]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Merge tag 'pull-ufs-20231030' of https://gitlab.com/jeuk20.kim/qemu into staging
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35
36 static void switch_mode(CPUARMState *env, int mode);
37
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
45 }
46 }
47
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
55 }
56 }
57
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60 return (char *)env + ri->fieldoffset;
61 }
62
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
74 }
75 }
76
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
79 {
80 /*
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
85 */
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
94 }
95 }
96
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99 /*
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
110 */
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
115 }
116 return true;
117 }
118
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
124
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
129
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
134 }
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
137 }
138
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
141 /*
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
146 */
147 uint64_t oldval = cpu->cpreg_values[i];
148
149 if (oldval == newval) {
150 continue;
151 }
152
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
156 }
157
158 write_raw_cp_reg(&cpu->env, ri, newval);
159 }
160 cpu->cpreg_values[i] = newval;
161 }
162 return ok;
163 }
164
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167 int i;
168 bool ok = true;
169
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
174
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
179 }
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
182 }
183 /*
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
187 */
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
191 }
192 }
193 return ok;
194 }
195
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
206 }
207 }
208
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
213
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
215
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
218 }
219 }
220
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225
226 if (aidx > bidx) {
227 return 1;
228 }
229 if (aidx < bidx) {
230 return -1;
231 }
232 return 0;
233 }
234
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237 /*
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
240 */
241 GList *keys;
242 int arraylen;
243
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
246
247 cpu->cpreg_array_len = 0;
248
249 g_list_foreach(keys, count_cpreg, cpu);
250
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
258
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
260
261 assert(cpu->cpreg_array_len == arraylen);
262
263 g_list_free(keys);
264 }
265
266 /*
267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
268 */
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270 const ARMCPRegInfo *ri,
271 bool isread)
272 {
273 if (!is_a64(env) && arm_current_el(env) == 3 &&
274 arm_is_secure_below_el3(env)) {
275 return CP_ACCESS_TRAP_UNCATEGORIZED;
276 }
277 return CP_ACCESS_OK;
278 }
279
280 /*
281 * Some secure-only AArch32 registers trap to EL3 if used from
282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284 * We assume that the .access field is set to PL1_RW.
285 */
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287 const ARMCPRegInfo *ri,
288 bool isread)
289 {
290 if (arm_current_el(env) == 3) {
291 return CP_ACCESS_OK;
292 }
293 if (arm_is_secure_below_el3(env)) {
294 if (env->cp15.scr_el3 & SCR_EEL2) {
295 return CP_ACCESS_TRAP_EL2;
296 }
297 return CP_ACCESS_TRAP_EL3;
298 }
299 /* This will be EL1 NS and EL2 NS, which just UNDEF */
300 return CP_ACCESS_TRAP_UNCATEGORIZED;
301 }
302
303 /*
304 * Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306 */
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
309 {
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
315 }
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
318 }
319 return CP_ACCESS_OK;
320 }
321
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
325 {
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
330 }
331 }
332 return CP_ACCESS_OK;
333 }
334
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338 {
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
341 }
342 return CP_ACCESS_OK;
343 }
344
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
348 {
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
351 }
352 return CP_ACCESS_OK;
353 }
354
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
358 {
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
361 }
362 return CP_ACCESS_OK;
363 }
364
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
368 {
369 if (arm_current_el(env) == 1 &&
370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371 return CP_ACCESS_TRAP_EL2;
372 }
373 return CP_ACCESS_OK;
374 }
375
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
380 {
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383 return CP_ACCESS_TRAP_EL2;
384 }
385 return CP_ACCESS_OK;
386 }
387 #endif
388
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
390 {
391 ARMCPU *cpu = env_archcpu(env);
392
393 raw_write(env, ri, value);
394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
395 }
396
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 {
399 ARMCPU *cpu = env_archcpu(env);
400
401 if (raw_read(env, ri) != value) {
402 /*
403 * Unlike real hardware the qemu TLB uses virtual addresses,
404 * not modified virtual addresses, so this causes a TLB flush.
405 */
406 tlb_flush(CPU(cpu));
407 raw_write(env, ri, value);
408 }
409 }
410
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
413 {
414 ARMCPU *cpu = env_archcpu(env);
415
416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417 && !extended_addresses_enabled(env)) {
418 /*
419 * For VMSA (when not using the LPAE long descriptor page table
420 * format) this register includes the ASID, so do a TLB flush.
421 * For PMSA it is purely a process ID and no action is needed.
422 */
423 tlb_flush(CPU(cpu));
424 }
425 raw_write(env, ri, value);
426 }
427
428 static int alle1_tlbmask(CPUARMState *env)
429 {
430 /*
431 * Note that the 'ALL' scope must invalidate both stage 1 and
432 * stage 2 translations, whereas most other scopes only invalidate
433 * stage 1 translations.
434 */
435 return (ARMMMUIdxBit_E10_1 |
436 ARMMMUIdxBit_E10_1_PAN |
437 ARMMMUIdxBit_E10_0 |
438 ARMMMUIdxBit_Stage2 |
439 ARMMMUIdxBit_Stage2_S);
440 }
441
442
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
446 {
447 CPUState *cs = env_cpu(env);
448
449 tlb_flush_all_cpus_synced(cs);
450 }
451
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
454 {
455 CPUState *cs = env_cpu(env);
456
457 tlb_flush_all_cpus_synced(cs);
458 }
459
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
462 {
463 CPUState *cs = env_cpu(env);
464
465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466 }
467
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470 {
471 CPUState *cs = env_cpu(env);
472
473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474 }
475
476 /*
477 * Non-IS variants of TLB operations are upgraded to
478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479 * force broadcast of these operations.
480 */
481 static bool tlb_force_broadcast(CPUARMState *env)
482 {
483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
484 }
485
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
488 {
489 /* Invalidate all (TLBIALL) */
490 CPUState *cs = env_cpu(env);
491
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_all_cpus_synced(cs);
494 } else {
495 tlb_flush(cs);
496 }
497 }
498
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503 CPUState *cs = env_cpu(env);
504
505 value &= TARGET_PAGE_MASK;
506 if (tlb_force_broadcast(env)) {
507 tlb_flush_page_all_cpus_synced(cs, value);
508 } else {
509 tlb_flush_page(cs, value);
510 }
511 }
512
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
515 {
516 /* Invalidate by ASID (TLBIASID) */
517 CPUState *cs = env_cpu(env);
518
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
523 }
524 }
525
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 CPUState *cs = env_cpu(env);
531
532 value &= TARGET_PAGE_MASK;
533 if (tlb_force_broadcast(env)) {
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
537 }
538 }
539
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
542 {
543 CPUState *cs = env_cpu(env);
544
545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
546 }
547
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549 uint64_t value)
550 {
551 CPUState *cs = env_cpu(env);
552
553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
554 }
555
556
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
559 {
560 CPUState *cs = env_cpu(env);
561
562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
563 }
564
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
567 {
568 CPUState *cs = env_cpu(env);
569
570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
571 }
572
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
575 {
576 CPUState *cs = env_cpu(env);
577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578
579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
580 }
581
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
584 {
585 CPUState *cs = env_cpu(env);
586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587
588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589 ARMMMUIdxBit_E2);
590 }
591
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
594 {
595 CPUState *cs = env_cpu(env);
596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597
598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599 }
600
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
603 {
604 CPUState *cs = env_cpu(env);
605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606
607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608 }
609
610 static const ARMCPRegInfo cp_reginfo[] = {
611 /*
612 * Define the secure and non-secure FCSE identifier CP registers
613 * separately because there is no secure bank in V8 (no _EL3). This allows
614 * the secure register to be properly reset and migrated. There is also no
615 * v8 EL1 version of the register so the non-secure instance stands alone.
616 */
617 { .name = "FCSEIDR",
618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622 { .name = "FCSEIDR_S",
623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
627 /*
628 * Define the secure and non-secure context identifier CP registers
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. In the
631 * non-secure case, the 32-bit register will have reset and migration
632 * disabled during registration as it is handled by the 64-bit instance.
633 */
634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636 .access = PL1_RW, .accessfn = access_tvm_trvm,
637 .fgt = FGT_CONTEXTIDR_EL1,
638 .secure = ARM_CP_SECSTATE_NS,
639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643 .access = PL1_RW, .accessfn = access_tvm_trvm,
644 .secure = ARM_CP_SECSTATE_S,
645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
647 };
648
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
650 /*
651 * NB: Some of these registers exist in v8 but with more precise
652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653 */
654 /* MMU Domain access control / MPU write buffer control */
655 { .name = "DACR",
656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658 .writefn = dacr_write, .raw_writefn = raw_write,
659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
661 /*
662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663 * For v6 and v5, these mappings are overly broad.
664 */
665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673 /* Cache maintenance ops; some of this space may be overridden later. */
674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
677 };
678
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
680 /*
681 * Not all pre-v6 cores implemented this WFI, so this is slightly
682 * over-broad.
683 */
684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685 .access = PL1_W, .type = ARM_CP_WFI },
686 };
687
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
689 /*
690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691 * is UNPREDICTABLE; we choose to NOP as most implementations do).
692 */
693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694 .access = PL1_W, .type = ARM_CP_WFI },
695 /*
696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698 * OMAPCP will override this space.
699 */
700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702 .resetvalue = 0 },
703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705 .resetvalue = 0 },
706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709 .resetvalue = 0 },
710 /*
711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712 * implementing it as RAZ means the "debug architecture version" bits
713 * will read as a reserved value, which should cause Linux to not try
714 * to use the debug hardware.
715 */
716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
718 /*
719 * MMU TLB control. Note that the wildcarding means we cover not just
720 * the unified TLB ops but also the dside/iside/inner-shareable variants.
721 */
722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724 .type = ARM_CP_NO_RAW },
725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727 .type = ARM_CP_NO_RAW },
728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730 .type = ARM_CP_NO_RAW },
731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733 .type = ARM_CP_NO_RAW },
734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
738 };
739
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
742 {
743 uint32_t mask = 0;
744
745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746 if (!arm_feature(env, ARM_FEATURE_V8)) {
747 /*
748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751 */
752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753 /* VFP coprocessor: cp10 & cp11 [23:20] */
754 mask |= R_CPACR_ASEDIS_MASK |
755 R_CPACR_D32DIS_MASK |
756 R_CPACR_CP11_MASK |
757 R_CPACR_CP10_MASK;
758
759 if (!arm_feature(env, ARM_FEATURE_NEON)) {
760 /* ASEDIS [31] bit is RAO/WI */
761 value |= R_CPACR_ASEDIS_MASK;
762 }
763
764 /*
765 * VFPv3 and upwards with NEON implement 32 double precision
766 * registers (D0-D31).
767 */
768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770 value |= R_CPACR_D32DIS_MASK;
771 }
772 }
773 value &= mask;
774 }
775
776 /*
777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779 */
780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
784 }
785
786 env->cp15.cpacr_el1 = value;
787 }
788
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790 {
791 /*
792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 */
795 uint64_t value = env->cp15.cpacr_el1;
796
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
800 }
801 return value;
802 }
803
804
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806 {
807 /*
808 * Call cpacr_write() so that we reset with the correct RAO bits set
809 * for our CPU features.
810 */
811 cpacr_write(env, ri, 0);
812 }
813
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815 bool isread)
816 {
817 if (arm_feature(env, ARM_FEATURE_V8)) {
818 /* Check if CPACR accesses are to be trapped to EL2 */
819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821 return CP_ACCESS_TRAP_EL2;
822 /* Check if CPACR accesses are to be trapped to EL3 */
823 } else if (arm_current_el(env) < 3 &&
824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825 return CP_ACCESS_TRAP_EL3;
826 }
827 }
828
829 return CP_ACCESS_OK;
830 }
831
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833 bool isread)
834 {
835 /* Check if CPTR accesses are set to trap to EL3 */
836 if (arm_current_el(env) == 2 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
839 }
840
841 return CP_ACCESS_OK;
842 }
843
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845 /* prefetch by MVA in v6, NOP in v7 */
846 { .name = "MVA_prefetch",
847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848 .access = PL1_W, .type = ARM_CP_NOP },
849 /*
850 * We need to break the TB after ISB to execute self-modifying code
851 * correctly and also to take any pending interrupts immediately.
852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853 */
854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NOP },
858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861 .access = PL1_RW, .accessfn = access_tvm_trvm,
862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863 offsetof(CPUARMState, cp15.ifar_ns) },
864 .resetvalue = 0, },
865 /*
866 * Watchpoint Fault Address Register : should actually only be present
867 * for 1136, 1176, 11MPCore.
868 */
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873 .fgt = FGT_CPACR_EL1,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
876 };
877
878 typedef struct pm_event {
879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881 bool (*supported)(CPUARMState *);
882 /*
883 * Retrieve the current count of the underlying event. The programmed
884 * counters hold a difference from the return value from this function
885 */
886 uint64_t (*get_count)(CPUARMState *);
887 /*
888 * Return how many nanoseconds it will take (at a minimum) for count events
889 * to occur. A negative value indicates the counter will never overflow, or
890 * that the counter has otherwise arranged for the overflow bit to be set
891 * and the PMU interrupt to be raised on overflow.
892 */
893 int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
895
896 static bool event_always_supported(CPUARMState *env)
897 {
898 return true;
899 }
900
901 static uint64_t swinc_get_count(CPUARMState *env)
902 {
903 /*
904 * SW_INCR events are written directly to the pmevcntr's by writes to
905 * PMSWINC, so there is no underlying count maintained by the PMU itself
906 */
907 return 0;
908 }
909
910 static int64_t swinc_ns_per(uint64_t ignored)
911 {
912 return -1;
913 }
914
915 /*
916 * Return the underlying cycle count for the PMU cycle counters. If we're in
917 * usermode, simply return 0.
918 */
919 static uint64_t cycles_get_count(CPUARMState *env)
920 {
921 #ifndef CONFIG_USER_ONLY
922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925 return cpu_get_host_ticks();
926 #endif
927 }
928
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
931 {
932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933 }
934
935 static bool instructions_supported(CPUARMState *env)
936 {
937 return icount_enabled() == 1; /* Precise instruction counting */
938 }
939
940 static uint64_t instructions_get_count(CPUARMState *env)
941 {
942 return (uint64_t)icount_get_raw();
943 }
944
945 static int64_t instructions_ns_per(uint64_t icount)
946 {
947 return icount_to_ns((int64_t)icount);
948 }
949 #endif
950
951 static bool pmuv3p1_events_supported(CPUARMState *env)
952 {
953 /* For events which are supported in any v8.1 PMU */
954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
955 }
956
957 static bool pmuv3p4_events_supported(CPUARMState *env)
958 {
959 /* For events which are supported in any v8.1 PMU */
960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
961 }
962
963 static uint64_t zero_event_get_count(CPUARMState *env)
964 {
965 /* For events which on QEMU never fire, so their count is always zero */
966 return 0;
967 }
968
969 static int64_t zero_event_ns_per(uint64_t cycles)
970 {
971 /* An event which never fires can never overflow */
972 return -1;
973 }
974
975 static const pm_event pm_events[] = {
976 { .number = 0x000, /* SW_INCR */
977 .supported = event_always_supported,
978 .get_count = swinc_get_count,
979 .ns_per_count = swinc_ns_per,
980 },
981 #ifndef CONFIG_USER_ONLY
982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983 .supported = instructions_supported,
984 .get_count = instructions_get_count,
985 .ns_per_count = instructions_ns_per,
986 },
987 { .number = 0x011, /* CPU_CYCLES, Cycle */
988 .supported = event_always_supported,
989 .get_count = cycles_get_count,
990 .ns_per_count = cycles_ns_per,
991 },
992 #endif
993 { .number = 0x023, /* STALL_FRONTEND */
994 .supported = pmuv3p1_events_supported,
995 .get_count = zero_event_get_count,
996 .ns_per_count = zero_event_ns_per,
997 },
998 { .number = 0x024, /* STALL_BACKEND */
999 .supported = pmuv3p1_events_supported,
1000 .get_count = zero_event_get_count,
1001 .ns_per_count = zero_event_ns_per,
1002 },
1003 { .number = 0x03c, /* STALL */
1004 .supported = pmuv3p4_events_supported,
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1007 },
1008 };
1009
1010 /*
1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012 * events (i.e. the statistical profiling extension), this implementation
1013 * should first be updated to something sparse instead of the current
1014 * supported_event_map[] array.
1015 */
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019
1020 /*
1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022 * of ARM event numbers to indices in our pm_events array.
1023 *
1024 * Note: Events in the 0x40XX range are not currently supported.
1025 */
1026 void pmu_init(ARMCPU *cpu)
1027 {
1028 unsigned int i;
1029
1030 /*
1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032 * events to them
1033 */
1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035 supported_event_map[i] = UNSUPPORTED_EVENT;
1036 }
1037 cpu->pmceid0 = 0;
1038 cpu->pmceid1 = 0;
1039
1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041 const pm_event *cnt = &pm_events[i];
1042 assert(cnt->number <= MAX_EVENT_ID);
1043 /* We do not currently support events in the 0x40xx range */
1044 assert(cnt->number <= 0x3f);
1045
1046 if (cnt->supported(&cpu->env)) {
1047 supported_event_map[cnt->number] = i;
1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049 if (cnt->number & 0x20) {
1050 cpu->pmceid1 |= event_mask;
1051 } else {
1052 cpu->pmceid0 |= event_mask;
1053 }
1054 }
1055 }
1056 }
1057
1058 /*
1059 * Check at runtime whether a PMU event is supported for the current machine
1060 */
1061 static bool event_supported(uint16_t number)
1062 {
1063 if (number > MAX_EVENT_ID) {
1064 return false;
1065 }
1066 return supported_event_map[number] != UNSUPPORTED_EVENT;
1067 }
1068
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070 bool isread)
1071 {
1072 /*
1073 * Performance monitor registers user accessibility is controlled
1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075 * trapping to EL2 or EL3 for other accesses.
1076 */
1077 int el = arm_current_el(env);
1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1079
1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081 return CP_ACCESS_TRAP;
1082 }
1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084 return CP_ACCESS_TRAP_EL2;
1085 }
1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087 return CP_ACCESS_TRAP_EL3;
1088 }
1089
1090 return CP_ACCESS_OK;
1091 }
1092
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094 const ARMCPRegInfo *ri,
1095 bool isread)
1096 {
1097 /* ER: event counter read trap control */
1098 if (arm_feature(env, ARM_FEATURE_V8)
1099 && arm_current_el(env) == 0
1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101 && isread) {
1102 return CP_ACCESS_OK;
1103 }
1104
1105 return pmreg_access(env, ri, isread);
1106 }
1107
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1111 {
1112 /* SW: software increment write trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116 && !isread) {
1117 return CP_ACCESS_OK;
1118 }
1119
1120 return pmreg_access(env, ri, isread);
1121 }
1122
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1126 {
1127 /* ER: event counter read trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131 return CP_ACCESS_OK;
1132 }
1133
1134 return pmreg_access(env, ri, isread);
1135 }
1136
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1140 {
1141 /* CR: cycle counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145 && isread) {
1146 return CP_ACCESS_OK;
1147 }
1148
1149 return pmreg_access(env, ri, isread);
1150 }
1151
1152 /*
1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154 * We use these to decide whether we need to wrap a write to MDCR_EL2
1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156 */
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1160
1161 /*
1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163 * the current EL, security state, and register configuration.
1164 */
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 {
1167 uint64_t filter;
1168 bool e, p, u, nsk, nsu, nsh, m;
1169 bool enabled, prohibited = false, filtered;
1170 bool secure = arm_is_secure(env);
1171 int el = arm_current_el(env);
1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1174
1175 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176 return false;
1177 }
1178
1179 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180 (counter < hpmn || counter == 31)) {
1181 e = env->cp15.c9_pmcr & PMCRE;
1182 } else {
1183 e = mdcr_el2 & MDCR_HPME;
1184 }
1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1186
1187 /* Is event counting prohibited? */
1188 if (el == 2 && (counter < hpmn || counter == 31)) {
1189 prohibited = mdcr_el2 & MDCR_HPMD;
1190 }
1191 if (secure) {
1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1193 }
1194
1195 if (counter == 31) {
1196 /*
1197 * The cycle counter defaults to running. PMCR.DP says "disable
1198 * the cycle counter when event counting is prohibited".
1199 * Some MDCR bits disable the cycle counter specifically.
1200 */
1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203 if (secure) {
1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1205 }
1206 if (el == 2) {
1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1208 }
1209 }
1210 }
1211
1212 if (counter == 31) {
1213 filter = env->cp15.pmccfiltr_el0;
1214 } else {
1215 filter = env->cp15.c14_pmevtyper[counter];
1216 }
1217
1218 p = filter & PMXEVTYPER_P;
1219 u = filter & PMXEVTYPER_U;
1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223 m = arm_el_is_aa64(env, 1) &&
1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1225
1226 if (el == 0) {
1227 filtered = secure ? u : u != nsu;
1228 } else if (el == 1) {
1229 filtered = secure ? p : p != nsk;
1230 } else if (el == 2) {
1231 filtered = !nsh;
1232 } else { /* EL3 */
1233 filtered = m != p;
1234 }
1235
1236 if (counter != 31) {
1237 /*
1238 * If not checking PMCCNTR, ensure the counter is setup to an event we
1239 * support
1240 */
1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242 if (!event_supported(event)) {
1243 return false;
1244 }
1245 }
1246
1247 return enabled && !prohibited && !filtered;
1248 }
1249
1250 static void pmu_update_irq(CPUARMState *env)
1251 {
1252 ARMCPU *cpu = env_archcpu(env);
1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1255 }
1256
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1258 {
1259 /*
1260 * Return true if the clock divider is enabled and the cycle counter
1261 * is supposed to tick only once every 64 clock cycles. This is
1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263 * (64-bit) cycle counter PMCR.D has no effect.
1264 */
1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1266 }
1267
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1269 {
1270 /* Return true if the specified event counter is configured to be 64 bit */
1271
1272 /* This isn't intended to be used with the cycle counter */
1273 assert(counter < 31);
1274
1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276 return false;
1277 }
1278
1279 if (arm_feature(env, ARM_FEATURE_EL2)) {
1280 /*
1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282 * current security state, so we don't use arm_mdcr_el2_eff() here.
1283 */
1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1286
1287 if (counter >= hpmn) {
1288 return hlp;
1289 }
1290 }
1291 return env->cp15.c9_pmcr & PMCRLP;
1292 }
1293
1294 /*
1295 * Ensure c15_ccnt is the guest-visible count so that operations such as
1296 * enabling/disabling the counter or filtering, modifying the count itself,
1297 * etc. can be done logically. This is essentially a no-op if the counter is
1298 * not enabled at the time of the call.
1299 */
1300 static void pmccntr_op_start(CPUARMState *env)
1301 {
1302 uint64_t cycles = cycles_get_count(env);
1303
1304 if (pmu_counter_enabled(env, 31)) {
1305 uint64_t eff_cycles = cycles;
1306 if (pmccntr_clockdiv_enabled(env)) {
1307 eff_cycles /= 64;
1308 }
1309
1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1311
1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313 1ull << 63 : 1ull << 31;
1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315 env->cp15.c9_pmovsr |= (1ULL << 31);
1316 pmu_update_irq(env);
1317 }
1318
1319 env->cp15.c15_ccnt = new_pmccntr;
1320 }
1321 env->cp15.c15_ccnt_delta = cycles;
1322 }
1323
1324 /*
1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327 * pmccntr_op_start.
1328 */
1329 static void pmccntr_op_finish(CPUARMState *env)
1330 {
1331 if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333 /* Calculate when the counter will next overflow */
1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336 remaining_cycles = (uint32_t)remaining_cycles;
1337 }
1338 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1339
1340 if (overflow_in > 0) {
1341 int64_t overflow_at;
1342
1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344 overflow_in, &overflow_at)) {
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1347 }
1348 }
1349 #endif
1350
1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352 if (pmccntr_clockdiv_enabled(env)) {
1353 prev_cycles /= 64;
1354 }
1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1356 }
1357 }
1358
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1360 {
1361
1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363 uint64_t count = 0;
1364 if (event_supported(event)) {
1365 uint16_t event_idx = supported_event_map[event];
1366 count = pm_events[event_idx].get_count(env);
1367 }
1368
1369 if (pmu_counter_enabled(env, counter)) {
1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372 1ULL << 63 : 1ULL << 31;
1373
1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375 env->cp15.c9_pmovsr |= (1 << counter);
1376 pmu_update_irq(env);
1377 }
1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1379 }
1380 env->cp15.c14_pmevcntr_delta[counter] = count;
1381 }
1382
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1384 {
1385 if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388 uint16_t event_idx = supported_event_map[event];
1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390 int64_t overflow_in;
1391
1392 if (!pmevcntr_is_64_bit(env, counter)) {
1393 delta = (uint32_t)delta;
1394 }
1395 overflow_in = pm_events[event_idx].ns_per_count(delta);
1396
1397 if (overflow_in > 0) {
1398 int64_t overflow_at;
1399
1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401 overflow_in, &overflow_at)) {
1402 ARMCPU *cpu = env_archcpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1404 }
1405 }
1406 #endif
1407
1408 env->cp15.c14_pmevcntr_delta[counter] -=
1409 env->cp15.c14_pmevcntr[counter];
1410 }
1411 }
1412
1413 void pmu_op_start(CPUARMState *env)
1414 {
1415 unsigned int i;
1416 pmccntr_op_start(env);
1417 for (i = 0; i < pmu_num_counters(env); i++) {
1418 pmevcntr_op_start(env, i);
1419 }
1420 }
1421
1422 void pmu_op_finish(CPUARMState *env)
1423 {
1424 unsigned int i;
1425 pmccntr_op_finish(env);
1426 for (i = 0; i < pmu_num_counters(env); i++) {
1427 pmevcntr_op_finish(env, i);
1428 }
1429 }
1430
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1432 {
1433 pmu_op_start(&cpu->env);
1434 }
1435
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1437 {
1438 pmu_op_finish(&cpu->env);
1439 }
1440
1441 void arm_pmu_timer_cb(void *opaque)
1442 {
1443 ARMCPU *cpu = opaque;
1444
1445 /*
1446 * Update all the counter values based on the current underlying counts,
1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449 * counter may expire.
1450 */
1451 pmu_op_start(&cpu->env);
1452 pmu_op_finish(&cpu->env);
1453 }
1454
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1457 {
1458 pmu_op_start(env);
1459
1460 if (value & PMCRC) {
1461 /* The counter has been reset */
1462 env->cp15.c15_ccnt = 0;
1463 }
1464
1465 if (value & PMCRP) {
1466 unsigned int i;
1467 for (i = 0; i < pmu_num_counters(env); i++) {
1468 env->cp15.c14_pmevcntr[i] = 0;
1469 }
1470 }
1471
1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1474
1475 pmu_op_finish(env);
1476 }
1477
1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479 uint64_t value)
1480 {
1481 unsigned int i;
1482 uint64_t overflow_mask, new_pmswinc;
1483
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 /* Increment a counter's count iff: */
1486 if ((value & (1 << i)) && /* counter's bit is set */
1487 /* counter is enabled and not filtered */
1488 pmu_counter_enabled(env, i) &&
1489 /* counter is SW_INCR */
1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1491 pmevcntr_op_start(env, i);
1492
1493 /*
1494 * Detect if this write causes an overflow since we can't predict
1495 * PMSWINC overflows like we can for other events
1496 */
1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1498
1499 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1500 1ULL << 63 : 1ULL << 31;
1501
1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1503 env->cp15.c9_pmovsr |= (1 << i);
1504 pmu_update_irq(env);
1505 }
1506
1507 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1508
1509 pmevcntr_op_finish(env, i);
1510 }
1511 }
1512 }
1513
1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1515 {
1516 uint64_t ret;
1517 pmccntr_op_start(env);
1518 ret = env->cp15.c15_ccnt;
1519 pmccntr_op_finish(env);
1520 return ret;
1521 }
1522
1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524 uint64_t value)
1525 {
1526 /*
1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1530 * accessed.
1531 */
1532 env->cp15.c9_pmselr = value & 0x1f;
1533 }
1534
1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536 uint64_t value)
1537 {
1538 pmccntr_op_start(env);
1539 env->cp15.c15_ccnt = value;
1540 pmccntr_op_finish(env);
1541 }
1542
1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1544 uint64_t value)
1545 {
1546 uint64_t cur_val = pmccntr_read(env, NULL);
1547
1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1549 }
1550
1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552 uint64_t value)
1553 {
1554 pmccntr_op_start(env);
1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1556 pmccntr_op_finish(env);
1557 }
1558
1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1561 {
1562 pmccntr_op_start(env);
1563 /* M is not accessible from AArch32 */
1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1565 (value & PMCCFILTR);
1566 pmccntr_op_finish(env);
1567 }
1568
1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1570 {
1571 /* M is not visible in AArch32 */
1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1573 }
1574
1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1577 {
1578 pmu_op_start(env);
1579 value &= pmu_counter_mask(env);
1580 env->cp15.c9_pmcnten |= value;
1581 pmu_op_finish(env);
1582 }
1583
1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
1586 {
1587 pmu_op_start(env);
1588 value &= pmu_counter_mask(env);
1589 env->cp15.c9_pmcnten &= ~value;
1590 pmu_op_finish(env);
1591 }
1592
1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594 uint64_t value)
1595 {
1596 value &= pmu_counter_mask(env);
1597 env->cp15.c9_pmovsr &= ~value;
1598 pmu_update_irq(env);
1599 }
1600
1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1603 {
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmovsr |= value;
1606 pmu_update_irq(env);
1607 }
1608
1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value, const uint8_t counter)
1611 {
1612 if (counter == 31) {
1613 pmccfiltr_write(env, ri, value);
1614 } else if (counter < pmu_num_counters(env)) {
1615 pmevcntr_op_start(env, counter);
1616
1617 /*
1618 * If this counter's event type is changing, store the current
1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1620 * pmevcntr_op_finish has the correct baseline when it converts back to
1621 * a delta.
1622 */
1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1624 PMXEVTYPER_EVTCOUNT;
1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1626 if (old_event != new_event) {
1627 uint64_t count = 0;
1628 if (event_supported(new_event)) {
1629 uint16_t event_idx = supported_event_map[new_event];
1630 count = pm_events[event_idx].get_count(env);
1631 }
1632 env->cp15.c14_pmevcntr_delta[counter] = count;
1633 }
1634
1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1636 pmevcntr_op_finish(env, counter);
1637 }
1638 /*
1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1640 * PMSELR value is equal to or greater than the number of implemented
1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1642 */
1643 }
1644
1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1646 const uint8_t counter)
1647 {
1648 if (counter == 31) {
1649 return env->cp15.pmccfiltr_el0;
1650 } else if (counter < pmu_num_counters(env)) {
1651 return env->cp15.c14_pmevtyper[counter];
1652 } else {
1653 /*
1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1656 */
1657 return 0;
1658 }
1659 }
1660
1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1662 uint64_t value)
1663 {
1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1665 pmevtyper_write(env, ri, value, counter);
1666 }
1667
1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1669 uint64_t value)
1670 {
1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1672 env->cp15.c14_pmevtyper[counter] = value;
1673
1674 /*
1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1676 * pmu_op_finish calls when loading saved state for a migration. Because
1677 * we're potentially updating the type of event here, the value written to
1678 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1679 * different counter type. Therefore, we need to set this value to the
1680 * current count for the counter type we're writing so that pmu_op_finish
1681 * has the correct count for its calculation.
1682 */
1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1684 if (event_supported(event)) {
1685 uint16_t event_idx = supported_event_map[event];
1686 env->cp15.c14_pmevcntr_delta[counter] =
1687 pm_events[event_idx].get_count(env);
1688 }
1689 }
1690
1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1692 {
1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694 return pmevtyper_read(env, ri, counter);
1695 }
1696
1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1698 uint64_t value)
1699 {
1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1701 }
1702
1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1704 {
1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1706 }
1707
1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value, uint8_t counter)
1710 {
1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1713 value &= MAKE_64BIT_MASK(0, 32);
1714 }
1715 if (counter < pmu_num_counters(env)) {
1716 pmevcntr_op_start(env, counter);
1717 env->cp15.c14_pmevcntr[counter] = value;
1718 pmevcntr_op_finish(env, counter);
1719 }
1720 /*
1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1722 * are CONSTRAINED UNPREDICTABLE.
1723 */
1724 }
1725
1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1727 uint8_t counter)
1728 {
1729 if (counter < pmu_num_counters(env)) {
1730 uint64_t ret;
1731 pmevcntr_op_start(env, counter);
1732 ret = env->cp15.c14_pmevcntr[counter];
1733 pmevcntr_op_finish(env, counter);
1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1736 ret &= MAKE_64BIT_MASK(0, 32);
1737 }
1738 return ret;
1739 } else {
1740 /*
1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1742 * are CONSTRAINED UNPREDICTABLE.
1743 */
1744 return 0;
1745 }
1746 }
1747
1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1749 uint64_t value)
1750 {
1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752 pmevcntr_write(env, ri, value, counter);
1753 }
1754
1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1756 {
1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758 return pmevcntr_read(env, ri, counter);
1759 }
1760
1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1763 {
1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1765 assert(counter < pmu_num_counters(env));
1766 env->cp15.c14_pmevcntr[counter] = value;
1767 pmevcntr_write(env, ri, value, counter);
1768 }
1769
1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1771 {
1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773 assert(counter < pmu_num_counters(env));
1774 return env->cp15.c14_pmevcntr[counter];
1775 }
1776
1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1779 {
1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1781 }
1782
1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1786 }
1787
1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 uint64_t value)
1790 {
1791 if (arm_feature(env, ARM_FEATURE_V8)) {
1792 env->cp15.c9_pmuserenr = value & 0xf;
1793 } else {
1794 env->cp15.c9_pmuserenr = value & 1;
1795 }
1796 }
1797
1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 uint64_t value)
1800 {
1801 /* We have no event counters so only the C bit can be changed */
1802 value &= pmu_counter_mask(env);
1803 env->cp15.c9_pminten |= value;
1804 pmu_update_irq(env);
1805 }
1806
1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808 uint64_t value)
1809 {
1810 value &= pmu_counter_mask(env);
1811 env->cp15.c9_pminten &= ~value;
1812 pmu_update_irq(env);
1813 }
1814
1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816 uint64_t value)
1817 {
1818 /*
1819 * Note that even though the AArch64 view of this register has bits
1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1821 * architectural requirements for bits which are RES0 only in some
1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1824 */
1825 raw_write(env, ri, value & ~0x1FULL);
1826 }
1827
1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1829 {
1830 /* Begin with base v8.0 state. */
1831 uint64_t valid_mask = 0x3fff;
1832 ARMCPU *cpu = env_archcpu(env);
1833 uint64_t changed;
1834
1835 /*
1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1838 * Instead, choose the format based on the mode of EL3.
1839 */
1840 if (arm_el_is_aa64(env, 3)) {
1841 value |= SCR_FW | SCR_AW; /* RES1 */
1842 valid_mask &= ~SCR_NET; /* RES0 */
1843
1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1846 value |= SCR_RW; /* RAO/WI */
1847 }
1848 if (cpu_isar_feature(aa64_ras, cpu)) {
1849 valid_mask |= SCR_TERR;
1850 }
1851 if (cpu_isar_feature(aa64_lor, cpu)) {
1852 valid_mask |= SCR_TLOR;
1853 }
1854 if (cpu_isar_feature(aa64_pauth, cpu)) {
1855 valid_mask |= SCR_API | SCR_APK;
1856 }
1857 if (cpu_isar_feature(aa64_sel2, cpu)) {
1858 valid_mask |= SCR_EEL2;
1859 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1860 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1861 value |= SCR_NS;
1862 }
1863 if (cpu_isar_feature(aa64_mte, cpu)) {
1864 valid_mask |= SCR_ATA;
1865 }
1866 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1867 valid_mask |= SCR_ENSCXT;
1868 }
1869 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1870 valid_mask |= SCR_EASE | SCR_NMEA;
1871 }
1872 if (cpu_isar_feature(aa64_sme, cpu)) {
1873 valid_mask |= SCR_ENTP2;
1874 }
1875 if (cpu_isar_feature(aa64_hcx, cpu)) {
1876 valid_mask |= SCR_HXEN;
1877 }
1878 if (cpu_isar_feature(aa64_fgt, cpu)) {
1879 valid_mask |= SCR_FGTEN;
1880 }
1881 if (cpu_isar_feature(aa64_rme, cpu)) {
1882 valid_mask |= SCR_NSE | SCR_GPF;
1883 }
1884 } else {
1885 valid_mask &= ~(SCR_RW | SCR_ST);
1886 if (cpu_isar_feature(aa32_ras, cpu)) {
1887 valid_mask |= SCR_TERR;
1888 }
1889 }
1890
1891 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1892 valid_mask &= ~SCR_HCE;
1893
1894 /*
1895 * On ARMv7, SMD (or SCD as it is called in v7) is only
1896 * supported if EL2 exists. The bit is UNK/SBZP when
1897 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1898 * when EL2 is unavailable.
1899 * On ARMv8, this bit is always available.
1900 */
1901 if (arm_feature(env, ARM_FEATURE_V7) &&
1902 !arm_feature(env, ARM_FEATURE_V8)) {
1903 valid_mask &= ~SCR_SMD;
1904 }
1905 }
1906
1907 /* Clear all-context RES0 bits. */
1908 value &= valid_mask;
1909 changed = env->cp15.scr_el3 ^ value;
1910 env->cp15.scr_el3 = value;
1911
1912 /*
1913 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1914 * we must invalidate all TLBs below EL3.
1915 */
1916 if (changed & (SCR_NS | SCR_NSE)) {
1917 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1918 ARMMMUIdxBit_E20_0 |
1919 ARMMMUIdxBit_E10_1 |
1920 ARMMMUIdxBit_E20_2 |
1921 ARMMMUIdxBit_E10_1_PAN |
1922 ARMMMUIdxBit_E20_2_PAN |
1923 ARMMMUIdxBit_E2));
1924 }
1925 }
1926
1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1928 {
1929 /*
1930 * scr_write will set the RES1 bits on an AArch64-only CPU.
1931 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1932 */
1933 scr_write(env, ri, 0);
1934 }
1935
1936 static CPAccessResult access_tid4(CPUARMState *env,
1937 const ARMCPRegInfo *ri,
1938 bool isread)
1939 {
1940 if (arm_current_el(env) == 1 &&
1941 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1942 return CP_ACCESS_TRAP_EL2;
1943 }
1944
1945 return CP_ACCESS_OK;
1946 }
1947
1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1949 {
1950 ARMCPU *cpu = env_archcpu(env);
1951
1952 /*
1953 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1954 * bank
1955 */
1956 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1957 ri->secure & ARM_CP_SECSTATE_S);
1958
1959 return cpu->ccsidr[index];
1960 }
1961
1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963 uint64_t value)
1964 {
1965 raw_write(env, ri, value & 0xf);
1966 }
1967
1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 {
1970 CPUState *cs = env_cpu(env);
1971 bool el1 = arm_current_el(env) == 1;
1972 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1973 uint64_t ret = 0;
1974
1975 if (hcr_el2 & HCR_IMO) {
1976 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1977 ret |= CPSR_I;
1978 }
1979 } else {
1980 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1981 ret |= CPSR_I;
1982 }
1983 }
1984
1985 if (hcr_el2 & HCR_FMO) {
1986 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1987 ret |= CPSR_F;
1988 }
1989 } else {
1990 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1991 ret |= CPSR_F;
1992 }
1993 }
1994
1995 if (hcr_el2 & HCR_AMO) {
1996 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1997 ret |= CPSR_A;
1998 }
1999 }
2000
2001 return ret;
2002 }
2003
2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2005 bool isread)
2006 {
2007 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2008 return CP_ACCESS_TRAP_EL2;
2009 }
2010
2011 return CP_ACCESS_OK;
2012 }
2013
2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2015 bool isread)
2016 {
2017 if (arm_feature(env, ARM_FEATURE_V8)) {
2018 return access_aa64_tid1(env, ri, isread);
2019 }
2020
2021 return CP_ACCESS_OK;
2022 }
2023
2024 static const ARMCPRegInfo v7_cp_reginfo[] = {
2025 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2026 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2027 .access = PL1_W, .type = ARM_CP_NOP },
2028 /*
2029 * Performance monitors are implementation defined in v7,
2030 * but with an ARM recommended set of registers, which we
2031 * follow.
