefn = tlbi_aa64_alle3is_write },
5831 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5832 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5833 .access = PL3_W, .type = ARM_CP_NO_RAW,
5834 .writefn = tlbi_aa64_vae3is_write },
5835 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5836 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5837 .access = PL3_W, .type = ARM_CP_NO_RAW,
5838 .writefn = tlbi_aa64_vae3is_write },
5839 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5840 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5841 .access = PL3_W, .type = ARM_CP_NO_RAW,
5842 .writefn = tlbi_aa64_alle3_write },
5843 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5844 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5845 .access = PL3_W, .type = ARM_CP_NO_RAW,
5846 .writefn = tlbi_aa64_vae3_write },
5847 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5848 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5849 .access = PL3_W, .type = ARM_CP_NO_RAW,
5850 .writefn = tlbi_aa64_vae3_write },
5851 REGINFO_SENTINEL
5852 };
5853
5854 #ifndef CONFIG_USER_ONLY
5855 /* Test if system register redirection is to occur in the current state. */
5856 static bool redirect_for_e2h(CPUARMState *env)
5857 {
5858 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5859 }
5860
5861 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5862 {
5863 CPReadFn *readfn;
5864
5865 if (redirect_for_e2h(env)) {
5866 /* Switch to the saved EL2 version of the register. */
5867 ri = ri->opaque;
5868 readfn = ri->readfn;
5869 } else {
5870 readfn = ri->orig_readfn;
5871 }
5872 if (readfn == NULL) {
5873 readfn = raw_read;
5874 }
5875 return readfn(env, ri);
5876 }
5877
5878 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5879 uint64_t value)
5880 {
5881 CPWriteFn *writefn;
5882
5883 if (redirect_for_e2h(env)) {
5884 /* Switch to the saved EL2 version of the register. */
5885 ri = ri->opaque;
5886 writefn = ri->writefn;
5887 } else {
5888 writefn = ri->orig_writefn;
5889 }
5890 if (writefn == NULL) {
5891 writefn = raw_write;
5892 }
5893 writefn(env, ri, value);
5894 }
5895
5896 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5897 {
5898 struct E2HAlias {
5899 uint32_t src_key, dst_key, new_key;
5900 const char *src_name, *dst_name, *new_name;
5901 bool (*feature)(const ARMISARegisters *id);
5902 };
5903
5904 #define K(op0, op1, crn, crm, op2) \
5905 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5906
5907 static const struct E2HAlias aliases[] = {
5908 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5909 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5910 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5911 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5912 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5913 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5914 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5915 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5916 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5917 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5918 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5919 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5920 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5921 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5922 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5923 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5924 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5925 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5926 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5927 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5928 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5929 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5930 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5931 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5932 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5933 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5934 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5935 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5936 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5937 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5938 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5939 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5940
5941 /*
5942 * Note that redirection of ZCR is mentioned in the description
5943 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5944 * not in the summary table.
5945 */
5946 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5947 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5948
5949 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5950 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5951
5952 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5953 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5954 };
5955 #undef K
5956
5957 size_t i;
5958
5959 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5960 const struct E2HAlias *a = &aliases[i];
5961 ARMCPRegInfo *src_reg, *dst_reg;
5962
5963 if (a->feature && !a->feature(&cpu->isar)) {
5964 continue;
5965 }
5966
5967 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5968 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5969 g_assert(src_reg != NULL);
5970 g_assert(dst_reg != NULL);
5971
5972 /* Cross-compare names to detect typos in the keys. */
5973 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5974 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5975
5976 /* None of the core system registers use opaque; we will. */
5977 g_assert(src_reg->opaque == NULL);
5978
5979 /* Create alias before redirection so we dup the right data. */
5980 if (a->new_key) {
5981 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5982 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5983 bool ok;
5984
5985 new_reg->name = a->new_name;
5986 new_reg->type |= ARM_CP_ALIAS;
5987 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5988 new_reg->access &= PL2_RW | PL3_RW;
5989
5990 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5991 g_assert(ok);
5992 }
5993
5994 src_reg->opaque = dst_reg;
5995 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5996 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5997 if (!src_reg->raw_readfn) {
5998 src_reg->raw_readfn = raw_read;
5999 }
6000 if (!src_reg->raw_writefn) {
6001 src_reg->raw_writefn = raw_write;
6002 }
6003 src_reg->readfn = el2_e2h_read;
6004 src_reg->writefn = el2_e2h_write;
6005 }
6006 }
6007 #endif
6008
6009 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6010 bool isread)
6011 {
6012 int cur_el = arm_current_el(env);
6013
6014 if (cur_el < 2) {
6015 uint64_t hcr = arm_hcr_el2_eff(env);
6016
6017 if (cur_el == 0) {
6018 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6019 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6020 return CP_ACCESS_TRAP_EL2;
6021 }
6022 } else {
6023 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6024 return CP_ACCESS_TRAP;
6025 }
6026 if (hcr & HCR_TID2) {
6027 return CP_ACCESS_TRAP_EL2;
6028 }
6029 }
6030 } else if (hcr & HCR_TID2) {
6031 return CP_ACCESS_TRAP_EL2;
6032 }
6033 }
6034
6035 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6036 return CP_ACCESS_TRAP_EL2;
6037 }
6038
6039 return CP_ACCESS_OK;
6040 }
6041
6042 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6043 uint64_t value)
6044 {
6045 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6046 * read via a bit in OSLSR_EL1.
6047 */
6048 int oslock;
6049
6050 if (ri->state == ARM_CP_STATE_AA32) {
6051 oslock = (value == 0xC5ACCE55);
6052 } else {
6053 oslock = value & 1;
6054 }
6055
6056 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6057 }
6058
6059 static const ARMCPRegInfo debug_cp_reginfo[] = {
6060 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6061 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6062 * unlike DBGDRAR it is never accessible from EL0.
6063 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6064 * accessor.
6065 */
6066 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6067 .access = PL0_R, .accessfn = access_tdra,
6068 .type = ARM_CP_CONST, .resetvalue = 0 },
6069 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6070 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6071 .access = PL1_R, .accessfn = access_tdra,
6072 .type = ARM_CP_CONST, .resetvalue = 0 },
6073 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6074 .access = PL0_R, .accessfn = access_tdra,
6075 .type = ARM_CP_CONST, .resetvalue = 0 },
6076 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6077 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6078 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6079 .access = PL1_RW, .accessfn = access_tda,
6080 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6081 .resetvalue = 0 },
6082 /*
6083 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
6084 * Debug Communication Channel is not implemented.
6085 */
6086 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6087 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6088 .access = PL0_R, .accessfn = access_tda,
6089 .type = ARM_CP_CONST, .resetvalue = 0 },
6090 /*
6091 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
6092 * it is unlikely a guest will care.
6093 * We don't implement the configurable EL0 access.
6094 */
6095 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6096 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6097 .type = ARM_CP_ALIAS,
6098 .access = PL1_R, .accessfn = access_tda,
6099 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6100 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6101 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6102 .access = PL1_W, .type = ARM_CP_NO_RAW,
6103 .accessfn = access_tdosa,
6104 .writefn = oslar_write },
6105 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6106 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6107 .access = PL1_R, .resetvalue = 10,
6108 .accessfn = access_tdosa,
6109 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6110 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6111 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6112 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6113 .access = PL1_RW, .accessfn = access_tdosa,
6114 .type = ARM_CP_NOP },
6115 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6116 * implement vector catch debug events yet.
6117 */
6118 { .name = "DBGVCR",
6119 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6120 .access = PL1_RW, .accessfn = access_tda,
6121 .type = ARM_CP_NOP },
6122 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6123 * to save and restore a 32-bit guest's DBGVCR)
6124 */
6125 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6126 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6127 .access = PL2_RW, .accessfn = access_tda,
6128 .type = ARM_CP_NOP },
6129 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6130 * Channel but Linux may try to access this register. The 32-bit
6131 * alias is DBGDCCINT.
6132 */
6133 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6134 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6135 .access = PL1_RW, .accessfn = access_tda,
6136 .type = ARM_CP_NOP },
6137 REGINFO_SENTINEL
6138 };
6139
6140 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6141 /* 64 bit access versions of the (dummy) debug registers */
6142 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6143 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6144 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6145 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6146 REGINFO_SENTINEL
6147 };
6148
6149 /* Return the exception level to which exceptions should be taken
6150 * via SVEAccessTrap. If an exception should be routed through
6151 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6152 * take care of raising that exception.
6153 * C.f. the ARM pseudocode function CheckSVEEnabled.
6154 */
6155 int sve_exception_el(CPUARMState *env, int el)
6156 {
6157 #ifndef CONFIG_USER_ONLY
6158 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6159
6160 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6161 /* Check CPACR.ZEN. */
6162 switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
6163 case 1:
6164 if (el != 0) {
6165 break;
6166 }
6167 /* fall through */
6168 case 0:
6169 case 2:
6170 /* route_to_el2 */
6171 return hcr_el2 & HCR_TGE ? 2 : 1;
6172 }
6173
6174 /* Check CPACR.FPEN. */
6175 switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
6176 case 1:
6177 if (el != 0) {
6178 break;
6179 }
6180 /* fall through */
6181 case 0:
6182 case 2:
6183 return 0;
6184 }
6185 }
6186
6187 /*
6188 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6189 */
6190 if (el <= 2) {
6191 if (hcr_el2 & HCR_E2H) {
6192 /* Check CPTR_EL2.ZEN. */
6193 switch (extract32(env->cp15.cptr_el[2], 16, 2)) {
6194 case 1:
6195 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6196 break;
6197 }
6198 /* fall through */
6199 case 0:
6200 case 2:
6201 return 2;
6202 }
6203
6204 /* Check CPTR_EL2.FPEN. */
6205 switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
6206 case 1:
6207 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6208 break;
6209 }
6210 /* fall through */
6211 case 0:
6212 case 2:
6213 return 0;
6214 }
6215 } else if (arm_is_el2_enabled(env)) {
6216 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6217 return 2;
6218 }
6219 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6220 return 0;
6221 }
6222 }
6223 }
6224
6225 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6226 if (arm_feature(env, ARM_FEATURE_EL3)
6227 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6228 return 3;
6229 }
6230 #endif
6231 return 0;
6232 }
6233
6234 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6235 {
6236 uint32_t end_len;
6237
6238 start_len = MIN(start_len, ARM_MAX_VQ - 1);
6239 end_len = start_len;
6240
6241 if (!test_bit(start_len, cpu->sve_vq_map)) {
6242 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6243 assert(end_len < start_len);
6244 }
6245 return end_len;
6246 }
6247
6248 /*
6249 * Given that SVE is enabled, return the vector length for EL.
6250 */
6251 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6252 {
6253 ARMCPU *cpu = env_archcpu(env);
6254 uint32_t zcr_len = cpu->sve_max_vq - 1;
6255
6256 if (el <= 1 &&
6257 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6258 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6259 }
6260 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6261 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6262 }
6263 if (arm_feature(env, ARM_FEATURE_EL3)) {
6264 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6265 }
6266
6267 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6268 }
6269
6270 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6271 uint64_t value)
6272 {
6273 int cur_el = arm_current_el(env);
6274 int old_len = sve_zcr_len_for_el(env, cur_el);
6275 int new_len;
6276
6277 /* Bits other than [3:0] are RAZ/WI. */
6278 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6279 raw_write(env, ri, value & 0xf);
6280
6281 /*
6282 * Because we arrived here, we know both FP and SVE are enabled;
6283 * otherwise we would have trapped access to the ZCR_ELn register.
6284 */
6285 new_len = sve_zcr_len_for_el(env, cur_el);
6286 if (new_len < old_len) {
6287 aarch64_sve_narrow_vq(env, new_len + 1);
6288 }
6289 }
6290
6291 static const ARMCPRegInfo zcr_el1_reginfo = {
6292 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6293 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6294 .access = PL1_RW, .type = ARM_CP_SVE,
6295 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6296 .writefn = zcr_write, .raw_writefn = raw_write
6297 };
6298
6299 static const ARMCPRegInfo zcr_el2_reginfo = {
6300 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6301 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6302 .access = PL2_RW, .type = ARM_CP_SVE,
6303 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6304 .writefn = zcr_write, .raw_writefn = raw_write
6305 };
6306
6307 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6308 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6309 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6310 .access = PL2_RW, .type = ARM_CP_SVE,
6311 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6312 };
6313
6314 static const ARMCPRegInfo zcr_el3_reginfo = {
6315 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6316 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6317 .access = PL3_RW, .type = ARM_CP_SVE,
6318 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6319 .writefn = zcr_write, .raw_writefn = raw_write
6320 };
6321
6322 void hw_watchpoint_update(ARMCPU *cpu, int n)
6323 {
6324 CPUARMState *env = &cpu->env;
6325 vaddr len = 0;
6326 vaddr wvr = env->cp15.dbgwvr[n];
6327 uint64_t wcr = env->cp15.dbgwcr[n];
6328 int mask;
6329 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6330
6331 if (env->cpu_watchpoint[n]) {
6332 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6333 env->cpu_watchpoint[n] = NULL;
6334 }
6335
6336 if (!extract64(wcr, 0, 1)) {
6337 /* E bit clear : watchpoint disabled */
6338 return;
6339 }
6340
6341 switch (extract64(wcr, 3, 2)) {
6342 case 0:
6343 /* LSC 00 is reserved and must behave as if the wp is disabled */
6344 return;
6345 case 1:
6346 flags |= BP_MEM_READ;
6347 break;
6348 case 2:
6349 flags |= BP_MEM_WRITE;
6350 break;
6351 case 3:
6352 flags |= BP_MEM_ACCESS;
6353 break;
6354 }
6355
6356 /* Attempts to use both MASK and BAS fields simultaneously are
6357 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6358 * thus generating a watchpoint for every byte in the masked region.
6359 */
6360 mask = extract64(wcr, 24, 4);
6361 if (mask == 1 || mask == 2) {
6362 /* Reserved values of MASK; we must act as if the mask value was
6363 * some non-reserved value, or as if the watchpoint were disabled.
6364 * We choose the latter.
6365 */
6366 return;
6367 } else if (mask) {
6368 /* Watchpoint covers an aligned area up to 2GB in size */
6369 len = 1ULL << mask;
6370 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6371 * whether the watchpoint fires when the unmasked bits match; we opt
6372 * to generate the exceptions.
6373 */
6374 wvr &= ~(len - 1);
6375 } else {
6376 /* Watchpoint covers bytes defined by the byte address select bits */
6377 int bas = extract64(wcr, 5, 8);
6378 int basstart;
6379
6380 if (extract64(wvr, 2, 1)) {
6381 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6382 * ignored, and BAS[3:0] define which bytes to watch.
6383 */
6384 bas &= 0xf;
6385 }
6386
6387 if (bas == 0) {
6388 /* This must act as if the watchpoint is disabled */
6389 return;
6390 }
6391
6392 /* The BAS bits are supposed to be programmed to indicate a contiguous
6393 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6394 * we fire for each byte in the word/doubleword addressed by the WVR.
6395 * We choose to ignore any non-zero bits after the first range of 1s.
6396 */
6397 basstart = ctz32(bas);
6398 len = cto32(bas >> basstart);
6399 wvr += basstart;
6400 }
6401
6402 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6403 &env->cpu_watchpoint[n]);
6404 }
6405
6406 void hw_watchpoint_update_all(ARMCPU *cpu)
6407 {
6408 int i;
6409 CPUARMState *env = &cpu->env;
6410
6411 /* Completely clear out existing QEMU watchpoints and our array, to
6412 * avoid possible stale entries following migration load.
6413 */
6414 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6415 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6416
6417 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6418 hw_watchpoint_update(cpu, i);
6419 }
6420 }
6421
6422 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6423 uint64_t value)
6424 {
6425 ARMCPU *cpu = env_archcpu(env);
6426 int i = ri->crm;
6427
6428 /*
6429 * Bits [1:0] are RES0.
6430 *
6431 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
6432 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
6433 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
6434 * whether the RESS bits are ignored when comparing an address.
6435 *
6436 * Therefore we are allowed to compare the entire register, which lets
6437 * us avoid considering whether or not FEAT_LVA is actually enabled.
6438 */
6439 value &= ~3ULL;
6440
6441 raw_write(env, ri, value);
6442 hw_watchpoint_update(cpu, i);
6443 }
6444
6445 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6446 uint64_t value)
6447 {
6448 ARMCPU *cpu = env_archcpu(env);
6449 int i = ri->crm;
6450
6451 raw_write(env, ri, value);
6452 hw_watchpoint_update(cpu, i);
6453 }
6454
6455 void hw_breakpoint_update(ARMCPU *cpu, int n)
6456 {
6457 CPUARMState *env = &cpu->env;
6458 uint64_t bvr = env->cp15.dbgbvr[n];
6459 uint64_t bcr = env->cp15.dbgbcr[n];
6460 vaddr addr;
6461 int bt;
6462 int flags = BP_CPU;
6463
6464 if (env->cpu_breakpoint[n]) {
6465 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6466 env->cpu_breakpoint[n] = NULL;
6467 }
6468
6469 if (!extract64(bcr, 0, 1)) {
6470 /* E bit clear : watchpoint disabled */
6471 return;
6472 }
6473
6474 bt = extract64(bcr, 20, 4);
6475
6476 switch (bt) {
6477 case 4: /* unlinked address mismatch (reserved if AArch64) */
6478 case 5: /* linked address mismatch (reserved if AArch64) */
6479 qemu_log_mask(LOG_UNIMP,
6480 "arm: address mismatch breakpoint types not implemented\n");
6481 return;
6482 case 0: /* unlinked address match */
6483 case 1: /* linked address match */
6484 {
6485 /*
6486 * Bits [1:0] are RES0.
6487 *
6488 * It is IMPLEMENTATION DEFINED whether bits [63:49]
6489 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
6490 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
6491 * value is read as written. It is CONSTRAINED UNPREDICTABLE
6492 * whether the RESS bits are ignored when comparing an address.
6493 * Therefore we are allowed to compare the entire register, which
6494 * lets us avoid considering whether FEAT_LVA is actually enabled.
6495 *
6496 * The BAS field is used to allow setting breakpoints on 16-bit
6497 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6498 * a bp will fire if the addresses covered by the bp and the addresses
6499 * covered by the insn overlap but the insn doesn't start at the
6500 * start of the bp address range. We choose to require the insn and
6501 * the bp to have the same address. The constraints on writing to
6502 * BAS enforced in dbgbcr_write mean we have only four cases:
6503 * 0b0000 => no breakpoint
6504 * 0b0011 => breakpoint on addr
6505 * 0b1100 => breakpoint on addr + 2
6506 * 0b1111 => breakpoint on addr
6507 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6508 */
6509 int bas = extract64(bcr, 5, 4);
6510 addr = bvr & ~3ULL;
6511 if (bas == 0) {
6512 return;
6513 }
6514 if (bas == 0xc) {
6515 addr += 2;
6516 }
6517 break;
6518 }
6519 case 2: /* unlinked context ID match */
6520 case 8: /* unlinked VMID match (reserved if no EL2) */
6521 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6522 qemu_log_mask(LOG_UNIMP,
6523 "arm: unlinked context breakpoint types not implemented\n");
6524 return;
6525 case 9: /* linked VMID match (reserved if no EL2) */
6526 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6527 case 3: /* linked context ID match */
6528 default:
6529 /* We must generate no events for Linked context matches (unless
6530 * they are linked to by some other bp/wp, which is handled in
6531 * updates for the linking bp/wp). We choose to also generate no events
6532 * for reserved values.
6533 */
6534 return;
6535 }
6536
6537 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6538 }
6539
6540 void hw_breakpoint_update_all(ARMCPU *cpu)
6541 {
6542 int i;
6543 CPUARMState *env = &cpu->env;
6544
6545 /* Completely clear out existing QEMU breakpoints and our array, to
6546 * avoid possible stale entries following migration load.
6547 */
6548 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6549 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6550
6551 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6552 hw_breakpoint_update(cpu, i);
6553 }
6554 }
6555
6556 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6557 uint64_t value)
6558 {
6559 ARMCPU *cpu = env_archcpu(env);
6560 int i = ri->crm;
6561
6562 raw_write(env, ri, value);
6563 hw_breakpoint_update(cpu, i);
6564 }
6565
6566 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6567 uint64_t value)
6568 {
6569 ARMCPU *cpu = env_archcpu(env);
6570 int i = ri->crm;
6571
6572 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6573 * copy of BAS[0].
6574 */
6575 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6576 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6577
6578 raw_write(env, ri, value);
6579 hw_breakpoint_update(cpu, i);
6580 }
6581
6582 static void define_debug_regs(ARMCPU *cpu)
6583 {
6584 /* Define v7 and v8 architectural debug registers.
6585 * These are just dummy implementations for now.
6586 */
6587 int i;
6588 int wrps, brps, ctx_cmps;
6589
6590 /*
6591 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6592 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6593 * the register must not exist for this cpu.
6594 */
6595 if (cpu->isar.dbgdidr != 0) {
6596 ARMCPRegInfo dbgdidr = {
6597 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6598 .opc1 = 0, .opc2 = 0,
6599 .access = PL0_R, .accessfn = access_tda,
6600 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6601 };
6602 define_one_arm_cp_reg(cpu, &dbgdidr);
6603 }
6604
6605 /* Note that all these register fields hold "number of Xs minus 1". */
6606 brps = arm_num_brps(cpu);
6607 wrps = arm_num_wrps(cpu);
6608 ctx_cmps = arm_num_ctx_cmps(cpu);
6609
6610 assert(ctx_cmps <= brps);
6611
6612 define_arm_cp_regs(cpu, debug_cp_reginfo);
6613
6614 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6615 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6616 }
6617
6618 for (i = 0; i < brps; i++) {
6619 ARMCPRegInfo dbgregs[] = {
6620 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6621 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6622 .access = PL1_RW, .accessfn = access_tda,
6623 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6624 .writefn = dbgbvr_write, .raw_writefn = raw_write
6625 },
6626 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6627 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6628 .access = PL1_RW, .accessfn = access_tda,
6629 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6630 .writefn = dbgbcr_write, .raw_writefn = raw_write
6631 },
6632 REGINFO_SENTINEL
6633 };
6634 define_arm_cp_regs(cpu, dbgregs);
6635 }
6636
6637 for (i = 0; i < wrps; i++) {
6638 ARMCPRegInfo dbgregs[] = {
6639 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6640 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6641 .access = PL1_RW, .accessfn = access_tda,
6642 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6643 .writefn = dbgwvr_write, .raw_writefn = raw_write
6644 },
6645 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6646 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6647 .access = PL1_RW, .accessfn = access_tda,
6648 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6649 .writefn = dbgwcr_write, .raw_writefn = raw_write
6650 },
6651 REGINFO_SENTINEL
6652 };
6653 define_arm_cp_regs(cpu, dbgregs);
6654 }
6655 }
6656
6657 static void define_pmu_regs(ARMCPU *cpu)
6658 {
6659 /*
6660 * v7 performance monitor control register: same implementor
6661 * field as main ID register, and we implement four counters in
6662 * addition to the cycle count register.
6663 */
6664 unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6665 ARMCPRegInfo pmcr = {
6666 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6667 .access = PL0_RW,
6668 .type = ARM_CP_IO | ARM_CP_ALIAS,
6669 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6670 .accessfn = pmreg_access, .writefn = pmcr_write,
6671 .raw_writefn = raw_write,
6672 };
6673 ARMCPRegInfo pmcr64 = {
6674 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6675 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6676 .access = PL0_RW, .accessfn = pmreg_access,
6677 .type = ARM_CP_IO,
6678 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6679 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6680 PMCRLC,
6681 .writefn = pmcr_write, .raw_writefn = raw_write,
6682 };
6683 define_one_arm_cp_reg(cpu, &pmcr);
6684 define_one_arm_cp_reg(cpu, &pmcr64);
6685 for (i = 0; i < pmcrn; i++) {
6686 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6687 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6688 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6689 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6690 ARMCPRegInfo pmev_regs[] = {
6691 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6692 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6693 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6694 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6695 .accessfn = pmreg_access },
6696 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6697 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6698 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6699 .type = ARM_CP_IO,
6700 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6701 .raw_readfn = pmevcntr_rawread,
6702 .raw_writefn = pmevcntr_rawwrite },
6703 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6704 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6705 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6706 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6707 .accessfn = pmreg_access },
6708 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6709 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6710 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6711 .type = ARM_CP_IO,
6712 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6713 .raw_writefn = pmevtyper_rawwrite },
6714 REGINFO_SENTINEL
6715 };
6716 define_arm_cp_regs(cpu, pmev_regs);
6717 g_free(pmevcntr_name);
6718 g_free(pmevcntr_el0_name);
6719 g_free(pmevtyper_name);
6720 g_free(pmevtyper_el0_name);
6721 }
6722 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6723 ARMCPRegInfo v81_pmu_regs[] = {
6724 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6725 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6726 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6727 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6728 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6729 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6730 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6731 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6732 REGINFO_SENTINEL
6733 };
6734 define_arm_cp_regs(cpu, v81_pmu_regs);
6735 }
6736 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6737 static const ARMCPRegInfo v84_pmmir = {
6738 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6739 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6740 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6741 .resetvalue = 0
6742 };
6743 define_one_arm_cp_reg(cpu, &v84_pmmir);
6744 }
6745 }
6746
6747 /* We don't know until after realize whether there's a GICv3
6748 * attached, and that is what registers the gicv3 sysregs.
6749 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6750 * at runtime.
6751 */
6752 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6753 {
6754 ARMCPU *cpu = env_archcpu(env);
6755 uint64_t pfr1 = cpu->isar.id_pfr1;
6756
6757 if (env->gicv3state) {
6758 pfr1 |= 1 << 28;
6759 }
6760 return pfr1;
6761 }
6762
6763 #ifndef CONFIG_USER_ONLY
6764 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6765 {
6766 ARMCPU *cpu = env_archcpu(env);
6767 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6768
6769 if (env->gicv3state) {
6770 pfr0 |= 1 << 24;
6771 }
6772 return pfr0;
6773 }
6774 #endif
6775
6776 /* Shared logic between LORID and the rest of the LOR* registers.
6777 * Secure state exclusion has already been dealt with.
6778 */
6779 static CPAccessResult access_lor_ns(CPUARMState *env,
6780 const ARMCPRegInfo *ri, bool isread)
6781 {
6782 int el = arm_current_el(env);
6783
6784 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6785 return CP_ACCESS_TRAP_EL2;
6786 }
6787 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6788 return CP_ACCESS_TRAP_EL3;
6789 }
6790 return CP_ACCESS_OK;
6791 }
6792
6793 static CPAccessResult access_lor_other(CPUARMState *env,
6794 const ARMCPRegInfo *ri, bool isread)
6795 {
6796 if (arm_is_secure_below_el3(env)) {
6797 /* Access denied in secure mode. */
6798 return CP_ACCESS_TRAP;
6799 }
6800 return access_lor_ns(env, ri, isread);
6801 }
6802
6803 /*
6804 * A trivial implementation of ARMv8.1-LOR leaves all of these
6805 * registers fixed at 0, which indicates that there are zero
6806 * supported Limited Ordering regions.
