]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
target/arm: Record correct opcode fields in cpreg for E2H aliases
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35
36 static void switch_mode(CPUARMState *env, int mode);
37
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
45 }
46 }
47
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
55 }
56 }
57
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60 return (char *)env + ri->fieldoffset;
61 }
62
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
74 }
75 }
76
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
79 {
80 /*
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
85 */
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
94 }
95 }
96
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99 /*
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
110 */
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
115 }
116 return true;
117 }
118
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
124
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
129
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
134 }
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
137 }
138
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
141 /*
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
146 */
147 uint64_t oldval = cpu->cpreg_values[i];
148
149 if (oldval == newval) {
150 continue;
151 }
152
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
156 }
157
158 write_raw_cp_reg(&cpu->env, ri, newval);
159 }
160 cpu->cpreg_values[i] = newval;
161 }
162 return ok;
163 }
164
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167 int i;
168 bool ok = true;
169
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
174
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
179 }
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
182 }
183 /*
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
187 */
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
191 }
192 }
193 return ok;
194 }
195
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
206 }
207 }
208
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
213
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
215
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
218 }
219 }
220
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225
226 if (aidx > bidx) {
227 return 1;
228 }
229 if (aidx < bidx) {
230 return -1;
231 }
232 return 0;
233 }
234
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237 /*
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
240 */
241 GList *keys;
242 int arraylen;
243
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
246
247 cpu->cpreg_array_len = 0;
248
249 g_list_foreach(keys, count_cpreg, cpu);
250
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
258
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
260
261 assert(cpu->cpreg_array_len == arraylen);
262
263 g_list_free(keys);
264 }
265
266 /*
267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
268 */
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270 const ARMCPRegInfo *ri,
271 bool isread)
272 {
273 if (!is_a64(env) && arm_current_el(env) == 3 &&
274 arm_is_secure_below_el3(env)) {
275 return CP_ACCESS_TRAP_UNCATEGORIZED;
276 }
277 return CP_ACCESS_OK;
278 }
279
280 /*
281 * Some secure-only AArch32 registers trap to EL3 if used from
282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284 * We assume that the .access field is set to PL1_RW.
285 */
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287 const ARMCPRegInfo *ri,
288 bool isread)
289 {
290 if (arm_current_el(env) == 3) {
291 return CP_ACCESS_OK;
292 }
293 if (arm_is_secure_below_el3(env)) {
294 if (env->cp15.scr_el3 & SCR_EEL2) {
295 return CP_ACCESS_TRAP_EL2;
296 }
297 return CP_ACCESS_TRAP_EL3;
298 }
299 /* This will be EL1 NS and EL2 NS, which just UNDEF */
300 return CP_ACCESS_TRAP_UNCATEGORIZED;
301 }
302
303 /*
304 * Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306 */
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
309 {
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
315 }
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
318 }
319 return CP_ACCESS_OK;
320 }
321
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
325 {
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
330 }
331 }
332 return CP_ACCESS_OK;
333 }
334
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
338 {
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
341 }
342 return CP_ACCESS_OK;
343 }
344
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
348 {
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
351 }
352 return CP_ACCESS_OK;
353 }
354
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
358 {
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
361 }
362 return CP_ACCESS_OK;
363 }
364
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
368 {
369 if (arm_current_el(env) == 1 &&
370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371 return CP_ACCESS_TRAP_EL2;
372 }
373 return CP_ACCESS_OK;
374 }
375
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
380 {
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383 return CP_ACCESS_TRAP_EL2;
384 }
385 return CP_ACCESS_OK;
386 }
387 #endif
388
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
390 {
391 ARMCPU *cpu = env_archcpu(env);
392
393 raw_write(env, ri, value);
394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
395 }
396
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 {
399 ARMCPU *cpu = env_archcpu(env);
400
401 if (raw_read(env, ri) != value) {
402 /*
403 * Unlike real hardware the qemu TLB uses virtual addresses,
404 * not modified virtual addresses, so this causes a TLB flush.
405 */
406 tlb_flush(CPU(cpu));
407 raw_write(env, ri, value);
408 }
409 }
410
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
413 {
414 ARMCPU *cpu = env_archcpu(env);
415
416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417 && !extended_addresses_enabled(env)) {
418 /*
419 * For VMSA (when not using the LPAE long descriptor page table
420 * format) this register includes the ASID, so do a TLB flush.
421 * For PMSA it is purely a process ID and no action is needed.
422 */
423 tlb_flush(CPU(cpu));
424 }
425 raw_write(env, ri, value);
426 }
427
428 static int alle1_tlbmask(CPUARMState *env)
429 {
430 /*
431 * Note that the 'ALL' scope must invalidate both stage 1 and
432 * stage 2 translations, whereas most other scopes only invalidate
433 * stage 1 translations.
