]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190704-1' into...
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/units.h"
10 #include "target/arm/idau.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/gdbstub.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "sysemu/sysemu.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/semihosting/semihost.h"
24 #include "sysemu/cpus.h"
25 #include "sysemu/kvm.h"
26 #include "qemu/range.h"
27 #include "qapi/qapi-commands-machine-target.h"
28 #include "qapi/error.h"
29 #include "qemu/guest-random.h"
30 #ifdef CONFIG_TCG
31 #include "arm_ldst.h"
32 #include "exec/cpu_ldst.h"
33 #endif
34
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
36
37 #ifndef CONFIG_USER_ONLY
38
39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
40 MMUAccessType access_type, ARMMMUIdx mmu_idx,
41 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
42 target_ulong *page_size_ptr,
43 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
44 #endif
45
46 static void switch_mode(CPUARMState *env, int mode);
47
48 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
49 {
50 int nregs;
51
52 /* VFP data registers are always little-endian. */
53 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
54 if (reg < nregs) {
55 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
56 return 8;
57 }
58 if (arm_feature(env, ARM_FEATURE_NEON)) {
59 /* Aliases for Q regs. */
60 nregs += 16;
61 if (reg < nregs) {
62 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
63 stq_le_p(buf, q[0]);
64 stq_le_p(buf + 8, q[1]);
65 return 16;
66 }
67 }
68 switch (reg - nregs) {
69 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
70 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
71 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
72 }
73 return 0;
74 }
75
76 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
77 {
78 int nregs;
79
80 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
81 if (reg < nregs) {
82 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
83 return 8;
84 }
85 if (arm_feature(env, ARM_FEATURE_NEON)) {
86 nregs += 16;
87 if (reg < nregs) {
88 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
89 q[0] = ldq_le_p(buf);
90 q[1] = ldq_le_p(buf + 8);
91 return 16;
92 }
93 }
94 switch (reg - nregs) {
95 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
96 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
97 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
98 }
99 return 0;
100 }
101
102 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
103 {
104 switch (reg) {
105 case 0 ... 31:
106 /* 128 bit FP register */
107 {
108 uint64_t *q = aa64_vfp_qreg(env, reg);
109 stq_le_p(buf, q[0]);
110 stq_le_p(buf + 8, q[1]);
111 return 16;
112 }
113 case 32:
114 /* FPSR */
115 stl_p(buf, vfp_get_fpsr(env));
116 return 4;
117 case 33:
118 /* FPCR */
119 stl_p(buf, vfp_get_fpcr(env));
120 return 4;
121 default:
122 return 0;
123 }
124 }
125
126 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
127 {
128 switch (reg) {
129 case 0 ... 31:
130 /* 128 bit FP register */
131 {
132 uint64_t *q = aa64_vfp_qreg(env, reg);
133 q[0] = ldq_le_p(buf);
134 q[1] = ldq_le_p(buf + 8);
135 return 16;
136 }
137 case 32:
138 /* FPSR */
139 vfp_set_fpsr(env, ldl_p(buf));
140 return 4;
141 case 33:
142 /* FPCR */
143 vfp_set_fpcr(env, ldl_p(buf));
144 return 4;
145 default:
146 return 0;
147 }
148 }
149
150 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
151 {
152 assert(ri->fieldoffset);
153 if (cpreg_field_is_64bit(ri)) {
154 return CPREG_FIELD64(env, ri);
155 } else {
156 return CPREG_FIELD32(env, ri);
157 }
158 }
159
160 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t value)
162 {
163 assert(ri->fieldoffset);
164 if (cpreg_field_is_64bit(ri)) {
165 CPREG_FIELD64(env, ri) = value;
166 } else {
167 CPREG_FIELD32(env, ri) = value;
168 }
169 }
170
171 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
172 {
173 return (char *)env + ri->fieldoffset;
174 }
175
176 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
177 {
178 /* Raw read of a coprocessor register (as needed for migration, etc). */
179 if (ri->type & ARM_CP_CONST) {
180 return ri->resetvalue;
181 } else if (ri->raw_readfn) {
182 return ri->raw_readfn(env, ri);
183 } else if (ri->readfn) {
184 return ri->readfn(env, ri);
185 } else {
186 return raw_read(env, ri);
187 }
188 }
189
190 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
191 uint64_t v)
192 {
193 /* Raw write of a coprocessor register (as needed for migration, etc).
194 * Note that constant registers are treated as write-ignored; the
195 * caller should check for success by whether a readback gives the
196 * value written.
197 */
198 if (ri->type & ARM_CP_CONST) {
199 return;
200 } else if (ri->raw_writefn) {
201 ri->raw_writefn(env, ri, v);
202 } else if (ri->writefn) {
203 ri->writefn(env, ri, v);
204 } else {
205 raw_write(env, ri, v);
206 }
207 }
208
209 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
210 {
211 ARMCPU *cpu = env_archcpu(env);
212 const ARMCPRegInfo *ri;
213 uint32_t key;
214
215 key = cpu->dyn_xml.cpregs_keys[reg];
216 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
217 if (ri) {
218 if (cpreg_field_is_64bit(ri)) {
219 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
220 } else {
221 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
222 }
223 }
224 return 0;
225 }
226
227 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
228 {
229 return 0;
230 }
231
232 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
233 {
234 /* Return true if the regdef would cause an assertion if you called
235 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
236 * program bug for it not to have the NO_RAW flag).
237 * NB that returning false here doesn't necessarily mean that calling
238 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
239 * read/write access functions which are safe for raw use" from "has
240 * read/write access functions which have side effects but has forgotten
241 * to provide raw access functions".
242 * The tests here line up with the conditions in read/write_raw_cp_reg()
243 * and assertions in raw_read()/raw_write().
244 */
245 if ((ri->type & ARM_CP_CONST) ||
246 ri->fieldoffset ||
247 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
248 return false;
249 }
250 return true;
251 }
252
253 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
254 {
255 /* Write the coprocessor state from cpu->env to the (index,value) list. */
256 int i;
257 bool ok = true;
258
259 for (i = 0; i < cpu->cpreg_array_len; i++) {
260 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
261 const ARMCPRegInfo *ri;
262 uint64_t newval;
263
264 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
265 if (!ri) {
266 ok = false;
267 continue;
268 }
269 if (ri->type & ARM_CP_NO_RAW) {
270 continue;
271 }
272
273 newval = read_raw_cp_reg(&cpu->env, ri);
274 if (kvm_sync) {
275 /*
276 * Only sync if the previous list->cpustate sync succeeded.
277 * Rather than tracking the success/failure state for every
278 * item in the list, we just recheck "does the raw write we must
279 * have made in write_list_to_cpustate() read back OK" here.
280 */
281 uint64_t oldval = cpu->cpreg_values[i];
282
283 if (oldval == newval) {
284 continue;
285 }
286
287 write_raw_cp_reg(&cpu->env, ri, oldval);
288 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
289 continue;
290 }
291
292 write_raw_cp_reg(&cpu->env, ri, newval);
293 }
294 cpu->cpreg_values[i] = newval;
295 }
296 return ok;
297 }
298
299 bool write_list_to_cpustate(ARMCPU *cpu)
300 {
301 int i;
302 bool ok = true;
303
304 for (i = 0; i < cpu->cpreg_array_len; i++) {
305 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
306 uint64_t v = cpu->cpreg_values[i];
307 const ARMCPRegInfo *ri;
308
309 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
310 if (!ri) {
311 ok = false;
312 continue;
313 }
314 if (ri->type & ARM_CP_NO_RAW) {
315 continue;
316 }
317 /* Write value and confirm it reads back as written
318 * (to catch read-only registers and partially read-only
319 * registers where the incoming migration value doesn't match)
320 */
321 write_raw_cp_reg(&cpu->env, ri, v);
322 if (read_raw_cp_reg(&cpu->env, ri) != v) {
323 ok = false;
324 }
325 }
326 return ok;
327 }
328
329 static void add_cpreg_to_list(gpointer key, gpointer opaque)
330 {
331 ARMCPU *cpu = opaque;
332 uint64_t regidx;
333 const ARMCPRegInfo *ri;
334
335 regidx = *(uint32_t *)key;
336 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
337
338 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
339 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
340 /* The value array need not be initialized at this point */
341 cpu->cpreg_array_len++;
342 }
343 }
344
345 static void count_cpreg(gpointer key, gpointer opaque)
346 {
347 ARMCPU *cpu = opaque;
348 uint64_t regidx;
349 const ARMCPRegInfo *ri;
350
351 regidx = *(uint32_t *)key;
352 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
353
354 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
355 cpu->cpreg_array_len++;
356 }
357 }
358
359 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
360 {
361 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
362 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
363
364 if (aidx > bidx) {
365 return 1;
366 }
367 if (aidx < bidx) {
368 return -1;
369 }
370 return 0;
371 }
372
373 void init_cpreg_list(ARMCPU *cpu)
374 {
375 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
376 * Note that we require cpreg_tuples[] to be sorted by key ID.
377 */
378 GList *keys;
379 int arraylen;
380
381 keys = g_hash_table_get_keys(cpu->cp_regs);
382 keys = g_list_sort(keys, cpreg_key_compare);
383
384 cpu->cpreg_array_len = 0;
385
386 g_list_foreach(keys, count_cpreg, cpu);
387
388 arraylen = cpu->cpreg_array_len;
389 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
390 cpu->cpreg_values = g_new(uint64_t, arraylen);
391 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
394 cpu->cpreg_array_len = 0;
395
396 g_list_foreach(keys, add_cpreg_to_list, cpu);
397
398 assert(cpu->cpreg_array_len == arraylen);
399
400 g_list_free(keys);
401 }
402
403 /*
404 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
405 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
406 *
407 * access_el3_aa32ns: Used to check AArch32 register views.
408 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
409 */
410 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
411 const ARMCPRegInfo *ri,
412 bool isread)
413 {
414 bool secure = arm_is_secure_below_el3(env);
415
416 assert(!arm_el_is_aa64(env, 3));
417 if (secure) {
418 return CP_ACCESS_TRAP_UNCATEGORIZED;
419 }
420 return CP_ACCESS_OK;
421 }
422
423 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
424 const ARMCPRegInfo *ri,
425 bool isread)
426 {
427 if (!arm_el_is_aa64(env, 3)) {
428 return access_el3_aa32ns(env, ri, isread);
429 }
430 return CP_ACCESS_OK;
431 }
432
433 /* Some secure-only AArch32 registers trap to EL3 if used from
434 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
435 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
436 * We assume that the .access field is set to PL1_RW.
437 */
438 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
439 const ARMCPRegInfo *ri,
440 bool isread)
441 {
442 if (arm_current_el(env) == 3) {
443 return CP_ACCESS_OK;
444 }
445 if (arm_is_secure_below_el3(env)) {
446 return CP_ACCESS_TRAP_EL3;
447 }
448 /* This will be EL1 NS and EL2 NS, which just UNDEF */
449 return CP_ACCESS_TRAP_UNCATEGORIZED;
450 }
451
452 /* Check for traps to "powerdown debug" registers, which are controlled
453 * by MDCR.TDOSA
454 */
455 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
456 bool isread)
457 {
458 int el = arm_current_el(env);
459 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
460 (env->cp15.mdcr_el2 & MDCR_TDE) ||
461 (arm_hcr_el2_eff(env) & HCR_TGE);
462
463 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
464 return CP_ACCESS_TRAP_EL2;
465 }
466 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
467 return CP_ACCESS_TRAP_EL3;
468 }
469 return CP_ACCESS_OK;
470 }
471
472 /* Check for traps to "debug ROM" registers, which are controlled
473 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
474 */
475 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
476 bool isread)
477 {
478 int el = arm_current_el(env);
479 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
480 (env->cp15.mdcr_el2 & MDCR_TDE) ||
481 (arm_hcr_el2_eff(env) & HCR_TGE);
482
483 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
484 return CP_ACCESS_TRAP_EL2;
485 }
486 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
487 return CP_ACCESS_TRAP_EL3;
488 }
489 return CP_ACCESS_OK;
490 }
491
492 /* Check for traps to general debug registers, which are controlled
493 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
494 */
495 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
496 bool isread)
497 {
498 int el = arm_current_el(env);
499 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
500 (env->cp15.mdcr_el2 & MDCR_TDE) ||
501 (arm_hcr_el2_eff(env) & HCR_TGE);
502
503 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
504 return CP_ACCESS_TRAP_EL2;
505 }
506 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
507 return CP_ACCESS_TRAP_EL3;
508 }
509 return CP_ACCESS_OK;
510 }
511
512 /* Check for traps to performance monitor registers, which are controlled
513 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
514 */
515 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
516 bool isread)
517 {
518 int el = arm_current_el(env);
519
520 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
521 && !arm_is_secure_below_el3(env)) {
522 return CP_ACCESS_TRAP_EL2;
523 }
524 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
525 return CP_ACCESS_TRAP_EL3;
526 }
527 return CP_ACCESS_OK;
528 }
529
530 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
531 {
532 ARMCPU *cpu = env_archcpu(env);
533
534 raw_write(env, ri, value);
535 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
536 }
537
538 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
539 {
540 ARMCPU *cpu = env_archcpu(env);
541
542 if (raw_read(env, ri) != value) {
543 /* Unlike real hardware the qemu TLB uses virtual addresses,
544 * not modified virtual addresses, so this causes a TLB flush.
545 */
546 tlb_flush(CPU(cpu));
547 raw_write(env, ri, value);
548 }
549 }
550
551 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
552 uint64_t value)
553 {
554 ARMCPU *cpu = env_archcpu(env);
555
556 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
557 && !extended_addresses_enabled(env)) {
558 /* For VMSA (when not using the LPAE long descriptor page table
559 * format) this register includes the ASID, so do a TLB flush.
560 * For PMSA it is purely a process ID and no action is needed.
561 */
562 tlb_flush(CPU(cpu));
563 }
564 raw_write(env, ri, value);
565 }
566
567 /* IS variants of TLB operations must affect all cores */
568 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
570 {
571 CPUState *cs = env_cpu(env);
572
573 tlb_flush_all_cpus_synced(cs);
574 }
575
576 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
578 {
579 CPUState *cs = env_cpu(env);
580
581 tlb_flush_all_cpus_synced(cs);
582 }
583
584 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t value)
586 {
587 CPUState *cs = env_cpu(env);
588
589 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
590 }
591
592 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
594 {
595 CPUState *cs = env_cpu(env);
596
597 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
598 }
599
600 /*
601 * Non-IS variants of TLB operations are upgraded to
602 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
603 * force broadcast of these operations.
604 */
605 static bool tlb_force_broadcast(CPUARMState *env)
606 {
607 return (env->cp15.hcr_el2 & HCR_FB) &&
608 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
609 }
610
611 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
613 {
614 /* Invalidate all (TLBIALL) */
615 ARMCPU *cpu = env_archcpu(env);
616
617 if (tlb_force_broadcast(env)) {
618 tlbiall_is_write(env, NULL, value);
619 return;
620 }
621
622 tlb_flush(CPU(cpu));
623 }
624
625 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
626 uint64_t value)
627 {
628 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
629 ARMCPU *cpu = env_archcpu(env);
630
631 if (tlb_force_broadcast(env)) {
632 tlbimva_is_write(env, NULL, value);
633 return;
634 }
635
636 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
637 }
638
639 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
640 uint64_t value)
641 {
642 /* Invalidate by ASID (TLBIASID) */
643 ARMCPU *cpu = env_archcpu(env);
644
645 if (tlb_force_broadcast(env)) {
646 tlbiasid_is_write(env, NULL, value);
647 return;
648 }
649
650 tlb_flush(CPU(cpu));
651 }
652
653 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value)
655 {
656 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
657 ARMCPU *cpu = env_archcpu(env);
658
659 if (tlb_force_broadcast(env)) {
660 tlbimvaa_is_write(env, NULL, value);
661 return;
662 }
663
664 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
665 }
666
667 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
669 {
670 CPUState *cs = env_cpu(env);
671
672 tlb_flush_by_mmuidx(cs,
673 ARMMMUIdxBit_S12NSE1 |
674 ARMMMUIdxBit_S12NSE0 |
675 ARMMMUIdxBit_S2NS);
676 }
677
678 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
679 uint64_t value)
680 {
681 CPUState *cs = env_cpu(env);
682
683 tlb_flush_by_mmuidx_all_cpus_synced(cs,
684 ARMMMUIdxBit_S12NSE1 |
685 ARMMMUIdxBit_S12NSE0 |
686 ARMMMUIdxBit_S2NS);
687 }
688
689 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
690 uint64_t value)
691 {
692 /* Invalidate by IPA. This has to invalidate any structures that
693 * contain only stage 2 translation information, but does not need
694 * to apply to structures that contain combined stage 1 and stage 2
695 * translation information.
696 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
697 */
698 CPUState *cs = env_cpu(env);
699 uint64_t pageaddr;
700
701 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
702 return;
703 }
704
705 pageaddr = sextract64(value << 12, 0, 40);
706
707 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
708 }
709
710 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
712 {
713 CPUState *cs = env_cpu(env);
714 uint64_t pageaddr;
715
716 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
717 return;
718 }
719
720 pageaddr = sextract64(value << 12, 0, 40);
721
722 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
723 ARMMMUIdxBit_S2NS);
724 }
725
726 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
728 {
729 CPUState *cs = env_cpu(env);
730
731 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
732 }
733
734 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
736 {
737 CPUState *cs = env_cpu(env);
738
739 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
740 }
741
742 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
743 uint64_t value)
744 {
745 CPUState *cs = env_cpu(env);
746 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
747
748 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
749 }
750
751 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
752 uint64_t value)
753 {
754 CPUState *cs = env_cpu(env);
755 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
756
757 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
758 ARMMMUIdxBit_S1E2);
759 }
760
761 static const ARMCPRegInfo cp_reginfo[] = {
762 /* Define the secure and non-secure FCSE identifier CP registers
763 * separately because there is no secure bank in V8 (no _EL3). This allows
764 * the secure register to be properly reset and migrated. There is also no
765 * v8 EL1 version of the register so the non-secure instance stands alone.
766 */
767 { .name = "FCSEIDR",
768 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
769 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
770 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
771 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
772 { .name = "FCSEIDR_S",
773 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
774 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
775 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
776 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
777 /* Define the secure and non-secure context identifier CP registers
778 * separately because there is no secure bank in V8 (no _EL3). This allows
779 * the secure register to be properly reset and migrated. In the
780 * non-secure case, the 32-bit register will have reset and migration
781 * disabled during registration as it is handled by the 64-bit instance.
782 */
783 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
784 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
785 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
786 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
787 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
788 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
789 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
790 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
791 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
792 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
793 REGINFO_SENTINEL
794 };
795
796 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
797 /* NB: Some of these registers exist in v8 but with more precise
798 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
799 */
800 /* MMU Domain access control / MPU write buffer control */
801 { .name = "DACR",
802 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
803 .access = PL1_RW, .resetvalue = 0,
804 .writefn = dacr_write, .raw_writefn = raw_write,
805 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
806 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
807 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
808 * For v6 and v5, these mappings are overly broad.
809 */
810 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
811 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 /* Cache maintenance ops; some of this space may be overridden later. */
819 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
820 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
821 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
822 REGINFO_SENTINEL
823 };
824
825 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
826 /* Not all pre-v6 cores implemented this WFI, so this is slightly
827 * over-broad.
828 */
829 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
830 .access = PL1_W, .type = ARM_CP_WFI },
831 REGINFO_SENTINEL
832 };
833
834 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
835 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
836 * is UNPREDICTABLE; we choose to NOP as most implementations do).
837 */
838 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
839 .access = PL1_W, .type = ARM_CP_WFI },
840 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
841 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
842 * OMAPCP will override this space.
843 */
844 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
845 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
846 .resetvalue = 0 },
847 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
848 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
849 .resetvalue = 0 },
850 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
851 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
852 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
853 .resetvalue = 0 },
854 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
855 * implementing it as RAZ means the "debug architecture version" bits
856 * will read as a reserved value, which should cause Linux to not try
857 * to use the debug hardware.
858 */
859 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
860 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
861 /* MMU TLB control. Note that the wildcarding means we cover not just
862 * the unified TLB ops but also the dside/iside/inner-shareable variants.
863 */
864 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
865 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
866 .type = ARM_CP_NO_RAW },
867 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
868 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
869 .type = ARM_CP_NO_RAW },
870 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
871 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
872 .type = ARM_CP_NO_RAW },
873 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
874 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
875 .type = ARM_CP_NO_RAW },
876 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
877 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
878 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
880 REGINFO_SENTINEL
881 };
882
883 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
884 uint64_t value)
885 {
886 uint32_t mask = 0;
887
888 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
889 if (!arm_feature(env, ARM_FEATURE_V8)) {
890 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
891 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
892 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
893 */
894 if (arm_feature(env, ARM_FEATURE_VFP)) {
895 /* VFP coprocessor: cp10 & cp11 [23:20] */
896 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
897
898 if (!arm_feature(env, ARM_FEATURE_NEON)) {
899 /* ASEDIS [31] bit is RAO/WI */
900 value |= (1 << 31);
901 }
902
903 /* VFPv3 and upwards with NEON implement 32 double precision
904 * registers (D0-D31).
905 */
906 if (!arm_feature(env, ARM_FEATURE_NEON) ||
907 !arm_feature(env, ARM_FEATURE_VFP3)) {
908 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
909 value |= (1 << 30);
910 }
911 }
912 value &= mask;
913 }
914
915 /*
916 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
917 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
918 */
919 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
920 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
921 value &= ~(0xf << 20);
922 value |= env->cp15.cpacr_el1 & (0xf << 20);
923 }
924
925 env->cp15.cpacr_el1 = value;
926 }
927
928 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
929 {
930 /*
931 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
932 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
933 */
934 uint64_t value = env->cp15.cpacr_el1;
935
936 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
937 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
938 value &= ~(0xf << 20);
939 }
940 return value;
941 }
942
943
944 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
945 {
946 /* Call cpacr_write() so that we reset with the correct RAO bits set
947 * for our CPU features.
948 */
949 cpacr_write(env, ri, 0);
950 }
951
952 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
953 bool isread)
954 {
955 if (arm_feature(env, ARM_FEATURE_V8)) {
956 /* Check if CPACR accesses are to be trapped to EL2 */
957 if (arm_current_el(env) == 1 &&
958 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
959 return CP_ACCESS_TRAP_EL2;
960 /* Check if CPACR accesses are to be trapped to EL3 */
961 } else if (arm_current_el(env) < 3 &&
962 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
963 return CP_ACCESS_TRAP_EL3;
964 }
965 }
966
967 return CP_ACCESS_OK;
968 }
969
970 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
971 bool isread)
972 {
973 /* Check if CPTR accesses are set to trap to EL3 */
974 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
975 return CP_ACCESS_TRAP_EL3;
976 }
977
978 return CP_ACCESS_OK;
979 }
980
981 static const ARMCPRegInfo v6_cp_reginfo[] = {
982 /* prefetch by MVA in v6, NOP in v7 */
983 { .name = "MVA_prefetch",
984 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
985 .access = PL1_W, .type = ARM_CP_NOP },
986 /* We need to break the TB after ISB to execute self-modifying code
987 * correctly and also to take any pending interrupts immediately.
988 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
989 */
990 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
991 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
992 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
993 .access = PL0_W, .type = ARM_CP_NOP },
994 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
995 .access = PL0_W, .type = ARM_CP_NOP },
996 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
997 .access = PL1_RW,
998 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
999 offsetof(CPUARMState, cp15.ifar_ns) },
1000 .resetvalue = 0, },
1001 /* Watchpoint Fault Address Register : should actually only be present
1002 * for 1136, 1176, 11MPCore.
1003 */
1004 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1005 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1006 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1007 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1008 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1009 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1010 REGINFO_SENTINEL
1011 };
1012
1013 /* Definitions for the PMU registers */
1014 #define PMCRN_MASK 0xf800
1015 #define PMCRN_SHIFT 11
1016 #define PMCRLC 0x40
1017 #define PMCRDP 0x10
1018 #define PMCRD 0x8
1019 #define PMCRC 0x4
1020 #define PMCRP 0x2
1021 #define PMCRE 0x1
1022
1023 #define PMXEVTYPER_P 0x80000000
1024 #define PMXEVTYPER_U 0x40000000
1025 #define PMXEVTYPER_NSK 0x20000000
1026 #define PMXEVTYPER_NSU 0x10000000
1027 #define PMXEVTYPER_NSH 0x08000000
1028 #define PMXEVTYPER_M 0x04000000
1029 #define PMXEVTYPER_MT 0x02000000
1030 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1031 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1032 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1033 PMXEVTYPER_M | PMXEVTYPER_MT | \
1034 PMXEVTYPER_EVTCOUNT)
1035
1036 #define PMCCFILTR 0xf8000000
1037 #define PMCCFILTR_M PMXEVTYPER_M
1038 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1039
1040 static inline uint32_t pmu_num_counters(CPUARMState *env)
1041 {
1042 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1043 }
1044
1045 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1046 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1047 {
1048 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1049 }
1050
1051 typedef struct pm_event {
1052 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1053 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1054 bool (*supported)(CPUARMState *);
1055 /*
1056 * Retrieve the current count of the underlying event. The programmed
1057 * counters hold a difference from the return value from this function
1058 */
1059 uint64_t (*get_count)(CPUARMState *);
1060 /*
1061 * Return how many nanoseconds it will take (at a minimum) for count events
1062 * to occur. A negative value indicates the counter will never overflow, or
1063 * that the counter has otherwise arranged for the overflow bit to be set
1064 * and the PMU interrupt to be raised on overflow.
1065 */
1066 int64_t (*ns_per_count)(uint64_t);
1067 } pm_event;
1068
1069 static bool event_always_supported(CPUARMState *env)
1070 {
1071 return true;
1072 }
1073
1074 static uint64_t swinc_get_count(CPUARMState *env)
1075 {
1076 /*
1077 * SW_INCR events are written directly to the pmevcntr's by writes to
1078 * PMSWINC, so there is no underlying count maintained by the PMU itself
1079 */
1080 return 0;
1081 }
1082
1083 static int64_t swinc_ns_per(uint64_t ignored)
1084 {
1085 return -1;
1086 }
1087
1088 /*
1089 * Return the underlying cycle count for the PMU cycle counters. If we're in
1090 * usermode, simply return 0.
1091 */
1092 static uint64_t cycles_get_count(CPUARMState *env)
1093 {
1094 #ifndef CONFIG_USER_ONLY
1095 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1096 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1097 #else
1098 return cpu_get_host_ticks();
1099 #endif
1100 }
1101
1102 #ifndef CONFIG_USER_ONLY
1103 static int64_t cycles_ns_per(uint64_t cycles)
1104 {
1105 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1106 }
1107
1108 static bool instructions_supported(CPUARMState *env)
1109 {
1110 return use_icount == 1 /* Precise instruction counting */;
1111 }
1112
1113 static uint64_t instructions_get_count(CPUARMState *env)
1114 {
1115 return (uint64_t)cpu_get_icount_raw();
1116 }
1117
1118 static int64_t instructions_ns_per(uint64_t icount)
1119 {
1120 return cpu_icount_to_ns((int64_t)icount);
1121 }
1122 #endif
1123
1124 static const pm_event pm_events[] = {
1125 { .number = 0x000, /* SW_INCR */
1126 .supported = event_always_supported,
1127 .get_count = swinc_get_count,
1128 .ns_per_count = swinc_ns_per,
1129 },
1130 #ifndef CONFIG_USER_ONLY
1131 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1132 .supported = instructions_supported,
1133 .get_count = instructions_get_count,
1134 .ns_per_count = instructions_ns_per,
1135 },
1136 { .number = 0x011, /* CPU_CYCLES, Cycle */
1137 .supported = event_always_supported,
1138 .get_count = cycles_get_count,
1139 .ns_per_count = cycles_ns_per,
1140 }
1141 #endif
1142 };
1143
1144 /*
1145 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1146 * events (i.e. the statistical profiling extension), this implementation
1147 * should first be updated to something sparse instead of the current
1148 * supported_event_map[] array.
1149 */
1150 #define MAX_EVENT_ID 0x11
1151 #define UNSUPPORTED_EVENT UINT16_MAX
1152 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1153
1154 /*
1155 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1156 * of ARM event numbers to indices in our pm_events array.
1157 *
1158 * Note: Events in the 0x40XX range are not currently supported.
1159 */
1160 void pmu_init(ARMCPU *cpu)
1161 {
1162 unsigned int i;
1163
1164 /*
1165 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1166 * events to them
1167 */
1168 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1169 supported_event_map[i] = UNSUPPORTED_EVENT;
1170 }
1171 cpu->pmceid0 = 0;
1172 cpu->pmceid1 = 0;
1173
1174 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1175 const pm_event *cnt = &pm_events[i];
1176 assert(cnt->number <= MAX_EVENT_ID);
1177 /* We do not currently support events in the 0x40xx range */
1178 assert(cnt->number <= 0x3f);
1179
1180 if (cnt->supported(&cpu->env)) {
1181 supported_event_map[cnt->number] = i;
1182 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1183 if (cnt->number & 0x20) {
1184 cpu->pmceid1 |= event_mask;
1185 } else {
1186 cpu->pmceid0 |= event_mask;
1187 }
1188 }
1189 }
1190 }
1191
1192 /*
1193 * Check at runtime whether a PMU event is supported for the current machine
1194 */
1195 static bool event_supported(uint16_t number)
1196 {
1197 if (number > MAX_EVENT_ID) {
1198 return false;
1199 }
1200 return supported_event_map[number] != UNSUPPORTED_EVENT;
1201 }
1202
1203 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1204 bool isread)
1205 {
1206 /* Performance monitor registers user accessibility is controlled
1207 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1208 * trapping to EL2 or EL3 for other accesses.
1209 */
1210 int el = arm_current_el(env);
1211
1212 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1213 return CP_ACCESS_TRAP;
1214 }
1215 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1216 && !arm_is_secure_below_el3(env)) {
1217 return CP_ACCESS_TRAP_EL2;
1218 }
1219 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1220 return CP_ACCESS_TRAP_EL3;
1221 }
1222
1223 return CP_ACCESS_OK;
1224 }
1225
1226 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1227 const ARMCPRegInfo *ri,
1228 bool isread)
1229 {
1230 /* ER: event counter read trap control */
1231 if (arm_feature(env, ARM_FEATURE_V8)
1232 && arm_current_el(env) == 0
1233 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1234 && isread) {
1235 return CP_ACCESS_OK;
1236 }
1237
1238 return pmreg_access(env, ri, isread);
1239 }
1240
1241 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1242 const ARMCPRegInfo *ri,
1243 bool isread)
1244 {
1245 /* SW: software increment write trap control */
1246 if (arm_feature(env, ARM_FEATURE_V8)
1247 && arm_current_el(env) == 0
1248 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1249 && !isread) {
1250 return CP_ACCESS_OK;
1251 }
1252
1253 return pmreg_access(env, ri, isread);
1254 }
1255
1256 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1257 const ARMCPRegInfo *ri,
1258 bool isread)
1259 {
1260 /* ER: event counter read trap control */
1261 if (arm_feature(env, ARM_FEATURE_V8)
1262 && arm_current_el(env) == 0
1263 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1264 return CP_ACCESS_OK;
1265 }
1266
1267 return pmreg_access(env, ri, isread);
1268 }
1269
1270 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1271 const ARMCPRegInfo *ri,
1272 bool isread)
1273 {
1274 /* CR: cycle counter read trap control */
1275 if (arm_feature(env, ARM_FEATURE_V8)
1276 && arm_current_el(env) == 0
1277 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1278 && isread) {
1279 return CP_ACCESS_OK;
1280 }
1281
1282 return pmreg_access(env, ri, isread);
1283 }
1284
1285 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1286 * the current EL, security state, and register configuration.
1287 */
1288 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1289 {
1290 uint64_t filter;
1291 bool e, p, u, nsk, nsu, nsh, m;
1292 bool enabled, prohibited, filtered;
1293 bool secure = arm_is_secure(env);
1294 int el = arm_current_el(env);
1295 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1296
1297 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1298 return false;
1299 }
1300
1301 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1302 (counter < hpmn || counter == 31)) {
1303 e = env->cp15.c9_pmcr & PMCRE;
1304 } else {
1305 e = env->cp15.mdcr_el2 & MDCR_HPME;
1306 }
1307 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1308
1309 if (!secure) {
1310 if (el == 2 && (counter < hpmn || counter == 31)) {
1311 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1312 } else {
1313 prohibited = false;
1314 }
1315 } else {
1316 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1317 (env->cp15.mdcr_el3 & MDCR_SPME);
1318 }
1319
1320 if (prohibited && counter == 31) {
1321 prohibited = env->cp15.c9_pmcr & PMCRDP;
1322 }
1323
1324 if (counter == 31) {
1325 filter = env->cp15.pmccfiltr_el0;
1326 } else {
1327 filter = env->cp15.c14_pmevtyper[counter];
1328 }
1329
1330 p = filter & PMXEVTYPER_P;
1331 u = filter & PMXEVTYPER_U;
1332 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1333 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1334 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1335 m = arm_el_is_aa64(env, 1) &&
1336 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1337
1338 if (el == 0) {
1339 filtered = secure ? u : u != nsu;
1340 } else if (el == 1) {
1341 filtered = secure ? p : p != nsk;
1342 } else if (el == 2) {
1343 filtered = !nsh;
1344 } else { /* EL3 */
1345 filtered = m != p;
1346 }
1347
1348 if (counter != 31) {
1349 /*
1350 * If not checking PMCCNTR, ensure the counter is setup to an event we
1351 * support
1352 */
1353 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1354 if (!event_supported(event)) {
1355 return false;
1356 }
1357 }
1358
1359 return enabled && !prohibited && !filtered;
1360 }
1361
1362 static void pmu_update_irq(CPUARMState *env)
1363 {
1364 ARMCPU *cpu = env_archcpu(env);
1365 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1366 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1367 }
1368
1369 /*
1370 * Ensure c15_ccnt is the guest-visible count so that operations such as
1371 * enabling/disabling the counter or filtering, modifying the count itself,
1372 * etc. can be done logically. This is essentially a no-op if the counter is
1373 * not enabled at the time of the call.
1374 */
1375 static void pmccntr_op_start(CPUARMState *env)
1376 {
1377 uint64_t cycles = cycles_get_count(env);
1378
1379 if (pmu_counter_enabled(env, 31)) {
1380 uint64_t eff_cycles = cycles;
1381 if (env->cp15.c9_pmcr & PMCRD) {
1382 /* Increment once every 64 processor clock cycles */
1383 eff_cycles /= 64;
1384 }
1385
1386 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1387
1388 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1389 1ull << 63 : 1ull << 31;
1390 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1391 env->cp15.c9_pmovsr |= (1 << 31);
1392 pmu_update_irq(env);
1393 }
1394
1395 env->cp15.c15_ccnt = new_pmccntr;
1396 }
1397 env->cp15.c15_ccnt_delta = cycles;
1398 }
1399
1400 /*
1401 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1402 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1403 * pmccntr_op_start.
1404 */
1405 static void pmccntr_op_finish(CPUARMState *env)
1406 {
1407 if (pmu_counter_enabled(env, 31)) {
1408 #ifndef CONFIG_USER_ONLY
1409 /* Calculate when the counter will next overflow */
1410 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1411 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1412 remaining_cycles = (uint32_t)remaining_cycles;
1413 }
1414 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1415
1416 if (overflow_in > 0) {
1417 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1418 overflow_in;
1419 ARMCPU *cpu = env_archcpu(env);
1420 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1421 }
1422 #endif
1423
1424 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1425 if (env->cp15.c9_pmcr & PMCRD) {
1426 /* Increment once every 64 processor clock cycles */
1427 prev_cycles /= 64;
1428 }
1429 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1430 }
1431 }
1432
1433 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1434 {
1435
1436 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1437 uint64_t count = 0;
1438 if (event_supported(event)) {
1439 uint16_t event_idx = supported_event_map[event];
1440 count = pm_events[event_idx].get_count(env);
1441 }
1442
1443 if (pmu_counter_enabled(env, counter)) {
1444 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1445
1446 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1447 env->cp15.c9_pmovsr |= (1 << counter);
1448 pmu_update_irq(env);
1449 }
1450 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1451 }
1452 env->cp15.c14_pmevcntr_delta[counter] = count;
1453 }
1454
1455 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1456 {
1457 if (pmu_counter_enabled(env, counter)) {
1458 #ifndef CONFIG_USER_ONLY
1459 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1460 uint16_t event_idx = supported_event_map[event];
1461 uint64_t delta = UINT32_MAX -
1462 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1463 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1464
1465 if (overflow_in > 0) {
1466 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1467 overflow_in;
1468 ARMCPU *cpu = env_archcpu(env);
1469 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1470 }
1471 #endif
1472
1473 env->cp15.c14_pmevcntr_delta[counter] -=
1474 env->cp15.c14_pmevcntr[counter];
1475 }
1476 }
1477
1478 void pmu_op_start(CPUARMState *env)
1479 {
1480 unsigned int i;
1481 pmccntr_op_start(env);
1482 for (i = 0; i < pmu_num_counters(env); i++) {
1483 pmevcntr_op_start(env, i);
1484 }
1485 }
1486
1487 void pmu_op_finish(CPUARMState *env)
1488 {
1489 unsigned int i;
1490 pmccntr_op_finish(env);
1491 for (i = 0; i < pmu_num_counters(env); i++) {
1492 pmevcntr_op_finish(env, i);
1493 }
1494 }
1495
1496 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1497 {
1498 pmu_op_start(&cpu->env);
1499 }
1500
1501 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1502 {
1503 pmu_op_finish(&cpu->env);
1504 }
1505
1506 void arm_pmu_timer_cb(void *opaque)
1507 {
1508 ARMCPU *cpu = opaque;
1509
1510 /*
1511 * Update all the counter values based on the current underlying counts,
1512 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1513 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1514 * counter may expire.
1515 */
1516 pmu_op_start(&cpu->env);
1517 pmu_op_finish(&cpu->env);
1518 }
1519
1520 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1522 {
1523 pmu_op_start(env);
1524
1525 if (value & PMCRC) {
1526 /* The counter has been reset */
1527 env->cp15.c15_ccnt = 0;
1528 }
1529
1530 if (value & PMCRP) {
1531 unsigned int i;
1532 for (i = 0; i < pmu_num_counters(env); i++) {
1533 env->cp15.c14_pmevcntr[i] = 0;
1534 }
1535 }
1536
1537 /* only the DP, X, D and E bits are writable */
1538 env->cp15.c9_pmcr &= ~0x39;
1539 env->cp15.c9_pmcr |= (value & 0x39);
1540
1541 pmu_op_finish(env);
1542 }
1543
1544 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1545 uint64_t value)
1546 {
1547 unsigned int i;
1548 for (i = 0; i < pmu_num_counters(env); i++) {
1549 /* Increment a counter's count iff: */
1550 if ((value & (1 << i)) && /* counter's bit is set */
1551 /* counter is enabled and not filtered */
1552 pmu_counter_enabled(env, i) &&
1553 /* counter is SW_INCR */
1554 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1555 pmevcntr_op_start(env, i);
1556
1557 /*
1558 * Detect if this write causes an overflow since we can't predict
1559 * PMSWINC overflows like we can for other events
1560 */
1561 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1562
1563 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1564 env->cp15.c9_pmovsr |= (1 << i);
1565 pmu_update_irq(env);
1566 }
1567
1568 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1569
1570 pmevcntr_op_finish(env, i);
1571 }
1572 }
1573 }
1574
1575 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1576 {
1577 uint64_t ret;
1578 pmccntr_op_start(env);
1579 ret = env->cp15.c15_ccnt;
1580 pmccntr_op_finish(env);
1581 return ret;
1582 }
1583
1584 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
1586 {
1587 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1588 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1589 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1590 * accessed.