6807 */
6808 static const ARMCPRegInfo lor_reginfo[] = {
6809 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6810 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6811 .access = PL1_RW, .accessfn = access_lor_other,
6812 .type = ARM_CP_CONST, .resetvalue = 0 },
6813 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6814 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6815 .access = PL1_RW, .accessfn = access_lor_other,
6816 .type = ARM_CP_CONST, .resetvalue = 0 },
6817 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6818 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6819 .access = PL1_RW, .accessfn = access_lor_other,
6820 .type = ARM_CP_CONST, .resetvalue = 0 },
6821 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6822 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6823 .access = PL1_RW, .accessfn = access_lor_other,
6824 .type = ARM_CP_CONST, .resetvalue = 0 },
6825 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6826 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6827 .access = PL1_R, .accessfn = access_lor_ns,
6828 .type = ARM_CP_CONST, .resetvalue = 0 },
6829 REGINFO_SENTINEL
6830 };
6831
6832 #ifdef TARGET_AARCH64
6833 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6834 bool isread)
6835 {
6836 int el = arm_current_el(env);
6837
6838 if (el < 2 &&
6839 arm_feature(env, ARM_FEATURE_EL2) &&
6840 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6841 return CP_ACCESS_TRAP_EL2;
6842 }
6843 if (el < 3 &&
6844 arm_feature(env, ARM_FEATURE_EL3) &&
6845 !(env->cp15.scr_el3 & SCR_APK)) {
6846 return CP_ACCESS_TRAP_EL3;
6847 }
6848 return CP_ACCESS_OK;
6849 }
6850
6851 static const ARMCPRegInfo pauth_reginfo[] = {
6852 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6854 .access = PL1_RW, .accessfn = access_pauth,
6855 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6856 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6857 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6858 .access = PL1_RW, .accessfn = access_pauth,
6859 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6860 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6861 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6862 .access = PL1_RW, .accessfn = access_pauth,
6863 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6864 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6865 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6866 .access = PL1_RW, .accessfn = access_pauth,
6867 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6868 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6869 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6870 .access = PL1_RW, .accessfn = access_pauth,
6871 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6872 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6873 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6874 .access = PL1_RW, .accessfn = access_pauth,
6875 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6876 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6877 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6878 .access = PL1_RW, .accessfn = access_pauth,
6879 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6880 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6881 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6882 .access = PL1_RW, .accessfn = access_pauth,
6883 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6884 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6885 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6886 .access = PL1_RW, .accessfn = access_pauth,
6887 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6888 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6889 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6890 .access = PL1_RW, .accessfn = access_pauth,
6891 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6892 REGINFO_SENTINEL
6893 };
6894
6895 static const ARMCPRegInfo tlbirange_reginfo[] = {
6896 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6898 .access = PL1_W, .type = ARM_CP_NO_RAW,
6899 .writefn = tlbi_aa64_rvae1is_write },
6900 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6902 .access = PL1_W, .type = ARM_CP_NO_RAW,
6903 .writefn = tlbi_aa64_rvae1is_write },
6904 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6906 .access = PL1_W, .type = ARM_CP_NO_RAW,
6907 .writefn = tlbi_aa64_rvae1is_write },
6908 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6910 .access = PL1_W, .type = ARM_CP_NO_RAW,
6911 .writefn = tlbi_aa64_rvae1is_write },
6912 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6914 .access = PL1_W, .type = ARM_CP_NO_RAW,
6915 .writefn = tlbi_aa64_rvae1is_write },
6916 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6918 .access = PL1_W, .type = ARM_CP_NO_RAW,
6919 .writefn = tlbi_aa64_rvae1is_write },
6920 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6921 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6922 .access = PL1_W, .type = ARM_CP_NO_RAW,
6923 .writefn = tlbi_aa64_rvae1is_write },
6924 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6925 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6926 .access = PL1_W, .type = ARM_CP_NO_RAW,
6927 .writefn = tlbi_aa64_rvae1is_write },
6928 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6929 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6930 .access = PL1_W, .type = ARM_CP_NO_RAW,
6931 .writefn = tlbi_aa64_rvae1_write },
6932 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6933 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6934 .access = PL1_W, .type = ARM_CP_NO_RAW,
6935 .writefn = tlbi_aa64_rvae1_write },
6936 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6937 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6938 .access = PL1_W, .type = ARM_CP_NO_RAW,
6939 .writefn = tlbi_aa64_rvae1_write },
6940 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6941 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6942 .access = PL1_W, .type = ARM_CP_NO_RAW,
6943 .writefn = tlbi_aa64_rvae1_write },
6944 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6946 .access = PL2_W, .type = ARM_CP_NOP },
6947 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6948 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6949 .access = PL2_W, .type = ARM_CP_NOP },
6950 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6952 .access = PL2_W, .type = ARM_CP_NO_RAW,
6953 .writefn = tlbi_aa64_rvae2is_write },
6954 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6955 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6956 .access = PL2_W, .type = ARM_CP_NO_RAW,
6957 .writefn = tlbi_aa64_rvae2is_write },
6958 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6959 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6960 .access = PL2_W, .type = ARM_CP_NOP },
6961 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6962 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6963 .access = PL2_W, .type = ARM_CP_NOP },
6964 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6965 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6966 .access = PL2_W, .type = ARM_CP_NO_RAW,
6967 .writefn = tlbi_aa64_rvae2is_write },
6968 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6969 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6970 .access = PL2_W, .type = ARM_CP_NO_RAW,
6971 .writefn = tlbi_aa64_rvae2is_write },
6972 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6973 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6974 .access = PL2_W, .type = ARM_CP_NO_RAW,
6975 .writefn = tlbi_aa64_rvae2_write },
6976 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6977 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6978 .access = PL2_W, .type = ARM_CP_NO_RAW,
6979 .writefn = tlbi_aa64_rvae2_write },
6980 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6981 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6982 .access = PL3_W, .type = ARM_CP_NO_RAW,
6983 .writefn = tlbi_aa64_rvae3is_write },
6984 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6985 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6986 .access = PL3_W, .type = ARM_CP_NO_RAW,
6987 .writefn = tlbi_aa64_rvae3is_write },
6988 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6989 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6990 .access = PL3_W, .type = ARM_CP_NO_RAW,
6991 .writefn = tlbi_aa64_rvae3is_write },
6992 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6993 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6994 .access = PL3_W, .type = ARM_CP_NO_RAW,
6995 .writefn = tlbi_aa64_rvae3is_write },
6996 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6997 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6998 .access = PL3_W, .type = ARM_CP_NO_RAW,
6999 .writefn = tlbi_aa64_rvae3_write },
7000 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7001 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7002 .access = PL3_W, .type = ARM_CP_NO_RAW,
7003 .writefn = tlbi_aa64_rvae3_write },
7004 REGINFO_SENTINEL
7005 };
7006
7007 static const ARMCPRegInfo tlbios_reginfo[] = {
7008 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7009 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7010 .access = PL1_W, .type = ARM_CP_NO_RAW,
7011 .writefn = tlbi_aa64_vmalle1is_write },
7012 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7013 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7014 .access = PL1_W, .type = ARM_CP_NO_RAW,
7015 .writefn = tlbi_aa64_vae1is_write },
7016 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7017 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7018 .access = PL1_W, .type = ARM_CP_NO_RAW,
7019 .writefn = tlbi_aa64_vmalle1is_write },
7020 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7021 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7022 .access = PL1_W, .type = ARM_CP_NO_RAW,
7023 .writefn = tlbi_aa64_vae1is_write },
7024 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7025 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7026 .access = PL1_W, .type = ARM_CP_NO_RAW,
7027 .writefn = tlbi_aa64_vae1is_write },
7028 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7029 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7030 .access = PL1_W, .type = ARM_CP_NO_RAW,
7031 .writefn = tlbi_aa64_vae1is_write },
7032 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7034 .access = PL2_W, .type = ARM_CP_NO_RAW,
7035 .writefn = tlbi_aa64_alle2is_write },
7036 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7037 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7038 .access = PL2_W, .type = ARM_CP_NO_RAW,
7039 .writefn = tlbi_aa64_vae2is_write },
7040 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7042 .access = PL2_W, .type = ARM_CP_NO_RAW,
7043 .writefn = tlbi_aa64_alle1is_write },
7044 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7045 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7046 .access = PL2_W, .type = ARM_CP_NO_RAW,
7047 .writefn = tlbi_aa64_vae2is_write },
7048 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7049 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7050 .access = PL2_W, .type = ARM_CP_NO_RAW,
7051 .writefn = tlbi_aa64_alle1is_write },
7052 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7053 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7054 .access = PL2_W, .type = ARM_CP_NOP },
7055 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7056 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7057 .access = PL2_W, .type = ARM_CP_NOP },
7058 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7059 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7060 .access = PL2_W, .type = ARM_CP_NOP },
7061 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7062 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7063 .access = PL2_W, .type = ARM_CP_NOP },
7064 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7065 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7066 .access = PL3_W, .type = ARM_CP_NO_RAW,
7067 .writefn = tlbi_aa64_alle3is_write },
7068 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7069 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7070 .access = PL3_W, .type = ARM_CP_NO_RAW,
7071 .writefn = tlbi_aa64_vae3is_write },
7072 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7073 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7074 .access = PL3_W, .type = ARM_CP_NO_RAW,
7075 .writefn = tlbi_aa64_vae3is_write },
7076 REGINFO_SENTINEL
7077 };
7078
7079 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7080 {
7081 Error *err = NULL;
7082 uint64_t ret;
7083
7084 /* Success sets NZCV = 0000. */
7085 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7086
7087 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7088 /*
7089 * ??? Failed, for unknown reasons in the crypto subsystem.
7090 * The best we can do is log the reason and return the
7091 * timed-out indication to the guest. There is no reason
7092 * we know to expect this failure to be transitory, so the
7093 * guest may well hang retrying the operation.
7094 */
7095 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7096 ri->name, error_get_pretty(err));
7097 error_free(err);
7098
7099 env->ZF = 0; /* NZCF = 0100 */
7100 return 0;
7101 }
7102 return ret;
7103 }
7104
7105 /* We do not support re-seeding, so the two registers operate the same. */
7106 static const ARMCPRegInfo rndr_reginfo[] = {
7107 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7108 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7109 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7110 .access = PL0_R, .readfn = rndr_readfn },
7111 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7112 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7113 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7114 .access = PL0_R, .readfn = rndr_readfn },
7115 REGINFO_SENTINEL
7116 };
7117
7118 #ifndef CONFIG_USER_ONLY
7119 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7120 uint64_t value)
7121 {
7122 ARMCPU *cpu = env_archcpu(env);
7123 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7124 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7125 uint64_t vaddr_in = (uint64_t) value;
7126 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7127 void *haddr;
7128 int mem_idx = cpu_mmu_index(env, false);
7129
7130 /* This won't be crossing page boundaries */
7131 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7132 if (haddr) {
7133
7134 ram_addr_t offset;
7135 MemoryRegion *mr;
7136
7137 /* RCU lock is already being held */
7138 mr = memory_region_from_host(haddr, &offset);
7139
7140 if (mr) {
7141 memory_region_writeback(mr, offset, dline_size);
7142 }
7143 }
7144 }
7145
7146 static const ARMCPRegInfo dcpop_reg[] = {
7147 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7148 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7149 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7150 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7151 REGINFO_SENTINEL
7152 };
7153
7154 static const ARMCPRegInfo dcpodp_reg[] = {
7155 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7156 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7157 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7158 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7159 REGINFO_SENTINEL
7160 };
7161 #endif /*CONFIG_USER_ONLY*/
7162
7163 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7164 bool isread)
7165 {
7166 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7167 return CP_ACCESS_TRAP_EL2;
7168 }
7169
7170 return CP_ACCESS_OK;
7171 }
7172
7173 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7174 bool isread)
7175 {
7176 int el = arm_current_el(env);
7177
7178 if (el < 2 && arm_is_el2_enabled(env)) {
7179 uint64_t hcr = arm_hcr_el2_eff(env);
7180 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7181 return CP_ACCESS_TRAP_EL2;
7182 }
7183 }
7184 if (el < 3 &&
7185 arm_feature(env, ARM_FEATURE_EL3) &&
7186 !(env->cp15.scr_el3 & SCR_ATA)) {
7187 return CP_ACCESS_TRAP_EL3;
7188 }
7189 return CP_ACCESS_OK;
7190 }
7191
7192 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7193 {
7194 return env->pstate & PSTATE_TCO;
7195 }
7196
7197 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7198 {
7199 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7200 }
7201
7202 static const ARMCPRegInfo mte_reginfo[] = {
7203 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7205 .access = PL1_RW, .accessfn = access_mte,
7206 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7207 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7209 .access = PL1_RW, .accessfn = access_mte,
7210 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7211 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7213 .access = PL2_RW, .accessfn = access_mte,
7214 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7215 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7217 .access = PL3_RW,
7218 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7219 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7220 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7221 .access = PL1_RW, .accessfn = access_mte,
7222 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7223 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7224 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7225 .access = PL1_RW, .accessfn = access_mte,
7226 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7227 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7228 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7229 .access = PL1_R, .accessfn = access_aa64_tid5,
7230 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7231 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7233 .type = ARM_CP_NO_RAW,
7234 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7235 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7237 .type = ARM_CP_NOP, .access = PL1_W,
7238 .accessfn = aa64_cacheop_poc_access },
7239 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7240 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7241 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7242 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7243 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7244 .type = ARM_CP_NOP, .access = PL1_W,
7245 .accessfn = aa64_cacheop_poc_access },
7246 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7248 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7249 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7250 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7251 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7252 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7253 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7254 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7255 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7256 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7257 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7258 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7259 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7260 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7261 REGINFO_SENTINEL
7262 };
7263
7264 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7265 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7266 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7267 .type = ARM_CP_CONST, .access = PL0_RW, },
7268 REGINFO_SENTINEL
7269 };
7270
7271 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7272 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7273 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7274 .type = ARM_CP_NOP, .access = PL0_W,
7275 .accessfn = aa64_cacheop_poc_access },
7276 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7278 .type = ARM_CP_NOP, .access = PL0_W,
7279 .accessfn = aa64_cacheop_poc_access },
7280 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7281 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7282 .type = ARM_CP_NOP, .access = PL0_W,
7283 .accessfn = aa64_cacheop_poc_access },
7284 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7286 .type = ARM_CP_NOP, .access = PL0_W,
7287 .accessfn = aa64_cacheop_poc_access },
7288 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7289 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7290 .type = ARM_CP_NOP, .access = PL0_W,
7291 .accessfn = aa64_cacheop_poc_access },
7292 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7293 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7294 .type = ARM_CP_NOP, .access = PL0_W,
7295 .accessfn = aa64_cacheop_poc_access },
7296 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7297 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7298 .type = ARM_CP_NOP, .access = PL0_W,
7299 .accessfn = aa64_cacheop_poc_access },
7300 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7301 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7302 .type = ARM_CP_NOP, .access = PL0_W,
7303 .accessfn = aa64_cacheop_poc_access },
7304 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7306 .access = PL0_W, .type = ARM_CP_DC_GVA,
7307 #ifndef CONFIG_USER_ONLY
7308 /* Avoid overhead of an access check that always passes in user-mode */
7309 .accessfn = aa64_zva_access,
7310 #endif
7311 },
7312 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7314 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7315 #ifndef CONFIG_USER_ONLY
7316 /* Avoid overhead of an access check that always passes in user-mode */
7317 .accessfn = aa64_zva_access,
7318 #endif
7319 },
7320 REGINFO_SENTINEL
7321 };
7322
7323 #endif
7324
7325 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7326 bool isread)
7327 {
7328 int el = arm_current_el(env);
7329
7330 if (el == 0) {
7331 uint64_t sctlr = arm_sctlr(env, el);
7332 if (!(sctlr & SCTLR_EnRCTX)) {
7333 return CP_ACCESS_TRAP;
7334 }
7335 } else if (el == 1) {
7336 uint64_t hcr = arm_hcr_el2_eff(env);
7337 if (hcr & HCR_NV) {
7338 return CP_ACCESS_TRAP_EL2;
7339 }
7340 }
7341 return CP_ACCESS_OK;
7342 }
7343
7344 static const ARMCPRegInfo predinv_reginfo[] = {
7345 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7346 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7347 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7348 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7350 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7351 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7352 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7353 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7354 /*
7355 * Note the AArch32 opcodes have a different OPC1.
7356 */
7357 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7358 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7359 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7360 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7361 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7362 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7363 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7364 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7365 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7366 REGINFO_SENTINEL
7367 };
7368
7369 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7370 {
7371 /* Read the high 32 bits of the current CCSIDR */
7372 return extract64(ccsidr_read(env, ri), 32, 32);
7373 }
7374
7375 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7376 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7377 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7378 .access = PL1_R,
7379 .accessfn = access_aa64_tid2,
7380 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7381 REGINFO_SENTINEL
7382 };
7383
7384 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7385 bool isread)
7386 {
7387 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7388 return CP_ACCESS_TRAP_EL2;
7389 }
7390
7391 return CP_ACCESS_OK;
7392 }
7393
7394 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7395 bool isread)
7396 {
7397 if (arm_feature(env, ARM_FEATURE_V8)) {
7398 return access_aa64_tid3(env, ri, isread);
7399 }
7400
7401 return CP_ACCESS_OK;
7402 }
7403
7404 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7405 bool isread)
7406 {
7407 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7408 return CP_ACCESS_TRAP_EL2;
7409 }
7410
7411 return CP_ACCESS_OK;
7412 }
7413
7414 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7415 const ARMCPRegInfo *ri, bool isread)
7416 {
7417 /*
7418 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7419 * in v7A, not in v8A.
7420 */
7421 if (!arm_feature(env, ARM_FEATURE_V8) &&
7422 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7423 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7424 return CP_ACCESS_TRAP_EL2;
7425 }
7426 return CP_ACCESS_OK;
7427 }
7428
7429 static const ARMCPRegInfo jazelle_regs[] = {
7430 { .name = "JIDR",
7431 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7432 .access = PL1_R, .accessfn = access_jazelle,
7433 .type = ARM_CP_CONST, .resetvalue = 0 },
7434 { .name = "JOSCR",
7435 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7436 .accessfn = access_joscr_jmcr,
7437 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7438 { .name = "JMCR",
7439 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7440 .accessfn = access_joscr_jmcr,
7441 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7442 REGINFO_SENTINEL
7443 };
7444
7445 static const ARMCPRegInfo vhe_reginfo[] = {
7446 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7448 .access = PL2_RW,
7449 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7450 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7452 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7453 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7454 #ifndef CONFIG_USER_ONLY
7455 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7457 .fieldoffset =
7458 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7459 .type = ARM_CP_IO, .access = PL2_RW,
7460 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7461 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7462 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7463 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7464 .resetfn = gt_hv_timer_reset,
7465 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7466 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7467 .type = ARM_CP_IO,
7468 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7469 .access = PL2_RW,
7470 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7471 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7472 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7473 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7474 .type = ARM_CP_IO | ARM_CP_ALIAS,
7475 .access = PL2_RW, .accessfn = e2h_access,
7476 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7477 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7478 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7479 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7480 .type = ARM_CP_IO | ARM_CP_ALIAS,
7481 .access = PL2_RW, .accessfn = e2h_access,
7482 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7483 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7484 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7486 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7487 .access = PL2_RW, .accessfn = e2h_access,
7488 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7489 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7491 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7492 .access = PL2_RW, .accessfn = e2h_access,
7493 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7494 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7496 .type = ARM_CP_IO | ARM_CP_ALIAS,
7497 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7498 .access = PL2_RW, .accessfn = e2h_access,
7499 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7500 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7502 .type = ARM_CP_IO | ARM_CP_ALIAS,
7503 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7504 .access = PL2_RW, .accessfn = e2h_access,
7505 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7506 #endif
7507 REGINFO_SENTINEL
7508 };
7509
7510 #ifndef CONFIG_USER_ONLY
7511 static const ARMCPRegInfo ats1e1_reginfo[] = {
7512 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7514 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7515 .writefn = ats_write64 },
7516 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7517 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7518 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7519 .writefn = ats_write64 },
7520 REGINFO_SENTINEL
7521 };
7522
7523 static const ARMCPRegInfo ats1cp_reginfo[] = {
7524 { .name = "ATS1CPRP",
7525 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7526 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7527 .writefn = ats_write },
7528 { .name = "ATS1CPWP",
7529 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7530 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7531 .writefn = ats_write },
7532 REGINFO_SENTINEL
7533 };
7534 #endif
7535
7536 /*
7537 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7538 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7539 * is non-zero, which is never for ARMv7, optionally in ARMv8
7540 * and mandatorily for ARMv8.2 and up.
7541 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7542 * implementation is RAZ/WI we can ignore this detail, as we
7543 * do for ACTLR.
7544 */
7545 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7546 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7547 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7548 .access = PL1_RW, .accessfn = access_tacr,
7549 .type = ARM_CP_CONST, .resetvalue = 0 },
7550 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7551 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7552 .access = PL2_RW, .type = ARM_CP_CONST,
7553 .resetvalue = 0 },
7554 REGINFO_SENTINEL
7555 };
7556
7557 void register_cp_regs_for_features(ARMCPU *cpu)
7558 {
7559 /* Register all the coprocessor registers based on feature bits */
7560 CPUARMState *env = &cpu->env;
7561 if (arm_feature(env, ARM_FEATURE_M)) {
7562 /* M profile has no coprocessor registers */
7563 return;
7564 }
7565
7566 define_arm_cp_regs(cpu, cp_reginfo);
7567 if (!arm_feature(env, ARM_FEATURE_V8)) {
7568 /* Must go early as it is full of wildcards that may be
7569 * overridden by later definitions.
7570 */
7571 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7572 }
7573
7574 if (arm_feature(env, ARM_FEATURE_V6)) {
7575 /* The ID registers all have impdef reset values */
7576 ARMCPRegInfo v6_idregs[] = {
7577 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7579 .access = PL1_R, .type = ARM_CP_CONST,
7580 .accessfn = access_aa32_tid3,
7581 .resetvalue = cpu->isar.id_pfr0 },
7582 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7583 * the value of the GIC field until after we define these regs.
7584 */
7585 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7587 .access = PL1_R, .type = ARM_CP_NO_RAW,
7588 .accessfn = access_aa32_tid3,
7589 .readfn = id_pfr1_read,
7590 .writefn = arm_cp_write_ignore },
7591 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7593 .access = PL1_R, .type = ARM_CP_CONST,
7594 .accessfn = access_aa32_tid3,
7595 .resetvalue = cpu->isar.id_dfr0 },
7596 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7598 .access = PL1_R, .type = ARM_CP_CONST,
7599 .accessfn = access_aa32_tid3,
7600 .resetvalue = cpu->id_afr0 },
7601 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7603 .access = PL1_R, .type = ARM_CP_CONST,
7604 .accessfn = access_aa32_tid3,
7605 .resetvalue = cpu->isar.id_mmfr0 },
7606 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7608 .access = PL1_R, .type = ARM_CP_CONST,
7609 .accessfn = access_aa32_tid3,
7610 .resetvalue = cpu->isar.id_mmfr1 },
7611 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7613 .access = PL1_R, .type = ARM_CP_CONST,
7614 .accessfn = access_aa32_tid3,
7615 .resetvalue = cpu->isar.id_mmfr2 },
7616 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7618 .access = PL1_R, .type = ARM_CP_CONST,
7619 .accessfn = access_aa32_tid3,
7620 .resetvalue = cpu->isar.id_mmfr3 },
7621 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7623 .access = PL1_R, .type = ARM_CP_CONST,
7624 .accessfn = access_aa32_tid3,
7625 .resetvalue = cpu->isar.id_isar0 },
7626 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7628 .access = PL1_R, .type = ARM_CP_CONST,
7629 .accessfn = access_aa32_tid3,
7630 .resetvalue = cpu->isar.id_isar1 },
7631 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7633 .access = PL1_R, .type = ARM_CP_CONST,
7634 .accessfn = access_aa32_tid3,
7635 .resetvalue = cpu->isar.id_isar2 },
7636 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7638 .access = PL1_R, .type = ARM_CP_CONST,
7639 .accessfn = access_aa32_tid3,
7640 .resetvalue = cpu->isar.id_isar3 },
7641 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7643 .access = PL1_R, .type = ARM_CP_CONST,
7644 .accessfn = access_aa32_tid3,
7645 .resetvalue = cpu->isar.id_isar4 },
7646 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7648 .access = PL1_R, .type = ARM_CP_CONST,
7649 .accessfn = access_aa32_tid3,
7650 .resetvalue = cpu->isar.id_isar5 },
7651 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7653 .access = PL1_R, .type = ARM_CP_CONST,
7654 .accessfn = access_aa32_tid3,
7655 .resetvalue = cpu->isar.id_mmfr4 },
7656 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7658 .access = PL1_R, .type = ARM_CP_CONST,
7659 .accessfn = access_aa32_tid3,
7660 .resetvalue = cpu->isar.id_isar6 },
7661 REGINFO_SENTINEL
7662 };
7663 define_arm_cp_regs(cpu, v6_idregs);
7664 define_arm_cp_regs(cpu, v6_cp_reginfo);
7665 } else {
7666 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7667 }
7668 if (arm_feature(env, ARM_FEATURE_V6K)) {
7669 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7670 }
7671 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7672 !arm_feature(env, ARM_FEATURE_PMSA)) {
7673 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7674 }
7675 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7676 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7677 }
7678 if (arm_feature(env, ARM_FEATURE_V7)) {
7679 ARMCPRegInfo clidr = {
7680 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7681 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7682 .access = PL1_R, .type = ARM_CP_CONST,
7683 .accessfn = access_aa64_tid2,
7684 .resetvalue = cpu->clidr
7685 };
7686 define_one_arm_cp_reg(cpu, &clidr);
7687 define_arm_cp_regs(cpu, v7_cp_reginfo);
7688 define_debug_regs(cpu);
7689 define_pmu_regs(cpu);
7690 } else {
7691 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7692 }
7693 if (arm_feature(env, ARM_FEATURE_V8)) {
7694 /* AArch64 ID registers, which all have impdef reset values.
7695 * Note that within the ID register ranges the unused slots
7696 * must all RAZ, not UNDEF; future architecture versions may
7697 * define new registers here.
7698 */
7699 ARMCPRegInfo v8_idregs[] = {
7700 /*
7701 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7702 * emulation because we don't know the right value for the
7703 * GIC field until after we define these regs.
7704 */
7705 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7706 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7707 .access = PL1_R,
7708 #ifdef CONFIG_USER_ONLY
7709 .type = ARM_CP_CONST,
7710 .resetvalue = cpu->isar.id_aa64pfr0
7711 #else
7712 .type = ARM_CP_NO_RAW,
7713 .accessfn = access_aa64_tid3,
7714 .readfn = id_aa64pfr0_read,
7715 .writefn = arm_cp_write_ignore
7716 #endif
7717 },
7718 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7720 .access = PL1_R, .type = ARM_CP_CONST,
7721 .accessfn = access_aa64_tid3,
7722 .resetvalue = cpu->isar.id_aa64pfr1},
7723 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7725 .access = PL1_R, .type = ARM_CP_CONST,
7726 .accessfn = access_aa64_tid3,
7727 .resetvalue = 0 },
7728 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7729 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7730 .access = PL1_R, .type = ARM_CP_CONST,
7731 .accessfn = access_aa64_tid3,
7732 .resetvalue = 0 },
7733 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7735 .access = PL1_R, .type = ARM_CP_CONST,
7736 .accessfn = access_aa64_tid3,
7737 .resetvalue = cpu->isar.id_aa64zfr0 },
7738 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7740 .access = PL1_R, .type = ARM_CP_CONST,
7741 .accessfn = access_aa64_tid3,
7742 .resetvalue = 0 },
7743 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7745 .access = PL1_R, .type = ARM_CP_CONST,
7746 .accessfn = access_aa64_tid3,
7747 .resetvalue = 0 },
7748 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7749 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7750 .access = PL1_R, .type = ARM_CP_CONST,
7751 .accessfn = access_aa64_tid3,
7752 .resetvalue = 0 },
7753 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7754 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7755 .access = PL1_R, .type = ARM_CP_CONST,
7756 .accessfn = access_aa64_tid3,
7757 .resetvalue = cpu->isar.id_aa64dfr0 },
7758 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7760 .access = PL1_R, .type = ARM_CP_CONST,
7761 .accessfn = access_aa64_tid3,
7762 .resetvalue = cpu->isar.id_aa64dfr1 },
7763 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7765 .access = PL1_R, .type = ARM_CP_CONST,
7766 .accessfn = access_aa64_tid3,
7767 .resetvalue = 0 },
7768 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7769 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7770 .access = PL1_R, .type = ARM_CP_CONST,
7771 .accessfn = access_aa64_tid3,
7772 .resetvalue = 0 },
7773 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7774 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7775 .access = PL1_R, .type = ARM_CP_CONST,
7776 .accessfn = access_aa64_tid3,
7777 .resetvalue = cpu->id_aa64afr0 },
7778 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7780 .access = PL1_R, .type = ARM_CP_CONST,
7781 .accessfn = access_aa64_tid3,
7782 .resetvalue = cpu->id_aa64afr1 },
7783 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7785 .access = PL1_R, .type = ARM_CP_CONST,
7786 .accessfn = access_aa64_tid3,
7787 .resetvalue = 0 },
7788 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7790 .access = PL1_R, .type = ARM_CP_CONST,
7791 .accessfn = access_aa64_tid3,
7792 .resetvalue = 0 },
7793 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7795 .access = PL1_R, .type = ARM_CP_CONST,
7796 .accessfn = access_aa64_tid3,
7797 .resetvalue = cpu->isar.id_aa64isar0 },
7798 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7800 .access = PL1_R, .type = ARM_CP_CONST,
7801 .accessfn = access_aa64_tid3,
7802 .resetvalue = cpu->isar.id_aa64isar1 },
7803 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7805 .access = PL1_R, .type = ARM_CP_CONST,
7806 .accessfn = access_aa64_tid3,
7807 .resetvalue = 0 },
7808 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7810 .access = PL1_R, .type = ARM_CP_CONST,
7811 .accessfn = access_aa64_tid3,
7812 .resetvalue = 0 },
7813 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7815 .access = PL1_R, .type = ARM_CP_CONST,
7816 .accessfn = access_aa64_tid3,
7817 .resetvalue = 0 },
7818 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7820 .access = PL1_R, .type = ARM_CP_CONST,
7821 .accessfn = access_aa64_tid3,
7822 .resetvalue = 0 },
7823 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7825 .access = PL1_R, .type = ARM_CP_CONST,
7826 .accessfn = access_aa64_tid3,
7827 .resetvalue = 0 },
7828 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7830 .access = PL1_R, .type = ARM_CP_CONST,
7831 .accessfn = access_aa64_tid3,
7832 .resetvalue = 0 },
7833 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7835 .access = PL1_R, .type = ARM_CP_CONST,
7836 .accessfn = access_aa64_tid3,
7837 .resetvalue = cpu->isar.id_aa64mmfr0 },
7838 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7840 .access = PL1_R, .type = ARM_CP_CONST,
7841 .accessfn = access_aa64_tid3,
7842 .resetvalue = cpu->isar.id_aa64mmfr1 },
7843 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7845 .access = PL1_R, .type = ARM_CP_CONST,
7846 .accessfn = access_aa64_tid3,
7847 .resetvalue = cpu->isar.id_aa64mmfr2 },
7848 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7850 .access = PL1_R, .type = ARM_CP_CONST,
7851 .accessfn = access_aa64_tid3,
7852 .resetvalue = 0 },
7853 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7854 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7855 .access = PL1_R, .type = ARM_CP_CONST,
7856 .accessfn = access_aa64_tid3,
7857 .resetvalue = 0 },
7858 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7860 .access = PL1_R, .type = ARM_CP_CONST,
7861 .accessfn = access_aa64_tid3,
7862 .resetvalue = 0 },
7863 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7865 .access = PL1_R, .type = ARM_CP_CONST,
7866 .accessfn = access_aa64_tid3,
7867 .resetvalue = 0 },
7868 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7870 .access = PL1_R, .type = ARM_CP_CONST,
7871 .accessfn = access_aa64_tid3,
7872 .resetvalue = 0 },
7873 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7875 .access = PL1_R, .type = ARM_CP_CONST,
7876 .accessfn = access_aa64_tid3,
7877 .resetvalue = cpu->isar.mvfr0 },
7878 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7880 .access = PL1_R, .type = ARM_CP_CONST,
7881 .accessfn = access_aa64_tid3,
7882 .resetvalue = cpu->isar.mvfr1 },
7883 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7885 .access = PL1_R, .type = ARM_CP_CONST,
7886 .accessfn = access_aa64_tid3,
7887 .resetvalue = cpu->isar.mvfr2 },
7888 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7890 .access = PL1_R, .type = ARM_CP_CONST,
7891 .accessfn = access_aa64_tid3,
7892 .resetvalue = 0 },
7893 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7894 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7895 .access = PL1_R, .type = ARM_CP_CONST,
7896 .accessfn = access_aa64_tid3,
7897 .resetvalue = cpu->isar.id_pfr2 },
7898 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7900 .access = PL1_R, .type = ARM_CP_CONST,
7901 .accessfn = access_aa64_tid3,
7902 .resetvalue = 0 },
7903 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7905 .access = PL1_R, .type = ARM_CP_CONST,
7906 .accessfn = access_aa64_tid3,
7907 .resetvalue = 0 },
7908 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7909 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7910 .access = PL1_R, .type = ARM_CP_CONST,
7911 .accessfn = access_aa64_tid3,
7912 .resetvalue = 0 },
7913 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7914 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7915 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7916 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7917 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7919 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7920 .resetvalue = cpu->pmceid0 },
7921 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7922 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7923 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7924 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7925 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7927 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7928 .resetvalue = cpu->pmceid1 },
7929 REGINFO_SENTINEL
7930 };
7931 #ifdef CONFIG_USER_ONLY
7932 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7933 { .name = "ID_AA64PFR0_EL1",
7934 .exported_bits = 0x000f000f00ff0000,
7935 .fixed_bits = 0x0000000000000011 },
7936 { .name = "ID_AA64PFR1_EL1",
7937 .exported_bits = 0x00000000000000f0 },
7938 { .name = "ID_AA64PFR*_EL1_RESERVED",
7939 .is_glob = true },
7940 { .name = "ID_AA64ZFR0_EL1" },
7941 { .name = "ID_AA64MMFR0_EL1",
7942 .fixed_bits = 0x00000000ff000000 },
7943 { .name = "ID_AA64MMFR1_EL1" },
7944 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7945 .is_glob = true },
7946 { .name = "ID_AA64DFR0_EL1",
7947 .fixed_bits = 0x0000000000000006 },
7948 { .name = "ID_AA64DFR1_EL1" },
7949 { .name = "ID_AA64DFR*_EL1_RESERVED",
7950 .is_glob = true },
7951 { .name = "ID_AA64AFR*",
7952 .is_glob = true },
7953 { .name = "ID_AA64ISAR0_EL1",
7954 .exported_bits = 0x00fffffff0fffff0 },
7955 { .name = "ID_AA64ISAR1_EL1",
7956 .exported_bits = 0x000000f0ffffffff },
7957 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7958 .is_glob = true },
7959 REGUSERINFO_SENTINEL
7960 };
7961 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7962 #endif
7963 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7964 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7965 !arm_feature(env, ARM_FEATURE_EL2)) {
7966 ARMCPRegInfo rvbar = {
7967 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7968 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7969 .access = PL1_R,
7970 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7971 };
7972 define_one_arm_cp_reg(cpu, &rvbar);
7973 }
7974 define_arm_cp_regs(cpu, v8_idregs);
7975 define_arm_cp_regs(cpu, v8_cp_reginfo);
7976 }
7977 if (arm_feature(env, ARM_FEATURE_EL2)) {
7978 uint64_t vmpidr_def = mpidr_read_val(env);
7979 ARMCPRegInfo vpidr_regs[] = {
7980 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7981 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7982 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7983 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7984 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7985 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7986 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7987 .access = PL2_RW, .resetvalue = cpu->midr,
7988 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7989 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7990 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7991 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7992 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7993 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7994 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7995 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7996 .access = PL2_RW,
7997 .resetvalue = vmpidr_def,
7998 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7999 REGINFO_SENTINEL
8000 };
8001 define_arm_cp_regs(cpu, vpidr_regs);
8002 define_arm_cp_regs(cpu, el2_cp_reginfo);
8003 if (arm_feature(env, ARM_FEATURE_V8)) {
8004 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8005 }
8006 if (cpu_isar_feature(aa64_sel2, cpu)) {
8007 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8008 }
8009 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8010 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8011 ARMCPRegInfo rvbar = {
8012 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8013 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8014 .access = PL2_R,
8015 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8016 };
8017 define_one_arm_cp_reg(cpu, &rvbar);
8018 }
8019 } else {
8020 /* If EL2 is missing but higher ELs are enabled, we need to
8021 * register the no_el2 reginfos.