434 */
435 return (ARMMMUIdxBit_E10_1 |
436 ARMMMUIdxBit_E10_1_PAN |
437 ARMMMUIdxBit_E10_0 |
438 ARMMMUIdxBit_Stage2 |
439 ARMMMUIdxBit_Stage2_S);
440 }
441
442
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
446 {
447 CPUState *cs = env_cpu(env);
448
449 tlb_flush_all_cpus_synced(cs);
450 }
451
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453 uint64_t value)
454 {
455 CPUState *cs = env_cpu(env);
456
457 tlb_flush_all_cpus_synced(cs);
458 }
459
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461 uint64_t value)
462 {
463 CPUState *cs = env_cpu(env);
464
465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466 }
467
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469 uint64_t value)
470 {
471 CPUState *cs = env_cpu(env);
472
473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474 }
475
476 /*
477 * Non-IS variants of TLB operations are upgraded to
478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479 * force broadcast of these operations.
480 */
481 static bool tlb_force_broadcast(CPUARMState *env)
482 {
483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
484 }
485
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487 uint64_t value)
488 {
489 /* Invalidate all (TLBIALL) */
490 CPUState *cs = env_cpu(env);
491
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_all_cpus_synced(cs);
494 } else {
495 tlb_flush(cs);
496 }
497 }
498
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
501 {
502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503 CPUState *cs = env_cpu(env);
504
505 value &= TARGET_PAGE_MASK;
506 if (tlb_force_broadcast(env)) {
507 tlb_flush_page_all_cpus_synced(cs, value);
508 } else {
509 tlb_flush_page(cs, value);
510 }
511 }
512
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
515 {
516 /* Invalidate by ASID (TLBIASID) */
517 CPUState *cs = env_cpu(env);
518
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
523 }
524 }
525
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528 {
529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 CPUState *cs = env_cpu(env);
531
532 value &= TARGET_PAGE_MASK;
533 if (tlb_force_broadcast(env)) {
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
537 }
538 }
539
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
542 {
543 CPUState *cs = env_cpu(env);
544
545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
546 }
547
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549 uint64_t value)
550 {
551 CPUState *cs = env_cpu(env);
552
553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
554 }
555
556
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
559 {
560 CPUState *cs = env_cpu(env);
561
562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
563 }
564
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
567 {
568 CPUState *cs = env_cpu(env);
569
570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
571 }
572
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574 uint64_t value)
575 {
576 CPUState *cs = env_cpu(env);
577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578
579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
580 }
581
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
584 {
585 CPUState *cs = env_cpu(env);
586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587
588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589 ARMMMUIdxBit_E2);
590 }
591
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
594 {
595 CPUState *cs = env_cpu(env);
596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597
598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599 }
600
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
603 {
604 CPUState *cs = env_cpu(env);
605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606
607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608 }
609
610 static const ARMCPRegInfo cp_reginfo[] = {
611 /*
612 * Define the secure and non-secure FCSE identifier CP registers
613 * separately because there is no secure bank in V8 (no _EL3). This allows
614 * the secure register to be properly reset and migrated. There is also no
615 * v8 EL1 version of the register so the non-secure instance stands alone.
616 */
617 { .name = "FCSEIDR",
618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622 { .name = "FCSEIDR_S",
623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
627 /*
628 * Define the secure and non-secure context identifier CP registers
629 * separately because there is no secure bank in V8 (no _EL3). This allows
630 * the secure register to be properly reset and migrated. In the
631 * non-secure case, the 32-bit register will have reset and migration
632 * disabled during registration as it is handled by the 64-bit instance.
633 */
634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636 .access = PL1_RW, .accessfn = access_tvm_trvm,
637 .fgt = FGT_CONTEXTIDR_EL1,
638 .secure = ARM_CP_SECSTATE_NS,
639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643 .access = PL1_RW, .accessfn = access_tvm_trvm,
644 .secure = ARM_CP_SECSTATE_S,
645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
647 };
648
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
650 /*
651 * NB: Some of these registers exist in v8 but with more precise
652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653 */
654 /* MMU Domain access control / MPU write buffer control */
655 { .name = "DACR",
656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658 .writefn = dacr_write, .raw_writefn = raw_write,
659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
661 /*
662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663 * For v6 and v5, these mappings are overly broad.
664 */
665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673 /* Cache maintenance ops; some of this space may be overridden later. */
674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
677 };
678
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
680 /*
681 * Not all pre-v6 cores implemented this WFI, so this is slightly
682 * over-broad.
683 */
684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685 .access = PL1_W, .type = ARM_CP_WFI },
686 };
687
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
689 /*
690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691 * is UNPREDICTABLE; we choose to NOP as most implementations do).
692 */
693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694 .access = PL1_W, .type = ARM_CP_WFI },
695 /*
696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698 * OMAPCP will override this space.