1591 */
1592 env->cp15.c9_pmselr = value & 0x1f;
1593 }
1594
1595 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1597 {
1598 pmccntr_op_start(env);
1599 env->cp15.c15_ccnt = value;
1600 pmccntr_op_finish(env);
1601 }
1602
1603 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1605 {
1606 uint64_t cur_val = pmccntr_read(env, NULL);
1607
1608 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1609 }
1610
1611 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1612 uint64_t value)
1613 {
1614 pmccntr_op_start(env);
1615 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1616 pmccntr_op_finish(env);
1617 }
1618
1619 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1620 uint64_t value)
1621 {
1622 pmccntr_op_start(env);
1623 /* M is not accessible from AArch32 */
1624 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1625 (value & PMCCFILTR);
1626 pmccntr_op_finish(env);
1627 }
1628
1629 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1630 {
1631 /* M is not visible in AArch32 */
1632 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1633 }
1634
1635 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1637 {
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmcnten |= value;
1640 }
1641
1642 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1643 uint64_t value)
1644 {
1645 value &= pmu_counter_mask(env);
1646 env->cp15.c9_pmcnten &= ~value;
1647 }
1648
1649 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value)
1651 {
1652 value &= pmu_counter_mask(env);
1653 env->cp15.c9_pmovsr &= ~value;
1654 pmu_update_irq(env);
1655 }
1656
1657 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value)
1659 {
1660 value &= pmu_counter_mask(env);
1661 env->cp15.c9_pmovsr |= value;
1662 pmu_update_irq(env);
1663 }
1664
1665 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1666 uint64_t value, const uint8_t counter)
1667 {
1668 if (counter == 31) {
1669 pmccfiltr_write(env, ri, value);
1670 } else if (counter < pmu_num_counters(env)) {
1671 pmevcntr_op_start(env, counter);
1672
1673 /*
1674 * If this counter's event type is changing, store the current
1675 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1676 * pmevcntr_op_finish has the correct baseline when it converts back to
1677 * a delta.
1678 */
1679 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1680 PMXEVTYPER_EVTCOUNT;
1681 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1682 if (old_event != new_event) {
1683 uint64_t count = 0;
1684 if (event_supported(new_event)) {
1685 uint16_t event_idx = supported_event_map[new_event];
1686 count = pm_events[event_idx].get_count(env);
1687 }
1688 env->cp15.c14_pmevcntr_delta[counter] = count;
1689 }
1690
1691 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1692 pmevcntr_op_finish(env, counter);
1693 }
1694 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1695 * PMSELR value is equal to or greater than the number of implemented
1696 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1697 */
1698 }
1699
1700 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1701 const uint8_t counter)
1702 {
1703 if (counter == 31) {
1704 return env->cp15.pmccfiltr_el0;
1705 } else if (counter < pmu_num_counters(env)) {
1706 return env->cp15.c14_pmevtyper[counter];
1707 } else {
1708 /*
1709 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1710 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1711 */
1712 return 0;
1713 }
1714 }
1715
1716 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1717 uint64_t value)
1718 {
1719 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1720 pmevtyper_write(env, ri, value, counter);
1721 }
1722
1723 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1724 uint64_t value)
1725 {
1726 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1727 env->cp15.c14_pmevtyper[counter] = value;
1728
1729 /*
1730 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1731 * pmu_op_finish calls when loading saved state for a migration. Because
1732 * we're potentially updating the type of event here, the value written to
1733 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1734 * different counter type. Therefore, we need to set this value to the
1735 * current count for the counter type we're writing so that pmu_op_finish
1736 * has the correct count for its calculation.
1737 */
1738 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1739 if (event_supported(event)) {
1740 uint16_t event_idx = supported_event_map[event];
1741 env->cp15.c14_pmevcntr_delta[counter] =
1742 pm_events[event_idx].get_count(env);
1743 }
1744 }
1745
1746 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1747 {
1748 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1749 return pmevtyper_read(env, ri, counter);
1750 }
1751
1752 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1753 uint64_t value)
1754 {
1755 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1756 }
1757
1758 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1759 {
1760 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1761 }
1762
1763 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value, uint8_t counter)
1765 {
1766 if (counter < pmu_num_counters(env)) {
1767 pmevcntr_op_start(env, counter);
1768 env->cp15.c14_pmevcntr[counter] = value;
1769 pmevcntr_op_finish(env, counter);
1770 }
1771 /*
1772 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1773 * are CONSTRAINED UNPREDICTABLE.
1774 */
1775 }
1776
1777 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint8_t counter)
1779 {
1780 if (counter < pmu_num_counters(env)) {
1781 uint64_t ret;
1782 pmevcntr_op_start(env, counter);
1783 ret = env->cp15.c14_pmevcntr[counter];
1784 pmevcntr_op_finish(env, counter);
1785 return ret;
1786 } else {
1787 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1788 * are CONSTRAINED UNPREDICTABLE. */
1789 return 0;
1790 }
1791 }
1792
1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1795 {
1796 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1797 pmevcntr_write(env, ri, value, counter);
1798 }
1799
1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803 return pmevcntr_read(env, ri, counter);
1804 }
1805
1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1808 {
1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810 assert(counter < pmu_num_counters(env));
1811 env->cp15.c14_pmevcntr[counter] = value;
1812 pmevcntr_write(env, ri, value, counter);
1813 }
1814
1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1816 {
1817 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1818 assert(counter < pmu_num_counters(env));
1819 return env->cp15.c14_pmevcntr[counter];
1820 }
1821
1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1824 {
1825 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1826 }
1827
1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1831 }
1832
1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834 uint64_t value)
1835 {
1836 if (arm_feature(env, ARM_FEATURE_V8)) {
1837 env->cp15.c9_pmuserenr = value & 0xf;
1838 } else {
1839 env->cp15.c9_pmuserenr = value & 1;
1840 }
1841 }
1842
1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844 uint64_t value)
1845 {
1846 /* We have no event counters so only the C bit can be changed */
1847 value &= pmu_counter_mask(env);
1848 env->cp15.c9_pminten |= value;
1849 pmu_update_irq(env);
1850 }
1851
1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1854 {
1855 value &= pmu_counter_mask(env);
1856 env->cp15.c9_pminten &= ~value;
1857 pmu_update_irq(env);
1858 }
1859
1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1862 {
1863 /* Note that even though the AArch64 view of this register has bits
1864 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1865 * architectural requirements for bits which are RES0 only in some
1866 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1867 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1868 */
1869 raw_write(env, ri, value & ~0x1FULL);
1870 }
1871
1872 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1873 {
1874 /* Begin with base v8.0 state. */
1875 uint32_t valid_mask = 0x3fff;
1876 ARMCPU *cpu = env_archcpu(env);
1877
1878 if (arm_el_is_aa64(env, 3)) {
1879 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1880 valid_mask &= ~SCR_NET;
1881 } else {
1882 valid_mask &= ~(SCR_RW | SCR_ST);
1883 }
1884
1885 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1886 valid_mask &= ~SCR_HCE;
1887
1888 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1889 * supported if EL2 exists. The bit is UNK/SBZP when
1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891 * when EL2 is unavailable.
1892 * On ARMv8, this bit is always available.
1893 */
1894 if (arm_feature(env, ARM_FEATURE_V7) &&
1895 !arm_feature(env, ARM_FEATURE_V8)) {
1896 valid_mask &= ~SCR_SMD;
1897 }
1898 }
1899 if (cpu_isar_feature(aa64_lor, cpu)) {
1900 valid_mask |= SCR_TLOR;
1901 }
1902 if (cpu_isar_feature(aa64_pauth, cpu)) {
1903 valid_mask |= SCR_API | SCR_APK;
1904 }
1905
1906 /* Clear all-context RES0 bits. */
1907 value &= valid_mask;
1908 raw_write(env, ri, value);
1909 }
1910
1911 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1912 {
1913 ARMCPU *cpu = env_archcpu(env);
1914
1915 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1916 * bank
1917 */
1918 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1919 ri->secure & ARM_CP_SECSTATE_S);
1920
1921 return cpu->ccsidr[index];
1922 }
1923
1924 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1925 uint64_t value)
1926 {
1927 raw_write(env, ri, value & 0xf);
1928 }
1929
1930 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1931 {
1932 CPUState *cs = env_cpu(env);
1933 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1934 uint64_t ret = 0;
1935
1936 if (hcr_el2 & HCR_IMO) {
1937 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1938 ret |= CPSR_I;
1939 }
1940 } else {
1941 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1942 ret |= CPSR_I;
1943 }
1944 }
1945
1946 if (hcr_el2 & HCR_FMO) {
1947 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1948 ret |= CPSR_F;
1949 }
1950 } else {
1951 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1952 ret |= CPSR_F;
1953 }
1954 }
1955
1956 /* External aborts are not possible in QEMU so A bit is always clear */
1957 return ret;
1958 }
1959
1960 static const ARMCPRegInfo v7_cp_reginfo[] = {
1961 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1962 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1963 .access = PL1_W, .type = ARM_CP_NOP },
1964 /* Performance monitors are implementation defined in v7,
1965 * but with an ARM recommended set of registers, which we
1966 * follow.
1967 *
1968 * Performance registers fall into three categories:
1969 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1970 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1971 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1972 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1973 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1974 */
1975 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1976 .access = PL0_RW, .type = ARM_CP_ALIAS,
1977 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1978 .writefn = pmcntenset_write,
1979 .accessfn = pmreg_access,
1980 .raw_writefn = raw_write },
1981 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1983 .access = PL0_RW, .accessfn = pmreg_access,
1984 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1985 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1986 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1987 .access = PL0_RW,
1988 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1989 .accessfn = pmreg_access,
1990 .writefn = pmcntenclr_write,
1991 .type = ARM_CP_ALIAS },
1992 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1994 .access = PL0_RW, .accessfn = pmreg_access,
1995 .type = ARM_CP_ALIAS,
1996 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1997 .writefn = pmcntenclr_write },
1998 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1999 .access = PL0_RW, .type = ARM_CP_IO,
2000 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2001 .accessfn = pmreg_access,
2002 .writefn = pmovsr_write,
2003 .raw_writefn = raw_write },
2004 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2006 .access = PL0_RW, .accessfn = pmreg_access,
2007 .type = ARM_CP_ALIAS | ARM_CP_IO,
2008 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2009 .writefn = pmovsr_write,
2010 .raw_writefn = raw_write },
2011 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2012 .access = PL0_W, .accessfn = pmreg_access_swinc,
2013 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2014 .writefn = pmswinc_write },
2015 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2016 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2017 .access = PL0_W, .accessfn = pmreg_access_swinc,
2018 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2019 .writefn = pmswinc_write },
2020 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2021 .access = PL0_RW, .type = ARM_CP_ALIAS,
2022 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2023 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2024 .raw_writefn = raw_write},
2025 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2026 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2027 .access = PL0_RW, .accessfn = pmreg_access_selr,
2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2029 .writefn = pmselr_write, .raw_writefn = raw_write, },
2030 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2031 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2032 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2033 .accessfn = pmreg_access_ccntr },
2034 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2035 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2036 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2037 .type = ARM_CP_IO,
2038 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2039 .readfn = pmccntr_read, .writefn = pmccntr_write,
2040 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2041 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2042 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2043 .access = PL0_RW, .accessfn = pmreg_access,
2044 .type = ARM_CP_ALIAS | ARM_CP_IO,
2045 .resetvalue = 0, },
2046 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2047 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2048 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2049 .access = PL0_RW, .accessfn = pmreg_access,
2050 .type = ARM_CP_IO,
2051 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2052 .resetvalue = 0, },
2053 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2054 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2055 .accessfn = pmreg_access,
2056 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2057 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2058 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2059 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2060 .accessfn = pmreg_access,
2061 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2062 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2063 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2064 .accessfn = pmreg_access_xevcntr,
2065 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2066 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2067 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2068 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2069 .accessfn = pmreg_access_xevcntr,
2070 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2071 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2072 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2073 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2074 .resetvalue = 0,
2075 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2076 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2078 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2080 .resetvalue = 0,
2081 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2082 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2083 .access = PL1_RW, .accessfn = access_tpm,
2084 .type = ARM_CP_ALIAS | ARM_CP_IO,
2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2086 .resetvalue = 0,
2087 .writefn = pmintenset_write, .raw_writefn = raw_write },
2088 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2089 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2090 .access = PL1_RW, .accessfn = access_tpm,
2091 .type = ARM_CP_IO,
2092 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2093 .writefn = pmintenset_write, .raw_writefn = raw_write,
2094 .resetvalue = 0x0 },
2095 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2096 .access = PL1_RW, .accessfn = access_tpm,
2097 .type = ARM_CP_ALIAS | ARM_CP_IO,
2098 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2099 .writefn = pmintenclr_write, },
2100 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2101 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2102 .access = PL1_RW, .accessfn = access_tpm,
2103 .type = ARM_CP_ALIAS | ARM_CP_IO,
2104 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2105 .writefn = pmintenclr_write },
2106 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2107 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2108 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2109 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2111 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2112 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2113 offsetof(CPUARMState, cp15.csselr_ns) } },
2114 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2115 * just RAZ for all cores:
2116 */
2117 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2118 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2119 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2120 /* Auxiliary fault status registers: these also are IMPDEF, and we
2121 * choose to RAZ/WI for all cores.
2122 */
2123 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2124 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2125 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2126 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2127 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2128 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2129 /* MAIR can just read-as-written because we don't implement caches
2130 * and so don't need to care about memory attributes.
2131 */
2132 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2134 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2135 .resetvalue = 0 },
2136 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2138 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2139 .resetvalue = 0 },
2140 /* For non-long-descriptor page tables these are PRRR and NMRR;
2141 * regardless they still act as reads-as-written for QEMU.
2142 */
2143 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2144 * allows them to assign the correct fieldoffset based on the endianness
2145 * handled in the field definitions.
2146 */
2147 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2148 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2149 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2150 offsetof(CPUARMState, cp15.mair0_ns) },
2151 .resetfn = arm_cp_reset_ignore },
2152 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2153 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2154 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2155 offsetof(CPUARMState, cp15.mair1_ns) },
2156 .resetfn = arm_cp_reset_ignore },
2157 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2159 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2160 /* 32 bit ITLB invalidates */
2161 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2162 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2163 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2165 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2167 /* 32 bit DTLB invalidates */
2168 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2170 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2172 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2174 /* 32 bit TLB invalidates */
2175 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2176 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2177 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2179 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2181 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2183 REGINFO_SENTINEL
2184 };
2185
2186 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2187 /* 32 bit TLB invalidates, Inner Shareable */
2188 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2189 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2190 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2192 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2193 .type = ARM_CP_NO_RAW, .access = PL1_W,
2194 .writefn = tlbiasid_is_write },
2195 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2196 .type = ARM_CP_NO_RAW, .access = PL1_W,
2197 .writefn = tlbimvaa_is_write },
2198 REGINFO_SENTINEL
2199 };
2200
2201 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2202 /* PMOVSSET is not implemented in v7 before v7ve */
2203 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2204 .access = PL0_RW, .accessfn = pmreg_access,
2205 .type = ARM_CP_ALIAS | ARM_CP_IO,
2206 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2207 .writefn = pmovsset_write,
2208 .raw_writefn = raw_write },
2209 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2211 .access = PL0_RW, .accessfn = pmreg_access,
2212 .type = ARM_CP_ALIAS | ARM_CP_IO,
2213 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2214 .writefn = pmovsset_write,
2215 .raw_writefn = raw_write },
2216 REGINFO_SENTINEL
2217 };
2218
2219 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2220 uint64_t value)
2221 {
2222 value &= 1;
2223 env->teecr = value;
2224 }
2225
2226 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2227 bool isread)
2228 {
2229 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2230 return CP_ACCESS_TRAP;
2231 }
2232 return CP_ACCESS_OK;
2233 }
2234
2235 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2236 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2237 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2238 .resetvalue = 0,
2239 .writefn = teecr_write },
2240 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2241 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2242 .accessfn = teehbr_access, .resetvalue = 0 },
2243 REGINFO_SENTINEL
2244 };
2245
2246 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2247 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2248 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2249 .access = PL0_RW,
2250 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2251 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2252 .access = PL0_RW,
2253 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2254 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2255 .resetfn = arm_cp_reset_ignore },
2256 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2257 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2258 .access = PL0_R|PL1_W,
2259 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2260 .resetvalue = 0},
2261 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2262 .access = PL0_R|PL1_W,
2263 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2264 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2265 .resetfn = arm_cp_reset_ignore },
2266 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2267 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2268 .access = PL1_RW,
2269 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2270 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2271 .access = PL1_RW,
2272 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2273 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2274 .resetvalue = 0 },
2275 REGINFO_SENTINEL
2276 };
2277
2278 #ifndef CONFIG_USER_ONLY
2279
2280 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2281 bool isread)
2282 {
2283 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2284 * Writable only at the highest implemented exception level.
2285 */
2286 int el = arm_current_el(env);
2287
2288 switch (el) {
2289 case 0:
2290 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2291 return CP_ACCESS_TRAP;
2292 }
2293 break;
2294 case 1:
2295 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2296 arm_is_secure_below_el3(env)) {
2297 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2298 return CP_ACCESS_TRAP_UNCATEGORIZED;
2299 }
2300 break;
2301 case 2:
2302 case 3:
2303 break;
2304 }
2305
2306 if (!isread && el < arm_highest_el(env)) {
2307 return CP_ACCESS_TRAP_UNCATEGORIZED;
2308 }
2309
2310 return CP_ACCESS_OK;
2311 }
2312
2313 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2314 bool isread)
2315 {
2316 unsigned int cur_el = arm_current_el(env);
2317 bool secure = arm_is_secure(env);
2318
2319 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2320 if (cur_el == 0 &&
2321 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2322 return CP_ACCESS_TRAP;
2323 }
2324
2325 if (arm_feature(env, ARM_FEATURE_EL2) &&
2326 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2327 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2328 return CP_ACCESS_TRAP_EL2;
2329 }
2330 return CP_ACCESS_OK;
2331 }
2332
2333 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2334 bool isread)
2335 {
2336 unsigned int cur_el = arm_current_el(env);
2337 bool secure = arm_is_secure(env);
2338
2339 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2340 * EL0[PV]TEN is zero.
2341 */
2342 if (cur_el == 0 &&
2343 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2344 return CP_ACCESS_TRAP;
2345 }
2346
2347 if (arm_feature(env, ARM_FEATURE_EL2) &&
2348 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2349 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2350 return CP_ACCESS_TRAP_EL2;
2351 }
2352 return CP_ACCESS_OK;
2353 }
2354
2355 static CPAccessResult gt_pct_access(CPUARMState *env,
2356 const ARMCPRegInfo *ri,
2357 bool isread)
2358 {
2359 return gt_counter_access(env, GTIMER_PHYS, isread);
2360 }
2361
2362 static CPAccessResult gt_vct_access(CPUARMState *env,
2363 const ARMCPRegInfo *ri,
2364 bool isread)
2365 {
2366 return gt_counter_access(env, GTIMER_VIRT, isread);
2367 }
2368
2369 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2370 bool isread)
2371 {
2372 return gt_timer_access(env, GTIMER_PHYS, isread);
2373 }
2374
2375 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2376 bool isread)
2377 {
2378 return gt_timer_access(env, GTIMER_VIRT, isread);
2379 }
2380
2381 static CPAccessResult gt_stimer_access(CPUARMState *env,
2382 const ARMCPRegInfo *ri,
2383 bool isread)
2384 {
2385 /* The AArch64 register view of the secure physical timer is
2386 * always accessible from EL3, and configurably accessible from
2387 * Secure EL1.
2388 */
2389 switch (arm_current_el(env)) {
2390 case 1:
2391 if (!arm_is_secure(env)) {
2392 return CP_ACCESS_TRAP;
2393 }
2394 if (!(env->cp15.scr_el3 & SCR_ST)) {
2395 return CP_ACCESS_TRAP_EL3;
2396 }
2397 return CP_ACCESS_OK;
2398 case 0:
2399 case 2:
2400 return CP_ACCESS_TRAP;
2401 case 3:
2402 return CP_ACCESS_OK;
2403 default:
2404 g_assert_not_reached();
2405 }
2406 }
2407
2408 static uint64_t gt_get_countervalue(CPUARMState *env)
2409 {
2410 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2411 }
2412
2413 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2414 {
2415 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2416
2417 if (gt->ctl & 1) {
2418 /* Timer enabled: calculate and set current ISTATUS, irq, and
2419 * reset timer to when ISTATUS next has to change
2420 */
2421 uint64_t offset = timeridx == GTIMER_VIRT ?
2422 cpu->env.cp15.cntvoff_el2 : 0;
2423 uint64_t count = gt_get_countervalue(&cpu->env);
2424 /* Note that this must be unsigned 64 bit arithmetic: */
2425 int istatus = count - offset >= gt->cval;
2426 uint64_t nexttick;
2427 int irqstate;
2428
2429 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2430
2431 irqstate = (istatus && !(gt->ctl & 2));
2432 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2433
2434 if (istatus) {
2435 /* Next transition is when count rolls back over to zero */
2436 nexttick = UINT64_MAX;
2437 } else {
2438 /* Next transition is when we hit cval */
2439 nexttick = gt->cval + offset;
2440 }
2441 /* Note that the desired next expiry time might be beyond the
2442 * signed-64-bit range of a QEMUTimer -- in this case we just
2443 * set the timer for as far in the future as possible. When the
2444 * timer expires we will reset the timer for any remaining period.
2445 */
2446 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2447 nexttick = INT64_MAX / GTIMER_SCALE;
2448 }
2449 timer_mod(cpu->gt_timer[timeridx], nexttick);
2450 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2451 } else {
2452 /* Timer disabled: ISTATUS and timer output always clear */
2453 gt->ctl &= ~4;
2454 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2455 timer_del(cpu->gt_timer[timeridx]);
2456 trace_arm_gt_recalc_disabled(timeridx);
2457 }
2458 }
2459
2460 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2461 int timeridx)
2462 {
2463 ARMCPU *cpu = env_archcpu(env);
2464
2465 timer_del(cpu->gt_timer[timeridx]);
2466 }
2467
2468 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2469 {
2470 return gt_get_countervalue(env);
2471 }
2472
2473 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2474 {
2475 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2476 }
2477
2478 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2479 int timeridx,
2480 uint64_t value)
2481 {
2482 trace_arm_gt_cval_write(timeridx, value);
2483 env->cp15.c14_timer[timeridx].cval = value;
2484 gt_recalc_timer(env_archcpu(env), timeridx);
2485 }
2486
2487 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2488 int timeridx)
2489 {
2490 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2491
2492 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2493 (gt_get_countervalue(env) - offset));
2494 }
2495
2496 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2497 int timeridx,
2498 uint64_t value)
2499 {
2500 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2501
2502 trace_arm_gt_tval_write(timeridx, value);
2503 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2504 sextract64(value, 0, 32);
2505 gt_recalc_timer(env_archcpu(env), timeridx);
2506 }
2507
2508 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2509 int timeridx,
2510 uint64_t value)
2511 {
2512 ARMCPU *cpu = env_archcpu(env);
2513 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2514
2515 trace_arm_gt_ctl_write(timeridx, value);
2516 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2517 if ((oldval ^ value) & 1) {
2518 /* Enable toggled */
2519 gt_recalc_timer(cpu, timeridx);
2520 } else if ((oldval ^ value) & 2) {
2521 /* IMASK toggled: don't need to recalculate,
2522 * just set the interrupt line based on ISTATUS
2523 */
2524 int irqstate = (oldval & 4) && !(value & 2);
2525
2526 trace_arm_gt_imask_toggle(timeridx, irqstate);
2527 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2528 }
2529 }
2530
2531 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2532 {
2533 gt_timer_reset(env, ri, GTIMER_PHYS);
2534 }
2535
2536 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537 uint64_t value)
2538 {
2539 gt_cval_write(env, ri, GTIMER_PHYS, value);
2540 }
2541
2542 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2543 {
2544 return gt_tval_read(env, ri, GTIMER_PHYS);
2545 }
2546
2547 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548 uint64_t value)
2549 {
2550 gt_tval_write(env, ri, GTIMER_PHYS, value);
2551 }
2552
2553 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554 uint64_t value)
2555 {
2556 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2557 }
2558
2559 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2560 {
2561 gt_timer_reset(env, ri, GTIMER_VIRT);
2562 }
2563
2564 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2565 uint64_t value)
2566 {
2567 gt_cval_write(env, ri, GTIMER_VIRT, value);
2568 }
2569
2570 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2571 {
2572 return gt_tval_read(env, ri, GTIMER_VIRT);
2573 }
2574
2575 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2576 uint64_t value)
2577 {
2578 gt_tval_write(env, ri, GTIMER_VIRT, value);
2579 }
2580
2581 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582 uint64_t value)
2583 {
2584 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2585 }
2586
2587 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2588 uint64_t value)
2589 {
2590 ARMCPU *cpu = env_archcpu(env);
2591
2592 trace_arm_gt_cntvoff_write(value);
2593 raw_write(env, ri, value);
2594 gt_recalc_timer(cpu, GTIMER_VIRT);
2595 }
2596
2597 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2598 {
2599 gt_timer_reset(env, ri, GTIMER_HYP);
2600 }
2601
2602 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603 uint64_t value)
2604 {
2605 gt_cval_write(env, ri, GTIMER_HYP, value);
2606 }
2607
2608 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2609 {
2610 return gt_tval_read(env, ri, GTIMER_HYP);
2611 }
2612
2613 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2615 {
2616 gt_tval_write(env, ri, GTIMER_HYP, value);
2617 }
2618
2619 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620 uint64_t value)
2621 {
2622 gt_ctl_write(env, ri, GTIMER_HYP, value);
2623 }
2624
2625 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2626 {
2627 gt_timer_reset(env, ri, GTIMER_SEC);
2628 }
2629
2630 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2631 uint64_t value)
2632 {
2633 gt_cval_write(env, ri, GTIMER_SEC, value);
2634 }
2635
2636 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2637 {
2638 return gt_tval_read(env, ri, GTIMER_SEC);
2639 }
2640
2641 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2642 uint64_t value)
2643 {
2644 gt_tval_write(env, ri, GTIMER_SEC, value);
2645 }
2646
2647 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648 uint64_t value)
2649 {
2650 gt_ctl_write(env, ri, GTIMER_SEC, value);
2651 }
2652
2653 void arm_gt_ptimer_cb(void *opaque)
2654 {
2655 ARMCPU *cpu = opaque;
2656
2657 gt_recalc_timer(cpu, GTIMER_PHYS);
2658 }
2659
2660 void arm_gt_vtimer_cb(void *opaque)
2661 {
2662 ARMCPU *cpu = opaque;
2663
2664 gt_recalc_timer(cpu, GTIMER_VIRT);
2665 }
2666
2667 void arm_gt_htimer_cb(void *opaque)
2668 {
2669 ARMCPU *cpu = opaque;
2670
2671 gt_recalc_timer(cpu, GTIMER_HYP);
2672 }
2673
2674 void arm_gt_stimer_cb(void *opaque)
2675 {
2676 ARMCPU *cpu = opaque;
2677
2678 gt_recalc_timer(cpu, GTIMER_SEC);
2679 }
2680
2681 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2682 /* Note that CNTFRQ is purely reads-as-written for the benefit
2683 * of software; writing it doesn't actually change the timer frequency.
2684 * Our reset value matches the fixed frequency we implement the timer at.
2685 */
2686 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2687 .type = ARM_CP_ALIAS,
2688 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2690 },
2691 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2692 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2693 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2694 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2695 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2696 },
2697 /* overall control: mostly access permissions */
2698 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2699 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2702 .resetvalue = 0,
2703 },
2704 /* per-timer control */
2705 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2706 .secure = ARM_CP_SECSTATE_NS,
2707 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2708 .accessfn = gt_ptimer_access,
2709 .fieldoffset = offsetoflow32(CPUARMState,
2710 cp15.c14_timer[GTIMER_PHYS].ctl),
2711 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2712 },
2713 { .name = "CNTP_CTL_S",
2714 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2715 .secure = ARM_CP_SECSTATE_S,
2716 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2717 .accessfn = gt_ptimer_access,
2718 .fieldoffset = offsetoflow32(CPUARMState,
2719 cp15.c14_timer[GTIMER_SEC].ctl),
2720 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2721 },
2722 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2723 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2724 .type = ARM_CP_IO, .access = PL0_RW,
2725 .accessfn = gt_ptimer_access,
2726 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2727 .resetvalue = 0,
2728 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2729 },
2730 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2731 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2732 .accessfn = gt_vtimer_access,
2733 .fieldoffset = offsetoflow32(CPUARMState,
2734 cp15.c14_timer[GTIMER_VIRT].ctl),
2735 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2736 },
2737 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2738 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2739 .type = ARM_CP_IO, .access = PL0_RW,
2740 .accessfn = gt_vtimer_access,
2741 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2742 .resetvalue = 0,
2743 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2744 },
2745 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2746 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2747 .secure = ARM_CP_SECSTATE_NS,
2748 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2749 .accessfn = gt_ptimer_access,
2750 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2751 },
2752 { .name = "CNTP_TVAL_S",
2753 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2754 .secure = ARM_CP_SECSTATE_S,
2755 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2756 .accessfn = gt_ptimer_access,
2757 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2758 },
2759 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2760 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2761 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2762 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2763 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2764 },
2765 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2766 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2767 .accessfn = gt_vtimer_access,
2768 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2769 },
2770 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2771 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2772 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2773 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2774 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2775 },
2776 /* The counter itself */
2777 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2778 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2779 .accessfn = gt_pct_access,
2780 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2781 },
2782 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2783 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2784 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2785 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2786 },
2787 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2788 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2789 .accessfn = gt_vct_access,
2790 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2791 },
2792 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2793 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2794 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2795 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2796 },
2797 /* Comparison value, indicating when the timer goes off */
2798 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2799 .secure = ARM_CP_SECSTATE_NS,
2800 .access = PL0_RW,
2801 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2803 .accessfn = gt_ptimer_access,
2804 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2805 },
2806 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2807 .secure = ARM_CP_SECSTATE_S,
2808 .access = PL0_RW,
2809 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2810 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2811 .accessfn = gt_ptimer_access,
2812 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2813 },
2814 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2815 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2816 .access = PL0_RW,
2817 .type = ARM_CP_IO,
2818 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2819 .resetvalue = 0, .accessfn = gt_ptimer_access,
2820 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2821 },
2822 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2823 .access = PL0_RW,
2824 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2826 .accessfn = gt_vtimer_access,
2827 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2828 },
2829 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2830 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2831 .access = PL0_RW,
2832 .type = ARM_CP_IO,
2833 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2834 .resetvalue = 0, .accessfn = gt_vtimer_access,
2835 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2836 },
2837 /* Secure timer -- this is actually restricted to only EL3
2838 * and configurably Secure-EL1 via the accessfn.
2839 */
2840 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2841 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2842 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2843 .accessfn = gt_stimer_access,
2844 .readfn = gt_sec_tval_read,
2845 .writefn = gt_sec_tval_write,
2846 .resetfn = gt_sec_timer_reset,
2847 },
2848 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2850 .type = ARM_CP_IO, .access = PL1_RW,
2851 .accessfn = gt_stimer_access,
2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2853 .resetvalue = 0,
2854 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2855 },
2856 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2857 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2858 .type = ARM_CP_IO, .access = PL1_RW,
2859 .accessfn = gt_stimer_access,
2860 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2861 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2862 },
2863 REGINFO_SENTINEL
2864 };
2865
2866 #else
2867
2868 /* In user-mode most of the generic timer registers are inaccessible
2869 * however modern kernels (4.12+) allow access to cntvct_el0
2870 */
2871
2872 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2873 {
2874 /* Currently we have no support for QEMUTimer in linux-user so we
2875 * can't call gt_get_countervalue(env), instead we directly
2876 * call the lower level functions.
2877 */
2878 return cpu_get_clock() / GTIMER_SCALE;
2879 }
2880
2881 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2882 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2883 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2884 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2885 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2886 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2887 },
2888 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2889 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2890 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2891 .readfn = gt_virt_cnt_read,
2892 },
2893 REGINFO_SENTINEL
2894 };
2895
2896 #endif
2897
2898 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2899 {
2900 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2901 raw_write(env, ri, value);
2902 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2903 raw_write(env, ri, value & 0xfffff6ff);
2904 } else {
2905 raw_write(env, ri, value & 0xfffff1ff);
2906 }
2907 }
2908
2909 #ifndef CONFIG_USER_ONLY
2910 /* get_phys_addr() isn't present for user-mode-only targets */
2911
2912 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2913 bool isread)
2914 {
2915 if (ri->opc2 & 4) {
2916 /* The ATS12NSO* operations must trap to EL3 if executed in
2917 * Secure EL1 (which can only happen if EL3 is AArch64).
2918 * They are simply UNDEF if executed from NS EL1.
2919 * They function normally from EL2 or EL3.
2920 */
2921 if (arm_current_el(env) == 1) {
2922 if (arm_is_secure_below_el3(env)) {
2923 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2924 }
2925 return CP_ACCESS_TRAP_UNCATEGORIZED;
2926 }
2927 }
2928 return CP_ACCESS_OK;
2929 }
2930
2931 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2932 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2933 {
2934 hwaddr phys_addr;
2935 target_ulong page_size;
2936 int prot;
2937 bool ret;
2938 uint64_t par64;
2939 bool format64 = false;
2940 MemTxAttrs attrs = {};
2941 ARMMMUFaultInfo fi = {};
2942 ARMCacheAttrs cacheattrs = {};
2943
2944 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2945 &prot, &page_size, &fi, &cacheattrs);
2946
2947 if (is_a64(env)) {
2948 format64 = true;
2949 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2950 /*
2951 * ATS1Cxx:
2952 * * TTBCR.EAE determines whether the result is returned using the
2953 * 32-bit or the 64-bit PAR format
2954 * * Instructions executed in Hyp mode always use the 64bit format
2955 *
2956 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2957 * * The Non-secure TTBCR.EAE bit is set to 1
2958 * * The implementation includes EL2, and the value of HCR.VM is 1
2959 *
2960 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2961 *
2962 * ATS1Hx always uses the 64bit format.
2963 */
2964 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2965
2966 if (arm_feature(env, ARM_FEATURE_EL2)) {
2967 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2968 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2969 } else {
2970 format64 |= arm_current_el(env) == 2;
2971 }
2972 }
2973 }
2974
2975 if (format64) {
2976 /* Create a 64-bit PAR */
2977 par64 = (1 << 11); /* LPAE bit always set */
2978 if (!ret) {
2979 par64 |= phys_addr & ~0xfffULL;
2980 if (!attrs.secure) {
2981 par64 |= (1 << 9); /* NS */
2982 }
2983 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2984 par64 |= cacheattrs.shareability << 7; /* SH */
2985 } else {
2986 uint32_t fsr = arm_fi_to_lfsc(&fi);
2987
2988 par64 |= 1; /* F */
2989 par64 |= (fsr & 0x3f) << 1; /* FS */
2990 if (fi.stage2) {
2991 par64 |= (1 << 9); /* S */
2992 }
2993 if (fi.s1ptw) {
2994 par64 |= (1 << 8); /* PTW */
2995 }
2996 }
2997 } else {
2998 /* fsr is a DFSR/IFSR value for the short descriptor
2999 * translation table format (with WnR always clear).
3000 * Convert it to a 32-bit PAR.