8022 */
8023 if (arm_feature(env, ARM_FEATURE_EL3)) {
8024 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8025 * of MIDR_EL1 and MPIDR_EL1.
8026 */
8027 ARMCPRegInfo vpidr_regs[] = {
8028 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8029 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8030 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8031 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8032 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8033 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8034 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8035 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8036 .type = ARM_CP_NO_RAW,
8037 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8038 REGINFO_SENTINEL
8039 };
8040 define_arm_cp_regs(cpu, vpidr_regs);
8041 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8042 if (arm_feature(env, ARM_FEATURE_V8)) {
8043 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8044 }
8045 }
8046 }
8047 if (arm_feature(env, ARM_FEATURE_EL3)) {
8048 define_arm_cp_regs(cpu, el3_cp_reginfo);
8049 ARMCPRegInfo el3_regs[] = {
8050 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8051 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8052 .access = PL3_R,
8053 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8054 },
8055 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8056 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8057 .access = PL3_RW,
8058 .raw_writefn = raw_write, .writefn = sctlr_write,
8059 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8060 .resetvalue = cpu->reset_sctlr },
8061 REGINFO_SENTINEL
8062 };
8063
8064 define_arm_cp_regs(cpu, el3_regs);
8065 }
8066 /* The behaviour of NSACR is sufficiently various that we don't
8067 * try to describe it in a single reginfo:
8068 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8069 * reads as constant 0xc00 from NS EL1 and NS EL2
8070 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8071 * if v7 without EL3, register doesn't exist
8072 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8073 */
8074 if (arm_feature(env, ARM_FEATURE_EL3)) {
8075 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8076 ARMCPRegInfo nsacr = {
8077 .name = "NSACR", .type = ARM_CP_CONST,
8078 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8079 .access = PL1_RW, .accessfn = nsacr_access,
8080 .resetvalue = 0xc00
8081 };
8082 define_one_arm_cp_reg(cpu, &nsacr);
8083 } else {
8084 ARMCPRegInfo nsacr = {
8085 .name = "NSACR",
8086 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8087 .access = PL3_RW | PL1_R,
8088 .resetvalue = 0,
8089 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8090 };
8091 define_one_arm_cp_reg(cpu, &nsacr);
8092 }
8093 } else {
8094 if (arm_feature(env, ARM_FEATURE_V8)) {
8095 ARMCPRegInfo nsacr = {
8096 .name = "NSACR", .type = ARM_CP_CONST,
8097 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8098 .access = PL1_R,
8099 .resetvalue = 0xc00
8100 };
8101 define_one_arm_cp_reg(cpu, &nsacr);
8102 }
8103 }
8104
8105 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8106 if (arm_feature(env, ARM_FEATURE_V6)) {
8107 /* PMSAv6 not implemented */
8108 assert(arm_feature(env, ARM_FEATURE_V7));
8109 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8110 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8111 } else {
8112 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8113 }
8114 } else {
8115 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8116 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8117 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8118 if (cpu_isar_feature(aa32_hpd, cpu)) {
8119 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8120 }
8121 }
8122 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8123 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8124 }
8125 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8126 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8127 }
8128 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8129 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8130 }
8131 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8132 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8133 }
8134 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8135 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8136 }
8137 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8138 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8139 }
8140 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8141 define_arm_cp_regs(cpu, omap_cp_reginfo);
8142 }
8143 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8144 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8145 }
8146 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8147 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8148 }
8149 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8150 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8151 }
8152 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8153 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8154 }
8155 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8156 define_arm_cp_regs(cpu, jazelle_regs);
8157 }
8158 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8159 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8160 * be read-only (ie write causes UNDEF exception).
8161 */
8162 {
8163 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8164 /* Pre-v8 MIDR space.
8165 * Note that the MIDR isn't a simple constant register because
8166 * of the TI925 behaviour where writes to another register can
8167 * cause the MIDR value to change.
8168 *
8169 * Unimplemented registers in the c15 0 0 0 space default to
8170 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8171 * and friends override accordingly.
8172 */
8173 { .name = "MIDR",
8174 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8175 .access = PL1_R, .resetvalue = cpu->midr,
8176 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8177 .readfn = midr_read,
8178 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8179 .type = ARM_CP_OVERRIDE },
8180 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8181 { .name = "DUMMY",
8182 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8184 { .name = "DUMMY",
8185 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8187 { .name = "DUMMY",
8188 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8190 { .name = "DUMMY",
8191 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8192 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8193 { .name = "DUMMY",
8194 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8195 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8196 REGINFO_SENTINEL
8197 };
8198 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8199 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8201 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8202 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8203 .readfn = midr_read },
8204 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8205 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8206 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8207 .access = PL1_R, .resetvalue = cpu->midr },
8208 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8209 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8210 .access = PL1_R, .resetvalue = cpu->midr },
8211 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8213 .access = PL1_R,
8214 .accessfn = access_aa64_tid1,
8215 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8216 REGINFO_SENTINEL
8217 };
8218 ARMCPRegInfo id_cp_reginfo[] = {
8219 /* These are common to v8 and pre-v8 */
8220 { .name = "CTR",
8221 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8222 .access = PL1_R, .accessfn = ctr_el0_access,
8223 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8224 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8225 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8226 .access = PL0_R, .accessfn = ctr_el0_access,
8227 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8228 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8229 { .name = "TCMTR",
8230 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8231 .access = PL1_R,
8232 .accessfn = access_aa32_tid1,
8233 .type = ARM_CP_CONST, .resetvalue = 0 },
8234 REGINFO_SENTINEL
8235 };
8236 /* TLBTR is specific to VMSA */
8237 ARMCPRegInfo id_tlbtr_reginfo = {
8238 .name = "TLBTR",
8239 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8240 .access = PL1_R,
8241 .accessfn = access_aa32_tid1,
8242 .type = ARM_CP_CONST, .resetvalue = 0,
8243 };
8244 /* MPUIR is specific to PMSA V6+ */
8245 ARMCPRegInfo id_mpuir_reginfo = {
8246 .name = "MPUIR",
8247 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8248 .access = PL1_R, .type = ARM_CP_CONST,
8249 .resetvalue = cpu->pmsav7_dregion << 8
8250 };
8251 ARMCPRegInfo crn0_wi_reginfo = {
8252 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8253 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8254 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8255 };
8256 #ifdef CONFIG_USER_ONLY
8257 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8258 { .name = "MIDR_EL1",
8259 .exported_bits = 0x00000000ffffffff },
8260 { .name = "REVIDR_EL1" },
8261 REGUSERINFO_SENTINEL
8262 };
8263 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8264 #endif
8265 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8266 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8267 ARMCPRegInfo *r;
8268 /* Register the blanket "writes ignored" value first to cover the
8269 * whole space. Then update the specific ID registers to allow write
8270 * access, so that they ignore writes rather than causing them to
8271 * UNDEF.
8272 */
8273 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8274 for (r = id_pre_v8_midr_cp_reginfo;
8275 r->type != ARM_CP_SENTINEL; r++) {
8276 r->access = PL1_RW;
8277 }
8278 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8279 r->access = PL1_RW;
8280 }
8281 id_mpuir_reginfo.access = PL1_RW;
8282 id_tlbtr_reginfo.access = PL1_RW;
8283 }
8284 if (arm_feature(env, ARM_FEATURE_V8)) {
8285 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8286 } else {
8287 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8288 }
8289 define_arm_cp_regs(cpu, id_cp_reginfo);
8290 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8291 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8292 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8293 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8294 }
8295 }
8296
8297 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8298 ARMCPRegInfo mpidr_cp_reginfo[] = {
8299 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8300 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8301 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8302 REGINFO_SENTINEL
8303 };
8304 #ifdef CONFIG_USER_ONLY
8305 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8306 { .name = "MPIDR_EL1",
8307 .fixed_bits = 0x0000000080000000 },
8308 REGUSERINFO_SENTINEL
8309 };
8310 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8311 #endif
8312 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8313 }
8314
8315 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8316 ARMCPRegInfo auxcr_reginfo[] = {
8317 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8318 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8319 .access = PL1_RW, .accessfn = access_tacr,
8320 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8321 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8323 .access = PL2_RW, .type = ARM_CP_CONST,
8324 .resetvalue = 0 },
8325 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8326 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8327 .access = PL3_RW, .type = ARM_CP_CONST,
8328 .resetvalue = 0 },
8329 REGINFO_SENTINEL
8330 };
8331 define_arm_cp_regs(cpu, auxcr_reginfo);
8332 if (cpu_isar_feature(aa32_ac2, cpu)) {
8333 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8334 }
8335 }
8336
8337 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8338 /*
8339 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8340 * There are two flavours:
8341 * (1) older 32-bit only cores have a simple 32-bit CBAR
8342 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8343 * 32-bit register visible to AArch32 at a different encoding
8344 * to the "flavour 1" register and with the bits rearranged to
8345 * be able to squash a 64-bit address into the 32-bit view.
8346 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8347 * in future if we support AArch32-only configs of some of the
8348 * AArch64 cores we might need to add a specific feature flag
8349 * to indicate cores with "flavour 2" CBAR.
8350 */
8351 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8352 /* 32 bit view is [31:18] 0...0 [43:32]. */
8353 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8354 | extract64(cpu->reset_cbar, 32, 12);
8355 ARMCPRegInfo cbar_reginfo[] = {
8356 { .name = "CBAR",
8357 .type = ARM_CP_CONST,
8358 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8359 .access = PL1_R, .resetvalue = cbar32 },
8360 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8361 .type = ARM_CP_CONST,
8362 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8363 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8364 REGINFO_SENTINEL
8365 };
8366 /* We don't implement a r/w 64 bit CBAR currently */
8367 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8368 define_arm_cp_regs(cpu, cbar_reginfo);
8369 } else {
8370 ARMCPRegInfo cbar = {
8371 .name = "CBAR",
8372 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8373 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8374 .fieldoffset = offsetof(CPUARMState,
8375 cp15.c15_config_base_address)
8376 };
8377 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8378 cbar.access = PL1_R;
8379 cbar.fieldoffset = 0;
8380 cbar.type = ARM_CP_CONST;
8381 }
8382 define_one_arm_cp_reg(cpu, &cbar);
8383 }
8384 }
8385
8386 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8387 ARMCPRegInfo vbar_cp_reginfo[] = {
8388 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8389 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8390 .access = PL1_RW, .writefn = vbar_write,
8391 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8392 offsetof(CPUARMState, cp15.vbar_ns) },
8393 .resetvalue = 0 },
8394 REGINFO_SENTINEL
8395 };
8396 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8397 }
8398
8399 /* Generic registers whose values depend on the implementation */
8400 {
8401 ARMCPRegInfo sctlr = {
8402 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8403 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8404 .access = PL1_RW, .accessfn = access_tvm_trvm,
8405 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8406 offsetof(CPUARMState, cp15.sctlr_ns) },
8407 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8408 .raw_writefn = raw_write,
8409 };
8410 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8411 /* Normally we would always end the TB on an SCTLR write, but Linux
8412 * arch/arm/mach-pxa/sleep.S expects two instructions following
8413 * an MMU enable to execute from cache. Imitate this behaviour.
8414 */
8415 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8416 }
8417 define_one_arm_cp_reg(cpu, &sctlr);
8418 }
8419
8420 if (cpu_isar_feature(aa64_lor, cpu)) {
8421 define_arm_cp_regs(cpu, lor_reginfo);
8422 }
8423 if (cpu_isar_feature(aa64_pan, cpu)) {
8424 define_one_arm_cp_reg(cpu, &pan_reginfo);
8425 }
8426 #ifndef CONFIG_USER_ONLY
8427 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8428 define_arm_cp_regs(cpu, ats1e1_reginfo);
8429 }
8430 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8431 define_arm_cp_regs(cpu, ats1cp_reginfo);
8432 }
8433 #endif
8434 if (cpu_isar_feature(aa64_uao, cpu)) {
8435 define_one_arm_cp_reg(cpu, &uao_reginfo);
8436 }
8437
8438 if (cpu_isar_feature(aa64_dit, cpu)) {
8439 define_one_arm_cp_reg(cpu, &dit_reginfo);
8440 }
8441 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8442 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8443 }
8444
8445 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8446 define_arm_cp_regs(cpu, vhe_reginfo);
8447 }
8448
8449 if (cpu_isar_feature(aa64_sve, cpu)) {
8450 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8451 if (arm_feature(env, ARM_FEATURE_EL2)) {
8452 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8453 } else {
8454 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8455 }
8456 if (arm_feature(env, ARM_FEATURE_EL3)) {
8457 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8458 }
8459 }
8460
8461 #ifdef TARGET_AARCH64
8462 if (cpu_isar_feature(aa64_pauth, cpu)) {
8463 define_arm_cp_regs(cpu, pauth_reginfo);
8464 }
8465 if (cpu_isar_feature(aa64_rndr, cpu)) {
8466 define_arm_cp_regs(cpu, rndr_reginfo);
8467 }
8468 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8469 define_arm_cp_regs(cpu, tlbirange_reginfo);
8470 }
8471 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8472 define_arm_cp_regs(cpu, tlbios_reginfo);
8473 }
8474 #ifndef CONFIG_USER_ONLY
8475 /* Data Cache clean instructions up to PoP */
8476 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8477 define_one_arm_cp_reg(cpu, dcpop_reg);
8478
8479 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8480 define_one_arm_cp_reg(cpu, dcpodp_reg);
8481 }
8482 }
8483 #endif /*CONFIG_USER_ONLY*/
8484
8485 /*
8486 * If full MTE is enabled, add all of the system registers.
8487 * If only "instructions available at EL0" are enabled,
8488 * then define only a RAZ/WI version of PSTATE.TCO.
8489 */
8490 if (cpu_isar_feature(aa64_mte, cpu)) {
8491 define_arm_cp_regs(cpu, mte_reginfo);
8492 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8493 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8494 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8495 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8496 }
8497 #endif
8498
8499 if (cpu_isar_feature(any_predinv, cpu)) {
8500 define_arm_cp_regs(cpu, predinv_reginfo);
8501 }
8502
8503 if (cpu_isar_feature(any_ccidx, cpu)) {
8504 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8505 }
8506
8507 #ifndef CONFIG_USER_ONLY
8508 /*
8509 * Register redirections and aliases must be done last,
8510 * after the registers from the other extensions have been defined.
8511 */
8512 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8513 define_arm_vh_e2h_redirects_aliases(cpu);
8514 }
8515 #endif
8516 }
8517
8518 /* Sort alphabetically by type name, except for "any". */
8519 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8520 {
8521 ObjectClass *class_a = (ObjectClass *)a;
8522 ObjectClass *class_b = (ObjectClass *)b;
8523 const char *name_a, *name_b;
8524
8525 name_a = object_class_get_name(class_a);
8526 name_b = object_class_get_name(class_b);
8527 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8528 return 1;
8529 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8530 return -1;
8531 } else {
8532 return strcmp(name_a, name_b);
8533 }
8534 }
8535
8536 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8537 {
8538 ObjectClass *oc = data;
8539 const char *typename;
8540 char *name;
8541
8542 typename = object_class_get_name(oc);
8543 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8544 qemu_printf(" %s\n", name);
8545 g_free(name);
8546 }
8547
8548 void arm_cpu_list(void)
8549 {
8550 GSList *list;
8551
8552 list = object_class_get_list(TYPE_ARM_CPU, false);
8553 list = g_slist_sort(list, arm_cpu_list_compare);
8554 qemu_printf("Available CPUs:\n");
8555 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8556 g_slist_free(list);
8557 }
8558
8559 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8560 {
8561 ObjectClass *oc = data;
8562 CpuDefinitionInfoList **cpu_list = user_data;
8563 CpuDefinitionInfo *info;
8564 const char *typename;
8565
8566 typename = object_class_get_name(oc);
8567 info = g_malloc0(sizeof(*info));
8568 info->name = g_strndup(typename,
8569 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8570 info->q_typename = g_strdup(typename);
8571
8572 QAPI_LIST_PREPEND(*cpu_list, info);
8573 }
8574
8575 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8576 {
8577 CpuDefinitionInfoList *cpu_list = NULL;
8578 GSList *list;
8579
8580 list = object_class_get_list(TYPE_ARM_CPU, false);
8581 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8582 g_slist_free(list);
8583
8584 return cpu_list;
8585 }
8586
8587 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8588 void *opaque, int state, int secstate,
8589 int crm, int opc1, int opc2,
8590 const char *name)
8591 {
8592 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8593 * add a single reginfo struct to the hash table.
8594 */
8595 uint32_t *key = g_new(uint32_t, 1);
8596 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8597 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8598 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8599
8600 r2->name = g_strdup(name);
8601 /* Reset the secure state to the specific incoming state. This is
8602 * necessary as the register may have been defined with both states.
8603 */
8604 r2->secure = secstate;
8605
8606 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8607 /* Register is banked (using both entries in array).
8608 * Overwriting fieldoffset as the array is only used to define
8609 * banked registers but later only fieldoffset is used.
8610 */
8611 r2->fieldoffset = r->bank_fieldoffsets[ns];
8612 }
8613
8614 if (state == ARM_CP_STATE_AA32) {
8615 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8616 /* If the register is banked then we don't need to migrate or
8617 * reset the 32-bit instance in certain cases:
8618 *
8619 * 1) If the register has both 32-bit and 64-bit instances then we
8620 * can count on the 64-bit instance taking care of the
8621 * non-secure bank.
8622 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8623 * taking care of the secure bank. This requires that separate
8624 * 32 and 64-bit definitions are provided.
8625 */
8626 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8627 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8628 r2->type |= ARM_CP_ALIAS;
8629 }
8630 } else if ((secstate != r->secure) && !ns) {
8631 /* The register is not banked so we only want to allow migration of
8632 * the non-secure instance.
8633 */
8634 r2->type |= ARM_CP_ALIAS;
8635 }
8636
8637 if (r->state == ARM_CP_STATE_BOTH) {
8638 /* We assume it is a cp15 register if the .cp field is left unset.
8639 */
8640 if (r2->cp == 0) {
8641 r2->cp = 15;
8642 }
8643
8644 #if HOST_BIG_ENDIAN
8645 if (r2->fieldoffset) {
8646 r2->fieldoffset += sizeof(uint32_t);
8647 }
8648 #endif
8649 }
8650 }
8651 if (state == ARM_CP_STATE_AA64) {
8652 /* To allow abbreviation of ARMCPRegInfo
8653 * definitions, we treat cp == 0 as equivalent to
8654 * the value for "standard guest-visible sysreg".
8655 * STATE_BOTH definitions are also always "standard
8656 * sysreg" in their AArch64 view (the .cp value may
8657 * be non-zero for the benefit of the AArch32 view).
8658 */
8659 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8660 r2->cp = CP_REG_ARM64_SYSREG_CP;
8661 }
8662 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8663 r2->opc0, opc1, opc2);
8664 } else {
8665 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8666 }
8667 if (opaque) {
8668 r2->opaque = opaque;
8669 }
8670 /* reginfo passed to helpers is correct for the actual access,
8671 * and is never ARM_CP_STATE_BOTH:
8672 */
8673 r2->state = state;
8674 /* Make sure reginfo passed to helpers for wildcarded regs
8675 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8676 */
8677 r2->crm = crm;
8678 r2->opc1 = opc1;
8679 r2->opc2 = opc2;
8680 /* By convention, for wildcarded registers only the first
8681 * entry is used for migration; the others are marked as
8682 * ALIAS so we don't try to transfer the register
8683 * multiple times. Special registers (ie NOP/WFI) are
8684 * never migratable and not even raw-accessible.
8685 */
8686 if ((r->type & ARM_CP_SPECIAL)) {
8687 r2->type |= ARM_CP_NO_RAW;
8688 }
8689 if (((r->crm == CP_ANY) && crm != 0) ||
8690 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8691 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8692 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8693 }
8694
8695 /* Check that raw accesses are either forbidden or handled. Note that
8696 * we can't assert this earlier because the setup of fieldoffset for
8697 * banked registers has to be done first.
8698 */
8699 if (!(r2->type & ARM_CP_NO_RAW)) {
8700 assert(!raw_accessors_invalid(r2));
8701 }
8702
8703 /* Overriding of an existing definition must be explicitly
8704 * requested.
8705 */
8706 if (!(r->type & ARM_CP_OVERRIDE)) {
8707 ARMCPRegInfo *oldreg;
8708 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8709 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8710 fprintf(stderr, "Register redefined: cp=%d %d bit "
8711 "crn=%d crm=%d opc1=%d opc2=%d, "
8712 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8713 r2->crn, r2->crm, r2->opc1, r2->opc2,
8714 oldreg->name, r2->name);
8715 g_assert_not_reached();
8716 }
8717 }
8718 g_hash_table_insert(cpu->cp_regs, key, r2);
8719 }
8720
8721
8722 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8723 const ARMCPRegInfo *r, void *opaque)
8724 {
8725 /* Define implementations of coprocessor registers.
8726 * We store these in a hashtable because typically
8727 * there are less than 150 registers in a space which
8728 * is 16*16*16*8*8 = 262144 in size.
8729 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8730 * If a register is defined twice then the second definition is
8731 * used, so this can be used to define some generic registers and
8732 * then override them with implementation specific variations.
8733 * At least one of the original and the second definition should
8734 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8735 * against accidental use.
8736 *
8737 * The state field defines whether the register is to be
8738 * visible in the AArch32 or AArch64 execution state. If the
8739 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8740 * reginfo structure for the AArch32 view, which sees the lower
8741 * 32 bits of the 64 bit register.
8742 *
8743 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8744 * be wildcarded. AArch64 registers are always considered to be 64
8745 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8746 * the register, if any.
8747 */
8748 int crm, opc1, opc2, state;
8749 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8750 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8751 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8752 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8753 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8754 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8755 /* 64 bit registers have only CRm and Opc1 fields */
8756 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8757 /* op0 only exists in the AArch64 encodings */
8758 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8759 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8760 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8761 /*
8762 * This API is only for Arm's system coprocessors (14 and 15) or
8763 * (M-profile or v7A-and-earlier only) for implementation defined
8764 * coprocessors in the range 0..7. Our decode assumes this, since
8765 * 8..13 can be used for other insns including VFP and Neon. See
8766 * valid_cp() in translate.c. Assert here that we haven't tried
8767 * to use an invalid coprocessor number.
8768 */
8769 switch (r->state) {
8770 case ARM_CP_STATE_BOTH:
8771 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8772 if (r->cp == 0) {
8773 break;
8774 }
8775 /* fall through */
8776 case ARM_CP_STATE_AA32:
8777 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8778 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8779 assert(r->cp >= 14 && r->cp <= 15);
8780 } else {
8781 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8782 }
8783 break;
8784 case ARM_CP_STATE_AA64:
8785 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8786 break;
8787 default:
8788 g_assert_not_reached();
8789 }
8790 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8791 * encodes a minimum access level for the register. We roll this
8792 * runtime check into our general permission check code, so check
8793 * here that the reginfo's specified permissions are strict enough
8794 * to encompass the generic architectural permission check.
8795 */
8796 if (r->state != ARM_CP_STATE_AA32) {
8797 int mask = 0;
8798 switch (r->opc1) {
8799 case 0:
8800 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8801 mask = PL0U_R | PL1_RW;
8802 break;
8803 case 1: case 2:
8804 /* min_EL EL1 */
8805 mask = PL1_RW;
8806 break;
8807 case 3:
8808 /* min_EL EL0 */
8809 mask = PL0_RW;
8810 break;
8811 case 4:
8812 case 5:
8813 /* min_EL EL2 */
8814 mask = PL2_RW;
8815 break;
8816 case 6:
8817 /* min_EL EL3 */
8818 mask = PL3_RW;
8819 break;
8820 case 7:
8821 /* min_EL EL1, secure mode only (we don't check the latter) */
8822 mask = PL1_RW;
8823 break;
8824 default:
8825 /* broken reginfo with out-of-range opc1 */
8826 assert(false);
8827 break;
8828 }
8829 /* assert our permissions are not too lax (stricter is fine) */
8830 assert((r->access & ~mask) == 0);
8831 }
8832
8833 /* Check that the register definition has enough info to handle
8834 * reads and writes if they are permitted.
8835 */
8836 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8837 if (r->access & PL3_R) {
8838 assert((r->fieldoffset ||
8839 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8840 r->readfn);
8841 }
8842 if (r->access & PL3_W) {
8843 assert((r->fieldoffset ||
8844 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8845 r->writefn);
8846 }
8847 }
8848 /* Bad type field probably means missing sentinel at end of reg list */
8849 assert(cptype_valid(r->type));
8850 for (crm = crmmin; crm <= crmmax; crm++) {
8851 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8852 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8853 for (state = ARM_CP_STATE_AA32;
8854 state <= ARM_CP_STATE_AA64; state++) {
8855 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8856 continue;
8857 }
8858 if (state == ARM_CP_STATE_AA32) {
8859 /* Under AArch32 CP registers can be common
8860 * (same for secure and non-secure world) or banked.