699 */
700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702 .resetvalue = 0 },
703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705 .resetvalue = 0 },
706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709 .resetvalue = 0 },
710 /*
711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712 * implementing it as RAZ means the "debug architecture version" bits
713 * will read as a reserved value, which should cause Linux to not try
714 * to use the debug hardware.
715 */
716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
718 /*
719 * MMU TLB control. Note that the wildcarding means we cover not just
720 * the unified TLB ops but also the dside/iside/inner-shareable variants.
721 */
722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724 .type = ARM_CP_NO_RAW },
725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727 .type = ARM_CP_NO_RAW },
728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730 .type = ARM_CP_NO_RAW },
731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733 .type = ARM_CP_NO_RAW },
734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
738 };
739
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
742 {
743 uint32_t mask = 0;
744
745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746 if (!arm_feature(env, ARM_FEATURE_V8)) {
747 /*
748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751 */
752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753 /* VFP coprocessor: cp10 & cp11 [23:20] */
754 mask |= R_CPACR_ASEDIS_MASK |
755 R_CPACR_D32DIS_MASK |
756 R_CPACR_CP11_MASK |
757 R_CPACR_CP10_MASK;
758
759 if (!arm_feature(env, ARM_FEATURE_NEON)) {
760 /* ASEDIS [31] bit is RAO/WI */
761 value |= R_CPACR_ASEDIS_MASK;
762 }
763
764 /*
765 * VFPv3 and upwards with NEON implement 32 double precision
766 * registers (D0-D31).
767 */
768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770 value |= R_CPACR_D32DIS_MASK;
771 }
772 }
773 value &= mask;
774 }
775
776 /*
777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779 */
780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
784 }
785
786 env->cp15.cpacr_el1 = value;
787 }
788
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790 {
791 /*
792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 */
795 uint64_t value = env->cp15.cpacr_el1;
796
797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
800 }
801 return value;
802 }
803
804
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806 {
807 /*
808 * Call cpacr_write() so that we reset with the correct RAO bits set
809 * for our CPU features.
810 */
811 cpacr_write(env, ri, 0);
812 }
813
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815 bool isread)
816 {
817 if (arm_feature(env, ARM_FEATURE_V8)) {
818 /* Check if CPACR accesses are to be trapped to EL2 */
819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821 return CP_ACCESS_TRAP_EL2;
822 /* Check if CPACR accesses are to be trapped to EL3 */
823 } else if (arm_current_el(env) < 3 &&
824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825 return CP_ACCESS_TRAP_EL3;
826 }
827 }
828
829 return CP_ACCESS_OK;
830 }
831
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833 bool isread)
834 {
835 /* Check if CPTR accesses are set to trap to EL3 */
836 if (arm_current_el(env) == 2 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
839 }
840
841 return CP_ACCESS_OK;
842 }
843
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845 /* prefetch by MVA in v6, NOP in v7 */
846 { .name = "MVA_prefetch",
847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848 .access = PL1_W, .type = ARM_CP_NOP },
849 /*
850 * We need to break the TB after ISB to execute self-modifying code
851 * correctly and also to take any pending interrupts immediately.
852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853 */
854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857 .access = PL0_W, .type = ARM_CP_NOP },
858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859 .access = PL0_W, .type = ARM_CP_NOP },
860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861 .access = PL1_RW, .accessfn = access_tvm_trvm,
862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863 offsetof(CPUARMState, cp15.ifar_ns) },
864 .resetvalue = 0, },
865 /*
866 * Watchpoint Fault Address Register : should actually only be present
867 * for 1136, 1176, 11MPCore.
868 */
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873 .fgt = FGT_CPACR_EL1,
874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
876 };
877
878 typedef struct pm_event {
879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881 bool (*supported)(CPUARMState *);
882 /*
883 * Retrieve the current count of the underlying event. The programmed
884 * counters hold a difference from the return value from this function
885 */
886 uint64_t (*get_count)(CPUARMState *);
887 /*
888 * Return how many nanoseconds it will take (at a minimum) for count events
889 * to occur. A negative value indicates the counter will never overflow, or
890 * that the counter has otherwise arranged for the overflow bit to be set
891 * and the PMU interrupt to be raised on overflow.
892 */
893 int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
895
896 static bool event_always_supported(CPUARMState *env)
897 {
898 return true;
899 }
900
901 static uint64_t swinc_get_count(CPUARMState *env)
902 {
903 /*
904 * SW_INCR events are written directly to the pmevcntr's by writes to
905 * PMSWINC, so there is no underlying count maintained by the PMU itself
906 */
907 return 0;
908 }
909
910 static int64_t swinc_ns_per(uint64_t ignored)
911 {
912 return -1;
913 }
914
915 /*
916 * Return the underlying cycle count for the PMU cycle counters. If we're in
917 * usermode, simply return 0.