3001 */
3002 if (!ret) {
3003 /* We do not set any attribute bits in the PAR */
3004 if (page_size == (1 << 24)
3005 && arm_feature(env, ARM_FEATURE_V7)) {
3006 par64 = (phys_addr & 0xff000000) | (1 << 1);
3007 } else {
3008 par64 = phys_addr & 0xfffff000;
3009 }
3010 if (!attrs.secure) {
3011 par64 |= (1 << 9); /* NS */
3012 }
3013 } else {
3014 uint32_t fsr = arm_fi_to_sfsc(&fi);
3015
3016 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3017 ((fsr & 0xf) << 1) | 1;
3018 }
3019 }
3020 return par64;
3021 }
3022
3023 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3024 {
3025 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3026 uint64_t par64;
3027 ARMMMUIdx mmu_idx;
3028 int el = arm_current_el(env);
3029 bool secure = arm_is_secure_below_el3(env);
3030
3031 switch (ri->opc2 & 6) {
3032 case 0:
3033 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3034 switch (el) {
3035 case 3:
3036 mmu_idx = ARMMMUIdx_S1E3;
3037 break;
3038 case 2:
3039 mmu_idx = ARMMMUIdx_S1NSE1;
3040 break;
3041 case 1:
3042 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3043 break;
3044 default:
3045 g_assert_not_reached();
3046 }
3047 break;
3048 case 2:
3049 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3050 switch (el) {
3051 case 3:
3052 mmu_idx = ARMMMUIdx_S1SE0;
3053 break;
3054 case 2:
3055 mmu_idx = ARMMMUIdx_S1NSE0;
3056 break;
3057 case 1:
3058 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3059 break;
3060 default:
3061 g_assert_not_reached();
3062 }
3063 break;
3064 case 4:
3065 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3066 mmu_idx = ARMMMUIdx_S12NSE1;
3067 break;
3068 case 6:
3069 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3070 mmu_idx = ARMMMUIdx_S12NSE0;
3071 break;
3072 default:
3073 g_assert_not_reached();
3074 }
3075
3076 par64 = do_ats_write(env, value, access_type, mmu_idx);
3077
3078 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3079 }
3080
3081 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3082 uint64_t value)
3083 {
3084 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3085 uint64_t par64;
3086
3087 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3088
3089 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3090 }
3091
3092 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3093 bool isread)
3094 {
3095 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3096 return CP_ACCESS_TRAP;
3097 }
3098 return CP_ACCESS_OK;
3099 }
3100
3101 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3102 uint64_t value)
3103 {
3104 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3105 ARMMMUIdx mmu_idx;
3106 int secure = arm_is_secure_below_el3(env);
3107
3108 switch (ri->opc2 & 6) {
3109 case 0:
3110 switch (ri->opc1) {
3111 case 0: /* AT S1E1R, AT S1E1W */
3112 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3113 break;
3114 case 4: /* AT S1E2R, AT S1E2W */
3115 mmu_idx = ARMMMUIdx_S1E2;
3116 break;
3117 case 6: /* AT S1E3R, AT S1E3W */
3118 mmu_idx = ARMMMUIdx_S1E3;
3119 break;
3120 default:
3121 g_assert_not_reached();
3122 }
3123 break;
3124 case 2: /* AT S1E0R, AT S1E0W */
3125 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3126 break;
3127 case 4: /* AT S12E1R, AT S12E1W */
3128 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3129 break;
3130 case 6: /* AT S12E0R, AT S12E0W */
3131 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3132 break;
3133 default:
3134 g_assert_not_reached();
3135 }
3136
3137 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3138 }
3139 #endif
3140
3141 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3142 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3143 .access = PL1_RW, .resetvalue = 0,
3144 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3145 offsetoflow32(CPUARMState, cp15.par_ns) },
3146 .writefn = par_write },
3147 #ifndef CONFIG_USER_ONLY
3148 /* This underdecoding is safe because the reginfo is NO_RAW. */
3149 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3150 .access = PL1_W, .accessfn = ats_access,
3151 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3152 #endif
3153 REGINFO_SENTINEL
3154 };
3155
3156 /* Return basic MPU access permission bits. */
3157 static uint32_t simple_mpu_ap_bits(uint32_t val)
3158 {
3159 uint32_t ret;
3160 uint32_t mask;
3161 int i;
3162 ret = 0;
3163 mask = 3;
3164 for (i = 0; i < 16; i += 2) {
3165 ret |= (val >> i) & mask;
3166 mask <<= 2;
3167 }
3168 return ret;
3169 }
3170
3171 /* Pad basic MPU access permission bits to extended format. */
3172 static uint32_t extended_mpu_ap_bits(uint32_t val)
3173 {
3174 uint32_t ret;
3175 uint32_t mask;
3176 int i;
3177 ret = 0;
3178 mask = 3;
3179 for (i = 0; i < 16; i += 2) {
3180 ret |= (val & mask) << i;
3181 mask <<= 2;
3182 }
3183 return ret;
3184 }
3185
3186 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3187 uint64_t value)
3188 {
3189 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3190 }
3191
3192 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3193 {
3194 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3195 }
3196
3197 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198 uint64_t value)
3199 {
3200 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3201 }
3202
3203 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3204 {
3205 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3206 }
3207
3208 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3209 {
3210 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3211
3212 if (!u32p) {
3213 return 0;
3214 }
3215
3216 u32p += env->pmsav7.rnr[M_REG_NS];
3217 return *u32p;
3218 }
3219
3220 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3221 uint64_t value)
3222 {
3223 ARMCPU *cpu = env_archcpu(env);
3224 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3225
3226 if (!u32p) {
3227 return;
3228 }
3229
3230 u32p += env->pmsav7.rnr[M_REG_NS];
3231 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3232 *u32p = value;
3233 }
3234
3235 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3236 uint64_t value)
3237 {
3238 ARMCPU *cpu = env_archcpu(env);
3239 uint32_t nrgs = cpu->pmsav7_dregion;
3240
3241 if (value >= nrgs) {
3242 qemu_log_mask(LOG_GUEST_ERROR,
3243 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3244 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3245 return;
3246 }
3247
3248 raw_write(env, ri, value);
3249 }
3250
3251 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3252 /* Reset for all these registers is handled in arm_cpu_reset(),
3253 * because the PMSAv7 is also used by M-profile CPUs, which do
3254 * not register cpregs but still need the state to be reset.
3255 */
3256 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3257 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3258 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3259 .readfn = pmsav7_read, .writefn = pmsav7_write,
3260 .resetfn = arm_cp_reset_ignore },
3261 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3262 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3263 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3264 .readfn = pmsav7_read, .writefn = pmsav7_write,
3265 .resetfn = arm_cp_reset_ignore },
3266 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3267 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3268 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3269 .readfn = pmsav7_read, .writefn = pmsav7_write,
3270 .resetfn = arm_cp_reset_ignore },
3271 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3272 .access = PL1_RW,
3273 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3274 .writefn = pmsav7_rgnr_write,
3275 .resetfn = arm_cp_reset_ignore },
3276 REGINFO_SENTINEL
3277 };
3278
3279 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3280 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3281 .access = PL1_RW, .type = ARM_CP_ALIAS,
3282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3283 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3284 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3285 .access = PL1_RW, .type = ARM_CP_ALIAS,
3286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3287 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3288 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3289 .access = PL1_RW,
3290 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3291 .resetvalue = 0, },
3292 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3293 .access = PL1_RW,
3294 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3295 .resetvalue = 0, },
3296 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3297 .access = PL1_RW,
3298 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3299 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3300 .access = PL1_RW,
3301 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3302 /* Protection region base and size registers */
3303 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3304 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3305 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3306 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3307 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3308 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3309 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3310 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3311 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3312 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3313 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3314 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3315 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3316 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3317 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3318 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3319 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3320 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3321 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3322 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3323 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3324 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3325 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3326 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3327 REGINFO_SENTINEL
3328 };
3329
3330 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3331 uint64_t value)
3332 {
3333 TCR *tcr = raw_ptr(env, ri);
3334 int maskshift = extract32(value, 0, 3);
3335
3336 if (!arm_feature(env, ARM_FEATURE_V8)) {
3337 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3338 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3339 * using Long-desciptor translation table format */
3340 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3341 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3342 /* In an implementation that includes the Security Extensions
3343 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3344 * Short-descriptor translation table format.
3345 */
3346 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3347 } else {
3348 value &= TTBCR_N;
3349 }
3350 }
3351
3352 /* Update the masks corresponding to the TCR bank being written
3353 * Note that we always calculate mask and base_mask, but
3354 * they are only used for short-descriptor tables (ie if EAE is 0);
3355 * for long-descriptor tables the TCR fields are used differently
3356 * and the mask and base_mask values are meaningless.
3357 */
3358 tcr->raw_tcr = value;
3359 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3360 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3361 }
3362
3363 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3364 uint64_t value)
3365 {
3366 ARMCPU *cpu = env_archcpu(env);
3367 TCR *tcr = raw_ptr(env, ri);
3368
3369 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3370 /* With LPAE the TTBCR could result in a change of ASID
3371 * via the TTBCR.A1 bit, so do a TLB flush.
3372 */
3373 tlb_flush(CPU(cpu));
3374 }
3375 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3376 value = deposit64(tcr->raw_tcr, 0, 32, value);
3377 vmsa_ttbcr_raw_write(env, ri, value);
3378 }
3379
3380 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3381 {
3382 TCR *tcr = raw_ptr(env, ri);
3383
3384 /* Reset both the TCR as well as the masks corresponding to the bank of
3385 * the TCR being reset.
3386 */
3387 tcr->raw_tcr = 0;
3388 tcr->mask = 0;
3389 tcr->base_mask = 0xffffc000u;
3390 }
3391
3392 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3393 uint64_t value)
3394 {
3395 ARMCPU *cpu = env_archcpu(env);
3396 TCR *tcr = raw_ptr(env, ri);
3397
3398 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3399 tlb_flush(CPU(cpu));
3400 tcr->raw_tcr = value;
3401 }
3402
3403 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3404 uint64_t value)
3405 {
3406 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3407 if (cpreg_field_is_64bit(ri) &&
3408 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3409 ARMCPU *cpu = env_archcpu(env);
3410 tlb_flush(CPU(cpu));
3411 }
3412 raw_write(env, ri, value);
3413 }
3414
3415 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3416 uint64_t value)
3417 {
3418 ARMCPU *cpu = env_archcpu(env);
3419 CPUState *cs = CPU(cpu);
3420
3421 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3422 if (raw_read(env, ri) != value) {
3423 tlb_flush_by_mmuidx(cs,
3424 ARMMMUIdxBit_S12NSE1 |
3425 ARMMMUIdxBit_S12NSE0 |
3426 ARMMMUIdxBit_S2NS);
3427 raw_write(env, ri, value);
3428 }
3429 }
3430
3431 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3432 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3433 .access = PL1_RW, .type = ARM_CP_ALIAS,
3434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3435 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3436 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3437 .access = PL1_RW, .resetvalue = 0,
3438 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3439 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3440 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3441 .access = PL1_RW, .resetvalue = 0,
3442 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3443 offsetof(CPUARMState, cp15.dfar_ns) } },
3444 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3446 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3447 .resetvalue = 0, },
3448 REGINFO_SENTINEL
3449 };
3450
3451 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3452 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3453 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3454 .access = PL1_RW,
3455 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3456 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3457 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3458 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3459 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3460 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3461 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3462 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3463 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3464 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3465 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3466 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3468 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3469 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3470 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3471 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3472 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3473 .raw_writefn = vmsa_ttbcr_raw_write,
3474 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3475 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3476 REGINFO_SENTINEL
3477 };
3478
3479 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3480 * qemu tlbs nor adjusting cached masks.
3481 */
3482 static const ARMCPRegInfo ttbcr2_reginfo = {
3483 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3484 .access = PL1_RW, .type = ARM_CP_ALIAS,
3485 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3486 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3487 };
3488
3489 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3490 uint64_t value)
3491 {
3492 env->cp15.c15_ticonfig = value & 0xe7;
3493 /* The OS_TYPE bit in this register changes the reported CPUID! */
3494 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3495 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3496 }
3497
3498 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3499 uint64_t value)
3500 {
3501 env->cp15.c15_threadid = value & 0xffff;
3502 }
3503
3504 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3505 uint64_t value)
3506 {
3507 /* Wait-for-interrupt (deprecated) */
3508 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3509 }
3510
3511 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3512 uint64_t value)
3513 {
3514 /* On OMAP there are registers indicating the max/min index of dcache lines
3515 * containing a dirty line; cache flush operations have to reset these.
3516 */
3517 env->cp15.c15_i_max = 0x000;
3518 env->cp15.c15_i_min = 0xff0;
3519 }
3520
3521 static const ARMCPRegInfo omap_cp_reginfo[] = {
3522 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3523 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3524 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3525 .resetvalue = 0, },
3526 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3527 .access = PL1_RW, .type = ARM_CP_NOP },
3528 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3529 .access = PL1_RW,
3530 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3531 .writefn = omap_ticonfig_write },
3532 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3533 .access = PL1_RW,
3534 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3535 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3536 .access = PL1_RW, .resetvalue = 0xff0,
3537 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3538 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3539 .access = PL1_RW,
3540 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3541 .writefn = omap_threadid_write },
3542 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3543 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3544 .type = ARM_CP_NO_RAW,
3545 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3546 /* TODO: Peripheral port remap register:
3547 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3548 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3549 * when MMU is off.
3550 */
3551 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3552 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3553 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3554 .writefn = omap_cachemaint_write },
3555 { .name = "C9", .cp = 15, .crn = 9,
3556 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3557 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3558 REGINFO_SENTINEL
3559 };
3560
3561 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3562 uint64_t value)
3563 {
3564 env->cp15.c15_cpar = value & 0x3fff;
3565 }
3566
3567 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3568 { .name = "XSCALE_CPAR",
3569 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3570 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3571 .writefn = xscale_cpar_write, },
3572 { .name = "XSCALE_AUXCR",
3573 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3574 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3575 .resetvalue = 0, },
3576 /* XScale specific cache-lockdown: since we have no cache we NOP these
3577 * and hope the guest does not really rely on cache behaviour.
3578 */
3579 { .name = "XSCALE_LOCK_ICACHE_LINE",
3580 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3581 .access = PL1_W, .type = ARM_CP_NOP },
3582 { .name = "XSCALE_UNLOCK_ICACHE",
3583 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3584 .access = PL1_W, .type = ARM_CP_NOP },
3585 { .name = "XSCALE_DCACHE_LOCK",
3586 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3587 .access = PL1_RW, .type = ARM_CP_NOP },
3588 { .name = "XSCALE_UNLOCK_DCACHE",
3589 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3590 .access = PL1_W, .type = ARM_CP_NOP },
3591 REGINFO_SENTINEL
3592 };
3593
3594 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3595 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3596 * implementation of this implementation-defined space.
3597 * Ideally this should eventually disappear in favour of actually
3598 * implementing the correct behaviour for all cores.
3599 */
3600 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3601 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3602 .access = PL1_RW,
3603 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3604 .resetvalue = 0 },
3605 REGINFO_SENTINEL
3606 };
3607
3608 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3609 /* Cache status: RAZ because we have no cache so it's always clean */
3610 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3611 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3612 .resetvalue = 0 },
3613 REGINFO_SENTINEL
3614 };
3615
3616 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3617 /* We never have a a block transfer operation in progress */
3618 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3619 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3620 .resetvalue = 0 },
3621 /* The cache ops themselves: these all NOP for QEMU */
3622 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3623 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3624 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3625 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3626 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3627 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3628 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3629 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3630 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3631 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3632 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3633 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3634 REGINFO_SENTINEL
3635 };
3636
3637 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3638 /* The cache test-and-clean instructions always return (1 << 30)
3639 * to indicate that there are no dirty cache lines.
3640 */
3641 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3642 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3643 .resetvalue = (1 << 30) },
3644 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3645 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3646 .resetvalue = (1 << 30) },
3647 REGINFO_SENTINEL
3648 };
3649
3650 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3651 /* Ignore ReadBuffer accesses */
3652 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3653 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3654 .access = PL1_RW, .resetvalue = 0,
3655 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3656 REGINFO_SENTINEL
3657 };
3658
3659 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3660 {
3661 ARMCPU *cpu = env_archcpu(env);
3662 unsigned int cur_el = arm_current_el(env);
3663 bool secure = arm_is_secure(env);
3664
3665 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3666 return env->cp15.vpidr_el2;
3667 }
3668 return raw_read(env, ri);
3669 }
3670
3671 static uint64_t mpidr_read_val(CPUARMState *env)
3672 {
3673 ARMCPU *cpu = env_archcpu(env);
3674 uint64_t mpidr = cpu->mp_affinity;
3675
3676 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3677 mpidr |= (1U << 31);
3678 /* Cores which are uniprocessor (non-coherent)
3679 * but still implement the MP extensions set
3680 * bit 30. (For instance, Cortex-R5).
3681 */
3682 if (cpu->mp_is_up) {
3683 mpidr |= (1u << 30);
3684 }
3685 }
3686 return mpidr;
3687 }
3688
3689 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3690 {
3691 unsigned int cur_el = arm_current_el(env);
3692 bool secure = arm_is_secure(env);
3693
3694 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3695 return env->cp15.vmpidr_el2;
3696 }
3697 return mpidr_read_val(env);
3698 }
3699
3700 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3701 /* NOP AMAIR0/1 */
3702 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3703 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3704 .access = PL1_RW, .type = ARM_CP_CONST,
3705 .resetvalue = 0 },
3706 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3707 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3708 .access = PL1_RW, .type = ARM_CP_CONST,
3709 .resetvalue = 0 },
3710 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3711 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3712 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3713 offsetof(CPUARMState, cp15.par_ns)} },
3714 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3715 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3716 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3717 offsetof(CPUARMState, cp15.ttbr0_ns) },
3718 .writefn = vmsa_ttbr_write, },
3719 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3720 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3721 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3722 offsetof(CPUARMState, cp15.ttbr1_ns) },
3723 .writefn = vmsa_ttbr_write, },
3724 REGINFO_SENTINEL
3725 };
3726
3727 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3728 {
3729 return vfp_get_fpcr(env);
3730 }
3731
3732 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3733 uint64_t value)
3734 {
3735 vfp_set_fpcr(env, value);
3736 }
3737
3738 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3739 {
3740 return vfp_get_fpsr(env);
3741 }
3742
3743 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3744 uint64_t value)
3745 {
3746 vfp_set_fpsr(env, value);
3747 }
3748
3749 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3750 bool isread)
3751 {
3752 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3753 return CP_ACCESS_TRAP;
3754 }
3755 return CP_ACCESS_OK;
3756 }
3757
3758 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3759 uint64_t value)
3760 {
3761 env->daif = value & PSTATE_DAIF;
3762 }
3763
3764 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3765 const ARMCPRegInfo *ri,
3766 bool isread)
3767 {
3768 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3769 * SCTLR_EL1.UCI is set.
3770 */
3771 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3772 return CP_ACCESS_TRAP;
3773 }
3774 return CP_ACCESS_OK;
3775 }
3776
3777 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3778 * Page D4-1736 (DDI0487A.b)
3779 */
3780
3781 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3782 uint64_t value)
3783 {
3784 CPUState *cs = env_cpu(env);
3785 bool sec = arm_is_secure_below_el3(env);
3786
3787 if (sec) {
3788 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3789 ARMMMUIdxBit_S1SE1 |
3790 ARMMMUIdxBit_S1SE0);
3791 } else {
3792 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3793 ARMMMUIdxBit_S12NSE1 |
3794 ARMMMUIdxBit_S12NSE0);
3795 }
3796 }
3797
3798 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799 uint64_t value)
3800 {
3801 CPUState *cs = env_cpu(env);
3802
3803 if (tlb_force_broadcast(env)) {
3804 tlbi_aa64_vmalle1is_write(env, NULL, value);
3805 return;
3806 }
3807
3808 if (arm_is_secure_below_el3(env)) {
3809 tlb_flush_by_mmuidx(cs,
3810 ARMMMUIdxBit_S1SE1 |
3811 ARMMMUIdxBit_S1SE0);
3812 } else {
3813 tlb_flush_by_mmuidx(cs,
3814 ARMMMUIdxBit_S12NSE1 |
3815 ARMMMUIdxBit_S12NSE0);
3816 }
3817 }
3818
3819 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3820 uint64_t value)
3821 {
3822 /* Note that the 'ALL' scope must invalidate both stage 1 and
3823 * stage 2 translations, whereas most other scopes only invalidate
3824 * stage 1 translations.
3825 */
3826 ARMCPU *cpu = env_archcpu(env);
3827 CPUState *cs = CPU(cpu);
3828
3829 if (arm_is_secure_below_el3(env)) {
3830 tlb_flush_by_mmuidx(cs,
3831 ARMMMUIdxBit_S1SE1 |
3832 ARMMMUIdxBit_S1SE0);
3833 } else {
3834 if (arm_feature(env, ARM_FEATURE_EL2)) {
3835 tlb_flush_by_mmuidx(cs,
3836 ARMMMUIdxBit_S12NSE1 |
3837 ARMMMUIdxBit_S12NSE0 |
3838 ARMMMUIdxBit_S2NS);
3839 } else {
3840 tlb_flush_by_mmuidx(cs,
3841 ARMMMUIdxBit_S12NSE1 |
3842 ARMMMUIdxBit_S12NSE0);
3843 }
3844 }
3845 }
3846
3847 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3848 uint64_t value)
3849 {
3850 ARMCPU *cpu = env_archcpu(env);
3851 CPUState *cs = CPU(cpu);
3852
3853 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3854 }
3855
3856 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3857 uint64_t value)
3858 {
3859 ARMCPU *cpu = env_archcpu(env);
3860 CPUState *cs = CPU(cpu);
3861
3862 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3863 }
3864
3865 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3866 uint64_t value)
3867 {
3868 /* Note that the 'ALL' scope must invalidate both stage 1 and
3869 * stage 2 translations, whereas most other scopes only invalidate
3870 * stage 1 translations.
3871 */
3872 CPUState *cs = env_cpu(env);
3873 bool sec = arm_is_secure_below_el3(env);
3874 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3875
3876 if (sec) {
3877 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3878 ARMMMUIdxBit_S1SE1 |
3879 ARMMMUIdxBit_S1SE0);
3880 } else if (has_el2) {
3881 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3882 ARMMMUIdxBit_S12NSE1 |
3883 ARMMMUIdxBit_S12NSE0 |
3884 ARMMMUIdxBit_S2NS);
3885 } else {
3886 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3887 ARMMMUIdxBit_S12NSE1 |
3888 ARMMMUIdxBit_S12NSE0);
3889 }
3890 }
3891
3892 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3894 {
3895 CPUState *cs = env_cpu(env);
3896
3897 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3898 }
3899
3900 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901 uint64_t value)
3902 {
3903 CPUState *cs = env_cpu(env);
3904
3905 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3906 }
3907
3908 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3909 uint64_t value)
3910 {
3911 /* Invalidate by VA, EL2
3912 * Currently handles both VAE2 and VALE2, since we don't support
3913 * flush-last-level-only.
3914 */
3915 ARMCPU *cpu = env_archcpu(env);
3916 CPUState *cs = CPU(cpu);
3917 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3918
3919 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3920 }
3921
3922 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3923 uint64_t value)
3924 {
3925 /* Invalidate by VA, EL3
3926 * Currently handles both VAE3 and VALE3, since we don't support
3927 * flush-last-level-only.
3928 */
3929 ARMCPU *cpu = env_archcpu(env);
3930 CPUState *cs = CPU(cpu);
3931 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3932
3933 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3934 }
3935
3936 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3937 uint64_t value)
3938 {
3939 ARMCPU *cpu = env_archcpu(env);
3940 CPUState *cs = CPU(cpu);
3941 bool sec = arm_is_secure_below_el3(env);
3942 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3943
3944 if (sec) {
3945 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3946 ARMMMUIdxBit_S1SE1 |
3947 ARMMMUIdxBit_S1SE0);
3948 } else {
3949 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3950 ARMMMUIdxBit_S12NSE1 |
3951 ARMMMUIdxBit_S12NSE0);
3952 }
3953 }
3954
3955 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3956 uint64_t value)
3957 {
3958 /* Invalidate by VA, EL1&0 (AArch64 version).
3959 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3960 * since we don't support flush-for-specific-ASID-only or
3961 * flush-last-level-only.
3962 */
3963 ARMCPU *cpu = env_archcpu(env);
3964 CPUState *cs = CPU(cpu);
3965 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3966
3967 if (tlb_force_broadcast(env)) {
3968 tlbi_aa64_vae1is_write(env, NULL, value);
3969 return;
3970 }
3971
3972 if (arm_is_secure_below_el3(env)) {
3973 tlb_flush_page_by_mmuidx(cs, pageaddr,
3974 ARMMMUIdxBit_S1SE1 |
3975 ARMMMUIdxBit_S1SE0);
3976 } else {
3977 tlb_flush_page_by_mmuidx(cs, pageaddr,
3978 ARMMMUIdxBit_S12NSE1 |
3979 ARMMMUIdxBit_S12NSE0);
3980 }
3981 }
3982
3983 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3984 uint64_t value)
3985 {
3986 CPUState *cs = env_cpu(env);
3987 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3988
3989 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3990 ARMMMUIdxBit_S1E2);
3991 }
3992
3993 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3994 uint64_t value)
3995 {
3996 CPUState *cs = env_cpu(env);
3997 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3998
3999 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4000 ARMMMUIdxBit_S1E3);
4001 }
4002
4003 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4004 uint64_t value)
4005 {
4006 /* Invalidate by IPA. This has to invalidate any structures that
4007 * contain only stage 2 translation information, but does not need
4008 * to apply to structures that contain combined stage 1 and stage 2
4009 * translation information.
4010 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4011 */
4012 ARMCPU *cpu = env_archcpu(env);
4013 CPUState *cs = CPU(cpu);
4014 uint64_t pageaddr;
4015
4016 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4017 return;
4018 }
4019
4020 pageaddr = sextract64(value << 12, 0, 48);
4021
4022 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4023 }
4024
4025 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4026 uint64_t value)
4027 {
4028 CPUState *cs = env_cpu(env);
4029 uint64_t pageaddr;
4030
4031 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4032 return;
4033 }
4034
4035 pageaddr = sextract64(value << 12, 0, 48);
4036
4037 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4038 ARMMMUIdxBit_S2NS);
4039 }
4040
4041 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4042 bool isread)
4043 {
4044 /* We don't implement EL2, so the only control on DC ZVA is the
4045 * bit in the SCTLR which can prohibit access for EL0.
4046 */
4047 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4048 return CP_ACCESS_TRAP;
4049 }
4050 return CP_ACCESS_OK;
4051 }
4052
4053 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4054 {
4055 ARMCPU *cpu = env_archcpu(env);
4056 int dzp_bit = 1 << 4;
4057
4058 /* DZP indicates whether DC ZVA access is allowed */
4059 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4060 dzp_bit = 0;
4061 }
4062 return cpu->dcz_blocksize | dzp_bit;
4063 }
4064
4065 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4066 bool isread)
4067 {
4068 if (!(env->pstate & PSTATE_SP)) {
4069 /* Access to SP_EL0 is undefined if it's being used as
4070 * the stack pointer.
4071 */
4072 return CP_ACCESS_TRAP_UNCATEGORIZED;
4073 }
4074 return CP_ACCESS_OK;
4075 }
4076
4077 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4078 {
4079 return env->pstate & PSTATE_SP;
4080 }
4081
4082 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4083 {
4084 update_spsel(env, val);
4085 }
4086
4087 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4088 uint64_t value)
4089 {
4090 ARMCPU *cpu = env_archcpu(env);
4091
4092 if (raw_read(env, ri) == value) {
4093 /* Skip the TLB flush if nothing actually changed; Linux likes
4094 * to do a lot of pointless SCTLR writes.
4095 */
4096 return;
4097 }
4098
4099 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4100 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4101 value &= ~SCTLR_M;
4102 }
4103
4104 raw_write(env, ri, value);
4105 /* ??? Lots of these bits are not implemented. */
4106 /* This may enable/disable the MMU, so do a TLB flush. */
4107 tlb_flush(CPU(cpu));
4108 }
4109
4110 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4111 bool isread)
4112 {
4113 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4114 return CP_ACCESS_TRAP_FP_EL2;
4115 }
4116 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4117 return CP_ACCESS_TRAP_FP_EL3;
4118 }
4119 return CP_ACCESS_OK;
4120 }
4121
4122 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4123 uint64_t value)
4124 {
4125 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4126 }
4127
4128 static const ARMCPRegInfo v8_cp_reginfo[] = {
4129 /* Minimal set of EL0-visible registers. This will need to be expanded
4130 * significantly for system emulation of AArch64 CPUs.
4131 */
4132 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4134 .access = PL0_RW, .type = ARM_CP_NZCV },
4135 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4136 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4137 .type = ARM_CP_NO_RAW,
4138 .access = PL0_RW, .accessfn = aa64_daif_access,
4139 .fieldoffset = offsetof(CPUARMState, daif),
4140 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4141 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4143 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4144 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4145 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4147 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4148 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4149 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4151 .access = PL0_R, .type = ARM_CP_NO_RAW,
4152 .readfn = aa64_dczid_read },
4153 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4155 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4156 #ifndef CONFIG_USER_ONLY
4157 /* Avoid overhead of an access check that always passes in user-mode */
4158 .accessfn = aa64_zva_access,
4159 #endif
4160 },
4161 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4163 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4164 /* Cache ops: all NOPs since we don't emulate caches */
4165 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4167 .access = PL1_W, .type = ARM_CP_NOP },
4168 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4169 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4170 .access = PL1_W, .type = ARM_CP_NOP },
4171 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4172 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4173 .access = PL0_W, .type = ARM_CP_NOP,
4174 .accessfn = aa64_cacheop_access },
4175 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4176 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4177 .access = PL1_W, .type = ARM_CP_NOP },
4178 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4179 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4180 .access = PL1_W, .type = ARM_CP_NOP },
4181 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4182 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4183 .access = PL0_W, .type = ARM_CP_NOP,
4184 .accessfn = aa64_cacheop_access },
4185 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4186 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4187 .access = PL1_W, .type = ARM_CP_NOP },
4188 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4189 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4190 .access = PL0_W, .type = ARM_CP_NOP,
4191 .accessfn = aa64_cacheop_access },
4192 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4193 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4194 .access = PL0_W, .type = ARM_CP_NOP,
4195 .accessfn = aa64_cacheop_access },
4196 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4197 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4198 .access = PL1_W, .type = ARM_CP_NOP },
4199 /* TLBI operations */
4200 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4202 .access = PL1_W, .type = ARM_CP_NO_RAW,
4203 .writefn = tlbi_aa64_vmalle1is_write },
4204 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4205 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4206 .access = PL1_W, .type = ARM_CP_NO_RAW,
4207 .writefn = tlbi_aa64_vae1is_write },
4208 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4210 .access = PL1_W, .type = ARM_CP_NO_RAW,
4211 .writefn = tlbi_aa64_vmalle1is_write },
4212 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
4215 .writefn = tlbi_aa64_vae1is_write },
4216 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4218 .access = PL1_W, .type = ARM_CP_NO_RAW,
4219 .writefn = tlbi_aa64_vae1is_write },
4220 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4222 .access = PL1_W, .type = ARM_CP_NO_RAW,
4223 .writefn = tlbi_aa64_vae1is_write },
4224 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4225 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4226 .access = PL1_W, .type = ARM_CP_NO_RAW,
4227 .writefn = tlbi_aa64_vmalle1_write },
4228 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4230 .access = PL1_W, .type = ARM_CP_NO_RAW,
4231 .writefn = tlbi_aa64_vae1_write },
4232 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4233 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4234 .access = PL1_W, .type = ARM_CP_NO_RAW,
4235 .writefn = tlbi_aa64_vmalle1_write },
4236 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4237 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4238 .access = PL1_W, .type = ARM_CP_NO_RAW,
4239 .writefn = tlbi_aa64_vae1_write },
4240 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4242 .access = PL1_W, .type = ARM_CP_NO_RAW,
4243 .writefn = tlbi_aa64_vae1_write },
4244 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4246 .access = PL1_W, .type = ARM_CP_NO_RAW,
4247 .writefn = tlbi_aa64_vae1_write },
4248 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4250 .access = PL2_W, .type = ARM_CP_NO_RAW,
4251 .writefn = tlbi_aa64_ipas2e1is_write },
4252 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4254 .access = PL2_W, .type = ARM_CP_NO_RAW,
4255 .writefn = tlbi_aa64_ipas2e1is_write },
4256 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4258 .access = PL2_W, .type = ARM_CP_NO_RAW,
4259 .writefn = tlbi_aa64_alle1is_write },
4260 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4262 .access = PL2_W, .type = ARM_CP_NO_RAW,
4263 .writefn = tlbi_aa64_alle1is_write },
4264 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4266 .access = PL2_W, .type = ARM_CP_NO_RAW,
4267 .writefn = tlbi_aa64_ipas2e1_write },
4268 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4270 .access = PL2_W, .type = ARM_CP_NO_RAW,
4271 .writefn = tlbi_aa64_ipas2e1_write },
4272 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4273 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4274 .access = PL2_W, .type = ARM_CP_NO_RAW,
4275 .writefn = tlbi_aa64_alle1_write },
4276 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4277 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4278 .access = PL2_W, .type = ARM_CP_NO_RAW,
4279 .writefn = tlbi_aa64_alle1is_write },
4280 #ifndef CONFIG_USER_ONLY
4281 /* 64 bit address translation operations */
4282 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4283 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4284 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4285 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4286 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4287 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4288 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4289 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4290 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4291 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4293 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4294 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4295 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4296 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4297 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4298 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4299 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4300 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4301 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4302 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4303 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4304 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4305 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4306 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4307 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4308 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4309 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4310 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4311 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4312 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4313 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4314 .type = ARM_CP_ALIAS,
4315 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4316 .access = PL1_RW, .resetvalue = 0,
4317 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4318 .writefn = par_write },
4319 #endif
4320 /* TLB invalidate last level of translation table walk */
4321 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4322 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4323 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4324 .type = ARM_CP_NO_RAW, .access = PL1_W,
4325 .writefn = tlbimvaa_is_write },
4326 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4327 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4328 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4329 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4330 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4331 .type = ARM_CP_NO_RAW, .access = PL2_W,
4332 .writefn = tlbimva_hyp_write },
4333 { .name = "TLBIMVALHIS",
4334 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4335 .type = ARM_CP_NO_RAW, .access = PL2_W,
4336 .writefn = tlbimva_hyp_is_write },
4337 { .name = "TLBIIPAS2",
4338 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4339 .type = ARM_CP_NO_RAW, .access = PL2_W,
4340 .writefn = tlbiipas2_write },
4341 { .name = "TLBIIPAS2IS",
4342 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4343 .type = ARM_CP_NO_RAW, .access = PL2_W,
4344 .writefn = tlbiipas2_is_write },
4345 { .name = "TLBIIPAS2L",
4346 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4347 .type = ARM_CP_NO_RAW, .access = PL2_W,
4348 .writefn = tlbiipas2_write },
4349 { .name = "TLBIIPAS2LIS",
4350 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4351 .type = ARM_CP_NO_RAW, .access = PL2_W,
4352 .writefn = tlbiipas2_is_write },
4353 /* 32 bit cache operations */
4354 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4355 .type = ARM_CP_NOP, .access = PL1_W },
4356 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4357 .type = ARM_CP_NOP, .access = PL1_W },
4358 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4359 .type = ARM_CP_NOP, .access = PL1_W },
4360 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4361 .type = ARM_CP_NOP, .access = PL1_W },
4362 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4363 .type = ARM_CP_NOP, .access = PL1_W },
4364 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4365 .type = ARM_CP_NOP, .access = PL1_W },
4366 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4367 .type = ARM_CP_NOP, .access = PL1_W },
4368 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4369 .type = ARM_CP_NOP, .access = PL1_W },
4370 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4371 .type = ARM_CP_NOP, .access = PL1_W },
4372 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4373 .type = ARM_CP_NOP, .access = PL1_W },
4374 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4375 .type = ARM_CP_NOP, .access = PL1_W },
4376 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4377 .type = ARM_CP_NOP, .access = PL1_W },
4378 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4379 .type = ARM_CP_NOP, .access = PL1_W },
4380 /* MMU Domain access control / MPU write buffer control */
4381 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4382 .access = PL1_RW, .resetvalue = 0,
4383 .writefn = dacr_write, .raw_writefn = raw_write,
4384 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4385 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4386 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4387 .type = ARM_CP_ALIAS,
4388 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4389 .access = PL1_RW,
4390 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4391 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4392 .type = ARM_CP_ALIAS,
4393 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4394 .access = PL1_RW,
4395 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4396 /* We rely on the access checks not allowing the guest to write to the
4397 * state field when SPSel indicates that it's being used as the stack
4398 * pointer.
4399 */
4400 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4401 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4402 .access = PL1_RW, .accessfn = sp_el0_access,
4403 .type = ARM_CP_ALIAS,
4404 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4405 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4406 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4407 .access = PL2_RW, .type = ARM_CP_ALIAS,
4408 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4409 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4410 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4411 .type = ARM_CP_NO_RAW,
4412 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4413 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4415 .type = ARM_CP_ALIAS,
4416 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4417 .access = PL2_RW, .accessfn = fpexc32_access },
4418 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4419 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4420 .access = PL2_RW, .resetvalue = 0,
4421 .writefn = dacr_write, .raw_writefn = raw_write,
4422 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4423 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4424 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4425 .access = PL2_RW, .resetvalue = 0,
4426 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4427 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4428 .type = ARM_CP_ALIAS,
4429 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4430 .access = PL2_RW,
4431 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4432 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4433 .type = ARM_CP_ALIAS,
4434 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4435 .access = PL2_RW,
4436 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4437 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4438 .type = ARM_CP_ALIAS,
4439 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4440 .access = PL2_RW,
4441 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4442 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4443 .type = ARM_CP_ALIAS,
4444 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4445 .access = PL2_RW,
4446 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4447 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4448 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4449 .resetvalue = 0,
4450 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4451 { .name = "SDCR", .type = ARM_CP_ALIAS,
4452 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4453 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4454 .writefn = sdcr_write,
4455 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4456 REGINFO_SENTINEL
4457 };
4458
4459 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4460 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4461 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4462 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4463 .access = PL2_RW,
4464 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4465 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4466 .type = ARM_CP_NO_RAW,
4467 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4468 .access = PL2_RW,
4469 .type = ARM_CP_CONST, .resetvalue = 0 },
4470 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4471 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4472 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4473 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4474 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4475 .access = PL2_RW,
4476 .type = ARM_CP_CONST, .resetvalue = 0 },
4477 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4478 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4479 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4480 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4481 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4482 .access = PL2_RW, .type = ARM_CP_CONST,
4483 .resetvalue = 0 },
4484 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4485 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4486 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4487 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4489 .access = PL2_RW, .type = ARM_CP_CONST,
4490 .resetvalue = 0 },
4491 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4492 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4493 .access = PL2_RW, .type = ARM_CP_CONST,
4494 .resetvalue = 0 },
4495 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4497 .access = PL2_RW, .type = ARM_CP_CONST,
4498 .resetvalue = 0 },
4499 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4500 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4501 .access = PL2_RW, .type = ARM_CP_CONST,
4502 .resetvalue = 0 },
4503 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4504 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4505 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4506 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4508 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4509 .type = ARM_CP_CONST, .resetvalue = 0 },
4510 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4511 .cp = 15, .opc1 = 6, .crm = 2,
4512 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4513 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4514 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4515 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4516 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4517 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4518 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4519 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4520 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4521 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4522 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4523 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4524 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4525 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4526 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4527 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4528 .resetvalue = 0 },
4529 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4530 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4531 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4532 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4533 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4534 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4535 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4536 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4537 .resetvalue = 0 },
4538 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4539 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4540 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4541 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4542 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4543 .resetvalue = 0 },
4544 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4545 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4547 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4548 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4549 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4550 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4552 .access = PL2_RW, .accessfn = access_tda,
4553 .type = ARM_CP_CONST, .resetvalue = 0 },
4554 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4555 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4556 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4557 .type = ARM_CP_CONST, .resetvalue = 0 },
4558 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4560 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4561 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4562 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4564 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4565 .type = ARM_CP_CONST,
4566 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4567 .access = PL2_RW, .resetvalue = 0 },
4568 REGINFO_SENTINEL
4569 };
4570
4571 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4572 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4573 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4574 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4575 .access = PL2_RW,
4576 .type = ARM_CP_CONST, .resetvalue = 0 },
4577 REGINFO_SENTINEL
4578 };
4579
4580 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4581 {
4582 ARMCPU *cpu = env_archcpu(env);
4583 uint64_t valid_mask = HCR_MASK;
4584
4585 if (arm_feature(env, ARM_FEATURE_EL3)) {
4586 valid_mask &= ~HCR_HCD;
4587 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4588 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4589 * However, if we're using the SMC PSCI conduit then QEMU is
4590 * effectively acting like EL3 firmware and so the guest at
4591 * EL2 should retain the ability to prevent EL1 from being
4592 * able to make SMC calls into the ersatz firmware, so in
4593 * that case HCR.TSC should be read/write.