8861 */
8862 char *name;
8863
8864 switch (r->secure) {
8865 case ARM_CP_SECSTATE_S:
8866 case ARM_CP_SECSTATE_NS:
8867 add_cpreg_to_hashtable(cpu, r, opaque, state,
8868 r->secure, crm, opc1, opc2,
8869 r->name);
8870 break;
8871 default:
8872 name = g_strdup_printf("%s_S", r->name);
8873 add_cpreg_to_hashtable(cpu, r, opaque, state,
8874 ARM_CP_SECSTATE_S,
8875 crm, opc1, opc2, name);
8876 g_free(name);
8877 add_cpreg_to_hashtable(cpu, r, opaque, state,
8878 ARM_CP_SECSTATE_NS,
8879 crm, opc1, opc2, r->name);
8880 break;
8881 }
8882 } else {
8883 /* AArch64 registers get mapped to non-secure instance
8884 * of AArch32 */
8885 add_cpreg_to_hashtable(cpu, r, opaque, state,
8886 ARM_CP_SECSTATE_NS,
8887 crm, opc1, opc2, r->name);
8888 }
8889 }
8890 }
8891 }
8892 }
8893 }
8894
8895 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8896 const ARMCPRegInfo *regs, void *opaque)
8897 {
8898 /* Define a whole list of registers */
8899 const ARMCPRegInfo *r;
8900 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8901 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8902 }
8903 }
8904
8905 /*
8906 * Modify ARMCPRegInfo for access from userspace.
8907 *
8908 * This is a data driven modification directed by
8909 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8910 * user-space cannot alter any values and dynamic values pertaining to
8911 * execution state are hidden from user space view anyway.
8912 */
8913 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8914 {
8915 const ARMCPRegUserSpaceInfo *m;
8916 ARMCPRegInfo *r;
8917
8918 for (m = mods; m->name; m++) {
8919 GPatternSpec *pat = NULL;
8920 if (m->is_glob) {
8921 pat = g_pattern_spec_new(m->name);
8922 }
8923 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8924 if (pat && g_pattern_match_string(pat, r->name)) {
8925 r->type = ARM_CP_CONST;
8926 r->access = PL0U_R;
8927 r->resetvalue = 0;
8928 /* continue */
8929 } else if (strcmp(r->name, m->name) == 0) {
8930 r->type = ARM_CP_CONST;
8931 r->access = PL0U_R;
8932 r->resetvalue &= m->exported_bits;
8933 r->resetvalue |= m->fixed_bits;
8934 break;
8935 }
8936 }
8937 if (pat) {
8938 g_pattern_spec_free(pat);
8939 }
8940 }
8941 }
8942
8943 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8944 {
8945 return g_hash_table_lookup(cpregs, &encoded_cp);
8946 }
8947
8948 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8949 uint64_t value)
8950 {
8951 /* Helper coprocessor write function for write-ignore registers */
8952 }
8953
8954 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8955 {
8956 /* Helper coprocessor write function for read-as-zero registers */
8957 return 0;
8958 }
8959
8960 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8961 {
8962 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8963 }
8964
8965 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8966 {
8967 /* Return true if it is not valid for us to switch to
8968 * this CPU mode (ie all the UNPREDICTABLE cases in
8969 * the ARM ARM CPSRWriteByInstr pseudocode).
8970 */
8971
8972 /* Changes to or from Hyp via MSR and CPS are illegal. */
8973 if (write_type == CPSRWriteByInstr &&
8974 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8975 mode == ARM_CPU_MODE_HYP)) {
8976 return 1;
8977 }
8978
8979 switch (mode) {
8980 case ARM_CPU_MODE_USR:
8981 return 0;
8982 case ARM_CPU_MODE_SYS:
8983 case ARM_CPU_MODE_SVC:
8984 case ARM_CPU_MODE_ABT:
8985 case ARM_CPU_MODE_UND:
8986 case ARM_CPU_MODE_IRQ:
8987 case ARM_CPU_MODE_FIQ:
8988 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8989 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8990 */
8991 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8992 * and CPS are treated as illegal mode changes.
8993 */
8994 if (write_type == CPSRWriteByInstr &&
8995 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8996 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8997 return 1;
8998 }
8999 return 0;
9000 case ARM_CPU_MODE_HYP:
9001 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9002 case ARM_CPU_MODE_MON:
9003 return arm_current_el(env) < 3;
9004 default:
9005 return 1;
9006 }
9007 }
9008
9009 uint32_t cpsr_read(CPUARMState *env)
9010 {
9011 int ZF;
9012 ZF = (env->ZF == 0);
9013 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9014 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9015 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9016 | ((env->condexec_bits & 0xfc) << 8)
9017 | (env->GE << 16) | (env->daif & CPSR_AIF);
9018 }
9019
9020 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9021 CPSRWriteType write_type)
9022 {
9023 uint32_t changed_daif;
9024 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9025 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9026
9027 if (mask & CPSR_NZCV) {
9028 env->ZF = (~val) & CPSR_Z;
9029 env->NF = val;
9030 env->CF = (val >> 29) & 1;
9031 env->VF = (val << 3) & 0x80000000;
9032 }
9033 if (mask & CPSR_Q)
9034 env->QF = ((val & CPSR_Q) != 0);
9035 if (mask & CPSR_T)
9036 env->thumb = ((val & CPSR_T) != 0);
9037 if (mask & CPSR_IT_0_1) {
9038 env->condexec_bits &= ~3;
9039 env->condexec_bits |= (val >> 25) & 3;
9040 }
9041 if (mask & CPSR_IT_2_7) {
9042 env->condexec_bits &= 3;
9043 env->condexec_bits |= (val >> 8) & 0xfc;
9044 }
9045 if (mask & CPSR_GE) {
9046 env->GE = (val >> 16) & 0xf;
9047 }
9048
9049 /* In a V7 implementation that includes the security extensions but does
9050 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9051 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9052 * bits respectively.
9053 *
9054 * In a V8 implementation, it is permitted for privileged software to
9055 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9056 */
9057 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9058 arm_feature(env, ARM_FEATURE_EL3) &&
9059 !arm_feature(env, ARM_FEATURE_EL2) &&
9060 !arm_is_secure(env)) {
9061
9062 changed_daif = (env->daif ^ val) & mask;
9063
9064 if (changed_daif & CPSR_A) {
9065 /* Check to see if we are allowed to change the masking of async
9066 * abort exceptions from a non-secure state.
9067 */
9068 if (!(env->cp15.scr_el3 & SCR_AW)) {
9069 qemu_log_mask(LOG_GUEST_ERROR,
9070 "Ignoring attempt to switch CPSR_A flag from "
9071 "non-secure world with SCR.AW bit clear\n");
9072 mask &= ~CPSR_A;
9073 }
9074 }
9075
9076 if (changed_daif & CPSR_F) {
9077 /* Check to see if we are allowed to change the masking of FIQ
9078 * exceptions from a non-secure state.
9079 */
9080 if (!(env->cp15.scr_el3 & SCR_FW)) {
9081 qemu_log_mask(LOG_GUEST_ERROR,
9082 "Ignoring attempt to switch CPSR_F flag from "
9083 "non-secure world with SCR.FW bit clear\n");
9084 mask &= ~CPSR_F;
9085 }
9086
9087 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9088 * If this bit is set software is not allowed to mask
9089 * FIQs, but is allowed to set CPSR_F to 0.
9090 */
9091 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9092 (val & CPSR_F)) {
9093 qemu_log_mask(LOG_GUEST_ERROR,
9094 "Ignoring attempt to enable CPSR_F flag "
9095 "(non-maskable FIQ [NMFI] support enabled)\n");
9096 mask &= ~CPSR_F;
9097 }
9098 }
9099 }
9100
9101 env->daif &= ~(CPSR_AIF & mask);
9102 env->daif |= val & CPSR_AIF & mask;
9103
9104 if (write_type != CPSRWriteRaw &&
9105 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9106 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9107 /* Note that we can only get here in USR mode if this is a
9108 * gdb stub write; for this case we follow the architectural
9109 * behaviour for guest writes in USR mode of ignoring an attempt
9110 * to switch mode. (Those are caught by translate.c for writes
9111 * triggered by guest instructions.)
9112 */
9113 mask &= ~CPSR_M;
9114 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9115 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9116 * v7, and has defined behaviour in v8:
9117 * + leave CPSR.M untouched
9118 * + allow changes to the other CPSR fields
9119 * + set PSTATE.IL
9120 * For user changes via the GDB stub, we don't set PSTATE.IL,
9121 * as this would be unnecessarily harsh for a user error.
9122 */
9123 mask &= ~CPSR_M;
9124 if (write_type != CPSRWriteByGDBStub &&
9125 arm_feature(env, ARM_FEATURE_V8)) {
9126 mask |= CPSR_IL;
9127 val |= CPSR_IL;
9128 }
9129 qemu_log_mask(LOG_GUEST_ERROR,
9130 "Illegal AArch32 mode switch attempt from %s to %s\n",
9131 aarch32_mode_name(env->uncached_cpsr),
9132 aarch32_mode_name(val));
9133 } else {
9134 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9135 write_type == CPSRWriteExceptionReturn ?
9136 "Exception return from AArch32" :
9137 "AArch32 mode switch from",
9138 aarch32_mode_name(env->uncached_cpsr),
9139 aarch32_mode_name(val), env->regs[15]);
9140 switch_mode(env, val & CPSR_M);
9141 }
9142 }
9143 mask &= ~CACHED_CPSR_BITS;
9144 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9145 if (rebuild_hflags) {
9146 arm_rebuild_hflags(env);
9147 }
9148 }
9149
9150 /* Sign/zero extend */
9151 uint32_t HELPER(sxtb16)(uint32_t x)
9152 {
9153 uint32_t res;
9154 res = (uint16_t)(int8_t)x;
9155 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9156 return res;
9157 }
9158
9159 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9160 {
9161 /*
9162 * Take a division-by-zero exception if necessary; otherwise return
9163 * to get the usual non-trapping division behaviour (result of 0)
9164 */
9165 if (arm_feature(env, ARM_FEATURE_M)
9166 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9167 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9168 }
9169 }
9170
9171 uint32_t HELPER(uxtb16)(uint32_t x)
9172 {
9173 uint32_t res;
9174 res = (uint16_t)(uint8_t)x;
9175 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9176 return res;
9177 }
9178
9179 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9180 {
9181 if (den == 0) {
9182 handle_possible_div0_trap(env, GETPC());
9183 return 0;
9184 }
9185 if (num == INT_MIN && den == -1) {
9186 return INT_MIN;
9187 }
9188 return num / den;
9189 }
9190
9191 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9192 {
9193 if (den == 0) {
9194 handle_possible_div0_trap(env, GETPC());
9195 return 0;
9196 }
9197 return num / den;
9198 }
9199
9200 uint32_t HELPER(rbit)(uint32_t x)
9201 {
9202 return revbit32(x);
9203 }
9204
9205 #ifdef CONFIG_USER_ONLY
9206
9207 static void switch_mode(CPUARMState *env, int mode)
9208 {
9209 ARMCPU *cpu = env_archcpu(env);
9210
9211 if (mode != ARM_CPU_MODE_USR) {
9212 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9213 }
9214 }
9215
9216 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9217 uint32_t cur_el, bool secure)
9218 {
9219 return 1;
9220 }
9221
9222 void aarch64_sync_64_to_32(CPUARMState *env)
9223 {
9224 g_assert_not_reached();
9225 }
9226
9227 #else
9228
9229 static void switch_mode(CPUARMState *env, int mode)
9230 {
9231 int old_mode;
9232 int i;
9233
9234 old_mode = env->uncached_cpsr & CPSR_M;
9235 if (mode == old_mode)
9236 return;
9237
9238 if (old_mode == ARM_CPU_MODE_FIQ) {
9239 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9240 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9241 } else if (mode == ARM_CPU_MODE_FIQ) {
9242 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9243 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9244 }
9245
9246 i = bank_number(old_mode);
9247 env->banked_r13[i] = env->regs[13];
9248 env->banked_spsr[i] = env->spsr;
9249
9250 i = bank_number(mode);
9251 env->regs[13] = env->banked_r13[i];
9252 env->spsr = env->banked_spsr[i];
9253
9254 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9255 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9256 }
9257
9258 /* Physical Interrupt Target EL Lookup Table
9259 *
9260 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9261 *
9262 * The below multi-dimensional table is used for looking up the target
9263 * exception level given numerous condition criteria. Specifically, the
9264 * target EL is based on SCR and HCR routing controls as well as the
9265 * currently executing EL and secure state.
9266 *
9267 * Dimensions:
9268 * target_el_table[2][2][2][2][2][4]
9269 * | | | | | +--- Current EL
9270 * | | | | +------ Non-secure(0)/Secure(1)
9271 * | | | +--------- HCR mask override
9272 * | | +------------ SCR exec state control
9273 * | +--------------- SCR mask override
9274 * +------------------ 32-bit(0)/64-bit(1) EL3
9275 *
9276 * The table values are as such:
9277 * 0-3 = EL0-EL3
9278 * -1 = Cannot occur
9279 *
9280 * The ARM ARM target EL table includes entries indicating that an "exception
9281 * is not taken". The two cases where this is applicable are:
9282 * 1) An exception is taken from EL3 but the SCR does not have the exception
9283 * routed to EL3.
9284 * 2) An exception is taken from EL2 but the HCR does not have the exception
9285 * routed to EL2.
9286 * In these two cases, the below table contain a target of EL1. This value is
9287 * returned as it is expected that the consumer of the table data will check
9288 * for "target EL >= current EL" to ensure the exception is not taken.
9289 *
9290 * SCR HCR
9291 * 64 EA AMO From
9292 * BIT IRQ IMO Non-secure Secure
9293 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9294 */
9295 static const int8_t target_el_table[2][2][2][2][2][4] = {
9296 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9297 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9298 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9299 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9300 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9301 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9302 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9303 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9304 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9305 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9306 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9307 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9308 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9309 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9310 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9311 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9312 };
9313
9314 /*
9315 * Determine the target EL for physical exceptions
9316 */
9317 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9318 uint32_t cur_el, bool secure)
9319 {
9320 CPUARMState *env = cs->env_ptr;
9321 bool rw;
9322 bool scr;
9323 bool hcr;
9324 int target_el;
9325 /* Is the highest EL AArch64? */
9326 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9327 uint64_t hcr_el2;
9328
9329 if (arm_feature(env, ARM_FEATURE_EL3)) {
9330 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9331 } else {
9332 /* Either EL2 is the highest EL (and so the EL2 register width
9333 * is given by is64); or there is no EL2 or EL3, in which case
9334 * the value of 'rw' does not affect the table lookup anyway.
9335 */
9336 rw = is64;
9337 }
9338
9339 hcr_el2 = arm_hcr_el2_eff(env);
9340 switch (excp_idx) {
9341 case EXCP_IRQ:
9342 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9343 hcr = hcr_el2 & HCR_IMO;
9344 break;
9345 case EXCP_FIQ:
9346 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9347 hcr = hcr_el2 & HCR_FMO;
9348 break;
9349 default:
9350 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9351 hcr = hcr_el2 & HCR_AMO;
9352 break;
9353 };
9354
9355 /*
9356 * For these purposes, TGE and AMO/IMO/FMO both force the
9357 * interrupt to EL2. Fold TGE into the bit extracted above.
9358 */
9359 hcr |= (hcr_el2 & HCR_TGE) != 0;
9360
9361 /* Perform a table-lookup for the target EL given the current state */
9362 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9363
9364 assert(target_el > 0);
9365
9366 return target_el;
9367 }
9368
9369 void arm_log_exception(CPUState *cs)
9370 {
9371 int idx = cs->exception_index;
9372
9373 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9374 const char *exc = NULL;
9375 static const char * const excnames[] = {
9376 [EXCP_UDEF] = "Undefined Instruction",
9377 [EXCP_SWI] = "SVC",
9378 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9379 [EXCP_DATA_ABORT] = "Data Abort",
9380 [EXCP_IRQ] = "IRQ",
9381 [EXCP_FIQ] = "FIQ",
9382 [EXCP_BKPT] = "Breakpoint",
9383 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9384 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9385 [EXCP_HVC] = "Hypervisor Call",
9386 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9387 [EXCP_SMC] = "Secure Monitor Call",
9388 [EXCP_VIRQ] = "Virtual IRQ",
9389 [EXCP_VFIQ] = "Virtual FIQ",
9390 [EXCP_SEMIHOST] = "Semihosting call",
9391 [EXCP_NOCP] = "v7M NOCP UsageFault",
9392 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9393 [EXCP_STKOF] = "v8M STKOF UsageFault",
9394 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9395 [EXCP_LSERR] = "v8M LSERR UsageFault",
9396 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9397 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9398 };
9399
9400 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9401 exc = excnames[idx];
9402 }
9403 if (!exc) {
9404 exc = "unknown";
9405 }
9406 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9407 idx, exc, cs->cpu_index);
9408 }
9409 }
9410
9411 /*
9412 * Function used to synchronize QEMU's AArch64 register set with AArch32
9413 * register set. This is necessary when switching between AArch32 and AArch64
9414 * execution state.
9415 */
9416 void aarch64_sync_32_to_64(CPUARMState *env)
9417 {
9418 int i;
9419 uint32_t mode = env->uncached_cpsr & CPSR_M;
9420
9421 /* We can blanket copy R[0:7] to X[0:7] */
9422 for (i = 0; i < 8; i++) {
9423 env->xregs[i] = env->regs[i];
9424 }
9425
9426 /*
9427 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9428 * Otherwise, they come from the banked user regs.
9429 */
9430 if (mode == ARM_CPU_MODE_FIQ) {
9431 for (i = 8; i < 13; i++) {
9432 env->xregs[i] = env->usr_regs[i - 8];
9433 }
9434 } else {
9435 for (i = 8; i < 13; i++) {
9436 env->xregs[i] = env->regs[i];
9437 }
9438 }
9439
9440 /*
9441 * Registers x13-x23 are the various mode SP and FP registers. Registers
9442 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9443 * from the mode banked register.
9444 */
9445 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9446 env->xregs[13] = env->regs[13];
9447 env->xregs[14] = env->regs[14];
9448 } else {
9449 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9450 /* HYP is an exception in that it is copied from r14 */
9451 if (mode == ARM_CPU_MODE_HYP) {
9452 env->xregs[14] = env->regs[14];
9453 } else {
9454 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9455 }
9456 }
9457
9458 if (mode == ARM_CPU_MODE_HYP) {
9459 env->xregs[15] = env->regs[13];
9460 } else {
9461 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9462 }
9463
9464 if (mode == ARM_CPU_MODE_IRQ) {
9465 env->xregs[16] = env->regs[14];
9466 env->xregs[17] = env->regs[13];
9467 } else {
9468 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9469 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9470 }
9471
9472 if (mode == ARM_CPU_MODE_SVC) {
9473 env->xregs[18] = env->regs[14];
9474 env->xregs[19] = env->regs[13];
9475 } else {
9476 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9477 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9478 }
9479
9480 if (mode == ARM_CPU_MODE_ABT) {
9481 env->xregs[20] = env->regs[14];
9482 env->xregs[21] = env->regs[13];
9483 } else {
9484 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9485 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9486 }
9487
9488 if (mode == ARM_CPU_MODE_UND) {
9489 env->xregs[22] = env->regs[14];
9490 env->xregs[23] = env->regs[13];
9491 } else {
9492 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9493 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9494 }
9495
9496 /*
9497 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9498 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9499 * FIQ bank for r8-r14.
9500 */
9501 if (mode == ARM_CPU_MODE_FIQ) {
9502 for (i = 24; i < 31; i++) {
9503 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9504 }
9505 } else {
9506 for (i = 24; i < 29; i++) {
9507 env->xregs[i] = env->fiq_regs[i - 24];
9508 }
9509 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9510 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9511 }
9512
9513 env->pc = env->regs[15];
9514 }
9515
9516 /*
9517 * Function used to synchronize QEMU's AArch32 register set with AArch64
9518 * register set. This is necessary when switching between AArch32 and AArch64
9519 * execution state.
9520 */
9521 void aarch64_sync_64_to_32(CPUARMState *env)
9522 {
9523 int i;
9524 uint32_t mode = env->uncached_cpsr & CPSR_M;
9525
9526 /* We can blanket copy X[0:7] to R[0:7] */
9527 for (i = 0; i < 8; i++) {
9528 env->regs[i] = env->xregs[i];
9529 }
9530
9531 /*
9532 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9533 * Otherwise, we copy x8-x12 into the banked user regs.
9534 */
9535 if (mode == ARM_CPU_MODE_FIQ) {
9536 for (i = 8; i < 13; i++) {
9537 env->usr_regs[i - 8] = env->xregs[i];
9538 }
9539 } else {
9540 for (i = 8; i < 13; i++) {
9541 env->regs[i] = env->xregs[i];
9542 }
9543 }
9544
9545 /*
9546 * Registers r13 & r14 depend on the current mode.
9547 * If we are in a given mode, we copy the corresponding x registers to r13
9548 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9549 * for the mode.
9550 */
9551 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9552 env->regs[13] = env->xregs[13];
9553 env->regs[14] = env->xregs[14];
9554 } else {
9555 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9556
9557 /*
9558 * HYP is an exception in that it does not have its own banked r14 but
9559 * shares the USR r14
9560 */
9561 if (mode == ARM_CPU_MODE_HYP) {
9562 env->regs[14] = env->xregs[14];
9563 } else {
9564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9565 }
9566 }
9567
9568 if (mode == ARM_CPU_MODE_HYP) {
9569 env->regs[13] = env->xregs[15];
9570 } else {
9571 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9572 }
9573
9574 if (mode == ARM_CPU_MODE_IRQ) {
9575 env->regs[14] = env->xregs[16];
9576 env->regs[13] = env->xregs[17];
9577 } else {
9578 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9579 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9580 }
9581
9582 if (mode == ARM_CPU_MODE_SVC) {
9583 env->regs[14] = env->xregs[18];
9584 env->regs[13] = env->xregs[19];
9585 } else {
9586 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9587 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9588 }
9589
9590 if (mode == ARM_CPU_MODE_ABT) {
9591 env->regs[14] = env->xregs[20];
9592 env->regs[13] = env->xregs[21];
9593 } else {
9594 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9595 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9596 }
9597
9598 if (mode == ARM_CPU_MODE_UND) {
9599 env->regs[14] = env->xregs[22];
9600 env->regs[13] = env->xregs[23];
9601 } else {
9602 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9603 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9604 }
9605
9606 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9607 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9608 * FIQ bank for r8-r14.
9609 */
9610 if (mode == ARM_CPU_MODE_FIQ) {
9611 for (i = 24; i < 31; i++) {
9612 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9613 }
9614 } else {
9615 for (i = 24; i < 29; i++) {
9616 env->fiq_regs[i - 24] = env->xregs[i];
9617 }
9618 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9619 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9620 }
9621
9622 env->regs[15] = env->pc;
9623 }
9624
9625 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9626 uint32_t mask, uint32_t offset,
9627 uint32_t newpc)
9628 {
9629 int new_el;
9630
9631 /* Change the CPU state so as to actually take the exception. */
9632 switch_mode(env, new_mode);
9633
9634 /*
9635 * For exceptions taken to AArch32 we must clear the SS bit in both
9636 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9637 */
9638 env->pstate &= ~PSTATE_SS;
9639 env->spsr = cpsr_read(env);
9640 /* Clear IT bits. */
9641 env->condexec_bits = 0;
9642 /* Switch to the new mode, and to the correct instruction set. */
9643 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9644
9645 /* This must be after mode switching. */
9646 new_el = arm_current_el(env);
9647
9648 /* Set new mode endianness */
9649 env->uncached_cpsr &= ~CPSR_E;
9650 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9651 env->uncached_cpsr |= CPSR_E;
9652 }
9653 /* J and IL must always be cleared for exception entry */
9654 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9655 env->daif |= mask;
9656
9657 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9658 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9659 env->uncached_cpsr |= CPSR_SSBS;
9660 } else {
9661 env->uncached_cpsr &= ~CPSR_SSBS;
9662 }
9663 }
9664
9665 if (new_mode == ARM_CPU_MODE_HYP) {
9666 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9667 env->elr_el[2] = env->regs[15];
9668 } else {
9669 /* CPSR.PAN is normally preserved preserved unless... */
9670 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9671 switch (new_el) {
9672 case 3:
9673 if (!arm_is_secure_below_el3(env)) {
9674 /* ... the target is EL3, from non-secure state. */
9675 env->uncached_cpsr &= ~CPSR_PAN;
9676 break;
9677 }
9678 /* ... the target is EL3, from secure state ... */
9679 /* fall through */
9680 case 1:
9681 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9682 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9683 env->uncached_cpsr |= CPSR_PAN;
9684 }
9685 break;
9686 }
9687 }
9688 /*
9689 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9690 * and we should just guard the thumb mode on V4
9691 */
9692 if (arm_feature(env, ARM_FEATURE_V4T)) {
9693 env->thumb =
9694 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9695 }
9696 env->regs[14] = env->regs[15] + offset;
9697 }
9698 env->regs[15] = newpc;
9699 arm_rebuild_hflags(env);
9700 }
9701
9702 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9703 {
9704 /*
9705 * Handle exception entry to Hyp mode; this is sufficiently
9706 * different to entry to other AArch32 modes that we handle it
9707 * separately here.
9708 *
9709 * The vector table entry used is always the 0x14 Hyp mode entry point,
9710 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9711 * The offset applied to the preferred return address is always zero
9712 * (see DDI0487C.a section G1.12.3).
9713 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9714 */
9715 uint32_t addr, mask;
9716 ARMCPU *cpu = ARM_CPU(cs);
9717 CPUARMState *env = &cpu->env;
9718
9719 switch (cs->exception_index) {
9720 case EXCP_UDEF:
9721 addr = 0x04;
9722 break;
9723 case EXCP_SWI:
9724 addr = 0x08;
9725 break;
9726 case EXCP_BKPT:
9727 /* Fall through to prefetch abort. */
9728 case EXCP_PREFETCH_ABORT:
9729 env->cp15.ifar_s = env->exception.vaddress;
9730 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9731 (uint32_t)env->exception.vaddress);
9732 addr = 0x0c;
9733 break;
9734 case EXCP_DATA_ABORT:
9735 env->cp15.dfar_s = env->exception.vaddress;
9736 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9737 (uint32_t)env->exception.vaddress);
9738 addr = 0x10;
9739 break;
9740 case EXCP_IRQ:
9741 addr = 0x18;
9742 break;
9743 case EXCP_FIQ:
9744 addr = 0x1c;
9745 break;
9746 case EXCP_HVC:
9747 addr = 0x08;
9748 break;
9749 case EXCP_HYP_TRAP:
9750 addr = 0x14;
9751 break;
9752 default:
9753 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9754 }
9755
9756 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9757 if (!arm_feature(env, ARM_FEATURE_V8)) {
9758 /*
9759 * QEMU syndrome values are v8-style. v7 has the IL bit
9760 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9761 * If this is a v7 CPU, squash the IL bit in those cases.