918 */
919 static uint64_t cycles_get_count(CPUARMState *env)
920 {
921 #ifndef CONFIG_USER_ONLY
922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925 return cpu_get_host_ticks();
926 #endif
927 }
928
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
931 {
932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933 }
934
935 static bool instructions_supported(CPUARMState *env)
936 {
937 return icount_enabled() == 1; /* Precise instruction counting */
938 }
939
940 static uint64_t instructions_get_count(CPUARMState *env)
941 {
942 return (uint64_t)icount_get_raw();
943 }
944
945 static int64_t instructions_ns_per(uint64_t icount)
946 {
947 return icount_to_ns((int64_t)icount);
948 }
949 #endif
950
951 static bool pmuv3p1_events_supported(CPUARMState *env)
952 {
953 /* For events which are supported in any v8.1 PMU */
954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
955 }
956
957 static bool pmuv3p4_events_supported(CPUARMState *env)
958 {
959 /* For events which are supported in any v8.1 PMU */
960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
961 }
962
963 static uint64_t zero_event_get_count(CPUARMState *env)
964 {
965 /* For events which on QEMU never fire, so their count is always zero */
966 return 0;
967 }
968
969 static int64_t zero_event_ns_per(uint64_t cycles)
970 {
971 /* An event which never fires can never overflow */
972 return -1;
973 }
974
975 static const pm_event pm_events[] = {
976 { .number = 0x000, /* SW_INCR */
977 .supported = event_always_supported,
978 .get_count = swinc_get_count,
979 .ns_per_count = swinc_ns_per,
980 },
981 #ifndef CONFIG_USER_ONLY
982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983 .supported = instructions_supported,
984 .get_count = instructions_get_count,
985 .ns_per_count = instructions_ns_per,
986 },
987 { .number = 0x011, /* CPU_CYCLES, Cycle */
988 .supported = event_always_supported,
989 .get_count = cycles_get_count,
990 .ns_per_count = cycles_ns_per,
991 },
992 #endif
993 { .number = 0x023, /* STALL_FRONTEND */
994 .supported = pmuv3p1_events_supported,
995 .get_count = zero_event_get_count,
996 .ns_per_count = zero_event_ns_per,
997 },
998 { .number = 0x024, /* STALL_BACKEND */
999 .supported = pmuv3p1_events_supported,
1000 .get_count = zero_event_get_count,
1001 .ns_per_count = zero_event_ns_per,
1002 },
1003 { .number = 0x03c, /* STALL */
1004 .supported = pmuv3p4_events_supported,
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1007 },
1008 };
1009
1010 /*
1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012 * events (i.e. the statistical profiling extension), this implementation
1013 * should first be updated to something sparse instead of the current
1014 * supported_event_map[] array.
1015 */
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019
1020 /*
1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022 * of ARM event numbers to indices in our pm_events array.
1023 *
1024 * Note: Events in the 0x40XX range are not currently supported.
1025 */
1026 void pmu_init(ARMCPU *cpu)
1027 {
1028 unsigned int i;
1029
1030 /*
1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032 * events to them
1033 */
1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035 supported_event_map[i] = UNSUPPORTED_EVENT;
1036 }
1037 cpu->pmceid0 = 0;
1038 cpu->pmceid1 = 0;
1039
1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041 const pm_event *cnt = &pm_events[i];
1042 assert(cnt->number <= MAX_EVENT_ID);
1043 /* We do not currently support events in the 0x40xx range */
1044 assert(cnt->number <= 0x3f);
1045
1046 if (cnt->supported(&cpu->env)) {
1047 supported_event_map[cnt->number] = i;
1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049 if (cnt->number & 0x20) {
1050 cpu->pmceid1 |= event_mask;
1051 } else {
1052 cpu->pmceid0 |= event_mask;
1053 }
1054 }
1055 }
1056 }
1057
1058 /*
1059 * Check at runtime whether a PMU event is supported for the current machine
1060 */
1061 static bool event_supported(uint16_t number)
1062 {
1063 if (number > MAX_EVENT_ID) {
1064 return false;
1065 }
1066 return supported_event_map[number] != UNSUPPORTED_EVENT;
1067 }
1068
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070 bool isread)
1071 {
1072 /*
1073 * Performance monitor registers user accessibility is controlled
1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075 * trapping to EL2 or EL3 for other accesses.