2032 *
2033 * Performance registers fall into three categories:
2034 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2035 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2036 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2037 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2038 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2039 */
2040 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2041 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2042 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2043 .writefn = pmcntenset_write,
2044 .accessfn = pmreg_access,
2045 .fgt = FGT_PMCNTEN,
2046 .raw_writefn = raw_write },
2047 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2048 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2049 .access = PL0_RW, .accessfn = pmreg_access,
2050 .fgt = FGT_PMCNTEN,
2051 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2052 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2053 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2054 .access = PL0_RW,
2055 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2056 .accessfn = pmreg_access,
2057 .fgt = FGT_PMCNTEN,
2058 .writefn = pmcntenclr_write,
2059 .type = ARM_CP_ALIAS | ARM_CP_IO },
2060 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2062 .access = PL0_RW, .accessfn = pmreg_access,
2063 .fgt = FGT_PMCNTEN,
2064 .type = ARM_CP_ALIAS | ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2066 .writefn = pmcntenclr_write },
2067 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2068 .access = PL0_RW, .type = ARM_CP_IO,
2069 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2070 .accessfn = pmreg_access,
2071 .fgt = FGT_PMOVS,
2072 .writefn = pmovsr_write,
2073 .raw_writefn = raw_write },
2074 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2075 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2076 .access = PL0_RW, .accessfn = pmreg_access,
2077 .fgt = FGT_PMOVS,
2078 .type = ARM_CP_ALIAS | ARM_CP_IO,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2080 .writefn = pmovsr_write,
2081 .raw_writefn = raw_write },
2082 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2083 .access = PL0_W, .accessfn = pmreg_access_swinc,
2084 .fgt = FGT_PMSWINC_EL0,
2085 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2086 .writefn = pmswinc_write },
2087 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2089 .access = PL0_W, .accessfn = pmreg_access_swinc,
2090 .fgt = FGT_PMSWINC_EL0,
2091 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2092 .writefn = pmswinc_write },
2093 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2094 .access = PL0_RW, .type = ARM_CP_ALIAS,
2095 .fgt = FGT_PMSELR_EL0,
2096 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2097 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2098 .raw_writefn = raw_write},
2099 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2100 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2101 .access = PL0_RW, .accessfn = pmreg_access_selr,
2102 .fgt = FGT_PMSELR_EL0,
2103 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2104 .writefn = pmselr_write, .raw_writefn = raw_write, },
2105 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2106 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2107 .fgt = FGT_PMCCNTR_EL0,
2108 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2109 .accessfn = pmreg_access_ccntr },
2110 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2111 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2112 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2113 .fgt = FGT_PMCCNTR_EL0,
2114 .type = ARM_CP_IO,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2116 .readfn = pmccntr_read, .writefn = pmccntr_write,
2117 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2118 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2119 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2120 .access = PL0_RW, .accessfn = pmreg_access,
2121 .fgt = FGT_PMCCFILTR_EL0,
2122 .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .resetvalue = 0, },
2124 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2126 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2127 .access = PL0_RW, .accessfn = pmreg_access,
2128 .fgt = FGT_PMCCFILTR_EL0,
2129 .type = ARM_CP_IO,
2130 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2131 .resetvalue = 0, },
2132 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134 .accessfn = pmreg_access,
2135 .fgt = FGT_PMEVTYPERN_EL0,
2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2138 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2139 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2140 .accessfn = pmreg_access,
2141 .fgt = FGT_PMEVTYPERN_EL0,
2142 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2143 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145 .accessfn = pmreg_access_xevcntr,
2146 .fgt = FGT_PMEVCNTRN_EL0,
2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2148 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2150 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2151 .accessfn = pmreg_access_xevcntr,
2152 .fgt = FGT_PMEVCNTRN_EL0,
2153 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2154 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2157 .resetvalue = 0,
2158 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2159 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2160 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2161 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2163 .resetvalue = 0,
2164 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2165 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2166 .access = PL1_RW, .accessfn = access_tpm,
2167 .fgt = FGT_PMINTEN,
2168 .type = ARM_CP_ALIAS | ARM_CP_IO,
2169 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2170 .resetvalue = 0,
2171 .writefn = pmintenset_write, .raw_writefn = raw_write },
2172 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2173 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2174 .access = PL1_RW, .accessfn = access_tpm,
2175 .fgt = FGT_PMINTEN,
2176 .type = ARM_CP_IO,
2177 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178 .writefn = pmintenset_write, .raw_writefn = raw_write,
2179 .resetvalue = 0x0 },
2180 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2181 .access = PL1_RW, .accessfn = access_tpm,
2182 .fgt = FGT_PMINTEN,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185 .writefn = pmintenclr_write, },
2186 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2187 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2188 .access = PL1_RW, .accessfn = access_tpm,
2189 .fgt = FGT_PMINTEN,
2190 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2191 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2192 .writefn = pmintenclr_write },
2193 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2195 .access = PL1_R,
2196 .accessfn = access_tid4,
2197 .fgt = FGT_CCSIDR_EL1,
2198 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2199 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2200 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2201 .access = PL1_RW,
2202 .accessfn = access_tid4,
2203 .fgt = FGT_CSSELR_EL1,
2204 .writefn = csselr_write, .resetvalue = 0,
2205 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2206 offsetof(CPUARMState, cp15.csselr_ns) } },
2207 /*
2208 * Auxiliary ID register: this actually has an IMPDEF value but for now
2209 * just RAZ for all cores:
2210 */
2211 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2212 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2213 .access = PL1_R, .type = ARM_CP_CONST,
2214 .accessfn = access_aa64_tid1,
2215 .fgt = FGT_AIDR_EL1,
2216 .resetvalue = 0 },
2217 /*
2218 * Auxiliary fault status registers: these also are IMPDEF, and we
2219 * choose to RAZ/WI for all cores.
2220 */
2221 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2222 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2223 .access = PL1_RW, .accessfn = access_tvm_trvm,
2224 .fgt = FGT_AFSR0_EL1,
2225 .type = ARM_CP_CONST, .resetvalue = 0 },
2226 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2228 .access = PL1_RW, .accessfn = access_tvm_trvm,
2229 .fgt = FGT_AFSR1_EL1,
2230 .type = ARM_CP_CONST, .resetvalue = 0 },
2231 /*
2232 * MAIR can just read-as-written because we don't implement caches
2233 * and so don't need to care about memory attributes.
2234 */
2235 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2236 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2237 .access = PL1_RW, .accessfn = access_tvm_trvm,
2238 .fgt = FGT_MAIR_EL1,
2239 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2240 .resetvalue = 0 },
2241 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2242 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2243 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2244 .resetvalue = 0 },
2245 /*
2246 * For non-long-descriptor page tables these are PRRR and NMRR;
2247 * regardless they still act as reads-as-written for QEMU.
2248 */
2249 /*
2250 * MAIR0/1 are defined separately from their 64-bit counterpart which
2251 * allows them to assign the correct fieldoffset based on the endianness
2252 * handled in the field definitions.
2253 */
2254 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2256 .access = PL1_RW, .accessfn = access_tvm_trvm,
2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2258 offsetof(CPUARMState, cp15.mair0_ns) },
2259 .resetfn = arm_cp_reset_ignore },
2260 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2261 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2262 .access = PL1_RW, .accessfn = access_tvm_trvm,
2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2264 offsetof(CPUARMState, cp15.mair1_ns) },
2265 .resetfn = arm_cp_reset_ignore },
2266 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2267 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2268 .fgt = FGT_ISR_EL1,
2269 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2270 /* 32 bit ITLB invalidates */
2271 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273 .writefn = tlbiall_write },
2274 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2275 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276 .writefn = tlbimva_write },
2277 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2278 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279 .writefn = tlbiasid_write },
2280 /* 32 bit DTLB invalidates */
2281 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2283 .writefn = tlbiall_write },
2284 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2285 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286 .writefn = tlbimva_write },
2287 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbiasid_write },
2290 /* 32 bit TLB invalidates */
2291 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2293 .writefn = tlbiall_write },
2294 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2296 .writefn = tlbimva_write },
2297 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299 .writefn = tlbiasid_write },
2300 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302 .writefn = tlbimvaa_write },
2303 };
2304
2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2306 /* 32 bit TLB invalidates, Inner Shareable */
2307 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2309 .writefn = tlbiall_is_write },
2310 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2312 .writefn = tlbimva_is_write },
2313 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2315 .writefn = tlbiasid_is_write },
2316 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2318 .writefn = tlbimvaa_is_write },
2319 };
2320
2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2322 /* PMOVSSET is not implemented in v7 before v7ve */
2323 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2324 .access = PL0_RW, .accessfn = pmreg_access,
2325 .fgt = FGT_PMOVS,
2326 .type = ARM_CP_ALIAS | ARM_CP_IO,
2327 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2328 .writefn = pmovsset_write,
2329 .raw_writefn = raw_write },
2330 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2332 .access = PL0_RW, .accessfn = pmreg_access,
2333 .fgt = FGT_PMOVS,
2334 .type = ARM_CP_ALIAS | ARM_CP_IO,
2335 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2336 .writefn = pmovsset_write,
2337 .raw_writefn = raw_write },
2338 };
2339
2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341 uint64_t value)
2342 {
2343 value &= 1;
2344 env->teecr = value;
2345 }
2346
2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2348 bool isread)
2349 {
2350 /*
2351 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2352 * at all, so we don't need to check whether we're v8A.
2353 */
2354 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2355 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2356 return CP_ACCESS_TRAP_EL2;
2357 }
2358 return CP_ACCESS_OK;
2359 }
2360
2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362 bool isread)
2363 {
2364 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2365 return CP_ACCESS_TRAP;
2366 }
2367 return teecr_access(env, ri, isread);
2368 }
2369
2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2371 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2373 .resetvalue = 0,
2374 .writefn = teecr_write, .accessfn = teecr_access },
2375 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2376 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2377 .accessfn = teehbr_access, .resetvalue = 0 },
2378 };
2379
2380 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2381 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2382 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2383 .access = PL0_RW,
2384 .fgt = FGT_TPIDR_EL0,
2385 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2386 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2387 .access = PL0_RW,
2388 .fgt = FGT_TPIDR_EL0,
2389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2391 .resetfn = arm_cp_reset_ignore },
2392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2394 .access = PL0_R | PL1_W,
2395 .fgt = FGT_TPIDRRO_EL0,
2396 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2397 .resetvalue = 0},
2398 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2399 .access = PL0_R | PL1_W,
2400 .fgt = FGT_TPIDRRO_EL0,
2401 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2402 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2403 .resetfn = arm_cp_reset_ignore },
2404 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2405 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2406 .access = PL1_RW,
2407 .fgt = FGT_TPIDR_EL1,
2408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2409 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2410 .access = PL1_RW,
2411 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2412 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2413 .resetvalue = 0 },
2414 };
2415
2416 #ifndef CONFIG_USER_ONLY
2417
2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419 bool isread)
2420 {
2421 /*
2422 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2423 * Writable only at the highest implemented exception level.
2424 */
2425 int el = arm_current_el(env);
2426 uint64_t hcr;
2427 uint32_t cntkctl;
2428
2429 switch (el) {
2430 case 0:
2431 hcr = arm_hcr_el2_eff(env);
2432 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2433 cntkctl = env->cp15.cnthctl_el2;
2434 } else {
2435 cntkctl = env->cp15.c14_cntkctl;
2436 }
2437 if (!extract32(cntkctl, 0, 2)) {
2438 return CP_ACCESS_TRAP;
2439 }
2440 break;
2441 case 1:
2442 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2443 arm_is_secure_below_el3(env)) {
2444 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2445 return CP_ACCESS_TRAP_UNCATEGORIZED;
2446 }
2447 break;
2448 case 2:
2449 case 3:
2450 break;
2451 }
2452
2453 if (!isread && el < arm_highest_el(env)) {
2454 return CP_ACCESS_TRAP_UNCATEGORIZED;
2455 }
2456
2457 return CP_ACCESS_OK;
2458 }
2459
2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2461 bool isread)
2462 {
2463 unsigned int cur_el = arm_current_el(env);
2464 bool has_el2 = arm_is_el2_enabled(env);
2465 uint64_t hcr = arm_hcr_el2_eff(env);
2466
2467 switch (cur_el) {
2468 case 0:
2469 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2470 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2471 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2472 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2473 }
2474
2475 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2476 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2477 return CP_ACCESS_TRAP;
2478 }
2479 /* fall through */
2480 case 1:
2481 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2482 if (has_el2 && timeridx == GTIMER_PHYS &&
2483 (hcr & HCR_E2H
2484 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2485 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2486 return CP_ACCESS_TRAP_EL2;
2487 }
2488 break;
2489 }
2490 return CP_ACCESS_OK;
2491 }
2492
2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2494 bool isread)
2495 {
2496 unsigned int cur_el = arm_current_el(env);
2497 bool has_el2 = arm_is_el2_enabled(env);
2498 uint64_t hcr = arm_hcr_el2_eff(env);
2499
2500 switch (cur_el) {
2501 case 0:
2502 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2503 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2504 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2506 }
2507
2508 /*
2509 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2510 * EL0 if EL0[PV]TEN is zero.
2511 */
2512 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2513 return CP_ACCESS_TRAP;
2514 }
2515 /* fall through */
2516
2517 case 1:
2518 if (has_el2 && timeridx == GTIMER_PHYS) {
2519 if (hcr & HCR_E2H) {
2520 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2521 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2522 return CP_ACCESS_TRAP_EL2;
2523 }
2524 } else {
2525 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2526 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2527 return CP_ACCESS_TRAP_EL2;
2528 }
2529 }
2530 }
2531 break;
2532 }
2533 return CP_ACCESS_OK;
2534 }
2535
2536 static CPAccessResult gt_pct_access(CPUARMState *env,
2537 const ARMCPRegInfo *ri,
2538 bool isread)
2539 {
2540 return gt_counter_access(env, GTIMER_PHYS, isread);
2541 }
2542
2543 static CPAccessResult gt_vct_access(CPUARMState *env,
2544 const ARMCPRegInfo *ri,
2545 bool isread)
2546 {
2547 return gt_counter_access(env, GTIMER_VIRT, isread);
2548 }
2549
2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2551 bool isread)
2552 {
2553 return gt_timer_access(env, GTIMER_PHYS, isread);
2554 }
2555
2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2557 bool isread)
2558 {
2559 return gt_timer_access(env, GTIMER_VIRT, isread);
2560 }
2561
2562 static CPAccessResult gt_stimer_access(CPUARMState *env,
2563 const ARMCPRegInfo *ri,
2564 bool isread)
2565 {
2566 /*
2567 * The AArch64 register view of the secure physical timer is
2568 * always accessible from EL3, and configurably accessible from
2569 * Secure EL1.
2570 */
2571 switch (arm_current_el(env)) {
2572 case 1:
2573 if (!arm_is_secure(env)) {
2574 return CP_ACCESS_TRAP;
2575 }
2576 if (!(env->cp15.scr_el3 & SCR_ST)) {
2577 return CP_ACCESS_TRAP_EL3;
2578 }
2579 return CP_ACCESS_OK;
2580 case 0:
2581 case 2:
2582 return CP_ACCESS_TRAP;
2583 case 3:
2584 return CP_ACCESS_OK;
2585 default:
2586 g_assert_not_reached();
2587 }
2588 }
2589
2590 static uint64_t gt_get_countervalue(CPUARMState *env)
2591 {
2592 ARMCPU *cpu = env_archcpu(env);
2593
2594 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2595 }
2596
2597 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2598 {
2599 CPUARMState *env = &cpu->env;
2600 uint64_t cnthctl = env->cp15.cnthctl_el2;
2601 ARMSecuritySpace ss = arm_security_space(env);
2602 /* ISTATUS && !IMASK */
2603 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2604
2605 /*
2606 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2607 * It is RES0 in Secure and NonSecure state.
2608 */
2609 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2610 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2611 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2612 irqstate = 0;
2613 }
2614
2615 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2616 trace_arm_gt_update_irq(timeridx, irqstate);
2617 }
2618
2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2620 {
2621 /*
2622 * Changing security state between Root and Secure/NonSecure, which may
2623 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2624 * mask bits. Update the IRQ state accordingly.
2625 */
2626 gt_update_irq(cpu, GTIMER_VIRT);
2627 gt_update_irq(cpu, GTIMER_PHYS);
2628 }
2629
2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2631 {
2632 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2633
2634 if (gt->ctl & 1) {
2635 /*
2636 * Timer enabled: calculate and set current ISTATUS, irq, and
2637 * reset timer to when ISTATUS next has to change
2638 */
2639 uint64_t offset = timeridx == GTIMER_VIRT ?
2640 cpu->env.cp15.cntvoff_el2 : 0;
2641 uint64_t count = gt_get_countervalue(&cpu->env);
2642 /* Note that this must be unsigned 64 bit arithmetic: */
2643 int istatus = count - offset >= gt->cval;
2644 uint64_t nexttick;
2645
2646 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2647
2648 if (istatus) {
2649 /* Next transition is when count rolls back over to zero */
2650 nexttick = UINT64_MAX;
2651 } else {
2652 /* Next transition is when we hit cval */
2653 nexttick = gt->cval + offset;
2654 }
2655 /*
2656 * Note that the desired next expiry time might be beyond the
2657 * signed-64-bit range of a QEMUTimer -- in this case we just
2658 * set the timer for as far in the future as possible. When the
2659 * timer expires we will reset the timer for any remaining period.
2660 */
2661 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2662 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2663 } else {
2664 timer_mod(cpu->gt_timer[timeridx], nexttick);
2665 }
2666 trace_arm_gt_recalc(timeridx, nexttick);
2667 } else {
2668 /* Timer disabled: ISTATUS and timer output always clear */
2669 gt->ctl &= ~4;
2670 timer_del(cpu->gt_timer[timeridx]);
2671 trace_arm_gt_recalc_disabled(timeridx);
2672 }
2673 gt_update_irq(cpu, timeridx);
2674 }
2675
2676 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2677 int timeridx)
2678 {
2679 ARMCPU *cpu = env_archcpu(env);
2680
2681 timer_del(cpu->gt_timer[timeridx]);
2682 }
2683
2684 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2685 {
2686 return gt_get_countervalue(env);
2687 }
2688
2689 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2690 {
2691 uint64_t hcr;
2692
2693 switch (arm_current_el(env)) {
2694 case 2:
2695 hcr = arm_hcr_el2_eff(env);
2696 if (hcr & HCR_E2H) {
2697 return 0;
2698 }
2699 break;
2700 case 0:
2701 hcr = arm_hcr_el2_eff(env);
2702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2703 return 0;
2704 }
2705 break;
2706 }
2707
2708 return env->cp15.cntvoff_el2;
2709 }
2710
2711 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2712 {
2713 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2714 }
2715
2716 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2717 int timeridx,
2718 uint64_t value)
2719 {
2720 trace_arm_gt_cval_write(timeridx, value);
2721 env->cp15.c14_timer[timeridx].cval = value;
2722 gt_recalc_timer(env_archcpu(env), timeridx);
2723 }
2724
2725 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2726 int timeridx)
2727 {
2728 uint64_t offset = 0;
2729
2730 switch (timeridx) {
2731 case GTIMER_VIRT:
2732 case GTIMER_HYPVIRT:
2733 offset = gt_virt_cnt_offset(env);
2734 break;
2735 }
2736
2737 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2738 (gt_get_countervalue(env) - offset));
2739 }
2740
2741 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742 int timeridx,
2743 uint64_t value)
2744 {
2745 uint64_t offset = 0;
2746
2747 switch (timeridx) {
2748 case GTIMER_VIRT:
2749 case GTIMER_HYPVIRT:
2750 offset = gt_virt_cnt_offset(env);
2751 break;
2752 }
2753
2754 trace_arm_gt_tval_write(timeridx, value);
2755 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2756 sextract64(value, 0, 32);
2757 gt_recalc_timer(env_archcpu(env), timeridx);
2758 }
2759
2760 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761 int timeridx,
2762 uint64_t value)
2763 {
2764 ARMCPU *cpu = env_archcpu(env);
2765 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2766
2767 trace_arm_gt_ctl_write(timeridx, value);
2768 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2769 if ((oldval ^ value) & 1) {
2770 /* Enable toggled */
2771 gt_recalc_timer(cpu, timeridx);
2772 } else if ((oldval ^ value) & 2) {
2773 /*
2774 * IMASK toggled: don't need to recalculate,
2775 * just set the interrupt line based on ISTATUS
2776 */
2777 trace_arm_gt_imask_toggle(timeridx);
2778 gt_update_irq(cpu, timeridx);
2779 }
2780 }
2781
2782 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2783 {
2784 gt_timer_reset(env, ri, GTIMER_PHYS);
2785 }
2786
2787 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2788 uint64_t value)
2789 {
2790 gt_cval_write(env, ri, GTIMER_PHYS, value);
2791 }
2792
2793 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2794 {
2795 return gt_tval_read(env, ri, GTIMER_PHYS);
2796 }
2797
2798 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799 uint64_t value)
2800 {
2801 gt_tval_write(env, ri, GTIMER_PHYS, value);
2802 }
2803
2804 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2805 uint64_t value)
2806 {
2807 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2808 }
2809
2810 static int gt_phys_redir_timeridx(CPUARMState *env)
2811 {
2812 switch (arm_mmu_idx(env)) {
2813 case ARMMMUIdx_E20_0:
2814 case ARMMMUIdx_E20_2:
2815 case ARMMMUIdx_E20_2_PAN:
2816 return GTIMER_HYP;
2817 default:
2818 return GTIMER_PHYS;
2819 }
2820 }
2821
2822 static int gt_virt_redir_timeridx(CPUARMState *env)
2823 {
2824 switch (arm_mmu_idx(env)) {
2825 case ARMMMUIdx_E20_0:
2826 case ARMMMUIdx_E20_2:
2827 case ARMMMUIdx_E20_2_PAN:
2828 return GTIMER_HYPVIRT;
2829 default:
2830 return GTIMER_VIRT;
2831 }
2832 }
2833
2834 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2835 const ARMCPRegInfo *ri)
2836 {
2837 int timeridx = gt_phys_redir_timeridx(env);
2838 return env->cp15.c14_timer[timeridx].cval;
2839 }
2840
2841 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842 uint64_t value)
2843 {
2844 int timeridx = gt_phys_redir_timeridx(env);
2845 gt_cval_write(env, ri, timeridx, value);
2846 }
2847
2848 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2849 const ARMCPRegInfo *ri)
2850 {
2851 int timeridx = gt_phys_redir_timeridx(env);
2852 return gt_tval_read(env, ri, timeridx);
2853 }
2854
2855 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2857 {
2858 int timeridx = gt_phys_redir_timeridx(env);
2859 gt_tval_write(env, ri, timeridx, value);
2860 }
2861
2862 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2863 const ARMCPRegInfo *ri)
2864 {
2865 int timeridx = gt_phys_redir_timeridx(env);
2866 return env->cp15.c14_timer[timeridx].ctl;
2867 }
2868
2869 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870 uint64_t value)
2871 {
2872 int timeridx = gt_phys_redir_timeridx(env);
2873 gt_ctl_write(env, ri, timeridx, value);
2874 }
2875
2876 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2877 {
2878 gt_timer_reset(env, ri, GTIMER_VIRT);
2879 }
2880
2881 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2882 uint64_t value)
2883 {
2884 gt_cval_write(env, ri, GTIMER_VIRT, value);
2885 }
2886
2887 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2888 {
2889 return gt_tval_read(env, ri, GTIMER_VIRT);
2890 }
2891
2892 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2893 uint64_t value)
2894 {
2895 gt_tval_write(env, ri, GTIMER_VIRT, value);
2896 }
2897
2898 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899 uint64_t value)
2900 {
2901 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2902 }
2903
2904 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905 uint64_t value)
2906 {
2907 ARMCPU *cpu = env_archcpu(env);
2908 uint32_t oldval = env->cp15.cnthctl_el2;
2909
2910 raw_write(env, ri, value);
2911
2912 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2913 gt_update_irq(cpu, GTIMER_VIRT);
2914 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2915 gt_update_irq(cpu, GTIMER_PHYS);
2916 }
2917 }
2918
2919 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2920 uint64_t value)
2921 {
2922 ARMCPU *cpu = env_archcpu(env);
2923
2924 trace_arm_gt_cntvoff_write(value);
2925 raw_write(env, ri, value);
2926 gt_recalc_timer(cpu, GTIMER_VIRT);
2927 }
2928
2929 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2930 const ARMCPRegInfo *ri)
2931 {
2932 int timeridx = gt_virt_redir_timeridx(env);
2933 return env->cp15.c14_timer[timeridx].cval;
2934 }
2935
2936 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2938 {
2939 int timeridx = gt_virt_redir_timeridx(env);
2940 gt_cval_write(env, ri, timeridx, value);
2941 }
2942
2943 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2944 const ARMCPRegInfo *ri)
2945 {
2946 int timeridx = gt_virt_redir_timeridx(env);
2947 return gt_tval_read(env, ri, timeridx);
2948 }
2949
2950 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951 uint64_t value)
2952 {
2953 int timeridx = gt_virt_redir_timeridx(env);
2954 gt_tval_write(env, ri, timeridx, value);
2955 }
2956
2957 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2958 const ARMCPRegInfo *ri)
2959 {
2960 int timeridx = gt_virt_redir_timeridx(env);
2961 return env->cp15.c14_timer[timeridx].ctl;
2962 }
2963
2964 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965 uint64_t value)
2966 {
2967 int timeridx = gt_virt_redir_timeridx(env);
2968 gt_ctl_write(env, ri, timeridx, value);
2969 }
2970
2971 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973 gt_timer_reset(env, ri, GTIMER_HYP);
2974 }
2975
2976 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2978 {
2979 gt_cval_write(env, ri, GTIMER_HYP, value);
2980 }
2981
2982 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984 return gt_tval_read(env, ri, GTIMER_HYP);
2985 }
2986
2987 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2989 {
2990 gt_tval_write(env, ri, GTIMER_HYP, value);
2991 }
2992
2993 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2995 {
2996 gt_ctl_write(env, ri, GTIMER_HYP, value);
2997 }
2998
2999 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001 gt_timer_reset(env, ri, GTIMER_SEC);
3002 }
3003
3004 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 gt_cval_write(env, ri, GTIMER_SEC, value);
3008 }
3009
3010 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012 return gt_tval_read(env, ri, GTIMER_SEC);
3013 }
3014
3015 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017 {
3018 gt_tval_write(env, ri, GTIMER_SEC, value);
3019 }
3020
3021 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023 {
3024 gt_ctl_write(env, ri, GTIMER_SEC, value);
3025 }
3026
3027 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3028 {
3029 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3030 }
3031
3032 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034 {
3035 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3036 }
3037
3038 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3039 {
3040 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3041 }
3042
3043 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3044 uint64_t value)
3045 {
3046 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3047 }
3048
3049 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050 uint64_t value)
3051 {
3052 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3053 }
3054
3055 void arm_gt_ptimer_cb(void *opaque)
3056 {
3057 ARMCPU *cpu = opaque;
3058
3059 gt_recalc_timer(cpu, GTIMER_PHYS);
3060 }
3061
3062 void arm_gt_vtimer_cb(void *opaque)
3063 {
3064 ARMCPU *cpu = opaque;
3065
3066 gt_recalc_timer(cpu, GTIMER_VIRT);
3067 }
3068
3069 void arm_gt_htimer_cb(void *opaque)
3070 {
3071 ARMCPU *cpu = opaque;
3072
3073 gt_recalc_timer(cpu, GTIMER_HYP);
3074 }
3075
3076 void arm_gt_stimer_cb(void *opaque)
3077 {
3078 ARMCPU *cpu = opaque;
3079
3080 gt_recalc_timer(cpu, GTIMER_SEC);
3081 }
3082
3083 void arm_gt_hvtimer_cb(void *opaque)
3084 {
3085 ARMCPU *cpu = opaque;
3086
3087 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3088 }
3089
3090 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3091 {
3092 ARMCPU *cpu = env_archcpu(env);
3093
3094 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3095 }
3096
3097 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3098 /*
3099 * Note that CNTFRQ is purely reads-as-written for the benefit
3100 * of software; writing it doesn't actually change the timer frequency.
3101 * Our reset value matches the fixed frequency we implement the timer at.
3102 */
3103 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3104 .type = ARM_CP_ALIAS,
3105 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3106 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3107 },
3108 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3110 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3112 .resetfn = arm_gt_cntfrq_reset,
3113 },
3114 /* overall control: mostly access permissions */
3115 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3116 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3117 .access = PL1_RW,
3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3119 .resetvalue = 0,
3120 },
3121 /* per-timer control */
3122 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3123 .secure = ARM_CP_SECSTATE_NS,
3124 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3125 .accessfn = gt_ptimer_access,
3126 .fieldoffset = offsetoflow32(CPUARMState,
3127 cp15.c14_timer[GTIMER_PHYS].ctl),
3128 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3129 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3130 },
3131 { .name = "CNTP_CTL_S",
3132 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3133 .secure = ARM_CP_SECSTATE_S,
3134 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3135 .accessfn = gt_ptimer_access,
3136 .fieldoffset = offsetoflow32(CPUARMState,
3137 cp15.c14_timer[GTIMER_SEC].ctl),
3138 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3139 },
3140 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3142 .type = ARM_CP_IO, .access = PL0_RW,
3143 .accessfn = gt_ptimer_access,
3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3145 .resetvalue = 0,
3146 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3147 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3148 },
3149 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3150 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3151 .accessfn = gt_vtimer_access,
3152 .fieldoffset = offsetoflow32(CPUARMState,
3153 cp15.c14_timer[GTIMER_VIRT].ctl),
3154 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3155 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3156 },
3157 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3158 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3159 .type = ARM_CP_IO, .access = PL0_RW,
3160 .accessfn = gt_vtimer_access,
3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3162 .resetvalue = 0,
3163 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3164 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3165 },
3166 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3167 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3168 .secure = ARM_CP_SECSTATE_NS,
3169 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3170 .accessfn = gt_ptimer_access,
3171 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3172 },
3173 { .name = "CNTP_TVAL_S",
3174 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3175 .secure = ARM_CP_SECSTATE_S,
3176 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3177 .accessfn = gt_ptimer_access,
3178 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3179 },
3180 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3182 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3183 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3184 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3185 },
3186 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3187 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3188 .accessfn = gt_vtimer_access,
3189 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3190 },
3191 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3193 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3194 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3195 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3196 },
3197 /* The counter itself */
3198 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3199 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3200 .accessfn = gt_pct_access,
3201 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3202 },
3203 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3205 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3206 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3207 },
3208 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3209 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3210 .accessfn = gt_vct_access,
3211 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3212 },
3213 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3215 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3216 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3217 },
3218 /* Comparison value, indicating when the timer goes off */
3219 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3220 .secure = ARM_CP_SECSTATE_NS,
3221 .access = PL0_RW,
3222 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3223 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3224 .accessfn = gt_ptimer_access,
3225 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3226 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3227 },
3228 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3229 .secure = ARM_CP_SECSTATE_S,
3230 .access = PL0_RW,
3231 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3232 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3233 .accessfn = gt_ptimer_access,
3234 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3235 },
3236 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3238 .access = PL0_RW,
3239 .type = ARM_CP_IO,
3240 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3241 .resetvalue = 0, .accessfn = gt_ptimer_access,
3242 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3243 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3244 },
3245 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3246 .access = PL0_RW,
3247 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3249 .accessfn = gt_vtimer_access,
3250 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3251 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3252 },
3253 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3254 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3255 .access = PL0_RW,
3256 .type = ARM_CP_IO,
3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3258 .resetvalue = 0, .accessfn = gt_vtimer_access,
3259 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3260 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3261 },
3262 /*
3263 * Secure timer -- this is actually restricted to only EL3
3264 * and configurably Secure-EL1 via the accessfn.
3265 */
3266 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3268 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3269 .accessfn = gt_stimer_access,
3270 .readfn = gt_sec_tval_read,
3271 .writefn = gt_sec_tval_write,
3272 .resetfn = gt_sec_timer_reset,
3273 },
3274 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3275 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3276 .type = ARM_CP_IO, .access = PL1_RW,
3277 .accessfn = gt_stimer_access,
3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3279 .resetvalue = 0,
3280 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3281 },
3282 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3283 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3284 .type = ARM_CP_IO, .access = PL1_RW,
3285 .accessfn = gt_stimer_access,
3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3287 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3288 },
3289 };
3290
3291 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3292 bool isread)
3293 {
3294 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3295 return CP_ACCESS_TRAP;
3296 }
3297 return CP_ACCESS_OK;
3298 }
3299
3300 #else
3301
3302 /*
3303 * In user-mode most of the generic timer registers are inaccessible
3304 * however modern kernels (4.12+) allow access to cntvct_el0
3305 */
3306
3307 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3308 {
3309 ARMCPU *cpu = env_archcpu(env);
3310
3311 /*
3312 * Currently we have no support for QEMUTimer in linux-user so we
3313 * can't call gt_get_countervalue(env), instead we directly
3314 * call the lower level functions.
3315 */
3316 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3317 }
3318
3319 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3320 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3322 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3323 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3324 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3325 },
3326 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3327 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3328 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3329 .readfn = gt_virt_cnt_read,
3330 },
3331 };
3332
3333 #endif
3334
3335 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3336 {
3337 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3338 raw_write(env, ri, value);
3339 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3340 raw_write(env, ri, value & 0xfffff6ff);
3341 } else {
3342 raw_write(env, ri, value & 0xfffff1ff);
3343 }
3344 }
3345
3346 #ifndef CONFIG_USER_ONLY
3347 /* get_phys_addr() isn't present for user-mode-only targets */
3348
3349 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350 bool isread)
3351 {
3352 if (ri->opc2 & 4) {
3353 /*
3354 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3355 * Secure EL1 (which can only happen if EL3 is AArch64).
3356 * They are simply UNDEF if executed from NS EL1.
3357 * They function normally from EL2 or EL3.
3358 */
3359 if (arm_current_el(env) == 1) {
3360 if (arm_is_secure_below_el3(env)) {
3361 if (env->cp15.scr_el3 & SCR_EEL2) {
3362 return CP_ACCESS_TRAP_EL2;
3363 }
3364 return CP_ACCESS_TRAP_EL3;
3365 }
3366 return CP_ACCESS_TRAP_UNCATEGORIZED;
3367 }
3368 }
3369 return CP_ACCESS_OK;
3370 }
3371
3372 #ifdef CONFIG_TCG
3373 static int par_el1_shareability(GetPhysAddrResult *res)
3374 {
3375 /*
3376 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3377 * memory -- see pseudocode PAREncodeShareability().
3378 */
3379 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3380 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3381 return 2;
3382 }
3383 return res->cacheattrs.shareability;
3384 }
3385
3386 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3387 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3388 ARMSecuritySpace ss)
3389 {
3390 bool ret;
3391 uint64_t par64;
3392 bool format64 = false;
3393 ARMMMUFaultInfo fi = {};
3394 GetPhysAddrResult res = {};
3395
3396 /*
3397 * I_MXTJT: Granule protection checks are not performed on the final address
3398 * of a successful translation.
3399 */
3400 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3401 &res, &fi);
3402
3403 /*
3404 * ATS operations only do S1 or S1+S2 translations, so we never
3405 * have to deal with the ARMCacheAttrs format for S2 only.
3406 */
3407 assert(!res.cacheattrs.is_s2_format);
3408
3409 if (ret) {
3410 /*
3411 * Some kinds of translation fault must cause exceptions rather
3412 * than being reported in the PAR.
3413 */
3414 int current_el = arm_current_el(env);
3415 int target_el;
3416 uint32_t syn, fsr, fsc;
3417 bool take_exc = false;
3418
3419 if (fi.s1ptw && current_el == 1
3420 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3421 /*
3422 * Synchronous stage 2 fault on an access made as part of the
3423 * translation table walk for AT S1E0* or AT S1E1* insn
3424 * executed from NS EL1. If this is a synchronous external abort
3425 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3426 * to EL3. Otherwise the fault is taken as an exception to EL2,
3427 * and HPFAR_EL2 holds the faulting IPA.
3428 */
3429 if (fi.type == ARMFault_SyncExternalOnWalk &&
3430 (env->cp15.scr_el3 & SCR_EA)) {
3431 target_el = 3;
3432 } else {
3433 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3434 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3435 env->cp15.hpfar_el2 |= HPFAR_NS;
3436 }
3437 target_el = 2;
3438 }
3439 take_exc = true;
3440 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3441 /*
3442 * Synchronous external aborts during a translation table walk
3443 * are taken as Data Abort exceptions.
3444 */
3445 if (fi.stage2) {
3446 if (current_el == 3) {
3447 target_el = 3;
3448 } else {
3449 target_el = 2;
3450 }
3451 } else {
3452 target_el = exception_target_el(env);
3453 }
3454 take_exc = true;
3455 }
3456
3457 if (take_exc) {
3458 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3459 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3460 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3461 fsr = arm_fi_to_lfsc(&fi);
3462 fsc = extract32(fsr, 0, 6);
3463 } else {
3464 fsr = arm_fi_to_sfsc(&fi);
3465 fsc = 0x3f;
3466 }
3467 /*
3468 * Report exception with ESR indicating a fault due to a
3469 * translation table walk for a cache maintenance instruction.
3470 */
3471 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3472 fi.ea, 1, fi.s1ptw, 1, fsc);
3473 env->exception.vaddress = value;
3474 env->exception.fsr = fsr;
3475 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3476 }
3477 }
3478
3479 if (is_a64(env)) {
3480 format64 = true;
3481 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3482 /*
3483 * ATS1Cxx:
3484 * * TTBCR.EAE determines whether the result is returned using the
3485 * 32-bit or the 64-bit PAR format
3486 * * Instructions executed in Hyp mode always use the 64bit format
3487 *
3488 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3489 * * The Non-secure TTBCR.EAE bit is set to 1
3490 * * The implementation includes EL2, and the value of HCR.VM is 1
3491 *
3492 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3493 *
3494 * ATS1Hx always uses the 64bit format.
3495 */
3496 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3497
3498 if (arm_feature(env, ARM_FEATURE_EL2)) {
3499 if (mmu_idx == ARMMMUIdx_E10_0 ||
3500 mmu_idx == ARMMMUIdx_E10_1 ||
3501 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3502 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3503 } else {
3504 format64 |= arm_current_el(env) == 2;
3505 }
3506 }
3507 }
3508
3509 if (format64) {
3510 /* Create a 64-bit PAR */
3511 par64 = (1 << 11); /* LPAE bit always set */
3512 if (!ret) {
3513 par64 |= res.f.phys_addr & ~0xfffULL;
3514 if (!res.f.attrs.secure) {
3515 par64 |= (1 << 9); /* NS */
3516 }
3517 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3518 par64 |= par_el1_shareability(&res) << 7; /* SH */
3519 } else {
3520 uint32_t fsr = arm_fi_to_lfsc(&fi);
3521
3522 par64 |= 1; /* F */
3523 par64 |= (fsr & 0x3f) << 1; /* FS */
3524 if (fi.stage2) {
3525 par64 |= (1 << 9); /* S */
3526 }
3527 if (fi.s1ptw) {
3528 par64 |= (1 << 8); /* PTW */
3529 }
3530 }
3531 } else {
3532 /*
3533 * fsr is a DFSR/IFSR value for the short descriptor
3534 * translation table format (with WnR always clear).
3535 * Convert it to a 32-bit PAR.
3536 */
3537 if (!ret) {
3538 /* We do not set any attribute bits in the PAR */
3539 if (res.f.lg_page_size == 24
3540 && arm_feature(env, ARM_FEATURE_V7)) {
3541 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3542 } else {
3543 par64 = res.f.phys_addr & 0xfffff000;
3544 }
3545 if (!res.f.attrs.secure) {
3546 par64 |= (1 << 9); /* NS */
3547 }
3548 } else {
3549 uint32_t fsr = arm_fi_to_sfsc(&fi);
3550
3551 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3552 ((fsr & 0xf) << 1) | 1;
3553 }
3554 }
3555 return par64;
3556 }
3557 #endif /* CONFIG_TCG */
3558
3559 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3560 {
3561 #ifdef CONFIG_TCG
3562 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3563 uint64_t par64;
3564 ARMMMUIdx mmu_idx;
3565 int el = arm_current_el(env);
3566 ARMSecuritySpace ss = arm_security_space(env);
3567
3568 switch (ri->opc2 & 6) {
3569 case 0:
3570 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3571 switch (el) {
3572 case 3:
3573 mmu_idx = ARMMMUIdx_E3;
3574 break;
3575 case 2:
3576 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3577 /* fall through */
3578 case 1:
3579 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3580 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3581 } else {
3582 mmu_idx = ARMMMUIdx_Stage1_E1;
3583 }
3584 break;
3585 default:
3586 g_assert_not_reached();
3587 }
3588 break;
3589 case 2:
3590 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3591 switch (el) {
3592 case 3:
3593 mmu_idx = ARMMMUIdx_E10_0;
3594 break;
3595 case 2:
3596 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3597 mmu_idx = ARMMMUIdx_Stage1_E0;
3598 break;
3599 case 1:
3600 mmu_idx = ARMMMUIdx_Stage1_E0;
3601 break;
3602 default:
3603 g_assert_not_reached();
3604 }
3605 break;
3606 case 4:
3607 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3608 mmu_idx = ARMMMUIdx_E10_1;
3609 ss = ARMSS_NonSecure;
3610 break;
3611 case 6:
3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3613 mmu_idx = ARMMMUIdx_E10_0;
3614 ss = ARMSS_NonSecure;
3615 break;
3616 default:
3617 g_assert_not_reached();
3618 }
3619
3620 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3621
3622 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3623 #else
3624 /* Handled by hardware accelerator. */
3625 g_assert_not_reached();
3626 #endif /* CONFIG_TCG */
3627 }
3628
3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3630 uint64_t value)
3631 {
3632 #ifdef CONFIG_TCG
3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3634 uint64_t par64;
3635
3636 /* There is no SecureEL2 for AArch32. */
3637 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3638 ARMSS_NonSecure);
3639
3640 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3641 #else
3642 /* Handled by hardware accelerator. */
3643 g_assert_not_reached();
3644 #endif /* CONFIG_TCG */
3645 }
3646
3647 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3648 bool isread)
3649 {
3650 /*
3651 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3652 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3653 * only happen when executing at EL3 because that combination also causes an
3654 * illegal exception return. We don't need to check FEAT_RME either, because
3655 * scr_write() ensures that the NSE bit is not set otherwise.