9762 */
9763 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9764 (cs->exception_index == EXCP_DATA_ABORT &&
9765 !(env->exception.syndrome & ARM_EL_ISV)) ||
9766 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9767 env->exception.syndrome &= ~ARM_EL_IL;
9768 }
9769 }
9770 env->cp15.esr_el[2] = env->exception.syndrome;
9771 }
9772
9773 if (arm_current_el(env) != 2 && addr < 0x14) {
9774 addr = 0x14;
9775 }
9776
9777 mask = 0;
9778 if (!(env->cp15.scr_el3 & SCR_EA)) {
9779 mask |= CPSR_A;
9780 }
9781 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9782 mask |= CPSR_I;
9783 }
9784 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9785 mask |= CPSR_F;
9786 }
9787
9788 addr += env->cp15.hvbar;
9789
9790 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9791 }
9792
9793 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9794 {
9795 ARMCPU *cpu = ARM_CPU(cs);
9796 CPUARMState *env = &cpu->env;
9797 uint32_t addr;
9798 uint32_t mask;
9799 int new_mode;
9800 uint32_t offset;
9801 uint32_t moe;
9802
9803 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9804 switch (syn_get_ec(env->exception.syndrome)) {
9805 case EC_BREAKPOINT:
9806 case EC_BREAKPOINT_SAME_EL:
9807 moe = 1;
9808 break;
9809 case EC_WATCHPOINT:
9810 case EC_WATCHPOINT_SAME_EL:
9811 moe = 10;
9812 break;
9813 case EC_AA32_BKPT:
9814 moe = 3;
9815 break;
9816 case EC_VECTORCATCH:
9817 moe = 5;
9818 break;
9819 default:
9820 moe = 0;
9821 break;
9822 }
9823
9824 if (moe) {
9825 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9826 }
9827
9828 if (env->exception.target_el == 2) {
9829 arm_cpu_do_interrupt_aarch32_hyp(cs);
9830 return;
9831 }
9832
9833 switch (cs->exception_index) {
9834 case EXCP_UDEF:
9835 new_mode = ARM_CPU_MODE_UND;
9836 addr = 0x04;
9837 mask = CPSR_I;
9838 if (env->thumb)
9839 offset = 2;
9840 else
9841 offset = 4;
9842 break;
9843 case EXCP_SWI:
9844 new_mode = ARM_CPU_MODE_SVC;
9845 addr = 0x08;
9846 mask = CPSR_I;
9847 /* The PC already points to the next instruction. */
9848 offset = 0;
9849 break;
9850 case EXCP_BKPT:
9851 /* Fall through to prefetch abort. */
9852 case EXCP_PREFETCH_ABORT:
9853 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9854 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9855 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9856 env->exception.fsr, (uint32_t)env->exception.vaddress);
9857 new_mode = ARM_CPU_MODE_ABT;
9858 addr = 0x0c;
9859 mask = CPSR_A | CPSR_I;
9860 offset = 4;
9861 break;
9862 case EXCP_DATA_ABORT:
9863 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9864 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9865 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9866 env->exception.fsr,
9867 (uint32_t)env->exception.vaddress);
9868 new_mode = ARM_CPU_MODE_ABT;
9869 addr = 0x10;
9870 mask = CPSR_A | CPSR_I;
9871 offset = 8;
9872 break;
9873 case EXCP_IRQ:
9874 new_mode = ARM_CPU_MODE_IRQ;
9875 addr = 0x18;
9876 /* Disable IRQ and imprecise data aborts. */
9877 mask = CPSR_A | CPSR_I;
9878 offset = 4;
9879 if (env->cp15.scr_el3 & SCR_IRQ) {
9880 /* IRQ routed to monitor mode */
9881 new_mode = ARM_CPU_MODE_MON;
9882 mask |= CPSR_F;
9883 }
9884 break;
9885 case EXCP_FIQ:
9886 new_mode = ARM_CPU_MODE_FIQ;
9887 addr = 0x1c;
9888 /* Disable FIQ, IRQ and imprecise data aborts. */
9889 mask = CPSR_A | CPSR_I | CPSR_F;
9890 if (env->cp15.scr_el3 & SCR_FIQ) {
9891 /* FIQ routed to monitor mode */
9892 new_mode = ARM_CPU_MODE_MON;
9893 }
9894 offset = 4;
9895 break;
9896 case EXCP_VIRQ:
9897 new_mode = ARM_CPU_MODE_IRQ;
9898 addr = 0x18;
9899 /* Disable IRQ and imprecise data aborts. */
9900 mask = CPSR_A | CPSR_I;
9901 offset = 4;
9902 break;
9903 case EXCP_VFIQ:
9904 new_mode = ARM_CPU_MODE_FIQ;
9905 addr = 0x1c;
9906 /* Disable FIQ, IRQ and imprecise data aborts. */
9907 mask = CPSR_A | CPSR_I | CPSR_F;
9908 offset = 4;
9909 break;
9910 case EXCP_SMC:
9911 new_mode = ARM_CPU_MODE_MON;
9912 addr = 0x08;
9913 mask = CPSR_A | CPSR_I | CPSR_F;
9914 offset = 0;
9915 break;
9916 default:
9917 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9918 return; /* Never happens. Keep compiler happy. */
9919 }
9920
9921 if (new_mode == ARM_CPU_MODE_MON) {
9922 addr += env->cp15.mvbar;
9923 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9924 /* High vectors. When enabled, base address cannot be remapped. */
9925 addr += 0xffff0000;
9926 } else {
9927 /* ARM v7 architectures provide a vector base address register to remap
9928 * the interrupt vector table.
9929 * This register is only followed in non-monitor mode, and is banked.
9930 * Note: only bits 31:5 are valid.
9931 */
9932 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9933 }
9934
9935 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9936 env->cp15.scr_el3 &= ~SCR_NS;
9937 }
9938
9939 take_aarch32_exception(env, new_mode, mask, offset, addr);
9940 }
9941
9942 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9943 {
9944 /*
9945 * Return the register number of the AArch64 view of the AArch32
9946 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9947 * be that of the AArch32 mode the exception came from.
9948 */
9949 int mode = env->uncached_cpsr & CPSR_M;
9950
9951 switch (aarch32_reg) {
9952 case 0 ... 7:
9953 return aarch32_reg;
9954 case 8 ... 12:
9955 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9956 case 13:
9957 switch (mode) {
9958 case ARM_CPU_MODE_USR:
9959 case ARM_CPU_MODE_SYS:
9960 return 13;
9961 case ARM_CPU_MODE_HYP:
9962 return 15;
9963 case ARM_CPU_MODE_IRQ:
9964 return 17;
9965 case ARM_CPU_MODE_SVC:
9966 return 19;
9967 case ARM_CPU_MODE_ABT:
9968 return 21;
9969 case ARM_CPU_MODE_UND:
9970 return 23;
9971 case ARM_CPU_MODE_FIQ:
9972 return 29;
9973 default:
9974 g_assert_not_reached();
9975 }
9976 case 14:
9977 switch (mode) {
9978 case ARM_CPU_MODE_USR:
9979 case ARM_CPU_MODE_SYS:
9980 case ARM_CPU_MODE_HYP:
9981 return 14;
9982 case ARM_CPU_MODE_IRQ:
9983 return 16;
9984 case ARM_CPU_MODE_SVC:
9985 return 18;
9986 case ARM_CPU_MODE_ABT:
9987 return 20;
9988 case ARM_CPU_MODE_UND:
9989 return 22;
9990 case ARM_CPU_MODE_FIQ:
9991 return 30;
9992 default:
9993 g_assert_not_reached();
9994 }
9995 case 15:
9996 return 31;
9997 default:
9998 g_assert_not_reached();
9999 }
10000 }
10001
10002 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10003 {
10004 uint32_t ret = cpsr_read(env);
10005
10006 /* Move DIT to the correct location for SPSR_ELx */
10007 if (ret & CPSR_DIT) {
10008 ret &= ~CPSR_DIT;
10009 ret |= PSTATE_DIT;
10010 }
10011 /* Merge PSTATE.SS into SPSR_ELx */
10012 ret |= env->pstate & PSTATE_SS;
10013
10014 return ret;
10015 }
10016
10017 /* Handle exception entry to a target EL which is using AArch64 */
10018 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10019 {
10020 ARMCPU *cpu = ARM_CPU(cs);
10021 CPUARMState *env = &cpu->env;
10022 unsigned int new_el = env->exception.target_el;
10023 target_ulong addr = env->cp15.vbar_el[new_el];
10024 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10025 unsigned int old_mode;
10026 unsigned int cur_el = arm_current_el(env);
10027 int rt;
10028
10029 /*
10030 * Note that new_el can never be 0. If cur_el is 0, then
10031 * el0_a64 is is_a64(), else el0_a64 is ignored.
10032 */
10033 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10034
10035 if (cur_el < new_el) {
10036 /* Entry vector offset depends on whether the implemented EL
10037 * immediately lower than the target level is using AArch32 or AArch64
10038 */
10039 bool is_aa64;
10040 uint64_t hcr;
10041
10042 switch (new_el) {
10043 case 3:
10044 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10045 break;
10046 case 2:
10047 hcr = arm_hcr_el2_eff(env);
10048 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10049 is_aa64 = (hcr & HCR_RW) != 0;
10050 break;
10051 }
10052 /* fall through */
10053 case 1:
10054 is_aa64 = is_a64(env);
10055 break;
10056 default:
10057 g_assert_not_reached();
10058 }
10059
10060 if (is_aa64) {
10061 addr += 0x400;
10062 } else {
10063 addr += 0x600;
10064 }
10065 } else if (pstate_read(env) & PSTATE_SP) {
10066 addr += 0x200;
10067 }
10068
10069 switch (cs->exception_index) {
10070 case EXCP_PREFETCH_ABORT:
10071 case EXCP_DATA_ABORT:
10072 env->cp15.far_el[new_el] = env->exception.vaddress;
10073 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10074 env->cp15.far_el[new_el]);
10075 /* fall through */
10076 case EXCP_BKPT:
10077 case EXCP_UDEF:
10078 case EXCP_SWI:
10079 case EXCP_HVC:
10080 case EXCP_HYP_TRAP:
10081 case EXCP_SMC:
10082 switch (syn_get_ec(env->exception.syndrome)) {
10083 case EC_ADVSIMDFPACCESSTRAP:
10084 /*
10085 * QEMU internal FP/SIMD syndromes from AArch32 include the
10086 * TA and coproc fields which are only exposed if the exception
10087 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10088 * AArch64 format syndrome.
10089 */
10090 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10091 break;
10092 case EC_CP14RTTRAP:
10093 case EC_CP15RTTRAP:
10094 case EC_CP14DTTRAP:
10095 /*
10096 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10097 * the raw register field from the insn; when taking this to
10098 * AArch64 we must convert it to the AArch64 view of the register
10099 * number. Notice that we read a 4-bit AArch32 register number and
10100 * write back a 5-bit AArch64 one.
10101 */
10102 rt = extract32(env->exception.syndrome, 5, 4);
10103 rt = aarch64_regnum(env, rt);
10104 env->exception.syndrome = deposit32(env->exception.syndrome,
10105 5, 5, rt);
10106 break;
10107 case EC_CP15RRTTRAP:
10108 case EC_CP14RRTTRAP:
10109 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10110 rt = extract32(env->exception.syndrome, 5, 4);
10111 rt = aarch64_regnum(env, rt);
10112 env->exception.syndrome = deposit32(env->exception.syndrome,
10113 5, 5, rt);
10114 rt = extract32(env->exception.syndrome, 10, 4);
10115 rt = aarch64_regnum(env, rt);
10116 env->exception.syndrome = deposit32(env->exception.syndrome,
10117 10, 5, rt);
10118 break;
10119 }
10120 env->cp15.esr_el[new_el] = env->exception.syndrome;
10121 break;
10122 case EXCP_IRQ:
10123 case EXCP_VIRQ:
10124 addr += 0x80;
10125 break;
10126 case EXCP_FIQ:
10127 case EXCP_VFIQ:
10128 addr += 0x100;
10129 break;
10130 default:
10131 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10132 }
10133
10134 if (is_a64(env)) {
10135 old_mode = pstate_read(env);
10136 aarch64_save_sp(env, arm_current_el(env));
10137 env->elr_el[new_el] = env->pc;
10138 } else {
10139 old_mode = cpsr_read_for_spsr_elx(env);
10140 env->elr_el[new_el] = env->regs[15];
10141
10142 aarch64_sync_32_to_64(env);
10143
10144 env->condexec_bits = 0;
10145 }
10146 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10147
10148 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10149 env->elr_el[new_el]);
10150
10151 if (cpu_isar_feature(aa64_pan, cpu)) {
10152 /* The value of PSTATE.PAN is normally preserved, except when ... */
10153 new_mode |= old_mode & PSTATE_PAN;
10154 switch (new_el) {
10155 case 2:
10156 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10157 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10158 != (HCR_E2H | HCR_TGE)) {
10159 break;
10160 }
10161 /* fall through */
10162 case 1:
10163 /* ... the target is EL1 ... */
10164 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10165 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10166 new_mode |= PSTATE_PAN;
10167 }
10168 break;
10169 }
10170 }
10171 if (cpu_isar_feature(aa64_mte, cpu)) {
10172 new_mode |= PSTATE_TCO;
10173 }
10174
10175 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10176 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10177 new_mode |= PSTATE_SSBS;
10178 } else {
10179 new_mode &= ~PSTATE_SSBS;
10180 }
10181 }
10182
10183 pstate_write(env, PSTATE_DAIF | new_mode);
10184 env->aarch64 = 1;
10185 aarch64_restore_sp(env, new_el);
10186 helper_rebuild_hflags_a64(env, new_el);
10187
10188 env->pc = addr;
10189
10190 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10191 new_el, env->pc, pstate_read(env));
10192 }
10193
10194 /*
10195 * Do semihosting call and set the appropriate return value. All the
10196 * permission and validity checks have been done at translate time.
10197 *
10198 * We only see semihosting exceptions in TCG only as they are not
10199 * trapped to the hypervisor in KVM.
10200 */
10201 #ifdef CONFIG_TCG
10202 static void handle_semihosting(CPUState *cs)
10203 {
10204 ARMCPU *cpu = ARM_CPU(cs);
10205 CPUARMState *env = &cpu->env;
10206
10207 if (is_a64(env)) {
10208 qemu_log_mask(CPU_LOG_INT,
10209 "...handling as semihosting call 0x%" PRIx64 "\n",
10210 env->xregs[0]);
10211 env->xregs[0] = do_common_semihosting(cs);
10212 env->pc += 4;
10213 } else {
10214 qemu_log_mask(CPU_LOG_INT,
10215 "...handling as semihosting call 0x%x\n",
10216 env->regs[0]);
10217 env->regs[0] = do_common_semihosting(cs);
10218 env->regs[15] += env->thumb ? 2 : 4;
10219 }
10220 }
10221 #endif
10222
10223 /* Handle a CPU exception for A and R profile CPUs.
10224 * Do any appropriate logging, handle PSCI calls, and then hand off
10225 * to the AArch64-entry or AArch32-entry function depending on the
10226 * target exception level's register width.
10227 *
10228 * Note: this is used for both TCG (as the do_interrupt tcg op),
10229 * and KVM to re-inject guest debug exceptions, and to
10230 * inject a Synchronous-External-Abort.
10231 */
10232 void arm_cpu_do_interrupt(CPUState *cs)
10233 {
10234 ARMCPU *cpu = ARM_CPU(cs);
10235 CPUARMState *env = &cpu->env;
10236 unsigned int new_el = env->exception.target_el;
10237
10238 assert(!arm_feature(env, ARM_FEATURE_M));
10239
10240 arm_log_exception(cs);
10241 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10242 new_el);
10243 if (qemu_loglevel_mask(CPU_LOG_INT)
10244 && !excp_is_internal(cs->exception_index)) {
10245 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10246 syn_get_ec(env->exception.syndrome),
10247 env->exception.syndrome);
10248 }
10249
10250 if (arm_is_psci_call(cpu, cs->exception_index)) {
10251 arm_handle_psci_call(cpu);
10252 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10253 return;
10254 }
10255
10256 /*
10257 * Semihosting semantics depend on the register width of the code
10258 * that caused the exception, not the target exception level, so
10259 * must be handled here.
10260 */
10261 #ifdef CONFIG_TCG
10262 if (cs->exception_index == EXCP_SEMIHOST) {
10263 handle_semihosting(cs);
10264 return;
10265 }
10266 #endif
10267
10268 /* Hooks may change global state so BQL should be held, also the
10269 * BQL needs to be held for any modification of
10270 * cs->interrupt_request.
10271 */
10272 g_assert(qemu_mutex_iothread_locked());
10273
10274 arm_call_pre_el_change_hook(cpu);
10275
10276 assert(!excp_is_internal(cs->exception_index));
10277 if (arm_el_is_aa64(env, new_el)) {
10278 arm_cpu_do_interrupt_aarch64(cs);
10279 } else {
10280 arm_cpu_do_interrupt_aarch32(cs);
10281 }
10282
10283 arm_call_el_change_hook(cpu);
10284
10285 if (!kvm_enabled()) {
10286 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10287 }
10288 }
10289 #endif /* !CONFIG_USER_ONLY */
10290
10291 uint64_t arm_sctlr(CPUARMState *env, int el)
10292 {
10293 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10294 if (el == 0) {
10295 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10296 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10297 ? 2 : 1;
10298 }
10299 return env->cp15.sctlr_el[el];
10300 }
10301
10302 /* Return the SCTLR value which controls this address translation regime */
10303 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10304 {
10305 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10306 }
10307
10308 #ifndef CONFIG_USER_ONLY
10309
10310 /* Return true if the specified stage of address translation is disabled */
10311 static inline bool regime_translation_disabled(CPUARMState *env,
10312 ARMMMUIdx mmu_idx)
10313 {
10314 uint64_t hcr_el2;
10315
10316 if (arm_feature(env, ARM_FEATURE_M)) {
10317 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10318 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10319 case R_V7M_MPU_CTRL_ENABLE_MASK:
10320 /* Enabled, but not for HardFault and NMI */
10321 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10322 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10323 /* Enabled for all cases */
10324 return false;
10325 case 0:
10326 default:
10327 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10328 * we warned about that in armv7m_nvic.c when the guest set it.
10329 */
10330 return true;
10331 }
10332 }
10333
10334 hcr_el2 = arm_hcr_el2_eff(env);
10335
10336 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10337 /* HCR.DC means HCR.VM behaves as 1 */
10338 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10339 }
10340
10341 if (hcr_el2 & HCR_TGE) {
10342 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10343 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10344 return true;
10345 }
10346 }
10347
10348 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10349 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10350 return true;
10351 }
10352
10353 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10354 }
10355
10356 static inline bool regime_translation_big_endian(CPUARMState *env,
10357 ARMMMUIdx mmu_idx)
10358 {
10359 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10360 }
10361
10362 /* Return the TTBR associated with this translation regime */
10363 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10364 int ttbrn)
10365 {
10366 if (mmu_idx == ARMMMUIdx_Stage2) {
10367 return env->cp15.vttbr_el2;
10368 }
10369 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10370 return env->cp15.vsttbr_el2;
10371 }
10372 if (ttbrn == 0) {
10373 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10374 } else {
10375 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10376 }
10377 }
10378
10379 #endif /* !CONFIG_USER_ONLY */
10380
10381 /* Convert a possible stage1+2 MMU index into the appropriate
10382 * stage 1 MMU index
10383 */
10384 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10385 {
10386 switch (mmu_idx) {
10387 case ARMMMUIdx_SE10_0:
10388 return ARMMMUIdx_Stage1_SE0;
10389 case ARMMMUIdx_SE10_1:
10390 return ARMMMUIdx_Stage1_SE1;
10391 case ARMMMUIdx_SE10_1_PAN:
10392 return ARMMMUIdx_Stage1_SE1_PAN;
10393 case ARMMMUIdx_E10_0:
10394 return ARMMMUIdx_Stage1_E0;
10395 case ARMMMUIdx_E10_1:
10396 return ARMMMUIdx_Stage1_E1;
10397 case ARMMMUIdx_E10_1_PAN:
10398 return ARMMMUIdx_Stage1_E1_PAN;
10399 default:
10400 return mmu_idx;
10401 }
10402 }
10403
10404 /* Return true if the translation regime is using LPAE format page tables */
10405 static inline bool regime_using_lpae_format(CPUARMState *env,
10406 ARMMMUIdx mmu_idx)
10407 {
10408 int el = regime_el(env, mmu_idx);
10409 if (el == 2 || arm_el_is_aa64(env, el)) {
10410 return true;
10411 }
10412 if (arm_feature(env, ARM_FEATURE_LPAE)
10413 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10414 return true;
10415 }
10416 return false;
10417 }
10418
10419 /* Returns true if the stage 1 translation regime is using LPAE format page
10420 * tables. Used when raising alignment exceptions, whose FSR changes depending
10421 * on whether the long or short descriptor format is in use. */
10422 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10423 {
10424 mmu_idx = stage_1_mmu_idx(mmu_idx);
10425
10426 return regime_using_lpae_format(env, mmu_idx);
10427 }
10428
10429 #ifndef CONFIG_USER_ONLY
10430 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10431 {
10432 switch (mmu_idx) {
10433 case ARMMMUIdx_SE10_0:
10434 case ARMMMUIdx_E20_0:
10435 case ARMMMUIdx_SE20_0:
10436 case ARMMMUIdx_Stage1_E0:
10437 case ARMMMUIdx_Stage1_SE0:
10438 case ARMMMUIdx_MUser:
10439 case ARMMMUIdx_MSUser:
10440 case ARMMMUIdx_MUserNegPri:
10441 case ARMMMUIdx_MSUserNegPri:
10442 return true;
10443 default:
10444 return false;
10445 case ARMMMUIdx_E10_0:
10446 case ARMMMUIdx_E10_1:
10447 case ARMMMUIdx_E10_1_PAN:
10448 g_assert_not_reached();
10449 }
10450 }
10451
10452 /* Translate section/page access permissions to page
10453 * R/W protection flags
10454 *
10455 * @env: CPUARMState
10456 * @mmu_idx: MMU index indicating required translation regime
10457 * @ap: The 3-bit access permissions (AP[2:0])
10458 * @domain_prot: The 2-bit domain access permissions
10459 */
10460 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10461 int ap, int domain_prot)
10462 {
10463 bool is_user = regime_is_user(env, mmu_idx);
10464
10465 if (domain_prot == 3) {
10466 return PAGE_READ | PAGE_WRITE;
10467 }
10468
10469 switch (ap) {
10470 case 0:
10471 if (arm_feature(env, ARM_FEATURE_V7)) {
10472 return 0;
10473 }
10474 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10475 case SCTLR_S:
10476 return is_user ? 0 : PAGE_READ;
10477 case SCTLR_R:
10478 return PAGE_READ;
10479 default:
10480 return 0;
10481 }
10482 case 1:
10483 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10484 case 2:
10485 if (is_user) {
10486 return PAGE_READ;
10487 } else {
10488 return PAGE_READ | PAGE_WRITE;
10489 }
10490 case 3:
10491 return PAGE_READ | PAGE_WRITE;
10492 case 4: /* Reserved. */
10493 return 0;
10494 case 5:
10495 return is_user ? 0 : PAGE_READ;
10496 case 6:
10497 return PAGE_READ;
10498 case 7:
10499 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10500 return 0;
10501 }
10502 return PAGE_READ;
10503 default:
10504 g_assert_not_reached();
10505 }
10506 }
10507
10508 /* Translate section/page access permissions to page
10509 * R/W protection flags.
10510 *
10511 * @ap: The 2-bit simple AP (AP[2:1])
10512 * @is_user: TRUE if accessing from PL0
10513 */
10514 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10515 {
10516 switch (ap) {
10517 case 0:
10518 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10519 case 1:
10520 return PAGE_READ | PAGE_WRITE;
10521 case 2:
10522 return is_user ? 0 : PAGE_READ;
10523 case 3:
10524 return PAGE_READ;
10525 default:
10526 g_assert_not_reached();
10527 }
10528 }
10529
10530 static inline int
10531 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10532 {
10533 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10534 }
10535
10536 /* Translate S2 section/page access permissions to protection flags
10537 *
10538 * @env: CPUARMState
10539 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10540 * @xn: XN (execute-never) bits
10541 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10542 */
10543 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10544 {
10545 int prot = 0;
10546
10547 if (s2ap & 1) {
10548 prot |= PAGE_READ;
10549 }
10550 if (s2ap & 2) {
10551 prot |= PAGE_WRITE;
10552 }
10553
10554 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10555 switch (xn) {
10556 case 0:
10557 prot |= PAGE_EXEC;
10558 break;
10559 case 1:
10560 if (s1_is_el0) {
10561 prot |= PAGE_EXEC;
10562 }
10563 break;
10564 case 2:
10565 break;
10566 case 3:
10567 if (!s1_is_el0) {
10568 prot |= PAGE_EXEC;
10569 }
10570 break;
10571 default:
10572 g_assert_not_reached();
10573 }
10574 } else {
10575 if (!extract32(xn, 1, 1)) {
10576 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10577 prot |= PAGE_EXEC;
10578 }
10579 }
10580 }
10581 return prot;
10582 }
10583
10584 /* Translate section/page access permissions to protection flags
10585 *
10586 * @env: CPUARMState
10587 * @mmu_idx: MMU index indicating required translation regime
10588 * @is_aa64: TRUE if AArch64
10589 * @ap: The 2-bit simple AP (AP[2:1])
10590 * @ns: NS (non-secure) bit
10591 * @xn: XN (execute-never) bit
10592 * @pxn: PXN (privileged execute-never) bit
10593 */
10594 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10595 int ap, int ns, int xn, int pxn)
10596 {
10597 bool is_user = regime_is_user(env, mmu_idx);
10598 int prot_rw, user_rw;
10599 bool have_wxn;
10600 int wxn = 0;
10601
10602 assert(mmu_idx != ARMMMUIdx_Stage2);
10603 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10604
10605 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10606 if (is_user) {
10607 prot_rw = user_rw;
10608 } else {
10609 if (user_rw && regime_is_pan(env, mmu_idx)) {
10610 /* PAN forbids data accesses but doesn't affect insn fetch */
10611 prot_rw = 0;
10612 } else {
10613 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10614 }
10615 }
10616
10617 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10618 return prot_rw;
10619 }
10620
10621 /* TODO have_wxn should be replaced with
10622 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10623 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10624 * compatible processors have EL2, which is required for [U]WXN.
10625 */
10626 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10627
10628 if (have_wxn) {
10629 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10630 }
10631
10632 if (is_aa64) {
10633 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10634 xn = pxn || (user_rw & PAGE_WRITE);
10635 }
10636 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10637 switch (regime_el(env, mmu_idx)) {
10638 case 1:
10639 case 3:
10640 if (is_user) {
10641 xn = xn || !(user_rw & PAGE_READ);
10642 } else {
10643 int uwxn = 0;
10644 if (have_wxn) {
10645 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10646 }
10647 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10648 (uwxn && (user_rw & PAGE_WRITE));
10649 }
10650 break;
10651 case 2:
10652 break;
10653 }
10654 } else {
10655 xn = wxn = 0;
10656 }
10657
10658 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10659 return prot_rw;
10660 }
10661 return prot_rw | PAGE_EXEC;
10662 }
10663
10664 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10665 uint32_t *table, uint32_t address)
10666 {
10667 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10668 TCR *tcr = regime_tcr(env, mmu_idx);
10669
10670 if (address & tcr->mask) {
10671 if (tcr->raw_tcr & TTBCR_PD1) {
10672 /* Translation table walk disabled for TTBR1 */
10673 return false;
10674 }
10675 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10676 } else {
10677 if (tcr->raw_tcr & TTBCR_PD0) {
10678 /* Translation table walk disabled for TTBR0 */
10679 return false;
10680 }
10681 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10682 }
10683 *table |= (address >> 18) & 0x3ffc;
10684 return true;
10685 }
10686
10687 /* Translate a S1 pagetable walk through S2 if needed. */
10688 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10689 hwaddr addr, bool *is_secure,
10690 ARMMMUFaultInfo *fi)
10691 {
10692 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10693 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10694 target_ulong s2size;
10695 hwaddr s2pa;
10696 int s2prot;
10697 int ret;
10698 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10699 : ARMMMUIdx_Stage2;
10700 ARMCacheAttrs cacheattrs = {};
10701 MemTxAttrs txattrs = {};
10702
10703 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10704 &s2pa, &txattrs, &s2prot, &s2size, fi,
10705 &cacheattrs);
10706 if (ret) {
10707 assert(fi->type != ARMFault_None);
10708 fi->s2addr = addr;
10709 fi->stage2 = true;
10710 fi->s1ptw = true;
10711 fi->s1ns = !*is_secure;
10712 return ~0;
10713 }
10714 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10715 (cacheattrs.attrs & 0xf0) == 0) {
10716 /*
10717 * PTW set and S1 walk touched S2 Device memory:
10718 * generate Permission fault.
10719 */
10720 fi->type = ARMFault_Permission;
10721 fi->s2addr = addr;
10722 fi->stage2 = true;
10723 fi->s1ptw = true;
10724 fi->s1ns = !*is_secure;
10725 return ~0;
10726 }
10727
10728 if (arm_is_secure_below_el3(env)) {
10729 /* Check if page table walk is to secure or non-secure PA space. */
10730 if (*is_secure) {
10731 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10732 } else {
10733 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10734 }
10735 } else {
10736 assert(!*is_secure);
10737 }
10738
10739 addr = s2pa;
10740 }
10741 return addr;
10742 }
10743
10744 /* All loads done in the course of a page table walk go through here. */
10745 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10746 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10747 {
10748 ARMCPU *cpu = ARM_CPU(cs);
10749 CPUARMState *env = &cpu->env;
10750 MemTxAttrs attrs = {};
10751 MemTxResult result = MEMTX_OK;
10752 AddressSpace *as;
10753 uint32_t data;
10754
10755 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10756 attrs.secure = is_secure;
10757 as = arm_addressspace(cs, attrs);
10758 if (fi->s1ptw) {
10759 return 0;
10760 }
10761 if (regime_translation_big_endian(env, mmu_idx)) {
10762 data = address_space_ldl_be(as, addr, attrs, &result);
10763 } else {
10764 data = address_space_ldl_le(as, addr, attrs, &result);
10765 }
10766 if (result == MEMTX_OK) {
10767 return data;
10768 }
10769 fi->type = ARMFault_SyncExternalOnWalk;
10770 fi->ea = arm_extabort_type(result);
10771 return 0;
10772 }
10773
10774 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10775 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10776 {
10777 ARMCPU *cpu = ARM_CPU(cs);
10778 CPUARMState *env = &cpu->env;
10779 MemTxAttrs attrs = {};
10780 MemTxResult result = MEMTX_OK;
10781 AddressSpace *as;
10782 uint64_t data;
10783
10784 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10785 attrs.secure = is_secure;
10786 as = arm_addressspace(cs, attrs);
10787 if (fi->s1ptw) {
10788 return 0;
10789 }
10790 if (regime_translation_big_endian(env, mmu_idx)) {
10791 data = address_space_ldq_be(as, addr, attrs, &result);
10792 } else {
10793 data = address_space_ldq_le(as, addr, attrs, &result);
10794 }
10795 if (result == MEMTX_OK) {
10796 return data;
10797 }
10798 fi->type = ARMFault_SyncExternalOnWalk;
10799 fi->ea = arm_extabort_type(result);
10800 return 0;
10801 }
10802
10803 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10804 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10805 hwaddr *phys_ptr, int *prot,
10806 target_ulong *page_size,
10807 ARMMMUFaultInfo *fi)
10808 {
10809 CPUState *cs = env_cpu(env);
10810 int level = 1;
10811 uint32_t table;
10812 uint32_t desc;
10813 int type;
10814 int ap;
10815 int domain = 0;
10816 int domain_prot;
10817 hwaddr phys_addr;
10818 uint32_t dacr;
10819
10820 /* Pagetable walk. */
10821 /* Lookup l1 descriptor. */
10822 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10823 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10824 fi->type = ARMFault_Translation;
10825 goto do_fault;
10826 }
10827 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10828 mmu_idx, fi);
10829 if (fi->type != ARMFault_None) {
10830 goto do_fault;
10831 }
10832 type = (desc & 3);
10833 domain = (desc >> 5) & 0x0f;
10834 if (regime_el(env, mmu_idx) == 1) {
10835 dacr = env->cp15.dacr_ns;
10836 } else {
10837 dacr = env->cp15.dacr_s;
10838 }
10839 domain_prot = (dacr >> (domain * 2)) & 3;
10840 if (type == 0) {
10841 /* Section translation fault. */
10842 fi->type = ARMFault_Translation;
10843 goto do_fault;
10844 }
10845 if (type != 2) {
10846 level = 2;
10847 }
10848 if (domain_prot == 0 || domain_prot == 2) {
10849 fi->type = ARMFault_Domain;
10850 goto do_fault;
10851 }
10852 if (type == 2) {
10853 /* 1Mb section. */
10854 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10855 ap = (desc >> 10) & 3;
10856 *page_size = 1024 * 1024;
10857 } else {
10858 /* Lookup l2 entry. */
10859 if (type == 1) {
10860 /* Coarse pagetable. */
10861 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10862 } else {
10863 /* Fine pagetable. */
10864 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10865 }
10866 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10867 mmu_idx, fi);
10868 if (fi->type != ARMFault_None) {
10869 goto do_fault;
10870 }
10871 switch (desc & 3) {
10872 case 0: /* Page translation fault. */
10873 fi->type = ARMFault_Translation;
10874 goto do_fault;
10875 case 1: /* 64k page. */
10876 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10877 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10878 *page_size = 0x10000;
10879 break;
10880 case 2: /* 4k page. */
10881 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10882 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10883 *page_size = 0x1000;
10884 break;
10885 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10886 if (type == 1) {
10887 /* ARMv6/XScale extended small page format */
10888 if (arm_feature(env, ARM_FEATURE_XSCALE)
10889 || arm_feature(env, ARM_FEATURE_V6)) {
10890 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10891 *page_size = 0x1000;
10892 } else {
10893 /* UNPREDICTABLE in ARMv5; we choose to take a
10894 * page translation fault.