1076 */
1077 int el = arm_current_el(env);
1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1079
1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081 return CP_ACCESS_TRAP;
1082 }
1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084 return CP_ACCESS_TRAP_EL2;
1085 }
1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087 return CP_ACCESS_TRAP_EL3;
1088 }
1089
1090 return CP_ACCESS_OK;
1091 }
1092
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094 const ARMCPRegInfo *ri,
1095 bool isread)
1096 {
1097 /* ER: event counter read trap control */
1098 if (arm_feature(env, ARM_FEATURE_V8)
1099 && arm_current_el(env) == 0
1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101 && isread) {
1102 return CP_ACCESS_OK;
1103 }
1104
1105 return pmreg_access(env, ri, isread);
1106 }
1107
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109 const ARMCPRegInfo *ri,
1110 bool isread)
1111 {
1112 /* SW: software increment write trap control */
1113 if (arm_feature(env, ARM_FEATURE_V8)
1114 && arm_current_el(env) == 0
1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116 && !isread) {
1117 return CP_ACCESS_OK;
1118 }
1119
1120 return pmreg_access(env, ri, isread);
1121 }
1122
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124 const ARMCPRegInfo *ri,
1125 bool isread)
1126 {
1127 /* ER: event counter read trap control */
1128 if (arm_feature(env, ARM_FEATURE_V8)
1129 && arm_current_el(env) == 0
1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131 return CP_ACCESS_OK;
1132 }
1133
1134 return pmreg_access(env, ri, isread);
1135 }
1136
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1140 {
1141 /* CR: cycle counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145 && isread) {
1146 return CP_ACCESS_OK;
1147 }
1148
1149 return pmreg_access(env, ri, isread);
1150 }
1151
1152 /*
1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154 * We use these to decide whether we need to wrap a write to MDCR_EL2
1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156 */
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1160
1161 /*
1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163 * the current EL, security state, and register configuration.
1164 */
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 {
1167 uint64_t filter;
1168 bool e, p, u, nsk, nsu, nsh, m;
1169 bool enabled, prohibited = false, filtered;
1170 bool secure = arm_is_secure(env);
1171 int el = arm_current_el(env);
1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1174
1175 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176 return false;
1177 }
1178
1179 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180 (counter < hpmn || counter == 31)) {
1181 e = env->cp15.c9_pmcr & PMCRE;
1182 } else {
1183 e = mdcr_el2 & MDCR_HPME;
1184 }
1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1186
1187 /* Is event counting prohibited? */
1188 if (el == 2 && (counter < hpmn || counter == 31)) {
1189 prohibited = mdcr_el2 & MDCR_HPMD;
1190 }
1191 if (secure) {
1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1193 }
1194
1195 if (counter == 31) {
1196 /*
1197 * The cycle counter defaults to running. PMCR.DP says "disable
1198 * the cycle counter when event counting is prohibited".
1199 * Some MDCR bits disable the cycle counter specifically.
1200 */
1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203 if (secure) {
1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1205 }
1206 if (el == 2) {
1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1208 }
1209 }
1210 }
1211
1212 if (counter == 31) {
1213 filter = env->cp15.pmccfiltr_el0;
1214 } else {
1215 filter = env->cp15.c14_pmevtyper[counter];
1216 }
1217
1218 p = filter & PMXEVTYPER_P;
1219 u = filter & PMXEVTYPER_U;
1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223 m = arm_el_is_aa64(env, 1) &&
1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1225
1226 if (el == 0) {
1227 filtered = secure ? u : u != nsu;
1228 } else if (el == 1) {
1229 filtered = secure ? p : p != nsk;
1230 } else if (el == 2) {
1231 filtered = !nsh;
1232 } else { /* EL3 */
1233 filtered = m != p;
1234 }
1235
1236 if (counter != 31) {
1237 /*
1238 * If not checking PMCCNTR, ensure the counter is setup to an event we
1239 * support
1240 */
1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242 if (!event_supported(event)) {
1243 return false;
1244 }
1245 }
1246
1247 return enabled && !prohibited && !filtered;
1248 }
1249
1250 static void pmu_update_irq(CPUARMState *env)
1251 {
1252 ARMCPU *cpu = env_archcpu(env);
1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1255 }
1256
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1258 {
1259 /*
1260 * Return true if the clock divider is enabled and the cycle counter
1261 * is supposed to tick only once every 64 clock cycles. This is
1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263 * (64-bit) cycle counter PMCR.D has no effect.
1264 */
1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1266 }
1267
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1269 {
1270 /* Return true if the specified event counter is configured to be 64 bit */
1271
1272 /* This isn't intended to be used with the cycle counter */
1273 assert(counter < 31);
1274
1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276 return false;
1277 }
1278
1279 if (arm_feature(env, ARM_FEATURE_EL2)) {
1280 /*
1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282 * current security state, so we don't use arm_mdcr_el2_eff() here.
1283 */
1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1286
1287 if (counter >= hpmn) {
1288 return hlp;
1289 }
1290 }
1291 return env->cp15.c9_pmcr & PMCRLP;
1292 }
1293
1294 /*
1295 * Ensure c15_ccnt is the guest-visible count so that operations such as
1296 * enabling/disabling the counter or filtering, modifying the count itself,
1297 * etc. can be done logically. This is essentially a no-op if the counter is
1298 * not enabled at the time of the call.