3656 */
3657 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3658 return CP_ACCESS_TRAP;
3659 }
3660 return CP_ACCESS_OK;
3661 }
3662
3663 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3664 bool isread)
3665 {
3666 if (arm_current_el(env) == 3 &&
3667 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3668 return CP_ACCESS_TRAP;
3669 }
3670 return at_e012_access(env, ri, isread);
3671 }
3672
3673 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3674 uint64_t value)
3675 {
3676 #ifdef CONFIG_TCG
3677 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3678 ARMMMUIdx mmu_idx;
3679 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3680 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3681
3682 switch (ri->opc2 & 6) {
3683 case 0:
3684 switch (ri->opc1) {
3685 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3686 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3687 mmu_idx = regime_e20 ?
3688 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3689 } else {
3690 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3691 }
3692 break;
3693 case 4: /* AT S1E2R, AT S1E2W */
3694 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3695 break;
3696 case 6: /* AT S1E3R, AT S1E3W */
3697 mmu_idx = ARMMMUIdx_E3;
3698 break;
3699 default:
3700 g_assert_not_reached();
3701 }
3702 break;
3703 case 2: /* AT S1E0R, AT S1E0W */
3704 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3705 break;
3706 case 4: /* AT S12E1R, AT S12E1W */
3707 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3708 break;
3709 case 6: /* AT S12E0R, AT S12E0W */
3710 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3711 break;
3712 default:
3713 g_assert_not_reached();
3714 }
3715
3716 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3717 mmu_idx, arm_security_space(env));
3718 #else
3719 /* Handled by hardware accelerator. */
3720 g_assert_not_reached();
3721 #endif /* CONFIG_TCG */
3722 }
3723 #endif
3724
3725 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3726 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3727 .access = PL1_RW, .resetvalue = 0,
3728 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3729 offsetoflow32(CPUARMState, cp15.par_ns) },
3730 .writefn = par_write },
3731 #ifndef CONFIG_USER_ONLY
3732 /* This underdecoding is safe because the reginfo is NO_RAW. */
3733 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3734 .access = PL1_W, .accessfn = ats_access,
3735 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3736 #endif
3737 };
3738
3739 /* Return basic MPU access permission bits. */
3740 static uint32_t simple_mpu_ap_bits(uint32_t val)
3741 {
3742 uint32_t ret;
3743 uint32_t mask;
3744 int i;
3745 ret = 0;
3746 mask = 3;
3747 for (i = 0; i < 16; i += 2) {
3748 ret |= (val >> i) & mask;
3749 mask <<= 2;
3750 }
3751 return ret;
3752 }
3753
3754 /* Pad basic MPU access permission bits to extended format. */
3755 static uint32_t extended_mpu_ap_bits(uint32_t val)
3756 {
3757 uint32_t ret;
3758 uint32_t mask;
3759 int i;
3760 ret = 0;
3761 mask = 3;
3762 for (i = 0; i < 16; i += 2) {
3763 ret |= (val & mask) << i;
3764 mask <<= 2;
3765 }
3766 return ret;
3767 }
3768
3769 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3770 uint64_t value)
3771 {
3772 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3773 }
3774
3775 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3776 {
3777 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3778 }
3779
3780 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3781 uint64_t value)
3782 {
3783 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3784 }
3785
3786 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3787 {
3788 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3789 }
3790
3791 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3792 {
3793 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3794
3795 if (!u32p) {
3796 return 0;
3797 }
3798
3799 u32p += env->pmsav7.rnr[M_REG_NS];
3800 return *u32p;
3801 }
3802
3803 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3804 uint64_t value)
3805 {
3806 ARMCPU *cpu = env_archcpu(env);
3807 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3808
3809 if (!u32p) {
3810 return;
3811 }
3812
3813 u32p += env->pmsav7.rnr[M_REG_NS];
3814 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3815 *u32p = value;
3816 }
3817
3818 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819 uint64_t value)
3820 {
3821 ARMCPU *cpu = env_archcpu(env);
3822 uint32_t nrgs = cpu->pmsav7_dregion;
3823
3824 if (value >= nrgs) {
3825 qemu_log_mask(LOG_GUEST_ERROR,
3826 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3827 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3828 return;
3829 }
3830
3831 raw_write(env, ri, value);
3832 }
3833
3834 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835 uint64_t value)
3836 {
3837 ARMCPU *cpu = env_archcpu(env);
3838
3839 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3841 }
3842
3843 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3844 {
3845 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3846 }
3847
3848 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849 uint64_t value)
3850 {
3851 ARMCPU *cpu = env_archcpu(env);
3852
3853 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3855 }
3856
3857 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3858 {
3859 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3860 }
3861
3862 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3863 uint64_t value)
3864 {
3865 ARMCPU *cpu = env_archcpu(env);
3866
3867 /*
3868 * Ignore writes that would select not implemented region.
3869 * This is architecturally UNPREDICTABLE.
3870 */
3871 if (value >= cpu->pmsav7_dregion) {
3872 return;
3873 }
3874
3875 env->pmsav7.rnr[M_REG_NS] = value;
3876 }
3877
3878 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3880 {
3881 ARMCPU *cpu = env_archcpu(env);
3882
3883 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3884 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3885 }
3886
3887 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3888 {
3889 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3890 }
3891
3892 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3894 {
3895 ARMCPU *cpu = env_archcpu(env);
3896
3897 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3898 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3899 }
3900
3901 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3902 {
3903 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3904 }
3905
3906 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907 uint64_t value)
3908 {
3909 uint32_t n;
3910 uint32_t bit;
3911 ARMCPU *cpu = env_archcpu(env);
3912
3913 /* Ignore writes to unimplemented regions */
3914 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3915 value &= MAKE_64BIT_MASK(0, rmax);
3916
3917 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3918
3919 /* Register alias is only valid for first 32 indexes */
3920 for (n = 0; n < rmax; ++n) {
3921 bit = extract32(value, n, 1);
3922 env->pmsav8.hprlar[n] = deposit32(
3923 env->pmsav8.hprlar[n], 0, 1, bit);
3924 }
3925 }
3926
3927 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3928 {
3929 uint32_t n;
3930 uint32_t result = 0x0;
3931 ARMCPU *cpu = env_archcpu(env);
3932
3933 /* Register alias is only valid for first 32 indexes */
3934 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3935 if (env->pmsav8.hprlar[n] & 0x1) {
3936 result |= (0x1 << n);
3937 }
3938 }
3939 return result;
3940 }
3941
3942 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3943 uint64_t value)
3944 {
3945 ARMCPU *cpu = env_archcpu(env);
3946
3947 /*
3948 * Ignore writes that would select not implemented region.
3949 * This is architecturally UNPREDICTABLE.
3950 */
3951 if (value >= cpu->pmsav8r_hdregion) {
3952 return;
3953 }
3954
3955 env->pmsav8.hprselr = value;
3956 }
3957
3958 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3959 uint64_t value)
3960 {
3961 ARMCPU *cpu = env_archcpu(env);
3962 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3963 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3964
3965 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3966
3967 if (ri->opc1 & 4) {
3968 if (index >= cpu->pmsav8r_hdregion) {
3969 return;
3970 }
3971 if (ri->opc2 & 0x1) {
3972 env->pmsav8.hprlar[index] = value;
3973 } else {
3974 env->pmsav8.hprbar[index] = value;
3975 }
3976 } else {
3977 if (index >= cpu->pmsav7_dregion) {
3978 return;
3979 }
3980 if (ri->opc2 & 0x1) {
3981 env->pmsav8.rlar[M_REG_NS][index] = value;
3982 } else {
3983 env->pmsav8.rbar[M_REG_NS][index] = value;
3984 }
3985 }
3986 }
3987
3988 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3989 {
3990 ARMCPU *cpu = env_archcpu(env);
3991 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3992 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3993
3994 if (ri->opc1 & 4) {
3995 if (index >= cpu->pmsav8r_hdregion) {
3996 return 0x0;
3997 }
3998 if (ri->opc2 & 0x1) {
3999 return env->pmsav8.hprlar[index];
4000 } else {
4001 return env->pmsav8.hprbar[index];
4002 }
4003 } else {
4004 if (index >= cpu->pmsav7_dregion) {
4005 return 0x0;
4006 }
4007 if (ri->opc2 & 0x1) {
4008 return env->pmsav8.rlar[M_REG_NS][index];
4009 } else {
4010 return env->pmsav8.rbar[M_REG_NS][index];
4011 }
4012 }
4013 }
4014
4015 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4016 { .name = "PRBAR",
4017 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4018 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4019 .accessfn = access_tvm_trvm,
4020 .readfn = prbar_read, .writefn = prbar_write },
4021 { .name = "PRLAR",
4022 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4023 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4024 .accessfn = access_tvm_trvm,
4025 .readfn = prlar_read, .writefn = prlar_write },
4026 { .name = "PRSELR", .resetvalue = 0,
4027 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4028 .access = PL1_RW, .accessfn = access_tvm_trvm,
4029 .writefn = prselr_write,
4030 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4031 { .name = "HPRBAR", .resetvalue = 0,
4032 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4033 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4034 .readfn = hprbar_read, .writefn = hprbar_write },
4035 { .name = "HPRLAR",
4036 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4037 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4038 .readfn = hprlar_read, .writefn = hprlar_write },
4039 { .name = "HPRSELR", .resetvalue = 0,
4040 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4041 .access = PL2_RW,
4042 .writefn = hprselr_write,
4043 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4044 { .name = "HPRENR",
4045 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4046 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4047 .readfn = hprenr_read, .writefn = hprenr_write },
4048 };
4049
4050 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4051 /*
4052 * Reset for all these registers is handled in arm_cpu_reset(),
4053 * because the PMSAv7 is also used by M-profile CPUs, which do
4054 * not register cpregs but still need the state to be reset.
4055 */
4056 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4057 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4058 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4059 .readfn = pmsav7_read, .writefn = pmsav7_write,
4060 .resetfn = arm_cp_reset_ignore },
4061 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4062 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4063 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4064 .readfn = pmsav7_read, .writefn = pmsav7_write,
4065 .resetfn = arm_cp_reset_ignore },
4066 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4067 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4068 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4069 .readfn = pmsav7_read, .writefn = pmsav7_write,
4070 .resetfn = arm_cp_reset_ignore },
4071 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4072 .access = PL1_RW,
4073 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4074 .writefn = pmsav7_rgnr_write,
4075 .resetfn = arm_cp_reset_ignore },
4076 };
4077
4078 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4079 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4080 .access = PL1_RW, .type = ARM_CP_ALIAS,
4081 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4082 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4083 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4084 .access = PL1_RW, .type = ARM_CP_ALIAS,
4085 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4086 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4087 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4088 .access = PL1_RW,
4089 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4090 .resetvalue = 0, },
4091 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4092 .access = PL1_RW,
4093 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4094 .resetvalue = 0, },
4095 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4096 .access = PL1_RW,
4097 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4098 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4099 .access = PL1_RW,
4100 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4101 /* Protection region base and size registers */
4102 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4103 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4104 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4105 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4106 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4107 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4108 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4109 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4110 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4111 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4112 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4113 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4114 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4115 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4116 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4117 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4118 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4119 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4120 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4121 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4122 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4123 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4124 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4126 };
4127
4128 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129 uint64_t value)
4130 {
4131 ARMCPU *cpu = env_archcpu(env);
4132
4133 if (!arm_feature(env, ARM_FEATURE_V8)) {
4134 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4135 /*
4136 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4137 * using Long-descriptor translation table format
4138 */
4139 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4140 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4141 /*
4142 * In an implementation that includes the Security Extensions
4143 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4144 * Short-descriptor translation table format.
4145 */
4146 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4147 } else {
4148 value &= TTBCR_N;
4149 }
4150 }
4151
4152 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4153 /*
4154 * With LPAE the TTBCR could result in a change of ASID
4155 * via the TTBCR.A1 bit, so do a TLB flush.
4156 */
4157 tlb_flush(CPU(cpu));
4158 }
4159 raw_write(env, ri, value);
4160 }
4161
4162 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4163 uint64_t value)
4164 {
4165 ARMCPU *cpu = env_archcpu(env);
4166
4167 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4168 tlb_flush(CPU(cpu));
4169 raw_write(env, ri, value);
4170 }
4171
4172 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4173 uint64_t value)
4174 {
4175 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4176 if (cpreg_field_is_64bit(ri) &&
4177 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4178 ARMCPU *cpu = env_archcpu(env);
4179 tlb_flush(CPU(cpu));
4180 }
4181 raw_write(env, ri, value);
4182 }
4183
4184 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4185 uint64_t value)
4186 {
4187 /*
4188 * If we are running with E2&0 regime, then an ASID is active.
4189 * Flush if that might be changing. Note we're not checking
4190 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4191 * holds the active ASID, only checking the field that might.
4192 */
4193 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4194 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4195 uint16_t mask = ARMMMUIdxBit_E20_2 |
4196 ARMMMUIdxBit_E20_2_PAN |
4197 ARMMMUIdxBit_E20_0;
4198 tlb_flush_by_mmuidx(env_cpu(env), mask);
4199 }
4200 raw_write(env, ri, value);
4201 }
4202
4203 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4204 uint64_t value)
4205 {
4206 ARMCPU *cpu = env_archcpu(env);
4207 CPUState *cs = CPU(cpu);
4208
4209 /*
4210 * A change in VMID to the stage2 page table (Stage2) invalidates
4211 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4212 */
4213 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4214 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4215 }
4216 raw_write(env, ri, value);
4217 }
4218
4219 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4220 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4221 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4222 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4223 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4224 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4225 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4226 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4227 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4228 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4229 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4230 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4231 offsetof(CPUARMState, cp15.dfar_ns) } },
4232 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4233 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4234 .access = PL1_RW, .accessfn = access_tvm_trvm,
4235 .fgt = FGT_FAR_EL1,
4236 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4237 .resetvalue = 0, },
4238 };
4239
4240 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4241 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4242 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4243 .access = PL1_RW, .accessfn = access_tvm_trvm,
4244 .fgt = FGT_ESR_EL1,
4245 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4246 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4247 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4248 .access = PL1_RW, .accessfn = access_tvm_trvm,
4249 .fgt = FGT_TTBR0_EL1,
4250 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4251 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4252 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4253 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4254 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4255 .access = PL1_RW, .accessfn = access_tvm_trvm,
4256 .fgt = FGT_TTBR1_EL1,
4257 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4259 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4260 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4262 .access = PL1_RW, .accessfn = access_tvm_trvm,
4263 .fgt = FGT_TCR_EL1,
4264 .writefn = vmsa_tcr_el12_write,
4265 .raw_writefn = raw_write,
4266 .resetvalue = 0,
4267 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4268 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4269 .access = PL1_RW, .accessfn = access_tvm_trvm,
4270 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4271 .raw_writefn = raw_write,
4272 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4273 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4274 };
4275
4276 /*
4277 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4278 * qemu tlbs nor adjusting cached masks.
4279 */
4280 static const ARMCPRegInfo ttbcr2_reginfo = {
4281 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4282 .access = PL1_RW, .accessfn = access_tvm_trvm,
4283 .type = ARM_CP_ALIAS,
4284 .bank_fieldoffsets = {
4285 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4286 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4287 },
4288 };
4289
4290 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4291 uint64_t value)
4292 {
4293 env->cp15.c15_ticonfig = value & 0xe7;
4294 /* The OS_TYPE bit in this register changes the reported CPUID! */
4295 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4296 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4297 }
4298
4299 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300 uint64_t value)
4301 {
4302 env->cp15.c15_threadid = value & 0xffff;
4303 }
4304
4305 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4306 uint64_t value)
4307 {
4308 /* Wait-for-interrupt (deprecated) */
4309 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4310 }
4311
4312 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4313 uint64_t value)
4314 {
4315 /*
4316 * On OMAP there are registers indicating the max/min index of dcache lines
4317 * containing a dirty line; cache flush operations have to reset these.
4318 */
4319 env->cp15.c15_i_max = 0x000;
4320 env->cp15.c15_i_min = 0xff0;
4321 }
4322
4323 static const ARMCPRegInfo omap_cp_reginfo[] = {
4324 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4325 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4326 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4327 .resetvalue = 0, },
4328 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4329 .access = PL1_RW, .type = ARM_CP_NOP },
4330 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4331 .access = PL1_RW,
4332 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4333 .writefn = omap_ticonfig_write },
4334 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4335 .access = PL1_RW,
4336 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4337 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4338 .access = PL1_RW, .resetvalue = 0xff0,
4339 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4340 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4341 .access = PL1_RW,
4342 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4343 .writefn = omap_threadid_write },
4344 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4345 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4346 .type = ARM_CP_NO_RAW,
4347 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4348 /*
4349 * TODO: Peripheral port remap register:
4350 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4351 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4352 * when MMU is off.
4353 */
4354 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4355 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4356 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4357 .writefn = omap_cachemaint_write },
4358 { .name = "C9", .cp = 15, .crn = 9,
4359 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4360 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4361 };
4362
4363 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4364 uint64_t value)
4365 {
4366 env->cp15.c15_cpar = value & 0x3fff;
4367 }
4368
4369 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4370 { .name = "XSCALE_CPAR",
4371 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4372 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4373 .writefn = xscale_cpar_write, },
4374 { .name = "XSCALE_AUXCR",
4375 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4376 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4377 .resetvalue = 0, },
4378 /*
4379 * XScale specific cache-lockdown: since we have no cache we NOP these
4380 * and hope the guest does not really rely on cache behaviour.
4381 */
4382 { .name = "XSCALE_LOCK_ICACHE_LINE",
4383 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4384 .access = PL1_W, .type = ARM_CP_NOP },
4385 { .name = "XSCALE_UNLOCK_ICACHE",
4386 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4387 .access = PL1_W, .type = ARM_CP_NOP },
4388 { .name = "XSCALE_DCACHE_LOCK",
4389 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4390 .access = PL1_RW, .type = ARM_CP_NOP },
4391 { .name = "XSCALE_UNLOCK_DCACHE",
4392 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4393 .access = PL1_W, .type = ARM_CP_NOP },
4394 };
4395
4396 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4397 /*
4398 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4399 * implementation of this implementation-defined space.
4400 * Ideally this should eventually disappear in favour of actually
4401 * implementing the correct behaviour for all cores.
4402 */
4403 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4404 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4405 .access = PL1_RW,
4406 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4407 .resetvalue = 0 },
4408 };
4409
4410 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4411 /* Cache status: RAZ because we have no cache so it's always clean */
4412 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4413 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4414 .resetvalue = 0 },
4415 };
4416
4417 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4418 /* We never have a block transfer operation in progress */
4419 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4420 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4421 .resetvalue = 0 },
4422 /* The cache ops themselves: these all NOP for QEMU */
4423 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4424 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4425 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4426 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4427 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4428 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4429 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4430 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4431 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4432 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4433 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4434 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4435 };
4436
4437 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4438 /*
4439 * The cache test-and-clean instructions always return (1 << 30)
4440 * to indicate that there are no dirty cache lines.
4441 */
4442 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4443 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4444 .resetvalue = (1 << 30) },
4445 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4446 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4447 .resetvalue = (1 << 30) },
4448 };
4449
4450 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4451 /* Ignore ReadBuffer accesses */
4452 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4453 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4454 .access = PL1_RW, .resetvalue = 0,
4455 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4456 };
4457
4458 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4459 {
4460 unsigned int cur_el = arm_current_el(env);
4461
4462 if (arm_is_el2_enabled(env) && cur_el == 1) {
4463 return env->cp15.vpidr_el2;
4464 }
4465 return raw_read(env, ri);
4466 }
4467
4468 static uint64_t mpidr_read_val(CPUARMState *env)
4469 {
4470 ARMCPU *cpu = env_archcpu(env);
4471 uint64_t mpidr = cpu->mp_affinity;
4472
4473 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4474 mpidr |= (1U << 31);
4475 /*
4476 * Cores which are uniprocessor (non-coherent)
4477 * but still implement the MP extensions set
4478 * bit 30. (For instance, Cortex-R5).
4479 */
4480 if (cpu->mp_is_up) {
4481 mpidr |= (1u << 30);
4482 }
4483 }
4484 return mpidr;
4485 }
4486
4487 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4488 {
4489 unsigned int cur_el = arm_current_el(env);
4490
4491 if (arm_is_el2_enabled(env) && cur_el == 1) {
4492 return env->cp15.vmpidr_el2;
4493 }
4494 return mpidr_read_val(env);
4495 }
4496
4497 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4498 /* NOP AMAIR0/1 */
4499 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4500 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4501 .access = PL1_RW, .accessfn = access_tvm_trvm,
4502 .fgt = FGT_AMAIR_EL1,
4503 .type = ARM_CP_CONST, .resetvalue = 0 },
4504 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4505 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4506 .access = PL1_RW, .accessfn = access_tvm_trvm,
4507 .type = ARM_CP_CONST, .resetvalue = 0 },
4508 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4509 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4510 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4511 offsetof(CPUARMState, cp15.par_ns)} },
4512 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4513 .access = PL1_RW, .accessfn = access_tvm_trvm,
4514 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4515 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4516 offsetof(CPUARMState, cp15.ttbr0_ns) },
4517 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4518 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4519 .access = PL1_RW, .accessfn = access_tvm_trvm,
4520 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4521 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4522 offsetof(CPUARMState, cp15.ttbr1_ns) },
4523 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4524 };
4525
4526 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4527 {
4528 return vfp_get_fpcr(env);
4529 }
4530
4531 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4532 uint64_t value)
4533 {
4534 vfp_set_fpcr(env, value);
4535 }
4536
4537 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4538 {
4539 return vfp_get_fpsr(env);
4540 }
4541
4542 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4543 uint64_t value)
4544 {
4545 vfp_set_fpsr(env, value);
4546 }
4547
4548 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4549 bool isread)
4550 {
4551 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4552 return CP_ACCESS_TRAP;
4553 }
4554 return CP_ACCESS_OK;
4555 }
4556
4557 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4558 uint64_t value)
4559 {
4560 env->daif = value & PSTATE_DAIF;
4561 }
4562
4563 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4564 {
4565 return env->pstate & PSTATE_PAN;
4566 }
4567
4568 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4569 uint64_t value)
4570 {
4571 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4572 }
4573
4574 static const ARMCPRegInfo pan_reginfo = {
4575 .name = "PAN", .state = ARM_CP_STATE_AA64,
4576 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4577 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4578 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4579 };
4580
4581 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4582 {
4583 return env->pstate & PSTATE_UAO;
4584 }
4585
4586 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4587 uint64_t value)
4588 {
4589 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4590 }
4591
4592 static const ARMCPRegInfo uao_reginfo = {
4593 .name = "UAO", .state = ARM_CP_STATE_AA64,
4594 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4595 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4596 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4597 };
4598
4599 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4600 {
4601 return env->pstate & PSTATE_DIT;
4602 }
4603
4604 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4605 uint64_t value)
4606 {
4607 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4608 }
4609
4610 static const ARMCPRegInfo dit_reginfo = {
4611 .name = "DIT", .state = ARM_CP_STATE_AA64,
4612 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4613 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4614 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4615 };
4616
4617 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4618 {
4619 return env->pstate & PSTATE_SSBS;
4620 }
4621
4622 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4623 uint64_t value)
4624 {
4625 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4626 }
4627
4628 static const ARMCPRegInfo ssbs_reginfo = {
4629 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4630 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4631 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4632 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4633 };
4634
4635 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4636 const ARMCPRegInfo *ri,
4637 bool isread)
4638 {
4639 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4640 switch (arm_current_el(env)) {
4641 case 0:
4642 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4643 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4644 return CP_ACCESS_TRAP;
4645 }
4646 /* fall through */
4647 case 1:
4648 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4649 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4650 return CP_ACCESS_TRAP_EL2;
4651 }
4652 break;
4653 }
4654 return CP_ACCESS_OK;
4655 }
4656
4657 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4658 {
4659 /* Cache invalidate/clean to Point of Unification... */
4660 switch (arm_current_el(env)) {
4661 case 0:
4662 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4663 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4664 return CP_ACCESS_TRAP;
4665 }
4666 /* fall through */
4667 case 1:
4668 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4669 if (arm_hcr_el2_eff(env) & hcrflags) {
4670 return CP_ACCESS_TRAP_EL2;
4671 }
4672 break;
4673 }
4674 return CP_ACCESS_OK;
4675 }
4676
4677 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4678 bool isread)
4679 {
4680 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4681 }
4682
4683 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4684 bool isread)
4685 {
4686 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4687 }
4688
4689 /*
4690 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4691 * Page D4-1736 (DDI0487A.b)
4692 */
4693
4694 static int vae1_tlbmask(CPUARMState *env)
4695 {
4696 uint64_t hcr = arm_hcr_el2_eff(env);
4697 uint16_t mask;
4698
4699 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4700 mask = ARMMMUIdxBit_E20_2 |
4701 ARMMMUIdxBit_E20_2_PAN |
4702 ARMMMUIdxBit_E20_0;
4703 } else {
4704 mask = ARMMMUIdxBit_E10_1 |
4705 ARMMMUIdxBit_E10_1_PAN |
4706 ARMMMUIdxBit_E10_0;
4707 }
4708 return mask;
4709 }
4710
4711 static int vae2_tlbmask(CPUARMState *env)
4712 {
4713 uint64_t hcr = arm_hcr_el2_eff(env);
4714 uint16_t mask;
4715
4716 if (hcr & HCR_E2H) {
4717 mask = ARMMMUIdxBit_E20_2 |
4718 ARMMMUIdxBit_E20_2_PAN |
4719 ARMMMUIdxBit_E20_0;
4720 } else {
4721 mask = ARMMMUIdxBit_E2;
4722 }
4723 return mask;
4724 }
4725
4726 /* Return 56 if TBI is enabled, 64 otherwise. */
4727 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4728 uint64_t addr)
4729 {
4730 uint64_t tcr = regime_tcr(env, mmu_idx);
4731 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4732 int select = extract64(addr, 55, 1);
4733
4734 return (tbi >> select) & 1 ? 56 : 64;
4735 }
4736
4737 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4738 {
4739 uint64_t hcr = arm_hcr_el2_eff(env);
4740 ARMMMUIdx mmu_idx;
4741
4742 /* Only the regime of the mmu_idx below is significant. */
4743 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4744 mmu_idx = ARMMMUIdx_E20_0;
4745 } else {
4746 mmu_idx = ARMMMUIdx_E10_0;
4747 }
4748
4749 return tlbbits_for_regime(env, mmu_idx, addr);
4750 }
4751
4752 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4753 {
4754 uint64_t hcr = arm_hcr_el2_eff(env);
4755 ARMMMUIdx mmu_idx;
4756
4757 /*
4758 * Only the regime of the mmu_idx below is significant.
4759 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4760 * only has one.
4761 */
4762 if (hcr & HCR_E2H) {
4763 mmu_idx = ARMMMUIdx_E20_2;
4764 } else {
4765 mmu_idx = ARMMMUIdx_E2;
4766 }
4767
4768 return tlbbits_for_regime(env, mmu_idx, addr);
4769 }
4770
4771 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4772 uint64_t value)
4773 {
4774 CPUState *cs = env_cpu(env);
4775 int mask = vae1_tlbmask(env);
4776
4777 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4778 }
4779
4780 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4781 uint64_t value)
4782 {
4783 CPUState *cs = env_cpu(env);
4784 int mask = vae1_tlbmask(env);
4785
4786 if (tlb_force_broadcast(env)) {
4787 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4788 } else {
4789 tlb_flush_by_mmuidx(cs, mask);
4790 }
4791 }
4792
4793 static int e2_tlbmask(CPUARMState *env)
4794 {
4795 return (ARMMMUIdxBit_E20_0 |
4796 ARMMMUIdxBit_E20_2 |
4797 ARMMMUIdxBit_E20_2_PAN |
4798 ARMMMUIdxBit_E2);
4799 }
4800
4801 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4802 uint64_t value)
4803 {
4804 CPUState *cs = env_cpu(env);
4805 int mask = alle1_tlbmask(env);
4806
4807 tlb_flush_by_mmuidx(cs, mask);
4808 }
4809
4810 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4811 uint64_t value)
4812 {
4813 CPUState *cs = env_cpu(env);
4814 int mask = e2_tlbmask(env);
4815
4816 tlb_flush_by_mmuidx(cs, mask);
4817 }
4818
4819 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4820 uint64_t value)
4821 {
4822 ARMCPU *cpu = env_archcpu(env);
4823 CPUState *cs = CPU(cpu);
4824
4825 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4826 }
4827
4828 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4829 uint64_t value)
4830 {
4831 CPUState *cs = env_cpu(env);
4832 int mask = alle1_tlbmask(env);
4833
4834 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4835 }
4836
4837 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4838 uint64_t value)
4839 {
4840 CPUState *cs = env_cpu(env);
4841 int mask = e2_tlbmask(env);
4842
4843 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4844 }
4845
4846 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4847 uint64_t value)
4848 {
4849 CPUState *cs = env_cpu(env);
4850
4851 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4852 }
4853
4854 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4855 uint64_t value)
4856 {
4857 /*
4858 * Invalidate by VA, EL2
4859 * Currently handles both VAE2 and VALE2, since we don't support
4860 * flush-last-level-only.
4861 */
4862 CPUState *cs = env_cpu(env);
4863 int mask = vae2_tlbmask(env);
4864 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4865 int bits = vae2_tlbbits(env, pageaddr);
4866
4867 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4868 }
4869
4870 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4871 uint64_t value)
4872 {
4873 /*
4874 * Invalidate by VA, EL3
4875 * Currently handles both VAE3 and VALE3, since we don't support
4876 * flush-last-level-only.
4877 */
4878 ARMCPU *cpu = env_archcpu(env);
4879 CPUState *cs = CPU(cpu);
4880 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4881
4882 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4883 }
4884
4885 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4886 uint64_t value)
4887 {
4888 CPUState *cs = env_cpu(env);
4889 int mask = vae1_tlbmask(env);
4890 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4891 int bits = vae1_tlbbits(env, pageaddr);
4892
4893 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4894 }
4895
4896 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4897 uint64_t value)
4898 {
4899 /*
4900 * Invalidate by VA, EL1&0 (AArch64 version).
4901 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4902 * since we don't support flush-for-specific-ASID-only or
4903 * flush-last-level-only.
4904 */
4905 CPUState *cs = env_cpu(env);
4906 int mask = vae1_tlbmask(env);
4907 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4908 int bits = vae1_tlbbits(env, pageaddr);
4909
4910 if (tlb_force_broadcast(env)) {
4911 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4912 } else {
4913 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4914 }
4915 }
4916
4917 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4918 uint64_t value)
4919 {
4920 CPUState *cs = env_cpu(env);
4921 int mask = vae2_tlbmask(env);
4922 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4923 int bits = vae2_tlbbits(env, pageaddr);
4924
4925 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4926 }
4927
4928 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4929 uint64_t value)
4930 {
4931 CPUState *cs = env_cpu(env);
4932 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4933 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4934
4935 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4936 ARMMMUIdxBit_E3, bits);
4937 }
4938
4939 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4940 {
4941 /*
4942 * The MSB of value is the NS field, which only applies if SEL2
4943 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4944 */
4945 return (value >= 0
4946 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4947 && arm_is_secure_below_el3(env)
4948 ? ARMMMUIdxBit_Stage2_S
4949 : ARMMMUIdxBit_Stage2);
4950 }
4951
4952 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4953 uint64_t value)
4954 {
4955 CPUState *cs = env_cpu(env);
4956 int mask = ipas2e1_tlbmask(env, value);
4957 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4958
4959 if (tlb_force_broadcast(env)) {
4960 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4961 } else {
4962 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4963 }
4964 }
4965
4966 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4967 uint64_t value)
4968 {
4969 CPUState *cs = env_cpu(env);
4970 int mask = ipas2e1_tlbmask(env, value);
4971 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4972
4973 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4974 }
4975
4976 #ifdef TARGET_AARCH64
4977 typedef struct {
4978 uint64_t base;
4979 uint64_t length;
4980 } TLBIRange;
4981
4982 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4983 {
4984 /*
4985 * Note that the TLBI range TG field encoding differs from both
4986 * TG0 and TG1 encodings.
4987 */
4988 switch (tg) {
4989 case 1:
4990 return Gran4K;
4991 case 2:
4992 return Gran16K;
4993 case 3:
4994 return Gran64K;
4995 default:
4996 return GranInvalid;
4997 }
4998 }
4999
5000 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5001 uint64_t value)
5002 {
5003 unsigned int page_size_granule, page_shift, num, scale, exponent;
5004 /* Extract one bit to represent the va selector in use. */
5005 uint64_t select = sextract64(value, 36, 1);
5006 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5007 TLBIRange ret = { };
5008 ARMGranuleSize gran;
5009
5010 page_size_granule = extract64(value, 46, 2);
5011 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5012
5013 /* The granule encoded in value must match the granule in use. */
5014 if (gran != param.gran) {
5015 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5016 page_size_granule);
5017 return ret;
5018 }
5019
5020 page_shift = arm_granule_bits(gran);
5021 num = extract64(value, 39, 5);
5022 scale = extract64(value, 44, 2);
5023 exponent = (5 * scale) + 1;
5024
5025 ret.length = (num + 1) << (exponent + page_shift);
5026
5027 if (param.select) {
5028 ret.base = sextract64(value, 0, 37);
5029 } else {
5030 ret.base = extract64(value, 0, 37);
5031 }
5032 if (param.ds) {
5033 /*
5034 * With DS=1, BaseADDR is always shifted 16 so that it is able
5035 * to address all 52 va bits. The input address is perforce
5036 * aligned on a 64k boundary regardless of translation granule.
5037 */
5038 page_shift = 16;
5039 }
5040 ret.base <<= page_shift;
5041
5042 return ret;
5043 }
5044
5045 static void do_rvae_write(CPUARMState *env, uint64_t value,
5046 int idxmap, bool synced)
5047 {
5048 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5049 TLBIRange range;
5050 int bits;
5051
5052 range = tlbi_aa64_get_range(env, one_idx, value);
5053 bits = tlbbits_for_regime(env, one_idx, range.base);
5054
5055 if (synced) {
5056 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5057 range.base,
5058 range.length,
5059 idxmap,
5060 bits);
5061 } else {
5062 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5063 range.length, idxmap, bits);
5064 }
5065 }
5066
5067 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5068 const ARMCPRegInfo *ri,
5069 uint64_t value)
5070 {
5071 /*
5072 * Invalidate by VA range, EL1&0.
5073 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5074 * since we don't support flush-for-specific-ASID-only or
5075 * flush-last-level-only.
5076 */
5077
5078 do_rvae_write(env, value, vae1_tlbmask(env),
5079 tlb_force_broadcast(env));
5080 }
5081
5082 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5083 const ARMCPRegInfo *ri,
5084 uint64_t value)
5085 {
5086 /*
5087 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5088 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5089 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5090 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5091 * shareable specific flushes.
5092 */
5093
5094 do_rvae_write(env, value, vae1_tlbmask(env), true);
5095 }
5096
5097 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5098 const ARMCPRegInfo *ri,
5099 uint64_t value)
5100 {
5101 /*
5102 * Invalidate by VA range, EL2.
5103 * Currently handles all of RVAE2 and RVALE2,
5104 * since we don't support flush-for-specific-ASID-only or
5105 * flush-last-level-only.
5106 */
5107
5108 do_rvae_write(env, value, vae2_tlbmask(env),
5109 tlb_force_broadcast(env));
5110
5111
5112 }
5113
5114 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5115 const ARMCPRegInfo *ri,
5116 uint64_t value)
5117 {
5118 /*
5119 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5120 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5121 * since we don't support flush-for-specific-ASID-only,
5122 * flush-last-level-only or inner/outer shareable specific flushes.
5123 */
5124
5125 do_rvae_write(env, value, vae2_tlbmask(env), true);
5126
5127 }
5128
5129 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5130 const ARMCPRegInfo *ri,
5131 uint64_t value)
5132 {
5133 /*
5134 * Invalidate by VA range, EL3.
5135 * Currently handles all of RVAE3 and RVALE3,
5136 * since we don't support flush-for-specific-ASID-only or
5137 * flush-last-level-only.
5138 */
5139
5140 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5141 }
5142
5143 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5144 const ARMCPRegInfo *ri,
5145 uint64_t value)
5146 {
5147 /*
5148 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5149 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5150 * since we don't support flush-for-specific-ASID-only,
5151 * flush-last-level-only or inner/outer specific flushes.
5152 */
5153
5154 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5155 }
5156
5157 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5158 uint64_t value)
5159 {
5160 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5161 tlb_force_broadcast(env));
5162 }
5163
5164 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5165 const ARMCPRegInfo *ri,
5166 uint64_t value)
5167 {
5168 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5169 }
5170 #endif
5171
5172 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5173 bool isread)
5174 {
5175 int cur_el = arm_current_el(env);
5176
5177 if (cur_el < 2) {
5178 uint64_t hcr = arm_hcr_el2_eff(env);
5179
5180 if (cur_el == 0) {
5181 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5182 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5183 return CP_ACCESS_TRAP_EL2;
5184 }
5185 } else {
5186 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5187 return CP_ACCESS_TRAP;
5188 }
5189 if (hcr & HCR_TDZ) {
5190 return CP_ACCESS_TRAP_EL2;
5191 }
5192 }
5193 } else if (hcr & HCR_TDZ) {
5194 return CP_ACCESS_TRAP_EL2;
5195 }
5196 }
5197 return CP_ACCESS_OK;
5198 }
5199
5200 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5201 {
5202 ARMCPU *cpu = env_archcpu(env);
5203 int dzp_bit = 1 << 4;
5204
5205 /* DZP indicates whether DC ZVA access is allowed */
5206 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5207 dzp_bit = 0;
5208 }
5209 return cpu->dcz_blocksize | dzp_bit;
5210 }
5211
5212 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5213 bool isread)
5214 {
5215 if (!(env->pstate & PSTATE_SP)) {
5216 /*
5217 * Access to SP_EL0 is undefined if it's being used as
5218 * the stack pointer.
5219 */
5220 return CP_ACCESS_TRAP_UNCATEGORIZED;
5221 }
5222 return CP_ACCESS_OK;
5223 }
5224
5225 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5226 {
5227 return env->pstate & PSTATE_SP;
5228 }
5229
5230 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5231 {
5232 update_spsel(env, val);
5233 }
5234
5235 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5236 uint64_t value)
5237 {
5238 ARMCPU *cpu = env_archcpu(env);
5239
5240 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5241 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5242 value &= ~SCTLR_M;
5243 }
5244
5245 /* ??? Lots of these bits are not implemented. */
5246
5247 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5248 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5249 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5250 } else {
5251 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5252 SCTLR_ATA0 | SCTLR_ATA);
5253 }
5254 }
5255
5256 if (raw_read(env, ri) == value) {
5257 /*
5258 * Skip the TLB flush if nothing actually changed; Linux likes
5259 * to do a lot of pointless SCTLR writes.
5260 */
5261 return;
5262 }
5263
5264 raw_write(env, ri, value);
5265
5266 /* This may enable/disable the MMU, so do a TLB flush. */
5267 tlb_flush(CPU(cpu));
5268
5269 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5270 /*
5271 * Normally we would always end the TB on an SCTLR write; see the
5272 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5273 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5274 * of hflags from the translator, so do it here.
5275 */
5276 arm_rebuild_hflags(env);
5277 }
5278 }
5279
5280 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5281 uint64_t value)
5282 {
5283 /*
5284 * Some MDCR_EL3 bits affect whether PMU counters are running:
5285 * if we are trying to change any of those then we must
5286 * bracket this update with PMU start/finish calls.
5287 */
5288 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5289
5290 if (pmu_op) {
5291 pmu_op_start(env);
5292 }
5293 env->cp15.mdcr_el3 = value;
5294 if (pmu_op) {
5295 pmu_op_finish(env);
5296 }
5297 }
5298
5299 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5300 uint64_t value)
5301 {
5302 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5303 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5304 }
5305
5306 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5307 uint64_t value)
5308 {
5309 /*
5310 * Some MDCR_EL2 bits affect whether PMU counters are running:
5311 * if we are trying to change any of those then we must
5312 * bracket this update with PMU start/finish calls.