4594 */
4595 valid_mask &= ~HCR_TSC;
4596 }
4597 if (cpu_isar_feature(aa64_lor, cpu)) {
4598 valid_mask |= HCR_TLOR;
4599 }
4600 if (cpu_isar_feature(aa64_pauth, cpu)) {
4601 valid_mask |= HCR_API | HCR_APK;
4602 }
4603
4604 /* Clear RES0 bits. */
4605 value &= valid_mask;
4606
4607 /* These bits change the MMU setup:
4608 * HCR_VM enables stage 2 translation
4609 * HCR_PTW forbids certain page-table setups
4610 * HCR_DC Disables stage1 and enables stage2 translation
4611 */
4612 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4613 tlb_flush(CPU(cpu));
4614 }
4615 env->cp15.hcr_el2 = value;
4616
4617 /*
4618 * Updates to VI and VF require us to update the status of
4619 * virtual interrupts, which are the logical OR of these bits
4620 * and the state of the input lines from the GIC. (This requires
4621 * that we have the iothread lock, which is done by marking the
4622 * reginfo structs as ARM_CP_IO.)
4623 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4624 * possible for it to be taken immediately, because VIRQ and
4625 * VFIQ are masked unless running at EL0 or EL1, and HCR
4626 * can only be written at EL2.
4627 */
4628 g_assert(qemu_mutex_iothread_locked());
4629 arm_cpu_update_virq(cpu);
4630 arm_cpu_update_vfiq(cpu);
4631 }
4632
4633 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4634 uint64_t value)
4635 {
4636 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4637 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4638 hcr_write(env, NULL, value);
4639 }
4640
4641 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4642 uint64_t value)
4643 {
4644 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4645 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4646 hcr_write(env, NULL, value);
4647 }
4648
4649 /*
4650 * Return the effective value of HCR_EL2.
4651 * Bits that are not included here:
4652 * RW (read from SCR_EL3.RW as needed)
4653 */
4654 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4655 {
4656 uint64_t ret = env->cp15.hcr_el2;
4657
4658 if (arm_is_secure_below_el3(env)) {
4659 /*
4660 * "This register has no effect if EL2 is not enabled in the
4661 * current Security state". This is ARMv8.4-SecEL2 speak for
4662 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4663 *
4664 * Prior to that, the language was "In an implementation that
4665 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4666 * as if this field is 0 for all purposes other than a direct
4667 * read or write access of HCR_EL2". With lots of enumeration
4668 * on a per-field basis. In current QEMU, this is condition
4669 * is arm_is_secure_below_el3.
4670 *
4671 * Since the v8.4 language applies to the entire register, and
4672 * appears to be backward compatible, use that.
4673 */
4674 ret = 0;
4675 } else if (ret & HCR_TGE) {
4676 /* These bits are up-to-date as of ARMv8.4. */
4677 if (ret & HCR_E2H) {
4678 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4679 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4680 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4681 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4682 } else {
4683 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4684 }
4685 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4686 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4687 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4688 HCR_TLOR);
4689 }
4690
4691 return ret;
4692 }
4693
4694 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4695 uint64_t value)
4696 {
4697 /*
4698 * For A-profile AArch32 EL3, if NSACR.CP10
4699 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4700 */
4701 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4702 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4703 value &= ~(0x3 << 10);
4704 value |= env->cp15.cptr_el[2] & (0x3 << 10);
4705 }
4706 env->cp15.cptr_el[2] = value;
4707 }
4708
4709 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4710 {
4711 /*
4712 * For A-profile AArch32 EL3, if NSACR.CP10
4713 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4714 */
4715 uint64_t value = env->cp15.cptr_el[2];
4716
4717 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4718 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4719 value |= 0x3 << 10;
4720 }
4721 return value;
4722 }
4723
4724 static const ARMCPRegInfo el2_cp_reginfo[] = {
4725 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4726 .type = ARM_CP_IO,
4727 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4728 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4729 .writefn = hcr_write },
4730 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4731 .type = ARM_CP_ALIAS | ARM_CP_IO,
4732 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4733 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4734 .writefn = hcr_writelow },
4735 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4736 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4737 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4738 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4739 .type = ARM_CP_ALIAS,
4740 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4741 .access = PL2_RW,
4742 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4743 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4744 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4745 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4746 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4747 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4748 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4749 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4750 .type = ARM_CP_ALIAS,
4751 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4752 .access = PL2_RW,
4753 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4754 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4755 .type = ARM_CP_ALIAS,
4756 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4757 .access = PL2_RW,
4758 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4759 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4760 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4761 .access = PL2_RW, .writefn = vbar_write,
4762 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4763 .resetvalue = 0 },
4764 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4765 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4766 .access = PL3_RW, .type = ARM_CP_ALIAS,
4767 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4768 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4770 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4771 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4772 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4773 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4774 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4775 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4776 .resetvalue = 0 },
4777 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4778 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4779 .access = PL2_RW, .type = ARM_CP_ALIAS,
4780 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4781 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4782 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4783 .access = PL2_RW, .type = ARM_CP_CONST,
4784 .resetvalue = 0 },
4785 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4786 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4787 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4788 .access = PL2_RW, .type = ARM_CP_CONST,
4789 .resetvalue = 0 },
4790 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4791 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4792 .access = PL2_RW, .type = ARM_CP_CONST,
4793 .resetvalue = 0 },
4794 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4795 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4796 .access = PL2_RW, .type = ARM_CP_CONST,
4797 .resetvalue = 0 },
4798 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4799 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4800 .access = PL2_RW,
4801 /* no .writefn needed as this can't cause an ASID change;
4802 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4803 */
4804 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4805 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4806 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4807 .type = ARM_CP_ALIAS,
4808 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4809 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4810 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4812 .access = PL2_RW,
4813 /* no .writefn needed as this can't cause an ASID change;
4814 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4815 */
4816 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4817 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4818 .cp = 15, .opc1 = 6, .crm = 2,
4819 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4820 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4821 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4822 .writefn = vttbr_write },
4823 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4825 .access = PL2_RW, .writefn = vttbr_write,
4826 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4827 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4828 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4829 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4830 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4831 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4832 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4833 .access = PL2_RW, .resetvalue = 0,
4834 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4835 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4837 .access = PL2_RW, .resetvalue = 0,
4838 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4839 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4840 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4841 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4842 { .name = "TLBIALLNSNH",
4843 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4844 .type = ARM_CP_NO_RAW, .access = PL2_W,
4845 .writefn = tlbiall_nsnh_write },
4846 { .name = "TLBIALLNSNHIS",
4847 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4848 .type = ARM_CP_NO_RAW, .access = PL2_W,
4849 .writefn = tlbiall_nsnh_is_write },
4850 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4851 .type = ARM_CP_NO_RAW, .access = PL2_W,
4852 .writefn = tlbiall_hyp_write },
4853 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4854 .type = ARM_CP_NO_RAW, .access = PL2_W,
4855 .writefn = tlbiall_hyp_is_write },
4856 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4857 .type = ARM_CP_NO_RAW, .access = PL2_W,
4858 .writefn = tlbimva_hyp_write },
4859 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4860 .type = ARM_CP_NO_RAW, .access = PL2_W,
4861 .writefn = tlbimva_hyp_is_write },
4862 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4864 .type = ARM_CP_NO_RAW, .access = PL2_W,
4865 .writefn = tlbi_aa64_alle2_write },
4866 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4867 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4868 .type = ARM_CP_NO_RAW, .access = PL2_W,
4869 .writefn = tlbi_aa64_vae2_write },
4870 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4872 .access = PL2_W, .type = ARM_CP_NO_RAW,
4873 .writefn = tlbi_aa64_vae2_write },
4874 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4876 .access = PL2_W, .type = ARM_CP_NO_RAW,
4877 .writefn = tlbi_aa64_alle2is_write },
4878 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4880 .type = ARM_CP_NO_RAW, .access = PL2_W,
4881 .writefn = tlbi_aa64_vae2is_write },
4882 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4884 .access = PL2_W, .type = ARM_CP_NO_RAW,
4885 .writefn = tlbi_aa64_vae2is_write },
4886 #ifndef CONFIG_USER_ONLY
4887 /* Unlike the other EL2-related AT operations, these must
4888 * UNDEF from EL3 if EL2 is not implemented, which is why we
4889 * define them here rather than with the rest of the AT ops.
4890 */
4891 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4892 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4893 .access = PL2_W, .accessfn = at_s1e2_access,
4894 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4895 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4897 .access = PL2_W, .accessfn = at_s1e2_access,
4898 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4899 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4900 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4901 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4902 * to behave as if SCR.NS was 1.
4903 */
4904 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4905 .access = PL2_W,
4906 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4907 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4908 .access = PL2_W,
4909 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4910 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4911 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4912 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4913 * reset values as IMPDEF. We choose to reset to 3 to comply with
4914 * both ARMv7 and ARMv8.
4915 */
4916 .access = PL2_RW, .resetvalue = 3,
4917 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4918 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4919 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4920 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4921 .writefn = gt_cntvoff_write,
4922 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4923 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4924 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4925 .writefn = gt_cntvoff_write,
4926 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4927 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4929 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4930 .type = ARM_CP_IO, .access = PL2_RW,
4931 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4932 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4933 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4934 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4935 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4936 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4937 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4938 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4939 .resetfn = gt_hyp_timer_reset,
4940 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4941 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4942 .type = ARM_CP_IO,
4943 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4944 .access = PL2_RW,
4945 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4946 .resetvalue = 0,
4947 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4948 #endif
4949 /* The only field of MDCR_EL2 that has a defined architectural reset value
4950 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4951 * don't implement any PMU event counters, so using zero as a reset
4952 * value for MDCR_EL2 is okay
4953 */
4954 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4955 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4956 .access = PL2_RW, .resetvalue = 0,
4957 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4958 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4959 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4960 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4961 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4962 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4963 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4964 .access = PL2_RW,
4965 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4966 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4967 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4968 .access = PL2_RW,
4969 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4970 REGINFO_SENTINEL
4971 };
4972
4973 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4974 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4975 .type = ARM_CP_ALIAS | ARM_CP_IO,
4976 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4977 .access = PL2_RW,
4978 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4979 .writefn = hcr_writehigh },
4980 REGINFO_SENTINEL
4981 };
4982
4983 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4984 bool isread)
4985 {
4986 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4987 * At Secure EL1 it traps to EL3.
4988 */
4989 if (arm_current_el(env) == 3) {
4990 return CP_ACCESS_OK;
4991 }
4992 if (arm_is_secure_below_el3(env)) {
4993 return CP_ACCESS_TRAP_EL3;
4994 }
4995 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4996 if (isread) {
4997 return CP_ACCESS_OK;
4998 }
4999 return CP_ACCESS_TRAP_UNCATEGORIZED;
5000 }
5001
5002 static const ARMCPRegInfo el3_cp_reginfo[] = {
5003 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5004 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5005 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5006 .resetvalue = 0, .writefn = scr_write },
5007 { .name = "SCR", .type = ARM_CP_ALIAS,
5008 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5009 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5010 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5011 .writefn = scr_write },
5012 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5013 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5014 .access = PL3_RW, .resetvalue = 0,
5015 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5016 { .name = "SDER",
5017 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5018 .access = PL3_RW, .resetvalue = 0,
5019 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5020 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5021 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5022 .writefn = vbar_write, .resetvalue = 0,
5023 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5024 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5025 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5026 .access = PL3_RW, .resetvalue = 0,
5027 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5028 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5029 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5030 .access = PL3_RW,
5031 /* no .writefn needed as this can't cause an ASID change;
5032 * we must provide a .raw_writefn and .resetfn because we handle
5033 * reset and migration for the AArch32 TTBCR(S), which might be
5034 * using mask and base_mask.
5035 */
5036 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5037 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5038 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5039 .type = ARM_CP_ALIAS,
5040 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5041 .access = PL3_RW,
5042 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5043 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5044 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5045 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5046 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5047 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5048 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5049 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5050 .type = ARM_CP_ALIAS,
5051 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5052 .access = PL3_RW,
5053 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5054 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5055 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5056 .access = PL3_RW, .writefn = vbar_write,
5057 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5058 .resetvalue = 0 },
5059 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5061 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5062 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5063 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5064 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5065 .access = PL3_RW, .resetvalue = 0,
5066 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5067 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5068 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5069 .access = PL3_RW, .type = ARM_CP_CONST,
5070 .resetvalue = 0 },
5071 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5072 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5073 .access = PL3_RW, .type = ARM_CP_CONST,
5074 .resetvalue = 0 },
5075 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5076 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5077 .access = PL3_RW, .type = ARM_CP_CONST,
5078 .resetvalue = 0 },
5079 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5081 .access = PL3_W, .type = ARM_CP_NO_RAW,
5082 .writefn = tlbi_aa64_alle3is_write },
5083 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5085 .access = PL3_W, .type = ARM_CP_NO_RAW,
5086 .writefn = tlbi_aa64_vae3is_write },
5087 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5089 .access = PL3_W, .type = ARM_CP_NO_RAW,
5090 .writefn = tlbi_aa64_vae3is_write },
5091 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5092 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5093 .access = PL3_W, .type = ARM_CP_NO_RAW,
5094 .writefn = tlbi_aa64_alle3_write },
5095 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5096 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5097 .access = PL3_W, .type = ARM_CP_NO_RAW,
5098 .writefn = tlbi_aa64_vae3_write },
5099 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5100 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5101 .access = PL3_W, .type = ARM_CP_NO_RAW,
5102 .writefn = tlbi_aa64_vae3_write },
5103 REGINFO_SENTINEL
5104 };
5105
5106 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5107 bool isread)
5108 {
5109 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5110 * but the AArch32 CTR has its own reginfo struct)
5111 */
5112 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5113 return CP_ACCESS_TRAP;
5114 }
5115 return CP_ACCESS_OK;
5116 }
5117
5118 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5119 uint64_t value)
5120 {
5121 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5122 * read via a bit in OSLSR_EL1.
5123 */
5124 int oslock;
5125
5126 if (ri->state == ARM_CP_STATE_AA32) {
5127 oslock = (value == 0xC5ACCE55);
5128 } else {
5129 oslock = value & 1;
5130 }
5131
5132 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5133 }
5134
5135 static const ARMCPRegInfo debug_cp_reginfo[] = {
5136 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5137 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5138 * unlike DBGDRAR it is never accessible from EL0.
5139 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5140 * accessor.
5141 */
5142 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5143 .access = PL0_R, .accessfn = access_tdra,
5144 .type = ARM_CP_CONST, .resetvalue = 0 },
5145 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5146 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5147 .access = PL1_R, .accessfn = access_tdra,
5148 .type = ARM_CP_CONST, .resetvalue = 0 },
5149 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5150 .access = PL0_R, .accessfn = access_tdra,
5151 .type = ARM_CP_CONST, .resetvalue = 0 },
5152 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5153 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5154 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5155 .access = PL1_RW, .accessfn = access_tda,
5156 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5157 .resetvalue = 0 },
5158 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5159 * We don't implement the configurable EL0 access.
5160 */
5161 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5162 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5163 .type = ARM_CP_ALIAS,
5164 .access = PL1_R, .accessfn = access_tda,
5165 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5166 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5167 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5168 .access = PL1_W, .type = ARM_CP_NO_RAW,
5169 .accessfn = access_tdosa,
5170 .writefn = oslar_write },
5171 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5173 .access = PL1_R, .resetvalue = 10,
5174 .accessfn = access_tdosa,
5175 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5176 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5177 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5178 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5179 .access = PL1_RW, .accessfn = access_tdosa,
5180 .type = ARM_CP_NOP },
5181 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5182 * implement vector catch debug events yet.
5183 */
5184 { .name = "DBGVCR",
5185 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5186 .access = PL1_RW, .accessfn = access_tda,
5187 .type = ARM_CP_NOP },
5188 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5189 * to save and restore a 32-bit guest's DBGVCR)
5190 */
5191 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5192 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5193 .access = PL2_RW, .accessfn = access_tda,
5194 .type = ARM_CP_NOP },
5195 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5196 * Channel but Linux may try to access this register. The 32-bit
5197 * alias is DBGDCCINT.
5198 */
5199 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5200 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5201 .access = PL1_RW, .accessfn = access_tda,
5202 .type = ARM_CP_NOP },
5203 REGINFO_SENTINEL
5204 };
5205
5206 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5207 /* 64 bit access versions of the (dummy) debug registers */
5208 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5209 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5210 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5211 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5212 REGINFO_SENTINEL
5213 };
5214
5215 /* Return the exception level to which exceptions should be taken
5216 * via SVEAccessTrap. If an exception should be routed through
5217 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5218 * take care of raising that exception.
5219 * C.f. the ARM pseudocode function CheckSVEEnabled.
5220 */
5221 int sve_exception_el(CPUARMState *env, int el)
5222 {
5223 #ifndef CONFIG_USER_ONLY
5224 if (el <= 1) {
5225 bool disabled = false;
5226
5227 /* The CPACR.ZEN controls traps to EL1:
5228 * 0, 2 : trap EL0 and EL1 accesses
5229 * 1 : trap only EL0 accesses
5230 * 3 : trap no accesses
5231 */
5232 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5233 disabled = true;
5234 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5235 disabled = el == 0;
5236 }
5237 if (disabled) {
5238 /* route_to_el2 */
5239 return (arm_feature(env, ARM_FEATURE_EL2)
5240 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5241 }
5242
5243 /* Check CPACR.FPEN. */
5244 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5245 disabled = true;
5246 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5247 disabled = el == 0;
5248 }
5249 if (disabled) {
5250 return 0;
5251 }
5252 }
5253
5254 /* CPTR_EL2. Since TZ and TFP are positive,
5255 * they will be zero when EL2 is not present.
5256 */
5257 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5258 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5259 return 2;
5260 }
5261 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5262 return 0;
5263 }
5264 }
5265
5266 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5267 if (arm_feature(env, ARM_FEATURE_EL3)
5268 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5269 return 3;
5270 }
5271 #endif
5272 return 0;
5273 }
5274
5275 /*
5276 * Given that SVE is enabled, return the vector length for EL.
5277 */
5278 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5279 {
5280 ARMCPU *cpu = env_archcpu(env);
5281 uint32_t zcr_len = cpu->sve_max_vq - 1;
5282
5283 if (el <= 1) {
5284 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5285 }
5286 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5287 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5288 }
5289 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5290 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5291 }
5292 return zcr_len;
5293 }
5294
5295 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5296 uint64_t value)
5297 {
5298 int cur_el = arm_current_el(env);
5299 int old_len = sve_zcr_len_for_el(env, cur_el);
5300 int new_len;
5301
5302 /* Bits other than [3:0] are RAZ/WI. */
5303 raw_write(env, ri, value & 0xf);
5304
5305 /*
5306 * Because we arrived here, we know both FP and SVE are enabled;
5307 * otherwise we would have trapped access to the ZCR_ELn register.
5308 */
5309 new_len = sve_zcr_len_for_el(env, cur_el);
5310 if (new_len < old_len) {
5311 aarch64_sve_narrow_vq(env, new_len + 1);
5312 }
5313 }
5314
5315 static const ARMCPRegInfo zcr_el1_reginfo = {
5316 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5317 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5318 .access = PL1_RW, .type = ARM_CP_SVE,
5319 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5320 .writefn = zcr_write, .raw_writefn = raw_write
5321 };
5322
5323 static const ARMCPRegInfo zcr_el2_reginfo = {
5324 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5325 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5326 .access = PL2_RW, .type = ARM_CP_SVE,
5327 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5328 .writefn = zcr_write, .raw_writefn = raw_write
5329 };
5330
5331 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5332 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5333 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5334 .access = PL2_RW, .type = ARM_CP_SVE,
5335 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5336 };
5337
5338 static const ARMCPRegInfo zcr_el3_reginfo = {
5339 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5340 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5341 .access = PL3_RW, .type = ARM_CP_SVE,
5342 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5343 .writefn = zcr_write, .raw_writefn = raw_write
5344 };
5345
5346 void hw_watchpoint_update(ARMCPU *cpu, int n)
5347 {
5348 CPUARMState *env = &cpu->env;
5349 vaddr len = 0;
5350 vaddr wvr = env->cp15.dbgwvr[n];
5351 uint64_t wcr = env->cp15.dbgwcr[n];
5352 int mask;
5353 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5354
5355 if (env->cpu_watchpoint[n]) {
5356 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5357 env->cpu_watchpoint[n] = NULL;
5358 }
5359
5360 if (!extract64(wcr, 0, 1)) {
5361 /* E bit clear : watchpoint disabled */
5362 return;
5363 }
5364
5365 switch (extract64(wcr, 3, 2)) {
5366 case 0:
5367 /* LSC 00 is reserved and must behave as if the wp is disabled */
5368 return;
5369 case 1:
5370 flags |= BP_MEM_READ;
5371 break;
5372 case 2:
5373 flags |= BP_MEM_WRITE;
5374 break;
5375 case 3:
5376 flags |= BP_MEM_ACCESS;
5377 break;
5378 }
5379
5380 /* Attempts to use both MASK and BAS fields simultaneously are
5381 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5382 * thus generating a watchpoint for every byte in the masked region.
5383 */
5384 mask = extract64(wcr, 24, 4);
5385 if (mask == 1 || mask == 2) {
5386 /* Reserved values of MASK; we must act as if the mask value was
5387 * some non-reserved value, or as if the watchpoint were disabled.
5388 * We choose the latter.
5389 */
5390 return;
5391 } else if (mask) {
5392 /* Watchpoint covers an aligned area up to 2GB in size */
5393 len = 1ULL << mask;
5394 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5395 * whether the watchpoint fires when the unmasked bits match; we opt
5396 * to generate the exceptions.
5397 */
5398 wvr &= ~(len - 1);
5399 } else {
5400 /* Watchpoint covers bytes defined by the byte address select bits */
5401 int bas = extract64(wcr, 5, 8);
5402 int basstart;
5403
5404 if (bas == 0) {
5405 /* This must act as if the watchpoint is disabled */
5406 return;
5407 }
5408
5409 if (extract64(wvr, 2, 1)) {
5410 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5411 * ignored, and BAS[3:0] define which bytes to watch.
5412 */
5413 bas &= 0xf;
5414 }
5415 /* The BAS bits are supposed to be programmed to indicate a contiguous
5416 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5417 * we fire for each byte in the word/doubleword addressed by the WVR.
5418 * We choose to ignore any non-zero bits after the first range of 1s.
5419 */
5420 basstart = ctz32(bas);
5421 len = cto32(bas >> basstart);
5422 wvr += basstart;
5423 }
5424
5425 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5426 &env->cpu_watchpoint[n]);
5427 }
5428
5429 void hw_watchpoint_update_all(ARMCPU *cpu)
5430 {
5431 int i;
5432 CPUARMState *env = &cpu->env;
5433
5434 /* Completely clear out existing QEMU watchpoints and our array, to
5435 * avoid possible stale entries following migration load.
5436 */
5437 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5438 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5439
5440 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5441 hw_watchpoint_update(cpu, i);
5442 }
5443 }
5444
5445 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5446 uint64_t value)
5447 {
5448 ARMCPU *cpu = env_archcpu(env);
5449 int i = ri->crm;
5450
5451 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5452 * register reads and behaves as if values written are sign extended.
5453 * Bits [1:0] are RES0.
5454 */
5455 value = sextract64(value, 0, 49) & ~3ULL;
5456
5457 raw_write(env, ri, value);
5458 hw_watchpoint_update(cpu, i);
5459 }
5460
5461 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5462 uint64_t value)
5463 {
5464 ARMCPU *cpu = env_archcpu(env);
5465 int i = ri->crm;
5466
5467 raw_write(env, ri, value);
5468 hw_watchpoint_update(cpu, i);
5469 }
5470
5471 void hw_breakpoint_update(ARMCPU *cpu, int n)
5472 {
5473 CPUARMState *env = &cpu->env;
5474 uint64_t bvr = env->cp15.dbgbvr[n];
5475 uint64_t bcr = env->cp15.dbgbcr[n];
5476 vaddr addr;
5477 int bt;
5478 int flags = BP_CPU;
5479
5480 if (env->cpu_breakpoint[n]) {
5481 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5482 env->cpu_breakpoint[n] = NULL;
5483 }
5484
5485 if (!extract64(bcr, 0, 1)) {
5486 /* E bit clear : watchpoint disabled */
5487 return;
5488 }
5489
5490 bt = extract64(bcr, 20, 4);
5491
5492 switch (bt) {
5493 case 4: /* unlinked address mismatch (reserved if AArch64) */
5494 case 5: /* linked address mismatch (reserved if AArch64) */
5495 qemu_log_mask(LOG_UNIMP,
5496 "arm: address mismatch breakpoint types not implemented\n");
5497 return;
5498 case 0: /* unlinked address match */
5499 case 1: /* linked address match */
5500 {
5501 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5502 * we behave as if the register was sign extended. Bits [1:0] are
5503 * RES0. The BAS field is used to allow setting breakpoints on 16
5504 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5505 * a bp will fire if the addresses covered by the bp and the addresses
5506 * covered by the insn overlap but the insn doesn't start at the
5507 * start of the bp address range. We choose to require the insn and
5508 * the bp to have the same address. The constraints on writing to
5509 * BAS enforced in dbgbcr_write mean we have only four cases:
5510 * 0b0000 => no breakpoint
5511 * 0b0011 => breakpoint on addr
5512 * 0b1100 => breakpoint on addr + 2
5513 * 0b1111 => breakpoint on addr
5514 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5515 */
5516 int bas = extract64(bcr, 5, 4);
5517 addr = sextract64(bvr, 0, 49) & ~3ULL;
5518 if (bas == 0) {
5519 return;
5520 }
5521 if (bas == 0xc) {
5522 addr += 2;
5523 }
5524 break;
5525 }
5526 case 2: /* unlinked context ID match */
5527 case 8: /* unlinked VMID match (reserved if no EL2) */
5528 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5529 qemu_log_mask(LOG_UNIMP,
5530 "arm: unlinked context breakpoint types not implemented\n");
5531 return;
5532 case 9: /* linked VMID match (reserved if no EL2) */
5533 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5534 case 3: /* linked context ID match */
5535 default:
5536 /* We must generate no events for Linked context matches (unless
5537 * they are linked to by some other bp/wp, which is handled in
5538 * updates for the linking bp/wp). We choose to also generate no events
5539 * for reserved values.
5540 */
5541 return;
5542 }
5543
5544 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5545 }
5546
5547 void hw_breakpoint_update_all(ARMCPU *cpu)
5548 {
5549 int i;
5550 CPUARMState *env = &cpu->env;
5551
5552 /* Completely clear out existing QEMU breakpoints and our array, to
5553 * avoid possible stale entries following migration load.
5554 */
5555 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5556 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5557
5558 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5559 hw_breakpoint_update(cpu, i);
5560 }
5561 }
5562
5563 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5564 uint64_t value)
5565 {
5566 ARMCPU *cpu = env_archcpu(env);
5567 int i = ri->crm;
5568
5569 raw_write(env, ri, value);
5570 hw_breakpoint_update(cpu, i);
5571 }
5572
5573 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5574 uint64_t value)
5575 {
5576 ARMCPU *cpu = env_archcpu(env);
5577 int i = ri->crm;
5578
5579 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5580 * copy of BAS[0].
5581 */
5582 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5583 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5584
5585 raw_write(env, ri, value);
5586 hw_breakpoint_update(cpu, i);
5587 }
5588
5589 static void define_debug_regs(ARMCPU *cpu)
5590 {
5591 /* Define v7 and v8 architectural debug registers.
5592 * These are just dummy implementations for now.
5593 */
5594 int i;
5595 int wrps, brps, ctx_cmps;
5596 ARMCPRegInfo dbgdidr = {
5597 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5598 .access = PL0_R, .accessfn = access_tda,
5599 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5600 };
5601
5602 /* Note that all these register fields hold "number of Xs minus 1". */
5603 brps = extract32(cpu->dbgdidr, 24, 4);
5604 wrps = extract32(cpu->dbgdidr, 28, 4);
5605 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5606
5607 assert(ctx_cmps <= brps);
5608
5609 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5610 * of the debug registers such as number of breakpoints;
5611 * check that if they both exist then they agree.
5612 */
5613 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5614 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5615 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5616 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5617 }
5618
5619 define_one_arm_cp_reg(cpu, &dbgdidr);
5620 define_arm_cp_regs(cpu, debug_cp_reginfo);
5621
5622 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5623 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5624 }
5625
5626 for (i = 0; i < brps + 1; i++) {
5627 ARMCPRegInfo dbgregs[] = {
5628 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5629 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5630 .access = PL1_RW, .accessfn = access_tda,
5631 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5632 .writefn = dbgbvr_write, .raw_writefn = raw_write
5633 },
5634 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5635 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5636 .access = PL1_RW, .accessfn = access_tda,
5637 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5638 .writefn = dbgbcr_write, .raw_writefn = raw_write
5639 },
5640 REGINFO_SENTINEL
5641 };
5642 define_arm_cp_regs(cpu, dbgregs);
5643 }
5644
5645 for (i = 0; i < wrps + 1; i++) {
5646 ARMCPRegInfo dbgregs[] = {
5647 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5648 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5649 .access = PL1_RW, .accessfn = access_tda,
5650 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5651 .writefn = dbgwvr_write, .raw_writefn = raw_write
5652 },
5653 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5654 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5655 .access = PL1_RW, .accessfn = access_tda,
5656 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5657 .writefn = dbgwcr_write, .raw_writefn = raw_write
5658 },
5659 REGINFO_SENTINEL
5660 };
5661 define_arm_cp_regs(cpu, dbgregs);
5662 }
5663 }
5664
5665 /* We don't know until after realize whether there's a GICv3
5666 * attached, and that is what registers the gicv3 sysregs.
5667 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5668 * at runtime.
5669 */
5670 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5671 {
5672 ARMCPU *cpu = env_archcpu(env);
5673 uint64_t pfr1 = cpu->id_pfr1;
5674
5675 if (env->gicv3state) {
5676 pfr1 |= 1 << 28;
5677 }
5678 return pfr1;
5679 }
5680
5681 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5682 {
5683 ARMCPU *cpu = env_archcpu(env);
5684 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5685
5686 if (env->gicv3state) {
5687 pfr0 |= 1 << 24;
5688 }
5689 return pfr0;
5690 }
5691
5692 /* Shared logic between LORID and the rest of the LOR* registers.
5693 * Secure state has already been delt with.
5694 */
5695 static CPAccessResult access_lor_ns(CPUARMState *env)
5696 {
5697 int el = arm_current_el(env);
5698
5699 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5700 return CP_ACCESS_TRAP_EL2;
5701 }
5702 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5703 return CP_ACCESS_TRAP_EL3;
5704 }
5705 return CP_ACCESS_OK;
5706 }
5707
5708 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5709 bool isread)
5710 {
5711 if (arm_is_secure_below_el3(env)) {
5712 /* Access ok in secure mode. */
5713 return CP_ACCESS_OK;
5714 }
5715 return access_lor_ns(env);
5716 }
5717
5718 static CPAccessResult access_lor_other(CPUARMState *env,
5719 const ARMCPRegInfo *ri, bool isread)
5720 {
5721 if (arm_is_secure_below_el3(env)) {
5722 /* Access denied in secure mode. */
5723 return CP_ACCESS_TRAP;
5724 }
5725 return access_lor_ns(env);
5726 }
5727
5728 #ifdef TARGET_AARCH64
5729 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5730 bool isread)
5731 {
5732 int el = arm_current_el(env);
5733
5734 if (el < 2 &&
5735 arm_feature(env, ARM_FEATURE_EL2) &&
5736 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5737 return CP_ACCESS_TRAP_EL2;
5738 }
5739 if (el < 3 &&
5740 arm_feature(env, ARM_FEATURE_EL3) &&
5741 !(env->cp15.scr_el3 & SCR_APK)) {
5742 return CP_ACCESS_TRAP_EL3;
5743 }
5744 return CP_ACCESS_OK;
5745 }
5746
5747 static const ARMCPRegInfo pauth_reginfo[] = {
5748 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5749 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5750 .access = PL1_RW, .accessfn = access_pauth,
5751 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5752 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5753 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5754 .access = PL1_RW, .accessfn = access_pauth,
5755 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5756 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5757 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5758 .access = PL1_RW, .accessfn = access_pauth,
5759 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5760 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5761 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5762 .access = PL1_RW, .accessfn = access_pauth,
5763 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5764 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5765 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5766 .access = PL1_RW, .accessfn = access_pauth,
5767 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5768 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5769 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5770 .access = PL1_RW, .accessfn = access_pauth,
5771 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5772 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5773 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5774 .access = PL1_RW, .accessfn = access_pauth,
5775 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5776 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5777 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5778 .access = PL1_RW, .accessfn = access_pauth,
5779 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5780 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5781 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5782 .access = PL1_RW, .accessfn = access_pauth,
5783 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5784 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5785 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5786 .access = PL1_RW, .accessfn = access_pauth,
5787 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5788 REGINFO_SENTINEL
5789 };
5790
5791 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5792 {
5793 Error *err = NULL;
5794 uint64_t ret;
5795
5796 /* Success sets NZCV = 0000. */
5797 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5798
5799 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5800 /*
5801 * ??? Failed, for unknown reasons in the crypto subsystem.
5802 * The best we can do is log the reason and return the
5803 * timed-out indication to the guest. There is no reason
5804 * we know to expect this failure to be transitory, so the
5805 * guest may well hang retrying the operation.
5806 */
5807 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5808 ri->name, error_get_pretty(err));
5809 error_free(err);
5810
5811 env->ZF = 0; /* NZCF = 0100 */
5812 return 0;
5813 }
5814 return ret;
5815 }
5816
5817 /* We do not support re-seeding, so the two registers operate the same. */
5818 static const ARMCPRegInfo rndr_reginfo[] = {
5819 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5820 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5821 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5822 .access = PL0_R, .readfn = rndr_readfn },
5823 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5824 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5825 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5826 .access = PL0_R, .readfn = rndr_readfn },
5827 REGINFO_SENTINEL
5828 };
5829 #endif
5830
5831 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5832 bool isread)
5833 {
5834 int el = arm_current_el(env);
5835
5836 if (el == 0) {
5837 uint64_t sctlr = arm_sctlr(env, el);
5838 if (!(sctlr & SCTLR_EnRCTX)) {
5839 return CP_ACCESS_TRAP;
5840 }
5841 } else if (el == 1) {
5842 uint64_t hcr = arm_hcr_el2_eff(env);
5843 if (hcr & HCR_NV) {
5844 return CP_ACCESS_TRAP_EL2;
5845 }
5846 }
5847 return CP_ACCESS_OK;
5848 }
5849
5850 static const ARMCPRegInfo predinv_reginfo[] = {
5851 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5853 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5854 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5856 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5857 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5859 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5860 /*
5861 * Note the AArch32 opcodes have a different OPC1.
5862 */
5863 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5864 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5865 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5866 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5867 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5868 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5869 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5870 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5871 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5872 REGINFO_SENTINEL
5873 };
5874
5875 void register_cp_regs_for_features(ARMCPU *cpu)
5876 {
5877 /* Register all the coprocessor registers based on feature bits */
5878 CPUARMState *env = &cpu->env;
5879 if (arm_feature(env, ARM_FEATURE_M)) {
5880 /* M profile has no coprocessor registers */
5881 return;
5882 }
5883
5884 define_arm_cp_regs(cpu, cp_reginfo);
5885 if (!arm_feature(env, ARM_FEATURE_V8)) {
5886 /* Must go early as it is full of wildcards that may be
5887 * overridden by later definitions.
5888 */
5889 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5890 }
5891
5892 if (arm_feature(env, ARM_FEATURE_V6)) {
5893 /* The ID registers all have impdef reset values */
5894 ARMCPRegInfo v6_idregs[] = {
5895 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5897 .access = PL1_R, .type = ARM_CP_CONST,
5898 .resetvalue = cpu->id_pfr0 },
5899 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5900 * the value of the GIC field until after we define these regs.
5901 */
5902 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5904 .access = PL1_R, .type = ARM_CP_NO_RAW,
5905 .readfn = id_pfr1_read,
5906 .writefn = arm_cp_write_ignore },
5907 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5909 .access = PL1_R, .type = ARM_CP_CONST,
5910 .resetvalue = cpu->id_dfr0 },
5911 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5913 .access = PL1_R, .type = ARM_CP_CONST,
5914 .resetvalue = cpu->id_afr0 },
5915 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5917 .access = PL1_R, .type = ARM_CP_CONST,
5918 .resetvalue = cpu->id_mmfr0 },
5919 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5921 .access = PL1_R, .type = ARM_CP_CONST,
5922 .resetvalue = cpu->id_mmfr1 },
5923 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5925 .access = PL1_R, .type = ARM_CP_CONST,
5926 .resetvalue = cpu->id_mmfr2 },
5927 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5928 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5929 .access = PL1_R, .type = ARM_CP_CONST,
5930 .resetvalue = cpu->id_mmfr3 },
5931 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5933 .access = PL1_R, .type = ARM_CP_CONST,
5934 .resetvalue = cpu->isar.id_isar0 },
5935 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5937 .access = PL1_R, .type = ARM_CP_CONST,
5938 .resetvalue = cpu->isar.id_isar1 },
5939 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5941 .access = PL1_R, .type = ARM_CP_CONST,
5942 .resetvalue = cpu->isar.id_isar2 },
5943 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5945 .access = PL1_R, .type = ARM_CP_CONST,
5946 .resetvalue = cpu->isar.id_isar3 },
5947 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5948 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5949 .access = PL1_R, .type = ARM_CP_CONST,
5950 .resetvalue = cpu->isar.id_isar4 },
5951 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5953 .access = PL1_R, .type = ARM_CP_CONST,
5954 .resetvalue = cpu->isar.id_isar5 },
5955 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5957 .access = PL1_R, .type = ARM_CP_CONST,
5958 .resetvalue = cpu->id_mmfr4 },
5959 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5961 .access = PL1_R, .type = ARM_CP_CONST,
5962 .resetvalue = cpu->isar.id_isar6 },
5963 REGINFO_SENTINEL
5964 };
5965 define_arm_cp_regs(cpu, v6_idregs);
5966 define_arm_cp_regs(cpu, v6_cp_reginfo);
5967 } else {
5968 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5969 }
5970 if (arm_feature(env, ARM_FEATURE_V6K)) {
5971 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5972 }
5973 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5974 !arm_feature(env, ARM_FEATURE_PMSA)) {
5975 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5976 }
5977 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5978 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5979 }
5980 if (arm_feature(env, ARM_FEATURE_V7)) {
5981 /* v7 performance monitor control register: same implementor
5982 * field as main ID register, and we implement four counters in
5983 * addition to the cycle count register.