10895 */
10896 fi->type = ARMFault_Translation;
10897 goto do_fault;
10898 }
10899 } else {
10900 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10901 *page_size = 0x400;
10902 }
10903 ap = (desc >> 4) & 3;
10904 break;
10905 default:
10906 /* Never happens, but compiler isn't smart enough to tell. */
10907 abort();
10908 }
10909 }
10910 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10911 *prot |= *prot ? PAGE_EXEC : 0;
10912 if (!(*prot & (1 << access_type))) {
10913 /* Access permission fault. */
10914 fi->type = ARMFault_Permission;
10915 goto do_fault;
10916 }
10917 *phys_ptr = phys_addr;
10918 return false;
10919 do_fault:
10920 fi->domain = domain;
10921 fi->level = level;
10922 return true;
10923 }
10924
10925 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10926 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10927 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10928 target_ulong *page_size, ARMMMUFaultInfo *fi)
10929 {
10930 CPUState *cs = env_cpu(env);
10931 ARMCPU *cpu = env_archcpu(env);
10932 int level = 1;
10933 uint32_t table;
10934 uint32_t desc;
10935 uint32_t xn;
10936 uint32_t pxn = 0;
10937 int type;
10938 int ap;
10939 int domain = 0;
10940 int domain_prot;
10941 hwaddr phys_addr;
10942 uint32_t dacr;
10943 bool ns;
10944
10945 /* Pagetable walk. */
10946 /* Lookup l1 descriptor. */
10947 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10948 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10949 fi->type = ARMFault_Translation;
10950 goto do_fault;
10951 }
10952 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10953 mmu_idx, fi);
10954 if (fi->type != ARMFault_None) {
10955 goto do_fault;
10956 }
10957 type = (desc & 3);
10958 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10959 /* Section translation fault, or attempt to use the encoding
10960 * which is Reserved on implementations without PXN.
10961 */
10962 fi->type = ARMFault_Translation;
10963 goto do_fault;
10964 }
10965 if ((type == 1) || !(desc & (1 << 18))) {
10966 /* Page or Section. */
10967 domain = (desc >> 5) & 0x0f;
10968 }
10969 if (regime_el(env, mmu_idx) == 1) {
10970 dacr = env->cp15.dacr_ns;
10971 } else {
10972 dacr = env->cp15.dacr_s;
10973 }
10974 if (type == 1) {
10975 level = 2;
10976 }
10977 domain_prot = (dacr >> (domain * 2)) & 3;
10978 if (domain_prot == 0 || domain_prot == 2) {
10979 /* Section or Page domain fault */
10980 fi->type = ARMFault_Domain;
10981 goto do_fault;
10982 }
10983 if (type != 1) {
10984 if (desc & (1 << 18)) {
10985 /* Supersection. */
10986 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10987 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10988 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10989 *page_size = 0x1000000;
10990 } else {
10991 /* Section. */
10992 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10993 *page_size = 0x100000;
10994 }
10995 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10996 xn = desc & (1 << 4);
10997 pxn = desc & 1;
10998 ns = extract32(desc, 19, 1);
10999 } else {
11000 if (cpu_isar_feature(aa32_pxn, cpu)) {
11001 pxn = (desc >> 2) & 1;
11002 }
11003 ns = extract32(desc, 3, 1);
11004 /* Lookup l2 entry. */
11005 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11006 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11007 mmu_idx, fi);
11008 if (fi->type != ARMFault_None) {
11009 goto do_fault;
11010 }
11011 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11012 switch (desc & 3) {
11013 case 0: /* Page translation fault. */
11014 fi->type = ARMFault_Translation;
11015 goto do_fault;
11016 case 1: /* 64k page. */
11017 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11018 xn = desc & (1 << 15);
11019 *page_size = 0x10000;
11020 break;
11021 case 2: case 3: /* 4k page. */
11022 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11023 xn = desc & 1;
11024 *page_size = 0x1000;
11025 break;
11026 default:
11027 /* Never happens, but compiler isn't smart enough to tell. */
11028 abort();
11029 }
11030 }
11031 if (domain_prot == 3) {
11032 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11033 } else {
11034 if (pxn && !regime_is_user(env, mmu_idx)) {
11035 xn = 1;
11036 }
11037 if (xn && access_type == MMU_INST_FETCH) {
11038 fi->type = ARMFault_Permission;
11039 goto do_fault;
11040 }
11041
11042 if (arm_feature(env, ARM_FEATURE_V6K) &&
11043 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11044 /* The simplified model uses AP[0] as an access control bit. */
11045 if ((ap & 1) == 0) {
11046 /* Access flag fault. */
11047 fi->type = ARMFault_AccessFlag;
11048 goto do_fault;
11049 }
11050 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11051 } else {
11052 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11053 }
11054 if (*prot && !xn) {
11055 *prot |= PAGE_EXEC;
11056 }
11057 if (!(*prot & (1 << access_type))) {
11058 /* Access permission fault. */
11059 fi->type = ARMFault_Permission;
11060 goto do_fault;
11061 }
11062 }
11063 if (ns) {
11064 /* The NS bit will (as required by the architecture) have no effect if
11065 * the CPU doesn't support TZ or this is a non-secure translation
11066 * regime, because the attribute will already be non-secure.
11067 */
11068 attrs->secure = false;
11069 }
11070 *phys_ptr = phys_addr;
11071 return false;
11072 do_fault:
11073 fi->domain = domain;
11074 fi->level = level;
11075 return true;
11076 }
11077
11078 /*
11079 * check_s2_mmu_setup
11080 * @cpu: ARMCPU
11081 * @is_aa64: True if the translation regime is in AArch64 state
11082 * @startlevel: Suggested starting level
11083 * @inputsize: Bitsize of IPAs
11084 * @stride: Page-table stride (See the ARM ARM)
11085 *
11086 * Returns true if the suggested S2 translation parameters are OK and
11087 * false otherwise.
11088 */
11089 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11090 int inputsize, int stride, int outputsize)
11091 {
11092 const int grainsize = stride + 3;
11093 int startsizecheck;
11094
11095 /*
11096 * Negative levels are usually not allowed...
11097 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
11098 * begins with level -1. Note that previous feature tests will have
11099 * eliminated this combination if it is not enabled.
11100 */
11101 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
11102 return false;
11103 }
11104
11105 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11106 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11107 return false;
11108 }
11109
11110 if (is_aa64) {
11111 switch (stride) {
11112 case 13: /* 64KB Pages. */
11113 if (level == 0 || (level == 1 && outputsize <= 42)) {
11114 return false;
11115 }
11116 break;
11117 case 11: /* 16KB Pages. */
11118 if (level == 0 || (level == 1 && outputsize <= 40)) {
11119 return false;
11120 }
11121 break;
11122 case 9: /* 4KB Pages. */
11123 if (level == 0 && outputsize <= 42) {
11124 return false;
11125 }
11126 break;
11127 default:
11128 g_assert_not_reached();
11129 }
11130
11131 /* Inputsize checks. */
11132 if (inputsize > outputsize &&
11133 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
11134 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11135 return false;
11136 }
11137 } else {
11138 /* AArch32 only supports 4KB pages. Assert on that. */
11139 assert(stride == 9);
11140
11141 if (level == 0) {
11142 return false;
11143 }
11144 }
11145 return true;
11146 }
11147
11148 /* Translate from the 4-bit stage 2 representation of
11149 * memory attributes (without cache-allocation hints) to
11150 * the 8-bit representation of the stage 1 MAIR registers
11151 * (which includes allocation hints).
11152 *
11153 * ref: shared/translation/attrs/S2AttrDecode()
11154 * .../S2ConvertAttrsHints()
11155 */
11156 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11157 {
11158 uint8_t hiattr = extract32(s2attrs, 2, 2);
11159 uint8_t loattr = extract32(s2attrs, 0, 2);
11160 uint8_t hihint = 0, lohint = 0;
11161
11162 if (hiattr != 0) { /* normal memory */
11163 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11164 hiattr = loattr = 1; /* non-cacheable */
11165 } else {
11166 if (hiattr != 1) { /* Write-through or write-back */
11167 hihint = 3; /* RW allocate */
11168 }
11169 if (loattr != 1) { /* Write-through or write-back */
11170 lohint = 3; /* RW allocate */
11171 }
11172 }
11173 }
11174
11175 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11176 }
11177 #endif /* !CONFIG_USER_ONLY */
11178
11179 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
11180 static const uint8_t pamax_map[] = {
11181 [0] = 32,
11182 [1] = 36,
11183 [2] = 40,
11184 [3] = 42,
11185 [4] = 44,
11186 [5] = 48,
11187 [6] = 52,
11188 };
11189
11190 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
11191 unsigned int arm_pamax(ARMCPU *cpu)
11192 {
11193 unsigned int parange =
11194 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11195
11196 /*
11197 * id_aa64mmfr0 is a read-only register so values outside of the
11198 * supported mappings can be considered an implementation error.
11199 */
11200 assert(parange < ARRAY_SIZE(pamax_map));
11201 return pamax_map[parange];
11202 }
11203
11204 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11205 {
11206 if (regime_has_2_ranges(mmu_idx)) {
11207 return extract64(tcr, 37, 2);
11208 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11209 return 0; /* VTCR_EL2 */
11210 } else {
11211 /* Replicate the single TBI bit so we always have 2 bits. */
11212 return extract32(tcr, 20, 1) * 3;
11213 }
11214 }
11215
11216 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11217 {
11218 if (regime_has_2_ranges(mmu_idx)) {
11219 return extract64(tcr, 51, 2);
11220 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11221 return 0; /* VTCR_EL2 */
11222 } else {
11223 /* Replicate the single TBID bit so we always have 2 bits. */
11224 return extract32(tcr, 29, 1) * 3;
11225 }
11226 }
11227
11228 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11229 {
11230 if (regime_has_2_ranges(mmu_idx)) {
11231 return extract64(tcr, 57, 2);
11232 } else {
11233 /* Replicate the single TCMA bit so we always have 2 bits. */
11234 return extract32(tcr, 30, 1) * 3;
11235 }
11236 }
11237
11238 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11239 ARMMMUIdx mmu_idx, bool data)
11240 {
11241 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11242 bool epd, hpd, using16k, using64k, tsz_oob, ds;
11243 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11244 ARMCPU *cpu = env_archcpu(env);
11245
11246 if (!regime_has_2_ranges(mmu_idx)) {
11247 select = 0;
11248 tsz = extract32(tcr, 0, 6);
11249 using64k = extract32(tcr, 14, 1);
11250 using16k = extract32(tcr, 15, 1);
11251 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11252 /* VTCR_EL2 */
11253 hpd = false;
11254 } else {
11255 hpd = extract32(tcr, 24, 1);
11256 }
11257 epd = false;
11258 sh = extract32(tcr, 12, 2);
11259 ps = extract32(tcr, 16, 3);
11260 ds = extract64(tcr, 32, 1);
11261 } else {
11262 /*
11263 * Bit 55 is always between the two regions, and is canonical for
11264 * determining if address tagging is enabled.
11265 */
11266 select = extract64(va, 55, 1);
11267 if (!select) {
11268 tsz = extract32(tcr, 0, 6);
11269 epd = extract32(tcr, 7, 1);
11270 sh = extract32(tcr, 12, 2);
11271 using64k = extract32(tcr, 14, 1);
11272 using16k = extract32(tcr, 15, 1);
11273 hpd = extract64(tcr, 41, 1);
11274 } else {
11275 int tg = extract32(tcr, 30, 2);
11276 using16k = tg == 1;
11277 using64k = tg == 3;
11278 tsz = extract32(tcr, 16, 6);
11279 epd = extract32(tcr, 23, 1);
11280 sh = extract32(tcr, 28, 2);
11281 hpd = extract64(tcr, 42, 1);
11282 }
11283 ps = extract64(tcr, 32, 3);
11284 ds = extract64(tcr, 59, 1);
11285 }
11286
11287 if (cpu_isar_feature(aa64_st, cpu)) {
11288 max_tsz = 48 - using64k;
11289 } else {
11290 max_tsz = 39;
11291 }
11292
11293 /*
11294 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11295 * adjust the effective value of DS, as documented.
11296 */
11297 min_tsz = 16;
11298 if (using64k) {
11299 if (cpu_isar_feature(aa64_lva, cpu)) {
11300 min_tsz = 12;
11301 }
11302 ds = false;
11303 } else if (ds) {
11304 switch (mmu_idx) {
11305 case ARMMMUIdx_Stage2:
11306 case ARMMMUIdx_Stage2_S:
11307 if (using16k) {
11308 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11309 } else {
11310 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11311 }
11312 break;
11313 default:
11314 if (using16k) {
11315 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11316 } else {
11317 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11318 }
11319 break;
11320 }
11321 if (ds) {
11322 min_tsz = 12;
11323 }
11324 }
11325
11326 if (tsz > max_tsz) {
11327 tsz = max_tsz;
11328 tsz_oob = true;
11329 } else if (tsz < min_tsz) {
11330 tsz = min_tsz;
11331 tsz_oob = true;
11332 } else {
11333 tsz_oob = false;
11334 }
11335
11336 /* Present TBI as a composite with TBID. */
11337 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11338 if (!data) {
11339 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11340 }
11341 tbi = (tbi >> select) & 1;
11342
11343 return (ARMVAParameters) {
11344 .tsz = tsz,
11345 .ps = ps,
11346 .sh = sh,
11347 .select = select,
11348 .tbi = tbi,
11349 .epd = epd,
11350 .hpd = hpd,
11351 .using16k = using16k,
11352 .using64k = using64k,
11353 .tsz_oob = tsz_oob,
11354 .ds = ds,
11355 };
11356 }
11357
11358 #ifndef CONFIG_USER_ONLY
11359 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11360 ARMMMUIdx mmu_idx)
11361 {
11362 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11363 uint32_t el = regime_el(env, mmu_idx);
11364 int select, tsz;
11365 bool epd, hpd;
11366
11367 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11368
11369 if (mmu_idx == ARMMMUIdx_Stage2) {
11370 /* VTCR */
11371 bool sext = extract32(tcr, 4, 1);
11372 bool sign = extract32(tcr, 3, 1);
11373
11374 /*
11375 * If the sign-extend bit is not the same as t0sz[3], the result
11376 * is unpredictable. Flag this as a guest error.
11377 */
11378 if (sign != sext) {
11379 qemu_log_mask(LOG_GUEST_ERROR,
11380 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11381 }
11382 tsz = sextract32(tcr, 0, 4) + 8;
11383 select = 0;
11384 hpd = false;
11385 epd = false;
11386 } else if (el == 2) {
11387 /* HTCR */
11388 tsz = extract32(tcr, 0, 3);
11389 select = 0;
11390 hpd = extract64(tcr, 24, 1);
11391 epd = false;
11392 } else {
11393 int t0sz = extract32(tcr, 0, 3);
11394 int t1sz = extract32(tcr, 16, 3);
11395
11396 if (t1sz == 0) {
11397 select = va > (0xffffffffu >> t0sz);
11398 } else {
11399 /* Note that we will detect errors later. */
11400 select = va >= ~(0xffffffffu >> t1sz);
11401 }
11402 if (!select) {
11403 tsz = t0sz;
11404 epd = extract32(tcr, 7, 1);
11405 hpd = extract64(tcr, 41, 1);
11406 } else {
11407 tsz = t1sz;
11408 epd = extract32(tcr, 23, 1);
11409 hpd = extract64(tcr, 42, 1);
11410 }
11411 /* For aarch32, hpd0 is not enabled without t2e as well. */
11412 hpd &= extract32(tcr, 6, 1);
11413 }
11414
11415 return (ARMVAParameters) {
11416 .tsz = tsz,
11417 .select = select,
11418 .epd = epd,
11419 .hpd = hpd,
11420 };
11421 }
11422
11423 /**
11424 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11425 *
11426 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11427 * prot and page_size may not be filled in, and the populated fsr value provides
11428 * information on why the translation aborted, in the format of a long-format
11429 * DFSR/IFSR fault register, with the following caveats:
11430 * * the WnR bit is never set (the caller must do this).
11431 *
11432 * @env: CPUARMState
11433 * @address: virtual address to get physical address for
11434 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11435 * @mmu_idx: MMU index indicating required translation regime
11436 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11437 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11438 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11439 * @phys_ptr: set to the physical address corresponding to the virtual address
11440 * @attrs: set to the memory transaction attributes to use
11441 * @prot: set to the permissions for the page containing phys_ptr
11442 * @page_size_ptr: set to the size of the page containing phys_ptr
11443 * @fi: set to fault info if the translation fails
11444 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11445 */
11446 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11447 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11448 bool s1_is_el0,
11449 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11450 target_ulong *page_size_ptr,
11451 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11452 {
11453 ARMCPU *cpu = env_archcpu(env);
11454 CPUState *cs = CPU(cpu);
11455 /* Read an LPAE long-descriptor translation table. */
11456 ARMFaultType fault_type = ARMFault_Translation;
11457 uint32_t level;
11458 ARMVAParameters param;
11459 uint64_t ttbr;
11460 hwaddr descaddr, indexmask, indexmask_grainsize;
11461 uint32_t tableattrs;
11462 target_ulong page_size;
11463 uint32_t attrs;
11464 int32_t stride;
11465 int addrsize, inputsize, outputsize;
11466 TCR *tcr = regime_tcr(env, mmu_idx);
11467 int ap, ns, xn, pxn;
11468 uint32_t el = regime_el(env, mmu_idx);
11469 uint64_t descaddrmask;
11470 bool aarch64 = arm_el_is_aa64(env, el);
11471 bool guarded = false;
11472
11473 /* TODO: This code does not support shareability levels. */
11474 if (aarch64) {
11475 int ps;
11476
11477 param = aa64_va_parameters(env, address, mmu_idx,
11478 access_type != MMU_INST_FETCH);
11479 level = 0;
11480
11481 /*
11482 * If TxSZ is programmed to a value larger than the maximum,
11483 * or smaller than the effective minimum, it is IMPLEMENTATION
11484 * DEFINED whether we behave as if the field were programmed
11485 * within bounds, or if a level 0 Translation fault is generated.
11486 *
11487 * With FEAT_LVA, fault on less than minimum becomes required,
11488 * so our choice is to always raise the fault.
11489 */
11490 if (param.tsz_oob) {
11491 fault_type = ARMFault_Translation;
11492 goto do_fault;
11493 }
11494
11495 addrsize = 64 - 8 * param.tbi;
11496 inputsize = 64 - param.tsz;
11497
11498 /*
11499 * Bound PS by PARANGE to find the effective output address size.
11500 * ID_AA64MMFR0 is a read-only register so values outside of the
11501 * supported mappings can be considered an implementation error.
11502 */
11503 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11504 ps = MIN(ps, param.ps);
11505 assert(ps < ARRAY_SIZE(pamax_map));
11506 outputsize = pamax_map[ps];
11507 } else {
11508 param = aa32_va_parameters(env, address, mmu_idx);
11509 level = 1;
11510 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11511 inputsize = addrsize - param.tsz;
11512 outputsize = 40;
11513 }
11514
11515 /*
11516 * We determined the region when collecting the parameters, but we
11517 * have not yet validated that the address is valid for the region.
11518 * Extract the top bits and verify that they all match select.
11519 *
11520 * For aa32, if inputsize == addrsize, then we have selected the
11521 * region by exclusion in aa32_va_parameters and there is no more
11522 * validation to do here.
11523 */
11524 if (inputsize < addrsize) {
11525 target_ulong top_bits = sextract64(address, inputsize,
11526 addrsize - inputsize);
11527 if (-top_bits != param.select) {
11528 /* The gap between the two regions is a Translation fault */
11529 fault_type = ARMFault_Translation;
11530 goto do_fault;
11531 }
11532 }
11533
11534 if (param.using64k) {
11535 stride = 13;
11536 } else if (param.using16k) {
11537 stride = 11;
11538 } else {
11539 stride = 9;
11540 }
11541
11542 /* Note that QEMU ignores shareability and cacheability attributes,
11543 * so we don't need to do anything with the SH, ORGN, IRGN fields
11544 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11545 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11546 * implement any ASID-like capability so we can ignore it (instead
11547 * we will always flush the TLB any time the ASID is changed).
11548 */
11549 ttbr = regime_ttbr(env, mmu_idx, param.select);
11550
11551 /* Here we should have set up all the parameters for the translation:
11552 * inputsize, ttbr, epd, stride, tbi
11553 */
11554
11555 if (param.epd) {
11556 /* Translation table walk disabled => Translation fault on TLB miss
11557 * Note: This is always 0 on 64-bit EL2 and EL3.
11558 */
11559 goto do_fault;
11560 }
11561
11562 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11563 /* The starting level depends on the virtual address size (which can
11564 * be up to 48 bits) and the translation granule size. It indicates
11565 * the number of strides (stride bits at a time) needed to
11566 * consume the bits of the input address. In the pseudocode this is:
11567 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11568 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11569 * our 'stride + 3' and 'stride' is our 'stride'.
11570 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11571 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11572 * = 4 - (inputsize - 4) / stride;
11573 */
11574 level = 4 - (inputsize - 4) / stride;
11575 } else {
11576 /* For stage 2 translations the starting level is specified by the
11577 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11578 */
11579 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11580 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
11581 uint32_t startlevel;
11582 bool ok;
11583
11584 /* SL2 is RES0 unless DS=1 & 4kb granule. */
11585 if (param.ds && stride == 9 && sl2) {
11586 if (sl0 != 0) {
11587 level = 0;
11588 fault_type = ARMFault_Translation;
11589 goto do_fault;
11590 }
11591 startlevel = -1;
11592 } else if (!aarch64 || stride == 9) {
11593 /* AArch32 or 4KB pages */
11594 startlevel = 2 - sl0;
11595
11596 if (cpu_isar_feature(aa64_st, cpu)) {
11597 startlevel &= 3;
11598 }
11599 } else {
11600 /* 16KB or 64KB pages */
11601 startlevel = 3 - sl0;
11602 }
11603
11604 /* Check that the starting level is valid. */
11605 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11606 inputsize, stride, outputsize);
11607 if (!ok) {
11608 fault_type = ARMFault_Translation;
11609 goto do_fault;
11610 }
11611 level = startlevel;
11612 }
11613
11614 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
11615 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
11616
11617 /* Now we can extract the actual base address from the TTBR */
11618 descaddr = extract64(ttbr, 0, 48);
11619
11620 /*
11621 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
11622 *
11623 * Otherwise, if the base address is out of range, raise AddressSizeFault.
11624 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
11625 * but we've just cleared the bits above 47, so simplify the test.
11626 */
11627 if (outputsize > 48) {
11628 descaddr |= extract64(ttbr, 2, 4) << 48;
11629 } else if (descaddr >> outputsize) {
11630 level = 0;
11631 fault_type = ARMFault_AddressSize;
11632 goto do_fault;
11633 }
11634
11635 /*
11636 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11637 * and also to mask out CnP (bit 0) which could validly be non-zero.
11638 */
11639 descaddr &= ~indexmask;
11640
11641 /*
11642 * For AArch32, the address field in the descriptor goes up to bit 39
11643 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
11644 * or an AddressSize fault is raised. So for v8 we extract those SBZ
11645 * bits as part of the address, which will be checked via outputsize.
11646 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
11647 * the highest bits of a 52-bit output are placed elsewhere.
11648 */
11649 if (param.ds) {
11650 descaddrmask = MAKE_64BIT_MASK(0, 50);
11651 } else if (arm_feature(env, ARM_FEATURE_V8)) {
11652 descaddrmask = MAKE_64BIT_MASK(0, 48);
11653 } else {
11654 descaddrmask = MAKE_64BIT_MASK(0, 40);
11655 }
11656 descaddrmask &= ~indexmask_grainsize;
11657
11658 /* Secure accesses start with the page table in secure memory and
11659 * can be downgraded to non-secure at any step. Non-secure accesses
11660 * remain non-secure. We implement this by just ORing in the NSTable/NS
11661 * bits at each step.
11662 */
11663 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11664 for (;;) {
11665 uint64_t descriptor;
11666 bool nstable;
11667
11668 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11669 descaddr &= ~7ULL;
11670 nstable = extract32(tableattrs, 4, 1);
11671 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11672 if (fi->type != ARMFault_None) {
11673 goto do_fault;
11674 }
11675
11676 if (!(descriptor & 1) ||
11677 (!(descriptor & 2) && (level == 3))) {
11678 /* Invalid, or the Reserved level 3 encoding */
11679 goto do_fault;
11680 }
11681
11682 descaddr = descriptor & descaddrmask;
11683
11684 /*
11685 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
11686 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
11687 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
11688 * raise AddressSizeFault.
11689 */
11690 if (outputsize > 48) {
11691 if (param.ds) {
11692 descaddr |= extract64(descriptor, 8, 2) << 50;
11693 } else {
11694 descaddr |= extract64(descriptor, 12, 4) << 48;
11695 }
11696 } else if (descaddr >> outputsize) {
11697 fault_type = ARMFault_AddressSize;
11698 goto do_fault;
11699 }
11700
11701 if ((descriptor & 2) && (level < 3)) {
11702 /* Table entry. The top five bits are attributes which may
11703 * propagate down through lower levels of the table (and
11704 * which are all arranged so that 0 means "no effect", so
11705 * we can gather them up by ORing in the bits at each level).
11706 */
11707 tableattrs |= extract64(descriptor, 59, 5);
11708 level++;
11709 indexmask = indexmask_grainsize;
11710 continue;
11711 }
11712 /*
11713 * Block entry at level 1 or 2, or page entry at level 3.
11714 * These are basically the same thing, although the number
11715 * of bits we pull in from the vaddr varies. Note that although
11716 * descaddrmask masks enough of the low bits of the descriptor
11717 * to give a correct page or table address, the address field
11718 * in a block descriptor is smaller; so we need to explicitly
11719 * clear the lower bits here before ORing in the low vaddr bits.
11720 */
11721 page_size = (1ULL << ((stride * (4 - level)) + 3));
11722 descaddr &= ~(page_size - 1);
11723 descaddr |= (address & (page_size - 1));
11724 /* Extract attributes from the descriptor */
11725 attrs = extract64(descriptor, 2, 10)
11726 | (extract64(descriptor, 52, 12) << 10);
11727
11728 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11729 /* Stage 2 table descriptors do not include any attribute fields */
11730 break;
11731 }
11732 /* Merge in attributes from table descriptors */
11733 attrs |= nstable << 3; /* NS */
11734 guarded = extract64(descriptor, 50, 1); /* GP */
11735 if (param.hpd) {
11736 /* HPD disables all the table attributes except NSTable. */
11737 break;
11738 }
11739 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11740 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11741 * means "force PL1 access only", which means forcing AP[1] to 0.
11742 */
11743 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11744 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11745 break;
11746 }
11747 /* Here descaddr is the final physical address, and attributes
11748 * are all in attrs.
11749 */
11750 fault_type = ARMFault_AccessFlag;
11751 if ((attrs & (1 << 8)) == 0) {
11752 /* Access flag */
11753 goto do_fault;
11754 }
11755
11756 ap = extract32(attrs, 4, 2);
11757
11758 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11759 ns = mmu_idx == ARMMMUIdx_Stage2;
11760 xn = extract32(attrs, 11, 2);
11761 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11762 } else {
11763 ns = extract32(attrs, 3, 1);
11764 xn = extract32(attrs, 12, 1);
11765 pxn = extract32(attrs, 11, 1);
11766 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11767 }
11768
11769 fault_type = ARMFault_Permission;
11770 if (!(*prot & (1 << access_type))) {
11771 goto do_fault;
11772 }
11773
11774 if (ns) {
11775 /* The NS bit will (as required by the architecture) have no effect if
11776 * the CPU doesn't support TZ or this is a non-secure translation
11777 * regime, because the attribute will already be non-secure.