5313 */
5314 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5315
5316 if (pmu_op) {
5317 pmu_op_start(env);
5318 }
5319 env->cp15.mdcr_el2 = value;
5320 if (pmu_op) {
5321 pmu_op_finish(env);
5322 }
5323 }
5324
5325 #ifdef CONFIG_USER_ONLY
5326 /*
5327 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5328 * code to get around W^X restrictions, where one region is writable and the
5329 * other is executable.
5330 *
5331 * Since the executable region is never written to we cannot detect code
5332 * changes when running in user mode, and rely on the emulated JIT telling us
5333 * that the code has changed by executing this instruction.
5334 */
5335 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5336 uint64_t value)
5337 {
5338 uint64_t icache_line_mask, start_address, end_address;
5339 const ARMCPU *cpu;
5340
5341 cpu = env_archcpu(env);
5342
5343 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5344 start_address = value & ~icache_line_mask;
5345 end_address = value | icache_line_mask;
5346
5347 mmap_lock();
5348
5349 tb_invalidate_phys_range(start_address, end_address);
5350
5351 mmap_unlock();
5352 }
5353 #endif
5354
5355 static const ARMCPRegInfo v8_cp_reginfo[] = {
5356 /*
5357 * Minimal set of EL0-visible registers. This will need to be expanded
5358 * significantly for system emulation of AArch64 CPUs.
5359 */
5360 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5361 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5362 .access = PL0_RW, .type = ARM_CP_NZCV },
5363 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5364 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5365 .type = ARM_CP_NO_RAW,
5366 .access = PL0_RW, .accessfn = aa64_daif_access,
5367 .fieldoffset = offsetof(CPUARMState, daif),
5368 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5369 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5370 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5371 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5372 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5373 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5374 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5375 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5376 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5377 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5378 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5379 .access = PL0_R, .type = ARM_CP_NO_RAW,
5380 .fgt = FGT_DCZID_EL0,
5381 .readfn = aa64_dczid_read },
5382 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5383 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5384 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5385 #ifndef CONFIG_USER_ONLY
5386 /* Avoid overhead of an access check that always passes in user-mode */
5387 .accessfn = aa64_zva_access,
5388 .fgt = FGT_DCZVA,
5389 #endif
5390 },
5391 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5392 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5393 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5394 /*
5395 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5396 * don't emulate caches.
5397 */
5398 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5399 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5400 .access = PL1_W, .type = ARM_CP_NOP,
5401 .fgt = FGT_ICIALLUIS,
5402 .accessfn = access_ticab },
5403 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5404 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5405 .access = PL1_W, .type = ARM_CP_NOP,
5406 .fgt = FGT_ICIALLU,
5407 .accessfn = access_tocu },
5408 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5410 .access = PL0_W,
5411 .fgt = FGT_ICIVAU,
5412 .accessfn = access_tocu,
5413 #ifdef CONFIG_USER_ONLY
5414 .type = ARM_CP_NO_RAW,
5415 .writefn = ic_ivau_write
5416 #else
5417 .type = ARM_CP_NOP
5418 #endif
5419 },
5420 /* Cache ops: all NOPs since we don't emulate caches */
5421 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5423 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5424 .fgt = FGT_DCIVAC,
5425 .type = ARM_CP_NOP },
5426 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5427 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5428 .fgt = FGT_DCISW,
5429 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5430 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5431 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5432 .access = PL0_W, .type = ARM_CP_NOP,
5433 .fgt = FGT_DCCVAC,
5434 .accessfn = aa64_cacheop_poc_access },
5435 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5436 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5437 .fgt = FGT_DCCSW,
5438 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5439 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5440 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5441 .access = PL0_W, .type = ARM_CP_NOP,
5442 .fgt = FGT_DCCVAU,
5443 .accessfn = access_tocu },
5444 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5445 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5446 .access = PL0_W, .type = ARM_CP_NOP,
5447 .fgt = FGT_DCCIVAC,
5448 .accessfn = aa64_cacheop_poc_access },
5449 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5451 .fgt = FGT_DCCISW,
5452 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5453 /* TLBI operations */
5454 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5456 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5457 .fgt = FGT_TLBIVMALLE1IS,
5458 .writefn = tlbi_aa64_vmalle1is_write },
5459 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5460 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5461 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5462 .fgt = FGT_TLBIVAE1IS,
5463 .writefn = tlbi_aa64_vae1is_write },
5464 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5465 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5466 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5467 .fgt = FGT_TLBIASIDE1IS,
5468 .writefn = tlbi_aa64_vmalle1is_write },
5469 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5470 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5471 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5472 .fgt = FGT_TLBIVAAE1IS,
5473 .writefn = tlbi_aa64_vae1is_write },
5474 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5475 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5476 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5477 .fgt = FGT_TLBIVALE1IS,
5478 .writefn = tlbi_aa64_vae1is_write },
5479 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5480 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5481 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5482 .fgt = FGT_TLBIVAALE1IS,
5483 .writefn = tlbi_aa64_vae1is_write },
5484 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5485 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5486 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5487 .fgt = FGT_TLBIVMALLE1,
5488 .writefn = tlbi_aa64_vmalle1_write },
5489 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5490 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5491 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5492 .fgt = FGT_TLBIVAE1,
5493 .writefn = tlbi_aa64_vae1_write },
5494 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5495 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5496 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5497 .fgt = FGT_TLBIASIDE1,
5498 .writefn = tlbi_aa64_vmalle1_write },
5499 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5500 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5501 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5502 .fgt = FGT_TLBIVAAE1,
5503 .writefn = tlbi_aa64_vae1_write },
5504 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5506 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5507 .fgt = FGT_TLBIVALE1,
5508 .writefn = tlbi_aa64_vae1_write },
5509 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5510 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5511 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5512 .fgt = FGT_TLBIVAALE1,
5513 .writefn = tlbi_aa64_vae1_write },
5514 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5515 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5516 .access = PL2_W, .type = ARM_CP_NO_RAW,
5517 .writefn = tlbi_aa64_ipas2e1is_write },
5518 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5519 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5520 .access = PL2_W, .type = ARM_CP_NO_RAW,
5521 .writefn = tlbi_aa64_ipas2e1is_write },
5522 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5524 .access = PL2_W, .type = ARM_CP_NO_RAW,
5525 .writefn = tlbi_aa64_alle1is_write },
5526 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5527 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5528 .access = PL2_W, .type = ARM_CP_NO_RAW,
5529 .writefn = tlbi_aa64_alle1is_write },
5530 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5531 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5532 .access = PL2_W, .type = ARM_CP_NO_RAW,
5533 .writefn = tlbi_aa64_ipas2e1_write },
5534 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5535 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5536 .access = PL2_W, .type = ARM_CP_NO_RAW,
5537 .writefn = tlbi_aa64_ipas2e1_write },
5538 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5539 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5540 .access = PL2_W, .type = ARM_CP_NO_RAW,
5541 .writefn = tlbi_aa64_alle1_write },
5542 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5544 .access = PL2_W, .type = ARM_CP_NO_RAW,
5545 .writefn = tlbi_aa64_alle1is_write },
5546 #ifndef CONFIG_USER_ONLY
5547 /* 64 bit address translation operations */
5548 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5549 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5550 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5551 .fgt = FGT_ATS1E1R,
5552 .accessfn = at_e012_access, .writefn = ats_write64 },
5553 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5554 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5555 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5556 .fgt = FGT_ATS1E1W,
5557 .accessfn = at_e012_access, .writefn = ats_write64 },
5558 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5560 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5561 .fgt = FGT_ATS1E0R,
5562 .accessfn = at_e012_access, .writefn = ats_write64 },
5563 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5564 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5565 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5566 .fgt = FGT_ATS1E0W,
5567 .accessfn = at_e012_access, .writefn = ats_write64 },
5568 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5570 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5571 .accessfn = at_e012_access, .writefn = ats_write64 },
5572 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5573 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5574 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5575 .accessfn = at_e012_access, .writefn = ats_write64 },
5576 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5577 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5578 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5579 .accessfn = at_e012_access, .writefn = ats_write64 },
5580 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5581 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5582 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5583 .accessfn = at_e012_access, .writefn = ats_write64 },
5584 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5585 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5586 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5587 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5588 .writefn = ats_write64 },
5589 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5590 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5591 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5592 .writefn = ats_write64 },
5593 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5594 .type = ARM_CP_ALIAS,
5595 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5596 .access = PL1_RW, .resetvalue = 0,
5597 .fgt = FGT_PAR_EL1,
5598 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5599 .writefn = par_write },
5600 #endif
5601 /* TLB invalidate last level of translation table walk */
5602 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5603 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5604 .writefn = tlbimva_is_write },
5605 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5606 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5607 .writefn = tlbimvaa_is_write },
5608 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5609 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5610 .writefn = tlbimva_write },
5611 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5612 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5613 .writefn = tlbimvaa_write },
5614 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5615 .type = ARM_CP_NO_RAW, .access = PL2_W,
5616 .writefn = tlbimva_hyp_write },
5617 { .name = "TLBIMVALHIS",
5618 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5619 .type = ARM_CP_NO_RAW, .access = PL2_W,
5620 .writefn = tlbimva_hyp_is_write },
5621 { .name = "TLBIIPAS2",
5622 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5623 .type = ARM_CP_NO_RAW, .access = PL2_W,
5624 .writefn = tlbiipas2_hyp_write },
5625 { .name = "TLBIIPAS2IS",
5626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5627 .type = ARM_CP_NO_RAW, .access = PL2_W,
5628 .writefn = tlbiipas2is_hyp_write },
5629 { .name = "TLBIIPAS2L",
5630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5631 .type = ARM_CP_NO_RAW, .access = PL2_W,
5632 .writefn = tlbiipas2_hyp_write },
5633 { .name = "TLBIIPAS2LIS",
5634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5635 .type = ARM_CP_NO_RAW, .access = PL2_W,
5636 .writefn = tlbiipas2is_hyp_write },
5637 /* 32 bit cache operations */
5638 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5639 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5640 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5641 .type = ARM_CP_NOP, .access = PL1_W },
5642 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5643 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5644 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5645 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5646 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5647 .type = ARM_CP_NOP, .access = PL1_W },
5648 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5649 .type = ARM_CP_NOP, .access = PL1_W },
5650 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5651 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5652 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5653 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5654 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5655 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5656 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5657 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5658 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5659 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5660 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5661 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5662 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5663 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5664 /* MMU Domain access control / MPU write buffer control */
5665 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5666 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5667 .writefn = dacr_write, .raw_writefn = raw_write,
5668 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5669 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5670 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5671 .type = ARM_CP_ALIAS,
5672 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5673 .access = PL1_RW,
5674 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5675 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5676 .type = ARM_CP_ALIAS,
5677 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5678 .access = PL1_RW,
5679 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5680 /*
5681 * We rely on the access checks not allowing the guest to write to the
5682 * state field when SPSel indicates that it's being used as the stack
5683 * pointer.
5684 */
5685 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5686 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5687 .access = PL1_RW, .accessfn = sp_el0_access,
5688 .type = ARM_CP_ALIAS,
5689 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5690 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5691 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5692 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5693 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5694 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5696 .type = ARM_CP_NO_RAW,
5697 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5698 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5699 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5700 .access = PL2_RW,
5701 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5702 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5703 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5704 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5705 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5706 .writefn = dacr_write, .raw_writefn = raw_write,
5707 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5708 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5709 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5710 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5711 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5712 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5713 .type = ARM_CP_ALIAS,
5714 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5715 .access = PL2_RW,
5716 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5717 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5718 .type = ARM_CP_ALIAS,
5719 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5720 .access = PL2_RW,
5721 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5722 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5723 .type = ARM_CP_ALIAS,
5724 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5725 .access = PL2_RW,
5726 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5727 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5728 .type = ARM_CP_ALIAS,
5729 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5730 .access = PL2_RW,
5731 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5732 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5733 .type = ARM_CP_IO,
5734 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5735 .resetvalue = 0,
5736 .access = PL3_RW,
5737 .writefn = mdcr_el3_write,
5738 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5739 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5740 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5741 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5742 .writefn = sdcr_write,
5743 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5744 };
5745
5746 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5747 {
5748 ARMCPU *cpu = env_archcpu(env);
5749
5750 if (arm_feature(env, ARM_FEATURE_V8)) {
5751 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5752 } else {
5753 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5754 }
5755
5756 if (arm_feature(env, ARM_FEATURE_EL3)) {
5757 valid_mask &= ~HCR_HCD;
5758 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5759 /*
5760 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5761 * However, if we're using the SMC PSCI conduit then QEMU is
5762 * effectively acting like EL3 firmware and so the guest at
5763 * EL2 should retain the ability to prevent EL1 from being
5764 * able to make SMC calls into the ersatz firmware, so in
5765 * that case HCR.TSC should be read/write.
5766 */
5767 valid_mask &= ~HCR_TSC;
5768 }
5769
5770 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5771 if (cpu_isar_feature(aa64_vh, cpu)) {
5772 valid_mask |= HCR_E2H;
5773 }
5774 if (cpu_isar_feature(aa64_ras, cpu)) {
5775 valid_mask |= HCR_TERR | HCR_TEA;
5776 }
5777 if (cpu_isar_feature(aa64_lor, cpu)) {
5778 valid_mask |= HCR_TLOR;
5779 }
5780 if (cpu_isar_feature(aa64_pauth, cpu)) {
5781 valid_mask |= HCR_API | HCR_APK;
5782 }
5783 if (cpu_isar_feature(aa64_mte, cpu)) {
5784 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5785 }
5786 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5787 valid_mask |= HCR_ENSCXT;
5788 }
5789 if (cpu_isar_feature(aa64_fwb, cpu)) {
5790 valid_mask |= HCR_FWB;
5791 }
5792 if (cpu_isar_feature(aa64_rme, cpu)) {
5793 valid_mask |= HCR_GPF;
5794 }
5795 }
5796
5797 if (cpu_isar_feature(any_evt, cpu)) {
5798 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5799 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5800 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5801 }
5802
5803 /* Clear RES0 bits. */
5804 value &= valid_mask;
5805
5806 /*
5807 * These bits change the MMU setup:
5808 * HCR_VM enables stage 2 translation
5809 * HCR_PTW forbids certain page-table setups
5810 * HCR_DC disables stage1 and enables stage2 translation
5811 * HCR_DCT enables tagging on (disabled) stage1 translation
5812 * HCR_FWB changes the interpretation of stage2 descriptor bits
5813 */
5814 if ((env->cp15.hcr_el2 ^ value) &
5815 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5816 tlb_flush(CPU(cpu));
5817 }
5818 env->cp15.hcr_el2 = value;
5819
5820 /*
5821 * Updates to VI and VF require us to update the status of
5822 * virtual interrupts, which are the logical OR of these bits
5823 * and the state of the input lines from the GIC. (This requires
5824 * that we have the iothread lock, which is done by marking the
5825 * reginfo structs as ARM_CP_IO.)
5826 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5827 * possible for it to be taken immediately, because VIRQ and
5828 * VFIQ are masked unless running at EL0 or EL1, and HCR
5829 * can only be written at EL2.
5830 */
5831 g_assert(qemu_mutex_iothread_locked());
5832 arm_cpu_update_virq(cpu);
5833 arm_cpu_update_vfiq(cpu);
5834 arm_cpu_update_vserr(cpu);
5835 }
5836
5837 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5838 {
5839 do_hcr_write(env, value, 0);
5840 }
5841
5842 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5843 uint64_t value)
5844 {
5845 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5846 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5847 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5848 }
5849
5850 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5851 uint64_t value)
5852 {
5853 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5854 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5855 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5856 }
5857
5858 /*
5859 * Return the effective value of HCR_EL2, at the given security state.
5860 * Bits that are not included here:
5861 * RW (read from SCR_EL3.RW as needed)
5862 */
5863 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5864 {
5865 uint64_t ret = env->cp15.hcr_el2;
5866
5867 assert(space != ARMSS_Root);
5868
5869 if (!arm_is_el2_enabled_secstate(env, space)) {
5870 /*
5871 * "This register has no effect if EL2 is not enabled in the
5872 * current Security state". This is ARMv8.4-SecEL2 speak for
5873 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5874 *
5875 * Prior to that, the language was "In an implementation that
5876 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5877 * as if this field is 0 for all purposes other than a direct
5878 * read or write access of HCR_EL2". With lots of enumeration
5879 * on a per-field basis. In current QEMU, this is condition
5880 * is arm_is_secure_below_el3.
5881 *
5882 * Since the v8.4 language applies to the entire register, and
5883 * appears to be backward compatible, use that.
5884 */
5885 return 0;
5886 }
5887
5888 /*
5889 * For a cpu that supports both aarch64 and aarch32, we can set bits
5890 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5891 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5892 */
5893 if (!arm_el_is_aa64(env, 2)) {
5894 uint64_t aa32_valid;
5895
5896 /*
5897 * These bits are up-to-date as of ARMv8.6.
5898 * For HCR, it's easiest to list just the 2 bits that are invalid.
5899 * For HCR2, list those that are valid.
5900 */
5901 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5902 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5903 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5904 ret &= aa32_valid;
5905 }
5906
5907 if (ret & HCR_TGE) {
5908 /* These bits are up-to-date as of ARMv8.6. */
5909 if (ret & HCR_E2H) {
5910 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5911 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5912 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5913 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5914 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5915 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5916 } else {
5917 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5918 }
5919 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5920 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5921 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5922 HCR_TLOR);
5923 }
5924
5925 return ret;
5926 }
5927
5928 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5929 {
5930 if (arm_feature(env, ARM_FEATURE_M)) {
5931 return 0;
5932 }
5933 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5934 }
5935
5936 /*
5937 * Corresponds to ARM pseudocode function ELIsInHost().
5938 */
5939 bool el_is_in_host(CPUARMState *env, int el)
5940 {
5941 uint64_t mask;
5942
5943 /*
5944 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5945 * Perform the simplest bit tests first, and validate EL2 afterward.
5946 */
5947 if (el & 1) {
5948 return false; /* EL1 or EL3 */
5949 }
5950
5951 /*
5952 * Note that hcr_write() checks isar_feature_aa64_vh(),
5953 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5954 */
5955 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5956 if ((env->cp15.hcr_el2 & mask) != mask) {
5957 return false;
5958 }
5959
5960 /* TGE and/or E2H set: double check those bits are currently legal. */
5961 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5962 }
5963
5964 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5965 uint64_t value)
5966 {
5967 uint64_t valid_mask = 0;
5968
5969 /* FEAT_MOPS adds MSCEn and MCE2 */
5970 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5971 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5972 }
5973
5974 /* Clear RES0 bits. */
5975 env->cp15.hcrx_el2 = value & valid_mask;
5976 }
5977
5978 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5979 bool isread)
5980 {
5981 if (arm_current_el(env) < 3
5982 && arm_feature(env, ARM_FEATURE_EL3)
5983 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5984 return CP_ACCESS_TRAP_EL3;
5985 }
5986 return CP_ACCESS_OK;
5987 }
5988
5989 static const ARMCPRegInfo hcrx_el2_reginfo = {
5990 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5991 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5992 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5993 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5994 };
5995
5996 /* Return the effective value of HCRX_EL2. */
5997 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5998 {
5999 /*
6000 * The bits in this register behave as 0 for all purposes other than
6001 * direct reads of the register if SCR_EL3.HXEn is 0.
6002 * If EL2 is not enabled in the current security state, then the
6003 * bit may behave as if 0, or as if 1, depending on the bit.
6004 * For the moment, we treat the EL2-disabled case as taking
6005 * priority over the HXEn-disabled case. This is true for the only
6006 * bit for a feature which we implement where the answer is different
6007 * for the two cases (MSCEn for FEAT_MOPS).
6008 * This may need to be revisited for future bits.
6009 */
6010 if (!arm_is_el2_enabled(env)) {
6011 uint64_t hcrx = 0;
6012 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6013 /* MSCEn behaves as 1 if EL2 is not enabled */
6014 hcrx |= HCRX_MSCEN;
6015 }
6016 return hcrx;
6017 }
6018 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6019 return 0;
6020 }
6021 return env->cp15.hcrx_el2;
6022 }
6023
6024 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6025 uint64_t value)
6026 {
6027 /*
6028 * For A-profile AArch32 EL3, if NSACR.CP10
6029 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6030 */
6031 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6032 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6033 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6034 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6035 }
6036 env->cp15.cptr_el[2] = value;
6037 }
6038
6039 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6040 {
6041 /*
6042 * For A-profile AArch32 EL3, if NSACR.CP10
6043 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6044 */
6045 uint64_t value = env->cp15.cptr_el[2];
6046
6047 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6048 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6049 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6050 }
6051 return value;
6052 }
6053
6054 static const ARMCPRegInfo el2_cp_reginfo[] = {
6055 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6056 .type = ARM_CP_IO,
6057 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6058 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6059 .writefn = hcr_write, .raw_writefn = raw_write },
6060 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6061 .type = ARM_CP_ALIAS | ARM_CP_IO,
6062 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6063 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6064 .writefn = hcr_writelow },
6065 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6066 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6067 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6068 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6069 .type = ARM_CP_ALIAS,
6070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6071 .access = PL2_RW,
6072 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6073 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6074 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6075 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6076 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6077 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6078 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6079 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6080 .type = ARM_CP_ALIAS,
6081 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6082 .access = PL2_RW,
6083 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6084 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6085 .type = ARM_CP_ALIAS,
6086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6087 .access = PL2_RW,
6088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6089 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6090 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6091 .access = PL2_RW, .writefn = vbar_write,
6092 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6093 .resetvalue = 0 },
6094 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6096 .access = PL3_RW, .type = ARM_CP_ALIAS,
6097 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6098 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6099 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6100 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6101 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6102 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6103 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6104 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6105 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6106 .resetvalue = 0 },
6107 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6108 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6109 .access = PL2_RW, .type = ARM_CP_ALIAS,
6110 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6111 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6112 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6113 .access = PL2_RW, .type = ARM_CP_CONST,
6114 .resetvalue = 0 },
6115 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6116 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6117 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6118 .access = PL2_RW, .type = ARM_CP_CONST,
6119 .resetvalue = 0 },
6120 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6121 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6122 .access = PL2_RW, .type = ARM_CP_CONST,
6123 .resetvalue = 0 },
6124 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6125 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6126 .access = PL2_RW, .type = ARM_CP_CONST,
6127 .resetvalue = 0 },
6128 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6129 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6130 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6131 .raw_writefn = raw_write,
6132 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6133 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6134 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6135 .type = ARM_CP_ALIAS,
6136 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6137 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6138 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6139 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6140 .access = PL2_RW,
6141 /* no .writefn needed as this can't cause an ASID change */
6142 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6143 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6144 .cp = 15, .opc1 = 6, .crm = 2,
6145 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6146 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6147 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6148 .writefn = vttbr_write, .raw_writefn = raw_write },
6149 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6151 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6152 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6153 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6154 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6155 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6156 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6157 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6158 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6159 .access = PL2_RW, .resetvalue = 0,
6160 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6161 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6162 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6163 .access = PL2_RW, .resetvalue = 0,
6164 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6165 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6166 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6167 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6168 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6169 { .name = "TLBIALLNSNH",
6170 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6171 .type = ARM_CP_NO_RAW, .access = PL2_W,
6172 .writefn = tlbiall_nsnh_write },
6173 { .name = "TLBIALLNSNHIS",
6174 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6175 .type = ARM_CP_NO_RAW, .access = PL2_W,
6176 .writefn = tlbiall_nsnh_is_write },
6177 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6178 .type = ARM_CP_NO_RAW, .access = PL2_W,
6179 .writefn = tlbiall_hyp_write },
6180 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6181 .type = ARM_CP_NO_RAW, .access = PL2_W,
6182 .writefn = tlbiall_hyp_is_write },
6183 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6184 .type = ARM_CP_NO_RAW, .access = PL2_W,
6185 .writefn = tlbimva_hyp_write },
6186 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6187 .type = ARM_CP_NO_RAW, .access = PL2_W,
6188 .writefn = tlbimva_hyp_is_write },
6189 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6190 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6191 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6192 .writefn = tlbi_aa64_alle2_write },
6193 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6194 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6195 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6196 .writefn = tlbi_aa64_vae2_write },
6197 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6198 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6199 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6200 .writefn = tlbi_aa64_vae2_write },
6201 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6202 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6203 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6204 .writefn = tlbi_aa64_alle2is_write },
6205 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6206 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6207 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6208 .writefn = tlbi_aa64_vae2is_write },
6209 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6211 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6212 .writefn = tlbi_aa64_vae2is_write },
6213 #ifndef CONFIG_USER_ONLY
6214 /*
6215 * Unlike the other EL2-related AT operations, these must
6216 * UNDEF from EL3 if EL2 is not implemented, which is why we
6217 * define them here rather than with the rest of the AT ops.
6218 */
6219 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6220 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6221 .access = PL2_W, .accessfn = at_s1e2_access,
6222 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6223 .writefn = ats_write64 },
6224 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6225 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6226 .access = PL2_W, .accessfn = at_s1e2_access,
6227 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6228 .writefn = ats_write64 },
6229 /*
6230 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6231 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6232 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6233 * to behave as if SCR.NS was 1.
6234 */
6235 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6236 .access = PL2_W,
6237 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6238 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6239 .access = PL2_W,
6240 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6241 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6242 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6243 /*
6244 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6245 * reset values as IMPDEF. We choose to reset to 3 to comply with
6246 * both ARMv7 and ARMv8.
6247 */
6248 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6249 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6250 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6251 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6252 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6253 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6254 .writefn = gt_cntvoff_write,
6255 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6256 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6257 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6258 .writefn = gt_cntvoff_write,
6259 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6260 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6261 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6263 .type = ARM_CP_IO, .access = PL2_RW,
6264 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6265 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6266 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6267 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6268 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6269 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6270 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6271 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6272 .resetfn = gt_hyp_timer_reset,
6273 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6274 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6275 .type = ARM_CP_IO,
6276 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6277 .access = PL2_RW,
6278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6279 .resetvalue = 0,
6280 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6281 #endif
6282 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6283 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6284 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6285 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6286 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6287 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6288 .access = PL2_RW,
6289 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6290 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6291 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6292 .access = PL2_RW,
6293 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6294 };
6295
6296 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6297 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6298 .type = ARM_CP_ALIAS | ARM_CP_IO,
6299 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6300 .access = PL2_RW,
6301 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6302 .writefn = hcr_writehigh },
6303 };
6304
6305 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6306 bool isread)
6307 {
6308 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6309 return CP_ACCESS_OK;
6310 }
6311 return CP_ACCESS_TRAP_UNCATEGORIZED;
6312 }
6313
6314 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6315 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6316 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6317 .access = PL2_RW, .accessfn = sel2_access,
6318 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6319 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6320 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6321 .access = PL2_RW, .accessfn = sel2_access,
6322 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6323 };
6324
6325 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6326 bool isread)
6327 {
6328 /*
6329 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6330 * At Secure EL1 it traps to EL3 or EL2.
6331 */
6332 if (arm_current_el(env) == 3) {
6333 return CP_ACCESS_OK;
6334 }
6335 if (arm_is_secure_below_el3(env)) {
6336 if (env->cp15.scr_el3 & SCR_EEL2) {
6337 return CP_ACCESS_TRAP_EL2;
6338 }
6339 return CP_ACCESS_TRAP_EL3;
6340 }
6341 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6342 if (isread) {
6343 return CP_ACCESS_OK;
6344 }
6345 return CP_ACCESS_TRAP_UNCATEGORIZED;
6346 }
6347
6348 static const ARMCPRegInfo el3_cp_reginfo[] = {
6349 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6350 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6351 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6352 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6353 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6354 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6355 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6356 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6357 .writefn = scr_write, .raw_writefn = raw_write },
6358 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6359 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6360 .access = PL3_RW, .resetvalue = 0,
6361 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6362 { .name = "SDER",
6363 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6364 .access = PL3_RW, .resetvalue = 0,
6365 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6366 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6367 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6368 .writefn = vbar_write, .resetvalue = 0,
6369 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6370 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6371 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6372 .access = PL3_RW, .resetvalue = 0,
6373 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6374 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6375 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6376 .access = PL3_RW,
6377 /* no .writefn needed as this can't cause an ASID change */
6378 .resetvalue = 0,
6379 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6380 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6381 .type = ARM_CP_ALIAS,
6382 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6383 .access = PL3_RW,
6384 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6385 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6386 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6387 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6388 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6389 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6390 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6391 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6392 .type = ARM_CP_ALIAS,
6393 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6394 .access = PL3_RW,
6395 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6396 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6397 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6398 .access = PL3_RW, .writefn = vbar_write,
6399 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6400 .resetvalue = 0 },
6401 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6402 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6403 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6404 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6405 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6406 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6407 .access = PL3_RW, .resetvalue = 0,
6408 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6409 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6410 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6411 .access = PL3_RW, .type = ARM_CP_CONST,
6412 .resetvalue = 0 },
6413 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6414 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6415 .access = PL3_RW, .type = ARM_CP_CONST,
6416 .resetvalue = 0 },
6417 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6418 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6419 .access = PL3_RW, .type = ARM_CP_CONST,
6420 .resetvalue = 0 },
6421 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6422 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6423 .access = PL3_W, .type = ARM_CP_NO_RAW,
6424 .writefn = tlbi_aa64_alle3is_write },
6425 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6426 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6427 .access = PL3_W, .type = ARM_CP_NO_RAW,
6428 .writefn = tlbi_aa64_vae3is_write },
6429 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6430 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6431 .access = PL3_W, .type = ARM_CP_NO_RAW,
6432 .writefn = tlbi_aa64_vae3is_write },
6433 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6434 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6435 .access = PL3_W, .type = ARM_CP_NO_RAW,
6436 .writefn = tlbi_aa64_alle3_write },
6437 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6438 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6439 .access = PL3_W, .type = ARM_CP_NO_RAW,
6440 .writefn = tlbi_aa64_vae3_write },
6441 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6442 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6443 .access = PL3_W, .type = ARM_CP_NO_RAW,
6444 .writefn = tlbi_aa64_vae3_write },
6445 };
6446
6447 #ifndef CONFIG_USER_ONLY
6448 /* Test if system register redirection is to occur in the current state. */
6449 static bool redirect_for_e2h(CPUARMState *env)
6450 {
6451 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6452 }
6453
6454 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6455 {
6456 CPReadFn *readfn;
6457
6458 if (redirect_for_e2h(env)) {
6459 /* Switch to the saved EL2 version of the register. */
6460 ri = ri->opaque;
6461 readfn = ri->readfn;
6462 } else {
6463 readfn = ri->orig_readfn;
6464 }
6465 if (readfn == NULL) {
6466 readfn = raw_read;
6467 }
6468 return readfn(env, ri);
6469 }
6470
6471 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6472 uint64_t value)
6473 {
6474 CPWriteFn *writefn;
6475
6476 if (redirect_for_e2h(env)) {
6477 /* Switch to the saved EL2 version of the register. */
6478 ri = ri->opaque;
6479 writefn = ri->writefn;
6480 } else {
6481 writefn = ri->orig_writefn;
6482 }
6483 if (writefn == NULL) {
6484 writefn = raw_write;
6485 }
6486 writefn(env, ri, value);
6487 }
6488
6489 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6490 {
6491 struct E2HAlias {
6492 uint32_t src_key, dst_key, new_key;
6493 const char *src_name, *dst_name, *new_name;
6494 bool (*feature)(const ARMISARegisters *id);
6495 };
6496
6497 #define K(op0, op1, crn, crm, op2) \
6498 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6499
6500 static const struct E2HAlias aliases[] = {
6501 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6502 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6503 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6504 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6505 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6506 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6507 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6508 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6509 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6510 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6511 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6512 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6513 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6514 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6515 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6516 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6517 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6518 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6519 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6520 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6521 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6522 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6523 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6524 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6525 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6526 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6527 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6528 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6529 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6530 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6531 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6532 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6533
6534 /*
6535 * Note that redirection of ZCR is mentioned in the description
6536 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6537 * not in the summary table.
6538 */
6539 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6540 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6541 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6542 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6543
6544 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6545 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6546
6547 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6548 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6549 isar_feature_aa64_scxtnum },
6550
6551 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6552 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6553 };
6554 #undef K
6555
6556 size_t i;
6557
6558 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6559 const struct E2HAlias *a = &aliases[i];
6560 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6561 bool ok;
6562
6563 if (a->feature && !a->feature(&cpu->isar)) {
6564 continue;
6565 }
6566
6567 src_reg = g_hash_table_lookup(cpu->cp_regs,
6568 (gpointer)(uintptr_t)a->src_key);
6569 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6570 (gpointer)(uintptr_t)a->dst_key);
6571 g_assert(src_reg != NULL);
6572 g_assert(dst_reg != NULL);
6573
6574 /* Cross-compare names to detect typos in the keys. */
6575 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6576 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6577
6578 /* None of the core system registers use opaque; we will. */
6579 g_assert(src_reg->opaque == NULL);
6580
6581 /* Create alias before redirection so we dup the right data. */
6582 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6583
6584 new_reg->name = a->new_name;
6585 new_reg->type |= ARM_CP_ALIAS;
6586 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6587 new_reg->access &= PL2_RW | PL3_RW;
6588
6589 ok = g_hash_table_insert(cpu->cp_regs,
6590 (gpointer)(uintptr_t)a->new_key, new_reg);
6591 g_assert(ok);
6592
6593 src_reg->opaque = dst_reg;
6594 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6595 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6596 if (!src_reg->raw_readfn) {
6597 src_reg->raw_readfn = raw_read;
6598 }
6599 if (!src_reg->raw_writefn) {
6600 src_reg->raw_writefn = raw_write;
6601 }
6602 src_reg->readfn = el2_e2h_read;
6603 src_reg->writefn = el2_e2h_write;
6604 }
6605 }
6606 #endif
6607
6608 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6609 bool isread)
6610 {
6611 int cur_el = arm_current_el(env);
6612
6613 if (cur_el < 2) {
6614 uint64_t hcr = arm_hcr_el2_eff(env);
6615
6616 if (cur_el == 0) {
6617 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6618 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6619 return CP_ACCESS_TRAP_EL2;
6620 }
6621 } else {
6622 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6623 return CP_ACCESS_TRAP;
6624 }
6625 if (hcr & HCR_TID2) {
6626 return CP_ACCESS_TRAP_EL2;
6627 }
6628 }
6629 } else if (hcr & HCR_TID2) {
6630 return CP_ACCESS_TRAP_EL2;
6631 }
6632 }
6633
6634 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6635 return CP_ACCESS_TRAP_EL2;
6636 }
6637
6638 return CP_ACCESS_OK;
6639 }
6640
6641 /*
6642 * Check for traps to RAS registers, which are controlled
6643 * by HCR_EL2.TERR and SCR_EL3.TERR.
6644 */
6645 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6646 bool isread)
6647 {
6648 int el = arm_current_el(env);
6649
6650 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6651 return CP_ACCESS_TRAP_EL2;
6652 }
6653 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6654 return CP_ACCESS_TRAP_EL3;
6655 }
6656 return CP_ACCESS_OK;
6657 }
6658
6659 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6660 {
6661 int el = arm_current_el(env);
6662
6663 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6664 return env->cp15.vdisr_el2;
6665 }
6666 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6667 return 0; /* RAZ/WI */
6668 }
6669 return env->cp15.disr_el1;
6670 }
6671
6672 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6673 {
6674 int el = arm_current_el(env);
6675
6676 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6677 env->cp15.vdisr_el2 = val;
6678 return;
6679 }
6680 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6681 return; /* RAZ/WI */
6682 }
6683 env->cp15.disr_el1 = val;
6684 }
6685
6686 /*
6687 * Minimal RAS implementation with no Error Records.
6688 * Which means that all of the Error Record registers:
6689 * ERXADDR_EL1
6690 * ERXCTLR_EL1
6691 * ERXFR_EL1
6692 * ERXMISC0_EL1
6693 * ERXMISC1_EL1
6694 * ERXMISC2_EL1
6695 * ERXMISC3_EL1
6696 * ERXPFGCDN_EL1 (RASv1p1)
6697 * ERXPFGCTL_EL1 (RASv1p1)
6698 * ERXPFGF_EL1 (RASv1p1)
6699 * ERXSTATUS_EL1
6700 * and
6701 * ERRSELR_EL1
6702 * may generate UNDEFINED, which is the effect we get by not
6703 * listing them at all.
6704 *
6705 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6706 * is higher priority than FGT-to-EL2 so we do not need to list them
6707 * in order to check for an FGT.
6708 */
6709 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6710 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6711 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6712 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6713 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6714 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6715 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6716 .access = PL1_R, .accessfn = access_terr,
6717 .fgt = FGT_ERRIDR_EL1,
6718 .type = ARM_CP_CONST, .resetvalue = 0 },
6719 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6720 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6721 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6722 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6723 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6724 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6725 };
6726
6727 /*
6728 * Return the exception level to which exceptions should be taken
6729 * via SVEAccessTrap. This excludes the check for whether the exception
6730 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6731 * be found by testing 0 < fp_exception_el < sve_exception_el.
6732 *
6733 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6734 * pseudocode does *not* separate out the FP trap checks, but has them
6735 * all in one function.
6736 */
6737 int sve_exception_el(CPUARMState *env, int el)
6738 {
6739 #ifndef CONFIG_USER_ONLY
6740 if (el <= 1 && !el_is_in_host(env, el)) {
6741 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6742 case 1:
6743 if (el != 0) {
6744 break;
6745 }
6746 /* fall through */
6747 case 0:
6748 case 2:
6749 return 1;
6750 }
6751 }
6752
6753 if (el <= 2 && arm_is_el2_enabled(env)) {
6754 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6755 if (env->cp15.hcr_el2 & HCR_E2H) {
6756 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6757 case 1:
6758 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6759 break;
6760 }
6761 /* fall through */
6762 case 0:
6763 case 2:
6764 return 2;
6765 }
6766 } else {
6767 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6768 return 2;
6769 }
6770 }
6771 }
6772
6773 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6774 if (arm_feature(env, ARM_FEATURE_EL3)
6775 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6776 return 3;
6777 }
6778 #endif
6779 return 0;
6780 }
6781
6782 /*
6783 * Return the exception level to which exceptions should be taken for SME.
6784 * C.f. the ARM pseudocode function CheckSMEAccess.
6785 */
6786 int sme_exception_el(CPUARMState *env, int el)
6787 {
6788 #ifndef CONFIG_USER_ONLY
6789 if (el <= 1 && !el_is_in_host(env, el)) {
6790 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6791 case 1:
6792 if (el != 0) {
6793 break;
6794 }
6795 /* fall through */
6796 case 0:
6797 case 2:
6798 return 1;
6799 }
6800 }
6801
6802 if (el <= 2 && arm_is_el2_enabled(env)) {
6803 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6804 if (env->cp15.hcr_el2 & HCR_E2H) {
6805 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6806 case 1:
6807 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6808 break;
6809 }
6810 /* fall through */
6811 case 0:
6812 case 2:
6813 return 2;
6814 }
6815 } else {
6816 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6817 return 2;
6818 }
6819 }
6820 }
6821
6822 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6823 if (arm_feature(env, ARM_FEATURE_EL3)
6824 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6825 return 3;
6826 }
6827 #endif
6828 return 0;
6829 }
6830
6831 /*
6832 * Given that SVE is enabled, return the vector length for EL.
6833 */
6834 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6835 {
6836 ARMCPU *cpu = env_archcpu(env);
6837 uint64_t *cr = env->vfp.zcr_el;
6838 uint32_t map = cpu->sve_vq.map;
6839 uint32_t len = ARM_MAX_VQ - 1;
6840
6841 if (sm) {
6842 cr = env->vfp.smcr_el;
6843 map = cpu->sme_vq.map;
6844 }
6845
6846 if (el <= 1 && !el_is_in_host(env, el)) {
6847 len = MIN(len, 0xf & (uint32_t)cr[1]);
6848 }
6849 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6850 len = MIN(len, 0xf & (uint32_t)cr[2]);
6851 }
6852 if (arm_feature(env, ARM_FEATURE_EL3)) {
6853 len = MIN(len, 0xf & (uint32_t)cr[3]);
6854 }
6855
6856 map &= MAKE_64BIT_MASK(0, len + 1);
6857 if (map != 0) {
6858 return 31 - clz32(map);
6859 }
6860
6861 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6862 assert(sm);
6863 return ctz32(cpu->sme_vq.map);
6864 }
6865
6866 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6867 {
6868 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6869 }
6870
6871 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6872 uint64_t value)
6873 {
6874 int cur_el = arm_current_el(env);
6875 int old_len = sve_vqm1_for_el(env, cur_el);
6876 int new_len;
6877
6878 /* Bits other than [3:0] are RAZ/WI. */
6879 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6880 raw_write(env, ri, value & 0xf);
6881
6882 /*
6883 * Because we arrived here, we know both FP and SVE are enabled;
6884 * otherwise we would have trapped access to the ZCR_ELn register.