5984 */
5985 unsigned int i, pmcrn = 4;
5986 ARMCPRegInfo pmcr = {
5987 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5988 .access = PL0_RW,
5989 .type = ARM_CP_IO | ARM_CP_ALIAS,
5990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5991 .accessfn = pmreg_access, .writefn = pmcr_write,
5992 .raw_writefn = raw_write,
5993 };
5994 ARMCPRegInfo pmcr64 = {
5995 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5997 .access = PL0_RW, .accessfn = pmreg_access,
5998 .type = ARM_CP_IO,
5999 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6000 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6001 .writefn = pmcr_write, .raw_writefn = raw_write,
6002 };
6003 define_one_arm_cp_reg(cpu, &pmcr);
6004 define_one_arm_cp_reg(cpu, &pmcr64);
6005 for (i = 0; i < pmcrn; i++) {
6006 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6007 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6008 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6009 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6010 ARMCPRegInfo pmev_regs[] = {
6011 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6012 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6013 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6014 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6015 .accessfn = pmreg_access },
6016 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6017 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6018 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6019 .type = ARM_CP_IO,
6020 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6021 .raw_readfn = pmevcntr_rawread,
6022 .raw_writefn = pmevcntr_rawwrite },
6023 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6024 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6025 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6026 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6027 .accessfn = pmreg_access },
6028 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6029 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6030 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6031 .type = ARM_CP_IO,
6032 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6033 .raw_writefn = pmevtyper_rawwrite },
6034 REGINFO_SENTINEL
6035 };
6036 define_arm_cp_regs(cpu, pmev_regs);
6037 g_free(pmevcntr_name);
6038 g_free(pmevcntr_el0_name);
6039 g_free(pmevtyper_name);
6040 g_free(pmevtyper_el0_name);
6041 }
6042 ARMCPRegInfo clidr = {
6043 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6045 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6046 };
6047 define_one_arm_cp_reg(cpu, &clidr);
6048 define_arm_cp_regs(cpu, v7_cp_reginfo);
6049 define_debug_regs(cpu);
6050 } else {
6051 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6052 }
6053 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6054 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6055 ARMCPRegInfo v81_pmu_regs[] = {
6056 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6057 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6058 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6059 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6060 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6061 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6062 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6063 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6064 REGINFO_SENTINEL
6065 };
6066 define_arm_cp_regs(cpu, v81_pmu_regs);
6067 }
6068 if (arm_feature(env, ARM_FEATURE_V8)) {
6069 /* AArch64 ID registers, which all have impdef reset values.
6070 * Note that within the ID register ranges the unused slots
6071 * must all RAZ, not UNDEF; future architecture versions may
6072 * define new registers here.
6073 */
6074 ARMCPRegInfo v8_idregs[] = {
6075 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6076 * know the right value for the GIC field until after we
6077 * define these regs.
6078 */
6079 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6081 .access = PL1_R, .type = ARM_CP_NO_RAW,
6082 .readfn = id_aa64pfr0_read,
6083 .writefn = arm_cp_write_ignore },
6084 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6086 .access = PL1_R, .type = ARM_CP_CONST,
6087 .resetvalue = cpu->isar.id_aa64pfr1},
6088 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6090 .access = PL1_R, .type = ARM_CP_CONST,
6091 .resetvalue = 0 },
6092 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6094 .access = PL1_R, .type = ARM_CP_CONST,
6095 .resetvalue = 0 },
6096 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6098 .access = PL1_R, .type = ARM_CP_CONST,
6099 /* At present, only SVEver == 0 is defined anyway. */
6100 .resetvalue = 0 },
6101 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6103 .access = PL1_R, .type = ARM_CP_CONST,
6104 .resetvalue = 0 },
6105 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6107 .access = PL1_R, .type = ARM_CP_CONST,
6108 .resetvalue = 0 },
6109 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6111 .access = PL1_R, .type = ARM_CP_CONST,
6112 .resetvalue = 0 },
6113 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6115 .access = PL1_R, .type = ARM_CP_CONST,
6116 .resetvalue = cpu->id_aa64dfr0 },
6117 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6119 .access = PL1_R, .type = ARM_CP_CONST,
6120 .resetvalue = cpu->id_aa64dfr1 },
6121 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6123 .access = PL1_R, .type = ARM_CP_CONST,
6124 .resetvalue = 0 },
6125 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6127 .access = PL1_R, .type = ARM_CP_CONST,
6128 .resetvalue = 0 },
6129 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6131 .access = PL1_R, .type = ARM_CP_CONST,
6132 .resetvalue = cpu->id_aa64afr0 },
6133 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6135 .access = PL1_R, .type = ARM_CP_CONST,
6136 .resetvalue = cpu->id_aa64afr1 },
6137 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6139 .access = PL1_R, .type = ARM_CP_CONST,
6140 .resetvalue = 0 },
6141 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6143 .access = PL1_R, .type = ARM_CP_CONST,
6144 .resetvalue = 0 },
6145 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6147 .access = PL1_R, .type = ARM_CP_CONST,
6148 .resetvalue = cpu->isar.id_aa64isar0 },
6149 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6151 .access = PL1_R, .type = ARM_CP_CONST,
6152 .resetvalue = cpu->isar.id_aa64isar1 },
6153 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6155 .access = PL1_R, .type = ARM_CP_CONST,
6156 .resetvalue = 0 },
6157 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6159 .access = PL1_R, .type = ARM_CP_CONST,
6160 .resetvalue = 0 },
6161 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6163 .access = PL1_R, .type = ARM_CP_CONST,
6164 .resetvalue = 0 },
6165 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6167 .access = PL1_R, .type = ARM_CP_CONST,
6168 .resetvalue = 0 },
6169 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6171 .access = PL1_R, .type = ARM_CP_CONST,
6172 .resetvalue = 0 },
6173 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6175 .access = PL1_R, .type = ARM_CP_CONST,
6176 .resetvalue = 0 },
6177 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6179 .access = PL1_R, .type = ARM_CP_CONST,
6180 .resetvalue = cpu->isar.id_aa64mmfr0 },
6181 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6183 .access = PL1_R, .type = ARM_CP_CONST,
6184 .resetvalue = cpu->isar.id_aa64mmfr1 },
6185 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6187 .access = PL1_R, .type = ARM_CP_CONST,
6188 .resetvalue = 0 },
6189 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6191 .access = PL1_R, .type = ARM_CP_CONST,
6192 .resetvalue = 0 },
6193 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6195 .access = PL1_R, .type = ARM_CP_CONST,
6196 .resetvalue = 0 },
6197 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6199 .access = PL1_R, .type = ARM_CP_CONST,
6200 .resetvalue = 0 },
6201 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6203 .access = PL1_R, .type = ARM_CP_CONST,
6204 .resetvalue = 0 },
6205 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6207 .access = PL1_R, .type = ARM_CP_CONST,
6208 .resetvalue = 0 },
6209 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6211 .access = PL1_R, .type = ARM_CP_CONST,
6212 .resetvalue = cpu->isar.mvfr0 },
6213 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6214 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6215 .access = PL1_R, .type = ARM_CP_CONST,
6216 .resetvalue = cpu->isar.mvfr1 },
6217 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6219 .access = PL1_R, .type = ARM_CP_CONST,
6220 .resetvalue = cpu->isar.mvfr2 },
6221 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6223 .access = PL1_R, .type = ARM_CP_CONST,
6224 .resetvalue = 0 },
6225 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6227 .access = PL1_R, .type = ARM_CP_CONST,
6228 .resetvalue = 0 },
6229 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6231 .access = PL1_R, .type = ARM_CP_CONST,
6232 .resetvalue = 0 },
6233 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6235 .access = PL1_R, .type = ARM_CP_CONST,
6236 .resetvalue = 0 },
6237 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6239 .access = PL1_R, .type = ARM_CP_CONST,
6240 .resetvalue = 0 },
6241 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6242 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6243 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6244 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6245 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6247 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6248 .resetvalue = cpu->pmceid0 },
6249 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6250 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6251 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6252 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6253 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6254 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6255 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6256 .resetvalue = cpu->pmceid1 },
6257 REGINFO_SENTINEL
6258 };
6259 #ifdef CONFIG_USER_ONLY
6260 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6261 { .name = "ID_AA64PFR0_EL1",
6262 .exported_bits = 0x000f000f00ff0000,
6263 .fixed_bits = 0x0000000000000011 },
6264 { .name = "ID_AA64PFR1_EL1",
6265 .exported_bits = 0x00000000000000f0 },
6266 { .name = "ID_AA64PFR*_EL1_RESERVED",
6267 .is_glob = true },
6268 { .name = "ID_AA64ZFR0_EL1" },
6269 { .name = "ID_AA64MMFR0_EL1",
6270 .fixed_bits = 0x00000000ff000000 },
6271 { .name = "ID_AA64MMFR1_EL1" },
6272 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6273 .is_glob = true },
6274 { .name = "ID_AA64DFR0_EL1",
6275 .fixed_bits = 0x0000000000000006 },
6276 { .name = "ID_AA64DFR1_EL1" },
6277 { .name = "ID_AA64DFR*_EL1_RESERVED",
6278 .is_glob = true },
6279 { .name = "ID_AA64AFR*",
6280 .is_glob = true },
6281 { .name = "ID_AA64ISAR0_EL1",
6282 .exported_bits = 0x00fffffff0fffff0 },
6283 { .name = "ID_AA64ISAR1_EL1",
6284 .exported_bits = 0x000000f0ffffffff },
6285 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6286 .is_glob = true },
6287 REGUSERINFO_SENTINEL
6288 };
6289 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6290 #endif
6291 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6292 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6293 !arm_feature(env, ARM_FEATURE_EL2)) {
6294 ARMCPRegInfo rvbar = {
6295 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6296 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6297 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6298 };
6299 define_one_arm_cp_reg(cpu, &rvbar);
6300 }
6301 define_arm_cp_regs(cpu, v8_idregs);
6302 define_arm_cp_regs(cpu, v8_cp_reginfo);
6303 }
6304 if (arm_feature(env, ARM_FEATURE_EL2)) {
6305 uint64_t vmpidr_def = mpidr_read_val(env);
6306 ARMCPRegInfo vpidr_regs[] = {
6307 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6308 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6309 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6310 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6311 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6312 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6313 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6314 .access = PL2_RW, .resetvalue = cpu->midr,
6315 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6316 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6317 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6318 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6319 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6320 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6321 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6322 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6323 .access = PL2_RW,
6324 .resetvalue = vmpidr_def,
6325 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6326 REGINFO_SENTINEL
6327 };
6328 define_arm_cp_regs(cpu, vpidr_regs);
6329 define_arm_cp_regs(cpu, el2_cp_reginfo);
6330 if (arm_feature(env, ARM_FEATURE_V8)) {
6331 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6332 }
6333 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6334 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6335 ARMCPRegInfo rvbar = {
6336 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6337 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6338 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6339 };
6340 define_one_arm_cp_reg(cpu, &rvbar);
6341 }
6342 } else {
6343 /* If EL2 is missing but higher ELs are enabled, we need to
6344 * register the no_el2 reginfos.
6345 */
6346 if (arm_feature(env, ARM_FEATURE_EL3)) {
6347 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6348 * of MIDR_EL1 and MPIDR_EL1.
6349 */
6350 ARMCPRegInfo vpidr_regs[] = {
6351 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6352 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6353 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6354 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6355 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6356 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6357 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6358 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6359 .type = ARM_CP_NO_RAW,
6360 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6361 REGINFO_SENTINEL
6362 };
6363 define_arm_cp_regs(cpu, vpidr_regs);
6364 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6365 if (arm_feature(env, ARM_FEATURE_V8)) {
6366 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6367 }
6368 }
6369 }
6370 if (arm_feature(env, ARM_FEATURE_EL3)) {
6371 define_arm_cp_regs(cpu, el3_cp_reginfo);
6372 ARMCPRegInfo el3_regs[] = {
6373 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6374 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6375 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6376 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6377 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6378 .access = PL3_RW,
6379 .raw_writefn = raw_write, .writefn = sctlr_write,
6380 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6381 .resetvalue = cpu->reset_sctlr },
6382 REGINFO_SENTINEL
6383 };
6384
6385 define_arm_cp_regs(cpu, el3_regs);
6386 }
6387 /* The behaviour of NSACR is sufficiently various that we don't
6388 * try to describe it in a single reginfo:
6389 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6390 * reads as constant 0xc00 from NS EL1 and NS EL2
6391 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6392 * if v7 without EL3, register doesn't exist
6393 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6394 */
6395 if (arm_feature(env, ARM_FEATURE_EL3)) {
6396 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6397 ARMCPRegInfo nsacr = {
6398 .name = "NSACR", .type = ARM_CP_CONST,
6399 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6400 .access = PL1_RW, .accessfn = nsacr_access,
6401 .resetvalue = 0xc00
6402 };
6403 define_one_arm_cp_reg(cpu, &nsacr);
6404 } else {
6405 ARMCPRegInfo nsacr = {
6406 .name = "NSACR",
6407 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6408 .access = PL3_RW | PL1_R,
6409 .resetvalue = 0,
6410 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6411 };
6412 define_one_arm_cp_reg(cpu, &nsacr);
6413 }
6414 } else {
6415 if (arm_feature(env, ARM_FEATURE_V8)) {
6416 ARMCPRegInfo nsacr = {
6417 .name = "NSACR", .type = ARM_CP_CONST,
6418 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6419 .access = PL1_R,
6420 .resetvalue = 0xc00
6421 };
6422 define_one_arm_cp_reg(cpu, &nsacr);
6423 }
6424 }
6425
6426 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6427 if (arm_feature(env, ARM_FEATURE_V6)) {
6428 /* PMSAv6 not implemented */
6429 assert(arm_feature(env, ARM_FEATURE_V7));
6430 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6431 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6432 } else {
6433 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6434 }
6435 } else {
6436 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6437 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6438 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6439 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6440 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6441 }
6442 }
6443 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6444 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6445 }
6446 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6447 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6448 }
6449 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6450 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6451 }
6452 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6453 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6454 }
6455 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6456 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6457 }
6458 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6459 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6460 }
6461 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6462 define_arm_cp_regs(cpu, omap_cp_reginfo);
6463 }
6464 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6465 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6466 }
6467 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6468 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6469 }
6470 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6471 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6472 }
6473 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6474 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6475 }
6476 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6477 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6478 * be read-only (ie write causes UNDEF exception).
6479 */
6480 {
6481 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6482 /* Pre-v8 MIDR space.
6483 * Note that the MIDR isn't a simple constant register because
6484 * of the TI925 behaviour where writes to another register can
6485 * cause the MIDR value to change.
6486 *
6487 * Unimplemented registers in the c15 0 0 0 space default to
6488 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6489 * and friends override accordingly.
6490 */
6491 { .name = "MIDR",
6492 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6493 .access = PL1_R, .resetvalue = cpu->midr,
6494 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6495 .readfn = midr_read,
6496 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6497 .type = ARM_CP_OVERRIDE },
6498 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6499 { .name = "DUMMY",
6500 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6501 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6502 { .name = "DUMMY",
6503 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6504 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6505 { .name = "DUMMY",
6506 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6508 { .name = "DUMMY",
6509 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6510 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6511 { .name = "DUMMY",
6512 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6513 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6514 REGINFO_SENTINEL
6515 };
6516 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6517 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6519 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6520 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6521 .readfn = midr_read },
6522 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6523 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6524 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6525 .access = PL1_R, .resetvalue = cpu->midr },
6526 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6527 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6528 .access = PL1_R, .resetvalue = cpu->midr },
6529 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6531 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6532 REGINFO_SENTINEL
6533 };
6534 ARMCPRegInfo id_cp_reginfo[] = {
6535 /* These are common to v8 and pre-v8 */
6536 { .name = "CTR",
6537 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6538 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6539 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6540 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6541 .access = PL0_R, .accessfn = ctr_el0_access,
6542 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6543 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6544 { .name = "TCMTR",
6545 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6546 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6547 REGINFO_SENTINEL
6548 };
6549 /* TLBTR is specific to VMSA */
6550 ARMCPRegInfo id_tlbtr_reginfo = {
6551 .name = "TLBTR",
6552 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6553 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6554 };
6555 /* MPUIR is specific to PMSA V6+ */
6556 ARMCPRegInfo id_mpuir_reginfo = {
6557 .name = "MPUIR",
6558 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6559 .access = PL1_R, .type = ARM_CP_CONST,
6560 .resetvalue = cpu->pmsav7_dregion << 8
6561 };
6562 ARMCPRegInfo crn0_wi_reginfo = {
6563 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6564 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6565 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6566 };
6567 #ifdef CONFIG_USER_ONLY
6568 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6569 { .name = "MIDR_EL1",
6570 .exported_bits = 0x00000000ffffffff },
6571 { .name = "REVIDR_EL1" },
6572 REGUSERINFO_SENTINEL
6573 };
6574 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6575 #endif
6576 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6577 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6578 ARMCPRegInfo *r;
6579 /* Register the blanket "writes ignored" value first to cover the
6580 * whole space. Then update the specific ID registers to allow write
6581 * access, so that they ignore writes rather than causing them to
6582 * UNDEF.
6583 */
6584 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6585 for (r = id_pre_v8_midr_cp_reginfo;
6586 r->type != ARM_CP_SENTINEL; r++) {
6587 r->access = PL1_RW;
6588 }
6589 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6590 r->access = PL1_RW;
6591 }
6592 id_mpuir_reginfo.access = PL1_RW;
6593 id_tlbtr_reginfo.access = PL1_RW;
6594 }
6595 if (arm_feature(env, ARM_FEATURE_V8)) {
6596 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6597 } else {
6598 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6599 }
6600 define_arm_cp_regs(cpu, id_cp_reginfo);
6601 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6602 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6603 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6604 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6605 }
6606 }
6607
6608 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6609 ARMCPRegInfo mpidr_cp_reginfo[] = {
6610 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6611 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6612 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6613 REGINFO_SENTINEL
6614 };
6615 #ifdef CONFIG_USER_ONLY
6616 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6617 { .name = "MPIDR_EL1",
6618 .fixed_bits = 0x0000000080000000 },
6619 REGUSERINFO_SENTINEL
6620 };
6621 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6622 #endif
6623 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6624 }
6625
6626 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6627 ARMCPRegInfo auxcr_reginfo[] = {
6628 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6629 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6630 .access = PL1_RW, .type = ARM_CP_CONST,
6631 .resetvalue = cpu->reset_auxcr },
6632 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6633 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6634 .access = PL2_RW, .type = ARM_CP_CONST,
6635 .resetvalue = 0 },
6636 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6637 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6638 .access = PL3_RW, .type = ARM_CP_CONST,
6639 .resetvalue = 0 },
6640 REGINFO_SENTINEL
6641 };
6642 define_arm_cp_regs(cpu, auxcr_reginfo);
6643 if (arm_feature(env, ARM_FEATURE_V8)) {
6644 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6645 ARMCPRegInfo hactlr2_reginfo = {
6646 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6647 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6648 .access = PL2_RW, .type = ARM_CP_CONST,
6649 .resetvalue = 0
6650 };
6651 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6652 }
6653 }
6654
6655 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6656 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6657 /* 32 bit view is [31:18] 0...0 [43:32]. */
6658 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6659 | extract64(cpu->reset_cbar, 32, 12);
6660 ARMCPRegInfo cbar_reginfo[] = {
6661 { .name = "CBAR",
6662 .type = ARM_CP_CONST,
6663 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6664 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6665 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6666 .type = ARM_CP_CONST,
6667 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6668 .access = PL1_R, .resetvalue = cbar32 },
6669 REGINFO_SENTINEL
6670 };
6671 /* We don't implement a r/w 64 bit CBAR currently */
6672 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6673 define_arm_cp_regs(cpu, cbar_reginfo);
6674 } else {
6675 ARMCPRegInfo cbar = {
6676 .name = "CBAR",
6677 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6678 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6679 .fieldoffset = offsetof(CPUARMState,
6680 cp15.c15_config_base_address)
6681 };
6682 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6683 cbar.access = PL1_R;
6684 cbar.fieldoffset = 0;
6685 cbar.type = ARM_CP_CONST;
6686 }
6687 define_one_arm_cp_reg(cpu, &cbar);
6688 }
6689 }
6690
6691 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6692 ARMCPRegInfo vbar_cp_reginfo[] = {
6693 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6694 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6695 .access = PL1_RW, .writefn = vbar_write,
6696 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6697 offsetof(CPUARMState, cp15.vbar_ns) },
6698 .resetvalue = 0 },
6699 REGINFO_SENTINEL
6700 };
6701 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6702 }
6703
6704 /* Generic registers whose values depend on the implementation */
6705 {
6706 ARMCPRegInfo sctlr = {
6707 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6708 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6709 .access = PL1_RW,
6710 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6711 offsetof(CPUARMState, cp15.sctlr_ns) },
6712 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6713 .raw_writefn = raw_write,
6714 };
6715 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6716 /* Normally we would always end the TB on an SCTLR write, but Linux
6717 * arch/arm/mach-pxa/sleep.S expects two instructions following
6718 * an MMU enable to execute from cache. Imitate this behaviour.
6719 */
6720 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6721 }
6722 define_one_arm_cp_reg(cpu, &sctlr);
6723 }
6724
6725 if (cpu_isar_feature(aa64_lor, cpu)) {
6726 /*
6727 * A trivial implementation of ARMv8.1-LOR leaves all of these
6728 * registers fixed at 0, which indicates that there are zero
6729 * supported Limited Ordering regions.
6730 */
6731 static const ARMCPRegInfo lor_reginfo[] = {
6732 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6734 .access = PL1_RW, .accessfn = access_lor_other,
6735 .type = ARM_CP_CONST, .resetvalue = 0 },
6736 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6737 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6738 .access = PL1_RW, .accessfn = access_lor_other,
6739 .type = ARM_CP_CONST, .resetvalue = 0 },
6740 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6741 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6742 .access = PL1_RW, .accessfn = access_lor_other,
6743 .type = ARM_CP_CONST, .resetvalue = 0 },
6744 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6745 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6746 .access = PL1_RW, .accessfn = access_lor_other,
6747 .type = ARM_CP_CONST, .resetvalue = 0 },
6748 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6749 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6750 .access = PL1_R, .accessfn = access_lorid,
6751 .type = ARM_CP_CONST, .resetvalue = 0 },
6752 REGINFO_SENTINEL
6753 };
6754 define_arm_cp_regs(cpu, lor_reginfo);
6755 }
6756
6757 if (cpu_isar_feature(aa64_sve, cpu)) {
6758 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6759 if (arm_feature(env, ARM_FEATURE_EL2)) {
6760 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6761 } else {
6762 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6763 }
6764 if (arm_feature(env, ARM_FEATURE_EL3)) {
6765 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6766 }
6767 }
6768
6769 #ifdef TARGET_AARCH64
6770 if (cpu_isar_feature(aa64_pauth, cpu)) {
6771 define_arm_cp_regs(cpu, pauth_reginfo);
6772 }
6773 if (cpu_isar_feature(aa64_rndr, cpu)) {
6774 define_arm_cp_regs(cpu, rndr_reginfo);
6775 }
6776 #endif
6777
6778 /*
6779 * While all v8.0 cpus support aarch64, QEMU does have configurations
6780 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6781 * which will set ID_ISAR6.
6782 */
6783 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6784 ? cpu_isar_feature(aa64_predinv, cpu)
6785 : cpu_isar_feature(aa32_predinv, cpu)) {
6786 define_arm_cp_regs(cpu, predinv_reginfo);
6787 }
6788 }
6789
6790 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6791 {
6792 CPUState *cs = CPU(cpu);
6793 CPUARMState *env = &cpu->env;
6794
6795 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6796 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6797 aarch64_fpu_gdb_set_reg,
6798 34, "aarch64-fpu.xml", 0);
6799 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6800 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6801 51, "arm-neon.xml", 0);
6802 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6803 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6804 35, "arm-vfp3.xml", 0);
6805 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6806 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6807 19, "arm-vfp.xml", 0);
6808 }
6809 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6810 arm_gen_dynamic_xml(cs),
6811 "system-registers.xml", 0);
6812 }
6813
6814 /* Sort alphabetically by type name, except for "any". */
6815 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6816 {
6817 ObjectClass *class_a = (ObjectClass *)a;
6818 ObjectClass *class_b = (ObjectClass *)b;
6819 const char *name_a, *name_b;
6820
6821 name_a = object_class_get_name(class_a);
6822 name_b = object_class_get_name(class_b);
6823 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6824 return 1;
6825 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6826 return -1;
6827 } else {
6828 return strcmp(name_a, name_b);
6829 }
6830 }
6831
6832 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6833 {
6834 ObjectClass *oc = data;
6835 const char *typename;
6836 char *name;
6837
6838 typename = object_class_get_name(oc);
6839 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6840 qemu_printf(" %s\n", name);
6841 g_free(name);
6842 }
6843
6844 void arm_cpu_list(void)
6845 {
6846 GSList *list;
6847
6848 list = object_class_get_list(TYPE_ARM_CPU, false);
6849 list = g_slist_sort(list, arm_cpu_list_compare);
6850 qemu_printf("Available CPUs:\n");
6851 g_slist_foreach(list, arm_cpu_list_entry, NULL);
6852 g_slist_free(list);
6853 }
6854
6855 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6856 {
6857 ObjectClass *oc = data;
6858 CpuDefinitionInfoList **cpu_list = user_data;
6859 CpuDefinitionInfoList *entry;
6860 CpuDefinitionInfo *info;
6861 const char *typename;
6862
6863 typename = object_class_get_name(oc);
6864 info = g_malloc0(sizeof(*info));
6865 info->name = g_strndup(typename,
6866 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6867 info->q_typename = g_strdup(typename);
6868
6869 entry = g_malloc0(sizeof(*entry));
6870 entry->value = info;
6871 entry->next = *cpu_list;
6872 *cpu_list = entry;
6873 }
6874
6875 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6876 {
6877 CpuDefinitionInfoList *cpu_list = NULL;
6878 GSList *list;
6879
6880 list = object_class_get_list(TYPE_ARM_CPU, false);
6881 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6882 g_slist_free(list);
6883
6884 return cpu_list;
6885 }
6886
6887 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6888 void *opaque, int state, int secstate,
6889 int crm, int opc1, int opc2,
6890 const char *name)
6891 {
6892 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6893 * add a single reginfo struct to the hash table.
6894 */
6895 uint32_t *key = g_new(uint32_t, 1);
6896 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6897 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6898 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6899
6900 r2->name = g_strdup(name);
6901 /* Reset the secure state to the specific incoming state. This is
6902 * necessary as the register may have been defined with both states.
6903 */
6904 r2->secure = secstate;
6905
6906 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6907 /* Register is banked (using both entries in array).
6908 * Overwriting fieldoffset as the array is only used to define
6909 * banked registers but later only fieldoffset is used.
6910 */
6911 r2->fieldoffset = r->bank_fieldoffsets[ns];
6912 }
6913
6914 if (state == ARM_CP_STATE_AA32) {
6915 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6916 /* If the register is banked then we don't need to migrate or
6917 * reset the 32-bit instance in certain cases:
6918 *
6919 * 1) If the register has both 32-bit and 64-bit instances then we
6920 * can count on the 64-bit instance taking care of the
6921 * non-secure bank.
6922 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6923 * taking care of the secure bank. This requires that separate
6924 * 32 and 64-bit definitions are provided.
6925 */
6926 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6927 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6928 r2->type |= ARM_CP_ALIAS;
6929 }
6930 } else if ((secstate != r->secure) && !ns) {
6931 /* The register is not banked so we only want to allow migration of
6932 * the non-secure instance.
6933 */
6934 r2->type |= ARM_CP_ALIAS;
6935 }
6936
6937 if (r->state == ARM_CP_STATE_BOTH) {
6938 /* We assume it is a cp15 register if the .cp field is left unset.
6939 */
6940 if (r2->cp == 0) {
6941 r2->cp = 15;
6942 }
6943
6944 #ifdef HOST_WORDS_BIGENDIAN
6945 if (r2->fieldoffset) {
6946 r2->fieldoffset += sizeof(uint32_t);
6947 }
6948 #endif
6949 }
6950 }
6951 if (state == ARM_CP_STATE_AA64) {
6952 /* To allow abbreviation of ARMCPRegInfo
6953 * definitions, we treat cp == 0 as equivalent to
6954 * the value for "standard guest-visible sysreg".
6955 * STATE_BOTH definitions are also always "standard
6956 * sysreg" in their AArch64 view (the .cp value may
6957 * be non-zero for the benefit of the AArch32 view).
6958 */
6959 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6960 r2->cp = CP_REG_ARM64_SYSREG_CP;
6961 }
6962 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6963 r2->opc0, opc1, opc2);
6964 } else {
6965 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6966 }
6967 if (opaque) {
6968 r2->opaque = opaque;
6969 }
6970 /* reginfo passed to helpers is correct for the actual access,
6971 * and is never ARM_CP_STATE_BOTH:
6972 */
6973 r2->state = state;
6974 /* Make sure reginfo passed to helpers for wildcarded regs
6975 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6976 */
6977 r2->crm = crm;
6978 r2->opc1 = opc1;
6979 r2->opc2 = opc2;
6980 /* By convention, for wildcarded registers only the first
6981 * entry is used for migration; the others are marked as
6982 * ALIAS so we don't try to transfer the register
6983 * multiple times. Special registers (ie NOP/WFI) are
6984 * never migratable and not even raw-accessible.
6985 */
6986 if ((r->type & ARM_CP_SPECIAL)) {
6987 r2->type |= ARM_CP_NO_RAW;
6988 }
6989 if (((r->crm == CP_ANY) && crm != 0) ||
6990 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6991 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6992 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6993 }
6994
6995 /* Check that raw accesses are either forbidden or handled. Note that
6996 * we can't assert this earlier because the setup of fieldoffset for
6997 * banked registers has to be done first.
6998 */
6999 if (!(r2->type & ARM_CP_NO_RAW)) {
7000 assert(!raw_accessors_invalid(r2));
7001 }
7002
7003 /* Overriding of an existing definition must be explicitly
7004 * requested.
7005 */
7006 if (!(r->type & ARM_CP_OVERRIDE)) {
7007 ARMCPRegInfo *oldreg;
7008 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7009 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7010 fprintf(stderr, "Register redefined: cp=%d %d bit "
7011 "crn=%d crm=%d opc1=%d opc2=%d, "
7012 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7013 r2->crn, r2->crm, r2->opc1, r2->opc2,
7014 oldreg->name, r2->name);
7015 g_assert_not_reached();
7016 }
7017 }
7018 g_hash_table_insert(cpu->cp_regs, key, r2);
7019 }
7020
7021
7022 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7023 const ARMCPRegInfo *r, void *opaque)
7024 {
7025 /* Define implementations of coprocessor registers.
7026 * We store these in a hashtable because typically
7027 * there are less than 150 registers in a space which
7028 * is 16*16*16*8*8 = 262144 in size.
7029 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7030 * If a register is defined twice then the second definition is
7031 * used, so this can be used to define some generic registers and
7032 * then override them with implementation specific variations.
7033 * At least one of the original and the second definition should
7034 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7035 * against accidental use.
7036 *
7037 * The state field defines whether the register is to be
7038 * visible in the AArch32 or AArch64 execution state. If the
7039 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7040 * reginfo structure for the AArch32 view, which sees the lower
7041 * 32 bits of the 64 bit register.
7042 *
7043 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7044 * be wildcarded. AArch64 registers are always considered to be 64
7045 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7046 * the register, if any.
7047 */
7048 int crm, opc1, opc2, state;
7049 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7050 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7051 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7052 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7053 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7054 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7055 /* 64 bit registers have only CRm and Opc1 fields */
7056 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7057 /* op0 only exists in the AArch64 encodings */
7058 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7059 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7060 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7061 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7062 * encodes a minimum access level for the register. We roll this
7063 * runtime check into our general permission check code, so check
7064 * here that the reginfo's specified permissions are strict enough
7065 * to encompass the generic architectural permission check.
7066 */
7067 if (r->state != ARM_CP_STATE_AA32) {
7068 int mask = 0;
7069 switch (r->opc1) {
7070 case 0:
7071 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7072 mask = PL0U_R | PL1_RW;
7073 break;
7074 case 1: case 2:
7075 /* min_EL EL1 */
7076 mask = PL1_RW;
7077 break;
7078 case 3:
7079 /* min_EL EL0 */
7080 mask = PL0_RW;
7081 break;
7082 case 4:
7083 /* min_EL EL2 */
7084 mask = PL2_RW;
7085 break;
7086 case 5:
7087 /* unallocated encoding, so not possible */
7088 assert(false);
7089 break;
7090 case 6:
7091 /* min_EL EL3 */
7092 mask = PL3_RW;
7093 break;
7094 case 7:
7095 /* min_EL EL1, secure mode only (we don't check the latter) */
7096 mask = PL1_RW;
7097 break;
7098 default:
7099 /* broken reginfo with out-of-range opc1 */
7100 assert(false);
7101 break;
7102 }
7103 /* assert our permissions are not too lax (stricter is fine) */
7104 assert((r->access & ~mask) == 0);
7105 }
7106
7107 /* Check that the register definition has enough info to handle
7108 * reads and writes if they are permitted.
7109 */
7110 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7111 if (r->access & PL3_R) {
7112 assert((r->fieldoffset ||
7113 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7114 r->readfn);
7115 }
7116 if (r->access & PL3_W) {
7117 assert((r->fieldoffset ||
7118 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7119 r->writefn);
7120 }
7121 }
7122 /* Bad type field probably means missing sentinel at end of reg list */
7123 assert(cptype_valid(r->type));
7124 for (crm = crmmin; crm <= crmmax; crm++) {
7125 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7126 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7127 for (state = ARM_CP_STATE_AA32;
7128 state <= ARM_CP_STATE_AA64; state++) {
7129 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7130 continue;
7131 }
7132 if (state == ARM_CP_STATE_AA32) {
7133 /* Under AArch32 CP registers can be common
7134 * (same for secure and non-secure world) or banked.
7135 */
7136 char *name;
7137
7138 switch (r->secure) {
7139 case ARM_CP_SECSTATE_S:
7140 case ARM_CP_SECSTATE_NS:
7141 add_cpreg_to_hashtable(cpu, r, opaque, state,
7142 r->secure, crm, opc1, opc2,
7143 r->name);
7144 break;
7145 default:
7146 name = g_strdup_printf("%s_S", r->name);
7147 add_cpreg_to_hashtable(cpu, r, opaque, state,
7148 ARM_CP_SECSTATE_S,
7149 crm, opc1, opc2, name);
7150 g_free(name);
7151 add_cpreg_to_hashtable(cpu, r, opaque, state,
7152 ARM_CP_SECSTATE_NS,
7153 crm, opc1, opc2, r->name);
7154 break;
7155 }
7156 } else {
7157 /* AArch64 registers get mapped to non-secure instance
7158 * of AArch32 */
7159 add_cpreg_to_hashtable(cpu, r, opaque, state,
7160 ARM_CP_SECSTATE_NS,
7161 crm, opc1, opc2, r->name);
7162 }
7163 }
7164 }
7165 }
7166 }
7167 }
7168
7169 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7170 const ARMCPRegInfo *regs, void *opaque)
7171 {
7172 /* Define a whole list of registers */
7173 const ARMCPRegInfo *r;
7174 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7175 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7176 }
7177 }
7178
7179 /*
7180 * Modify ARMCPRegInfo for access from userspace.
7181 *
7182 * This is a data driven modification directed by
7183 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7184 * user-space cannot alter any values and dynamic values pertaining to
7185 * execution state are hidden from user space view anyway.
7186 */
7187 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7188 {
7189 const ARMCPRegUserSpaceInfo *m;
7190 ARMCPRegInfo *r;
7191
7192 for (m = mods; m->name; m++) {
7193 GPatternSpec *pat = NULL;
7194 if (m->is_glob) {
7195 pat = g_pattern_spec_new(m->name);
7196 }
7197 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7198 if (pat && g_pattern_match_string(pat, r->name)) {
7199 r->type = ARM_CP_CONST;
7200 r->access = PL0U_R;
7201 r->resetvalue = 0;
7202 /* continue */
7203 } else if (strcmp(r->name, m->name) == 0) {
7204 r->type = ARM_CP_CONST;
7205 r->access = PL0U_R;
7206 r->resetvalue &= m->exported_bits;
7207 r->resetvalue |= m->fixed_bits;
7208 break;
7209 }
7210 }
7211 if (pat) {
7212 g_pattern_spec_free(pat);
7213 }
7214 }
7215 }
7216
7217 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7218 {
7219 return g_hash_table_lookup(cpregs, &encoded_cp);
7220 }
7221
7222 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7223 uint64_t value)
7224 {
7225 /* Helper coprocessor write function for write-ignore registers */
7226 }
7227
7228 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7229 {
7230 /* Helper coprocessor write function for read-as-zero registers */
7231 return 0;
7232 }
7233
7234 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7235 {
7236 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7237 }
7238
7239 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7240 {
7241 /* Return true if it is not valid for us to switch to
7242 * this CPU mode (ie all the UNPREDICTABLE cases in
7243 * the ARM ARM CPSRWriteByInstr pseudocode).
7244 */
7245
7246 /* Changes to or from Hyp via MSR and CPS are illegal. */
7247 if (write_type == CPSRWriteByInstr &&
7248 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7249 mode == ARM_CPU_MODE_HYP)) {
7250 return 1;
7251 }
7252
7253 switch (mode) {
7254 case ARM_CPU_MODE_USR:
7255 return 0;
7256 case ARM_CPU_MODE_SYS:
7257 case ARM_CPU_MODE_SVC:
7258 case ARM_CPU_MODE_ABT:
7259 case ARM_CPU_MODE_UND:
7260 case ARM_CPU_MODE_IRQ:
7261 case ARM_CPU_MODE_FIQ:
7262 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7263 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7264 */
7265 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7266 * and CPS are treated as illegal mode changes.
7267 */
7268 if (write_type == CPSRWriteByInstr &&
7269 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7270 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7271 return 1;
7272 }
7273 return 0;
7274 case ARM_CPU_MODE_HYP:
7275 return !arm_feature(env, ARM_FEATURE_EL2)
7276 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7277 case ARM_CPU_MODE_MON:
7278 return arm_current_el(env) < 3;
7279 default:
7280 return 1;
7281 }
7282 }
7283
7284 uint32_t cpsr_read(CPUARMState *env)
7285 {
7286 int ZF;
7287 ZF = (env->ZF == 0);
7288 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7289 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7290 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7291 | ((env->condexec_bits & 0xfc) << 8)
7292 | (env->GE << 16) | (env->daif & CPSR_AIF);
7293 }
7294
7295 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7296 CPSRWriteType write_type)
7297 {
7298 uint32_t changed_daif;
7299
7300 if (mask & CPSR_NZCV) {
7301 env->ZF = (~val) & CPSR_Z;
7302 env->NF = val;
7303 env->CF = (val >> 29) & 1;
7304 env->VF = (val << 3) & 0x80000000;
7305 }
7306 if (mask & CPSR_Q)
7307 env->QF = ((val & CPSR_Q) != 0);
7308 if (mask & CPSR_T)
7309 env->thumb = ((val & CPSR_T) != 0);
7310 if (mask & CPSR_IT_0_1) {
7311 env->condexec_bits &= ~3;
7312 env->condexec_bits |= (val >> 25) & 3;
7313 }
7314 if (mask & CPSR_IT_2_7) {
7315 env->condexec_bits &= 3;
7316 env->condexec_bits |= (val >> 8) & 0xfc;
7317 }
7318 if (mask & CPSR_GE) {
7319 env->GE = (val >> 16) & 0xf;
7320 }
7321
7322 /* In a V7 implementation that includes the security extensions but does
7323 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7324 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7325 * bits respectively.