11778 */
11779 txattrs->secure = false;
11780 }
11781 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11782 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11783 arm_tlb_bti_gp(txattrs) = true;
11784 }
11785
11786 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11787 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11788 } else {
11789 /* Index into MAIR registers for cache attributes */
11790 uint8_t attrindx = extract32(attrs, 0, 3);
11791 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11792 assert(attrindx <= 7);
11793 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11794 }
11795
11796 /*
11797 * For FEAT_LPA2 and effective DS, the SH field in the attributes
11798 * was re-purposed for output address bits. The SH attribute in
11799 * that case comes from TCR_ELx, which we extracted earlier.
11800 */
11801 if (param.ds) {
11802 cacheattrs->shareability = param.sh;
11803 } else {
11804 cacheattrs->shareability = extract32(attrs, 6, 2);
11805 }
11806
11807 *phys_ptr = descaddr;
11808 *page_size_ptr = page_size;
11809 return false;
11810
11811 do_fault:
11812 fi->type = fault_type;
11813 fi->level = level;
11814 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11815 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11816 mmu_idx == ARMMMUIdx_Stage2_S);
11817 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11818 return true;
11819 }
11820
11821 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11822 ARMMMUIdx mmu_idx,
11823 int32_t address, int *prot)
11824 {
11825 if (!arm_feature(env, ARM_FEATURE_M)) {
11826 *prot = PAGE_READ | PAGE_WRITE;
11827 switch (address) {
11828 case 0xF0000000 ... 0xFFFFFFFF:
11829 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11830 /* hivecs execing is ok */
11831 *prot |= PAGE_EXEC;
11832 }
11833 break;
11834 case 0x00000000 ... 0x7FFFFFFF:
11835 *prot |= PAGE_EXEC;
11836 break;
11837 }
11838 } else {
11839 /* Default system address map for M profile cores.
11840 * The architecture specifies which regions are execute-never;
11841 * at the MPU level no other checks are defined.
11842 */
11843 switch (address) {
11844 case 0x00000000 ... 0x1fffffff: /* ROM */
11845 case 0x20000000 ... 0x3fffffff: /* SRAM */
11846 case 0x60000000 ... 0x7fffffff: /* RAM */
11847 case 0x80000000 ... 0x9fffffff: /* RAM */
11848 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11849 break;
11850 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11851 case 0xa0000000 ... 0xbfffffff: /* Device */
11852 case 0xc0000000 ... 0xdfffffff: /* Device */
11853 case 0xe0000000 ... 0xffffffff: /* System */
11854 *prot = PAGE_READ | PAGE_WRITE;
11855 break;
11856 default:
11857 g_assert_not_reached();
11858 }
11859 }
11860 }
11861
11862 static bool pmsav7_use_background_region(ARMCPU *cpu,
11863 ARMMMUIdx mmu_idx, bool is_user)
11864 {
11865 /* Return true if we should use the default memory map as a
11866 * "background" region if there are no hits against any MPU regions.
11867 */
11868 CPUARMState *env = &cpu->env;
11869
11870 if (is_user) {
11871 return false;
11872 }
11873
11874 if (arm_feature(env, ARM_FEATURE_M)) {
11875 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11876 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11877 } else {
11878 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11879 }
11880 }
11881
11882 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11883 {
11884 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11885 return arm_feature(env, ARM_FEATURE_M) &&
11886 extract32(address, 20, 12) == 0xe00;
11887 }
11888
11889 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11890 {
11891 /* True if address is in the M profile system region
11892 * 0xe0000000 - 0xffffffff
11893 */
11894 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11895 }
11896
11897 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11898 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11899 hwaddr *phys_ptr, int *prot,
11900 target_ulong *page_size,
11901 ARMMMUFaultInfo *fi)
11902 {
11903 ARMCPU *cpu = env_archcpu(env);
11904 int n;
11905 bool is_user = regime_is_user(env, mmu_idx);
11906
11907 *phys_ptr = address;
11908 *page_size = TARGET_PAGE_SIZE;
11909 *prot = 0;
11910
11911 if (regime_translation_disabled(env, mmu_idx) ||
11912 m_is_ppb_region(env, address)) {
11913 /* MPU disabled or M profile PPB access: use default memory map.
11914 * The other case which uses the default memory map in the
11915 * v7M ARM ARM pseudocode is exception vector reads from the vector
11916 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11917 * which always does a direct read using address_space_ldl(), rather
11918 * than going via this function, so we don't need to check that here.
11919 */
11920 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11921 } else { /* MPU enabled */
11922 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11923 /* region search */
11924 uint32_t base = env->pmsav7.drbar[n];
11925 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11926 uint32_t rmask;
11927 bool srdis = false;
11928
11929 if (!(env->pmsav7.drsr[n] & 0x1)) {
11930 continue;
11931 }
11932
11933 if (!rsize) {
11934 qemu_log_mask(LOG_GUEST_ERROR,
11935 "DRSR[%d]: Rsize field cannot be 0\n", n);
11936 continue;
11937 }
11938 rsize++;
11939 rmask = (1ull << rsize) - 1;
11940
11941 if (base & rmask) {
11942 qemu_log_mask(LOG_GUEST_ERROR,
11943 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11944 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11945 n, base, rmask);
11946 continue;
11947 }
11948
11949 if (address < base || address > base + rmask) {
11950 /*
11951 * Address not in this region. We must check whether the
11952 * region covers addresses in the same page as our address.
11953 * In that case we must not report a size that covers the
11954 * whole page for a subsequent hit against a different MPU
11955 * region or the background region, because it would result in
11956 * incorrect TLB hits for subsequent accesses to addresses that
11957 * are in this MPU region.
11958 */
11959 if (ranges_overlap(base, rmask,
11960 address & TARGET_PAGE_MASK,
11961 TARGET_PAGE_SIZE)) {
11962 *page_size = 1;
11963 }
11964 continue;
11965 }
11966
11967 /* Region matched */
11968
11969 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11970 int i, snd;
11971 uint32_t srdis_mask;
11972
11973 rsize -= 3; /* sub region size (power of 2) */
11974 snd = ((address - base) >> rsize) & 0x7;
11975 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11976
11977 srdis_mask = srdis ? 0x3 : 0x0;
11978 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11979 /* This will check in groups of 2, 4 and then 8, whether
11980 * the subregion bits are consistent. rsize is incremented
11981 * back up to give the region size, considering consistent
11982 * adjacent subregions as one region. Stop testing if rsize
11983 * is already big enough for an entire QEMU page.
11984 */
11985 int snd_rounded = snd & ~(i - 1);
11986 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11987 snd_rounded + 8, i);
11988 if (srdis_mask ^ srdis_multi) {
11989 break;
11990 }
11991 srdis_mask = (srdis_mask << i) | srdis_mask;
11992 rsize++;
11993 }
11994 }
11995 if (srdis) {
11996 continue;
11997 }
11998 if (rsize < TARGET_PAGE_BITS) {
11999 *page_size = 1 << rsize;
12000 }
12001 break;
12002 }
12003
12004 if (n == -1) { /* no hits */
12005 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12006 /* background fault */
12007 fi->type = ARMFault_Background;
12008 return true;
12009 }
12010 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12011 } else { /* a MPU hit! */
12012 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12013 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12014
12015 if (m_is_system_region(env, address)) {
12016 /* System space is always execute never */
12017 xn = 1;
12018 }
12019
12020 if (is_user) { /* User mode AP bit decoding */
12021 switch (ap) {
12022 case 0:
12023 case 1:
12024 case 5:
12025 break; /* no access */
12026 case 3:
12027 *prot |= PAGE_WRITE;
12028 /* fall through */
12029 case 2:
12030 case 6:
12031 *prot |= PAGE_READ | PAGE_EXEC;
12032 break;
12033 case 7:
12034 /* for v7M, same as 6; for R profile a reserved value */
12035 if (arm_feature(env, ARM_FEATURE_M)) {
12036 *prot |= PAGE_READ | PAGE_EXEC;
12037 break;
12038 }
12039 /* fall through */
12040 default:
12041 qemu_log_mask(LOG_GUEST_ERROR,
12042 "DRACR[%d]: Bad value for AP bits: 0x%"
12043 PRIx32 "\n", n, ap);
12044 }
12045 } else { /* Priv. mode AP bits decoding */
12046 switch (ap) {
12047 case 0:
12048 break; /* no access */
12049 case 1:
12050 case 2:
12051 case 3:
12052 *prot |= PAGE_WRITE;
12053 /* fall through */
12054 case 5:
12055 case 6:
12056 *prot |= PAGE_READ | PAGE_EXEC;
12057 break;
12058 case 7:
12059 /* for v7M, same as 6; for R profile a reserved value */
12060 if (arm_feature(env, ARM_FEATURE_M)) {
12061 *prot |= PAGE_READ | PAGE_EXEC;
12062 break;
12063 }
12064 /* fall through */
12065 default:
12066 qemu_log_mask(LOG_GUEST_ERROR,
12067 "DRACR[%d]: Bad value for AP bits: 0x%"
12068 PRIx32 "\n", n, ap);
12069 }
12070 }
12071
12072 /* execute never */
12073 if (xn) {
12074 *prot &= ~PAGE_EXEC;
12075 }
12076 }
12077 }
12078
12079 fi->type = ARMFault_Permission;
12080 fi->level = 1;
12081 return !(*prot & (1 << access_type));
12082 }
12083
12084 static bool v8m_is_sau_exempt(CPUARMState *env,
12085 uint32_t address, MMUAccessType access_type)
12086 {
12087 /* The architecture specifies that certain address ranges are
12088 * exempt from v8M SAU/IDAU checks.
12089 */
12090 return
12091 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12092 (address >= 0xe0000000 && address <= 0xe0002fff) ||
12093 (address >= 0xe000e000 && address <= 0xe000efff) ||
12094 (address >= 0xe002e000 && address <= 0xe002efff) ||
12095 (address >= 0xe0040000 && address <= 0xe0041fff) ||
12096 (address >= 0xe00ff000 && address <= 0xe00fffff);
12097 }
12098
12099 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12100 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12101 V8M_SAttributes *sattrs)
12102 {
12103 /* Look up the security attributes for this address. Compare the
12104 * pseudocode SecurityCheck() function.
12105 * We assume the caller has zero-initialized *sattrs.
12106 */
12107 ARMCPU *cpu = env_archcpu(env);
12108 int r;
12109 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12110 int idau_region = IREGION_NOTVALID;
12111 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12112 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12113
12114 if (cpu->idau) {
12115 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12116 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12117
12118 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12119 &idau_nsc);
12120 }
12121
12122 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12123 /* 0xf0000000..0xffffffff is always S for insn fetches */
12124 return;
12125 }
12126
12127 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12128 sattrs->ns = !regime_is_secure(env, mmu_idx);
12129 return;
12130 }
12131
12132 if (idau_region != IREGION_NOTVALID) {
12133 sattrs->irvalid = true;
12134 sattrs->iregion = idau_region;
12135 }
12136
12137 switch (env->sau.ctrl & 3) {
12138 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12139 break;
12140 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12141 sattrs->ns = true;
12142 break;
12143 default: /* SAU.ENABLE == 1 */
12144 for (r = 0; r < cpu->sau_sregion; r++) {
12145 if (env->sau.rlar[r] & 1) {
12146 uint32_t base = env->sau.rbar[r] & ~0x1f;
12147 uint32_t limit = env->sau.rlar[r] | 0x1f;
12148
12149 if (base <= address && limit >= address) {
12150 if (base > addr_page_base || limit < addr_page_limit) {
12151 sattrs->subpage = true;
12152 }
12153 if (sattrs->srvalid) {
12154 /* If we hit in more than one region then we must report
12155 * as Secure, not NS-Callable, with no valid region
12156 * number info.
12157 */
12158 sattrs->ns = false;
12159 sattrs->nsc = false;
12160 sattrs->sregion = 0;
12161 sattrs->srvalid = false;
12162 break;
12163 } else {
12164 if (env->sau.rlar[r] & 2) {
12165 sattrs->nsc = true;
12166 } else {
12167 sattrs->ns = true;
12168 }
12169 sattrs->srvalid = true;
12170 sattrs->sregion = r;
12171 }
12172 } else {
12173 /*
12174 * Address not in this region. We must check whether the
12175 * region covers addresses in the same page as our address.
12176 * In that case we must not report a size that covers the
12177 * whole page for a subsequent hit against a different MPU
12178 * region or the background region, because it would result
12179 * in incorrect TLB hits for subsequent accesses to
12180 * addresses that are in this MPU region.
12181 */
12182 if (limit >= base &&
12183 ranges_overlap(base, limit - base + 1,
12184 addr_page_base,
12185 TARGET_PAGE_SIZE)) {
12186 sattrs->subpage = true;
12187 }
12188 }
12189 }
12190 }
12191 break;
12192 }
12193
12194 /*
12195 * The IDAU will override the SAU lookup results if it specifies
12196 * higher security than the SAU does.
12197 */
12198 if (!idau_ns) {
12199 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12200 sattrs->ns = false;
12201 sattrs->nsc = idau_nsc;
12202 }
12203 }
12204 }
12205
12206 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12207 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12208 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12209 int *prot, bool *is_subpage,
12210 ARMMMUFaultInfo *fi, uint32_t *mregion)
12211 {
12212 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12213 * that a full phys-to-virt translation does).
12214 * mregion is (if not NULL) set to the region number which matched,
12215 * or -1 if no region number is returned (MPU off, address did not
12216 * hit a region, address hit in multiple regions).
12217 * We set is_subpage to true if the region hit doesn't cover the
12218 * entire TARGET_PAGE the address is within.
12219 */
12220 ARMCPU *cpu = env_archcpu(env);
12221 bool is_user = regime_is_user(env, mmu_idx);
12222 uint32_t secure = regime_is_secure(env, mmu_idx);
12223 int n;
12224 int matchregion = -1;
12225 bool hit = false;
12226 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12227 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12228
12229 *is_subpage = false;
12230 *phys_ptr = address;
12231 *prot = 0;
12232 if (mregion) {
12233 *mregion = -1;
12234 }
12235
12236 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12237 * was an exception vector read from the vector table (which is always
12238 * done using the default system address map), because those accesses
12239 * are done in arm_v7m_load_vector(), which always does a direct
12240 * read using address_space_ldl(), rather than going via this function.
12241 */
12242 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12243 hit = true;
12244 } else if (m_is_ppb_region(env, address)) {
12245 hit = true;
12246 } else {
12247 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12248 hit = true;
12249 }
12250
12251 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12252 /* region search */
12253 /* Note that the base address is bits [31:5] from the register
12254 * with bits [4:0] all zeroes, but the limit address is bits
12255 * [31:5] from the register with bits [4:0] all ones.
12256 */
12257 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12258 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12259
12260 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12261 /* Region disabled */
12262 continue;
12263 }
12264
12265 if (address < base || address > limit) {
12266 /*
12267 * Address not in this region. We must check whether the
12268 * region covers addresses in the same page as our address.
12269 * In that case we must not report a size that covers the
12270 * whole page for a subsequent hit against a different MPU
12271 * region or the background region, because it would result in
12272 * incorrect TLB hits for subsequent accesses to addresses that
12273 * are in this MPU region.
12274 */
12275 if (limit >= base &&
12276 ranges_overlap(base, limit - base + 1,
12277 addr_page_base,
12278 TARGET_PAGE_SIZE)) {
12279 *is_subpage = true;
12280 }
12281 continue;
12282 }
12283
12284 if (base > addr_page_base || limit < addr_page_limit) {
12285 *is_subpage = true;
12286 }
12287
12288 if (matchregion != -1) {
12289 /* Multiple regions match -- always a failure (unlike
12290 * PMSAv7 where highest-numbered-region wins)
12291 */
12292 fi->type = ARMFault_Permission;
12293 fi->level = 1;
12294 return true;
12295 }
12296
12297 matchregion = n;
12298 hit = true;
12299 }
12300 }
12301
12302 if (!hit) {
12303 /* background fault */
12304 fi->type = ARMFault_Background;
12305 return true;
12306 }
12307
12308 if (matchregion == -1) {
12309 /* hit using the background region */
12310 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12311 } else {
12312 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12313 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12314 bool pxn = false;
12315
12316 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12317 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12318 }
12319
12320 if (m_is_system_region(env, address)) {
12321 /* System space is always execute never */
12322 xn = 1;
12323 }
12324
12325 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12326 if (*prot && !xn && !(pxn && !is_user)) {
12327 *prot |= PAGE_EXEC;
12328 }
12329 /* We don't need to look the attribute up in the MAIR0/MAIR1
12330 * registers because that only tells us about cacheability.
12331 */
12332 if (mregion) {
12333 *mregion = matchregion;
12334 }
12335 }
12336
12337 fi->type = ARMFault_Permission;
12338 fi->level = 1;
12339 return !(*prot & (1 << access_type));
12340 }
12341
12342
12343 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12344 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12345 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12346 int *prot, target_ulong *page_size,
12347 ARMMMUFaultInfo *fi)
12348 {
12349 uint32_t secure = regime_is_secure(env, mmu_idx);
12350 V8M_SAttributes sattrs = {};
12351 bool ret;
12352 bool mpu_is_subpage;
12353
12354 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12355 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12356 if (access_type == MMU_INST_FETCH) {
12357 /* Instruction fetches always use the MMU bank and the
12358 * transaction attribute determined by the fetch address,
12359 * regardless of CPU state. This is painful for QEMU
12360 * to handle, because it would mean we need to encode
12361 * into the mmu_idx not just the (user, negpri) information
12362 * for the current security state but also that for the
12363 * other security state, which would balloon the number
12364 * of mmu_idx values needed alarmingly.
12365 * Fortunately we can avoid this because it's not actually
12366 * possible to arbitrarily execute code from memory with
12367 * the wrong security attribute: it will always generate
12368 * an exception of some kind or another, apart from the
12369 * special case of an NS CPU executing an SG instruction
12370 * in S&NSC memory. So we always just fail the translation
12371 * here and sort things out in the exception handler
12372 * (including possibly emulating an SG instruction).
12373 */
12374 if (sattrs.ns != !secure) {
12375 if (sattrs.nsc) {
12376 fi->type = ARMFault_QEMU_NSCExec;
12377 } else {
12378 fi->type = ARMFault_QEMU_SFault;
12379 }
12380 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12381 *phys_ptr = address;
12382 *prot = 0;
12383 return true;
12384 }
12385 } else {
12386 /* For data accesses we always use the MMU bank indicated
12387 * by the current CPU state, but the security attributes
12388 * might downgrade a secure access to nonsecure.
12389 */
12390 if (sattrs.ns) {
12391 txattrs->secure = false;
12392 } else if (!secure) {
12393 /* NS access to S memory must fault.
12394 * Architecturally we should first check whether the
12395 * MPU information for this address indicates that we
12396 * are doing an unaligned access to Device memory, which
12397 * should generate a UsageFault instead. QEMU does not
12398 * currently check for that kind of unaligned access though.
12399 * If we added it we would need to do so as a special case
12400 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12401 */
12402 fi->type = ARMFault_QEMU_SFault;
12403 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12404 *phys_ptr = address;
12405 *prot = 0;
12406 return true;
12407 }
12408 }
12409 }
12410
12411 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12412 txattrs, prot, &mpu_is_subpage, fi, NULL);
12413 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12414 return ret;
12415 }
12416
12417 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12418 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12419 hwaddr *phys_ptr, int *prot,
12420 ARMMMUFaultInfo *fi)
12421 {
12422 int n;
12423 uint32_t mask;
12424 uint32_t base;
12425 bool is_user = regime_is_user(env, mmu_idx);
12426
12427 if (regime_translation_disabled(env, mmu_idx)) {
12428 /* MPU disabled. */
12429 *phys_ptr = address;
12430 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12431 return false;
12432 }
12433
12434 *phys_ptr = address;
12435 for (n = 7; n >= 0; n--) {
12436 base = env->cp15.c6_region[n];
12437 if ((base & 1) == 0) {
12438 continue;
12439 }
12440 mask = 1 << ((base >> 1) & 0x1f);
12441 /* Keep this shift separate from the above to avoid an
12442 (undefined) << 32. */
12443 mask = (mask << 1) - 1;
12444 if (((base ^ address) & ~mask) == 0) {
12445 break;
12446 }
12447 }
12448 if (n < 0) {
12449 fi->type = ARMFault_Background;
12450 return true;
12451 }
12452
12453 if (access_type == MMU_INST_FETCH) {
12454 mask = env->cp15.pmsav5_insn_ap;
12455 } else {
12456 mask = env->cp15.pmsav5_data_ap;
12457 }
12458 mask = (mask >> (n * 4)) & 0xf;
12459 switch (mask) {
12460 case 0:
12461 fi->type = ARMFault_Permission;
12462 fi->level = 1;
12463 return true;
12464 case 1:
12465 if (is_user) {
12466 fi->type = ARMFault_Permission;
12467 fi->level = 1;
12468 return true;
12469 }
12470 *prot = PAGE_READ | PAGE_WRITE;
12471 break;
12472 case 2:
12473 *prot = PAGE_READ;
12474 if (!is_user) {
12475 *prot |= PAGE_WRITE;
12476 }
12477 break;
12478 case 3:
12479 *prot = PAGE_READ | PAGE_WRITE;
12480 break;
12481 case 5:
12482 if (is_user) {
12483 fi->type = ARMFault_Permission;
12484 fi->level = 1;
12485 return true;
12486 }
12487 *prot = PAGE_READ;
12488 break;
12489 case 6:
12490 *prot = PAGE_READ;
12491 break;
12492 default:
12493 /* Bad permission. */
12494 fi->type = ARMFault_Permission;
12495 fi->level = 1;
12496 return true;
12497 }
12498 *prot |= PAGE_EXEC;
12499 return false;
12500 }
12501
12502 /* Combine either inner or outer cacheability attributes for normal
12503 * memory, according to table D4-42 and pseudocode procedure
12504 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12505 *
12506 * NB: only stage 1 includes allocation hints (RW bits), leading to
12507 * some asymmetry.
12508 */
12509 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12510 {
12511 if (s1 == 4 || s2 == 4) {
12512 /* non-cacheable has precedence */
12513 return 4;
12514 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12515 /* stage 1 write-through takes precedence */
12516 return s1;
12517 } else if (extract32(s2, 2, 2) == 2) {
12518 /* stage 2 write-through takes precedence, but the allocation hint
12519 * is still taken from stage 1
12520 */
12521 return (2 << 2) | extract32(s1, 0, 2);
12522 } else { /* write-back */
12523 return s1;
12524 }
12525 }
12526
12527 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12528 * and CombineS1S2Desc()
12529 *
12530 * @s1: Attributes from stage 1 walk
12531 * @s2: Attributes from stage 2 walk
12532 */
12533 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12534 {
12535 uint8_t s1lo, s2lo, s1hi, s2hi;
12536 ARMCacheAttrs ret;
12537 bool tagged = false;
12538
12539 if (s1.attrs == 0xf0) {
12540 tagged = true;
12541 s1.attrs = 0xff;
12542 }
12543
12544 s1lo = extract32(s1.attrs, 0, 4);
12545 s2lo = extract32(s2.attrs, 0, 4);
12546 s1hi = extract32(s1.attrs, 4, 4);
12547 s2hi = extract32(s2.attrs, 4, 4);
12548
12549 /* Combine shareability attributes (table D4-43) */
12550 if (s1.shareability == 2 || s2.shareability == 2) {
12551 /* if either are outer-shareable, the result is outer-shareable */
12552 ret.shareability = 2;
12553 } else if (s1.shareability == 3 || s2.shareability == 3) {
12554 /* if either are inner-shareable, the result is inner-shareable */
12555 ret.shareability = 3;
12556 } else {
12557 /* both non-shareable */
12558 ret.shareability = 0;
12559 }
12560
12561 /* Combine memory type and cacheability attributes */
12562 if (s1hi == 0 || s2hi == 0) {
12563 /* Device has precedence over normal */
12564 if (s1lo == 0 || s2lo == 0) {
12565 /* nGnRnE has precedence over anything */
12566 ret.attrs = 0;
12567 } else if (s1lo == 4 || s2lo == 4) {
12568 /* non-Reordering has precedence over Reordering */
12569 ret.attrs = 4; /* nGnRE */
12570 } else if (s1lo == 8 || s2lo == 8) {
12571 /* non-Gathering has precedence over Gathering */
12572 ret.attrs = 8; /* nGRE */
12573 } else {
12574 ret.attrs = 0xc; /* GRE */
12575 }
12576
12577 /* Any location for which the resultant memory type is any
12578 * type of Device memory is always treated as Outer Shareable.
12579 */
12580 ret.shareability = 2;
12581 } else { /* Normal memory */
12582 /* Outer/inner cacheability combine independently */
12583 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12584 | combine_cacheattr_nibble(s1lo, s2lo);
12585
12586 if (ret.attrs == 0x44) {
12587 /* Any location for which the resultant memory type is Normal
12588 * Inner Non-cacheable, Outer Non-cacheable is always treated
12589 * as Outer Shareable.
12590 */
12591 ret.shareability = 2;
12592 }
12593 }
12594
12595 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12596 if (tagged && ret.attrs == 0xff) {
12597 ret.attrs = 0xf0;
12598 }
12599
12600 return ret;
12601 }
12602
12603
12604 /* get_phys_addr - get the physical address for this virtual address
12605 *
12606 * Find the physical address corresponding to the given virtual address,
12607 * by doing a translation table walk on MMU based systems or using the
12608 * MPU state on MPU based systems.
12609 *
12610 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12611 * prot and page_size may not be filled in, and the populated fsr value provides
12612 * information on why the translation aborted, in the format of a
12613 * DFSR/IFSR fault register, with the following caveats:
12614 * * we honour the short vs long DFSR format differences.
12615 * * the WnR bit is never set (the caller must do this).
12616 * * for PSMAv5 based systems we don't bother to return a full FSR format
12617 * value.
12618 *
12619 * @env: CPUARMState
12620 * @address: virtual address to get physical address for
12621 * @access_type: 0 for read, 1 for write, 2 for execute
12622 * @mmu_idx: MMU index indicating required translation regime
12623 * @phys_ptr: set to the physical address corresponding to the virtual address
12624 * @attrs: set to the memory transaction attributes to use
12625 * @prot: set to the permissions for the page containing phys_ptr
12626 * @page_size: set to the size of the page containing phys_ptr
12627 * @fi: set to fault info if the translation fails
12628 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12629 */
12630 bool get_phys_addr(CPUARMState *env, target_ulong address,
12631 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12632 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12633 target_ulong *page_size,
12634 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12635 {
12636 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12637
12638 if (mmu_idx != s1_mmu_idx) {
12639 /* Call ourselves recursively to do the stage 1 and then stage 2
12640 * translations if mmu_idx is a two-stage regime.
12641 */
12642 if (arm_feature(env, ARM_FEATURE_EL2)) {
12643 hwaddr ipa;
12644 int s2_prot;
12645 int ret;
12646 bool ipa_secure;
12647 ARMCacheAttrs cacheattrs2 = {};
12648 ARMMMUIdx s2_mmu_idx;
12649 bool is_el0;
12650
12651 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12652 attrs, prot, page_size, fi, cacheattrs);
12653
12654 /* If S1 fails or S2 is disabled, return early. */
12655 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12656 *phys_ptr = ipa;
12657 return ret;
12658 }
12659
12660 ipa_secure = attrs->secure;
12661 if (arm_is_secure_below_el3(env)) {
12662 if (ipa_secure) {
12663 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
12664 } else {
12665 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
12666 }
12667 } else {
12668 assert(!ipa_secure);
12669 }
12670
12671 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12672 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12673
12674 /* S1 is done. Now do S2 translation. */
12675 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12676 phys_ptr, attrs, &s2_prot,
12677 page_size, fi, &cacheattrs2);
12678 fi->s2addr = ipa;
12679 /* Combine the S1 and S2 perms. */
12680 *prot &= s2_prot;
12681
12682 /* If S2 fails, return early. */
12683 if (ret) {
12684 return ret;
12685 }
12686
12687 /* Combine the S1 and S2 cache attributes. */
12688 if (arm_hcr_el2_eff(env) & HCR_DC) {
12689 /*
12690 * HCR.DC forces the first stage attributes to
12691 * Normal Non-Shareable,
12692 * Inner Write-Back Read-Allocate Write-Allocate,
12693 * Outer Write-Back Read-Allocate Write-Allocate.
12694 * Do not overwrite Tagged within attrs.
12695 */
12696 if (cacheattrs->attrs != 0xf0) {
12697 cacheattrs->attrs = 0xff;
12698 }
12699 cacheattrs->shareability = 0;
12700 }
12701 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12702
12703 /* Check if IPA translates to secure or non-secure PA space. */
12704 if (arm_is_secure_below_el3(env)) {
12705 if (ipa_secure) {
12706 attrs->secure =
12707 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12708 } else {
12709 attrs->secure =
12710 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12711 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
12712 }
12713 }
12714 return 0;
12715 } else {
12716 /*
12717 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12718 */
12719 mmu_idx = stage_1_mmu_idx(mmu_idx);
12720 }
12721 }
12722
12723 /* The page table entries may downgrade secure to non-secure, but
12724 * cannot upgrade an non-secure translation regime's attributes
12725 * to secure.
12726 */
12727 attrs->secure = regime_is_secure(env, mmu_idx);
12728 attrs->user = regime_is_user(env, mmu_idx);
12729
12730 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12731 * In v7 and earlier it affects all stage 1 translations.