6885 */
6886 new_len = sve_vqm1_for_el(env, cur_el);
6887 if (new_len < old_len) {
6888 aarch64_sve_narrow_vq(env, new_len + 1);
6889 }
6890 }
6891
6892 static const ARMCPRegInfo zcr_reginfo[] = {
6893 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6894 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6895 .access = PL1_RW, .type = ARM_CP_SVE,
6896 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6897 .writefn = zcr_write, .raw_writefn = raw_write },
6898 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6899 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6900 .access = PL2_RW, .type = ARM_CP_SVE,
6901 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6902 .writefn = zcr_write, .raw_writefn = raw_write },
6903 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6904 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6905 .access = PL3_RW, .type = ARM_CP_SVE,
6906 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6907 .writefn = zcr_write, .raw_writefn = raw_write },
6908 };
6909
6910 #ifdef TARGET_AARCH64
6911 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6912 bool isread)
6913 {
6914 int el = arm_current_el(env);
6915
6916 if (el == 0) {
6917 uint64_t sctlr = arm_sctlr(env, el);
6918 if (!(sctlr & SCTLR_EnTP2)) {
6919 return CP_ACCESS_TRAP;
6920 }
6921 }
6922 /* TODO: FEAT_FGT */
6923 if (el < 3
6924 && arm_feature(env, ARM_FEATURE_EL3)
6925 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6926 return CP_ACCESS_TRAP_EL3;
6927 }
6928 return CP_ACCESS_OK;
6929 }
6930
6931 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6932 bool isread)
6933 {
6934 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6935 if (arm_current_el(env) < 3
6936 && arm_feature(env, ARM_FEATURE_EL3)
6937 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6938 return CP_ACCESS_TRAP_EL3;
6939 }
6940 return CP_ACCESS_OK;
6941 }
6942
6943 /* ResetSVEState */
6944 static void arm_reset_sve_state(CPUARMState *env)
6945 {
6946 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6947 /* Recall that FFR is stored as pregs[16]. */
6948 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6949 vfp_set_fpcr(env, 0x0800009f);
6950 }
6951
6952 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6953 {
6954 uint64_t change = (env->svcr ^ new) & mask;
6955
6956 if (change == 0) {
6957 return;
6958 }
6959 env->svcr ^= change;
6960
6961 if (change & R_SVCR_SM_MASK) {
6962 arm_reset_sve_state(env);
6963 }
6964
6965 /*
6966 * ResetSMEState.
6967 *
6968 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6969 * on enable: while disabled, the storage is inaccessible and the
6970 * value does not matter. We're not saving the storage in vmstate
6971 * when disabled either.
6972 */
6973 if (change & new & R_SVCR_ZA_MASK) {
6974 memset(env->zarray, 0, sizeof(env->zarray));
6975 }
6976
6977 if (tcg_enabled()) {
6978 arm_rebuild_hflags(env);
6979 }
6980 }
6981
6982 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6983 uint64_t value)
6984 {
6985 aarch64_set_svcr(env, value, -1);
6986 }
6987
6988 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6989 uint64_t value)
6990 {
6991 int cur_el = arm_current_el(env);
6992 int old_len = sve_vqm1_for_el(env, cur_el);
6993 int new_len;
6994
6995 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6996 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6997 raw_write(env, ri, value);
6998
6999 /*
7000 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7001 * when SVL is widened (old values kept, or zeros). Choose to keep the
7002 * current values for simplicity. But for QEMU internals, we must still
7003 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7004 * above aarch64_sve_narrow_vq.
7005 */
7006 new_len = sve_vqm1_for_el(env, cur_el);
7007 if (new_len < old_len) {
7008 aarch64_sve_narrow_vq(env, new_len + 1);
7009 }
7010 }
7011
7012 static const ARMCPRegInfo sme_reginfo[] = {
7013 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7014 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7015 .access = PL0_RW, .accessfn = access_tpidr2,
7016 .fgt = FGT_NTPIDR2_EL0,
7017 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7018 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7019 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7020 .access = PL0_RW, .type = ARM_CP_SME,
7021 .fieldoffset = offsetof(CPUARMState, svcr),
7022 .writefn = svcr_write, .raw_writefn = raw_write },
7023 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7024 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7025 .access = PL1_RW, .type = ARM_CP_SME,
7026 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7027 .writefn = smcr_write, .raw_writefn = raw_write },
7028 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7029 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7030 .access = PL2_RW, .type = ARM_CP_SME,
7031 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7032 .writefn = smcr_write, .raw_writefn = raw_write },
7033 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7034 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7035 .access = PL3_RW, .type = ARM_CP_SME,
7036 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7037 .writefn = smcr_write, .raw_writefn = raw_write },
7038 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7039 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7040 .access = PL1_R, .accessfn = access_aa64_tid1,
7041 /*
7042 * IMPLEMENTOR = 0 (software)
7043 * REVISION = 0 (implementation defined)
7044 * SMPS = 0 (no streaming execution priority in QEMU)
7045 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7046 */
7047 .type = ARM_CP_CONST, .resetvalue = 0, },
7048 /*
7049 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7050 */
7051 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7052 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7053 .access = PL1_RW, .accessfn = access_esm,
7054 .fgt = FGT_NSMPRI_EL1,
7055 .type = ARM_CP_CONST, .resetvalue = 0 },
7056 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7057 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7058 .access = PL2_RW, .accessfn = access_esm,
7059 .type = ARM_CP_CONST, .resetvalue = 0 },
7060 };
7061
7062 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7063 uint64_t value)
7064 {
7065 CPUState *cs = env_cpu(env);
7066
7067 tlb_flush(cs);
7068 }
7069
7070 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7071 uint64_t value)
7072 {
7073 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7074 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7075 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7076 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7077
7078 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7079 }
7080
7081 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7082 {
7083 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7084 env_archcpu(env)->reset_l0gptsz);
7085 }
7086
7087 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7088 uint64_t value)
7089 {
7090 CPUState *cs = env_cpu(env);
7091
7092 tlb_flush_all_cpus_synced(cs);
7093 }
7094
7095 static const ARMCPRegInfo rme_reginfo[] = {
7096 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7097 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7098 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7099 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7100 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7101 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7102 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7103 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7104 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7105 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7106 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7107 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7108 .access = PL3_W, .type = ARM_CP_NO_RAW,
7109 .writefn = tlbi_aa64_paall_write },
7110 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7111 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7112 .access = PL3_W, .type = ARM_CP_NO_RAW,
7113 .writefn = tlbi_aa64_paallos_write },
7114 /*
7115 * QEMU does not have a way to invalidate by physical address, thus
7116 * invalidating a range of physical addresses is accomplished by
7117 * flushing all tlb entries in the outer shareable domain,
7118 * just like PAALLOS.
7119 */
7120 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7121 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7122 .access = PL3_W, .type = ARM_CP_NO_RAW,
7123 .writefn = tlbi_aa64_paallos_write },
7124 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7125 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7126 .access = PL3_W, .type = ARM_CP_NO_RAW,
7127 .writefn = tlbi_aa64_paallos_write },
7128 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7129 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7130 .access = PL3_W, .type = ARM_CP_NOP },
7131 };
7132
7133 static const ARMCPRegInfo rme_mte_reginfo[] = {
7134 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7135 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7136 .access = PL3_W, .type = ARM_CP_NOP },
7137 };
7138 #endif /* TARGET_AARCH64 */
7139
7140 static void define_pmu_regs(ARMCPU *cpu)
7141 {
7142 /*
7143 * v7 performance monitor control register: same implementor
7144 * field as main ID register, and we implement four counters in
7145 * addition to the cycle count register.
7146 */
7147 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7148 ARMCPRegInfo pmcr = {
7149 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7150 .access = PL0_RW,
7151 .fgt = FGT_PMCR_EL0,
7152 .type = ARM_CP_IO | ARM_CP_ALIAS,
7153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7154 .accessfn = pmreg_access, .writefn = pmcr_write,
7155 .raw_writefn = raw_write,
7156 };
7157 ARMCPRegInfo pmcr64 = {
7158 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7160 .access = PL0_RW, .accessfn = pmreg_access,
7161 .fgt = FGT_PMCR_EL0,
7162 .type = ARM_CP_IO,
7163 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7164 .resetvalue = cpu->isar.reset_pmcr_el0,
7165 .writefn = pmcr_write, .raw_writefn = raw_write,
7166 };
7167
7168 define_one_arm_cp_reg(cpu, &pmcr);
7169 define_one_arm_cp_reg(cpu, &pmcr64);
7170 for (i = 0; i < pmcrn; i++) {
7171 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7172 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7173 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7174 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7175 ARMCPRegInfo pmev_regs[] = {
7176 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7177 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7178 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7179 .fgt = FGT_PMEVCNTRN_EL0,
7180 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7181 .accessfn = pmreg_access_xevcntr },
7182 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7184 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7185 .type = ARM_CP_IO,
7186 .fgt = FGT_PMEVCNTRN_EL0,
7187 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7188 .raw_readfn = pmevcntr_rawread,
7189 .raw_writefn = pmevcntr_rawwrite },
7190 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7191 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7192 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7193 .fgt = FGT_PMEVTYPERN_EL0,
7194 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7195 .accessfn = pmreg_access },
7196 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7197 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7198 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7199 .fgt = FGT_PMEVTYPERN_EL0,
7200 .type = ARM_CP_IO,
7201 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7202 .raw_writefn = pmevtyper_rawwrite },
7203 };
7204 define_arm_cp_regs(cpu, pmev_regs);
7205 g_free(pmevcntr_name);
7206 g_free(pmevcntr_el0_name);
7207 g_free(pmevtyper_name);
7208 g_free(pmevtyper_el0_name);
7209 }
7210 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7211 ARMCPRegInfo v81_pmu_regs[] = {
7212 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7213 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7214 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7215 .fgt = FGT_PMCEIDN_EL0,
7216 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7217 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7218 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7219 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7220 .fgt = FGT_PMCEIDN_EL0,
7221 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7222 };
7223 define_arm_cp_regs(cpu, v81_pmu_regs);
7224 }
7225 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7226 static const ARMCPRegInfo v84_pmmir = {
7227 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7228 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7229 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7230 .fgt = FGT_PMMIR_EL1,
7231 .resetvalue = 0
7232 };
7233 define_one_arm_cp_reg(cpu, &v84_pmmir);
7234 }
7235 }
7236
7237 #ifndef CONFIG_USER_ONLY
7238 /*
7239 * We don't know until after realize whether there's a GICv3
7240 * attached, and that is what registers the gicv3 sysregs.
7241 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7242 * at runtime.
7243 */
7244 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7245 {
7246 ARMCPU *cpu = env_archcpu(env);
7247 uint64_t pfr1 = cpu->isar.id_pfr1;
7248
7249 if (env->gicv3state) {
7250 pfr1 |= 1 << 28;
7251 }
7252 return pfr1;
7253 }
7254
7255 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7256 {
7257 ARMCPU *cpu = env_archcpu(env);
7258 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7259
7260 if (env->gicv3state) {
7261 pfr0 |= 1 << 24;
7262 }
7263 return pfr0;
7264 }
7265 #endif
7266
7267 /*
7268 * Shared logic between LORID and the rest of the LOR* registers.
7269 * Secure state exclusion has already been dealt with.
7270 */
7271 static CPAccessResult access_lor_ns(CPUARMState *env,
7272 const ARMCPRegInfo *ri, bool isread)
7273 {
7274 int el = arm_current_el(env);
7275
7276 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7277 return CP_ACCESS_TRAP_EL2;
7278 }
7279 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7280 return CP_ACCESS_TRAP_EL3;
7281 }
7282 return CP_ACCESS_OK;
7283 }
7284
7285 static CPAccessResult access_lor_other(CPUARMState *env,
7286 const ARMCPRegInfo *ri, bool isread)
7287 {
7288 if (arm_is_secure_below_el3(env)) {
7289 /* Access denied in secure mode. */
7290 return CP_ACCESS_TRAP;
7291 }
7292 return access_lor_ns(env, ri, isread);
7293 }
7294
7295 /*
7296 * A trivial implementation of ARMv8.1-LOR leaves all of these
7297 * registers fixed at 0, which indicates that there are zero
7298 * supported Limited Ordering regions.
7299 */
7300 static const ARMCPRegInfo lor_reginfo[] = {
7301 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7302 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7303 .access = PL1_RW, .accessfn = access_lor_other,
7304 .fgt = FGT_LORSA_EL1,
7305 .type = ARM_CP_CONST, .resetvalue = 0 },
7306 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7307 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7308 .access = PL1_RW, .accessfn = access_lor_other,
7309 .fgt = FGT_LOREA_EL1,
7310 .type = ARM_CP_CONST, .resetvalue = 0 },
7311 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7312 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7313 .access = PL1_RW, .accessfn = access_lor_other,
7314 .fgt = FGT_LORN_EL1,
7315 .type = ARM_CP_CONST, .resetvalue = 0 },
7316 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7317 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7318 .access = PL1_RW, .accessfn = access_lor_other,
7319 .fgt = FGT_LORC_EL1,
7320 .type = ARM_CP_CONST, .resetvalue = 0 },
7321 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7322 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7323 .access = PL1_R, .accessfn = access_lor_ns,
7324 .fgt = FGT_LORID_EL1,
7325 .type = ARM_CP_CONST, .resetvalue = 0 },
7326 };
7327
7328 #ifdef TARGET_AARCH64
7329 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7330 bool isread)
7331 {
7332 int el = arm_current_el(env);
7333
7334 if (el < 2 &&
7335 arm_is_el2_enabled(env) &&
7336 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7337 return CP_ACCESS_TRAP_EL2;
7338 }
7339 if (el < 3 &&
7340 arm_feature(env, ARM_FEATURE_EL3) &&
7341 !(env->cp15.scr_el3 & SCR_APK)) {
7342 return CP_ACCESS_TRAP_EL3;
7343 }
7344 return CP_ACCESS_OK;
7345 }
7346
7347 static const ARMCPRegInfo pauth_reginfo[] = {
7348 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7349 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7350 .access = PL1_RW, .accessfn = access_pauth,
7351 .fgt = FGT_APDAKEY,
7352 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7353 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7354 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7355 .access = PL1_RW, .accessfn = access_pauth,
7356 .fgt = FGT_APDAKEY,
7357 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7358 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7359 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7360 .access = PL1_RW, .accessfn = access_pauth,
7361 .fgt = FGT_APDBKEY,
7362 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7363 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7364 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7365 .access = PL1_RW, .accessfn = access_pauth,
7366 .fgt = FGT_APDBKEY,
7367 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7368 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7369 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7370 .access = PL1_RW, .accessfn = access_pauth,
7371 .fgt = FGT_APGAKEY,
7372 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7373 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7374 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7375 .access = PL1_RW, .accessfn = access_pauth,
7376 .fgt = FGT_APGAKEY,
7377 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7378 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7379 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7380 .access = PL1_RW, .accessfn = access_pauth,
7381 .fgt = FGT_APIAKEY,
7382 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7383 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7384 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7385 .access = PL1_RW, .accessfn = access_pauth,
7386 .fgt = FGT_APIAKEY,
7387 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7388 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7389 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7390 .access = PL1_RW, .accessfn = access_pauth,
7391 .fgt = FGT_APIBKEY,
7392 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7393 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7394 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7395 .access = PL1_RW, .accessfn = access_pauth,
7396 .fgt = FGT_APIBKEY,
7397 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7398 };
7399
7400 static const ARMCPRegInfo tlbirange_reginfo[] = {
7401 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7402 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7403 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7404 .fgt = FGT_TLBIRVAE1IS,
7405 .writefn = tlbi_aa64_rvae1is_write },
7406 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7408 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7409 .fgt = FGT_TLBIRVAAE1IS,
7410 .writefn = tlbi_aa64_rvae1is_write },
7411 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7412 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7413 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7414 .fgt = FGT_TLBIRVALE1IS,
7415 .writefn = tlbi_aa64_rvae1is_write },
7416 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7417 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7418 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7419 .fgt = FGT_TLBIRVAALE1IS,
7420 .writefn = tlbi_aa64_rvae1is_write },
7421 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7422 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7423 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7424 .fgt = FGT_TLBIRVAE1OS,
7425 .writefn = tlbi_aa64_rvae1is_write },
7426 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7428 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7429 .fgt = FGT_TLBIRVAAE1OS,
7430 .writefn = tlbi_aa64_rvae1is_write },
7431 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7432 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7433 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7434 .fgt = FGT_TLBIRVALE1OS,
7435 .writefn = tlbi_aa64_rvae1is_write },
7436 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7437 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7438 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7439 .fgt = FGT_TLBIRVAALE1OS,
7440 .writefn = tlbi_aa64_rvae1is_write },
7441 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7442 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7443 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7444 .fgt = FGT_TLBIRVAE1,
7445 .writefn = tlbi_aa64_rvae1_write },
7446 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7448 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7449 .fgt = FGT_TLBIRVAAE1,
7450 .writefn = tlbi_aa64_rvae1_write },
7451 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7452 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7453 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7454 .fgt = FGT_TLBIRVALE1,
7455 .writefn = tlbi_aa64_rvae1_write },
7456 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7457 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7458 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7459 .fgt = FGT_TLBIRVAALE1,
7460 .writefn = tlbi_aa64_rvae1_write },
7461 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7462 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7463 .access = PL2_W, .type = ARM_CP_NO_RAW,
7464 .writefn = tlbi_aa64_ripas2e1is_write },
7465 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7466 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7467 .access = PL2_W, .type = ARM_CP_NO_RAW,
7468 .writefn = tlbi_aa64_ripas2e1is_write },
7469 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7470 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7471 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7472 .writefn = tlbi_aa64_rvae2is_write },
7473 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7475 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7476 .writefn = tlbi_aa64_rvae2is_write },
7477 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7478 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7479 .access = PL2_W, .type = ARM_CP_NO_RAW,
7480 .writefn = tlbi_aa64_ripas2e1_write },
7481 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7482 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7483 .access = PL2_W, .type = ARM_CP_NO_RAW,
7484 .writefn = tlbi_aa64_ripas2e1_write },
7485 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7486 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7487 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7488 .writefn = tlbi_aa64_rvae2is_write },
7489 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7491 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7492 .writefn = tlbi_aa64_rvae2is_write },
7493 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7494 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7495 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7496 .writefn = tlbi_aa64_rvae2_write },
7497 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7498 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7499 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7500 .writefn = tlbi_aa64_rvae2_write },
7501 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7503 .access = PL3_W, .type = ARM_CP_NO_RAW,
7504 .writefn = tlbi_aa64_rvae3is_write },
7505 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7506 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7507 .access = PL3_W, .type = ARM_CP_NO_RAW,
7508 .writefn = tlbi_aa64_rvae3is_write },
7509 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7510 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7511 .access = PL3_W, .type = ARM_CP_NO_RAW,
7512 .writefn = tlbi_aa64_rvae3is_write },
7513 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7514 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7515 .access = PL3_W, .type = ARM_CP_NO_RAW,
7516 .writefn = tlbi_aa64_rvae3is_write },
7517 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7518 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7519 .access = PL3_W, .type = ARM_CP_NO_RAW,
7520 .writefn = tlbi_aa64_rvae3_write },
7521 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7522 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7523 .access = PL3_W, .type = ARM_CP_NO_RAW,
7524 .writefn = tlbi_aa64_rvae3_write },
7525 };
7526
7527 static const ARMCPRegInfo tlbios_reginfo[] = {
7528 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7530 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7531 .fgt = FGT_TLBIVMALLE1OS,
7532 .writefn = tlbi_aa64_vmalle1is_write },
7533 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7534 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7535 .fgt = FGT_TLBIVAE1OS,
7536 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7537 .writefn = tlbi_aa64_vae1is_write },
7538 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7540 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7541 .fgt = FGT_TLBIASIDE1OS,
7542 .writefn = tlbi_aa64_vmalle1is_write },
7543 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7544 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7545 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7546 .fgt = FGT_TLBIVAAE1OS,
7547 .writefn = tlbi_aa64_vae1is_write },
7548 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7549 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7550 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7551 .fgt = FGT_TLBIVALE1OS,
7552 .writefn = tlbi_aa64_vae1is_write },
7553 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7554 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7555 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7556 .fgt = FGT_TLBIVAALE1OS,
7557 .writefn = tlbi_aa64_vae1is_write },
7558 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7561 .writefn = tlbi_aa64_alle2is_write },
7562 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7565 .writefn = tlbi_aa64_vae2is_write },
7566 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7568 .access = PL2_W, .type = ARM_CP_NO_RAW,
7569 .writefn = tlbi_aa64_alle1is_write },
7570 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7572 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7573 .writefn = tlbi_aa64_vae2is_write },
7574 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7575 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7576 .access = PL2_W, .type = ARM_CP_NO_RAW,
7577 .writefn = tlbi_aa64_alle1is_write },
7578 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7580 .access = PL2_W, .type = ARM_CP_NOP },
7581 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7582 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7583 .access = PL2_W, .type = ARM_CP_NOP },
7584 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7585 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7586 .access = PL2_W, .type = ARM_CP_NOP },
7587 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7589 .access = PL2_W, .type = ARM_CP_NOP },
7590 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7591 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7592 .access = PL3_W, .type = ARM_CP_NO_RAW,
7593 .writefn = tlbi_aa64_alle3is_write },
7594 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7596 .access = PL3_W, .type = ARM_CP_NO_RAW,
7597 .writefn = tlbi_aa64_vae3is_write },
7598 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7600 .access = PL3_W, .type = ARM_CP_NO_RAW,
7601 .writefn = tlbi_aa64_vae3is_write },
7602 };
7603
7604 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7605 {
7606 Error *err = NULL;
7607 uint64_t ret;
7608
7609 /* Success sets NZCV = 0000. */
7610 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7611
7612 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7613 /*
7614 * ??? Failed, for unknown reasons in the crypto subsystem.
7615 * The best we can do is log the reason and return the
7616 * timed-out indication to the guest. There is no reason
7617 * we know to expect this failure to be transitory, so the
7618 * guest may well hang retrying the operation.
7619 */
7620 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7621 ri->name, error_get_pretty(err));
7622 error_free(err);
7623
7624 env->ZF = 0; /* NZCF = 0100 */
7625 return 0;
7626 }
7627 return ret;
7628 }
7629
7630 /* We do not support re-seeding, so the two registers operate the same. */
7631 static const ARMCPRegInfo rndr_reginfo[] = {
7632 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7633 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7634 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7635 .access = PL0_R, .readfn = rndr_readfn },
7636 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7637 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7638 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7639 .access = PL0_R, .readfn = rndr_readfn },
7640 };
7641
7642 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7643 uint64_t value)
7644 {
7645 ARMCPU *cpu = env_archcpu(env);
7646 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7647 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7648 uint64_t vaddr_in = (uint64_t) value;
7649 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7650 void *haddr;
7651 int mem_idx = cpu_mmu_index(env, false);
7652
7653 /* This won't be crossing page boundaries */
7654 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7655 if (haddr) {
7656 #ifndef CONFIG_USER_ONLY
7657
7658 ram_addr_t offset;
7659 MemoryRegion *mr;
7660
7661 /* RCU lock is already being held */
7662 mr = memory_region_from_host(haddr, &offset);
7663
7664 if (mr) {
7665 memory_region_writeback(mr, offset, dline_size);
7666 }
7667 #endif /*CONFIG_USER_ONLY*/
7668 }
7669 }
7670
7671 static const ARMCPRegInfo dcpop_reg[] = {
7672 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7673 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7674 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7675 .fgt = FGT_DCCVAP,
7676 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7677 };
7678
7679 static const ARMCPRegInfo dcpodp_reg[] = {
7680 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7681 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7682 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7683 .fgt = FGT_DCCVADP,
7684 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7685 };
7686
7687 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7688 bool isread)
7689 {
7690 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7691 return CP_ACCESS_TRAP_EL2;
7692 }
7693
7694 return CP_ACCESS_OK;
7695 }
7696
7697 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7698 bool isread)
7699 {
7700 int el = arm_current_el(env);
7701
7702 if (el < 2 && arm_is_el2_enabled(env)) {
7703 uint64_t hcr = arm_hcr_el2_eff(env);
7704 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7705 return CP_ACCESS_TRAP_EL2;
7706 }
7707 }
7708 if (el < 3 &&
7709 arm_feature(env, ARM_FEATURE_EL3) &&
7710 !(env->cp15.scr_el3 & SCR_ATA)) {
7711 return CP_ACCESS_TRAP_EL3;
7712 }
7713 return CP_ACCESS_OK;
7714 }
7715
7716 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7717 {
7718 return env->pstate & PSTATE_TCO;
7719 }
7720
7721 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7722 {
7723 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7724 }
7725
7726 static const ARMCPRegInfo mte_reginfo[] = {
7727 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7728 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7729 .access = PL1_RW, .accessfn = access_mte,
7730 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7731 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7732 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7733 .access = PL1_RW, .accessfn = access_mte,
7734 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7735 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7736 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7737 .access = PL2_RW, .accessfn = access_mte,
7738 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7739 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7740 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7741 .access = PL3_RW,
7742 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7743 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7744 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7745 .access = PL1_RW, .accessfn = access_mte,
7746 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7747 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7748 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7749 .access = PL1_RW, .accessfn = access_mte,
7750 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7751 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7752 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7753 .type = ARM_CP_NO_RAW,
7754 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7755 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7756 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7757 .type = ARM_CP_NOP, .access = PL1_W,
7758 .fgt = FGT_DCIVAC,
7759 .accessfn = aa64_cacheop_poc_access },
7760 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7761 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7762 .fgt = FGT_DCISW,
7763 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7764 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7765 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7766 .type = ARM_CP_NOP, .access = PL1_W,
7767 .fgt = FGT_DCIVAC,
7768 .accessfn = aa64_cacheop_poc_access },
7769 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7771 .fgt = FGT_DCISW,
7772 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7773 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7774 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7775 .fgt = FGT_DCCSW,
7776 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7777 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7779 .fgt = FGT_DCCSW,
7780 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7781 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7783 .fgt = FGT_DCCISW,
7784 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7785 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7787 .fgt = FGT_DCCISW,
7788 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7789 };
7790
7791 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7792 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7793 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7794 .type = ARM_CP_CONST, .access = PL0_RW, },
7795 };
7796
7797 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7798 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7799 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7800 .type = ARM_CP_NOP, .access = PL0_W,
7801 .fgt = FGT_DCCVAC,
7802 .accessfn = aa64_cacheop_poc_access },
7803 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7804 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7805 .type = ARM_CP_NOP, .access = PL0_W,
7806 .fgt = FGT_DCCVAC,
7807 .accessfn = aa64_cacheop_poc_access },
7808 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7809 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7810 .type = ARM_CP_NOP, .access = PL0_W,
7811 .fgt = FGT_DCCVAP,
7812 .accessfn = aa64_cacheop_poc_access },
7813 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7814 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7815 .type = ARM_CP_NOP, .access = PL0_W,
7816 .fgt = FGT_DCCVAP,
7817 .accessfn = aa64_cacheop_poc_access },
7818 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7820 .type = ARM_CP_NOP, .access = PL0_W,
7821 .fgt = FGT_DCCVADP,
7822 .accessfn = aa64_cacheop_poc_access },
7823 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7824 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7825 .type = ARM_CP_NOP, .access = PL0_W,
7826 .fgt = FGT_DCCVADP,
7827 .accessfn = aa64_cacheop_poc_access },
7828 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7830 .type = ARM_CP_NOP, .access = PL0_W,
7831 .fgt = FGT_DCCIVAC,
7832 .accessfn = aa64_cacheop_poc_access },
7833 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7834 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7835 .type = ARM_CP_NOP, .access = PL0_W,
7836 .fgt = FGT_DCCIVAC,
7837 .accessfn = aa64_cacheop_poc_access },
7838 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7839 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7840 .access = PL0_W, .type = ARM_CP_DC_GVA,
7841 #ifndef CONFIG_USER_ONLY
7842 /* Avoid overhead of an access check that always passes in user-mode */
7843 .accessfn = aa64_zva_access,
7844 .fgt = FGT_DCZVA,
7845 #endif
7846 },
7847 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7848 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7849 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7850 #ifndef CONFIG_USER_ONLY
7851 /* Avoid overhead of an access check that always passes in user-mode */
7852 .accessfn = aa64_zva_access,
7853 .fgt = FGT_DCZVA,
7854 #endif
7855 },
7856 };
7857
7858 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7859 bool isread)
7860 {
7861 uint64_t hcr = arm_hcr_el2_eff(env);
7862 int el = arm_current_el(env);
7863
7864 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7865 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7866 if (hcr & HCR_TGE) {
7867 return CP_ACCESS_TRAP_EL2;
7868 }
7869 return CP_ACCESS_TRAP;
7870 }
7871 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7872 return CP_ACCESS_TRAP_EL2;
7873 }
7874 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7875 return CP_ACCESS_TRAP_EL2;
7876 }
7877 if (el < 3
7878 && arm_feature(env, ARM_FEATURE_EL3)
7879 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7880 return CP_ACCESS_TRAP_EL3;
7881 }
7882 return CP_ACCESS_OK;
7883 }
7884
7885 static const ARMCPRegInfo scxtnum_reginfo[] = {
7886 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7887 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7888 .access = PL0_RW, .accessfn = access_scxtnum,
7889 .fgt = FGT_SCXTNUM_EL0,
7890 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7891 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7892 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7893 .access = PL1_RW, .accessfn = access_scxtnum,
7894 .fgt = FGT_SCXTNUM_EL1,
7895 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7896 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7898 .access = PL2_RW, .accessfn = access_scxtnum,
7899 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7900 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7901 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7902 .access = PL3_RW,
7903 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7904 };
7905
7906 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7907 bool isread)
7908 {
7909 if (arm_current_el(env) == 2 &&
7910 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7911 return CP_ACCESS_TRAP_EL3;
7912 }
7913 return CP_ACCESS_OK;
7914 }
7915
7916 static const ARMCPRegInfo fgt_reginfo[] = {
7917 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7918 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7919 .access = PL2_RW, .accessfn = access_fgt,
7920 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7921 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7922 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7923 .access = PL2_RW, .accessfn = access_fgt,
7924 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7925 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7926 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7927 .access = PL2_RW, .accessfn = access_fgt,
7928 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7929 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7930 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7931 .access = PL2_RW, .accessfn = access_fgt,
7932 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7933 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7934 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7935 .access = PL2_RW, .accessfn = access_fgt,
7936 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7937 };
7938 #endif /* TARGET_AARCH64 */
7939
7940 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7941 bool isread)
7942 {
7943 int el = arm_current_el(env);
7944
7945 if (el == 0) {
7946 uint64_t sctlr = arm_sctlr(env, el);
7947 if (!(sctlr & SCTLR_EnRCTX)) {
7948 return CP_ACCESS_TRAP;
7949 }
7950 } else if (el == 1) {
7951 uint64_t hcr = arm_hcr_el2_eff(env);
7952 if (hcr & HCR_NV) {
7953 return CP_ACCESS_TRAP_EL2;
7954 }
7955 }
7956 return CP_ACCESS_OK;
7957 }
7958
7959 static const ARMCPRegInfo predinv_reginfo[] = {
7960 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7961 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7962 .fgt = FGT_CFPRCTX,
7963 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7964 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7965 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7966 .fgt = FGT_DVPRCTX,
7967 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7968 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7969 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7970 .fgt = FGT_CPPRCTX,
7971 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7972 /*
7973 * Note the AArch32 opcodes have a different OPC1.
7974 */
7975 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7976 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7977 .fgt = FGT_CFPRCTX,
7978 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7979 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7980 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7981 .fgt = FGT_DVPRCTX,
7982 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7983 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7984 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7985 .fgt = FGT_CPPRCTX,
7986 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7987 };
7988
7989 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7990 {
7991 /* Read the high 32 bits of the current CCSIDR */
7992 return extract64(ccsidr_read(env, ri), 32, 32);
7993 }
7994
7995 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7996 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7997 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7998 .access = PL1_R,
7999 .accessfn = access_tid4,
8000 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8001 };
8002
8003 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8004 bool isread)
8005 {
8006 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8007 return CP_ACCESS_TRAP_EL2;
8008 }
8009
8010 return CP_ACCESS_OK;
8011 }
8012
8013 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8014 bool isread)
8015 {
8016 if (arm_feature(env, ARM_FEATURE_V8)) {
8017 return access_aa64_tid3(env, ri, isread);
8018 }
8019
8020 return CP_ACCESS_OK;
8021 }
8022
8023 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8024 bool isread)
8025 {
8026 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8027 return CP_ACCESS_TRAP_EL2;
8028 }
8029
8030 return CP_ACCESS_OK;
8031 }
8032
8033 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8034 const ARMCPRegInfo *ri, bool isread)
8035 {
8036 /*
8037 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8038 * in v7A, not in v8A.
8039 */
8040 if (!arm_feature(env, ARM_FEATURE_V8) &&
8041 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8042 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8043 return CP_ACCESS_TRAP_EL2;
8044 }
8045 return CP_ACCESS_OK;
8046 }
8047
8048 static const ARMCPRegInfo jazelle_regs[] = {
8049 { .name = "JIDR",
8050 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8051 .access = PL1_R, .accessfn = access_jazelle,
8052 .type = ARM_CP_CONST, .resetvalue = 0 },
8053 { .name = "JOSCR",
8054 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8055 .accessfn = access_joscr_jmcr,
8056 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8057 { .name = "JMCR",
8058 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8059 .accessfn = access_joscr_jmcr,
8060 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8061 };
8062
8063 static const ARMCPRegInfo contextidr_el2 = {
8064 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8065 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8066 .access = PL2_RW,
8067 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8068 };
8069
8070 static const ARMCPRegInfo vhe_reginfo[] = {
8071 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8072 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8073 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8074 .raw_writefn = raw_write,
8075 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8076 #ifndef CONFIG_USER_ONLY
8077 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8078 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8079 .fieldoffset =
8080 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8081 .type = ARM_CP_IO, .access = PL2_RW,
8082 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8083 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8084 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8085 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8086 .resetfn = gt_hv_timer_reset,
8087 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8088 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8089 .type = ARM_CP_IO,
8090 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8091 .access = PL2_RW,
8092 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8093 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8094 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8095 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8096 .type = ARM_CP_IO | ARM_CP_ALIAS,
8097 .access = PL2_RW, .accessfn = e2h_access,
8098 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8099 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8100 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8101 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8102 .type = ARM_CP_IO | ARM_CP_ALIAS,
8103 .access = PL2_RW, .accessfn = e2h_access,
8104 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8105 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8106 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8107 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8108 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8109 .access = PL2_RW, .accessfn = e2h_access,
8110 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8111 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8112 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8113 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8114 .access = PL2_RW, .accessfn = e2h_access,
8115 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8116 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8117 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8118 .type = ARM_CP_IO | ARM_CP_ALIAS,
8119 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8120 .access = PL2_RW, .accessfn = e2h_access,
8121 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8122 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8123 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8124 .type = ARM_CP_IO | ARM_CP_ALIAS,
8125 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8126 .access = PL2_RW, .accessfn = e2h_access,
8127 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8128 #endif
8129 };
8130
8131 #ifndef CONFIG_USER_ONLY
8132 static const ARMCPRegInfo ats1e1_reginfo[] = {
8133 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8134 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8135 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8136 .fgt = FGT_ATS1E1RP,
8137 .accessfn = at_e012_access, .writefn = ats_write64 },
8138 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8139 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8140 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8141 .fgt = FGT_ATS1E1WP,
8142 .accessfn = at_e012_access, .writefn = ats_write64 },
8143 };
8144
8145 static const ARMCPRegInfo ats1cp_reginfo[] = {
8146 { .name = "ATS1CPRP",
8147 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8148 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8149 .writefn = ats_write },
8150 { .name = "ATS1CPWP",
8151 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8152 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8153 .writefn = ats_write },
8154 };
8155 #endif
8156
8157 /*
8158 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8159 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8160 * is non-zero, which is never for ARMv7, optionally in ARMv8
8161 * and mandatorily for ARMv8.2 and up.
8162 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8163 * implementation is RAZ/WI we can ignore this detail, as we
8164 * do for ACTLR.
8165 */
8166 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8167 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8168 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8169 .access = PL1_RW, .accessfn = access_tacr,
8170 .type = ARM_CP_CONST, .resetvalue = 0 },
8171 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8172 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8173 .access = PL2_RW, .type = ARM_CP_CONST,
8174 .resetvalue = 0 },
8175 };
8176
8177 void register_cp_regs_for_features(ARMCPU *cpu)
8178 {
8179 /* Register all the coprocessor registers based on feature bits */
8180 CPUARMState *env = &cpu->env;
8181 if (arm_feature(env, ARM_FEATURE_M)) {
8182 /* M profile has no coprocessor registers */
8183 return;
8184 }
8185
8186 define_arm_cp_regs(cpu, cp_reginfo);
8187 if (!arm_feature(env, ARM_FEATURE_V8)) {
8188 /*
8189 * Must go early as it is full of wildcards that may be
8190 * overridden by later definitions.
8191 */
8192 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8193 }
8194
8195 if (arm_feature(env, ARM_FEATURE_V6)) {
8196 /* The ID registers all have impdef reset values */
8197 ARMCPRegInfo v6_idregs[] = {
8198 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8199 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8200 .access = PL1_R, .type = ARM_CP_CONST,
8201 .accessfn = access_aa32_tid3,
8202 .resetvalue = cpu->isar.id_pfr0 },
8203 /*
8204 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8205 * the value of the GIC field until after we define these regs.
8206 */
8207 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8209 .access = PL1_R, .type = ARM_CP_NO_RAW,
8210 .accessfn = access_aa32_tid3,
8211 #ifdef CONFIG_USER_ONLY
8212 .type = ARM_CP_CONST,
8213 .resetvalue = cpu->isar.id_pfr1,
8214 #else
8215 .type = ARM_CP_NO_RAW,
8216 .accessfn = access_aa32_tid3,
8217 .readfn = id_pfr1_read,
8218 .writefn = arm_cp_write_ignore
8219 #endif
8220 },
8221 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8223 .access = PL1_R, .type = ARM_CP_CONST,
8224 .accessfn = access_aa32_tid3,
8225 .resetvalue = cpu->isar.id_dfr0 },
8226 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8228 .access = PL1_R, .type = ARM_CP_CONST,
8229 .accessfn = access_aa32_tid3,
8230 .resetvalue = cpu->id_afr0 },
8231 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8233 .access = PL1_R, .type = ARM_CP_CONST,
8234 .accessfn = access_aa32_tid3,
8235 .resetvalue = cpu->isar.id_mmfr0 },
8236 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8238 .access = PL1_R, .type = ARM_CP_CONST,
8239 .accessfn = access_aa32_tid3,
8240 .resetvalue = cpu->isar.id_mmfr1 },
8241 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8243 .access = PL1_R, .type = ARM_CP_CONST,
8244 .accessfn = access_aa32_tid3,
8245 .resetvalue = cpu->isar.id_mmfr2 },
8246 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8248 .access = PL1_R, .type = ARM_CP_CONST,
8249 .accessfn = access_aa32_tid3,
8250 .resetvalue = cpu->isar.id_mmfr3 },
8251 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8253 .access = PL1_R, .type = ARM_CP_CONST,
8254 .accessfn = access_aa32_tid3,
8255 .resetvalue = cpu->isar.id_isar0 },
8256 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8258 .access = PL1_R, .type = ARM_CP_CONST,
8259 .accessfn = access_aa32_tid3,
8260 .resetvalue = cpu->isar.id_isar1 },
8261 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8262 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8263 .access = PL1_R, .type = ARM_CP_CONST,
8264 .accessfn = access_aa32_tid3,
8265 .resetvalue = cpu->isar.id_isar2 },
8266 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8268 .access = PL1_R, .type = ARM_CP_CONST,
8269 .accessfn = access_aa32_tid3,
8270 .resetvalue = cpu->isar.id_isar3 },
8271 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8273 .access = PL1_R, .type = ARM_CP_CONST,
8274 .accessfn = access_aa32_tid3,
8275 .resetvalue = cpu->isar.id_isar4 },
8276 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8278 .access = PL1_R, .type = ARM_CP_CONST,
8279 .accessfn = access_aa32_tid3,
8280 .resetvalue = cpu->isar.id_isar5 },
8281 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8283 .access = PL1_R, .type = ARM_CP_CONST,
8284 .accessfn = access_aa32_tid3,
8285 .resetvalue = cpu->isar.id_mmfr4 },
8286 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8288 .access = PL1_R, .type = ARM_CP_CONST,
8289 .accessfn = access_aa32_tid3,
8290 .resetvalue = cpu->isar.id_isar6 },
8291 };
8292 define_arm_cp_regs(cpu, v6_idregs);
8293 define_arm_cp_regs(cpu, v6_cp_reginfo);
8294 } else {
8295 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8296 }
8297 if (arm_feature(env, ARM_FEATURE_V6K)) {
8298 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8299 }
8300 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8301 !arm_feature(env, ARM_FEATURE_PMSA)) {
8302 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8303 }
8304 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8305 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8306 }
8307 if (arm_feature(env, ARM_FEATURE_V7)) {
8308 ARMCPRegInfo clidr = {
8309 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8310 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8311 .access = PL1_R, .type = ARM_CP_CONST,
8312 .accessfn = access_tid4,
8313 .fgt = FGT_CLIDR_EL1,
8314 .resetvalue = cpu->clidr
8315 };
8316 define_one_arm_cp_reg(cpu, &clidr);
8317 define_arm_cp_regs(cpu, v7_cp_reginfo);
8318 define_debug_regs(cpu);
8319 define_pmu_regs(cpu);
8320 } else {
8321 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8322 }
8323 if (arm_feature(env, ARM_FEATURE_V8)) {
8324 /*
8325 * v8 ID registers, which all have impdef reset values.