7326 *
7327 * In a V8 implementation, it is permitted for privileged software to
7328 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7329 */
7330 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7331 arm_feature(env, ARM_FEATURE_EL3) &&
7332 !arm_feature(env, ARM_FEATURE_EL2) &&
7333 !arm_is_secure(env)) {
7334
7335 changed_daif = (env->daif ^ val) & mask;
7336
7337 if (changed_daif & CPSR_A) {
7338 /* Check to see if we are allowed to change the masking of async
7339 * abort exceptions from a non-secure state.
7340 */
7341 if (!(env->cp15.scr_el3 & SCR_AW)) {
7342 qemu_log_mask(LOG_GUEST_ERROR,
7343 "Ignoring attempt to switch CPSR_A flag from "
7344 "non-secure world with SCR.AW bit clear\n");
7345 mask &= ~CPSR_A;
7346 }
7347 }
7348
7349 if (changed_daif & CPSR_F) {
7350 /* Check to see if we are allowed to change the masking of FIQ
7351 * exceptions from a non-secure state.
7352 */
7353 if (!(env->cp15.scr_el3 & SCR_FW)) {
7354 qemu_log_mask(LOG_GUEST_ERROR,
7355 "Ignoring attempt to switch CPSR_F flag from "
7356 "non-secure world with SCR.FW bit clear\n");
7357 mask &= ~CPSR_F;
7358 }
7359
7360 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7361 * If this bit is set software is not allowed to mask
7362 * FIQs, but is allowed to set CPSR_F to 0.
7363 */
7364 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7365 (val & CPSR_F)) {
7366 qemu_log_mask(LOG_GUEST_ERROR,
7367 "Ignoring attempt to enable CPSR_F flag "
7368 "(non-maskable FIQ [NMFI] support enabled)\n");
7369 mask &= ~CPSR_F;
7370 }
7371 }
7372 }
7373
7374 env->daif &= ~(CPSR_AIF & mask);
7375 env->daif |= val & CPSR_AIF & mask;
7376
7377 if (write_type != CPSRWriteRaw &&
7378 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7379 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7380 /* Note that we can only get here in USR mode if this is a
7381 * gdb stub write; for this case we follow the architectural
7382 * behaviour for guest writes in USR mode of ignoring an attempt
7383 * to switch mode. (Those are caught by translate.c for writes
7384 * triggered by guest instructions.)
7385 */
7386 mask &= ~CPSR_M;
7387 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7388 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7389 * v7, and has defined behaviour in v8:
7390 * + leave CPSR.M untouched
7391 * + allow changes to the other CPSR fields
7392 * + set PSTATE.IL
7393 * For user changes via the GDB stub, we don't set PSTATE.IL,
7394 * as this would be unnecessarily harsh for a user error.
7395 */
7396 mask &= ~CPSR_M;
7397 if (write_type != CPSRWriteByGDBStub &&
7398 arm_feature(env, ARM_FEATURE_V8)) {
7399 mask |= CPSR_IL;
7400 val |= CPSR_IL;
7401 }
7402 qemu_log_mask(LOG_GUEST_ERROR,
7403 "Illegal AArch32 mode switch attempt from %s to %s\n",
7404 aarch32_mode_name(env->uncached_cpsr),
7405 aarch32_mode_name(val));
7406 } else {
7407 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7408 write_type == CPSRWriteExceptionReturn ?
7409 "Exception return from AArch32" :
7410 "AArch32 mode switch from",
7411 aarch32_mode_name(env->uncached_cpsr),
7412 aarch32_mode_name(val), env->regs[15]);
7413 switch_mode(env, val & CPSR_M);
7414 }
7415 }
7416 mask &= ~CACHED_CPSR_BITS;
7417 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7418 }
7419
7420 /* Sign/zero extend */
7421 uint32_t HELPER(sxtb16)(uint32_t x)
7422 {
7423 uint32_t res;
7424 res = (uint16_t)(int8_t)x;
7425 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7426 return res;
7427 }
7428
7429 uint32_t HELPER(uxtb16)(uint32_t x)
7430 {
7431 uint32_t res;
7432 res = (uint16_t)(uint8_t)x;
7433 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7434 return res;
7435 }
7436
7437 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7438 {
7439 if (den == 0)
7440 return 0;
7441 if (num == INT_MIN && den == -1)
7442 return INT_MIN;
7443 return num / den;
7444 }
7445
7446 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7447 {
7448 if (den == 0)
7449 return 0;
7450 return num / den;
7451 }
7452
7453 uint32_t HELPER(rbit)(uint32_t x)
7454 {
7455 return revbit32(x);
7456 }
7457
7458 #ifdef CONFIG_USER_ONLY
7459
7460 static void switch_mode(CPUARMState *env, int mode)
7461 {
7462 ARMCPU *cpu = env_archcpu(env);
7463
7464 if (mode != ARM_CPU_MODE_USR) {
7465 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7466 }
7467 }
7468
7469 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7470 uint32_t cur_el, bool secure)
7471 {
7472 return 1;
7473 }
7474
7475 void aarch64_sync_64_to_32(CPUARMState *env)
7476 {
7477 g_assert_not_reached();
7478 }
7479
7480 #else
7481
7482 static void switch_mode(CPUARMState *env, int mode)
7483 {
7484 int old_mode;
7485 int i;
7486
7487 old_mode = env->uncached_cpsr & CPSR_M;
7488 if (mode == old_mode)
7489 return;
7490
7491 if (old_mode == ARM_CPU_MODE_FIQ) {
7492 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7493 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7494 } else if (mode == ARM_CPU_MODE_FIQ) {
7495 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7496 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7497 }
7498
7499 i = bank_number(old_mode);
7500 env->banked_r13[i] = env->regs[13];
7501 env->banked_spsr[i] = env->spsr;
7502
7503 i = bank_number(mode);
7504 env->regs[13] = env->banked_r13[i];
7505 env->spsr = env->banked_spsr[i];
7506
7507 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7508 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7509 }
7510
7511 /* Physical Interrupt Target EL Lookup Table
7512 *
7513 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7514 *
7515 * The below multi-dimensional table is used for looking up the target
7516 * exception level given numerous condition criteria. Specifically, the
7517 * target EL is based on SCR and HCR routing controls as well as the
7518 * currently executing EL and secure state.
7519 *
7520 * Dimensions:
7521 * target_el_table[2][2][2][2][2][4]
7522 * | | | | | +--- Current EL
7523 * | | | | +------ Non-secure(0)/Secure(1)
7524 * | | | +--------- HCR mask override
7525 * | | +------------ SCR exec state control
7526 * | +--------------- SCR mask override
7527 * +------------------ 32-bit(0)/64-bit(1) EL3
7528 *
7529 * The table values are as such:
7530 * 0-3 = EL0-EL3
7531 * -1 = Cannot occur
7532 *
7533 * The ARM ARM target EL table includes entries indicating that an "exception
7534 * is not taken". The two cases where this is applicable are:
7535 * 1) An exception is taken from EL3 but the SCR does not have the exception
7536 * routed to EL3.
7537 * 2) An exception is taken from EL2 but the HCR does not have the exception
7538 * routed to EL2.
7539 * In these two cases, the below table contain a target of EL1. This value is
7540 * returned as it is expected that the consumer of the table data will check
7541 * for "target EL >= current EL" to ensure the exception is not taken.
7542 *
7543 * SCR HCR
7544 * 64 EA AMO From
7545 * BIT IRQ IMO Non-secure Secure
7546 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7547 */
7548 static const int8_t target_el_table[2][2][2][2][2][4] = {
7549 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7550 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7551 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7552 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7553 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7554 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7555 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7556 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7557 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7558 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7559 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7560 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7561 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7562 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7563 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7564 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7565 };
7566
7567 /*
7568 * Determine the target EL for physical exceptions
7569 */
7570 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7571 uint32_t cur_el, bool secure)
7572 {
7573 CPUARMState *env = cs->env_ptr;
7574 bool rw;
7575 bool scr;
7576 bool hcr;
7577 int target_el;
7578 /* Is the highest EL AArch64? */
7579 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7580 uint64_t hcr_el2;
7581
7582 if (arm_feature(env, ARM_FEATURE_EL3)) {
7583 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7584 } else {
7585 /* Either EL2 is the highest EL (and so the EL2 register width
7586 * is given by is64); or there is no EL2 or EL3, in which case
7587 * the value of 'rw' does not affect the table lookup anyway.
7588 */
7589 rw = is64;
7590 }
7591
7592 hcr_el2 = arm_hcr_el2_eff(env);
7593 switch (excp_idx) {
7594 case EXCP_IRQ:
7595 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7596 hcr = hcr_el2 & HCR_IMO;
7597 break;
7598 case EXCP_FIQ:
7599 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7600 hcr = hcr_el2 & HCR_FMO;
7601 break;
7602 default:
7603 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7604 hcr = hcr_el2 & HCR_AMO;
7605 break;
7606 };
7607
7608 /* Perform a table-lookup for the target EL given the current state */
7609 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7610
7611 assert(target_el > 0);
7612
7613 return target_el;
7614 }
7615
7616 void arm_log_exception(int idx)
7617 {
7618 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7619 const char *exc = NULL;
7620 static const char * const excnames[] = {
7621 [EXCP_UDEF] = "Undefined Instruction",
7622 [EXCP_SWI] = "SVC",
7623 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7624 [EXCP_DATA_ABORT] = "Data Abort",
7625 [EXCP_IRQ] = "IRQ",
7626 [EXCP_FIQ] = "FIQ",
7627 [EXCP_BKPT] = "Breakpoint",
7628 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7629 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7630 [EXCP_HVC] = "Hypervisor Call",
7631 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7632 [EXCP_SMC] = "Secure Monitor Call",
7633 [EXCP_VIRQ] = "Virtual IRQ",
7634 [EXCP_VFIQ] = "Virtual FIQ",
7635 [EXCP_SEMIHOST] = "Semihosting call",
7636 [EXCP_NOCP] = "v7M NOCP UsageFault",
7637 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7638 [EXCP_STKOF] = "v8M STKOF UsageFault",
7639 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7640 [EXCP_LSERR] = "v8M LSERR UsageFault",
7641 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7642 };
7643
7644 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7645 exc = excnames[idx];
7646 }
7647 if (!exc) {
7648 exc = "unknown";
7649 }
7650 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7651 }
7652 }
7653
7654 /*
7655 * Function used to synchronize QEMU's AArch64 register set with AArch32
7656 * register set. This is necessary when switching between AArch32 and AArch64
7657 * execution state.
7658 */
7659 void aarch64_sync_32_to_64(CPUARMState *env)
7660 {
7661 int i;
7662 uint32_t mode = env->uncached_cpsr & CPSR_M;
7663
7664 /* We can blanket copy R[0:7] to X[0:7] */
7665 for (i = 0; i < 8; i++) {
7666 env->xregs[i] = env->regs[i];
7667 }
7668
7669 /*
7670 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7671 * Otherwise, they come from the banked user regs.
7672 */
7673 if (mode == ARM_CPU_MODE_FIQ) {
7674 for (i = 8; i < 13; i++) {
7675 env->xregs[i] = env->usr_regs[i - 8];
7676 }
7677 } else {
7678 for (i = 8; i < 13; i++) {
7679 env->xregs[i] = env->regs[i];
7680 }
7681 }
7682
7683 /*
7684 * Registers x13-x23 are the various mode SP and FP registers. Registers
7685 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7686 * from the mode banked register.
7687 */
7688 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7689 env->xregs[13] = env->regs[13];
7690 env->xregs[14] = env->regs[14];
7691 } else {
7692 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7693 /* HYP is an exception in that it is copied from r14 */
7694 if (mode == ARM_CPU_MODE_HYP) {
7695 env->xregs[14] = env->regs[14];
7696 } else {
7697 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7698 }
7699 }
7700
7701 if (mode == ARM_CPU_MODE_HYP) {
7702 env->xregs[15] = env->regs[13];
7703 } else {
7704 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7705 }
7706
7707 if (mode == ARM_CPU_MODE_IRQ) {
7708 env->xregs[16] = env->regs[14];
7709 env->xregs[17] = env->regs[13];
7710 } else {
7711 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7712 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7713 }
7714
7715 if (mode == ARM_CPU_MODE_SVC) {
7716 env->xregs[18] = env->regs[14];
7717 env->xregs[19] = env->regs[13];
7718 } else {
7719 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7720 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7721 }
7722
7723 if (mode == ARM_CPU_MODE_ABT) {
7724 env->xregs[20] = env->regs[14];
7725 env->xregs[21] = env->regs[13];
7726 } else {
7727 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7728 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7729 }
7730
7731 if (mode == ARM_CPU_MODE_UND) {
7732 env->xregs[22] = env->regs[14];
7733 env->xregs[23] = env->regs[13];
7734 } else {
7735 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7736 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7737 }
7738
7739 /*
7740 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7741 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7742 * FIQ bank for r8-r14.
7743 */
7744 if (mode == ARM_CPU_MODE_FIQ) {
7745 for (i = 24; i < 31; i++) {
7746 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7747 }
7748 } else {
7749 for (i = 24; i < 29; i++) {
7750 env->xregs[i] = env->fiq_regs[i - 24];
7751 }
7752 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7753 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7754 }
7755
7756 env->pc = env->regs[15];
7757 }
7758
7759 /*
7760 * Function used to synchronize QEMU's AArch32 register set with AArch64
7761 * register set. This is necessary when switching between AArch32 and AArch64
7762 * execution state.
7763 */
7764 void aarch64_sync_64_to_32(CPUARMState *env)
7765 {
7766 int i;
7767 uint32_t mode = env->uncached_cpsr & CPSR_M;
7768
7769 /* We can blanket copy X[0:7] to R[0:7] */
7770 for (i = 0; i < 8; i++) {
7771 env->regs[i] = env->xregs[i];
7772 }
7773
7774 /*
7775 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7776 * Otherwise, we copy x8-x12 into the banked user regs.
7777 */
7778 if (mode == ARM_CPU_MODE_FIQ) {
7779 for (i = 8; i < 13; i++) {
7780 env->usr_regs[i - 8] = env->xregs[i];
7781 }
7782 } else {
7783 for (i = 8; i < 13; i++) {
7784 env->regs[i] = env->xregs[i];
7785 }
7786 }
7787
7788 /*
7789 * Registers r13 & r14 depend on the current mode.
7790 * If we are in a given mode, we copy the corresponding x registers to r13
7791 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7792 * for the mode.
7793 */
7794 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7795 env->regs[13] = env->xregs[13];
7796 env->regs[14] = env->xregs[14];
7797 } else {
7798 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7799
7800 /*
7801 * HYP is an exception in that it does not have its own banked r14 but
7802 * shares the USR r14
7803 */
7804 if (mode == ARM_CPU_MODE_HYP) {
7805 env->regs[14] = env->xregs[14];
7806 } else {
7807 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7808 }
7809 }
7810
7811 if (mode == ARM_CPU_MODE_HYP) {
7812 env->regs[13] = env->xregs[15];
7813 } else {
7814 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7815 }
7816
7817 if (mode == ARM_CPU_MODE_IRQ) {
7818 env->regs[14] = env->xregs[16];
7819 env->regs[13] = env->xregs[17];
7820 } else {
7821 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7822 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7823 }
7824
7825 if (mode == ARM_CPU_MODE_SVC) {
7826 env->regs[14] = env->xregs[18];
7827 env->regs[13] = env->xregs[19];
7828 } else {
7829 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7830 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7831 }
7832
7833 if (mode == ARM_CPU_MODE_ABT) {
7834 env->regs[14] = env->xregs[20];
7835 env->regs[13] = env->xregs[21];
7836 } else {
7837 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7838 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7839 }
7840
7841 if (mode == ARM_CPU_MODE_UND) {
7842 env->regs[14] = env->xregs[22];
7843 env->regs[13] = env->xregs[23];
7844 } else {
7845 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7846 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7847 }
7848
7849 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7850 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7851 * FIQ bank for r8-r14.
7852 */
7853 if (mode == ARM_CPU_MODE_FIQ) {
7854 for (i = 24; i < 31; i++) {
7855 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7856 }
7857 } else {
7858 for (i = 24; i < 29; i++) {
7859 env->fiq_regs[i - 24] = env->xregs[i];
7860 }
7861 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7862 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7863 }
7864
7865 env->regs[15] = env->pc;
7866 }
7867
7868 static void take_aarch32_exception(CPUARMState *env, int new_mode,
7869 uint32_t mask, uint32_t offset,
7870 uint32_t newpc)
7871 {
7872 /* Change the CPU state so as to actually take the exception. */
7873 switch_mode(env, new_mode);
7874 /*
7875 * For exceptions taken to AArch32 we must clear the SS bit in both
7876 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7877 */
7878 env->uncached_cpsr &= ~PSTATE_SS;
7879 env->spsr = cpsr_read(env);
7880 /* Clear IT bits. */
7881 env->condexec_bits = 0;
7882 /* Switch to the new mode, and to the correct instruction set. */
7883 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7884 /* Set new mode endianness */
7885 env->uncached_cpsr &= ~CPSR_E;
7886 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7887 env->uncached_cpsr |= CPSR_E;
7888 }
7889 /* J and IL must always be cleared for exception entry */
7890 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
7891 env->daif |= mask;
7892
7893 if (new_mode == ARM_CPU_MODE_HYP) {
7894 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
7895 env->elr_el[2] = env->regs[15];
7896 } else {
7897 /*
7898 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
7899 * and we should just guard the thumb mode on V4
7900 */
7901 if (arm_feature(env, ARM_FEATURE_V4T)) {
7902 env->thumb =
7903 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7904 }
7905 env->regs[14] = env->regs[15] + offset;
7906 }
7907 env->regs[15] = newpc;
7908 }
7909
7910 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
7911 {
7912 /*
7913 * Handle exception entry to Hyp mode; this is sufficiently
7914 * different to entry to other AArch32 modes that we handle it
7915 * separately here.
7916 *
7917 * The vector table entry used is always the 0x14 Hyp mode entry point,
7918 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
7919 * The offset applied to the preferred return address is always zero
7920 * (see DDI0487C.a section G1.12.3).
7921 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
7922 */
7923 uint32_t addr, mask;
7924 ARMCPU *cpu = ARM_CPU(cs);
7925 CPUARMState *env = &cpu->env;
7926
7927 switch (cs->exception_index) {
7928 case EXCP_UDEF:
7929 addr = 0x04;
7930 break;
7931 case EXCP_SWI:
7932 addr = 0x14;
7933 break;
7934 case EXCP_BKPT:
7935 /* Fall through to prefetch abort. */
7936 case EXCP_PREFETCH_ABORT:
7937 env->cp15.ifar_s = env->exception.vaddress;
7938 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
7939 (uint32_t)env->exception.vaddress);
7940 addr = 0x0c;
7941 break;
7942 case EXCP_DATA_ABORT:
7943 env->cp15.dfar_s = env->exception.vaddress;
7944 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
7945 (uint32_t)env->exception.vaddress);
7946 addr = 0x10;
7947 break;
7948 case EXCP_IRQ:
7949 addr = 0x18;
7950 break;
7951 case EXCP_FIQ:
7952 addr = 0x1c;
7953 break;
7954 case EXCP_HVC:
7955 addr = 0x08;
7956 break;
7957 case EXCP_HYP_TRAP:
7958 addr = 0x14;
7959 default:
7960 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7961 }
7962
7963 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
7964 if (!arm_feature(env, ARM_FEATURE_V8)) {
7965 /*
7966 * QEMU syndrome values are v8-style. v7 has the IL bit
7967 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
7968 * If this is a v7 CPU, squash the IL bit in those cases.
7969 */
7970 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
7971 (cs->exception_index == EXCP_DATA_ABORT &&
7972 !(env->exception.syndrome & ARM_EL_ISV)) ||
7973 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
7974 env->exception.syndrome &= ~ARM_EL_IL;
7975 }
7976 }
7977 env->cp15.esr_el[2] = env->exception.syndrome;
7978 }
7979
7980 if (arm_current_el(env) != 2 && addr < 0x14) {
7981 addr = 0x14;
7982 }
7983
7984 mask = 0;
7985 if (!(env->cp15.scr_el3 & SCR_EA)) {
7986 mask |= CPSR_A;
7987 }
7988 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
7989 mask |= CPSR_I;
7990 }
7991 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
7992 mask |= CPSR_F;
7993 }
7994
7995 addr += env->cp15.hvbar;
7996
7997 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
7998 }
7999
8000 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8001 {
8002 ARMCPU *cpu = ARM_CPU(cs);
8003 CPUARMState *env = &cpu->env;
8004 uint32_t addr;
8005 uint32_t mask;
8006 int new_mode;
8007 uint32_t offset;
8008 uint32_t moe;
8009
8010 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8011 switch (syn_get_ec(env->exception.syndrome)) {
8012 case EC_BREAKPOINT:
8013 case EC_BREAKPOINT_SAME_EL:
8014 moe = 1;
8015 break;
8016 case EC_WATCHPOINT:
8017 case EC_WATCHPOINT_SAME_EL:
8018 moe = 10;
8019 break;
8020 case EC_AA32_BKPT:
8021 moe = 3;
8022 break;
8023 case EC_VECTORCATCH:
8024 moe = 5;
8025 break;
8026 default:
8027 moe = 0;
8028 break;
8029 }
8030
8031 if (moe) {
8032 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8033 }
8034
8035 if (env->exception.target_el == 2) {
8036 arm_cpu_do_interrupt_aarch32_hyp(cs);
8037 return;
8038 }
8039
8040 switch (cs->exception_index) {
8041 case EXCP_UDEF:
8042 new_mode = ARM_CPU_MODE_UND;
8043 addr = 0x04;
8044 mask = CPSR_I;
8045 if (env->thumb)
8046 offset = 2;
8047 else
8048 offset = 4;
8049 break;
8050 case EXCP_SWI:
8051 new_mode = ARM_CPU_MODE_SVC;
8052 addr = 0x08;
8053 mask = CPSR_I;
8054 /* The PC already points to the next instruction. */
8055 offset = 0;
8056 break;
8057 case EXCP_BKPT:
8058 /* Fall through to prefetch abort. */
8059 case EXCP_PREFETCH_ABORT:
8060 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8061 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8062 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8063 env->exception.fsr, (uint32_t)env->exception.vaddress);
8064 new_mode = ARM_CPU_MODE_ABT;
8065 addr = 0x0c;
8066 mask = CPSR_A | CPSR_I;
8067 offset = 4;
8068 break;
8069 case EXCP_DATA_ABORT:
8070 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8071 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8072 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8073 env->exception.fsr,
8074 (uint32_t)env->exception.vaddress);
8075 new_mode = ARM_CPU_MODE_ABT;
8076 addr = 0x10;
8077 mask = CPSR_A | CPSR_I;
8078 offset = 8;
8079 break;
8080 case EXCP_IRQ:
8081 new_mode = ARM_CPU_MODE_IRQ;
8082 addr = 0x18;
8083 /* Disable IRQ and imprecise data aborts. */
8084 mask = CPSR_A | CPSR_I;
8085 offset = 4;
8086 if (env->cp15.scr_el3 & SCR_IRQ) {
8087 /* IRQ routed to monitor mode */
8088 new_mode = ARM_CPU_MODE_MON;
8089 mask |= CPSR_F;
8090 }
8091 break;
8092 case EXCP_FIQ:
8093 new_mode = ARM_CPU_MODE_FIQ;
8094 addr = 0x1c;
8095 /* Disable FIQ, IRQ and imprecise data aborts. */
8096 mask = CPSR_A | CPSR_I | CPSR_F;
8097 if (env->cp15.scr_el3 & SCR_FIQ) {
8098 /* FIQ routed to monitor mode */
8099 new_mode = ARM_CPU_MODE_MON;
8100 }
8101 offset = 4;
8102 break;
8103 case EXCP_VIRQ:
8104 new_mode = ARM_CPU_MODE_IRQ;
8105 addr = 0x18;
8106 /* Disable IRQ and imprecise data aborts. */
8107 mask = CPSR_A | CPSR_I;
8108 offset = 4;
8109 break;
8110 case EXCP_VFIQ:
8111 new_mode = ARM_CPU_MODE_FIQ;
8112 addr = 0x1c;
8113 /* Disable FIQ, IRQ and imprecise data aborts. */
8114 mask = CPSR_A | CPSR_I | CPSR_F;
8115 offset = 4;
8116 break;
8117 case EXCP_SMC:
8118 new_mode = ARM_CPU_MODE_MON;
8119 addr = 0x08;
8120 mask = CPSR_A | CPSR_I | CPSR_F;
8121 offset = 0;
8122 break;
8123 default:
8124 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8125 return; /* Never happens. Keep compiler happy. */
8126 }
8127
8128 if (new_mode == ARM_CPU_MODE_MON) {
8129 addr += env->cp15.mvbar;
8130 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8131 /* High vectors. When enabled, base address cannot be remapped. */
8132 addr += 0xffff0000;
8133 } else {
8134 /* ARM v7 architectures provide a vector base address register to remap
8135 * the interrupt vector table.
8136 * This register is only followed in non-monitor mode, and is banked.
8137 * Note: only bits 31:5 are valid.
8138 */
8139 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8140 }
8141
8142 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8143 env->cp15.scr_el3 &= ~SCR_NS;
8144 }
8145
8146 take_aarch32_exception(env, new_mode, mask, offset, addr);
8147 }
8148
8149 /* Handle exception entry to a target EL which is using AArch64 */
8150 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8151 {
8152 ARMCPU *cpu = ARM_CPU(cs);
8153 CPUARMState *env = &cpu->env;
8154 unsigned int new_el = env->exception.target_el;
8155 target_ulong addr = env->cp15.vbar_el[new_el];
8156 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8157 unsigned int cur_el = arm_current_el(env);
8158
8159 /*
8160 * Note that new_el can never be 0. If cur_el is 0, then
8161 * el0_a64 is is_a64(), else el0_a64 is ignored.
8162 */
8163 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8164
8165 if (cur_el < new_el) {
8166 /* Entry vector offset depends on whether the implemented EL
8167 * immediately lower than the target level is using AArch32 or AArch64
8168 */
8169 bool is_aa64;
8170
8171 switch (new_el) {
8172 case 3:
8173 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8174 break;
8175 case 2:
8176 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8177 break;
8178 case 1:
8179 is_aa64 = is_a64(env);
8180 break;
8181 default:
8182 g_assert_not_reached();
8183 }
8184
8185 if (is_aa64) {
8186 addr += 0x400;
8187 } else {
8188 addr += 0x600;
8189 }
8190 } else if (pstate_read(env) & PSTATE_SP) {
8191 addr += 0x200;
8192 }
8193
8194 switch (cs->exception_index) {
8195 case EXCP_PREFETCH_ABORT:
8196 case EXCP_DATA_ABORT:
8197 env->cp15.far_el[new_el] = env->exception.vaddress;
8198 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8199 env->cp15.far_el[new_el]);
8200 /* fall through */
8201 case EXCP_BKPT:
8202 case EXCP_UDEF:
8203 case EXCP_SWI:
8204 case EXCP_HVC:
8205 case EXCP_HYP_TRAP:
8206 case EXCP_SMC:
8207 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8208 /*
8209 * QEMU internal FP/SIMD syndromes from AArch32 include the
8210 * TA and coproc fields which are only exposed if the exception
8211 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8212 * AArch64 format syndrome.
8213 */
8214 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8215 }
8216 env->cp15.esr_el[new_el] = env->exception.syndrome;
8217 break;
8218 case EXCP_IRQ:
8219 case EXCP_VIRQ:
8220 addr += 0x80;
8221 break;
8222 case EXCP_FIQ:
8223 case EXCP_VFIQ:
8224 addr += 0x100;
8225 break;
8226 case EXCP_SEMIHOST:
8227 qemu_log_mask(CPU_LOG_INT,
8228 "...handling as semihosting call 0x%" PRIx64 "\n",
8229 env->xregs[0]);
8230 env->xregs[0] = do_arm_semihosting(env);
8231 return;
8232 default:
8233 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8234 }
8235
8236 if (is_a64(env)) {
8237 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8238 aarch64_save_sp(env, arm_current_el(env));
8239 env->elr_el[new_el] = env->pc;
8240 } else {
8241 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8242 env->elr_el[new_el] = env->regs[15];
8243
8244 aarch64_sync_32_to_64(env);
8245
8246 env->condexec_bits = 0;
8247 }
8248 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8249 env->elr_el[new_el]);
8250
8251 pstate_write(env, PSTATE_DAIF | new_mode);
8252 env->aarch64 = 1;
8253 aarch64_restore_sp(env, new_el);
8254
8255 env->pc = addr;
8256
8257 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8258 new_el, env->pc, pstate_read(env));
8259 }
8260
8261 static inline bool check_for_semihosting(CPUState *cs)
8262 {
8263 #ifdef CONFIG_TCG
8264 /* Check whether this exception is a semihosting call; if so
8265 * then handle it and return true; otherwise return false.
8266 */
8267 ARMCPU *cpu = ARM_CPU(cs);
8268 CPUARMState *env = &cpu->env;
8269
8270 if (is_a64(env)) {
8271 if (cs->exception_index == EXCP_SEMIHOST) {
8272 /* This is always the 64-bit semihosting exception.
8273 * The "is this usermode" and "is semihosting enabled"
8274 * checks have been done at translate time.
8275 */
8276 qemu_log_mask(CPU_LOG_INT,
8277 "...handling as semihosting call 0x%" PRIx64 "\n",
8278 env->xregs[0]);
8279 env->xregs[0] = do_arm_semihosting(env);
8280 return true;
8281 }
8282 return false;
8283 } else {
8284 uint32_t imm;
8285
8286 /* Only intercept calls from privileged modes, to provide some
8287 * semblance of security.
8288 */
8289 if (cs->exception_index != EXCP_SEMIHOST &&
8290 (!semihosting_enabled() ||
8291 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8292 return false;
8293 }
8294
8295 switch (cs->exception_index) {
8296 case EXCP_SEMIHOST:
8297 /* This is always a semihosting call; the "is this usermode"
8298 * and "is semihosting enabled" checks have been done at
8299 * translate time.
8300 */
8301 break;
8302 case EXCP_SWI:
8303 /* Check for semihosting interrupt. */
8304 if (env->thumb) {
8305 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8306 & 0xff;
8307 if (imm == 0xab) {
8308 break;
8309 }
8310 } else {
8311 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8312 & 0xffffff;
8313 if (imm == 0x123456) {
8314 break;
8315 }
8316 }
8317 return false;
8318 case EXCP_BKPT:
8319 /* See if this is a semihosting syscall. */
8320 if (env->thumb) {
8321 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8322 & 0xff;
8323 if (imm == 0xab) {
8324 env->regs[15] += 2;
8325 break;
8326 }
8327 }
8328 return false;
8329 default:
8330 return false;
8331 }
8332
8333 qemu_log_mask(CPU_LOG_INT,
8334 "...handling as semihosting call 0x%x\n",
8335 env->regs[0]);
8336 env->regs[0] = do_arm_semihosting(env);
8337 return true;
8338 }
8339 #else
8340 return false;
8341 #endif
8342 }
8343
8344 /* Handle a CPU exception for A and R profile CPUs.
8345 * Do any appropriate logging, handle PSCI calls, and then hand off
8346 * to the AArch64-entry or AArch32-entry function depending on the
8347 * target exception level's register width.
8348 */
8349 void arm_cpu_do_interrupt(CPUState *cs)
8350 {
8351 ARMCPU *cpu = ARM_CPU(cs);
8352 CPUARMState *env = &cpu->env;
8353 unsigned int new_el = env->exception.target_el;
8354
8355 assert(!arm_feature(env, ARM_FEATURE_M));
8356
8357 arm_log_exception(cs->exception_index);
8358 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8359 new_el);
8360 if (qemu_loglevel_mask(CPU_LOG_INT)
8361 && !excp_is_internal(cs->exception_index)) {
8362 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8363 syn_get_ec(env->exception.syndrome),
8364 env->exception.syndrome);
8365 }
8366
8367 if (arm_is_psci_call(cpu, cs->exception_index)) {
8368 arm_handle_psci_call(cpu);
8369 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8370 return;
8371 }
8372
8373 /* Semihosting semantics depend on the register width of the
8374 * code that caused the exception, not the target exception level,
8375 * so must be handled here.
8376 */
8377 if (check_for_semihosting(cs)) {
8378 return;
8379 }
8380
8381 /* Hooks may change global state so BQL should be held, also the
8382 * BQL needs to be held for any modification of
8383 * cs->interrupt_request.
8384 */
8385 g_assert(qemu_mutex_iothread_locked());
8386
8387 arm_call_pre_el_change_hook(cpu);
8388
8389 assert(!excp_is_internal(cs->exception_index));
8390 if (arm_el_is_aa64(env, new_el)) {
8391 arm_cpu_do_interrupt_aarch64(cs);
8392 } else {
8393 arm_cpu_do_interrupt_aarch32(cs);
8394 }
8395
8396 arm_call_el_change_hook(cpu);
8397
8398 if (!kvm_enabled()) {
8399 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8400 }
8401 }
8402 #endif /* !CONFIG_USER_ONLY */
8403
8404 /* Return the exception level which controls this address translation regime */
8405 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8406 {
8407 switch (mmu_idx) {
8408 case ARMMMUIdx_S2NS:
8409 case ARMMMUIdx_S1E2:
8410 return 2;
8411 case ARMMMUIdx_S1E3:
8412 return 3;
8413 case ARMMMUIdx_S1SE0:
8414 return arm_el_is_aa64(env, 3) ? 1 : 3;
8415 case ARMMMUIdx_S1SE1:
8416 case ARMMMUIdx_S1NSE0:
8417 case ARMMMUIdx_S1NSE1:
8418 case ARMMMUIdx_MPrivNegPri:
8419 case ARMMMUIdx_MUserNegPri:
8420 case ARMMMUIdx_MPriv:
8421 case ARMMMUIdx_MUser:
8422 case ARMMMUIdx_MSPrivNegPri:
8423 case ARMMMUIdx_MSUserNegPri:
8424 case ARMMMUIdx_MSPriv:
8425 case ARMMMUIdx_MSUser:
8426 return 1;
8427 default:
8428 g_assert_not_reached();
8429 }
8430 }
8431
8432 #ifndef CONFIG_USER_ONLY
8433
8434 /* Return the SCTLR value which controls this address translation regime */
8435 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8436 {
8437 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8438 }
8439
8440 /* Return true if the specified stage of address translation is disabled */
8441 static inline bool regime_translation_disabled(CPUARMState *env,
8442 ARMMMUIdx mmu_idx)
8443 {
8444 if (arm_feature(env, ARM_FEATURE_M)) {
8445 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8446 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8447 case R_V7M_MPU_CTRL_ENABLE_MASK:
8448 /* Enabled, but not for HardFault and NMI */
8449 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8450 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8451 /* Enabled for all cases */
8452 return false;
8453 case 0:
8454 default:
8455 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8456 * we warned about that in armv7m_nvic.c when the guest set it.
8457 */
8458 return true;
8459 }
8460 }
8461
8462 if (mmu_idx == ARMMMUIdx_S2NS) {
8463 /* HCR.DC means HCR.VM behaves as 1 */
8464 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8465 }
8466
8467 if (env->cp15.hcr_el2 & HCR_TGE) {
8468 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8469 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8470 return true;
8471 }
8472 }
8473
8474 if ((env->cp15.hcr_el2 & HCR_DC) &&
8475 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8476 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8477 return true;
8478 }
8479
8480 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8481 }
8482
8483 static inline bool regime_translation_big_endian(CPUARMState *env,
8484 ARMMMUIdx mmu_idx)
8485 {
8486 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8487 }
8488
8489 /* Return the TTBR associated with this translation regime */
8490 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8491 int ttbrn)
8492 {
8493 if (mmu_idx == ARMMMUIdx_S2NS) {
8494 return env->cp15.vttbr_el2;
8495 }
8496 if (ttbrn == 0) {
8497 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8498 } else {
8499 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8500 }
8501 }
8502
8503 #endif /* !CONFIG_USER_ONLY */
8504
8505 /* Return the TCR controlling this translation regime */
8506 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8507 {
8508 if (mmu_idx == ARMMMUIdx_S2NS) {
8509 return &env->cp15.vtcr_el2;
8510 }
8511 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8512 }
8513
8514 /* Convert a possible stage1+2 MMU index into the appropriate
8515 * stage 1 MMU index
8516 */
8517 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8518 {
8519 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8520 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8521 }
8522 return mmu_idx;
8523 }
8524
8525 /* Return true if the translation regime is using LPAE format page tables */
8526 static inline bool regime_using_lpae_format(CPUARMState *env,
8527 ARMMMUIdx mmu_idx)
8528 {
8529 int el = regime_el(env, mmu_idx);
8530 if (el == 2 || arm_el_is_aa64(env, el)) {
8531 return true;
8532 }
8533 if (arm_feature(env, ARM_FEATURE_LPAE)
8534 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8535 return true;
8536 }
8537 return false;
8538 }
8539
8540 /* Returns true if the stage 1 translation regime is using LPAE format page
8541 * tables. Used when raising alignment exceptions, whose FSR changes depending
8542 * on whether the long or short descriptor format is in use. */
8543 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8544 {
8545 mmu_idx = stage_1_mmu_idx(mmu_idx);
8546
8547 return regime_using_lpae_format(env, mmu_idx);
8548 }
8549
8550 #ifndef CONFIG_USER_ONLY
8551 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8552 {
8553 switch (mmu_idx) {
8554 case ARMMMUIdx_S1SE0:
8555 case ARMMMUIdx_S1NSE0:
8556 case ARMMMUIdx_MUser:
8557 case ARMMMUIdx_MSUser:
8558 case ARMMMUIdx_MUserNegPri:
8559 case ARMMMUIdx_MSUserNegPri:
8560 return true;
8561 default:
8562 return false;
8563 case ARMMMUIdx_S12NSE0:
8564 case ARMMMUIdx_S12NSE1:
8565 g_assert_not_reached();
8566 }
8567 }
8568
8569 /* Translate section/page access permissions to page
8570 * R/W protection flags
8571 *
8572 * @env: CPUARMState
8573 * @mmu_idx: MMU index indicating required translation regime
8574 * @ap: The 3-bit access permissions (AP[2:0])
8575 * @domain_prot: The 2-bit domain access permissions
8576 */
8577 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8578 int ap, int domain_prot)
8579 {
8580 bool is_user = regime_is_user(env, mmu_idx);
8581
8582 if (domain_prot == 3) {
8583 return PAGE_READ | PAGE_WRITE;
8584 }
8585
8586 switch (ap) {
8587 case 0:
8588 if (arm_feature(env, ARM_FEATURE_V7)) {
8589 return 0;
8590 }
8591 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8592 case SCTLR_S:
8593 return is_user ? 0 : PAGE_READ;
8594 case SCTLR_R:
8595 return PAGE_READ;
8596 default:
8597 return 0;
8598 }
8599 case 1:
8600 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8601 case 2:
8602 if (is_user) {
8603 return PAGE_READ;
8604 } else {
8605 return PAGE_READ | PAGE_WRITE;
8606 }
8607 case 3:
8608 return PAGE_READ | PAGE_WRITE;
8609 case 4: /* Reserved. */
8610 return 0;
8611 case 5:
8612 return is_user ? 0 : PAGE_READ;
8613 case 6:
8614 return PAGE_READ;
8615 case 7:
8616 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8617 return 0;
8618 }
8619 return PAGE_READ;
8620 default:
8621 g_assert_not_reached();
8622 }
8623 }
8624
8625 /* Translate section/page access permissions to page
8626 * R/W protection flags.