1299 */
1300 static void pmccntr_op_start(CPUARMState *env)
1301 {
1302 uint64_t cycles = cycles_get_count(env);
1303
1304 if (pmu_counter_enabled(env, 31)) {
1305 uint64_t eff_cycles = cycles;
1306 if (pmccntr_clockdiv_enabled(env)) {
1307 eff_cycles /= 64;
1308 }
1309
1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1311
1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313 1ull << 63 : 1ull << 31;
1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315 env->cp15.c9_pmovsr |= (1ULL << 31);
1316 pmu_update_irq(env);
1317 }
1318
1319 env->cp15.c15_ccnt = new_pmccntr;
1320 }
1321 env->cp15.c15_ccnt_delta = cycles;
1322 }
1323
1324 /*
1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327 * pmccntr_op_start.
1328 */
1329 static void pmccntr_op_finish(CPUARMState *env)
1330 {
1331 if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333 /* Calculate when the counter will next overflow */
1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336 remaining_cycles = (uint32_t)remaining_cycles;
1337 }
1338 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1339
1340 if (overflow_in > 0) {
1341 int64_t overflow_at;
1342
1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344 overflow_in, &overflow_at)) {
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1347 }
1348 }
1349 #endif
1350
1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352 if (pmccntr_clockdiv_enabled(env)) {
1353 prev_cycles /= 64;
1354 }
1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1356 }
1357 }
1358
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1360 {
1361
1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363 uint64_t count = 0;
1364 if (event_supported(event)) {
1365 uint16_t event_idx = supported_event_map[event];
1366 count = pm_events[event_idx].get_count(env);
1367 }
1368
1369 if (pmu_counter_enabled(env, counter)) {
1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372 1ULL << 63 : 1ULL << 31;
1373
1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375 env->cp15.c9_pmovsr |= (1 << counter);
1376 pmu_update_irq(env);
1377 }
1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1379 }
1380 env->cp15.c14_pmevcntr_delta[counter] = count;
1381 }
1382
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1384 {
1385 if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388 uint16_t event_idx = supported_event_map[event];
1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390 int64_t overflow_in;
1391
1392 if (!pmevcntr_is_64_bit(env, counter)) {
1393 delta = (uint32_t)delta;
1394 }
1395 overflow_in = pm_events[event_idx].ns_per_count(delta);
1396
1397 if (overflow_in > 0) {
1398 int64_t overflow_at;
1399
1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401 overflow_in, &overflow_at)) {
1402 ARMCPU *cpu = env_archcpu(env);
1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1404 }
1405 }
1406 #endif
1407
1408 env->cp15.c14_pmevcntr_delta[counter] -=
1409 env->cp15.c14_pmevcntr[counter];
1410 }
1411 }
1412
1413 void pmu_op_start(CPUARMState *env)
1414 {
1415 unsigned int i;
1416 pmccntr_op_start(env);
1417 for (i = 0; i < pmu_num_counters(env); i++) {
1418 pmevcntr_op_start(env, i);
1419 }
1420 }
1421
1422 void pmu_op_finish(CPUARMState *env)
1423 {
1424 unsigned int i;
1425 pmccntr_op_finish(env);
1426 for (i = 0; i < pmu_num_counters(env); i++) {
1427 pmevcntr_op_finish(env, i);
1428 }
1429 }
1430
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1432 {
1433 pmu_op_start(&cpu->env);
1434 }
1435
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1437 {
1438 pmu_op_finish(&cpu->env);
1439 }
1440
1441 void arm_pmu_timer_cb(void *opaque)
1442 {
1443 ARMCPU *cpu = opaque;
1444
1445 /*
1446 * Update all the counter values based on the current underlying counts,
1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449 * counter may expire.