8326 * Note that within the ID register ranges the unused slots
8327 * must all RAZ, not UNDEF; future architecture versions may
8328 * define new registers here.
8329 * ID registers which are AArch64 views of the AArch32 ID registers
8330 * which already existed in v6 and v7 are handled elsewhere,
8331 * in v6_idregs[].
8332 */
8333 int i;
8334 ARMCPRegInfo v8_idregs[] = {
8335 /*
8336 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8337 * emulation because we don't know the right value for the
8338 * GIC field until after we define these regs.
8339 */
8340 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8342 .access = PL1_R,
8343 #ifdef CONFIG_USER_ONLY
8344 .type = ARM_CP_CONST,
8345 .resetvalue = cpu->isar.id_aa64pfr0
8346 #else
8347 .type = ARM_CP_NO_RAW,
8348 .accessfn = access_aa64_tid3,
8349 .readfn = id_aa64pfr0_read,
8350 .writefn = arm_cp_write_ignore
8351 #endif
8352 },
8353 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8355 .access = PL1_R, .type = ARM_CP_CONST,
8356 .accessfn = access_aa64_tid3,
8357 .resetvalue = cpu->isar.id_aa64pfr1},
8358 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8360 .access = PL1_R, .type = ARM_CP_CONST,
8361 .accessfn = access_aa64_tid3,
8362 .resetvalue = 0 },
8363 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8365 .access = PL1_R, .type = ARM_CP_CONST,
8366 .accessfn = access_aa64_tid3,
8367 .resetvalue = 0 },
8368 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8370 .access = PL1_R, .type = ARM_CP_CONST,
8371 .accessfn = access_aa64_tid3,
8372 .resetvalue = cpu->isar.id_aa64zfr0 },
8373 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8375 .access = PL1_R, .type = ARM_CP_CONST,
8376 .accessfn = access_aa64_tid3,
8377 .resetvalue = cpu->isar.id_aa64smfr0 },
8378 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8379 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8380 .access = PL1_R, .type = ARM_CP_CONST,
8381 .accessfn = access_aa64_tid3,
8382 .resetvalue = 0 },
8383 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8384 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8385 .access = PL1_R, .type = ARM_CP_CONST,
8386 .accessfn = access_aa64_tid3,
8387 .resetvalue = 0 },
8388 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8389 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8390 .access = PL1_R, .type = ARM_CP_CONST,
8391 .accessfn = access_aa64_tid3,
8392 .resetvalue = cpu->isar.id_aa64dfr0 },
8393 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8395 .access = PL1_R, .type = ARM_CP_CONST,
8396 .accessfn = access_aa64_tid3,
8397 .resetvalue = cpu->isar.id_aa64dfr1 },
8398 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8400 .access = PL1_R, .type = ARM_CP_CONST,
8401 .accessfn = access_aa64_tid3,
8402 .resetvalue = 0 },
8403 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8405 .access = PL1_R, .type = ARM_CP_CONST,
8406 .accessfn = access_aa64_tid3,
8407 .resetvalue = 0 },
8408 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8410 .access = PL1_R, .type = ARM_CP_CONST,
8411 .accessfn = access_aa64_tid3,
8412 .resetvalue = cpu->id_aa64afr0 },
8413 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8415 .access = PL1_R, .type = ARM_CP_CONST,
8416 .accessfn = access_aa64_tid3,
8417 .resetvalue = cpu->id_aa64afr1 },
8418 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8420 .access = PL1_R, .type = ARM_CP_CONST,
8421 .accessfn = access_aa64_tid3,
8422 .resetvalue = 0 },
8423 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8424 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8425 .access = PL1_R, .type = ARM_CP_CONST,
8426 .accessfn = access_aa64_tid3,
8427 .resetvalue = 0 },
8428 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8429 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8430 .access = PL1_R, .type = ARM_CP_CONST,
8431 .accessfn = access_aa64_tid3,
8432 .resetvalue = cpu->isar.id_aa64isar0 },
8433 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8434 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8435 .access = PL1_R, .type = ARM_CP_CONST,
8436 .accessfn = access_aa64_tid3,
8437 .resetvalue = cpu->isar.id_aa64isar1 },
8438 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8440 .access = PL1_R, .type = ARM_CP_CONST,
8441 .accessfn = access_aa64_tid3,
8442 .resetvalue = cpu->isar.id_aa64isar2 },
8443 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8445 .access = PL1_R, .type = ARM_CP_CONST,
8446 .accessfn = access_aa64_tid3,
8447 .resetvalue = 0 },
8448 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8449 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8450 .access = PL1_R, .type = ARM_CP_CONST,
8451 .accessfn = access_aa64_tid3,
8452 .resetvalue = 0 },
8453 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8455 .access = PL1_R, .type = ARM_CP_CONST,
8456 .accessfn = access_aa64_tid3,
8457 .resetvalue = 0 },
8458 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8460 .access = PL1_R, .type = ARM_CP_CONST,
8461 .accessfn = access_aa64_tid3,
8462 .resetvalue = 0 },
8463 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8465 .access = PL1_R, .type = ARM_CP_CONST,
8466 .accessfn = access_aa64_tid3,
8467 .resetvalue = 0 },
8468 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8470 .access = PL1_R, .type = ARM_CP_CONST,
8471 .accessfn = access_aa64_tid3,
8472 .resetvalue = cpu->isar.id_aa64mmfr0 },
8473 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8475 .access = PL1_R, .type = ARM_CP_CONST,
8476 .accessfn = access_aa64_tid3,
8477 .resetvalue = cpu->isar.id_aa64mmfr1 },
8478 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8480 .access = PL1_R, .type = ARM_CP_CONST,
8481 .accessfn = access_aa64_tid3,
8482 .resetvalue = cpu->isar.id_aa64mmfr2 },
8483 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8485 .access = PL1_R, .type = ARM_CP_CONST,
8486 .accessfn = access_aa64_tid3,
8487 .resetvalue = 0 },
8488 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8490 .access = PL1_R, .type = ARM_CP_CONST,
8491 .accessfn = access_aa64_tid3,
8492 .resetvalue = 0 },
8493 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8495 .access = PL1_R, .type = ARM_CP_CONST,
8496 .accessfn = access_aa64_tid3,
8497 .resetvalue = 0 },
8498 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8500 .access = PL1_R, .type = ARM_CP_CONST,
8501 .accessfn = access_aa64_tid3,
8502 .resetvalue = 0 },
8503 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8505 .access = PL1_R, .type = ARM_CP_CONST,
8506 .accessfn = access_aa64_tid3,
8507 .resetvalue = 0 },
8508 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8510 .access = PL1_R, .type = ARM_CP_CONST,
8511 .accessfn = access_aa64_tid3,
8512 .resetvalue = cpu->isar.mvfr0 },
8513 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8515 .access = PL1_R, .type = ARM_CP_CONST,
8516 .accessfn = access_aa64_tid3,
8517 .resetvalue = cpu->isar.mvfr1 },
8518 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8520 .access = PL1_R, .type = ARM_CP_CONST,
8521 .accessfn = access_aa64_tid3,
8522 .resetvalue = cpu->isar.mvfr2 },
8523 /*
8524 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8525 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8526 * as RAZ, since it is in the "reserved for future ID
8527 * registers, RAZ" part of the AArch32 encoding space.
8528 */
8529 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8530 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8531 .access = PL1_R, .type = ARM_CP_CONST,
8532 .accessfn = access_aa64_tid3,
8533 .resetvalue = 0 },
8534 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8535 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8536 .access = PL1_R, .type = ARM_CP_CONST,
8537 .accessfn = access_aa64_tid3,
8538 .resetvalue = 0 },
8539 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8540 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8541 .access = PL1_R, .type = ARM_CP_CONST,
8542 .accessfn = access_aa64_tid3,
8543 .resetvalue = 0 },
8544 /*
8545 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8546 * they're also RAZ for AArch64, and in v8 are gradually
8547 * being filled with AArch64-view-of-AArch32-ID-register
8548 * for new ID registers.
8549 */
8550 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8552 .access = PL1_R, .type = ARM_CP_CONST,
8553 .accessfn = access_aa64_tid3,
8554 .resetvalue = 0 },
8555 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8557 .access = PL1_R, .type = ARM_CP_CONST,
8558 .accessfn = access_aa64_tid3,
8559 .resetvalue = cpu->isar.id_pfr2 },
8560 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8562 .access = PL1_R, .type = ARM_CP_CONST,
8563 .accessfn = access_aa64_tid3,
8564 .resetvalue = cpu->isar.id_dfr1 },
8565 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8567 .access = PL1_R, .type = ARM_CP_CONST,
8568 .accessfn = access_aa64_tid3,
8569 .resetvalue = cpu->isar.id_mmfr5 },
8570 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8572 .access = PL1_R, .type = ARM_CP_CONST,
8573 .accessfn = access_aa64_tid3,
8574 .resetvalue = 0 },
8575 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8576 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8577 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8578 .fgt = FGT_PMCEIDN_EL0,
8579 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8580 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8581 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8582 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8583 .fgt = FGT_PMCEIDN_EL0,
8584 .resetvalue = cpu->pmceid0 },
8585 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8586 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8587 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8588 .fgt = FGT_PMCEIDN_EL0,
8589 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8590 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8591 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8592 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8593 .fgt = FGT_PMCEIDN_EL0,
8594 .resetvalue = cpu->pmceid1 },
8595 };
8596 #ifdef CONFIG_USER_ONLY
8597 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8598 { .name = "ID_AA64PFR0_EL1",
8599 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8600 R_ID_AA64PFR0_ADVSIMD_MASK |
8601 R_ID_AA64PFR0_SVE_MASK |
8602 R_ID_AA64PFR0_DIT_MASK,
8603 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8604 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8605 { .name = "ID_AA64PFR1_EL1",
8606 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8607 R_ID_AA64PFR1_SSBS_MASK |
8608 R_ID_AA64PFR1_MTE_MASK |
8609 R_ID_AA64PFR1_SME_MASK },
8610 { .name = "ID_AA64PFR*_EL1_RESERVED",
8611 .is_glob = true },
8612 { .name = "ID_AA64ZFR0_EL1",
8613 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8614 R_ID_AA64ZFR0_AES_MASK |
8615 R_ID_AA64ZFR0_BITPERM_MASK |
8616 R_ID_AA64ZFR0_BFLOAT16_MASK |
8617 R_ID_AA64ZFR0_SHA3_MASK |
8618 R_ID_AA64ZFR0_SM4_MASK |
8619 R_ID_AA64ZFR0_I8MM_MASK |
8620 R_ID_AA64ZFR0_F32MM_MASK |
8621 R_ID_AA64ZFR0_F64MM_MASK },
8622 { .name = "ID_AA64SMFR0_EL1",
8623 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8624 R_ID_AA64SMFR0_BI32I32_MASK |
8625 R_ID_AA64SMFR0_B16F32_MASK |
8626 R_ID_AA64SMFR0_F16F32_MASK |
8627 R_ID_AA64SMFR0_I8I32_MASK |
8628 R_ID_AA64SMFR0_F16F16_MASK |
8629 R_ID_AA64SMFR0_B16B16_MASK |
8630 R_ID_AA64SMFR0_I16I32_MASK |
8631 R_ID_AA64SMFR0_F64F64_MASK |
8632 R_ID_AA64SMFR0_I16I64_MASK |
8633 R_ID_AA64SMFR0_SMEVER_MASK |
8634 R_ID_AA64SMFR0_FA64_MASK },
8635 { .name = "ID_AA64MMFR0_EL1",
8636 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8637 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8638 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8639 { .name = "ID_AA64MMFR1_EL1",
8640 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8641 { .name = "ID_AA64MMFR2_EL1",
8642 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8643 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8644 .is_glob = true },
8645 { .name = "ID_AA64DFR0_EL1",
8646 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8647 { .name = "ID_AA64DFR1_EL1" },
8648 { .name = "ID_AA64DFR*_EL1_RESERVED",
8649 .is_glob = true },
8650 { .name = "ID_AA64AFR*",
8651 .is_glob = true },
8652 { .name = "ID_AA64ISAR0_EL1",
8653 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8654 R_ID_AA64ISAR0_SHA1_MASK |
8655 R_ID_AA64ISAR0_SHA2_MASK |
8656 R_ID_AA64ISAR0_CRC32_MASK |
8657 R_ID_AA64ISAR0_ATOMIC_MASK |
8658 R_ID_AA64ISAR0_RDM_MASK |
8659 R_ID_AA64ISAR0_SHA3_MASK |
8660 R_ID_AA64ISAR0_SM3_MASK |
8661 R_ID_AA64ISAR0_SM4_MASK |
8662 R_ID_AA64ISAR0_DP_MASK |
8663 R_ID_AA64ISAR0_FHM_MASK |
8664 R_ID_AA64ISAR0_TS_MASK |
8665 R_ID_AA64ISAR0_RNDR_MASK },
8666 { .name = "ID_AA64ISAR1_EL1",
8667 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8668 R_ID_AA64ISAR1_APA_MASK |
8669 R_ID_AA64ISAR1_API_MASK |
8670 R_ID_AA64ISAR1_JSCVT_MASK |
8671 R_ID_AA64ISAR1_FCMA_MASK |
8672 R_ID_AA64ISAR1_LRCPC_MASK |
8673 R_ID_AA64ISAR1_GPA_MASK |
8674 R_ID_AA64ISAR1_GPI_MASK |
8675 R_ID_AA64ISAR1_FRINTTS_MASK |
8676 R_ID_AA64ISAR1_SB_MASK |
8677 R_ID_AA64ISAR1_BF16_MASK |
8678 R_ID_AA64ISAR1_DGH_MASK |
8679 R_ID_AA64ISAR1_I8MM_MASK },
8680 { .name = "ID_AA64ISAR2_EL1",
8681 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8682 R_ID_AA64ISAR2_RPRES_MASK |
8683 R_ID_AA64ISAR2_GPA3_MASK |
8684 R_ID_AA64ISAR2_APA3_MASK |
8685 R_ID_AA64ISAR2_MOPS_MASK |
8686 R_ID_AA64ISAR2_BC_MASK |
8687 R_ID_AA64ISAR2_RPRFM_MASK |
8688 R_ID_AA64ISAR2_CSSC_MASK },
8689 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8690 .is_glob = true },
8691 };
8692 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8693 #endif
8694 /*
8695 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8696 * TODO: For RMR, a write with bit 1 set should do something with
8697 * cpu_reset(). In the meantime, "the bit is strictly a request",
8698 * so we are in spec just ignoring writes.
8699 */
8700 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8701 !arm_feature(env, ARM_FEATURE_EL2)) {
8702 ARMCPRegInfo el1_reset_regs[] = {
8703 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8704 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8705 .access = PL1_R,
8706 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8707 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8708 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8709 .access = PL1_RW, .type = ARM_CP_CONST,
8710 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8711 };
8712 define_arm_cp_regs(cpu, el1_reset_regs);
8713 }
8714 define_arm_cp_regs(cpu, v8_idregs);
8715 define_arm_cp_regs(cpu, v8_cp_reginfo);
8716
8717 for (i = 4; i < 16; i++) {
8718 /*
8719 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8720 * For pre-v8 cores there are RAZ patterns for these in
8721 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8722 * v8 extends the "must RAZ" part of the ID register space
8723 * to also cover c0, 0, c{8-15}, {0-7}.
8724 * These are STATE_AA32 because in the AArch64 sysreg space
8725 * c4-c7 is where the AArch64 ID registers live (and we've
8726 * already defined those in v8_idregs[]), and c8-c15 are not
8727 * "must RAZ" for AArch64.
8728 */
8729 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8730 ARMCPRegInfo v8_aa32_raz_idregs = {
8731 .name = name,
8732 .state = ARM_CP_STATE_AA32,
8733 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8734 .access = PL1_R, .type = ARM_CP_CONST,
8735 .accessfn = access_aa64_tid3,
8736 .resetvalue = 0 };
8737 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8738 }
8739 }
8740
8741 /*
8742 * Register the base EL2 cpregs.
8743 * Pre v8, these registers are implemented only as part of the
8744 * Virtualization Extensions (EL2 present). Beginning with v8,
8745 * if EL2 is missing but EL3 is enabled, mostly these become
8746 * RES0 from EL3, with some specific exceptions.
8747 */
8748 if (arm_feature(env, ARM_FEATURE_EL2)
8749 || (arm_feature(env, ARM_FEATURE_EL3)
8750 && arm_feature(env, ARM_FEATURE_V8))) {
8751 uint64_t vmpidr_def = mpidr_read_val(env);
8752 ARMCPRegInfo vpidr_regs[] = {
8753 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8754 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8755 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8756 .resetvalue = cpu->midr,
8757 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8758 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8759 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8760 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8761 .access = PL2_RW, .resetvalue = cpu->midr,
8762 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8763 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8764 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8765 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8766 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8767 .resetvalue = vmpidr_def,
8768 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8769 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8770 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8771 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8772 .access = PL2_RW, .resetvalue = vmpidr_def,
8773 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8774 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8775 };
8776 /*
8777 * The only field of MDCR_EL2 that has a defined architectural reset
8778 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8779 */
8780 ARMCPRegInfo mdcr_el2 = {
8781 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8782 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8783 .writefn = mdcr_el2_write,
8784 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8785 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8786 };
8787 define_one_arm_cp_reg(cpu, &mdcr_el2);
8788 define_arm_cp_regs(cpu, vpidr_regs);
8789 define_arm_cp_regs(cpu, el2_cp_reginfo);
8790 if (arm_feature(env, ARM_FEATURE_V8)) {
8791 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8792 }
8793 if (cpu_isar_feature(aa64_sel2, cpu)) {
8794 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8795 }
8796 /*
8797 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8798 * See commentary near RMR_EL1.
8799 */
8800 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8801 static const ARMCPRegInfo el2_reset_regs[] = {
8802 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8803 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8804 .access = PL2_R,
8805 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8806 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8807 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8808 .access = PL2_R,
8809 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8810 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8811 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8812 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8813 };
8814 define_arm_cp_regs(cpu, el2_reset_regs);
8815 }
8816 }
8817
8818 /* Register the base EL3 cpregs. */
8819 if (arm_feature(env, ARM_FEATURE_EL3)) {
8820 define_arm_cp_regs(cpu, el3_cp_reginfo);
8821 ARMCPRegInfo el3_regs[] = {
8822 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8823 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8824 .access = PL3_R,
8825 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8826 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8827 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8828 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8829 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8830 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8831 .access = PL3_RW, .type = ARM_CP_CONST,
8832 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8833 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8834 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8835 .access = PL3_RW,
8836 .raw_writefn = raw_write, .writefn = sctlr_write,
8837 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8838 .resetvalue = cpu->reset_sctlr },
8839 };
8840
8841 define_arm_cp_regs(cpu, el3_regs);
8842 }
8843 /*
8844 * The behaviour of NSACR is sufficiently various that we don't
8845 * try to describe it in a single reginfo:
8846 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8847 * reads as constant 0xc00 from NS EL1 and NS EL2
8848 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8849 * if v7 without EL3, register doesn't exist
8850 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8851 */
8852 if (arm_feature(env, ARM_FEATURE_EL3)) {
8853 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8854 static const ARMCPRegInfo nsacr = {
8855 .name = "NSACR", .type = ARM_CP_CONST,
8856 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8857 .access = PL1_RW, .accessfn = nsacr_access,
8858 .resetvalue = 0xc00
8859 };
8860 define_one_arm_cp_reg(cpu, &nsacr);
8861 } else {
8862 static const ARMCPRegInfo nsacr = {
8863 .name = "NSACR",
8864 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8865 .access = PL3_RW | PL1_R,
8866 .resetvalue = 0,
8867 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8868 };
8869 define_one_arm_cp_reg(cpu, &nsacr);
8870 }
8871 } else {
8872 if (arm_feature(env, ARM_FEATURE_V8)) {
8873 static const ARMCPRegInfo nsacr = {
8874 .name = "NSACR", .type = ARM_CP_CONST,
8875 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8876 .access = PL1_R,
8877 .resetvalue = 0xc00
8878 };
8879 define_one_arm_cp_reg(cpu, &nsacr);
8880 }
8881 }
8882
8883 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8884 if (arm_feature(env, ARM_FEATURE_V6)) {
8885 /* PMSAv6 not implemented */
8886 assert(arm_feature(env, ARM_FEATURE_V7));
8887 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8888 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8889 } else {
8890 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8891 }
8892 } else {
8893 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8894 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8895 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8896 if (cpu_isar_feature(aa32_hpd, cpu)) {
8897 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8898 }
8899 }
8900 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8901 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8902 }
8903 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8904 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8905 }
8906 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8907 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8908 }
8909 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8910 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8911 }
8912 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8913 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8914 }
8915 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8916 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8917 }
8918 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8919 define_arm_cp_regs(cpu, omap_cp_reginfo);
8920 }
8921 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8922 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8923 }
8924 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8925 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8926 }
8927 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8928 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8929 }
8930 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8931 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8932 }
8933 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8934 define_arm_cp_regs(cpu, jazelle_regs);
8935 }
8936 /*
8937 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8938 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8939 * be read-only (ie write causes UNDEF exception).
8940 */
8941 {
8942 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8943 /*
8944 * Pre-v8 MIDR space.
8945 * Note that the MIDR isn't a simple constant register because
8946 * of the TI925 behaviour where writes to another register can
8947 * cause the MIDR value to change.
8948 *
8949 * Unimplemented registers in the c15 0 0 0 space default to
8950 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8951 * and friends override accordingly.
8952 */
8953 { .name = "MIDR",
8954 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8955 .access = PL1_R, .resetvalue = cpu->midr,
8956 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8957 .readfn = midr_read,
8958 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8959 .type = ARM_CP_OVERRIDE },
8960 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8961 { .name = "DUMMY",
8962 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8963 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8964 { .name = "DUMMY",
8965 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8966 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8967 { .name = "DUMMY",
8968 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8969 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8970 { .name = "DUMMY",
8971 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8972 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8973 { .name = "DUMMY",
8974 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8975 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8976 };
8977 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8978 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8980 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8981 .fgt = FGT_MIDR_EL1,
8982 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8983 .readfn = midr_read },
8984 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8985 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8986 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8987 .access = PL1_R, .resetvalue = cpu->midr },
8988 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8990 .access = PL1_R,
8991 .accessfn = access_aa64_tid1,
8992 .fgt = FGT_REVIDR_EL1,
8993 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8994 };
8995 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8996 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8997 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8998 .access = PL1_R, .resetvalue = cpu->midr
8999 };
9000 ARMCPRegInfo id_cp_reginfo[] = {
9001 /* These are common to v8 and pre-v8 */
9002 { .name = "CTR",
9003 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9004 .access = PL1_R, .accessfn = ctr_el0_access,
9005 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9006 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9007 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9008 .access = PL0_R, .accessfn = ctr_el0_access,
9009 .fgt = FGT_CTR_EL0,
9010 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9011 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9012 { .name = "TCMTR",
9013 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9014 .access = PL1_R,
9015 .accessfn = access_aa32_tid1,
9016 .type = ARM_CP_CONST, .resetvalue = 0 },
9017 };
9018 /* TLBTR is specific to VMSA */
9019 ARMCPRegInfo id_tlbtr_reginfo = {
9020 .name = "TLBTR",
9021 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9022 .access = PL1_R,
9023 .accessfn = access_aa32_tid1,
9024 .type = ARM_CP_CONST, .resetvalue = 0,
9025 };
9026 /* MPUIR is specific to PMSA V6+ */
9027 ARMCPRegInfo id_mpuir_reginfo = {
9028 .name = "MPUIR",
9029 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9030 .access = PL1_R, .type = ARM_CP_CONST,
9031 .resetvalue = cpu->pmsav7_dregion << 8
9032 };
9033 /* HMPUIR is specific to PMSA V8 */
9034 ARMCPRegInfo id_hmpuir_reginfo = {
9035 .name = "HMPUIR",
9036 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9037 .access = PL2_R, .type = ARM_CP_CONST,
9038 .resetvalue = cpu->pmsav8r_hdregion
9039 };
9040 static const ARMCPRegInfo crn0_wi_reginfo = {
9041 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9042 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9043 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9044 };
9045 #ifdef CONFIG_USER_ONLY
9046 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9047 { .name = "MIDR_EL1",
9048 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9049 R_MIDR_EL1_PARTNUM_MASK |
9050 R_MIDR_EL1_ARCHITECTURE_MASK |
9051 R_MIDR_EL1_VARIANT_MASK |
9052 R_MIDR_EL1_IMPLEMENTER_MASK },
9053 { .name = "REVIDR_EL1" },
9054 };
9055 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9056 #endif
9057 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9058 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9059 size_t i;
9060 /*
9061 * Register the blanket "writes ignored" value first to cover the
9062 * whole space. Then update the specific ID registers to allow write
9063 * access, so that they ignore writes rather than causing them to
9064 * UNDEF.
9065 */
9066 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9067 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9068 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9069 }
9070 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9071 id_cp_reginfo[i].access = PL1_RW;
9072 }
9073 id_mpuir_reginfo.access = PL1_RW;
9074 id_tlbtr_reginfo.access = PL1_RW;
9075 }
9076 if (arm_feature(env, ARM_FEATURE_V8)) {
9077 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9078 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9079 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9080 }
9081 } else {
9082 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9083 }
9084 define_arm_cp_regs(cpu, id_cp_reginfo);
9085 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9086 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9087 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9088 arm_feature(env, ARM_FEATURE_V8)) {
9089 uint32_t i = 0;
9090 char *tmp_string;
9091
9092 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9093 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9094 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9095
9096 /* Register alias is only valid for first 32 indexes */
9097 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9098 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9099 uint8_t opc1 = extract32(i, 4, 1);
9100 uint8_t opc2 = extract32(i, 0, 1) << 2;
9101
9102 tmp_string = g_strdup_printf("PRBAR%u", i);
9103 ARMCPRegInfo tmp_prbarn_reginfo = {
9104 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9105 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9106 .access = PL1_RW, .resetvalue = 0,
9107 .accessfn = access_tvm_trvm,
9108 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9109 };
9110 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9111 g_free(tmp_string);
9112
9113 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9114 tmp_string = g_strdup_printf("PRLAR%u", i);
9115 ARMCPRegInfo tmp_prlarn_reginfo = {
9116 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9117 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9118 .access = PL1_RW, .resetvalue = 0,
9119 .accessfn = access_tvm_trvm,
9120 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9121 };
9122 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9123 g_free(tmp_string);
9124 }
9125
9126 /* Register alias is only valid for first 32 indexes */
9127 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9128 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9129 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9130 uint8_t opc2 = extract32(i, 0, 1) << 2;
9131
9132 tmp_string = g_strdup_printf("HPRBAR%u", i);
9133 ARMCPRegInfo tmp_hprbarn_reginfo = {
9134 .name = tmp_string,
9135 .type = ARM_CP_NO_RAW,
9136 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9137 .access = PL2_RW, .resetvalue = 0,
9138 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9139 };
9140 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9141 g_free(tmp_string);
9142
9143 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9144 tmp_string = g_strdup_printf("HPRLAR%u", i);
9145 ARMCPRegInfo tmp_hprlarn_reginfo = {
9146 .name = tmp_string,
9147 .type = ARM_CP_NO_RAW,
9148 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9149 .access = PL2_RW, .resetvalue = 0,
9150 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9151 };
9152 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9153 g_free(tmp_string);
9154 }
9155 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9156 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9157 }
9158 }
9159
9160 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9161 ARMCPRegInfo mpidr_cp_reginfo[] = {
9162 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9163 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9164 .fgt = FGT_MPIDR_EL1,
9165 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9166 };
9167 #ifdef CONFIG_USER_ONLY
9168 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9169 { .name = "MPIDR_EL1",
9170 .fixed_bits = 0x0000000080000000 },
9171 };
9172 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9173 #endif
9174 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9175 }
9176
9177 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9178 ARMCPRegInfo auxcr_reginfo[] = {
9179 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9180 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9181 .access = PL1_RW, .accessfn = access_tacr,
9182 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9183 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9184 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9185 .access = PL2_RW, .type = ARM_CP_CONST,
9186 .resetvalue = 0 },
9187 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9188 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9189 .access = PL3_RW, .type = ARM_CP_CONST,
9190 .resetvalue = 0 },
9191 };
9192 define_arm_cp_regs(cpu, auxcr_reginfo);
9193 if (cpu_isar_feature(aa32_ac2, cpu)) {
9194 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9195 }
9196 }
9197
9198 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9199 /*
9200 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9201 * There are two flavours:
9202 * (1) older 32-bit only cores have a simple 32-bit CBAR
9203 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9204 * 32-bit register visible to AArch32 at a different encoding
9205 * to the "flavour 1" register and with the bits rearranged to
9206 * be able to squash a 64-bit address into the 32-bit view.
9207 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9208 * in future if we support AArch32-only configs of some of the
9209 * AArch64 cores we might need to add a specific feature flag
9210 * to indicate cores with "flavour 2" CBAR.
9211 */
9212 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9213 /* 32 bit view is [31:18] 0...0 [43:32]. */
9214 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9215 | extract64(cpu->reset_cbar, 32, 12);
9216 ARMCPRegInfo cbar_reginfo[] = {
9217 { .name = "CBAR",
9218 .type = ARM_CP_CONST,
9219 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9220 .access = PL1_R, .resetvalue = cbar32 },
9221 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9222 .type = ARM_CP_CONST,
9223 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9224 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9225 };
9226 /* We don't implement a r/w 64 bit CBAR currently */
9227 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9228 define_arm_cp_regs(cpu, cbar_reginfo);
9229 } else {
9230 ARMCPRegInfo cbar = {
9231 .name = "CBAR",
9232 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9233 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9234 .fieldoffset = offsetof(CPUARMState,
9235 cp15.c15_config_base_address)
9236 };
9237 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9238 cbar.access = PL1_R;
9239 cbar.fieldoffset = 0;
9240 cbar.type = ARM_CP_CONST;
9241 }
9242 define_one_arm_cp_reg(cpu, &cbar);
9243 }
9244 }
9245
9246 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9247 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9248 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9249 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9250 .access = PL1_RW, .writefn = vbar_write,
9251 .fgt = FGT_VBAR_EL1,
9252 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9253 offsetof(CPUARMState, cp15.vbar_ns) },
9254 .resetvalue = 0 },
9255 };
9256 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9257 }
9258
9259 /* Generic registers whose values depend on the implementation */
9260 {
9261 ARMCPRegInfo sctlr = {
9262 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9263 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9264 .access = PL1_RW, .accessfn = access_tvm_trvm,
9265 .fgt = FGT_SCTLR_EL1,
9266 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9267 offsetof(CPUARMState, cp15.sctlr_ns) },
9268 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9269 .raw_writefn = raw_write,
9270 };
9271 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9272 /*
9273 * Normally we would always end the TB on an SCTLR write, but Linux
9274 * arch/arm/mach-pxa/sleep.S expects two instructions following
9275 * an MMU enable to execute from cache. Imitate this behaviour.
9276 */
9277 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9278 }
9279 define_one_arm_cp_reg(cpu, &sctlr);
9280
9281 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9282 arm_feature(env, ARM_FEATURE_V8)) {
9283 ARMCPRegInfo vsctlr = {
9284 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9285 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9286 .access = PL2_RW, .resetvalue = 0x0,
9287 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9288 };
9289 define_one_arm_cp_reg(cpu, &vsctlr);
9290 }
9291 }
9292
9293 if (cpu_isar_feature(aa64_lor, cpu)) {
9294 define_arm_cp_regs(cpu, lor_reginfo);
9295 }
9296 if (cpu_isar_feature(aa64_pan, cpu)) {
9297 define_one_arm_cp_reg(cpu, &pan_reginfo);
9298 }
9299 #ifndef CONFIG_USER_ONLY
9300 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9301 define_arm_cp_regs(cpu, ats1e1_reginfo);
9302 }
9303 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9304 define_arm_cp_regs(cpu, ats1cp_reginfo);
9305 }
9306 #endif
9307 if (cpu_isar_feature(aa64_uao, cpu)) {
9308 define_one_arm_cp_reg(cpu, &uao_reginfo);
9309 }
9310
9311 if (cpu_isar_feature(aa64_dit, cpu)) {
9312 define_one_arm_cp_reg(cpu, &dit_reginfo);
9313 }
9314 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9315 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9316 }
9317 if (cpu_isar_feature(any_ras, cpu)) {
9318 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9319 }
9320
9321 if (cpu_isar_feature(aa64_vh, cpu) ||
9322 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9323 define_one_arm_cp_reg(cpu, &contextidr_el2);
9324 }
9325 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9326 define_arm_cp_regs(cpu, vhe_reginfo);
9327 }
9328
9329 if (cpu_isar_feature(aa64_sve, cpu)) {
9330 define_arm_cp_regs(cpu, zcr_reginfo);
9331 }
9332
9333 if (cpu_isar_feature(aa64_hcx, cpu)) {
9334 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9335 }
9336
9337 #ifdef TARGET_AARCH64
9338 if (cpu_isar_feature(aa64_sme, cpu)) {
9339 define_arm_cp_regs(cpu, sme_reginfo);
9340 }
9341 if (cpu_isar_feature(aa64_pauth, cpu)) {
9342 define_arm_cp_regs(cpu, pauth_reginfo);
9343 }
9344 if (cpu_isar_feature(aa64_rndr, cpu)) {
9345 define_arm_cp_regs(cpu, rndr_reginfo);
9346 }
9347 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9348 define_arm_cp_regs(cpu, tlbirange_reginfo);
9349 }
9350 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9351 define_arm_cp_regs(cpu, tlbios_reginfo);
9352 }
9353 /* Data Cache clean instructions up to PoP */
9354 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9355 define_one_arm_cp_reg(cpu, dcpop_reg);
9356
9357 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9358 define_one_arm_cp_reg(cpu, dcpodp_reg);
9359 }
9360 }
9361
9362 /*
9363 * If full MTE is enabled, add all of the system registers.
9364 * If only "instructions available at EL0" are enabled,
9365 * then define only a RAZ/WI version of PSTATE.TCO.
9366 */
9367 if (cpu_isar_feature(aa64_mte, cpu)) {
9368 ARMCPRegInfo gmid_reginfo = {
9369 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9370 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9371 .access = PL1_R, .accessfn = access_aa64_tid5,
9372 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9373 };
9374 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9375 define_arm_cp_regs(cpu, mte_reginfo);
9376 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9377 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9378 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9379 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9380 }
9381
9382 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9383 define_arm_cp_regs(cpu, scxtnum_reginfo);
9384 }
9385
9386 if (cpu_isar_feature(aa64_fgt, cpu)) {
9387 define_arm_cp_regs(cpu, fgt_reginfo);
9388 }
9389
9390 if (cpu_isar_feature(aa64_rme, cpu)) {
9391 define_arm_cp_regs(cpu, rme_reginfo);
9392 if (cpu_isar_feature(aa64_mte, cpu)) {
9393 define_arm_cp_regs(cpu, rme_mte_reginfo);
9394 }
9395 }
9396 #endif
9397
9398 if (cpu_isar_feature(any_predinv, cpu)) {
9399 define_arm_cp_regs(cpu, predinv_reginfo);
9400 }
9401
9402 if (cpu_isar_feature(any_ccidx, cpu)) {
9403 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9404 }
9405
9406 #ifndef CONFIG_USER_ONLY
9407 /*
9408 * Register redirections and aliases must be done last,
9409 * after the registers from the other extensions have been defined.
9410 */
9411 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9412 define_arm_vh_e2h_redirects_aliases(cpu);
9413 }
9414 #endif
9415 }
9416
9417 /* Sort alphabetically by type name, except for "any". */
9418 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9419 {
9420 ObjectClass *class_a = (ObjectClass *)a;
9421 ObjectClass *class_b = (ObjectClass *)b;
9422 const char *name_a, *name_b;
9423
9424 name_a = object_class_get_name(class_a);
9425 name_b = object_class_get_name(class_b);
9426 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9427 return 1;
9428 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9429 return -1;
9430 } else {
9431 return strcmp(name_a, name_b);
9432 }
9433 }
9434
9435 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9436 {
9437 ObjectClass *oc = data;
9438 CPUClass *cc = CPU_CLASS(oc);
9439 const char *typename;
9440 char *name;
9441
9442 typename = object_class_get_name(oc);
9443 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9444 if (cc->deprecation_note) {
9445 qemu_printf(" %s (deprecated)\n", name);
9446 } else {
9447 qemu_printf(" %s\n", name);
9448 }
9449 g_free(name);
9450 }
9451
9452 void arm_cpu_list(void)
9453 {
9454 GSList *list;
9455
9456 list = object_class_get_list(TYPE_ARM_CPU, false);
9457 list = g_slist_sort(list, arm_cpu_list_compare);
9458 qemu_printf("Available CPUs:\n");
9459 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9460 g_slist_free(list);
9461 }
9462
9463 /*
9464 * Private utility function for define_one_arm_cp_reg_with_opaque():
9465 * add a single reginfo struct to the hash table.
9466 */
9467 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9468 void *opaque, CPState state,
9469 CPSecureState secstate,
9470 int crm, int opc1, int opc2,
9471 const char *name)
9472 {
9473 CPUARMState *env = &cpu->env;
9474 uint32_t key;
9475 ARMCPRegInfo *r2;
9476 bool is64 = r->type & ARM_CP_64BIT;
9477 bool ns = secstate & ARM_CP_SECSTATE_NS;
9478 int cp = r->cp;
9479 size_t name_len;
9480 bool make_const;
9481
9482 switch (state) {
9483 case ARM_CP_STATE_AA32:
9484 /* We assume it is a cp15 register if the .cp field is left unset. */
9485 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9486 cp = 15;
9487 }
9488 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9489 break;
9490 case ARM_CP_STATE_AA64:
9491 /*
9492 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9493 * cp == 0 as equivalent to the value for "standard guest-visible
9494 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9495 * in their AArch64 view (the .cp value may be non-zero for the
9496 * benefit of the AArch32 view).
9497 */
9498 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9499 cp = CP_REG_ARM64_SYSREG_CP;
9500 }
9501 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9502 break;
9503 default:
9504 g_assert_not_reached();
9505 }
9506
9507 /* Overriding of an existing definition must be explicitly requested. */
9508 if (!(r->type & ARM_CP_OVERRIDE)) {
9509 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9510 if (oldreg) {
9511 assert(oldreg->type & ARM_CP_OVERRIDE);
9512 }
9513 }
9514
9515 /*
9516 * Eliminate registers that are not present because the EL is missing.
9517 * Doing this here makes it easier to put all registers for a given
9518 * feature into the same ARMCPRegInfo array and define them all at once.
9519 */
9520 make_const = false;
9521 if (arm_feature(env, ARM_FEATURE_EL3)) {
9522 /*
9523 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9524 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9525 */
9526 int min_el = ctz32(r->access) / 2;
9527 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9528 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9529 return;
9530 }
9531 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9532 }
9533 } else {
9534 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9535 ? PL2_RW : PL1_RW);
9536 if ((r->access & max_el) == 0) {
9537 return;
9538 }
9539 }
9540
9541 /* Combine cpreg and name into one allocation. */
9542 name_len = strlen(name) + 1;
9543 r2 = g_malloc(sizeof(*r2) + name_len);
9544 *r2 = *r;
9545 r2->name = memcpy(r2 + 1, name, name_len);
9546
9547 /*
9548 * Update fields to match the instantiation, overwiting wildcards
9549 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9550 */
9551 r2->cp = cp;
9552 r2->crm = crm;
9553 r2->opc1 = opc1;
9554 r2->opc2 = opc2;
9555 r2->state = state;
9556 r2->secure = secstate;
9557 if (opaque) {
9558 r2->opaque = opaque;
9559 }
9560
9561 if (make_const) {
9562 /* This should not have been a very special register to begin. */
9563 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9564 assert(old_special == 0 || old_special == ARM_CP_NOP);
9565 /*
9566 * Set the special function to CONST, retaining the other flags.