8627 *
8628 * @ap: The 2-bit simple AP (AP[2:1])
8629 * @is_user: TRUE if accessing from PL0
8630 */
8631 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8632 {
8633 switch (ap) {
8634 case 0:
8635 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8636 case 1:
8637 return PAGE_READ | PAGE_WRITE;
8638 case 2:
8639 return is_user ? 0 : PAGE_READ;
8640 case 3:
8641 return PAGE_READ;
8642 default:
8643 g_assert_not_reached();
8644 }
8645 }
8646
8647 static inline int
8648 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8649 {
8650 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8651 }
8652
8653 /* Translate S2 section/page access permissions to protection flags
8654 *
8655 * @env: CPUARMState
8656 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8657 * @xn: XN (execute-never) bit
8658 */
8659 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8660 {
8661 int prot = 0;
8662
8663 if (s2ap & 1) {
8664 prot |= PAGE_READ;
8665 }
8666 if (s2ap & 2) {
8667 prot |= PAGE_WRITE;
8668 }
8669 if (!xn) {
8670 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8671 prot |= PAGE_EXEC;
8672 }
8673 }
8674 return prot;
8675 }
8676
8677 /* Translate section/page access permissions to protection flags
8678 *
8679 * @env: CPUARMState
8680 * @mmu_idx: MMU index indicating required translation regime
8681 * @is_aa64: TRUE if AArch64
8682 * @ap: The 2-bit simple AP (AP[2:1])
8683 * @ns: NS (non-secure) bit
8684 * @xn: XN (execute-never) bit
8685 * @pxn: PXN (privileged execute-never) bit
8686 */
8687 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8688 int ap, int ns, int xn, int pxn)
8689 {
8690 bool is_user = regime_is_user(env, mmu_idx);
8691 int prot_rw, user_rw;
8692 bool have_wxn;
8693 int wxn = 0;
8694
8695 assert(mmu_idx != ARMMMUIdx_S2NS);
8696
8697 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8698 if (is_user) {
8699 prot_rw = user_rw;
8700 } else {
8701 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8702 }
8703
8704 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8705 return prot_rw;
8706 }
8707
8708 /* TODO have_wxn should be replaced with
8709 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8710 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8711 * compatible processors have EL2, which is required for [U]WXN.
8712 */
8713 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8714
8715 if (have_wxn) {
8716 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8717 }
8718
8719 if (is_aa64) {
8720 switch (regime_el(env, mmu_idx)) {
8721 case 1:
8722 if (!is_user) {
8723 xn = pxn || (user_rw & PAGE_WRITE);
8724 }
8725 break;
8726 case 2:
8727 case 3:
8728 break;
8729 }
8730 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8731 switch (regime_el(env, mmu_idx)) {
8732 case 1:
8733 case 3:
8734 if (is_user) {
8735 xn = xn || !(user_rw & PAGE_READ);
8736 } else {
8737 int uwxn = 0;
8738 if (have_wxn) {
8739 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8740 }
8741 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8742 (uwxn && (user_rw & PAGE_WRITE));
8743 }
8744 break;
8745 case 2:
8746 break;
8747 }
8748 } else {
8749 xn = wxn = 0;
8750 }
8751
8752 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8753 return prot_rw;
8754 }
8755 return prot_rw | PAGE_EXEC;
8756 }
8757
8758 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8759 uint32_t *table, uint32_t address)
8760 {
8761 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8762 TCR *tcr = regime_tcr(env, mmu_idx);
8763
8764 if (address & tcr->mask) {
8765 if (tcr->raw_tcr & TTBCR_PD1) {
8766 /* Translation table walk disabled for TTBR1 */
8767 return false;
8768 }
8769 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8770 } else {
8771 if (tcr->raw_tcr & TTBCR_PD0) {
8772 /* Translation table walk disabled for TTBR0 */
8773 return false;
8774 }
8775 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8776 }
8777 *table |= (address >> 18) & 0x3ffc;
8778 return true;
8779 }
8780
8781 /* Translate a S1 pagetable walk through S2 if needed. */
8782 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8783 hwaddr addr, MemTxAttrs txattrs,
8784 ARMMMUFaultInfo *fi)
8785 {
8786 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8787 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8788 target_ulong s2size;
8789 hwaddr s2pa;
8790 int s2prot;
8791 int ret;
8792 ARMCacheAttrs cacheattrs = {};
8793 ARMCacheAttrs *pcacheattrs = NULL;
8794
8795 if (env->cp15.hcr_el2 & HCR_PTW) {
8796 /*
8797 * PTW means we must fault if this S1 walk touches S2 Device
8798 * memory; otherwise we don't care about the attributes and can
8799 * save the S2 translation the effort of computing them.
8800 */
8801 pcacheattrs = &cacheattrs;
8802 }
8803
8804 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8805 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8806 if (ret) {
8807 assert(fi->type != ARMFault_None);
8808 fi->s2addr = addr;
8809 fi->stage2 = true;
8810 fi->s1ptw = true;
8811 return ~0;
8812 }
8813 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8814 /* Access was to Device memory: generate Permission fault */
8815 fi->type = ARMFault_Permission;
8816 fi->s2addr = addr;
8817 fi->stage2 = true;
8818 fi->s1ptw = true;
8819 return ~0;
8820 }
8821 addr = s2pa;
8822 }
8823 return addr;
8824 }
8825
8826 /* All loads done in the course of a page table walk go through here. */
8827 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8828 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8829 {
8830 ARMCPU *cpu = ARM_CPU(cs);
8831 CPUARMState *env = &cpu->env;
8832 MemTxAttrs attrs = {};
8833 MemTxResult result = MEMTX_OK;
8834 AddressSpace *as;
8835 uint32_t data;
8836
8837 attrs.secure = is_secure;
8838 as = arm_addressspace(cs, attrs);
8839 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8840 if (fi->s1ptw) {
8841 return 0;
8842 }
8843 if (regime_translation_big_endian(env, mmu_idx)) {
8844 data = address_space_ldl_be(as, addr, attrs, &result);
8845 } else {
8846 data = address_space_ldl_le(as, addr, attrs, &result);
8847 }
8848 if (result == MEMTX_OK) {
8849 return data;
8850 }
8851 fi->type = ARMFault_SyncExternalOnWalk;
8852 fi->ea = arm_extabort_type(result);
8853 return 0;
8854 }
8855
8856 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8857 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8858 {
8859 ARMCPU *cpu = ARM_CPU(cs);
8860 CPUARMState *env = &cpu->env;
8861 MemTxAttrs attrs = {};
8862 MemTxResult result = MEMTX_OK;
8863 AddressSpace *as;
8864 uint64_t data;
8865
8866 attrs.secure = is_secure;
8867 as = arm_addressspace(cs, attrs);
8868 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8869 if (fi->s1ptw) {
8870 return 0;
8871 }
8872 if (regime_translation_big_endian(env, mmu_idx)) {
8873 data = address_space_ldq_be(as, addr, attrs, &result);
8874 } else {
8875 data = address_space_ldq_le(as, addr, attrs, &result);
8876 }
8877 if (result == MEMTX_OK) {
8878 return data;
8879 }
8880 fi->type = ARMFault_SyncExternalOnWalk;
8881 fi->ea = arm_extabort_type(result);
8882 return 0;
8883 }
8884
8885 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8886 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8887 hwaddr *phys_ptr, int *prot,
8888 target_ulong *page_size,
8889 ARMMMUFaultInfo *fi)
8890 {
8891 CPUState *cs = env_cpu(env);
8892 int level = 1;
8893 uint32_t table;
8894 uint32_t desc;
8895 int type;
8896 int ap;
8897 int domain = 0;
8898 int domain_prot;
8899 hwaddr phys_addr;
8900 uint32_t dacr;
8901
8902 /* Pagetable walk. */
8903 /* Lookup l1 descriptor. */
8904 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8905 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8906 fi->type = ARMFault_Translation;
8907 goto do_fault;
8908 }
8909 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8910 mmu_idx, fi);
8911 if (fi->type != ARMFault_None) {
8912 goto do_fault;
8913 }
8914 type = (desc & 3);
8915 domain = (desc >> 5) & 0x0f;
8916 if (regime_el(env, mmu_idx) == 1) {
8917 dacr = env->cp15.dacr_ns;
8918 } else {
8919 dacr = env->cp15.dacr_s;
8920 }
8921 domain_prot = (dacr >> (domain * 2)) & 3;
8922 if (type == 0) {
8923 /* Section translation fault. */
8924 fi->type = ARMFault_Translation;
8925 goto do_fault;
8926 }
8927 if (type != 2) {
8928 level = 2;
8929 }
8930 if (domain_prot == 0 || domain_prot == 2) {
8931 fi->type = ARMFault_Domain;
8932 goto do_fault;
8933 }
8934 if (type == 2) {
8935 /* 1Mb section. */
8936 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8937 ap = (desc >> 10) & 3;
8938 *page_size = 1024 * 1024;
8939 } else {
8940 /* Lookup l2 entry. */
8941 if (type == 1) {
8942 /* Coarse pagetable. */
8943 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8944 } else {
8945 /* Fine pagetable. */
8946 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8947 }
8948 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8949 mmu_idx, fi);
8950 if (fi->type != ARMFault_None) {
8951 goto do_fault;
8952 }
8953 switch (desc & 3) {
8954 case 0: /* Page translation fault. */
8955 fi->type = ARMFault_Translation;
8956 goto do_fault;
8957 case 1: /* 64k page. */
8958 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8959 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8960 *page_size = 0x10000;
8961 break;
8962 case 2: /* 4k page. */
8963 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8964 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8965 *page_size = 0x1000;
8966 break;
8967 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8968 if (type == 1) {
8969 /* ARMv6/XScale extended small page format */
8970 if (arm_feature(env, ARM_FEATURE_XSCALE)
8971 || arm_feature(env, ARM_FEATURE_V6)) {
8972 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8973 *page_size = 0x1000;
8974 } else {
8975 /* UNPREDICTABLE in ARMv5; we choose to take a
8976 * page translation fault.
8977 */
8978 fi->type = ARMFault_Translation;
8979 goto do_fault;
8980 }
8981 } else {
8982 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8983 *page_size = 0x400;
8984 }
8985 ap = (desc >> 4) & 3;
8986 break;
8987 default:
8988 /* Never happens, but compiler isn't smart enough to tell. */
8989 abort();
8990 }
8991 }
8992 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8993 *prot |= *prot ? PAGE_EXEC : 0;
8994 if (!(*prot & (1 << access_type))) {
8995 /* Access permission fault. */
8996 fi->type = ARMFault_Permission;
8997 goto do_fault;
8998 }
8999 *phys_ptr = phys_addr;
9000 return false;
9001 do_fault:
9002 fi->domain = domain;
9003 fi->level = level;
9004 return true;
9005 }
9006
9007 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9008 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9009 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9010 target_ulong *page_size, ARMMMUFaultInfo *fi)
9011 {
9012 CPUState *cs = env_cpu(env);
9013 int level = 1;
9014 uint32_t table;
9015 uint32_t desc;
9016 uint32_t xn;
9017 uint32_t pxn = 0;
9018 int type;
9019 int ap;
9020 int domain = 0;
9021 int domain_prot;
9022 hwaddr phys_addr;
9023 uint32_t dacr;
9024 bool ns;
9025
9026 /* Pagetable walk. */
9027 /* Lookup l1 descriptor. */
9028 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9029 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9030 fi->type = ARMFault_Translation;
9031 goto do_fault;
9032 }
9033 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9034 mmu_idx, fi);
9035 if (fi->type != ARMFault_None) {
9036 goto do_fault;
9037 }
9038 type = (desc & 3);
9039 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9040 /* Section translation fault, or attempt to use the encoding
9041 * which is Reserved on implementations without PXN.
9042 */
9043 fi->type = ARMFault_Translation;
9044 goto do_fault;
9045 }
9046 if ((type == 1) || !(desc & (1 << 18))) {
9047 /* Page or Section. */
9048 domain = (desc >> 5) & 0x0f;
9049 }
9050 if (regime_el(env, mmu_idx) == 1) {
9051 dacr = env->cp15.dacr_ns;
9052 } else {
9053 dacr = env->cp15.dacr_s;
9054 }
9055 if (type == 1) {
9056 level = 2;
9057 }
9058 domain_prot = (dacr >> (domain * 2)) & 3;
9059 if (domain_prot == 0 || domain_prot == 2) {
9060 /* Section or Page domain fault */
9061 fi->type = ARMFault_Domain;
9062 goto do_fault;
9063 }
9064 if (type != 1) {
9065 if (desc & (1 << 18)) {
9066 /* Supersection. */
9067 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9068 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9069 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9070 *page_size = 0x1000000;
9071 } else {
9072 /* Section. */
9073 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9074 *page_size = 0x100000;
9075 }
9076 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9077 xn = desc & (1 << 4);
9078 pxn = desc & 1;
9079 ns = extract32(desc, 19, 1);
9080 } else {
9081 if (arm_feature(env, ARM_FEATURE_PXN)) {
9082 pxn = (desc >> 2) & 1;
9083 }
9084 ns = extract32(desc, 3, 1);
9085 /* Lookup l2 entry. */
9086 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9087 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9088 mmu_idx, fi);
9089 if (fi->type != ARMFault_None) {
9090 goto do_fault;
9091 }
9092 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9093 switch (desc & 3) {
9094 case 0: /* Page translation fault. */
9095 fi->type = ARMFault_Translation;
9096 goto do_fault;
9097 case 1: /* 64k page. */
9098 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9099 xn = desc & (1 << 15);
9100 *page_size = 0x10000;
9101 break;
9102 case 2: case 3: /* 4k page. */
9103 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9104 xn = desc & 1;
9105 *page_size = 0x1000;
9106 break;
9107 default:
9108 /* Never happens, but compiler isn't smart enough to tell. */
9109 abort();
9110 }
9111 }
9112 if (domain_prot == 3) {
9113 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9114 } else {
9115 if (pxn && !regime_is_user(env, mmu_idx)) {
9116 xn = 1;
9117 }
9118 if (xn && access_type == MMU_INST_FETCH) {
9119 fi->type = ARMFault_Permission;
9120 goto do_fault;
9121 }
9122
9123 if (arm_feature(env, ARM_FEATURE_V6K) &&
9124 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9125 /* The simplified model uses AP[0] as an access control bit. */
9126 if ((ap & 1) == 0) {
9127 /* Access flag fault. */
9128 fi->type = ARMFault_AccessFlag;
9129 goto do_fault;
9130 }
9131 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9132 } else {
9133 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9134 }
9135 if (*prot && !xn) {
9136 *prot |= PAGE_EXEC;
9137 }
9138 if (!(*prot & (1 << access_type))) {
9139 /* Access permission fault. */
9140 fi->type = ARMFault_Permission;
9141 goto do_fault;
9142 }
9143 }
9144 if (ns) {
9145 /* The NS bit will (as required by the architecture) have no effect if
9146 * the CPU doesn't support TZ or this is a non-secure translation
9147 * regime, because the attribute will already be non-secure.
9148 */
9149 attrs->secure = false;
9150 }
9151 *phys_ptr = phys_addr;
9152 return false;
9153 do_fault:
9154 fi->domain = domain;
9155 fi->level = level;
9156 return true;
9157 }
9158
9159 /*
9160 * check_s2_mmu_setup
9161 * @cpu: ARMCPU
9162 * @is_aa64: True if the translation regime is in AArch64 state
9163 * @startlevel: Suggested starting level
9164 * @inputsize: Bitsize of IPAs
9165 * @stride: Page-table stride (See the ARM ARM)
9166 *
9167 * Returns true if the suggested S2 translation parameters are OK and
9168 * false otherwise.
9169 */
9170 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9171 int inputsize, int stride)
9172 {
9173 const int grainsize = stride + 3;
9174 int startsizecheck;
9175
9176 /* Negative levels are never allowed. */
9177 if (level < 0) {
9178 return false;
9179 }
9180
9181 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9182 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9183 return false;
9184 }
9185
9186 if (is_aa64) {
9187 CPUARMState *env = &cpu->env;
9188 unsigned int pamax = arm_pamax(cpu);
9189
9190 switch (stride) {
9191 case 13: /* 64KB Pages. */
9192 if (level == 0 || (level == 1 && pamax <= 42)) {
9193 return false;
9194 }
9195 break;
9196 case 11: /* 16KB Pages. */
9197 if (level == 0 || (level == 1 && pamax <= 40)) {
9198 return false;
9199 }
9200 break;
9201 case 9: /* 4KB Pages. */
9202 if (level == 0 && pamax <= 42) {
9203 return false;
9204 }
9205 break;
9206 default:
9207 g_assert_not_reached();
9208 }
9209
9210 /* Inputsize checks. */
9211 if (inputsize > pamax &&
9212 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9213 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9214 return false;
9215 }
9216 } else {
9217 /* AArch32 only supports 4KB pages. Assert on that. */
9218 assert(stride == 9);
9219
9220 if (level == 0) {
9221 return false;
9222 }
9223 }
9224 return true;
9225 }
9226
9227 /* Translate from the 4-bit stage 2 representation of
9228 * memory attributes (without cache-allocation hints) to
9229 * the 8-bit representation of the stage 1 MAIR registers
9230 * (which includes allocation hints).
9231 *
9232 * ref: shared/translation/attrs/S2AttrDecode()
9233 * .../S2ConvertAttrsHints()
9234 */
9235 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9236 {
9237 uint8_t hiattr = extract32(s2attrs, 2, 2);
9238 uint8_t loattr = extract32(s2attrs, 0, 2);
9239 uint8_t hihint = 0, lohint = 0;
9240
9241 if (hiattr != 0) { /* normal memory */
9242 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9243 hiattr = loattr = 1; /* non-cacheable */
9244 } else {
9245 if (hiattr != 1) { /* Write-through or write-back */
9246 hihint = 3; /* RW allocate */
9247 }
9248 if (loattr != 1) { /* Write-through or write-back */
9249 lohint = 3; /* RW allocate */
9250 }
9251 }
9252 }
9253
9254 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9255 }
9256 #endif /* !CONFIG_USER_ONLY */
9257
9258 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9259 ARMMMUIdx mmu_idx)
9260 {
9261 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9262 uint32_t el = regime_el(env, mmu_idx);
9263 bool tbi, tbid, epd, hpd, using16k, using64k;
9264 int select, tsz;
9265
9266 /*
9267 * Bit 55 is always between the two regions, and is canonical for
9268 * determining if address tagging is enabled.
9269 */
9270 select = extract64(va, 55, 1);
9271
9272 if (el > 1) {
9273 tsz = extract32(tcr, 0, 6);
9274 using64k = extract32(tcr, 14, 1);
9275 using16k = extract32(tcr, 15, 1);
9276 if (mmu_idx == ARMMMUIdx_S2NS) {
9277 /* VTCR_EL2 */
9278 tbi = tbid = hpd = false;
9279 } else {
9280 tbi = extract32(tcr, 20, 1);
9281 hpd = extract32(tcr, 24, 1);
9282 tbid = extract32(tcr, 29, 1);
9283 }
9284 epd = false;
9285 } else if (!select) {
9286 tsz = extract32(tcr, 0, 6);
9287 epd = extract32(tcr, 7, 1);
9288 using64k = extract32(tcr, 14, 1);
9289 using16k = extract32(tcr, 15, 1);
9290 tbi = extract64(tcr, 37, 1);
9291 hpd = extract64(tcr, 41, 1);
9292 tbid = extract64(tcr, 51, 1);
9293 } else {
9294 int tg = extract32(tcr, 30, 2);
9295 using16k = tg == 1;
9296 using64k = tg == 3;
9297 tsz = extract32(tcr, 16, 6);
9298 epd = extract32(tcr, 23, 1);
9299 tbi = extract64(tcr, 38, 1);
9300 hpd = extract64(tcr, 42, 1);
9301 tbid = extract64(tcr, 52, 1);
9302 }
9303 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
9304 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
9305
9306 return (ARMVAParameters) {
9307 .tsz = tsz,
9308 .select = select,
9309 .tbi = tbi,
9310 .tbid = tbid,
9311 .epd = epd,
9312 .hpd = hpd,
9313 .using16k = using16k,
9314 .using64k = using64k,
9315 };
9316 }
9317
9318 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9319 ARMMMUIdx mmu_idx, bool data)
9320 {
9321 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9322
9323 /* Present TBI as a composite with TBID. */
9324 ret.tbi &= (data || !ret.tbid);
9325 return ret;
9326 }
9327
9328 #ifndef CONFIG_USER_ONLY
9329 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9330 ARMMMUIdx mmu_idx)
9331 {
9332 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9333 uint32_t el = regime_el(env, mmu_idx);
9334 int select, tsz;
9335 bool epd, hpd;
9336
9337 if (mmu_idx == ARMMMUIdx_S2NS) {
9338 /* VTCR */
9339 bool sext = extract32(tcr, 4, 1);
9340 bool sign = extract32(tcr, 3, 1);
9341
9342 /*
9343 * If the sign-extend bit is not the same as t0sz[3], the result
9344 * is unpredictable. Flag this as a guest error.
9345 */
9346 if (sign != sext) {
9347 qemu_log_mask(LOG_GUEST_ERROR,
9348 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9349 }
9350 tsz = sextract32(tcr, 0, 4) + 8;
9351 select = 0;
9352 hpd = false;
9353 epd = false;
9354 } else if (el == 2) {
9355 /* HTCR */
9356 tsz = extract32(tcr, 0, 3);
9357 select = 0;
9358 hpd = extract64(tcr, 24, 1);
9359 epd = false;
9360 } else {
9361 int t0sz = extract32(tcr, 0, 3);
9362 int t1sz = extract32(tcr, 16, 3);
9363
9364 if (t1sz == 0) {
9365 select = va > (0xffffffffu >> t0sz);
9366 } else {
9367 /* Note that we will detect errors later. */
9368 select = va >= ~(0xffffffffu >> t1sz);
9369 }
9370 if (!select) {
9371 tsz = t0sz;
9372 epd = extract32(tcr, 7, 1);
9373 hpd = extract64(tcr, 41, 1);
9374 } else {
9375 tsz = t1sz;
9376 epd = extract32(tcr, 23, 1);
9377 hpd = extract64(tcr, 42, 1);
9378 }
9379 /* For aarch32, hpd0 is not enabled without t2e as well. */
9380 hpd &= extract32(tcr, 6, 1);
9381 }
9382
9383 return (ARMVAParameters) {
9384 .tsz = tsz,
9385 .select = select,
9386 .epd = epd,
9387 .hpd = hpd,
9388 };
9389 }
9390
9391 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9392 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9393 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9394 target_ulong *page_size_ptr,
9395 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9396 {
9397 ARMCPU *cpu = env_archcpu(env);
9398 CPUState *cs = CPU(cpu);
9399 /* Read an LPAE long-descriptor translation table. */
9400 ARMFaultType fault_type = ARMFault_Translation;
9401 uint32_t level;
9402 ARMVAParameters param;
9403 uint64_t ttbr;
9404 hwaddr descaddr, indexmask, indexmask_grainsize;
9405 uint32_t tableattrs;
9406 target_ulong page_size;
9407 uint32_t attrs;
9408 int32_t stride;
9409 int addrsize, inputsize;
9410 TCR *tcr = regime_tcr(env, mmu_idx);
9411 int ap, ns, xn, pxn;
9412 uint32_t el = regime_el(env, mmu_idx);
9413 bool ttbr1_valid;
9414 uint64_t descaddrmask;
9415 bool aarch64 = arm_el_is_aa64(env, el);
9416 bool guarded = false;
9417
9418 /* TODO:
9419 * This code does not handle the different format TCR for VTCR_EL2.
9420 * This code also does not support shareability levels.
9421 * Attribute and permission bit handling should also be checked when adding
9422 * support for those page table walks.
9423 */
9424 if (aarch64) {
9425 param = aa64_va_parameters(env, address, mmu_idx,
9426 access_type != MMU_INST_FETCH);
9427 level = 0;
9428 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9429 * invalid.
9430 */
9431 ttbr1_valid = (el < 2);
9432 addrsize = 64 - 8 * param.tbi;
9433 inputsize = 64 - param.tsz;
9434 } else {
9435 param = aa32_va_parameters(env, address, mmu_idx);
9436 level = 1;
9437 /* There is no TTBR1 for EL2 */
9438 ttbr1_valid = (el != 2);
9439 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9440 inputsize = addrsize - param.tsz;
9441 }
9442
9443 /*
9444 * We determined the region when collecting the parameters, but we
9445 * have not yet validated that the address is valid for the region.
9446 * Extract the top bits and verify that they all match select.
9447 *
9448 * For aa32, if inputsize == addrsize, then we have selected the
9449 * region by exclusion in aa32_va_parameters and there is no more
9450 * validation to do here.
9451 */
9452 if (inputsize < addrsize) {
9453 target_ulong top_bits = sextract64(address, inputsize,
9454 addrsize - inputsize);
9455 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9456 /* The gap between the two regions is a Translation fault */
9457 fault_type = ARMFault_Translation;
9458 goto do_fault;
9459 }
9460 }
9461
9462 if (param.using64k) {
9463 stride = 13;
9464 } else if (param.using16k) {
9465 stride = 11;
9466 } else {
9467 stride = 9;
9468 }
9469
9470 /* Note that QEMU ignores shareability and cacheability attributes,
9471 * so we don't need to do anything with the SH, ORGN, IRGN fields
9472 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9473 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9474 * implement any ASID-like capability so we can ignore it (instead
9475 * we will always flush the TLB any time the ASID is changed).
9476 */
9477 ttbr = regime_ttbr(env, mmu_idx, param.select);
9478
9479 /* Here we should have set up all the parameters for the translation:
9480 * inputsize, ttbr, epd, stride, tbi
9481 */
9482
9483 if (param.epd) {
9484 /* Translation table walk disabled => Translation fault on TLB miss
9485 * Note: This is always 0 on 64-bit EL2 and EL3.
9486 */
9487 goto do_fault;
9488 }
9489
9490 if (mmu_idx != ARMMMUIdx_S2NS) {
9491 /* The starting level depends on the virtual address size (which can
9492 * be up to 48 bits) and the translation granule size. It indicates
9493 * the number of strides (stride bits at a time) needed to
9494 * consume the bits of the input address. In the pseudocode this is:
9495 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9496 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9497 * our 'stride + 3' and 'stride' is our 'stride'.
9498 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9499 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9500 * = 4 - (inputsize - 4) / stride;
9501 */
9502 level = 4 - (inputsize - 4) / stride;
9503 } else {
9504 /* For stage 2 translations the starting level is specified by the
9505 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9506 */
9507 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9508 uint32_t startlevel;
9509 bool ok;
9510
9511 if (!aarch64 || stride == 9) {
9512 /* AArch32 or 4KB pages */
9513 startlevel = 2 - sl0;
9514 } else {
9515 /* 16KB or 64KB pages */
9516 startlevel = 3 - sl0;
9517 }
9518
9519 /* Check that the starting level is valid. */
9520 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9521 inputsize, stride);
9522 if (!ok) {
9523 fault_type = ARMFault_Translation;
9524 goto do_fault;
9525 }
9526 level = startlevel;
9527 }
9528
9529 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9530 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9531
9532 /* Now we can extract the actual base address from the TTBR */
9533 descaddr = extract64(ttbr, 0, 48);
9534 descaddr &= ~indexmask;
9535
9536 /* The address field in the descriptor goes up to bit 39 for ARMv7
9537 * but up to bit 47 for ARMv8, but we use the descaddrmask
9538 * up to bit 39 for AArch32, because we don't need other bits in that case
9539 * to construct next descriptor address (anyway they should be all zeroes).
9540 */
9541 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9542 ~indexmask_grainsize;
9543
9544 /* Secure accesses start with the page table in secure memory and
9545 * can be downgraded to non-secure at any step. Non-secure accesses
9546 * remain non-secure. We implement this by just ORing in the NSTable/NS
9547 * bits at each step.
9548 */
9549 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9550 for (;;) {
9551 uint64_t descriptor;
9552 bool nstable;
9553
9554 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9555 descaddr &= ~7ULL;
9556 nstable = extract32(tableattrs, 4, 1);
9557 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9558 if (fi->type != ARMFault_None) {
9559 goto do_fault;
9560 }
9561
9562 if (!(descriptor & 1) ||
9563 (!(descriptor & 2) && (level == 3))) {
9564 /* Invalid, or the Reserved level 3 encoding */
9565 goto do_fault;
9566 }
9567 descaddr = descriptor & descaddrmask;
9568
9569 if ((descriptor & 2) && (level < 3)) {
9570 /* Table entry. The top five bits are attributes which may
9571 * propagate down through lower levels of the table (and
9572 * which are all arranged so that 0 means "no effect", so
9573 * we can gather them up by ORing in the bits at each level).
9574 */
9575 tableattrs |= extract64(descriptor, 59, 5);
9576 level++;
9577 indexmask = indexmask_grainsize;
9578 continue;
9579 }
9580 /* Block entry at level 1 or 2, or page entry at level 3.
9581 * These are basically the same thing, although the number
9582 * of bits we pull in from the vaddr varies.
9583 */
9584 page_size = (1ULL << ((stride * (4 - level)) + 3));
9585 descaddr |= (address & (page_size - 1));
9586 /* Extract attributes from the descriptor */
9587 attrs = extract64(descriptor, 2, 10)
9588 | (extract64(descriptor, 52, 12) << 10);
9589
9590 if (mmu_idx == ARMMMUIdx_S2NS) {
9591 /* Stage 2 table descriptors do not include any attribute fields */
9592 break;
9593 }
9594 /* Merge in attributes from table descriptors */
9595 attrs |= nstable << 3; /* NS */
9596 guarded = extract64(descriptor, 50, 1); /* GP */
9597 if (param.hpd) {
9598 /* HPD disables all the table attributes except NSTable. */
9599 break;
9600 }
9601 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9602 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9603 * means "force PL1 access only", which means forcing AP[1] to 0.
9604 */
9605 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
9606 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
9607 break;
9608 }
9609 /* Here descaddr is the final physical address, and attributes
9610 * are all in attrs.
9611 */
9612 fault_type = ARMFault_AccessFlag;
9613 if ((attrs & (1 << 8)) == 0) {
9614 /* Access flag */
9615 goto do_fault;
9616 }
9617
9618 ap = extract32(attrs, 4, 2);
9619 xn = extract32(attrs, 12, 1);
9620
9621 if (mmu_idx == ARMMMUIdx_S2NS) {
9622 ns = true;
9623 *prot = get_S2prot(env, ap, xn);
9624 } else {
9625 ns = extract32(attrs, 3, 1);
9626 pxn = extract32(attrs, 11, 1);
9627 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9628 }
9629
9630 fault_type = ARMFault_Permission;
9631 if (!(*prot & (1 << access_type))) {
9632 goto do_fault;
9633 }
9634
9635 if (ns) {
9636 /* The NS bit will (as required by the architecture) have no effect if
9637 * the CPU doesn't support TZ or this is a non-secure translation
9638 * regime, because the attribute will already be non-secure.
9639 */
9640 txattrs->secure = false;
9641 }
9642 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9643 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9644 txattrs->target_tlb_bit0 = true;
9645 }
9646
9647 if (cacheattrs != NULL) {
9648 if (mmu_idx == ARMMMUIdx_S2NS) {
9649 cacheattrs->attrs = convert_stage2_attrs(env,
9650 extract32(attrs, 0, 4));
9651 } else {
9652 /* Index into MAIR registers for cache attributes */
9653 uint8_t attrindx = extract32(attrs, 0, 3);
9654 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9655 assert(attrindx <= 7);
9656 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9657 }
9658 cacheattrs->shareability = extract32(attrs, 6, 2);
9659 }
9660
9661 *phys_ptr = descaddr;
9662 *page_size_ptr = page_size;
9663 return false;
9664
9665 do_fault:
9666 fi->type = fault_type;
9667 fi->level = level;
9668 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9669 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9670 return true;
9671 }
9672
9673 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9674 ARMMMUIdx mmu_idx,
9675 int32_t address, int *prot)
9676 {
9677 if (!arm_feature(env, ARM_FEATURE_M)) {
9678 *prot = PAGE_READ | PAGE_WRITE;
9679 switch (address) {
9680 case 0xF0000000 ... 0xFFFFFFFF:
9681 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9682 /* hivecs execing is ok */
9683 *prot |= PAGE_EXEC;
9684 }
9685 break;
9686 case 0x00000000 ... 0x7FFFFFFF:
9687 *prot |= PAGE_EXEC;
9688 break;
9689 }
9690 } else {
9691 /* Default system address map for M profile cores.
9692 * The architecture specifies which regions are execute-never;
9693 * at the MPU level no other checks are defined.
9694 */
9695 switch (address) {
9696 case 0x00000000 ... 0x1fffffff: /* ROM */
9697 case 0x20000000 ... 0x3fffffff: /* SRAM */
9698 case 0x60000000 ... 0x7fffffff: /* RAM */
9699 case 0x80000000 ... 0x9fffffff: /* RAM */
9700 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9701 break;
9702 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9703 case 0xa0000000 ... 0xbfffffff: /* Device */
9704 case 0xc0000000 ... 0xdfffffff: /* Device */
9705 case 0xe0000000 ... 0xffffffff: /* System */
9706 *prot = PAGE_READ | PAGE_WRITE;
9707 break;
9708 default:
9709 g_assert_not_reached();
9710 }
9711 }
9712 }
9713
9714 static bool pmsav7_use_background_region(ARMCPU *cpu,
9715 ARMMMUIdx mmu_idx, bool is_user)
9716 {
9717 /* Return true if we should use the default memory map as a
9718 * "background" region if there are no hits against any MPU regions.
9719 */
9720 CPUARMState *env = &cpu->env;
9721
9722 if (is_user) {
9723 return false;
9724 }
9725
9726 if (arm_feature(env, ARM_FEATURE_M)) {
9727 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9728 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9729 } else {
9730 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9731 }
9732 }
9733
9734 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9735 {
9736 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9737 return arm_feature(env, ARM_FEATURE_M) &&
9738 extract32(address, 20, 12) == 0xe00;
9739 }
9740
9741 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9742 {
9743 /* True if address is in the M profile system region
9744 * 0xe0000000 - 0xffffffff
9745 */
9746 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9747 }
9748
9749 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9750 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9751 hwaddr *phys_ptr, int *prot,
9752 target_ulong *page_size,
9753 ARMMMUFaultInfo *fi)
9754 {
9755 ARMCPU *cpu = env_archcpu(env);
9756 int n;
9757 bool is_user = regime_is_user(env, mmu_idx);
9758
9759 *phys_ptr = address;
9760 *page_size = TARGET_PAGE_SIZE;
9761 *prot = 0;
9762
9763 if (regime_translation_disabled(env, mmu_idx) ||
9764 m_is_ppb_region(env, address)) {
9765 /* MPU disabled or M profile PPB access: use default memory map.
9766 * The other case which uses the default memory map in the
9767 * v7M ARM ARM pseudocode is exception vector reads from the vector
9768 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9769 * which always does a direct read using address_space_ldl(), rather
9770 * than going via this function, so we don't need to check that here.
9771 */
9772 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9773 } else { /* MPU enabled */
9774 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9775 /* region search */
9776 uint32_t base = env->pmsav7.drbar[n];
9777 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9778 uint32_t rmask;
9779 bool srdis = false;
9780
9781 if (!(env->pmsav7.drsr[n] & 0x1)) {
9782 continue;
9783 }
9784
9785 if (!rsize) {
9786 qemu_log_mask(LOG_GUEST_ERROR,
9787 "DRSR[%d]: Rsize field cannot be 0\n", n);
9788 continue;
9789 }
9790 rsize++;
9791 rmask = (1ull << rsize) - 1;
9792
9793 if (base & rmask) {
9794 qemu_log_mask(LOG_GUEST_ERROR,
9795 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9796 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9797 n, base, rmask);
9798 continue;
9799 }
9800
9801 if (address < base || address > base + rmask) {
9802 /*
9803 * Address not in this region. We must check whether the
9804 * region covers addresses in the same page as our address.
9805 * In that case we must not report a size that covers the
9806 * whole page for a subsequent hit against a different MPU
9807 * region or the background region, because it would result in
9808 * incorrect TLB hits for subsequent accesses to addresses that
9809 * are in this MPU region.
9810 */
9811 if (ranges_overlap(base, rmask,
9812 address & TARGET_PAGE_MASK,
9813 TARGET_PAGE_SIZE)) {
9814 *page_size = 1;
9815 }
9816 continue;
9817 }
9818
9819 /* Region matched */
9820
9821 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9822 int i, snd;
9823 uint32_t srdis_mask;
9824
9825 rsize -= 3; /* sub region size (power of 2) */
9826 snd = ((address - base) >> rsize) & 0x7;
9827 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9828
9829 srdis_mask = srdis ? 0x3 : 0x0;
9830 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9831 /* This will check in groups of 2, 4 and then 8, whether
9832 * the subregion bits are consistent. rsize is incremented
9833 * back up to give the region size, considering consistent
9834 * adjacent subregions as one region. Stop testing if rsize
9835 * is already big enough for an entire QEMU page.