1450 */
1451 pmu_op_start(&cpu->env);
1452 pmu_op_finish(&cpu->env);
1453 }
1454
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 uint64_t value)
1457 {
1458 pmu_op_start(env);
1459
1460 if (value & PMCRC) {
1461 /* The counter has been reset */
1462 env->cp15.c15_ccnt = 0;
1463 }
1464
1465 if (value & PMCRP) {
1466 unsigned int i;
1467 for (i = 0; i < pmu_num_counters(env); i++) {
1468 env->cp15.c14_pmevcntr[i] = 0;
1469 }
1470 }
1471
1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1474
1475 pmu_op_finish(env);
1476 }
1477
1478 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1479 {
1480 uint64_t pmcr = env->cp15.c9_pmcr;
1481
1482 /*
1483 * If EL2 is implemented and enabled for the current security state, reads
1484 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1485 */
1486 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1487 pmcr &= ~PMCRN_MASK;
1488 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1489 }
1490
1491 return pmcr;
1492 }
1493
1494 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1495 uint64_t value)
1496 {
1497 unsigned int i;
1498 uint64_t overflow_mask, new_pmswinc;
1499
1500 for (i = 0; i < pmu_num_counters(env); i++) {
1501 /* Increment a counter's count iff: */
1502 if ((value & (1 << i)) && /* counter's bit is set */
1503 /* counter is enabled and not filtered */
1504 pmu_counter_enabled(env, i) &&
1505 /* counter is SW_INCR */
1506 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1507 pmevcntr_op_start(env, i);
1508
1509 /*
1510 * Detect if this write causes an overflow since we can't predict
1511 * PMSWINC overflows like we can for other events
1512 */
1513 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1514
1515 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1516 1ULL << 63 : 1ULL << 31;
1517
1518 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1519 env->cp15.c9_pmovsr |= (1 << i);
1520 pmu_update_irq(env);
1521 }
1522
1523 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1524
1525 pmevcntr_op_finish(env, i);
1526 }
1527 }
1528 }
1529
1530 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1531 {
1532 uint64_t ret;
1533 pmccntr_op_start(env);
1534 ret = env->cp15.c15_ccnt;
1535 pmccntr_op_finish(env);
1536 return ret;
1537 }
1538
1539 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540 uint64_t value)
1541 {
1542 /*
1543 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1544 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1545 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1546 * accessed.
1547 */
1548 env->cp15.c9_pmselr = value & 0x1f;
1549 }
1550
1551 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552 uint64_t value)
1553 {
1554 pmccntr_op_start(env);
1555 env->cp15.c15_ccnt = value;
1556 pmccntr_op_finish(env);
1557 }
1558
1559 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1561 {
1562 uint64_t cur_val = pmccntr_read(env, NULL);
1563
1564 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1565 }
1566
1567 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1568 uint64_t value)
1569 {
1570 pmccntr_op_start(env);
1571 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1572 pmccntr_op_finish(env);
1573 }
1574
1575 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1577 {
1578 pmccntr_op_start(env);
1579 /* M is not accessible from AArch32 */
1580 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1581 (value & PMCCFILTR);
1582 pmccntr_op_finish(env);
1583 }
1584
1585 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1586 {
1587 /* M is not visible in AArch32 */
1588 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1589 }
1590
1591 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1592 uint64_t value)
1593 {
1594 pmu_op_start(env);
1595 value &= pmu_counter_mask(env);
1596 env->cp15.c9_pmcnten |= value;
1597 pmu_op_finish(env);
1598 }
1599
1600 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1602 {
1603 pmu_op_start(env);
1604 value &= pmu_counter_mask(env);
1605 env->cp15.c9_pmcnten &= ~value;
1606 pmu_op_finish(env);
1607 }
1608
1609 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 uint64_t value)
1611 {
1612 value &= pmu_counter_mask(env);
1613 env->cp15.c9_pmovsr &= ~value;
1614 pmu_update_irq(env);
1615 }
1616
1617 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1619 {
1620 value &= pmu_counter_mask(env);
1621 env->cp15.c9_pmovsr |= value;
1622 pmu_update_irq(env);
1623 }
1624
1625 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1626 uint64_t value, const uint8_t counter)
1627 {
1628 if (counter == 31) {
1629 pmccfiltr_write(env, ri, value);
1630 } else if (counter < pmu_num_counters(env)) {
1631 pmevcntr_op_start(env, counter);
1632
1633 /*
1634 * If this counter's event type is changing, store the current
1635 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1636 * pmevcntr_op_finish has the correct baseline when it converts back to
1637 * a delta.
1638 */
1639 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1640 PMXEVTYPER_EVTCOUNT;
1641 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1642 if (old_event != new_event) {
1643 uint64_t count = 0;
1644 if (event_supported(new_event)) {
1645 uint16_t event_idx = supported_event_map[new_event];
1646 count = pm_events[event_idx].get_count(env);
1647 }
1648 env->cp15.c14_pmevcntr_delta[counter] = count;
1649 }
1650
1651 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1652 pmevcntr_op_finish(env, counter);
1653 }
1654 /*
1655 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1656 * PMSELR value is equal to or greater than the number of implemented
1657 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1658 */
1659 }
1660
1661 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1662 const uint8_t counter)
1663 {
1664 if (counter == 31) {
1665 return env->cp15.pmccfiltr_el0;
1666 } else if (counter < pmu_num_counters(env)) {
1667 return env->cp15.c14_pmevtyper[counter];
1668 } else {
1669 /*
1670 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1671 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1672 */
1673 return 0;
1674 }
1675 }
1676
1677 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1678 uint64_t value)
1679 {
1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1681 pmevtyper_write(env, ri, value, counter);
1682 }
1683
1684 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1686 {
1687 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1688 env->cp15.c14_pmevtyper[counter] = value;
1689
1690 /*
1691 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1692 * pmu_op_finish calls when loading saved state for a migration. Because
1693 * we're potentially updating the type of event here, the value written to
1694 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1695 * different counter type. Therefore, we need to set this value to the
1696 * current count for the counter type we're writing so that pmu_op_finish
1697 * has the correct count for its calculation.