9567 * This is important for e.g. ARM_CP_SVE so that we still
9568 * take the SVE trap if CPTR_EL3.EZ == 0.
9569 */
9570 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9571 /*
9572 * Usually, these registers become RES0, but there are a few
9573 * special cases like VPIDR_EL2 which have a constant non-zero
9574 * value with writes ignored.
9575 */
9576 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9577 r2->resetvalue = 0;
9578 }
9579 /*
9580 * ARM_CP_CONST has precedence, so removing the callbacks and
9581 * offsets are not strictly necessary, but it is potentially
9582 * less confusing to debug later.
9583 */
9584 r2->readfn = NULL;
9585 r2->writefn = NULL;
9586 r2->raw_readfn = NULL;
9587 r2->raw_writefn = NULL;
9588 r2->resetfn = NULL;
9589 r2->fieldoffset = 0;
9590 r2->bank_fieldoffsets[0] = 0;
9591 r2->bank_fieldoffsets[1] = 0;
9592 } else {
9593 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9594
9595 if (isbanked) {
9596 /*
9597 * Register is banked (using both entries in array).
9598 * Overwriting fieldoffset as the array is only used to define
9599 * banked registers but later only fieldoffset is used.
9600 */
9601 r2->fieldoffset = r->bank_fieldoffsets[ns];
9602 }
9603 if (state == ARM_CP_STATE_AA32) {
9604 if (isbanked) {
9605 /*
9606 * If the register is banked then we don't need to migrate or
9607 * reset the 32-bit instance in certain cases:
9608 *
9609 * 1) If the register has both 32-bit and 64-bit instances
9610 * then we can count on the 64-bit instance taking care
9611 * of the non-secure bank.
9612 * 2) If ARMv8 is enabled then we can count on a 64-bit
9613 * version taking care of the secure bank. This requires
9614 * that separate 32 and 64-bit definitions are provided.
9615 */
9616 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9617 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9618 r2->type |= ARM_CP_ALIAS;
9619 }
9620 } else if ((secstate != r->secure) && !ns) {
9621 /*
9622 * The register is not banked so we only want to allow
9623 * migration of the non-secure instance.
9624 */
9625 r2->type |= ARM_CP_ALIAS;
9626 }
9627
9628 if (HOST_BIG_ENDIAN &&
9629 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9630 r2->fieldoffset += sizeof(uint32_t);
9631 }
9632 }
9633 }
9634
9635 /*
9636 * By convention, for wildcarded registers only the first
9637 * entry is used for migration; the others are marked as
9638 * ALIAS so we don't try to transfer the register
9639 * multiple times. Special registers (ie NOP/WFI) are
9640 * never migratable and not even raw-accessible.
9641 */
9642 if (r2->type & ARM_CP_SPECIAL_MASK) {
9643 r2->type |= ARM_CP_NO_RAW;
9644 }
9645 if (((r->crm == CP_ANY) && crm != 0) ||
9646 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9647 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9648 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9649 }
9650
9651 /*
9652 * Check that raw accesses are either forbidden or handled. Note that
9653 * we can't assert this earlier because the setup of fieldoffset for
9654 * banked registers has to be done first.
9655 */
9656 if (!(r2->type & ARM_CP_NO_RAW)) {
9657 assert(!raw_accessors_invalid(r2));
9658 }
9659
9660 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9661 }
9662
9663
9664 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9665 const ARMCPRegInfo *r, void *opaque)
9666 {
9667 /*
9668 * Define implementations of coprocessor registers.
9669 * We store these in a hashtable because typically
9670 * there are less than 150 registers in a space which
9671 * is 16*16*16*8*8 = 262144 in size.
9672 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9673 * If a register is defined twice then the second definition is
9674 * used, so this can be used to define some generic registers and
9675 * then override them with implementation specific variations.
9676 * At least one of the original and the second definition should
9677 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9678 * against accidental use.
9679 *
9680 * The state field defines whether the register is to be
9681 * visible in the AArch32 or AArch64 execution state. If the
9682 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9683 * reginfo structure for the AArch32 view, which sees the lower
9684 * 32 bits of the 64 bit register.
9685 *
9686 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9687 * be wildcarded. AArch64 registers are always considered to be 64
9688 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9689 * the register, if any.
9690 */
9691 int crm, opc1, opc2;
9692 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9693 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9694 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9695 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9696 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9697 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9698 CPState state;
9699
9700 /* 64 bit registers have only CRm and Opc1 fields */
9701 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9702 /* op0 only exists in the AArch64 encodings */
9703 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9704 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9705 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9706 /*
9707 * This API is only for Arm's system coprocessors (14 and 15) or
9708 * (M-profile or v7A-and-earlier only) for implementation defined
9709 * coprocessors in the range 0..7. Our decode assumes this, since
9710 * 8..13 can be used for other insns including VFP and Neon. See
9711 * valid_cp() in translate.c. Assert here that we haven't tried
9712 * to use an invalid coprocessor number.
9713 */
9714 switch (r->state) {
9715 case ARM_CP_STATE_BOTH:
9716 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9717 if (r->cp == 0) {
9718 break;
9719 }
9720 /* fall through */
9721 case ARM_CP_STATE_AA32:
9722 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9723 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9724 assert(r->cp >= 14 && r->cp <= 15);
9725 } else {
9726 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9727 }
9728 break;
9729 case ARM_CP_STATE_AA64:
9730 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9731 break;
9732 default:
9733 g_assert_not_reached();
9734 }
9735 /*
9736 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9737 * encodes a minimum access level for the register. We roll this
9738 * runtime check into our general permission check code, so check
9739 * here that the reginfo's specified permissions are strict enough
9740 * to encompass the generic architectural permission check.
9741 */
9742 if (r->state != ARM_CP_STATE_AA32) {
9743 CPAccessRights mask;
9744 switch (r->opc1) {
9745 case 0:
9746 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9747 mask = PL0U_R | PL1_RW;
9748 break;
9749 case 1: case 2:
9750 /* min_EL EL1 */
9751 mask = PL1_RW;
9752 break;
9753 case 3:
9754 /* min_EL EL0 */
9755 mask = PL0_RW;
9756 break;
9757 case 4:
9758 case 5:
9759 /* min_EL EL2 */
9760 mask = PL2_RW;
9761 break;
9762 case 6:
9763 /* min_EL EL3 */
9764 mask = PL3_RW;
9765 break;
9766 case 7:
9767 /* min_EL EL1, secure mode only (we don't check the latter) */
9768 mask = PL1_RW;
9769 break;
9770 default:
9771 /* broken reginfo with out-of-range opc1 */
9772 g_assert_not_reached();
9773 }
9774 /* assert our permissions are not too lax (stricter is fine) */
9775 assert((r->access & ~mask) == 0);
9776 }
9777
9778 /*
9779 * Check that the register definition has enough info to handle
9780 * reads and writes if they are permitted.
9781 */
9782 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9783 if (r->access & PL3_R) {
9784 assert((r->fieldoffset ||
9785 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9786 r->readfn);
9787 }
9788 if (r->access & PL3_W) {
9789 assert((r->fieldoffset ||
9790 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9791 r->writefn);
9792 }
9793 }
9794
9795 for (crm = crmmin; crm <= crmmax; crm++) {
9796 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9797 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9798 for (state = ARM_CP_STATE_AA32;
9799 state <= ARM_CP_STATE_AA64; state++) {
9800 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9801 continue;
9802 }
9803 if (state == ARM_CP_STATE_AA32) {
9804 /*
9805 * Under AArch32 CP registers can be common
9806 * (same for secure and non-secure world) or banked.
9807 */
9808 char *name;
9809
9810 switch (r->secure) {
9811 case ARM_CP_SECSTATE_S:
9812 case ARM_CP_SECSTATE_NS:
9813 add_cpreg_to_hashtable(cpu, r, opaque, state,
9814 r->secure, crm, opc1, opc2,
9815 r->name);
9816 break;
9817 case ARM_CP_SECSTATE_BOTH:
9818 name = g_strdup_printf("%s_S", r->name);
9819 add_cpreg_to_hashtable(cpu, r, opaque, state,
9820 ARM_CP_SECSTATE_S,
9821 crm, opc1, opc2, name);
9822 g_free(name);
9823 add_cpreg_to_hashtable(cpu, r, opaque, state,
9824 ARM_CP_SECSTATE_NS,
9825 crm, opc1, opc2, r->name);
9826 break;
9827 default:
9828 g_assert_not_reached();
9829 }
9830 } else {
9831 /*
9832 * AArch64 registers get mapped to non-secure instance
9833 * of AArch32
9834 */
9835 add_cpreg_to_hashtable(cpu, r, opaque, state,
9836 ARM_CP_SECSTATE_NS,
9837 crm, opc1, opc2, r->name);
9838 }
9839 }
9840 }
9841 }
9842 }
9843 }
9844
9845 /* Define a whole list of registers */
9846 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9847 void *opaque, size_t len)
9848 {
9849 size_t i;
9850 for (i = 0; i < len; ++i) {
9851 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9852 }
9853 }
9854
9855 /*
9856 * Modify ARMCPRegInfo for access from userspace.
9857 *
9858 * This is a data driven modification directed by
9859 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9860 * user-space cannot alter any values and dynamic values pertaining to
9861 * execution state are hidden from user space view anyway.
9862 */
9863 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9864 const ARMCPRegUserSpaceInfo *mods,
9865 size_t mods_len)
9866 {
9867 for (size_t mi = 0; mi < mods_len; ++mi) {
9868 const ARMCPRegUserSpaceInfo *m = mods + mi;
9869 GPatternSpec *pat = NULL;
9870
9871 if (m->is_glob) {
9872 pat = g_pattern_spec_new(m->name);
9873 }
9874 for (size_t ri = 0; ri < regs_len; ++ri) {
9875 ARMCPRegInfo *r = regs + ri;
9876
9877 if (pat && g_pattern_match_string(pat, r->name)) {
9878 r->type = ARM_CP_CONST;
9879 r->access = PL0U_R;
9880 r->resetvalue = 0;
9881 /* continue */
9882 } else if (strcmp(r->name, m->name) == 0) {
9883 r->type = ARM_CP_CONST;
9884 r->access = PL0U_R;
9885 r->resetvalue &= m->exported_bits;
9886 r->resetvalue |= m->fixed_bits;
9887 break;
9888 }
9889 }
9890 if (pat) {
9891 g_pattern_spec_free(pat);
9892 }
9893 }
9894 }
9895
9896 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9897 {
9898 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9899 }
9900
9901 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9902 uint64_t value)
9903 {
9904 /* Helper coprocessor write function for write-ignore registers */
9905 }
9906
9907 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9908 {
9909 /* Helper coprocessor write function for read-as-zero registers */
9910 return 0;
9911 }
9912
9913 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9914 {
9915 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9916 }
9917
9918 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9919 {
9920 /*
9921 * Return true if it is not valid for us to switch to
9922 * this CPU mode (ie all the UNPREDICTABLE cases in
9923 * the ARM ARM CPSRWriteByInstr pseudocode).
9924 */
9925
9926 /* Changes to or from Hyp via MSR and CPS are illegal. */
9927 if (write_type == CPSRWriteByInstr &&
9928 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9929 mode == ARM_CPU_MODE_HYP)) {
9930 return 1;
9931 }
9932
9933 switch (mode) {
9934 case ARM_CPU_MODE_USR:
9935 return 0;
9936 case ARM_CPU_MODE_SYS:
9937 case ARM_CPU_MODE_SVC:
9938 case ARM_CPU_MODE_ABT:
9939 case ARM_CPU_MODE_UND:
9940 case ARM_CPU_MODE_IRQ:
9941 case ARM_CPU_MODE_FIQ:
9942 /*
9943 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9944 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9945 */
9946 /*
9947 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9948 * and CPS are treated as illegal mode changes.
9949 */
9950 if (write_type == CPSRWriteByInstr &&
9951 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9952 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9953 return 1;
9954 }
9955 return 0;
9956 case ARM_CPU_MODE_HYP:
9957 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9958 case ARM_CPU_MODE_MON:
9959 return arm_current_el(env) < 3;
9960 default:
9961 return 1;
9962 }
9963 }
9964
9965 uint32_t cpsr_read(CPUARMState *env)
9966 {
9967 int ZF;
9968 ZF = (env->ZF == 0);
9969 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9970 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9971 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9972 | ((env->condexec_bits & 0xfc) << 8)
9973 | (env->GE << 16) | (env->daif & CPSR_AIF);
9974 }
9975
9976 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9977 CPSRWriteType write_type)
9978 {
9979 uint32_t changed_daif;
9980 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9981 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9982
9983 if (mask & CPSR_NZCV) {
9984 env->ZF = (~val) & CPSR_Z;
9985 env->NF = val;
9986 env->CF = (val >> 29) & 1;
9987 env->VF = (val << 3) & 0x80000000;
9988 }
9989 if (mask & CPSR_Q) {
9990 env->QF = ((val & CPSR_Q) != 0);
9991 }
9992 if (mask & CPSR_T) {
9993 env->thumb = ((val & CPSR_T) != 0);
9994 }
9995 if (mask & CPSR_IT_0_1) {
9996 env->condexec_bits &= ~3;
9997 env->condexec_bits |= (val >> 25) & 3;
9998 }
9999 if (mask & CPSR_IT_2_7) {
10000 env->condexec_bits &= 3;
10001 env->condexec_bits |= (val >> 8) & 0xfc;
10002 }
10003 if (mask & CPSR_GE) {
10004 env->GE = (val >> 16) & 0xf;
10005 }
10006
10007 /*
10008 * In a V7 implementation that includes the security extensions but does
10009 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10010 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10011 * bits respectively.
10012 *
10013 * In a V8 implementation, it is permitted for privileged software to
10014 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10015 */
10016 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10017 arm_feature(env, ARM_FEATURE_EL3) &&
10018 !arm_feature(env, ARM_FEATURE_EL2) &&
10019 !arm_is_secure(env)) {
10020
10021 changed_daif = (env->daif ^ val) & mask;
10022
10023 if (changed_daif & CPSR_A) {
10024 /*
10025 * Check to see if we are allowed to change the masking of async
10026 * abort exceptions from a non-secure state.
10027 */
10028 if (!(env->cp15.scr_el3 & SCR_AW)) {
10029 qemu_log_mask(LOG_GUEST_ERROR,
10030 "Ignoring attempt to switch CPSR_A flag from "
10031 "non-secure world with SCR.AW bit clear\n");
10032 mask &= ~CPSR_A;
10033 }
10034 }
10035
10036 if (changed_daif & CPSR_F) {
10037 /*
10038 * Check to see if we are allowed to change the masking of FIQ
10039 * exceptions from a non-secure state.
10040 */
10041 if (!(env->cp15.scr_el3 & SCR_FW)) {
10042 qemu_log_mask(LOG_GUEST_ERROR,
10043 "Ignoring attempt to switch CPSR_F flag from "
10044 "non-secure world with SCR.FW bit clear\n");
10045 mask &= ~CPSR_F;
10046 }
10047
10048 /*
10049 * Check whether non-maskable FIQ (NMFI) support is enabled.
10050 * If this bit is set software is not allowed to mask
10051 * FIQs, but is allowed to set CPSR_F to 0.
10052 */
10053 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10054 (val & CPSR_F)) {
10055 qemu_log_mask(LOG_GUEST_ERROR,
10056 "Ignoring attempt to enable CPSR_F flag "
10057 "(non-maskable FIQ [NMFI] support enabled)\n");
10058 mask &= ~CPSR_F;
10059 }
10060 }
10061 }
10062
10063 env->daif &= ~(CPSR_AIF & mask);
10064 env->daif |= val & CPSR_AIF & mask;
10065
10066 if (write_type != CPSRWriteRaw &&
10067 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10068 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10069 /*
10070 * Note that we can only get here in USR mode if this is a
10071 * gdb stub write; for this case we follow the architectural
10072 * behaviour for guest writes in USR mode of ignoring an attempt
10073 * to switch mode. (Those are caught by translate.c for writes
10074 * triggered by guest instructions.)
10075 */
10076 mask &= ~CPSR_M;
10077 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10078 /*
10079 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10080 * v7, and has defined behaviour in v8:
10081 * + leave CPSR.M untouched
10082 * + allow changes to the other CPSR fields
10083 * + set PSTATE.IL
10084 * For user changes via the GDB stub, we don't set PSTATE.IL,
10085 * as this would be unnecessarily harsh for a user error.
10086 */
10087 mask &= ~CPSR_M;
10088 if (write_type != CPSRWriteByGDBStub &&
10089 arm_feature(env, ARM_FEATURE_V8)) {
10090 mask |= CPSR_IL;
10091 val |= CPSR_IL;
10092 }
10093 qemu_log_mask(LOG_GUEST_ERROR,
10094 "Illegal AArch32 mode switch attempt from %s to %s\n",
10095 aarch32_mode_name(env->uncached_cpsr),
10096 aarch32_mode_name(val));
10097 } else {
10098 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10099 write_type == CPSRWriteExceptionReturn ?
10100 "Exception return from AArch32" :
10101 "AArch32 mode switch from",
10102 aarch32_mode_name(env->uncached_cpsr),
10103 aarch32_mode_name(val), env->regs[15]);
10104 switch_mode(env, val & CPSR_M);
10105 }
10106 }
10107 mask &= ~CACHED_CPSR_BITS;
10108 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10109 if (tcg_enabled() && rebuild_hflags) {
10110 arm_rebuild_hflags(env);
10111 }
10112 }
10113
10114 /* Sign/zero extend */
10115 uint32_t HELPER(sxtb16)(uint32_t x)
10116 {
10117 uint32_t res;
10118 res = (uint16_t)(int8_t)x;
10119 res |= (uint32_t)(int8_t)(x >> 16) << 16;
10120 return res;
10121 }
10122
10123 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10124 {
10125 /*
10126 * Take a division-by-zero exception if necessary; otherwise return
10127 * to get the usual non-trapping division behaviour (result of 0)
10128 */
10129 if (arm_feature(env, ARM_FEATURE_M)
10130 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10131 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10132 }
10133 }
10134
10135 uint32_t HELPER(uxtb16)(uint32_t x)
10136 {
10137 uint32_t res;
10138 res = (uint16_t)(uint8_t)x;
10139 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10140 return res;
10141 }
10142
10143 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10144 {
10145 if (den == 0) {
10146 handle_possible_div0_trap(env, GETPC());
10147 return 0;
10148 }
10149 if (num == INT_MIN && den == -1) {
10150 return INT_MIN;
10151 }
10152 return num / den;
10153 }
10154
10155 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10156 {
10157 if (den == 0) {
10158 handle_possible_div0_trap(env, GETPC());
10159 return 0;
10160 }
10161 return num / den;
10162 }
10163
10164 uint32_t HELPER(rbit)(uint32_t x)
10165 {
10166 return revbit32(x);
10167 }
10168
10169 #ifdef CONFIG_USER_ONLY
10170
10171 static void switch_mode(CPUARMState *env, int mode)
10172 {
10173 ARMCPU *cpu = env_archcpu(env);
10174
10175 if (mode != ARM_CPU_MODE_USR) {
10176 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10177 }
10178 }
10179
10180 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10181 uint32_t cur_el, bool secure)
10182 {
10183 return 1;
10184 }
10185
10186 void aarch64_sync_64_to_32(CPUARMState *env)
10187 {
10188 g_assert_not_reached();
10189 }
10190
10191 #else
10192
10193 static void switch_mode(CPUARMState *env, int mode)
10194 {
10195 int old_mode;
10196 int i;
10197
10198 old_mode = env->uncached_cpsr & CPSR_M;
10199 if (mode == old_mode) {
10200 return;
10201 }
10202
10203 if (old_mode == ARM_CPU_MODE_FIQ) {
10204 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10205 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10206 } else if (mode == ARM_CPU_MODE_FIQ) {
10207 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10208 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10209 }
10210
10211 i = bank_number(old_mode);
10212 env->banked_r13[i] = env->regs[13];
10213 env->banked_spsr[i] = env->spsr;
10214
10215 i = bank_number(mode);
10216 env->regs[13] = env->banked_r13[i];
10217 env->spsr = env->banked_spsr[i];
10218
10219 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10220 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10221 }
10222
10223 /*
10224 * Physical Interrupt Target EL Lookup Table
10225 *
10226 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10227 *
10228 * The below multi-dimensional table is used for looking up the target
10229 * exception level given numerous condition criteria. Specifically, the
10230 * target EL is based on SCR and HCR routing controls as well as the
10231 * currently executing EL and secure state.
10232 *
10233 * Dimensions:
10234 * target_el_table[2][2][2][2][2][4]
10235 * | | | | | +--- Current EL
10236 * | | | | +------ Non-secure(0)/Secure(1)
10237 * | | | +--------- HCR mask override
10238 * | | +------------ SCR exec state control
10239 * | +--------------- SCR mask override
10240 * +------------------ 32-bit(0)/64-bit(1) EL3
10241 *
10242 * The table values are as such:
10243 * 0-3 = EL0-EL3
10244 * -1 = Cannot occur
10245 *
10246 * The ARM ARM target EL table includes entries indicating that an "exception
10247 * is not taken". The two cases where this is applicable are:
10248 * 1) An exception is taken from EL3 but the SCR does not have the exception
10249 * routed to EL3.
10250 * 2) An exception is taken from EL2 but the HCR does not have the exception
10251 * routed to EL2.
10252 * In these two cases, the below table contain a target of EL1. This value is
10253 * returned as it is expected that the consumer of the table data will check
10254 * for "target EL >= current EL" to ensure the exception is not taken.
10255 *
10256 * SCR HCR
10257 * 64 EA AMO From
10258 * BIT IRQ IMO Non-secure Secure
10259 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10260 */
10261 static const int8_t target_el_table[2][2][2][2][2][4] = {
10262 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10263 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10264 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10265 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10266 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10267 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10268 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10269 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10270 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10271 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10272 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10273 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10274 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10275 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10276 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10277 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10278 };
10279
10280 /*
10281 * Determine the target EL for physical exceptions
10282 */
10283 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10284 uint32_t cur_el, bool secure)
10285 {
10286 CPUARMState *env = cpu_env(cs);
10287 bool rw;
10288 bool scr;
10289 bool hcr;
10290 int target_el;
10291 /* Is the highest EL AArch64? */
10292 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10293 uint64_t hcr_el2;
10294
10295 if (arm_feature(env, ARM_FEATURE_EL3)) {
10296 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10297 } else {
10298 /*
10299 * Either EL2 is the highest EL (and so the EL2 register width
10300 * is given by is64); or there is no EL2 or EL3, in which case
10301 * the value of 'rw' does not affect the table lookup anyway.
10302 */
10303 rw = is64;
10304 }
10305
10306 hcr_el2 = arm_hcr_el2_eff(env);
10307 switch (excp_idx) {
10308 case EXCP_IRQ:
10309 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10310 hcr = hcr_el2 & HCR_IMO;
10311 break;
10312 case EXCP_FIQ:
10313 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10314 hcr = hcr_el2 & HCR_FMO;
10315 break;
10316 default:
10317 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10318 hcr = hcr_el2 & HCR_AMO;
10319 break;
10320 };
10321
10322 /*
10323 * For these purposes, TGE and AMO/IMO/FMO both force the
10324 * interrupt to EL2. Fold TGE into the bit extracted above.
10325 */
10326 hcr |= (hcr_el2 & HCR_TGE) != 0;
10327
10328 /* Perform a table-lookup for the target EL given the current state */
10329 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10330
10331 assert(target_el > 0);
10332
10333 return target_el;
10334 }
10335
10336 void arm_log_exception(CPUState *cs)
10337 {
10338 int idx = cs->exception_index;
10339
10340 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10341 const char *exc = NULL;
10342 static const char * const excnames[] = {
10343 [EXCP_UDEF] = "Undefined Instruction",
10344 [EXCP_SWI] = "SVC",
10345 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10346 [EXCP_DATA_ABORT] = "Data Abort",
10347 [EXCP_IRQ] = "IRQ",
10348 [EXCP_FIQ] = "FIQ",
10349 [EXCP_BKPT] = "Breakpoint",
10350 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10351 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10352 [EXCP_HVC] = "Hypervisor Call",
10353 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10354 [EXCP_SMC] = "Secure Monitor Call",
10355 [EXCP_VIRQ] = "Virtual IRQ",
10356 [EXCP_VFIQ] = "Virtual FIQ",
10357 [EXCP_SEMIHOST] = "Semihosting call",
10358 [EXCP_NOCP] = "v7M NOCP UsageFault",
10359 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10360 [EXCP_STKOF] = "v8M STKOF UsageFault",
10361 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10362 [EXCP_LSERR] = "v8M LSERR UsageFault",
10363 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10364 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10365 [EXCP_VSERR] = "Virtual SERR",
10366 [EXCP_GPC] = "Granule Protection Check",
10367 };
10368
10369 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10370 exc = excnames[idx];
10371 }
10372 if (!exc) {
10373 exc = "unknown";
10374 }
10375 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10376 idx, exc, cs->cpu_index);
10377 }
10378 }
10379
10380 /*
10381 * Function used to synchronize QEMU's AArch64 register set with AArch32
10382 * register set. This is necessary when switching between AArch32 and AArch64
10383 * execution state.
10384 */
10385 void aarch64_sync_32_to_64(CPUARMState *env)
10386 {
10387 int i;
10388 uint32_t mode = env->uncached_cpsr & CPSR_M;
10389
10390 /* We can blanket copy R[0:7] to X[0:7] */
10391 for (i = 0; i < 8; i++) {
10392 env->xregs[i] = env->regs[i];
10393 }
10394
10395 /*
10396 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10397 * Otherwise, they come from the banked user regs.
10398 */
10399 if (mode == ARM_CPU_MODE_FIQ) {
10400 for (i = 8; i < 13; i++) {
10401 env->xregs[i] = env->usr_regs[i - 8];
10402 }
10403 } else {
10404 for (i = 8; i < 13; i++) {
10405 env->xregs[i] = env->regs[i];
10406 }
10407 }
10408
10409 /*
10410 * Registers x13-x23 are the various mode SP and FP registers. Registers
10411 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10412 * from the mode banked register.
10413 */
10414 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10415 env->xregs[13] = env->regs[13];
10416 env->xregs[14] = env->regs[14];
10417 } else {
10418 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10419 /* HYP is an exception in that it is copied from r14 */
10420 if (mode == ARM_CPU_MODE_HYP) {
10421 env->xregs[14] = env->regs[14];
10422 } else {
10423 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10424 }
10425 }
10426
10427 if (mode == ARM_CPU_MODE_HYP) {
10428 env->xregs[15] = env->regs[13];
10429 } else {
10430 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10431 }
10432
10433 if (mode == ARM_CPU_MODE_IRQ) {
10434 env->xregs[16] = env->regs[14];
10435 env->xregs[17] = env->regs[13];
10436 } else {
10437 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10438 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10439 }
10440
10441 if (mode == ARM_CPU_MODE_SVC) {
10442 env->xregs[18] = env->regs[14];
10443 env->xregs[19] = env->regs[13];
10444 } else {
10445 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10446 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10447 }
10448
10449 if (mode == ARM_CPU_MODE_ABT) {
10450 env->xregs[20] = env->regs[14];
10451 env->xregs[21] = env->regs[13];
10452 } else {
10453 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10454 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10455 }
10456
10457 if (mode == ARM_CPU_MODE_UND) {
10458 env->xregs[22] = env->regs[14];
10459 env->xregs[23] = env->regs[13];
10460 } else {
10461 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10462 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10463 }
10464
10465 /*
10466 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10467 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10468 * FIQ bank for r8-r14.
10469 */
10470 if (mode == ARM_CPU_MODE_FIQ) {
10471 for (i = 24; i < 31; i++) {
10472 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10473 }
10474 } else {
10475 for (i = 24; i < 29; i++) {
10476 env->xregs[i] = env->fiq_regs[i - 24];
10477 }
10478 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10479 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10480 }
10481
10482 env->pc = env->regs[15];
10483 }
10484
10485 /*
10486 * Function used to synchronize QEMU's AArch32 register set with AArch64
10487 * register set. This is necessary when switching between AArch32 and AArch64
10488 * execution state.
10489 */
10490 void aarch64_sync_64_to_32(CPUARMState *env)
10491 {
10492 int i;
10493 uint32_t mode = env->uncached_cpsr & CPSR_M;
10494
10495 /* We can blanket copy X[0:7] to R[0:7] */
10496 for (i = 0; i < 8; i++) {
10497 env->regs[i] = env->xregs[i];
10498 }
10499
10500 /*
10501 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10502 * Otherwise, we copy x8-x12 into the banked user regs.
10503 */
10504 if (mode == ARM_CPU_MODE_FIQ) {
10505 for (i = 8; i < 13; i++) {
10506 env->usr_regs[i - 8] = env->xregs[i];
10507 }
10508 } else {
10509 for (i = 8; i < 13; i++) {
10510 env->regs[i] = env->xregs[i];
10511 }
10512 }
10513
10514 /*
10515 * Registers r13 & r14 depend on the current mode.
10516 * If we are in a given mode, we copy the corresponding x registers to r13
10517 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10518 * for the mode.
10519 */
10520 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10521 env->regs[13] = env->xregs[13];
10522 env->regs[14] = env->xregs[14];
10523 } else {
10524 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10525
10526 /*
10527 * HYP is an exception in that it does not have its own banked r14 but
10528 * shares the USR r14
10529 */
10530 if (mode == ARM_CPU_MODE_HYP) {
10531 env->regs[14] = env->xregs[14];
10532 } else {
10533 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10534 }
10535 }
10536
10537 if (mode == ARM_CPU_MODE_HYP) {
10538 env->regs[13] = env->xregs[15];
10539 } else {
10540 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10541 }
10542
10543 if (mode == ARM_CPU_MODE_IRQ) {
10544 env->regs[14] = env->xregs[16];
10545 env->regs[13] = env->xregs[17];
10546 } else {
10547 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10548 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10549 }
10550
10551 if (mode == ARM_CPU_MODE_SVC) {
10552 env->regs[14] = env->xregs[18];
10553 env->regs[13] = env->xregs[19];
10554 } else {
10555 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10556 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10557 }
10558
10559 if (mode == ARM_CPU_MODE_ABT) {
10560 env->regs[14] = env->xregs[20];
10561 env->regs[13] = env->xregs[21];
10562 } else {
10563 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10564 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10565 }
10566
10567 if (mode == ARM_CPU_MODE_UND) {
10568 env->regs[14] = env->xregs[22];
10569 env->regs[13] = env->xregs[23];
10570 } else {
10571 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10572 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10573 }
10574
10575 /*
10576 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10577 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10578 * FIQ bank for r8-r14.
10579 */
10580 if (mode == ARM_CPU_MODE_FIQ) {
10581 for (i = 24; i < 31; i++) {
10582 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10583 }
10584 } else {
10585 for (i = 24; i < 29; i++) {
10586 env->fiq_regs[i - 24] = env->xregs[i];
10587 }
10588 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10589 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10590 }
10591
10592 env->regs[15] = env->pc;
10593 }
10594
10595 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10596 uint32_t mask, uint32_t offset,
10597 uint32_t newpc)
10598 {
10599 int new_el;
10600
10601 /* Change the CPU state so as to actually take the exception. */
10602 switch_mode(env, new_mode);
10603
10604 /*
10605 * For exceptions taken to AArch32 we must clear the SS bit in both
10606 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10607 */
10608 env->pstate &= ~PSTATE_SS;
10609 env->spsr = cpsr_read(env);
10610 /* Clear IT bits. */
10611 env->condexec_bits = 0;
10612 /* Switch to the new mode, and to the correct instruction set. */
10613 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10614
10615 /* This must be after mode switching. */
10616 new_el = arm_current_el(env);
10617
10618 /* Set new mode endianness */
10619 env->uncached_cpsr &= ~CPSR_E;
10620 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10621 env->uncached_cpsr |= CPSR_E;
10622 }
10623 /* J and IL must always be cleared for exception entry */
10624 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10625 env->daif |= mask;
10626
10627 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10628 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10629 env->uncached_cpsr |= CPSR_SSBS;
10630 } else {
10631 env->uncached_cpsr &= ~CPSR_SSBS;
10632 }
10633 }
10634
10635 if (new_mode == ARM_CPU_MODE_HYP) {
10636 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10637 env->elr_el[2] = env->regs[15];
10638 } else {
10639 /* CPSR.PAN is normally preserved preserved unless... */
10640 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10641 switch (new_el) {
10642 case 3:
10643 if (!arm_is_secure_below_el3(env)) {
10644 /* ... the target is EL3, from non-secure state. */
10645 env->uncached_cpsr &= ~CPSR_PAN;
10646 break;
10647 }
10648 /* ... the target is EL3, from secure state ... */
10649 /* fall through */
10650 case 1:
10651 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10652 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10653 env->uncached_cpsr |= CPSR_PAN;
10654 }
10655 break;
10656 }
10657 }
10658 /*
10659 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10660 * and we should just guard the thumb mode on V4
10661 */
10662 if (arm_feature(env, ARM_FEATURE_V4T)) {
10663 env->thumb =
10664 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10665 }
10666 env->regs[14] = env->regs[15] + offset;
10667 }
10668 env->regs[15] = newpc;
10669
10670 if (tcg_enabled()) {
10671 arm_rebuild_hflags(env);
10672 }
10673 }
10674
10675 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10676 {
10677 /*
10678 * Handle exception entry to Hyp mode; this is sufficiently
10679 * different to entry to other AArch32 modes that we handle it
10680 * separately here.
10681 *
10682 * The vector table entry used is always the 0x14 Hyp mode entry point,
10683 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10684 * The offset applied to the preferred return address is always zero
10685 * (see DDI0487C.a section G1.12.3).
10686 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10687 */
10688 uint32_t addr, mask;
10689 ARMCPU *cpu = ARM_CPU(cs);
10690 CPUARMState *env = &cpu->env;
10691
10692 switch (cs->exception_index) {
10693 case EXCP_UDEF:
10694 addr = 0x04;
10695 break;
10696 case EXCP_SWI:
10697 addr = 0x08;
10698 break;
10699 case EXCP_BKPT:
10700 /* Fall through to prefetch abort. */
10701 case EXCP_PREFETCH_ABORT:
10702 env->cp15.ifar_s = env->exception.vaddress;
10703 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10704 (uint32_t)env->exception.vaddress);
10705 addr = 0x0c;
10706 break;
10707 case EXCP_DATA_ABORT:
10708 env->cp15.dfar_s = env->exception.vaddress;
10709 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10710 (uint32_t)env->exception.vaddress);
10711 addr = 0x10;
10712 break;
10713 case EXCP_IRQ:
10714 addr = 0x18;
10715 break;
10716 case EXCP_FIQ:
10717 addr = 0x1c;
10718 break;
10719 case EXCP_HVC:
10720 addr = 0x08;
10721 break;
10722 case EXCP_HYP_TRAP:
10723 addr = 0x14;
10724 break;
10725 default:
10726 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10727 }
10728
10729 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10730 if (!arm_feature(env, ARM_FEATURE_V8)) {
10731 /*
10732 * QEMU syndrome values are v8-style. v7 has the IL bit
10733 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10734 * If this is a v7 CPU, squash the IL bit in those cases.
10735 */
10736 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10737 (cs->exception_index == EXCP_DATA_ABORT &&
10738 !(env->exception.syndrome & ARM_EL_ISV)) ||
10739 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10740 env->exception.syndrome &= ~ARM_EL_IL;
10741 }
10742 }
10743 env->cp15.esr_el[2] = env->exception.syndrome;
10744 }
10745
10746 if (arm_current_el(env) != 2 && addr < 0x14) {
10747 addr = 0x14;
10748 }
10749
10750 mask = 0;
10751 if (!(env->cp15.scr_el3 & SCR_EA)) {
10752 mask |= CPSR_A;
10753 }
10754 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10755 mask |= CPSR_I;
10756 }
10757 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10758 mask |= CPSR_F;
10759 }
10760
10761 addr += env->cp15.hvbar;
10762
10763 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10764 }
10765
10766 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10767 {
10768 ARMCPU *cpu = ARM_CPU(cs);
10769 CPUARMState *env = &cpu->env;
10770 uint32_t addr;
10771 uint32_t mask;
10772 int new_mode;
10773 uint32_t offset;
10774 uint32_t moe;
10775
10776 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10777 switch (syn_get_ec(env->exception.syndrome)) {
10778 case EC_BREAKPOINT:
10779 case EC_BREAKPOINT_SAME_EL:
10780 moe = 1;
10781 break;
10782 case EC_WATCHPOINT:
10783 case EC_WATCHPOINT_SAME_EL:
10784 moe = 10;
10785 break;
10786 case EC_AA32_BKPT:
10787 moe = 3;
10788 break;
10789 case EC_VECTORCATCH:
10790 moe = 5;
10791 break;
10792 default:
10793 moe = 0;
10794 break;
10795 }
10796
10797 if (moe) {
10798 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10799 }
10800
10801 if (env->exception.target_el == 2) {
10802 arm_cpu_do_interrupt_aarch32_hyp(cs);
10803 return;
10804 }
10805
10806 switch (cs->exception_index) {
10807 case EXCP_UDEF:
10808 new_mode = ARM_CPU_MODE_UND;
10809 addr = 0x04;
10810 mask = CPSR_I;
10811 if (env->thumb) {
10812 offset = 2;
10813 } else {
10814 offset = 4;
10815 }
10816 break;
10817 case EXCP_SWI:
10818 new_mode = ARM_CPU_MODE_SVC;
10819 addr = 0x08;
10820 mask = CPSR_I;
10821 /* The PC already points to the next instruction. */
10822 offset = 0;
10823 break;
10824 case EXCP_BKPT:
10825 /* Fall through to prefetch abort. */
10826 case EXCP_PREFETCH_ABORT:
10827 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10828 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10829 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10830 env->exception.fsr, (uint32_t)env->exception.vaddress);
10831 new_mode = ARM_CPU_MODE_ABT;
10832 addr = 0x0c;
10833 mask = CPSR_A | CPSR_I;
10834 offset = 4;
10835 break;
10836 case EXCP_DATA_ABORT:
10837 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10838 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10839 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10840 env->exception.fsr,
10841 (uint32_t)env->exception.vaddress);
10842 new_mode = ARM_CPU_MODE_ABT;
10843 addr = 0x10;
10844 mask = CPSR_A | CPSR_I;
10845 offset = 8;
10846 break;
10847 case EXCP_IRQ:
10848 new_mode = ARM_CPU_MODE_IRQ;
10849 addr = 0x18;
10850 /* Disable IRQ and imprecise data aborts. */
10851 mask = CPSR_A | CPSR_I;
10852 offset = 4;
10853 if (env->cp15.scr_el3 & SCR_IRQ) {
10854 /* IRQ routed to monitor mode */
10855 new_mode = ARM_CPU_MODE_MON;
10856 mask |= CPSR_F;
10857 }
10858 break;
10859 case EXCP_FIQ:
10860 new_mode = ARM_CPU_MODE_FIQ;
10861 addr = 0x1c;
10862 /* Disable FIQ, IRQ and imprecise data aborts. */
10863 mask = CPSR_A | CPSR_I | CPSR_F;
10864 if (env->cp15.scr_el3 & SCR_FIQ) {
10865 /* FIQ routed to monitor mode */
10866 new_mode = ARM_CPU_MODE_MON;
10867 }
10868 offset = 4;
10869 break;
10870 case EXCP_VIRQ:
10871 new_mode = ARM_CPU_MODE_IRQ;
10872 addr = 0x18;
10873 /* Disable IRQ and imprecise data aborts. */
10874 mask = CPSR_A | CPSR_I;
10875 offset = 4;
10876 break;
10877 case EXCP_VFIQ:
10878 new_mode = ARM_CPU_MODE_FIQ;
10879 addr = 0x1c;
10880 /* Disable FIQ, IRQ and imprecise data aborts. */
10881 mask = CPSR_A | CPSR_I | CPSR_F;
10882 offset = 4;
10883 break;
10884 case EXCP_VSERR:
10885 {
10886 /*
10887 * Note that this is reported as a data abort, but the DFAR
10888 * has an UNKNOWN value. Construct the SError syndrome from
10889 * AET and ExT fields.
10890 */
10891 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10892
10893 if (extended_addresses_enabled(env)) {
10894 env->exception.fsr = arm_fi_to_lfsc(&fi);
10895 } else {
10896 env->exception.fsr = arm_fi_to_sfsc(&fi);
10897 }
10898 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10899 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10900 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10901 env->exception.fsr);
10902
10903 new_mode = ARM_CPU_MODE_ABT;
10904 addr = 0x10;
10905 mask = CPSR_A | CPSR_I;
10906 offset = 8;
10907 }
10908 break;
10909 case EXCP_SMC:
10910 new_mode = ARM_CPU_MODE_MON;
10911 addr = 0x08;
10912 mask = CPSR_A | CPSR_I | CPSR_F;
10913 offset = 0;
10914 break;
10915 default:
10916 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10917 return; /* Never happens. Keep compiler happy. */
10918 }
10919
10920 if (new_mode == ARM_CPU_MODE_MON) {
10921 addr += env->cp15.mvbar;
10922 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10923 /* High vectors. When enabled, base address cannot be remapped. */
10924 addr += 0xffff0000;
10925 } else {
10926 /*
10927 * ARM v7 architectures provide a vector base address register to remap
10928 * the interrupt vector table.