9836 */
9837 int snd_rounded = snd & ~(i - 1);
9838 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9839 snd_rounded + 8, i);
9840 if (srdis_mask ^ srdis_multi) {
9841 break;
9842 }
9843 srdis_mask = (srdis_mask << i) | srdis_mask;
9844 rsize++;
9845 }
9846 }
9847 if (srdis) {
9848 continue;
9849 }
9850 if (rsize < TARGET_PAGE_BITS) {
9851 *page_size = 1 << rsize;
9852 }
9853 break;
9854 }
9855
9856 if (n == -1) { /* no hits */
9857 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9858 /* background fault */
9859 fi->type = ARMFault_Background;
9860 return true;
9861 }
9862 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9863 } else { /* a MPU hit! */
9864 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9865 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9866
9867 if (m_is_system_region(env, address)) {
9868 /* System space is always execute never */
9869 xn = 1;
9870 }
9871
9872 if (is_user) { /* User mode AP bit decoding */
9873 switch (ap) {
9874 case 0:
9875 case 1:
9876 case 5:
9877 break; /* no access */
9878 case 3:
9879 *prot |= PAGE_WRITE;
9880 /* fall through */
9881 case 2:
9882 case 6:
9883 *prot |= PAGE_READ | PAGE_EXEC;
9884 break;
9885 case 7:
9886 /* for v7M, same as 6; for R profile a reserved value */
9887 if (arm_feature(env, ARM_FEATURE_M)) {
9888 *prot |= PAGE_READ | PAGE_EXEC;
9889 break;
9890 }
9891 /* fall through */
9892 default:
9893 qemu_log_mask(LOG_GUEST_ERROR,
9894 "DRACR[%d]: Bad value for AP bits: 0x%"
9895 PRIx32 "\n", n, ap);
9896 }
9897 } else { /* Priv. mode AP bits decoding */
9898 switch (ap) {
9899 case 0:
9900 break; /* no access */
9901 case 1:
9902 case 2:
9903 case 3:
9904 *prot |= PAGE_WRITE;
9905 /* fall through */
9906 case 5:
9907 case 6:
9908 *prot |= PAGE_READ | PAGE_EXEC;
9909 break;
9910 case 7:
9911 /* for v7M, same as 6; for R profile a reserved value */
9912 if (arm_feature(env, ARM_FEATURE_M)) {
9913 *prot |= PAGE_READ | PAGE_EXEC;
9914 break;
9915 }
9916 /* fall through */
9917 default:
9918 qemu_log_mask(LOG_GUEST_ERROR,
9919 "DRACR[%d]: Bad value for AP bits: 0x%"
9920 PRIx32 "\n", n, ap);
9921 }
9922 }
9923
9924 /* execute never */
9925 if (xn) {
9926 *prot &= ~PAGE_EXEC;
9927 }
9928 }
9929 }
9930
9931 fi->type = ARMFault_Permission;
9932 fi->level = 1;
9933 return !(*prot & (1 << access_type));
9934 }
9935
9936 static bool v8m_is_sau_exempt(CPUARMState *env,
9937 uint32_t address, MMUAccessType access_type)
9938 {
9939 /* The architecture specifies that certain address ranges are
9940 * exempt from v8M SAU/IDAU checks.
9941 */
9942 return
9943 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9944 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9945 (address >= 0xe000e000 && address <= 0xe000efff) ||
9946 (address >= 0xe002e000 && address <= 0xe002efff) ||
9947 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9948 (address >= 0xe00ff000 && address <= 0xe00fffff);
9949 }
9950
9951 void v8m_security_lookup(CPUARMState *env, uint32_t address,
9952 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9953 V8M_SAttributes *sattrs)
9954 {
9955 /* Look up the security attributes for this address. Compare the
9956 * pseudocode SecurityCheck() function.
9957 * We assume the caller has zero-initialized *sattrs.
9958 */
9959 ARMCPU *cpu = env_archcpu(env);
9960 int r;
9961 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9962 int idau_region = IREGION_NOTVALID;
9963 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9964 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9965
9966 if (cpu->idau) {
9967 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9968 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9969
9970 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9971 &idau_nsc);
9972 }
9973
9974 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9975 /* 0xf0000000..0xffffffff is always S for insn fetches */
9976 return;
9977 }
9978
9979 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9980 sattrs->ns = !regime_is_secure(env, mmu_idx);
9981 return;
9982 }
9983
9984 if (idau_region != IREGION_NOTVALID) {
9985 sattrs->irvalid = true;
9986 sattrs->iregion = idau_region;
9987 }
9988
9989 switch (env->sau.ctrl & 3) {
9990 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9991 break;
9992 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9993 sattrs->ns = true;
9994 break;
9995 default: /* SAU.ENABLE == 1 */
9996 for (r = 0; r < cpu->sau_sregion; r++) {
9997 if (env->sau.rlar[r] & 1) {
9998 uint32_t base = env->sau.rbar[r] & ~0x1f;
9999 uint32_t limit = env->sau.rlar[r] | 0x1f;
10000
10001 if (base <= address && limit >= address) {
10002 if (base > addr_page_base || limit < addr_page_limit) {
10003 sattrs->subpage = true;
10004 }
10005 if (sattrs->srvalid) {
10006 /* If we hit in more than one region then we must report
10007 * as Secure, not NS-Callable, with no valid region
10008 * number info.
10009 */
10010 sattrs->ns = false;
10011 sattrs->nsc = false;
10012 sattrs->sregion = 0;
10013 sattrs->srvalid = false;
10014 break;
10015 } else {
10016 if (env->sau.rlar[r] & 2) {
10017 sattrs->nsc = true;
10018 } else {
10019 sattrs->ns = true;
10020 }
10021 sattrs->srvalid = true;
10022 sattrs->sregion = r;
10023 }
10024 } else {
10025 /*
10026 * Address not in this region. We must check whether the
10027 * region covers addresses in the same page as our address.
10028 * In that case we must not report a size that covers the
10029 * whole page for a subsequent hit against a different MPU
10030 * region or the background region, because it would result
10031 * in incorrect TLB hits for subsequent accesses to
10032 * addresses that are in this MPU region.
10033 */
10034 if (limit >= base &&
10035 ranges_overlap(base, limit - base + 1,
10036 addr_page_base,
10037 TARGET_PAGE_SIZE)) {
10038 sattrs->subpage = true;
10039 }
10040 }
10041 }
10042 }
10043 break;
10044 }
10045
10046 /*
10047 * The IDAU will override the SAU lookup results if it specifies
10048 * higher security than the SAU does.
10049 */
10050 if (!idau_ns) {
10051 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10052 sattrs->ns = false;
10053 sattrs->nsc = idau_nsc;
10054 }
10055 }
10056 }
10057
10058 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10059 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10060 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10061 int *prot, bool *is_subpage,
10062 ARMMMUFaultInfo *fi, uint32_t *mregion)
10063 {
10064 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10065 * that a full phys-to-virt translation does).
10066 * mregion is (if not NULL) set to the region number which matched,
10067 * or -1 if no region number is returned (MPU off, address did not
10068 * hit a region, address hit in multiple regions).
10069 * We set is_subpage to true if the region hit doesn't cover the
10070 * entire TARGET_PAGE the address is within.
10071 */
10072 ARMCPU *cpu = env_archcpu(env);
10073 bool is_user = regime_is_user(env, mmu_idx);
10074 uint32_t secure = regime_is_secure(env, mmu_idx);
10075 int n;
10076 int matchregion = -1;
10077 bool hit = false;
10078 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10079 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10080
10081 *is_subpage = false;
10082 *phys_ptr = address;
10083 *prot = 0;
10084 if (mregion) {
10085 *mregion = -1;
10086 }
10087
10088 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10089 * was an exception vector read from the vector table (which is always
10090 * done using the default system address map), because those accesses
10091 * are done in arm_v7m_load_vector(), which always does a direct
10092 * read using address_space_ldl(), rather than going via this function.
10093 */
10094 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10095 hit = true;
10096 } else if (m_is_ppb_region(env, address)) {
10097 hit = true;
10098 } else {
10099 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10100 hit = true;
10101 }
10102
10103 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10104 /* region search */
10105 /* Note that the base address is bits [31:5] from the register
10106 * with bits [4:0] all zeroes, but the limit address is bits
10107 * [31:5] from the register with bits [4:0] all ones.
10108 */
10109 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10110 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10111
10112 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10113 /* Region disabled */
10114 continue;
10115 }
10116
10117 if (address < base || address > limit) {
10118 /*
10119 * Address not in this region. We must check whether the
10120 * region covers addresses in the same page as our address.
10121 * In that case we must not report a size that covers the
10122 * whole page for a subsequent hit against a different MPU
10123 * region or the background region, because it would result in
10124 * incorrect TLB hits for subsequent accesses to addresses that
10125 * are in this MPU region.
10126 */
10127 if (limit >= base &&
10128 ranges_overlap(base, limit - base + 1,
10129 addr_page_base,
10130 TARGET_PAGE_SIZE)) {
10131 *is_subpage = true;
10132 }
10133 continue;
10134 }
10135
10136 if (base > addr_page_base || limit < addr_page_limit) {
10137 *is_subpage = true;
10138 }
10139
10140 if (matchregion != -1) {
10141 /* Multiple regions match -- always a failure (unlike
10142 * PMSAv7 where highest-numbered-region wins)
10143 */
10144 fi->type = ARMFault_Permission;
10145 fi->level = 1;
10146 return true;
10147 }
10148
10149 matchregion = n;
10150 hit = true;
10151 }
10152 }
10153
10154 if (!hit) {
10155 /* background fault */
10156 fi->type = ARMFault_Background;
10157 return true;
10158 }
10159
10160 if (matchregion == -1) {
10161 /* hit using the background region */
10162 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10163 } else {
10164 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10165 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10166
10167 if (m_is_system_region(env, address)) {
10168 /* System space is always execute never */
10169 xn = 1;
10170 }
10171
10172 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10173 if (*prot && !xn) {
10174 *prot |= PAGE_EXEC;
10175 }
10176 /* We don't need to look the attribute up in the MAIR0/MAIR1
10177 * registers because that only tells us about cacheability.
10178 */
10179 if (mregion) {
10180 *mregion = matchregion;
10181 }
10182 }
10183
10184 fi->type = ARMFault_Permission;
10185 fi->level = 1;
10186 return !(*prot & (1 << access_type));
10187 }
10188
10189
10190 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10191 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10192 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10193 int *prot, target_ulong *page_size,
10194 ARMMMUFaultInfo *fi)
10195 {
10196 uint32_t secure = regime_is_secure(env, mmu_idx);
10197 V8M_SAttributes sattrs = {};
10198 bool ret;
10199 bool mpu_is_subpage;
10200
10201 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10202 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10203 if (access_type == MMU_INST_FETCH) {
10204 /* Instruction fetches always use the MMU bank and the
10205 * transaction attribute determined by the fetch address,
10206 * regardless of CPU state. This is painful for QEMU
10207 * to handle, because it would mean we need to encode
10208 * into the mmu_idx not just the (user, negpri) information
10209 * for the current security state but also that for the
10210 * other security state, which would balloon the number
10211 * of mmu_idx values needed alarmingly.
10212 * Fortunately we can avoid this because it's not actually
10213 * possible to arbitrarily execute code from memory with
10214 * the wrong security attribute: it will always generate
10215 * an exception of some kind or another, apart from the
10216 * special case of an NS CPU executing an SG instruction
10217 * in S&NSC memory. So we always just fail the translation
10218 * here and sort things out in the exception handler
10219 * (including possibly emulating an SG instruction).
10220 */
10221 if (sattrs.ns != !secure) {
10222 if (sattrs.nsc) {
10223 fi->type = ARMFault_QEMU_NSCExec;
10224 } else {
10225 fi->type = ARMFault_QEMU_SFault;
10226 }
10227 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10228 *phys_ptr = address;
10229 *prot = 0;
10230 return true;
10231 }
10232 } else {
10233 /* For data accesses we always use the MMU bank indicated
10234 * by the current CPU state, but the security attributes
10235 * might downgrade a secure access to nonsecure.
10236 */
10237 if (sattrs.ns) {
10238 txattrs->secure = false;
10239 } else if (!secure) {
10240 /* NS access to S memory must fault.
10241 * Architecturally we should first check whether the
10242 * MPU information for this address indicates that we
10243 * are doing an unaligned access to Device memory, which
10244 * should generate a UsageFault instead. QEMU does not
10245 * currently check for that kind of unaligned access though.
10246 * If we added it we would need to do so as a special case
10247 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10248 */
10249 fi->type = ARMFault_QEMU_SFault;
10250 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10251 *phys_ptr = address;
10252 *prot = 0;
10253 return true;
10254 }
10255 }
10256 }
10257
10258 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10259 txattrs, prot, &mpu_is_subpage, fi, NULL);
10260 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10261 return ret;
10262 }
10263
10264 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10265 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10266 hwaddr *phys_ptr, int *prot,
10267 ARMMMUFaultInfo *fi)
10268 {
10269 int n;
10270 uint32_t mask;
10271 uint32_t base;
10272 bool is_user = regime_is_user(env, mmu_idx);
10273
10274 if (regime_translation_disabled(env, mmu_idx)) {
10275 /* MPU disabled. */
10276 *phys_ptr = address;
10277 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10278 return false;
10279 }
10280
10281 *phys_ptr = address;
10282 for (n = 7; n >= 0; n--) {
10283 base = env->cp15.c6_region[n];
10284 if ((base & 1) == 0) {
10285 continue;
10286 }
10287 mask = 1 << ((base >> 1) & 0x1f);
10288 /* Keep this shift separate from the above to avoid an
10289 (undefined) << 32. */
10290 mask = (mask << 1) - 1;
10291 if (((base ^ address) & ~mask) == 0) {
10292 break;
10293 }
10294 }
10295 if (n < 0) {
10296 fi->type = ARMFault_Background;
10297 return true;
10298 }
10299
10300 if (access_type == MMU_INST_FETCH) {
10301 mask = env->cp15.pmsav5_insn_ap;
10302 } else {
10303 mask = env->cp15.pmsav5_data_ap;
10304 }
10305 mask = (mask >> (n * 4)) & 0xf;
10306 switch (mask) {
10307 case 0:
10308 fi->type = ARMFault_Permission;
10309 fi->level = 1;
10310 return true;
10311 case 1:
10312 if (is_user) {
10313 fi->type = ARMFault_Permission;
10314 fi->level = 1;
10315 return true;
10316 }
10317 *prot = PAGE_READ | PAGE_WRITE;
10318 break;
10319 case 2:
10320 *prot = PAGE_READ;
10321 if (!is_user) {
10322 *prot |= PAGE_WRITE;
10323 }
10324 break;
10325 case 3:
10326 *prot = PAGE_READ | PAGE_WRITE;
10327 break;
10328 case 5:
10329 if (is_user) {
10330 fi->type = ARMFault_Permission;
10331 fi->level = 1;
10332 return true;
10333 }
10334 *prot = PAGE_READ;
10335 break;
10336 case 6:
10337 *prot = PAGE_READ;
10338 break;
10339 default:
10340 /* Bad permission. */
10341 fi->type = ARMFault_Permission;
10342 fi->level = 1;
10343 return true;
10344 }
10345 *prot |= PAGE_EXEC;
10346 return false;
10347 }
10348
10349 /* Combine either inner or outer cacheability attributes for normal
10350 * memory, according to table D4-42 and pseudocode procedure
10351 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10352 *
10353 * NB: only stage 1 includes allocation hints (RW bits), leading to
10354 * some asymmetry.
10355 */
10356 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10357 {
10358 if (s1 == 4 || s2 == 4) {
10359 /* non-cacheable has precedence */
10360 return 4;
10361 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10362 /* stage 1 write-through takes precedence */
10363 return s1;
10364 } else if (extract32(s2, 2, 2) == 2) {
10365 /* stage 2 write-through takes precedence, but the allocation hint
10366 * is still taken from stage 1
10367 */
10368 return (2 << 2) | extract32(s1, 0, 2);
10369 } else { /* write-back */
10370 return s1;
10371 }
10372 }
10373
10374 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10375 * and CombineS1S2Desc()
10376 *
10377 * @s1: Attributes from stage 1 walk
10378 * @s2: Attributes from stage 2 walk
10379 */
10380 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10381 {
10382 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10383 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10384 ARMCacheAttrs ret;
10385
10386 /* Combine shareability attributes (table D4-43) */
10387 if (s1.shareability == 2 || s2.shareability == 2) {
10388 /* if either are outer-shareable, the result is outer-shareable */
10389 ret.shareability = 2;
10390 } else if (s1.shareability == 3 || s2.shareability == 3) {
10391 /* if either are inner-shareable, the result is inner-shareable */
10392 ret.shareability = 3;
10393 } else {
10394 /* both non-shareable */
10395 ret.shareability = 0;
10396 }
10397
10398 /* Combine memory type and cacheability attributes */
10399 if (s1hi == 0 || s2hi == 0) {
10400 /* Device has precedence over normal */
10401 if (s1lo == 0 || s2lo == 0) {
10402 /* nGnRnE has precedence over anything */
10403 ret.attrs = 0;
10404 } else if (s1lo == 4 || s2lo == 4) {
10405 /* non-Reordering has precedence over Reordering */
10406 ret.attrs = 4; /* nGnRE */
10407 } else if (s1lo == 8 || s2lo == 8) {
10408 /* non-Gathering has precedence over Gathering */
10409 ret.attrs = 8; /* nGRE */
10410 } else {
10411 ret.attrs = 0xc; /* GRE */
10412 }
10413
10414 /* Any location for which the resultant memory type is any
10415 * type of Device memory is always treated as Outer Shareable.
10416 */
10417 ret.shareability = 2;
10418 } else { /* Normal memory */
10419 /* Outer/inner cacheability combine independently */
10420 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10421 | combine_cacheattr_nibble(s1lo, s2lo);
10422
10423 if (ret.attrs == 0x44) {
10424 /* Any location for which the resultant memory type is Normal
10425 * Inner Non-cacheable, Outer Non-cacheable is always treated
10426 * as Outer Shareable.
10427 */
10428 ret.shareability = 2;
10429 }
10430 }
10431
10432 return ret;
10433 }
10434
10435
10436 /* get_phys_addr - get the physical address for this virtual address
10437 *
10438 * Find the physical address corresponding to the given virtual address,
10439 * by doing a translation table walk on MMU based systems or using the
10440 * MPU state on MPU based systems.
10441 *
10442 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10443 * prot and page_size may not be filled in, and the populated fsr value provides
10444 * information on why the translation aborted, in the format of a
10445 * DFSR/IFSR fault register, with the following caveats:
10446 * * we honour the short vs long DFSR format differences.
10447 * * the WnR bit is never set (the caller must do this).
10448 * * for PSMAv5 based systems we don't bother to return a full FSR format
10449 * value.
10450 *
10451 * @env: CPUARMState
10452 * @address: virtual address to get physical address for
10453 * @access_type: 0 for read, 1 for write, 2 for execute
10454 * @mmu_idx: MMU index indicating required translation regime
10455 * @phys_ptr: set to the physical address corresponding to the virtual address
10456 * @attrs: set to the memory transaction attributes to use
10457 * @prot: set to the permissions for the page containing phys_ptr
10458 * @page_size: set to the size of the page containing phys_ptr
10459 * @fi: set to fault info if the translation fails
10460 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10461 */
10462 bool get_phys_addr(CPUARMState *env, target_ulong address,
10463 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10464 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10465 target_ulong *page_size,
10466 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10467 {
10468 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10469 /* Call ourselves recursively to do the stage 1 and then stage 2
10470 * translations.
10471 */
10472 if (arm_feature(env, ARM_FEATURE_EL2)) {
10473 hwaddr ipa;
10474 int s2_prot;
10475 int ret;
10476 ARMCacheAttrs cacheattrs2 = {};
10477
10478 ret = get_phys_addr(env, address, access_type,
10479 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10480 prot, page_size, fi, cacheattrs);
10481
10482 /* If S1 fails or S2 is disabled, return early. */
10483 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10484 *phys_ptr = ipa;
10485 return ret;
10486 }
10487
10488 /* S1 is done. Now do S2 translation. */
10489 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10490 phys_ptr, attrs, &s2_prot,
10491 page_size, fi,
10492 cacheattrs != NULL ? &cacheattrs2 : NULL);
10493 fi->s2addr = ipa;
10494 /* Combine the S1 and S2 perms. */
10495 *prot &= s2_prot;
10496
10497 /* Combine the S1 and S2 cache attributes, if needed */
10498 if (!ret && cacheattrs != NULL) {
10499 if (env->cp15.hcr_el2 & HCR_DC) {
10500 /*
10501 * HCR.DC forces the first stage attributes to
10502 * Normal Non-Shareable,
10503 * Inner Write-Back Read-Allocate Write-Allocate,
10504 * Outer Write-Back Read-Allocate Write-Allocate.
10505 */
10506 cacheattrs->attrs = 0xff;
10507 cacheattrs->shareability = 0;
10508 }
10509 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10510 }
10511
10512 return ret;
10513 } else {
10514 /*
10515 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10516 */
10517 mmu_idx = stage_1_mmu_idx(mmu_idx);
10518 }
10519 }
10520
10521 /* The page table entries may downgrade secure to non-secure, but
10522 * cannot upgrade an non-secure translation regime's attributes
10523 * to secure.
10524 */
10525 attrs->secure = regime_is_secure(env, mmu_idx);
10526 attrs->user = regime_is_user(env, mmu_idx);
10527
10528 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10529 * In v7 and earlier it affects all stage 1 translations.
10530 */
10531 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10532 && !arm_feature(env, ARM_FEATURE_V8)) {
10533 if (regime_el(env, mmu_idx) == 3) {
10534 address += env->cp15.fcseidr_s;
10535 } else {
10536 address += env->cp15.fcseidr_ns;
10537 }
10538 }
10539
10540 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10541 bool ret;
10542 *page_size = TARGET_PAGE_SIZE;
10543
10544 if (arm_feature(env, ARM_FEATURE_V8)) {
10545 /* PMSAv8 */
10546 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10547 phys_ptr, attrs, prot, page_size, fi);
10548 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10549 /* PMSAv7 */
10550 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10551 phys_ptr, prot, page_size, fi);
10552 } else {
10553 /* Pre-v7 MPU */
10554 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10555 phys_ptr, prot, fi);
10556 }
10557 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10558 " mmu_idx %u -> %s (prot %c%c%c)\n",
10559 access_type == MMU_DATA_LOAD ? "reading" :
10560 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10561 (uint32_t)address, mmu_idx,
10562 ret ? "Miss" : "Hit",
10563 *prot & PAGE_READ ? 'r' : '-',
10564 *prot & PAGE_WRITE ? 'w' : '-',
10565 *prot & PAGE_EXEC ? 'x' : '-');
10566
10567 return ret;
10568 }
10569
10570 /* Definitely a real MMU, not an MPU */
10571
10572 if (regime_translation_disabled(env, mmu_idx)) {
10573 /* MMU disabled. */
10574 *phys_ptr = address;
10575 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10576 *page_size = TARGET_PAGE_SIZE;
10577 return 0;
10578 }
10579
10580 if (regime_using_lpae_format(env, mmu_idx)) {
10581 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10582 phys_ptr, attrs, prot, page_size,
10583 fi, cacheattrs);
10584 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10585 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10586 phys_ptr, attrs, prot, page_size, fi);
10587 } else {
10588 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10589 phys_ptr, prot, page_size, fi);
10590 }
10591 }
10592
10593 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10594 MemTxAttrs *attrs)
10595 {
10596 ARMCPU *cpu = ARM_CPU(cs);
10597 CPUARMState *env = &cpu->env;
10598 hwaddr phys_addr;
10599 target_ulong page_size;
10600 int prot;
10601 bool ret;
10602 ARMMMUFaultInfo fi = {};
10603 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10604
10605 *attrs = (MemTxAttrs) {};
10606
10607 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10608 attrs, &prot, &page_size, &fi, NULL);
10609
10610 if (ret) {
10611 return -1;
10612 }
10613 return phys_addr;
10614 }
10615
10616 #endif
10617
10618 /* Note that signed overflow is undefined in C. The following routines are
10619 careful to use unsigned types where modulo arithmetic is required.
10620 Failure to do so _will_ break on newer gcc. */
10621
10622 /* Signed saturating arithmetic. */
10623
10624 /* Perform 16-bit signed saturating addition. */
10625 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10626 {
10627 uint16_t res;
10628
10629 res = a + b;
10630 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10631 if (a & 0x8000)
10632 res = 0x8000;
10633 else
10634 res = 0x7fff;
10635 }
10636 return res;
10637 }
10638
10639 /* Perform 8-bit signed saturating addition. */
10640 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10641 {
10642 uint8_t res;
10643
10644 res = a + b;
10645 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10646 if (a & 0x80)
10647 res = 0x80;
10648 else
10649 res = 0x7f;
10650 }
10651 return res;
10652 }
10653
10654 /* Perform 16-bit signed saturating subtraction. */
10655 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10656 {
10657 uint16_t res;
10658
10659 res = a - b;
10660 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10661 if (a & 0x8000)
10662 res = 0x8000;
10663 else
10664 res = 0x7fff;
10665 }
10666 return res;
10667 }
10668
10669 /* Perform 8-bit signed saturating subtraction. */
10670 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10671 {
10672 uint8_t res;
10673
10674 res = a - b;
10675 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10676 if (a & 0x80)
10677 res = 0x80;
10678 else
10679 res = 0x7f;
10680 }
10681 return res;
10682 }
10683
10684 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10685 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10686 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10687 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10688 #define PFX q
10689
10690 #include "op_addsub.h"
10691
10692 /* Unsigned saturating arithmetic. */
10693 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10694 {
10695 uint16_t res;
10696 res = a + b;
10697 if (res < a)
10698 res = 0xffff;
10699 return res;
10700 }
10701
10702 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10703 {
10704 if (a > b)
10705 return a - b;
10706 else
10707 return 0;
10708 }
10709
10710 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10711 {
10712 uint8_t res;
10713 res = a + b;
10714 if (res < a)
10715 res = 0xff;
10716 return res;
10717 }
10718
10719 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10720 {
10721 if (a > b)
10722 return a - b;
10723 else
10724 return 0;
10725 }
10726
10727 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10728 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10729 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10730 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10731 #define PFX uq
10732
10733 #include "op_addsub.h"
10734
10735 /* Signed modulo arithmetic. */
10736 #define SARITH16(a, b, n, op) do { \
10737 int32_t sum; \
10738 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10739 RESULT(sum, n, 16); \
10740 if (sum >= 0) \
10741 ge |= 3 << (n * 2); \
10742 } while(0)
10743
10744 #define SARITH8(a, b, n, op) do { \
10745 int32_t sum; \
10746 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10747 RESULT(sum, n, 8); \
10748 if (sum >= 0) \
10749 ge |= 1 << n; \
10750 } while(0)
10751
10752
10753 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10754 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10755 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10756 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10757 #define PFX s
10758 #define ARITH_GE
10759
10760 #include "op_addsub.h"
10761
10762 /* Unsigned modulo arithmetic. */
10763 #define ADD16(a, b, n) do { \
10764 uint32_t sum; \
10765 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10766 RESULT(sum, n, 16); \
10767 if ((sum >> 16) == 1) \
10768 ge |= 3 << (n * 2); \
10769 } while(0)
10770
10771 #define ADD8(a, b, n) do { \
10772 uint32_t sum; \
10773 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10774 RESULT(sum, n, 8); \
10775 if ((sum >> 8) == 1) \
10776 ge |= 1 << n; \
10777 } while(0)
10778
10779 #define SUB16(a, b, n) do { \
10780 uint32_t sum; \
10781 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10782 RESULT(sum, n, 16); \
10783 if ((sum >> 16) == 0) \
10784 ge |= 3 << (n * 2); \
10785 } while(0)
10786
10787 #define SUB8(a, b, n) do { \
10788 uint32_t sum; \
10789 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10790 RESULT(sum, n, 8); \
10791 if ((sum >> 8) == 0) \
10792 ge |= 1 << n; \
10793 } while(0)
10794
10795 #define PFX u
10796 #define ARITH_GE
10797
10798 #include "op_addsub.h"
10799
10800 /* Halved signed arithmetic. */
10801 #define ADD16(a, b, n) \
10802 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10803 #define SUB16(a, b, n) \
10804 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10805 #define ADD8(a, b, n) \
10806 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10807 #define SUB8(a, b, n) \
10808 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10809 #define PFX sh
10810
10811 #include "op_addsub.h"
10812
10813 /* Halved unsigned arithmetic. */
10814 #define ADD16(a, b, n) \
10815 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10816 #define SUB16(a, b, n) \
10817 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10818 #define ADD8(a, b, n) \
10819 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10820 #define SUB8(a, b, n) \
10821 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10822 #define PFX uh
10823
10824 #include "op_addsub.h"
10825
10826 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10827 {
10828 if (a > b)
10829 return a - b;
10830 else
10831 return b - a;
10832 }
10833
10834 /* Unsigned sum of absolute byte differences. */
10835 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10836 {
10837 uint32_t sum;
10838 sum = do_usad(a, b);
10839 sum += do_usad(a >> 8, b >> 8);
10840 sum += do_usad(a >> 16, b >>16);
10841 sum += do_usad(a >> 24, b >> 24);
10842 return sum;
10843 }
10844
10845 /* For ARMv6 SEL instruction. */
10846 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10847 {
10848 uint32_t mask;
10849
10850 mask = 0;
10851 if (flags & 1)
10852 mask |= 0xff;
10853 if (flags & 2)
10854 mask |= 0xff00;
10855 if (flags & 4)
10856 mask |= 0xff0000;
10857 if (flags & 8)
10858 mask |= 0xff000000;
10859 return (a & mask) | (b & ~mask);
10860 }
10861
10862 /* CRC helpers.
10863 * The upper bytes of val (above the number specified by 'bytes') must have
10864 * been zeroed out by the caller.
10865 */
10866 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10867 {
10868 uint8_t buf[4];
10869
10870 stl_le_p(buf, val);
10871
10872 /* zlib crc32 converts the accumulator and output to one's complement. */
10873 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10874 }
10875
10876 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10877 {
10878 uint8_t buf[4];
10879
10880 stl_le_p(buf, val);
10881
10882 /* Linux crc32c converts the output to one's complement. */
10883 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10884 }
10885
10886 /* Return the exception level to which FP-disabled exceptions should
10887 * be taken, or 0 if FP is enabled.
10888 */
10889 int fp_exception_el(CPUARMState *env, int cur_el)
10890 {
10891 #ifndef CONFIG_USER_ONLY
10892 int fpen;
10893
10894 /* CPACR and the CPTR registers don't exist before v6, so FP is
10895 * always accessible
10896 */
10897 if (!arm_feature(env, ARM_FEATURE_V6)) {
10898 return 0;
10899 }
10900
10901 if (arm_feature(env, ARM_FEATURE_M)) {
10902 /* CPACR can cause a NOCP UsageFault taken to current security state */
10903 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10904 return 1;
10905 }
10906
10907 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10908 if (!extract32(env->v7m.nsacr, 10, 1)) {
10909 /* FP insns cause a NOCP UsageFault taken to Secure */
10910 return 3;
10911 }
10912 }
10913
10914 return 0;
10915 }
10916
10917 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10918 * 0, 2 : trap EL0 and EL1/PL1 accesses
10919 * 1 : trap only EL0 accesses
10920 * 3 : trap no accesses
10921 */
10922 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
10923 switch (fpen) {
10924 case 0:
10925 case 2:
10926 if (cur_el == 0 || cur_el == 1) {
10927 /* Trap to PL1, which might be EL1 or EL3 */
10928 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
10929 return 3;
10930 }
10931 return 1;
10932 }
10933 if (cur_el == 3 && !is_a64(env)) {
10934 /* Secure PL1 running at EL3 */
10935 return 3;
10936 }
10937 break;
10938 case 1:
10939 if (cur_el == 0) {
10940 return 1;
10941 }
10942 break;
10943 case 3:
10944 break;
10945 }
10946
10947 /*
10948 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10949 * to control non-secure access to the FPU. It doesn't have any
10950 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10951 */
10952 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10953 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10954 if (!extract32(env->cp15.nsacr, 10, 1)) {
10955 /* FP insns act as UNDEF */
10956 return cur_el == 2 ? 2 : 1;
10957 }
10958 }
10959
10960 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
10961 * check because zero bits in the registers mean "don't trap".
10962 */
10963
10964 /* CPTR_EL2 : present in v7VE or v8 */
10965 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
10966 && !arm_is_secure_below_el3(env)) {
10967 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
10968 return 2;
10969 }
10970
10971 /* CPTR_EL3 : present in v8 */
10972 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
10973 /* Trap all FP ops to EL3 */
10974 return 3;
10975 }
10976 #endif
10977 return 0;
10978 }
10979
10980 #ifndef CONFIG_TCG
10981 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10982 {
10983 g_assert_not_reached();
10984 }
10985 #endif
10986
10987 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10988 {
10989 int el;
10990
10991 if (arm_feature(env, ARM_FEATURE_M)) {
10992 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10993 }
10994
10995 el = arm_current_el(env);
10996 if (el < 2 && arm_is_secure_below_el3(env)) {
10997 return ARMMMUIdx_S1SE0 + el;
10998 } else {
10999 return ARMMMUIdx_S12NSE0 + el;
11000 }
11001 }
11002
11003 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11004 {
11005 return arm_to_core_mmu_idx(arm_mmu_idx(env));
11006 }
11007
11008 #ifndef CONFIG_USER_ONLY
11009 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11010 {
11011 return stage_1_mmu_idx(arm_mmu_idx(env));
11012 }
11013 #endif
11014
11015 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11016 target_ulong *cs_base, uint32_t *pflags)
11017 {
11018 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11019 int current_el = arm_current_el(env);
11020 int fp_el = fp_exception_el(env, current_el);
11021 uint32_t flags = 0;
11022
11023 if (is_a64(env)) {
11024 ARMCPU *cpu = env_archcpu(env);
11025 uint64_t sctlr;
11026
11027 *pc = env->pc;
11028 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11029
11030 /* Get control bits for tagged addresses. */
11031 {
11032 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11033 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11034 int tbii, tbid;
11035
11036 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11037 if (regime_el(env, stage1) < 2) {
11038 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11039 tbid = (p1.tbi << 1) | p0.tbi;
11040 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11041 } else {
11042 tbid = p0.tbi;
11043 tbii = tbid & !p0.tbid;
11044 }
11045
11046 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11047 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11048 }
11049
11050 if (cpu_isar_feature(aa64_sve, cpu)) {
11051 int sve_el = sve_exception_el(env, current_el);
11052 uint32_t zcr_len;
11053
11054 /* If SVE is disabled, but FP is enabled,
11055 * then the effective len is 0.
11056 */
11057 if (sve_el != 0 && fp_el == 0) {
11058 zcr_len = 0;
11059 } else {
11060 zcr_len = sve_zcr_len_for_el(env, current_el);
11061 }
11062 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11063 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11064 }
11065
11066 sctlr = arm_sctlr(env, current_el);
11067
11068 if (cpu_isar_feature(aa64_pauth, cpu)) {
11069 /*
11070 * In order to save space in flags, we record only whether
11071 * pauth is "inactive", meaning all insns are implemented as
11072 * a nop, or "active" when some action must be performed.
11073 * The decision of which action to take is left to a helper.
11074 */
11075 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11076 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11077 }
11078 }
11079
11080 if (cpu_isar_feature(aa64_bti, cpu)) {
11081 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11082 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11083 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11084 }
11085 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11086 }
11087 } else {
11088 *pc = env->regs[15];
11089 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11090 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
11091 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
11092 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11093 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
11094 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11095 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
11096 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
11097 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11098 }
11099 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
11100 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11101 flags = FIELD_DP32(flags, TBFLAG_A32,
11102 XSCALE_CPAR, env->cp15.c15_cpar);
11103 }
11104 }
11105
11106 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11107
11108 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11109 * states defined in the ARM ARM for software singlestep:
11110 * SS_ACTIVE PSTATE.SS State
11111 * 0 x Inactive (the TB flag for SS is always 0)
11112 * 1 0 Active-pending
11113 * 1 1 Active-not-pending
11114 */
11115 if (arm_singlestep_active(env)) {
11116 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11117 if (is_a64(env)) {
11118 if (env->pstate & PSTATE_SS) {
11119 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11120 }
11121 } else {
11122 if (env->uncached_cpsr & PSTATE_SS) {
11123 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11124 }
11125 }
11126 }
11127 if (arm_cpu_data_is_big_endian(env)) {
11128 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11129 }
11130 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11131
11132 if (arm_v7m_is_handler_mode(env)) {
11133 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11134 }
11135
11136 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
11137 * suppressing them because the requested execution priority is less than 0.
11138 */
11139 if (arm_feature(env, ARM_FEATURE_V8) &&
11140 arm_feature(env, ARM_FEATURE_M) &&
11141 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11142 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11143 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11144 }
11145
11146 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11147 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
11148 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11149 }
11150
11151 if (arm_feature(env, ARM_FEATURE_M) &&
11152 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11153 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11154 (env->v7m.secure &&
11155 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11156 /*
11157 * ASPEN is set, but FPCA/SFPA indicate that there is no active
11158 * FP context; we must create a new FP context before executing
11159 * any FP insn.
11160 */
11161 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11162 }
11163
11164 if (arm_feature(env, ARM_FEATURE_M)) {
11165 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11166
11167 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11168 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11169 }
11170 }
11171
11172 *pflags = flags;
11173 *cs_base = 0;
11174 }
11175
11176 #ifdef TARGET_AARCH64
11177 /*
11178 * The manual says that when SVE is enabled and VQ is widened the
11179 * implementation is allowed to zero the previously inaccessible
11180 * portion of the registers. The corollary to that is that when
11181 * SVE is enabled and VQ is narrowed we are also allowed to zero
11182 * the now inaccessible portion of the registers.
11183 *
11184 * The intent of this is that no predicate bit beyond VQ is ever set.
11185 * Which means that some operations on predicate registers themselves
11186 * may operate on full uint64_t or even unrolled across the maximum
11187 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11188 * may well be cheaper than conditionals to restrict the operation
11189 * to the relevant portion of a uint16_t[16].
11190 */
11191 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11192 {
11193 int i, j;
11194 uint64_t pmask;
11195
11196 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11197 assert(vq <= env_archcpu(env)->sve_max_vq);
11198
11199 /* Zap the high bits of the zregs. */
11200 for (i = 0; i < 32; i++) {
11201 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11202 }
11203
11204 /* Zap the high bits of the pregs and ffr. */
11205 pmask = 0;
11206 if (vq & 3) {
11207 pmask = ~(-1ULL << (16 * (vq & 3)));
11208 }
11209 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11210 for (i = 0; i < 17; ++i) {
11211 env->vfp.pregs[i].p[j] &= pmask;
11212 }
11213 pmask = 0;
11214 }
11215 }
11216
11217 /*
11218 * Notice a change in SVE vector size when changing EL.
11219 */
11220 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11221 int new_el, bool el0_a64)
11222 {
11223 ARMCPU *cpu = env_archcpu(env);
11224 int old_len, new_len;
11225 bool old_a64, new_a64;
11226
11227 /* Nothing to do if no SVE. */
11228 if (!cpu_isar_feature(aa64_sve, cpu)) {
11229 return;
11230 }
11231
11232 /* Nothing to do if FP is disabled in either EL. */
11233 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11234 return;
11235 }
11236
11237 /*
11238 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11239 * at ELx, or not available because the EL is in AArch32 state, then
11240 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11241 * has an effective value of 0".
11242 *
11243 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11244 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11245 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11246 * we already have the correct register contents when encountering the
11247 * vq0->vq0 transition between EL0->EL1.
11248 */
11249 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11250 old_len = (old_a64 && !sve_exception_el(env, old_el)
11251 ? sve_zcr_len_for_el(env, old_el) : 0);
11252 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11253 new_len = (new_a64 && !sve_exception_el(env, new_el)
11254 ? sve_zcr_len_for_el(env, new_el) : 0);
11255
11256 /* When changing vector length, clear inaccessible state. */
11257 if (new_len < old_len) {
11258 aarch64_sve_narrow_vq(env, new_len + 1);
11259 }
11260 }
11261 #endif