12732 */
12733 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12734 && !arm_feature(env, ARM_FEATURE_V8)) {
12735 if (regime_el(env, mmu_idx) == 3) {
12736 address += env->cp15.fcseidr_s;
12737 } else {
12738 address += env->cp15.fcseidr_ns;
12739 }
12740 }
12741
12742 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12743 bool ret;
12744 *page_size = TARGET_PAGE_SIZE;
12745
12746 if (arm_feature(env, ARM_FEATURE_V8)) {
12747 /* PMSAv8 */
12748 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12749 phys_ptr, attrs, prot, page_size, fi);
12750 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12751 /* PMSAv7 */
12752 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12753 phys_ptr, prot, page_size, fi);
12754 } else {
12755 /* Pre-v7 MPU */
12756 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12757 phys_ptr, prot, fi);
12758 }
12759 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12760 " mmu_idx %u -> %s (prot %c%c%c)\n",
12761 access_type == MMU_DATA_LOAD ? "reading" :
12762 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12763 (uint32_t)address, mmu_idx,
12764 ret ? "Miss" : "Hit",
12765 *prot & PAGE_READ ? 'r' : '-',
12766 *prot & PAGE_WRITE ? 'w' : '-',
12767 *prot & PAGE_EXEC ? 'x' : '-');
12768
12769 return ret;
12770 }
12771
12772 /* Definitely a real MMU, not an MPU */
12773
12774 if (regime_translation_disabled(env, mmu_idx)) {
12775 uint64_t hcr;
12776 uint8_t memattr;
12777
12778 /*
12779 * MMU disabled. S1 addresses within aa64 translation regimes are
12780 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12781 */
12782 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12783 int r_el = regime_el(env, mmu_idx);
12784 if (arm_el_is_aa64(env, r_el)) {
12785 int pamax = arm_pamax(env_archcpu(env));
12786 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12787 int addrtop, tbi;
12788
12789 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12790 if (access_type == MMU_INST_FETCH) {
12791 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12792 }
12793 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12794 addrtop = (tbi ? 55 : 63);
12795
12796 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12797 fi->type = ARMFault_AddressSize;
12798 fi->level = 0;
12799 fi->stage2 = false;
12800 return 1;
12801 }
12802
12803 /*
12804 * When TBI is disabled, we've just validated that all of the
12805 * bits above PAMax are zero, so logically we only need to
12806 * clear the top byte for TBI. But it's clearer to follow
12807 * the pseudocode set of addrdesc.paddress.
12808 */
12809 address = extract64(address, 0, 52);
12810 }
12811 }
12812 *phys_ptr = address;
12813 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12814 *page_size = TARGET_PAGE_SIZE;
12815
12816 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12817 hcr = arm_hcr_el2_eff(env);
12818 cacheattrs->shareability = 0;
12819 if (hcr & HCR_DC) {
12820 if (hcr & HCR_DCT) {
12821 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12822 } else {
12823 memattr = 0xff; /* Normal, WB, RWA */
12824 }
12825 } else if (access_type == MMU_INST_FETCH) {
12826 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12827 memattr = 0xee; /* Normal, WT, RA, NT */
12828 } else {
12829 memattr = 0x44; /* Normal, NC, No */
12830 }
12831 cacheattrs->shareability = 2; /* outer sharable */
12832 } else {
12833 memattr = 0x00; /* Device, nGnRnE */
12834 }
12835 cacheattrs->attrs = memattr;
12836 return 0;
12837 }
12838
12839 if (regime_using_lpae_format(env, mmu_idx)) {
12840 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12841 phys_ptr, attrs, prot, page_size,
12842 fi, cacheattrs);
12843 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12844 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12845 phys_ptr, attrs, prot, page_size, fi);
12846 } else {
12847 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12848 phys_ptr, prot, page_size, fi);
12849 }
12850 }
12851
12852 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12853 MemTxAttrs *attrs)
12854 {
12855 ARMCPU *cpu = ARM_CPU(cs);
12856 CPUARMState *env = &cpu->env;
12857 hwaddr phys_addr;
12858 target_ulong page_size;
12859 int prot;
12860 bool ret;
12861 ARMMMUFaultInfo fi = {};
12862 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12863 ARMCacheAttrs cacheattrs = {};
12864
12865 *attrs = (MemTxAttrs) {};
12866
12867 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12868 attrs, &prot, &page_size, &fi, &cacheattrs);
12869
12870 if (ret) {
12871 return -1;
12872 }
12873 return phys_addr;
12874 }
12875
12876 #endif
12877
12878 /* Note that signed overflow is undefined in C. The following routines are
12879 careful to use unsigned types where modulo arithmetic is required.
12880 Failure to do so _will_ break on newer gcc. */
12881
12882 /* Signed saturating arithmetic. */
12883
12884 /* Perform 16-bit signed saturating addition. */
12885 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12886 {
12887 uint16_t res;
12888
12889 res = a + b;
12890 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12891 if (a & 0x8000)
12892 res = 0x8000;
12893 else
12894 res = 0x7fff;
12895 }
12896 return res;
12897 }
12898
12899 /* Perform 8-bit signed saturating addition. */
12900 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12901 {
12902 uint8_t res;
12903
12904 res = a + b;
12905 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12906 if (a & 0x80)
12907 res = 0x80;
12908 else
12909 res = 0x7f;
12910 }
12911 return res;
12912 }
12913
12914 /* Perform 16-bit signed saturating subtraction. */
12915 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12916 {
12917 uint16_t res;
12918
12919 res = a - b;
12920 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12921 if (a & 0x8000)
12922 res = 0x8000;
12923 else
12924 res = 0x7fff;
12925 }
12926 return res;
12927 }
12928
12929 /* Perform 8-bit signed saturating subtraction. */
12930 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12931 {
12932 uint8_t res;
12933
12934 res = a - b;
12935 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12936 if (a & 0x80)
12937 res = 0x80;
12938 else
12939 res = 0x7f;
12940 }
12941 return res;
12942 }
12943
12944 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12945 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12946 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12947 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12948 #define PFX q
12949
12950 #include "op_addsub.h"
12951
12952 /* Unsigned saturating arithmetic. */
12953 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12954 {
12955 uint16_t res;
12956 res = a + b;
12957 if (res < a)
12958 res = 0xffff;
12959 return res;
12960 }
12961
12962 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12963 {
12964 if (a > b)
12965 return a - b;
12966 else
12967 return 0;
12968 }
12969
12970 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12971 {
12972 uint8_t res;
12973 res = a + b;
12974 if (res < a)
12975 res = 0xff;
12976 return res;
12977 }
12978
12979 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12980 {
12981 if (a > b)
12982 return a - b;
12983 else
12984 return 0;
12985 }
12986
12987 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12988 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12989 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12990 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12991 #define PFX uq
12992
12993 #include "op_addsub.h"
12994
12995 /* Signed modulo arithmetic. */
12996 #define SARITH16(a, b, n, op) do { \
12997 int32_t sum; \
12998 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12999 RESULT(sum, n, 16); \
13000 if (sum >= 0) \
13001 ge |= 3 << (n * 2); \
13002 } while(0)
13003
13004 #define SARITH8(a, b, n, op) do { \
13005 int32_t sum; \
13006 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13007 RESULT(sum, n, 8); \
13008 if (sum >= 0) \
13009 ge |= 1 << n; \
13010 } while(0)
13011
13012
13013 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13014 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13015 #define ADD8(a, b, n) SARITH8(a, b, n, +)
13016 #define SUB8(a, b, n) SARITH8(a, b, n, -)
13017 #define PFX s
13018 #define ARITH_GE
13019
13020 #include "op_addsub.h"
13021
13022 /* Unsigned modulo arithmetic. */
13023 #define ADD16(a, b, n) do { \
13024 uint32_t sum; \
13025 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13026 RESULT(sum, n, 16); \
13027 if ((sum >> 16) == 1) \
13028 ge |= 3 << (n * 2); \
13029 } while(0)
13030
13031 #define ADD8(a, b, n) do { \
13032 uint32_t sum; \
13033 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13034 RESULT(sum, n, 8); \
13035 if ((sum >> 8) == 1) \
13036 ge |= 1 << n; \
13037 } while(0)
13038
13039 #define SUB16(a, b, n) do { \
13040 uint32_t sum; \
13041 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13042 RESULT(sum, n, 16); \
13043 if ((sum >> 16) == 0) \
13044 ge |= 3 << (n * 2); \
13045 } while(0)
13046
13047 #define SUB8(a, b, n) do { \
13048 uint32_t sum; \
13049 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13050 RESULT(sum, n, 8); \
13051 if ((sum >> 8) == 0) \
13052 ge |= 1 << n; \
13053 } while(0)
13054
13055 #define PFX u
13056 #define ARITH_GE
13057
13058 #include "op_addsub.h"
13059
13060 /* Halved signed arithmetic. */
13061 #define ADD16(a, b, n) \
13062 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13063 #define SUB16(a, b, n) \
13064 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13065 #define ADD8(a, b, n) \
13066 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13067 #define SUB8(a, b, n) \
13068 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13069 #define PFX sh
13070
13071 #include "op_addsub.h"
13072
13073 /* Halved unsigned arithmetic. */
13074 #define ADD16(a, b, n) \
13075 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13076 #define SUB16(a, b, n) \
13077 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13078 #define ADD8(a, b, n) \
13079 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13080 #define SUB8(a, b, n) \
13081 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13082 #define PFX uh
13083
13084 #include "op_addsub.h"
13085
13086 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13087 {
13088 if (a > b)
13089 return a - b;
13090 else
13091 return b - a;
13092 }
13093
13094 /* Unsigned sum of absolute byte differences. */
13095 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13096 {
13097 uint32_t sum;
13098 sum = do_usad(a, b);
13099 sum += do_usad(a >> 8, b >> 8);
13100 sum += do_usad(a >> 16, b >> 16);
13101 sum += do_usad(a >> 24, b >> 24);
13102 return sum;
13103 }
13104
13105 /* For ARMv6 SEL instruction. */
13106 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13107 {
13108 uint32_t mask;
13109
13110 mask = 0;
13111 if (flags & 1)
13112 mask |= 0xff;
13113 if (flags & 2)
13114 mask |= 0xff00;
13115 if (flags & 4)
13116 mask |= 0xff0000;
13117 if (flags & 8)
13118 mask |= 0xff000000;
13119 return (a & mask) | (b & ~mask);
13120 }
13121
13122 /* CRC helpers.
13123 * The upper bytes of val (above the number specified by 'bytes') must have
13124 * been zeroed out by the caller.
13125 */
13126 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13127 {
13128 uint8_t buf[4];
13129
13130 stl_le_p(buf, val);
13131
13132 /* zlib crc32 converts the accumulator and output to one's complement. */
13133 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13134 }
13135
13136 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13137 {
13138 uint8_t buf[4];
13139
13140 stl_le_p(buf, val);
13141
13142 /* Linux crc32c converts the output to one's complement. */
13143 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13144 }
13145
13146 /* Return the exception level to which FP-disabled exceptions should
13147 * be taken, or 0 if FP is enabled.
13148 */
13149 int fp_exception_el(CPUARMState *env, int cur_el)
13150 {
13151 #ifndef CONFIG_USER_ONLY
13152 uint64_t hcr_el2;
13153
13154 /* CPACR and the CPTR registers don't exist before v6, so FP is
13155 * always accessible
13156 */
13157 if (!arm_feature(env, ARM_FEATURE_V6)) {
13158 return 0;
13159 }
13160
13161 if (arm_feature(env, ARM_FEATURE_M)) {
13162 /* CPACR can cause a NOCP UsageFault taken to current security state */
13163 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13164 return 1;
13165 }
13166
13167 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13168 if (!extract32(env->v7m.nsacr, 10, 1)) {
13169 /* FP insns cause a NOCP UsageFault taken to Secure */
13170 return 3;
13171 }
13172 }
13173
13174 return 0;
13175 }
13176
13177 hcr_el2 = arm_hcr_el2_eff(env);
13178
13179 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13180 * 0, 2 : trap EL0 and EL1/PL1 accesses
13181 * 1 : trap only EL0 accesses
13182 * 3 : trap no accesses
13183 * This register is ignored if E2H+TGE are both set.
13184 */
13185 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13186 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13187
13188 switch (fpen) {
13189 case 0:
13190 case 2:
13191 if (cur_el == 0 || cur_el == 1) {
13192 /* Trap to PL1, which might be EL1 or EL3 */
13193 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13194 return 3;
13195 }
13196 return 1;
13197 }
13198 if (cur_el == 3 && !is_a64(env)) {
13199 /* Secure PL1 running at EL3 */
13200 return 3;
13201 }
13202 break;
13203 case 1:
13204 if (cur_el == 0) {
13205 return 1;
13206 }
13207 break;
13208 case 3:
13209 break;
13210 }
13211 }
13212
13213 /*
13214 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13215 * to control non-secure access to the FPU. It doesn't have any
13216 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13217 */
13218 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13219 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13220 if (!extract32(env->cp15.nsacr, 10, 1)) {
13221 /* FP insns act as UNDEF */
13222 return cur_el == 2 ? 2 : 1;
13223 }
13224 }
13225
13226 /*
13227 * CPTR_EL2 is present in v7VE or v8, and changes format
13228 * with HCR_EL2.E2H (regardless of TGE).
13229 */
13230 if (cur_el <= 2) {
13231 if (hcr_el2 & HCR_E2H) {
13232 /* Check CPTR_EL2.FPEN. */
13233 switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
13234 case 1:
13235 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
13236 break;
13237 }
13238 /* fall through */
13239 case 0:
13240 case 2:
13241 return 2;
13242 }
13243 } else if (arm_is_el2_enabled(env)) {
13244 if (env->cp15.cptr_el[2] & CPTR_TFP) {
13245 return 2;
13246 }
13247 }
13248 }
13249
13250 /* CPTR_EL3 : present in v8 */
13251 if (env->cp15.cptr_el[3] & CPTR_TFP) {
13252 /* Trap all FP ops to EL3 */
13253 return 3;
13254 }
13255 #endif
13256 return 0;
13257 }
13258
13259 /* Return the exception level we're running at if this is our mmu_idx */
13260 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13261 {
13262 if (mmu_idx & ARM_MMU_IDX_M) {
13263 return mmu_idx & ARM_MMU_IDX_M_PRIV;
13264 }
13265
13266 switch (mmu_idx) {
13267 case ARMMMUIdx_E10_0:
13268 case ARMMMUIdx_E20_0:
13269 case ARMMMUIdx_SE10_0:
13270 case ARMMMUIdx_SE20_0:
13271 return 0;
13272 case ARMMMUIdx_E10_1:
13273 case ARMMMUIdx_E10_1_PAN:
13274 case ARMMMUIdx_SE10_1:
13275 case ARMMMUIdx_SE10_1_PAN:
13276 return 1;
13277 case ARMMMUIdx_E2:
13278 case ARMMMUIdx_E20_2:
13279 case ARMMMUIdx_E20_2_PAN:
13280 case ARMMMUIdx_SE2:
13281 case ARMMMUIdx_SE20_2:
13282 case ARMMMUIdx_SE20_2_PAN:
13283 return 2;
13284 case ARMMMUIdx_SE3:
13285 return 3;
13286 default:
13287 g_assert_not_reached();
13288 }
13289 }
13290
13291 #ifndef CONFIG_TCG
13292 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13293 {
13294 g_assert_not_reached();
13295 }
13296 #endif
13297
13298 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13299 {
13300 ARMMMUIdx idx;
13301 uint64_t hcr;
13302
13303 if (arm_feature(env, ARM_FEATURE_M)) {
13304 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13305 }
13306
13307 /* See ARM pseudo-function ELIsInHost. */
13308 switch (el) {
13309 case 0:
13310 hcr = arm_hcr_el2_eff(env);
13311 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13312 idx = ARMMMUIdx_E20_0;
13313 } else {
13314 idx = ARMMMUIdx_E10_0;
13315 }
13316 break;
13317 case 1:
13318 if (env->pstate & PSTATE_PAN) {
13319 idx = ARMMMUIdx_E10_1_PAN;
13320 } else {
13321 idx = ARMMMUIdx_E10_1;
13322 }
13323 break;
13324 case 2:
13325 /* Note that TGE does not apply at EL2. */
13326 if (arm_hcr_el2_eff(env) & HCR_E2H) {
13327 if (env->pstate & PSTATE_PAN) {
13328 idx = ARMMMUIdx_E20_2_PAN;
13329 } else {
13330 idx = ARMMMUIdx_E20_2;
13331 }
13332 } else {
13333 idx = ARMMMUIdx_E2;
13334 }
13335 break;
13336 case 3:
13337 return ARMMMUIdx_SE3;
13338 default:
13339 g_assert_not_reached();
13340 }
13341
13342 if (arm_is_secure_below_el3(env)) {
13343 idx &= ~ARM_MMU_IDX_A_NS;
13344 }
13345
13346 return idx;
13347 }
13348
13349 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13350 {
13351 return arm_mmu_idx_el(env, arm_current_el(env));
13352 }
13353
13354 #ifndef CONFIG_USER_ONLY
13355 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13356 {
13357 return stage_1_mmu_idx(arm_mmu_idx(env));
13358 }
13359 #endif
13360
13361 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13362 ARMMMUIdx mmu_idx,
13363 CPUARMTBFlags flags)
13364 {
13365 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13366 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13367
13368 if (arm_singlestep_active(env)) {
13369 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13370 }
13371 return flags;
13372 }
13373
13374 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13375 ARMMMUIdx mmu_idx,
13376 CPUARMTBFlags flags)
13377 {
13378 bool sctlr_b = arm_sctlr_b(env);
13379
13380 if (sctlr_b) {
13381 DP_TBFLAG_A32(flags, SCTLR__B, 1);
13382 }
13383 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13384 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13385 }
13386 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13387
13388 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13389 }
13390
13391 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13392 ARMMMUIdx mmu_idx)
13393 {
13394 CPUARMTBFlags flags = {};
13395 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13396
13397 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13398 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13399 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13400 }
13401
13402 if (arm_v7m_is_handler_mode(env)) {
13403 DP_TBFLAG_M32(flags, HANDLER, 1);
13404 }
13405
13406 /*
13407 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13408 * is suppressing them because the requested execution priority
13409 * is less than 0.
13410 */
13411 if (arm_feature(env, ARM_FEATURE_V8) &&
13412 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13413 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13414 DP_TBFLAG_M32(flags, STACKCHECK, 1);
13415 }
13416
13417 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13418 }
13419
13420 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13421 {
13422 CPUARMTBFlags flags = {};
13423
13424 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13425 return flags;
13426 }
13427
13428 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13429 ARMMMUIdx mmu_idx)
13430 {
13431 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13432 int el = arm_current_el(env);
13433
13434 if (arm_sctlr(env, el) & SCTLR_A) {
13435 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13436 }
13437
13438 if (arm_el_is_aa64(env, 1)) {
13439 DP_TBFLAG_A32(flags, VFPEN, 1);
13440 }
13441
13442 if (el < 2 && env->cp15.hstr_el2 &&
13443 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13444 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13445 }
13446
13447 if (env->uncached_cpsr & CPSR_IL) {
13448 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13449 }
13450
13451 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13452 }
13453
13454 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13455 ARMMMUIdx mmu_idx)
13456 {
13457 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13458 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13459 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13460 uint64_t sctlr;
13461 int tbii, tbid;
13462
13463 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13464
13465 /* Get control bits for tagged addresses. */
13466 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13467 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13468
13469 DP_TBFLAG_A64(flags, TBII, tbii);
13470 DP_TBFLAG_A64(flags, TBID, tbid);
13471
13472 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13473 int sve_el = sve_exception_el(env, el);
13474 uint32_t zcr_len;
13475
13476 /*
13477 * If SVE is disabled, but FP is enabled,
13478 * then the effective len is 0.
13479 */
13480 if (sve_el != 0 && fp_el == 0) {
13481 zcr_len = 0;
13482 } else {
13483 zcr_len = sve_zcr_len_for_el(env, el);
13484 }
13485 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13486 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13487 }
13488
13489 sctlr = regime_sctlr(env, stage1);
13490
13491 if (sctlr & SCTLR_A) {
13492 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13493 }
13494
13495 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13496 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13497 }
13498
13499 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13500 /*
13501 * In order to save space in flags, we record only whether
13502 * pauth is "inactive", meaning all insns are implemented as
13503 * a nop, or "active" when some action must be performed.
13504 * The decision of which action to take is left to a helper.
13505 */
13506 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13507 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13508 }
13509 }
13510
13511 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13512 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13513 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13514 DP_TBFLAG_A64(flags, BT, 1);
13515 }
13516 }
13517
13518 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13519 if (!(env->pstate & PSTATE_UAO)) {
13520 switch (mmu_idx) {
13521 case ARMMMUIdx_E10_1:
13522 case ARMMMUIdx_E10_1_PAN:
13523 case ARMMMUIdx_SE10_1:
13524 case ARMMMUIdx_SE10_1_PAN:
13525 /* TODO: ARMv8.3-NV */
13526 DP_TBFLAG_A64(flags, UNPRIV, 1);
13527 break;
13528 case ARMMMUIdx_E20_2:
13529 case ARMMMUIdx_E20_2_PAN:
13530 case ARMMMUIdx_SE20_2:
13531 case ARMMMUIdx_SE20_2_PAN:
13532 /*
13533 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13534 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13535 */
13536 if (env->cp15.hcr_el2 & HCR_TGE) {
13537 DP_TBFLAG_A64(flags, UNPRIV, 1);
13538 }
13539 break;
13540 default:
13541 break;
13542 }
13543 }
13544
13545 if (env->pstate & PSTATE_IL) {
13546 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13547 }
13548
13549 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13550 /*
13551 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13552 * if all accesses must be Unchecked:
13553 * 1) If no TBI, then there are no tags in the address to check,
13554 * 2) If Tag Check Override, then all accesses are Unchecked,
13555 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13556 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13557 */
13558 if (allocation_tag_access_enabled(env, el, sctlr)) {
13559 DP_TBFLAG_A64(flags, ATA, 1);
13560 if (tbid
13561 && !(env->pstate & PSTATE_TCO)
13562 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13563 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13564 }
13565 }
13566 /* And again for unprivileged accesses, if required. */
13567 if (EX_TBFLAG_A64(flags, UNPRIV)
13568 && tbid
13569 && !(env->pstate & PSTATE_TCO)
13570 && (sctlr & SCTLR_TCF0)
13571 && allocation_tag_access_enabled(env, 0, sctlr)) {
13572 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13573 }
13574 /* Cache TCMA as well as TBI. */
13575 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13576 }
13577
13578 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13579 }
13580
13581 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13582 {
13583 int el = arm_current_el(env);
13584 int fp_el = fp_exception_el(env, el);
13585 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13586
13587 if (is_a64(env)) {
13588 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13589 } else if (arm_feature(env, ARM_FEATURE_M)) {
13590 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13591 } else {
13592 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13593 }
13594 }
13595
13596 void arm_rebuild_hflags(CPUARMState *env)
13597 {
13598 env->hflags = rebuild_hflags_internal(env);
13599 }
13600
13601 /*
13602 * If we have triggered a EL state change we can't rely on the
13603 * translator having passed it to us, we need to recompute.
13604 */
13605 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13606 {
13607 int el = arm_current_el(env);
13608 int fp_el = fp_exception_el(env, el);
13609 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13610
13611 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13612 }
13613
13614 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13615 {
13616 int fp_el = fp_exception_el(env, el);
13617 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13618
13619 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13620 }
13621
13622 /*
13623 * If we have triggered a EL state change we can't rely on the
13624 * translator having passed it to us, we need to recompute.
13625 */
13626 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13627 {
13628 int el = arm_current_el(env);
13629 int fp_el = fp_exception_el(env, el);
13630 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13631 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13632 }
13633
13634 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13635 {
13636 int fp_el = fp_exception_el(env, el);
13637 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13638
13639 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13640 }
13641
13642 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13643 {
13644 int fp_el = fp_exception_el(env, el);
13645 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13646
13647 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13648 }
13649
13650 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13651 {
13652 #ifdef CONFIG_DEBUG_TCG
13653 CPUARMTBFlags c = env->hflags;
13654 CPUARMTBFlags r = rebuild_hflags_internal(env);
13655
13656 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13657 fprintf(stderr, "TCG hflags mismatch "
13658 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13659 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13660 c.flags, c.flags2, r.flags, r.flags2);
13661 abort();
13662 }
13663 #endif
13664 }
13665
13666 static bool mve_no_pred(CPUARMState *env)
13667 {
13668 /*
13669 * Return true if there is definitely no predication of MVE
13670 * instructions by VPR or LTPSIZE. (Returning false even if there
13671 * isn't any predication is OK; generated code will just be
13672 * a little worse.)
13673 * If the CPU does not implement MVE then this TB flag is always 0.
13674 *
13675 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13676 * logic in gen_update_fp_context() needs to be updated to match.
13677 *
13678 * We do not include the effect of the ECI bits here -- they are
13679 * tracked in other TB flags. This simplifies the logic for
13680 * "when did we emit code that changes the MVE_NO_PRED TB flag
13681 * and thus need to end the TB?".
13682 */
13683 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13684 return false;
13685 }
13686 if (env->v7m.vpr) {
13687 return false;
13688 }
13689 if (env->v7m.ltpsize < 4) {
13690 return false;
13691 }
13692 return true;
13693 }
13694
13695 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13696 target_ulong *cs_base, uint32_t *pflags)
13697 {
13698 CPUARMTBFlags flags;
13699
13700 assert_hflags_rebuild_correctly(env);
13701 flags = env->hflags;
13702
13703 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13704 *pc = env->pc;
13705 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13706 DP_TBFLAG_A64(flags, BTYPE, env->btype);
13707 }
13708 } else {
13709 *pc = env->regs[15];
13710
13711 if (arm_feature(env, ARM_FEATURE_M)) {
13712 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13713 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13714 != env->v7m.secure) {
13715 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13716 }
13717
13718 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13719 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13720 (env->v7m.secure &&
13721 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13722 /*
13723 * ASPEN is set, but FPCA/SFPA indicate that there is no
13724 * active FP context; we must create a new FP context before
13725 * executing any FP insn.
13726 */
13727 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13728 }
13729
13730 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13731 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13732 DP_TBFLAG_M32(flags, LSPACT, 1);
13733 }
13734
13735 if (mve_no_pred(env)) {
13736 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13737 }
13738 } else {
13739 /*
13740 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13741 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13742 */
13743 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13744 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13745 } else {
13746 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13747 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13748 }
13749 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13750 DP_TBFLAG_A32(flags, VFPEN, 1);
13751 }
13752 }
13753
13754 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13755 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13756 }
13757
13758 /*
13759 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13760 * states defined in the ARM ARM for software singlestep:
13761 * SS_ACTIVE PSTATE.SS State
13762 * 0 x Inactive (the TB flag for SS is always 0)
13763 * 1 0 Active-pending
13764 * 1 1 Active-not-pending
13765 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13766 */
13767 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13768 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13769 }
13770
13771 *pflags = flags.flags;
13772 *cs_base = flags.flags2;
13773 }
13774
13775 #ifdef TARGET_AARCH64
13776 /*
13777 * The manual says that when SVE is enabled and VQ is widened the
13778 * implementation is allowed to zero the previously inaccessible
13779 * portion of the registers. The corollary to that is that when
13780 * SVE is enabled and VQ is narrowed we are also allowed to zero
13781 * the now inaccessible portion of the registers.
13782 *
13783 * The intent of this is that no predicate bit beyond VQ is ever set.
13784 * Which means that some operations on predicate registers themselves
13785 * may operate on full uint64_t or even unrolled across the maximum
13786 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13787 * may well be cheaper than conditionals to restrict the operation
13788 * to the relevant portion of a uint16_t[16].
13789 */
13790 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13791 {
13792 int i, j;
13793 uint64_t pmask;
13794
13795 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13796 assert(vq <= env_archcpu(env)->sve_max_vq);
13797
13798 /* Zap the high bits of the zregs. */
13799 for (i = 0; i < 32; i++) {
13800 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13801 }
13802
13803 /* Zap the high bits of the pregs and ffr. */
13804 pmask = 0;
13805 if (vq & 3) {
13806 pmask = ~(-1ULL << (16 * (vq & 3)));
13807 }
13808 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13809 for (i = 0; i < 17; ++i) {
13810 env->vfp.pregs[i].p[j] &= pmask;
13811 }
13812 pmask = 0;
13813 }
13814 }
13815
13816 /*
13817 * Notice a change in SVE vector size when changing EL.
13818 */
13819 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13820 int new_el, bool el0_a64)
13821 {
13822 ARMCPU *cpu = env_archcpu(env);
13823 int old_len, new_len;
13824 bool old_a64, new_a64;
13825
13826 /* Nothing to do if no SVE. */
13827 if (!cpu_isar_feature(aa64_sve, cpu)) {
13828 return;
13829 }
13830
13831 /* Nothing to do if FP is disabled in either EL. */
13832 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13833 return;
13834 }
13835
13836 /*
13837 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13838 * at ELx, or not available because the EL is in AArch32 state, then
13839 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13840 * has an effective value of 0".
13841 *
13842 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13843 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13844 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13845 * we already have the correct register contents when encountering the
13846 * vq0->vq0 transition between EL0->EL1.
13847 */
13848 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13849 old_len = (old_a64 && !sve_exception_el(env, old_el)
13850 ? sve_zcr_len_for_el(env, old_el) : 0);
13851 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13852 new_len = (new_a64 && !sve_exception_el(env, new_el)
13853 ? sve_zcr_len_for_el(env, new_el) : 0);
13854
13855 /* When changing vector length, clear inaccessible state. */
13856 if (new_len < old_len) {
13857 aarch64_sve_narrow_vq(env, new_len + 1);
13858 }
13859 }
13860 #endif