10929 * This register is only followed in non-monitor mode, and is banked.
10930 * Note: only bits 31:5 are valid.
10931 */
10932 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10933 }
10934
10935 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10936 env->cp15.scr_el3 &= ~SCR_NS;
10937 }
10938
10939 take_aarch32_exception(env, new_mode, mask, offset, addr);
10940 }
10941
10942 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10943 {
10944 /*
10945 * Return the register number of the AArch64 view of the AArch32
10946 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10947 * be that of the AArch32 mode the exception came from.
10948 */
10949 int mode = env->uncached_cpsr & CPSR_M;
10950
10951 switch (aarch32_reg) {
10952 case 0 ... 7:
10953 return aarch32_reg;
10954 case 8 ... 12:
10955 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10956 case 13:
10957 switch (mode) {
10958 case ARM_CPU_MODE_USR:
10959 case ARM_CPU_MODE_SYS:
10960 return 13;
10961 case ARM_CPU_MODE_HYP:
10962 return 15;
10963 case ARM_CPU_MODE_IRQ:
10964 return 17;
10965 case ARM_CPU_MODE_SVC:
10966 return 19;
10967 case ARM_CPU_MODE_ABT:
10968 return 21;
10969 case ARM_CPU_MODE_UND:
10970 return 23;
10971 case ARM_CPU_MODE_FIQ:
10972 return 29;
10973 default:
10974 g_assert_not_reached();
10975 }
10976 case 14:
10977 switch (mode) {
10978 case ARM_CPU_MODE_USR:
10979 case ARM_CPU_MODE_SYS:
10980 case ARM_CPU_MODE_HYP:
10981 return 14;
10982 case ARM_CPU_MODE_IRQ:
10983 return 16;
10984 case ARM_CPU_MODE_SVC:
10985 return 18;
10986 case ARM_CPU_MODE_ABT:
10987 return 20;
10988 case ARM_CPU_MODE_UND:
10989 return 22;
10990 case ARM_CPU_MODE_FIQ:
10991 return 30;
10992 default:
10993 g_assert_not_reached();
10994 }
10995 case 15:
10996 return 31;
10997 default:
10998 g_assert_not_reached();
10999 }
11000 }
11001
11002 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11003 {
11004 uint32_t ret = cpsr_read(env);
11005
11006 /* Move DIT to the correct location for SPSR_ELx */
11007 if (ret & CPSR_DIT) {
11008 ret &= ~CPSR_DIT;
11009 ret |= PSTATE_DIT;
11010 }
11011 /* Merge PSTATE.SS into SPSR_ELx */
11012 ret |= env->pstate & PSTATE_SS;
11013
11014 return ret;
11015 }
11016
11017 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11018 {
11019 /* Return true if this syndrome value is a synchronous external abort */
11020 switch (syn_get_ec(syndrome)) {
11021 case EC_INSNABORT:
11022 case EC_INSNABORT_SAME_EL:
11023 case EC_DATAABORT:
11024 case EC_DATAABORT_SAME_EL:
11025 /* Look at fault status code for all the synchronous ext abort cases */
11026 switch (syndrome & 0x3f) {
11027 case 0x10:
11028 case 0x13:
11029 case 0x14:
11030 case 0x15:
11031 case 0x16:
11032 case 0x17:
11033 return true;
11034 default:
11035 return false;
11036 }
11037 default:
11038 return false;
11039 }
11040 }
11041
11042 /* Handle exception entry to a target EL which is using AArch64 */
11043 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11044 {
11045 ARMCPU *cpu = ARM_CPU(cs);
11046 CPUARMState *env = &cpu->env;
11047 unsigned int new_el = env->exception.target_el;
11048 target_ulong addr = env->cp15.vbar_el[new_el];
11049 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11050 unsigned int old_mode;
11051 unsigned int cur_el = arm_current_el(env);
11052 int rt;
11053
11054 if (tcg_enabled()) {
11055 /*
11056 * Note that new_el can never be 0. If cur_el is 0, then
11057 * el0_a64 is is_a64(), else el0_a64 is ignored.
11058 */
11059 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11060 }
11061
11062 if (cur_el < new_el) {
11063 /*
11064 * Entry vector offset depends on whether the implemented EL
11065 * immediately lower than the target level is using AArch32 or AArch64
11066 */
11067 bool is_aa64;
11068 uint64_t hcr;
11069
11070 switch (new_el) {
11071 case 3:
11072 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11073 break;
11074 case 2:
11075 hcr = arm_hcr_el2_eff(env);
11076 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11077 is_aa64 = (hcr & HCR_RW) != 0;
11078 break;
11079 }
11080 /* fall through */
11081 case 1:
11082 is_aa64 = is_a64(env);
11083 break;
11084 default:
11085 g_assert_not_reached();
11086 }
11087
11088 if (is_aa64) {
11089 addr += 0x400;
11090 } else {
11091 addr += 0x600;
11092 }
11093 } else if (pstate_read(env) & PSTATE_SP) {
11094 addr += 0x200;
11095 }
11096
11097 switch (cs->exception_index) {
11098 case EXCP_GPC:
11099 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11100 env->cp15.mfar_el3);
11101 /* fall through */
11102 case EXCP_PREFETCH_ABORT:
11103 case EXCP_DATA_ABORT:
11104 /*
11105 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11106 * to be taken to the SError vector entrypoint.
11107 */
11108 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11109 syndrome_is_sync_extabt(env->exception.syndrome)) {
11110 addr += 0x180;
11111 }
11112 env->cp15.far_el[new_el] = env->exception.vaddress;
11113 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11114 env->cp15.far_el[new_el]);
11115 /* fall through */
11116 case EXCP_BKPT:
11117 case EXCP_UDEF:
11118 case EXCP_SWI:
11119 case EXCP_HVC:
11120 case EXCP_HYP_TRAP:
11121 case EXCP_SMC:
11122 switch (syn_get_ec(env->exception.syndrome)) {
11123 case EC_ADVSIMDFPACCESSTRAP:
11124 /*
11125 * QEMU internal FP/SIMD syndromes from AArch32 include the
11126 * TA and coproc fields which are only exposed if the exception
11127 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11128 * AArch64 format syndrome.
11129 */
11130 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11131 break;
11132 case EC_CP14RTTRAP:
11133 case EC_CP15RTTRAP:
11134 case EC_CP14DTTRAP:
11135 /*
11136 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11137 * the raw register field from the insn; when taking this to
11138 * AArch64 we must convert it to the AArch64 view of the register
11139 * number. Notice that we read a 4-bit AArch32 register number and
11140 * write back a 5-bit AArch64 one.
11141 */
11142 rt = extract32(env->exception.syndrome, 5, 4);
11143 rt = aarch64_regnum(env, rt);
11144 env->exception.syndrome = deposit32(env->exception.syndrome,
11145 5, 5, rt);
11146 break;
11147 case EC_CP15RRTTRAP:
11148 case EC_CP14RRTTRAP:
11149 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11150 rt = extract32(env->exception.syndrome, 5, 4);
11151 rt = aarch64_regnum(env, rt);
11152 env->exception.syndrome = deposit32(env->exception.syndrome,
11153 5, 5, rt);
11154 rt = extract32(env->exception.syndrome, 10, 4);
11155 rt = aarch64_regnum(env, rt);
11156 env->exception.syndrome = deposit32(env->exception.syndrome,
11157 10, 5, rt);
11158 break;
11159 }
11160 env->cp15.esr_el[new_el] = env->exception.syndrome;
11161 break;
11162 case EXCP_IRQ:
11163 case EXCP_VIRQ:
11164 addr += 0x80;
11165 break;
11166 case EXCP_FIQ:
11167 case EXCP_VFIQ:
11168 addr += 0x100;
11169 break;
11170 case EXCP_VSERR:
11171 addr += 0x180;
11172 /* Construct the SError syndrome from IDS and ISS fields. */
11173 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11174 env->cp15.esr_el[new_el] = env->exception.syndrome;
11175 break;
11176 default:
11177 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11178 }
11179
11180 if (is_a64(env)) {
11181 old_mode = pstate_read(env);
11182 aarch64_save_sp(env, arm_current_el(env));
11183 env->elr_el[new_el] = env->pc;
11184 } else {
11185 old_mode = cpsr_read_for_spsr_elx(env);
11186 env->elr_el[new_el] = env->regs[15];
11187
11188 aarch64_sync_32_to_64(env);
11189
11190 env->condexec_bits = 0;
11191 }
11192 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11193
11194 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11195 env->elr_el[new_el]);
11196
11197 if (cpu_isar_feature(aa64_pan, cpu)) {
11198 /* The value of PSTATE.PAN is normally preserved, except when ... */
11199 new_mode |= old_mode & PSTATE_PAN;
11200 switch (new_el) {
11201 case 2:
11202 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11203 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11204 != (HCR_E2H | HCR_TGE)) {
11205 break;
11206 }
11207 /* fall through */
11208 case 1:
11209 /* ... the target is EL1 ... */
11210 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11211 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11212 new_mode |= PSTATE_PAN;
11213 }
11214 break;
11215 }
11216 }
11217 if (cpu_isar_feature(aa64_mte, cpu)) {
11218 new_mode |= PSTATE_TCO;
11219 }
11220
11221 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11222 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11223 new_mode |= PSTATE_SSBS;
11224 } else {
11225 new_mode &= ~PSTATE_SSBS;
11226 }
11227 }
11228
11229 pstate_write(env, PSTATE_DAIF | new_mode);
11230 env->aarch64 = true;
11231 aarch64_restore_sp(env, new_el);
11232
11233 if (tcg_enabled()) {
11234 helper_rebuild_hflags_a64(env, new_el);
11235 }
11236
11237 env->pc = addr;
11238
11239 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11240 new_el, env->pc, pstate_read(env));
11241 }
11242
11243 /*
11244 * Do semihosting call and set the appropriate return value. All the
11245 * permission and validity checks have been done at translate time.
11246 *
11247 * We only see semihosting exceptions in TCG only as they are not
11248 * trapped to the hypervisor in KVM.
11249 */
11250 #ifdef CONFIG_TCG
11251 static void tcg_handle_semihosting(CPUState *cs)
11252 {
11253 ARMCPU *cpu = ARM_CPU(cs);
11254 CPUARMState *env = &cpu->env;
11255
11256 if (is_a64(env)) {
11257 qemu_log_mask(CPU_LOG_INT,
11258 "...handling as semihosting call 0x%" PRIx64 "\n",
11259 env->xregs[0]);
11260 do_common_semihosting(cs);
11261 env->pc += 4;
11262 } else {
11263 qemu_log_mask(CPU_LOG_INT,
11264 "...handling as semihosting call 0x%x\n",
11265 env->regs[0]);
11266 do_common_semihosting(cs);
11267 env->regs[15] += env->thumb ? 2 : 4;
11268 }
11269 }
11270 #endif
11271
11272 /*
11273 * Handle a CPU exception for A and R profile CPUs.
11274 * Do any appropriate logging, handle PSCI calls, and then hand off
11275 * to the AArch64-entry or AArch32-entry function depending on the
11276 * target exception level's register width.
11277 *
11278 * Note: this is used for both TCG (as the do_interrupt tcg op),
11279 * and KVM to re-inject guest debug exceptions, and to
11280 * inject a Synchronous-External-Abort.
11281 */
11282 void arm_cpu_do_interrupt(CPUState *cs)
11283 {
11284 ARMCPU *cpu = ARM_CPU(cs);
11285 CPUARMState *env = &cpu->env;
11286 unsigned int new_el = env->exception.target_el;
11287
11288 assert(!arm_feature(env, ARM_FEATURE_M));
11289
11290 arm_log_exception(cs);
11291 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11292 new_el);
11293 if (qemu_loglevel_mask(CPU_LOG_INT)
11294 && !excp_is_internal(cs->exception_index)) {
11295 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11296 syn_get_ec(env->exception.syndrome),
11297 env->exception.syndrome);
11298 }
11299
11300 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11301 arm_handle_psci_call(cpu);
11302 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11303 return;
11304 }
11305
11306 /*
11307 * Semihosting semantics depend on the register width of the code
11308 * that caused the exception, not the target exception level, so
11309 * must be handled here.
11310 */
11311 #ifdef CONFIG_TCG
11312 if (cs->exception_index == EXCP_SEMIHOST) {
11313 tcg_handle_semihosting(cs);
11314 return;
11315 }
11316 #endif
11317
11318 /*
11319 * Hooks may change global state so BQL should be held, also the
11320 * BQL needs to be held for any modification of
11321 * cs->interrupt_request.
11322 */
11323 g_assert(qemu_mutex_iothread_locked());
11324
11325 arm_call_pre_el_change_hook(cpu);
11326
11327 assert(!excp_is_internal(cs->exception_index));
11328 if (arm_el_is_aa64(env, new_el)) {
11329 arm_cpu_do_interrupt_aarch64(cs);
11330 } else {
11331 arm_cpu_do_interrupt_aarch32(cs);
11332 }
11333
11334 arm_call_el_change_hook(cpu);
11335
11336 if (!kvm_enabled()) {
11337 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11338 }
11339 }
11340 #endif /* !CONFIG_USER_ONLY */
11341
11342 uint64_t arm_sctlr(CPUARMState *env, int el)
11343 {
11344 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11345 if (el == 0) {
11346 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11347 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11348 }
11349 return env->cp15.sctlr_el[el];
11350 }
11351
11352 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11353 {
11354 if (regime_has_2_ranges(mmu_idx)) {
11355 return extract64(tcr, 37, 2);
11356 } else if (regime_is_stage2(mmu_idx)) {
11357 return 0; /* VTCR_EL2 */
11358 } else {
11359 /* Replicate the single TBI bit so we always have 2 bits. */
11360 return extract32(tcr, 20, 1) * 3;
11361 }
11362 }
11363
11364 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11365 {
11366 if (regime_has_2_ranges(mmu_idx)) {
11367 return extract64(tcr, 51, 2);
11368 } else if (regime_is_stage2(mmu_idx)) {
11369 return 0; /* VTCR_EL2 */
11370 } else {
11371 /* Replicate the single TBID bit so we always have 2 bits. */
11372 return extract32(tcr, 29, 1) * 3;
11373 }
11374 }
11375
11376 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11377 {
11378 if (regime_has_2_ranges(mmu_idx)) {
11379 return extract64(tcr, 57, 2);
11380 } else {
11381 /* Replicate the single TCMA bit so we always have 2 bits. */
11382 return extract32(tcr, 30, 1) * 3;
11383 }
11384 }
11385
11386 static ARMGranuleSize tg0_to_gran_size(int tg)
11387 {
11388 switch (tg) {
11389 case 0:
11390 return Gran4K;
11391 case 1:
11392 return Gran64K;
11393 case 2:
11394 return Gran16K;
11395 default:
11396 return GranInvalid;
11397 }
11398 }
11399
11400 static ARMGranuleSize tg1_to_gran_size(int tg)
11401 {
11402 switch (tg) {
11403 case 1:
11404 return Gran16K;
11405 case 2:
11406 return Gran4K;
11407 case 3:
11408 return Gran64K;
11409 default:
11410 return GranInvalid;
11411 }
11412 }
11413
11414 static inline bool have4k(ARMCPU *cpu, bool stage2)
11415 {
11416 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11417 : cpu_isar_feature(aa64_tgran4, cpu);
11418 }
11419
11420 static inline bool have16k(ARMCPU *cpu, bool stage2)
11421 {
11422 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11423 : cpu_isar_feature(aa64_tgran16, cpu);
11424 }
11425
11426 static inline bool have64k(ARMCPU *cpu, bool stage2)
11427 {
11428 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11429 : cpu_isar_feature(aa64_tgran64, cpu);
11430 }
11431
11432 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11433 bool stage2)
11434 {
11435 switch (gran) {
11436 case Gran4K:
11437 if (have4k(cpu, stage2)) {
11438 return gran;
11439 }
11440 break;
11441 case Gran16K:
11442 if (have16k(cpu, stage2)) {
11443 return gran;
11444 }
11445 break;
11446 case Gran64K:
11447 if (have64k(cpu, stage2)) {
11448 return gran;
11449 }
11450 break;
11451 case GranInvalid:
11452 break;
11453 }
11454 /*
11455 * If the guest selects a granule size that isn't implemented,
11456 * the architecture requires that we behave as if it selected one
11457 * that is (with an IMPDEF choice of which one to pick). We choose
11458 * to implement the smallest supported granule size.
11459 */
11460 if (have4k(cpu, stage2)) {
11461 return Gran4K;
11462 }
11463 if (have16k(cpu, stage2)) {
11464 return Gran16K;
11465 }
11466 assert(have64k(cpu, stage2));
11467 return Gran64K;
11468 }
11469
11470 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11471 ARMMMUIdx mmu_idx, bool data,
11472 bool el1_is_aa32)
11473 {
11474 uint64_t tcr = regime_tcr(env, mmu_idx);
11475 bool epd, hpd, tsz_oob, ds, ha, hd;
11476 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11477 ARMGranuleSize gran;
11478 ARMCPU *cpu = env_archcpu(env);
11479 bool stage2 = regime_is_stage2(mmu_idx);
11480
11481 if (!regime_has_2_ranges(mmu_idx)) {
11482 select = 0;
11483 tsz = extract32(tcr, 0, 6);
11484 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11485 if (stage2) {
11486 /* VTCR_EL2 */
11487 hpd = false;
11488 } else {
11489 hpd = extract32(tcr, 24, 1);
11490 }
11491 epd = false;
11492 sh = extract32(tcr, 12, 2);
11493 ps = extract32(tcr, 16, 3);
11494 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11495 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11496 ds = extract64(tcr, 32, 1);
11497 } else {
11498 bool e0pd;
11499
11500 /*
11501 * Bit 55 is always between the two regions, and is canonical for
11502 * determining if address tagging is enabled.
11503 */
11504 select = extract64(va, 55, 1);
11505 if (!select) {
11506 tsz = extract32(tcr, 0, 6);
11507 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11508 epd = extract32(tcr, 7, 1);
11509 sh = extract32(tcr, 12, 2);
11510 hpd = extract64(tcr, 41, 1);
11511 e0pd = extract64(tcr, 55, 1);
11512 } else {
11513 tsz = extract32(tcr, 16, 6);
11514 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11515 epd = extract32(tcr, 23, 1);
11516 sh = extract32(tcr, 28, 2);
11517 hpd = extract64(tcr, 42, 1);
11518 e0pd = extract64(tcr, 56, 1);
11519 }
11520 ps = extract64(tcr, 32, 3);
11521 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11522 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11523 ds = extract64(tcr, 59, 1);
11524
11525 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11526 regime_is_user(env, mmu_idx)) {
11527 epd = true;
11528 }
11529 }
11530
11531 gran = sanitize_gran_size(cpu, gran, stage2);
11532
11533 if (cpu_isar_feature(aa64_st, cpu)) {
11534 max_tsz = 48 - (gran == Gran64K);
11535 } else {
11536 max_tsz = 39;
11537 }
11538
11539 /*
11540 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11541 * adjust the effective value of DS, as documented.
11542 */
11543 min_tsz = 16;
11544 if (gran == Gran64K) {
11545 if (cpu_isar_feature(aa64_lva, cpu)) {
11546 min_tsz = 12;
11547 }
11548 ds = false;
11549 } else if (ds) {
11550 if (regime_is_stage2(mmu_idx)) {
11551 if (gran == Gran16K) {
11552 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11553 } else {
11554 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11555 }
11556 } else {
11557 if (gran == Gran16K) {
11558 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11559 } else {
11560 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11561 }
11562 }
11563 if (ds) {
11564 min_tsz = 12;
11565 }
11566 }
11567
11568 if (stage2 && el1_is_aa32) {
11569 /*
11570 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11571 * are loosened: a configured IPA of 40 bits is permitted even if
11572 * the implemented PA is less than that (and so a 40 bit IPA would
11573 * fault for an AArch64 EL1). See R_DTLMN.
11574 */
11575 min_tsz = MIN(min_tsz, 24);
11576 }
11577
11578 if (tsz > max_tsz) {
11579 tsz = max_tsz;
11580 tsz_oob = true;
11581 } else if (tsz < min_tsz) {
11582 tsz = min_tsz;
11583 tsz_oob = true;
11584 } else {
11585 tsz_oob = false;
11586 }
11587
11588 /* Present TBI as a composite with TBID. */
11589 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11590 if (!data) {
11591 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11592 }
11593 tbi = (tbi >> select) & 1;
11594
11595 return (ARMVAParameters) {
11596 .tsz = tsz,
11597 .ps = ps,
11598 .sh = sh,
11599 .select = select,
11600 .tbi = tbi,
11601 .epd = epd,
11602 .hpd = hpd,
11603 .tsz_oob = tsz_oob,
11604 .ds = ds,
11605 .ha = ha,
11606 .hd = ha && hd,
11607 .gran = gran,
11608 };
11609 }
11610
11611 /*
11612 * Note that signed overflow is undefined in C. The following routines are
11613 * careful to use unsigned types where modulo arithmetic is required.
11614 * Failure to do so _will_ break on newer gcc.
11615 */
11616
11617 /* Signed saturating arithmetic. */
11618
11619 /* Perform 16-bit signed saturating addition. */
11620 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11621 {
11622 uint16_t res;
11623
11624 res = a + b;
11625 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11626 if (a & 0x8000) {
11627 res = 0x8000;
11628 } else {
11629 res = 0x7fff;
11630 }
11631 }
11632 return res;
11633 }
11634
11635 /* Perform 8-bit signed saturating addition. */
11636 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11637 {
11638 uint8_t res;
11639
11640 res = a + b;
11641 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11642 if (a & 0x80) {
11643 res = 0x80;
11644 } else {
11645 res = 0x7f;
11646 }
11647 }
11648 return res;
11649 }
11650
11651 /* Perform 16-bit signed saturating subtraction. */
11652 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11653 {
11654 uint16_t res;
11655
11656 res = a - b;
11657 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11658 if (a & 0x8000) {
11659 res = 0x8000;
11660 } else {
11661 res = 0x7fff;
11662 }
11663 }
11664 return res;
11665 }
11666
11667 /* Perform 8-bit signed saturating subtraction. */
11668 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11669 {
11670 uint8_t res;
11671
11672 res = a - b;
11673 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11674 if (a & 0x80) {
11675 res = 0x80;
11676 } else {
11677 res = 0x7f;
11678 }
11679 }
11680 return res;
11681 }
11682
11683 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11684 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11685 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11686 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11687 #define PFX q
11688
11689 #include "op_addsub.h"
11690
11691 /* Unsigned saturating arithmetic. */
11692 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11693 {
11694 uint16_t res;
11695 res = a + b;
11696 if (res < a) {
11697 res = 0xffff;
11698 }
11699 return res;
11700 }
11701
11702 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11703 {
11704 if (a > b) {
11705 return a - b;
11706 } else {
11707 return 0;
11708 }
11709 }
11710
11711 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11712 {
11713 uint8_t res;
11714 res = a + b;
11715 if (res < a) {
11716 res = 0xff;
11717 }
11718 return res;
11719 }
11720
11721 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11722 {
11723 if (a > b) {
11724 return a - b;
11725 } else {
11726 return 0;
11727 }
11728 }
11729
11730 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11731 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11732 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11733 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11734 #define PFX uq
11735
11736 #include "op_addsub.h"
11737
11738 /* Signed modulo arithmetic. */
11739 #define SARITH16(a, b, n, op) do { \
11740 int32_t sum; \
11741 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11742 RESULT(sum, n, 16); \
11743 if (sum >= 0) \
11744 ge |= 3 << (n * 2); \
11745 } while (0)
11746
11747 #define SARITH8(a, b, n, op) do { \
11748 int32_t sum; \
11749 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11750 RESULT(sum, n, 8); \
11751 if (sum >= 0) \
11752 ge |= 1 << n; \
11753 } while (0)
11754
11755
11756 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11757 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11758 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11759 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11760 #define PFX s
11761 #define ARITH_GE
11762
11763 #include "op_addsub.h"
11764
11765 /* Unsigned modulo arithmetic. */
11766 #define ADD16(a, b, n) do { \
11767 uint32_t sum; \
11768 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11769 RESULT(sum, n, 16); \
11770 if ((sum >> 16) == 1) \
11771 ge |= 3 << (n * 2); \
11772 } while (0)
11773
11774 #define ADD8(a, b, n) do { \
11775 uint32_t sum; \
11776 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11777 RESULT(sum, n, 8); \
11778 if ((sum >> 8) == 1) \
11779 ge |= 1 << n; \
11780 } while (0)
11781
11782 #define SUB16(a, b, n) do { \
11783 uint32_t sum; \
11784 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11785 RESULT(sum, n, 16); \
11786 if ((sum >> 16) == 0) \
11787 ge |= 3 << (n * 2); \
11788 } while (0)
11789
11790 #define SUB8(a, b, n) do { \
11791 uint32_t sum; \
11792 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11793 RESULT(sum, n, 8); \
11794 if ((sum >> 8) == 0) \
11795 ge |= 1 << n; \
11796 } while (0)
11797
11798 #define PFX u
11799 #define ARITH_GE
11800
11801 #include "op_addsub.h"
11802
11803 /* Halved signed arithmetic. */
11804 #define ADD16(a, b, n) \
11805 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11806 #define SUB16(a, b, n) \
11807 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11808 #define ADD8(a, b, n) \
11809 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11810 #define SUB8(a, b, n) \
11811 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11812 #define PFX sh
11813
11814 #include "op_addsub.h"
11815
11816 /* Halved unsigned arithmetic. */
11817 #define ADD16(a, b, n) \
11818 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11819 #define SUB16(a, b, n) \
11820 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11821 #define ADD8(a, b, n) \
11822 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11823 #define SUB8(a, b, n) \
11824 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11825 #define PFX uh
11826
11827 #include "op_addsub.h"
11828
11829 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11830 {
11831 if (a > b) {
11832 return a - b;
11833 } else {
11834 return b - a;
11835 }
11836 }
11837
11838 /* Unsigned sum of absolute byte differences. */
11839 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11840 {
11841 uint32_t sum;
11842 sum = do_usad(a, b);
11843 sum += do_usad(a >> 8, b >> 8);
11844 sum += do_usad(a >> 16, b >> 16);
11845 sum += do_usad(a >> 24, b >> 24);
11846 return sum;
11847 }
11848
11849 /* For ARMv6 SEL instruction. */
11850 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11851 {
11852 uint32_t mask;
11853
11854 mask = 0;
11855 if (flags & 1) {
11856 mask |= 0xff;
11857 }
11858 if (flags & 2) {
11859 mask |= 0xff00;
11860 }
11861 if (flags & 4) {
11862 mask |= 0xff0000;
11863 }
11864 if (flags & 8) {
11865 mask |= 0xff000000;
11866 }
11867 return (a & mask) | (b & ~mask);
11868 }
11869
11870 /*
11871 * CRC helpers.
11872 * The upper bytes of val (above the number specified by 'bytes') must have
11873 * been zeroed out by the caller.
11874 */
11875 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11876 {
11877 uint8_t buf[4];
11878
11879 stl_le_p(buf, val);
11880
11881 /* zlib crc32 converts the accumulator and output to one's complement. */
11882 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11883 }
11884
11885 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11886 {
11887 uint8_t buf[4];
11888
11889 stl_le_p(buf, val);
11890
11891 /* Linux crc32c converts the output to one's complement. */
11892 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11893 }
11894
11895 /*
11896 * Return the exception level to which FP-disabled exceptions should
11897 * be taken, or 0 if FP is enabled.
11898 */
11899 int fp_exception_el(CPUARMState *env, int cur_el)
11900 {
11901 #ifndef CONFIG_USER_ONLY
11902 uint64_t hcr_el2;
11903
11904 /*
11905 * CPACR and the CPTR registers don't exist before v6, so FP is
11906 * always accessible
11907 */
11908 if (!arm_feature(env, ARM_FEATURE_V6)) {
11909 return 0;
11910 }
11911
11912 if (arm_feature(env, ARM_FEATURE_M)) {
11913 /* CPACR can cause a NOCP UsageFault taken to current security state */
11914 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11915 return 1;
11916 }
11917
11918 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11919 if (!extract32(env->v7m.nsacr, 10, 1)) {
11920 /* FP insns cause a NOCP UsageFault taken to Secure */
11921 return 3;
11922 }
11923 }
11924
11925 return 0;
11926 }
11927
11928 hcr_el2 = arm_hcr_el2_eff(env);
11929
11930 /*
11931 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11932 * 0, 2 : trap EL0 and EL1/PL1 accesses
11933 * 1 : trap only EL0 accesses
11934 * 3 : trap no accesses
11935 * This register is ignored if E2H+TGE are both set.
11936 */
11937 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11938 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11939
11940 switch (fpen) {
11941 case 1:
11942 if (cur_el != 0) {
11943 break;
11944 }
11945 /* fall through */
11946 case 0:
11947 case 2:
11948 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11949 if (!arm_el_is_aa64(env, 3)
11950 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11951 return 3;
11952 }
11953 if (cur_el <= 1) {
11954 return 1;
11955 }
11956 break;
11957 }
11958 }
11959
11960 /*
11961 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11962 * to control non-secure access to the FPU. It doesn't have any
11963 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11964 */
11965 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11966 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11967 if (!extract32(env->cp15.nsacr, 10, 1)) {
11968 /* FP insns act as UNDEF */
11969 return cur_el == 2 ? 2 : 1;
11970 }
11971 }
11972
11973 /*
11974 * CPTR_EL2 is present in v7VE or v8, and changes format
11975 * with HCR_EL2.E2H (regardless of TGE).
11976 */
11977 if (cur_el <= 2) {
11978 if (hcr_el2 & HCR_E2H) {
11979 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11980 case 1:
11981 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11982 break;
11983 }
11984 /* fall through */
11985 case 0:
11986 case 2:
11987 return 2;
11988 }
11989 } else if (arm_is_el2_enabled(env)) {
11990 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11991 return 2;
11992 }
11993 }
11994 }
11995
11996 /* CPTR_EL3 : present in v8 */
11997 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11998 /* Trap all FP ops to EL3 */
11999 return 3;
12000 }
12001 #endif
12002 return 0;
12003 }
12004
12005 /* Return the exception level we're running at if this is our mmu_idx */
12006 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12007 {
12008 if (mmu_idx & ARM_MMU_IDX_M) {
12009 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12010 }
12011
12012 switch (mmu_idx) {
12013 case ARMMMUIdx_E10_0:
12014 case ARMMMUIdx_E20_0:
12015 return 0;
12016 case ARMMMUIdx_E10_1:
12017 case ARMMMUIdx_E10_1_PAN:
12018 return 1;
12019 case ARMMMUIdx_E2:
12020 case ARMMMUIdx_E20_2:
12021 case ARMMMUIdx_E20_2_PAN:
12022 return 2;
12023 case ARMMMUIdx_E3:
12024 return 3;
12025 default:
12026 g_assert_not_reached();
12027 }
12028 }
12029
12030 #ifndef CONFIG_TCG
12031 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12032 {
12033 g_assert_not_reached();
12034 }
12035 #endif
12036
12037 static bool arm_pan_enabled(CPUARMState *env)
12038 {
12039 if (is_a64(env)) {
12040 return env->pstate & PSTATE_PAN;
12041 } else {
12042 return env->uncached_cpsr & CPSR_PAN;
12043 }
12044 }
12045
12046 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12047 {
12048 ARMMMUIdx idx;
12049 uint64_t hcr;
12050
12051 if (arm_feature(env, ARM_FEATURE_M)) {
12052 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12053 }
12054
12055 /* See ARM pseudo-function ELIsInHost. */
12056 switch (el) {
12057 case 0:
12058 hcr = arm_hcr_el2_eff(env);
12059 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12060 idx = ARMMMUIdx_E20_0;
12061 } else {
12062 idx = ARMMMUIdx_E10_0;
12063 }
12064 break;
12065 case 1:
12066 if (arm_pan_enabled(env)) {
12067 idx = ARMMMUIdx_E10_1_PAN;
12068 } else {
12069 idx = ARMMMUIdx_E10_1;
12070 }
12071 break;
12072 case 2:
12073 /* Note that TGE does not apply at EL2. */
12074 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12075 if (arm_pan_enabled(env)) {
12076 idx = ARMMMUIdx_E20_2_PAN;
12077 } else {
12078 idx = ARMMMUIdx_E20_2;
12079 }
12080 } else {
12081 idx = ARMMMUIdx_E2;
12082 }
12083 break;
12084 case 3:
12085 return ARMMMUIdx_E3;
12086 default:
12087 g_assert_not_reached();
12088 }
12089
12090 return idx;
12091 }
12092
12093 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12094 {
12095 return arm_mmu_idx_el(env, arm_current_el(env));
12096 }
12097
12098 static bool mve_no_pred(CPUARMState *env)
12099 {
12100 /*
12101 * Return true if there is definitely no predication of MVE
12102 * instructions by VPR or LTPSIZE. (Returning false even if there
12103 * isn't any predication is OK; generated code will just be
12104 * a little worse.)
12105 * If the CPU does not implement MVE then this TB flag is always 0.
12106 *
12107 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12108 * logic in gen_update_fp_context() needs to be updated to match.
12109 *
12110 * We do not include the effect of the ECI bits here -- they are
12111 * tracked in other TB flags. This simplifies the logic for
12112 * "when did we emit code that changes the MVE_NO_PRED TB flag
12113 * and thus need to end the TB?".
12114 */
12115 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12116 return false;
12117 }
12118 if (env->v7m.vpr) {
12119 return false;
12120 }
12121 if (env->v7m.ltpsize < 4) {
12122 return false;
12123 }
12124 return true;
12125 }
12126
12127 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12128 uint64_t *cs_base, uint32_t *pflags)
12129 {
12130 CPUARMTBFlags flags;
12131
12132 assert_hflags_rebuild_correctly(env);
12133 flags = env->hflags;
12134
12135 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12136 *pc = env->pc;
12137 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12138 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12139 }
12140 } else {
12141 *pc = env->regs[15];
12142
12143 if (arm_feature(env, ARM_FEATURE_M)) {
12144 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12145 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12146 != env->v7m.secure) {
12147 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12148 }
12149
12150 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12151 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12152 (env->v7m.secure &&
12153 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12154 /*
12155 * ASPEN is set, but FPCA/SFPA indicate that there is no
12156 * active FP context; we must create a new FP context before
12157 * executing any FP insn.
12158 */
12159 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12160 }
12161
12162 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12163 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12164 DP_TBFLAG_M32(flags, LSPACT, 1);
12165 }
12166
12167 if (mve_no_pred(env)) {
12168 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12169 }
12170 } else {
12171 /*
12172 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12173 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12174 */
12175 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12176 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12177 } else {
12178 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12179 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12180 }
12181 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12182 DP_TBFLAG_A32(flags, VFPEN, 1);
12183 }
12184 }
12185
12186 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12187 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12188 }
12189
12190 /*
12191 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12192 * states defined in the ARM ARM for software singlestep:
12193 * SS_ACTIVE PSTATE.SS State
12194 * 0 x Inactive (the TB flag for SS is always 0)
12195 * 1 0 Active-pending
12196 * 1 1 Active-not-pending
12197 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12198 */
12199 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12200 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12201 }
12202
12203 *pflags = flags.flags;
12204 *cs_base = flags.flags2;
12205 }
12206
12207 #ifdef TARGET_AARCH64
12208 /*
12209 * The manual says that when SVE is enabled and VQ is widened the
12210 * implementation is allowed to zero the previously inaccessible
12211 * portion of the registers. The corollary to that is that when
12212 * SVE is enabled and VQ is narrowed we are also allowed to zero
12213 * the now inaccessible portion of the registers.
12214 *
12215 * The intent of this is that no predicate bit beyond VQ is ever set.
12216 * Which means that some operations on predicate registers themselves
12217 * may operate on full uint64_t or even unrolled across the maximum
12218 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12219 * may well be cheaper than conditionals to restrict the operation
12220 * to the relevant portion of a uint16_t[16].
12221 */
12222 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12223 {
12224 int i, j;
12225 uint64_t pmask;
12226
12227 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12228 assert(vq <= env_archcpu(env)->sve_max_vq);
12229
12230 /* Zap the high bits of the zregs. */
12231 for (i = 0; i < 32; i++) {
12232 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12233 }
12234
12235 /* Zap the high bits of the pregs and ffr. */
12236 pmask = 0;
12237 if (vq & 3) {
12238 pmask = ~(-1ULL << (16 * (vq & 3)));
12239 }
12240 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12241 for (i = 0; i < 17; ++i) {
12242 env->vfp.pregs[i].p[j] &= pmask;
12243 }
12244 pmask = 0;
12245 }
12246 }
12247
12248 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12249 {
12250 int exc_el;
12251
12252 if (sm) {
12253 exc_el = sme_exception_el(env, el);
12254 } else {
12255 exc_el = sve_exception_el(env, el);
12256 }
12257 if (exc_el) {
12258 return 0; /* disabled */
12259 }
12260 return sve_vqm1_for_el_sm(env, el, sm);
12261 }
12262
12263 /*
12264 * Notice a change in SVE vector size when changing EL.
12265 */
12266 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12267 int new_el, bool el0_a64)
12268 {
12269 ARMCPU *cpu = env_archcpu(env);
12270 int old_len, new_len;
12271 bool old_a64, new_a64, sm;
12272
12273 /* Nothing to do if no SVE. */
12274 if (!cpu_isar_feature(aa64_sve, cpu)) {
12275 return;
12276 }
12277
12278 /* Nothing to do if FP is disabled in either EL. */
12279 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12280 return;
12281 }
12282
12283 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12284 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12285
12286 /*
12287 * Both AArch64.TakeException and AArch64.ExceptionReturn
12288 * invoke ResetSVEState when taking an exception from, or
12289 * returning to, AArch32 state when PSTATE.SM is enabled.
12290 */
12291 sm = FIELD_EX64(env->svcr, SVCR, SM);
12292 if (old_a64 != new_a64 && sm) {
12293 arm_reset_sve_state(env);
12294 return;
12295 }
12296
12297 /*
12298 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12299 * at ELx, or not available because the EL is in AArch32 state, then
12300 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12301 * has an effective value of 0".
12302 *
12303 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12304 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12305 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12306 * we already have the correct register contents when encountering the
12307 * vq0->vq0 transition between EL0->EL1.
12308 */
12309 old_len = new_len = 0;
12310 if (old_a64) {
12311 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12312 }
12313 if (new_a64) {
12314 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12315 }
12316
12317 /* When changing vector length, clear inaccessible state. */
12318 if (new_len < old_len) {
12319 aarch64_sve_narrow_vq(env, new_len + 1);
12320 }
12321 }
12322 #endif
12323
12324 #ifndef CONFIG_USER_ONLY
12325 ARMSecuritySpace arm_security_space(CPUARMState *env)
12326 {
12327 if (arm_feature(env, ARM_FEATURE_M)) {
12328 return arm_secure_to_space(env->v7m.secure);
12329 }
12330
12331 /*
12332 * If EL3 is not supported then the secure state is implementation
12333 * defined, in which case QEMU defaults to non-secure.
12334 */
12335 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12336 return ARMSS_NonSecure;
12337 }
12338
12339 /* Check for AArch64 EL3 or AArch32 Mon. */
12340 if (is_a64(env)) {
12341 if (extract32(env->pstate, 2, 2) == 3) {
12342 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12343 return ARMSS_Root;
12344 } else {
12345 return ARMSS_Secure;
12346 }
12347 }
12348 } else {
12349 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12350 return ARMSS_Secure;
12351 }
12352 }
12353
12354 return arm_security_space_below_el3(env);
12355 }
12356
12357 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12358 {
12359 assert(!arm_feature(env, ARM_FEATURE_M));
12360
12361 /*
12362 * If EL3 is not supported then the secure state is implementation
12363 * defined, in which case QEMU defaults to non-secure.
12364 */
12365 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12366 return ARMSS_NonSecure;
12367 }
12368
12369 /*
12370 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12371 * Ignoring NSE when !NS retains consistency without having to
12372 * modify other predicates.
12373 */
12374 if (!(env->cp15.scr_el3 & SCR_NS)) {
12375 return ARMSS_Secure;
12376 } else if (env->cp15.scr_el3 & SCR_NSE) {
12377 return ARMSS_Realm;
12378 } else {
12379 return ARMSS_NonSecure;
12380 }
12381 }
12382 #endif /* !CONFIG_USER_ONLY */