1698 */
1699 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1700 if (event_supported(event)) {
1701 uint16_t event_idx = supported_event_map[event];
1702 env->cp15.c14_pmevcntr_delta[counter] =
1703 pm_events[event_idx].get_count(env);
1704 }
1705 }
1706
1707 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1708 {
1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710 return pmevtyper_read(env, ri, counter);
1711 }
1712
1713 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714 uint64_t value)
1715 {
1716 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1717 }
1718
1719 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1720 {
1721 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1722 }
1723
1724 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725 uint64_t value, uint8_t counter)
1726 {
1727 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1728 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1729 value &= MAKE_64BIT_MASK(0, 32);
1730 }
1731 if (counter < pmu_num_counters(env)) {
1732 pmevcntr_op_start(env, counter);
1733 env->cp15.c14_pmevcntr[counter] = value;
1734 pmevcntr_op_finish(env, counter);
1735 }
1736 /*
1737 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1738 * are CONSTRAINED UNPREDICTABLE.
1739 */
1740 }
1741
1742 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1743 uint8_t counter)
1744 {
1745 if (counter < pmu_num_counters(env)) {
1746 uint64_t ret;
1747 pmevcntr_op_start(env, counter);
1748 ret = env->cp15.c14_pmevcntr[counter];
1749 pmevcntr_op_finish(env, counter);
1750 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1751 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1752 ret &= MAKE_64BIT_MASK(0, 32);
1753 }
1754 return ret;
1755 } else {
1756 /*
1757 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1758 * are CONSTRAINED UNPREDICTABLE.
1759 */
1760 return 0;
1761 }
1762 }
1763
1764 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1765 uint64_t value)
1766 {
1767 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1768 pmevcntr_write(env, ri, value, counter);
1769 }
1770
1771 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1772 {
1773 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1774 return pmevcntr_read(env, ri, counter);
1775 }
1776
1777 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint64_t value)
1779 {
1780 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1781 assert(counter < pmu_num_counters(env));
1782 env->cp15.c14_pmevcntr[counter] = value;
1783 pmevcntr_write(env, ri, value, counter);
1784 }
1785
1786 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1787 {
1788 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1789 assert(counter < pmu_num_counters(env));
1790 return env->cp15.c14_pmevcntr[counter];
1791 }
1792
1793 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1795 {
1796 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1797 }
1798
1799 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1800 {
1801 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1802 }
1803
1804 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value)
1806 {
1807 if (arm_feature(env, ARM_FEATURE_V8)) {
1808 env->cp15.c9_pmuserenr = value & 0xf;
1809 } else {
1810 env->cp15.c9_pmuserenr = value & 1;
1811 }
1812 }
1813
1814 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816 {
1817 /* We have no event counters so only the C bit can be changed */
1818 value &= pmu_counter_mask(env);
1819 env->cp15.c9_pminten |= value;
1820 pmu_update_irq(env);
1821 }
1822
1823 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1824 uint64_t value)
1825 {
1826 value &= pmu_counter_mask(env);
1827 env->cp15.c9_pminten &= ~value;
1828 pmu_update_irq(env);
1829 }
1830
1831 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832 uint64_t value)
1833 {
1834 /*
1835 * Note that even though the AArch64 view of this register has bits
1836 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1837 * architectural requirements for bits which are RES0 only in some
1838 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1839 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1840 */
1841 raw_write(env, ri, value & ~0x1FULL);
1842 }
1843
1844 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1845 {
1846 /* Begin with base v8.0 state. */
1847 uint64_t valid_mask = 0x3fff;
1848 ARMCPU *cpu = env_archcpu(env);
1849 uint64_t changed;
1850
1851 /*
1852 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1853 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1854 * Instead, choose the format based on the mode of EL3.
1855 */
1856 if (arm_el_is_aa64(env, 3)) {
1857 value |= SCR_FW | SCR_AW; /* RES1 */
1858 valid_mask &= ~SCR_NET; /* RES0 */
1859
1860 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1861 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1862 value |= SCR_RW; /* RAO/WI */
1863 }
1864 if (cpu_isar_feature(aa64_ras, cpu)) {
1865 valid_mask |= SCR_TERR;
1866 }
1867 if (cpu_isar_feature(aa64_lor, cpu)) {
1868 valid_mask |= SCR_TLOR;
1869 }
1870 if (cpu_isar_feature(aa64_pauth, cpu)) {
1871 valid_mask |= SCR_API | SCR_APK;
1872 }
1873 if (cpu_isar_feature(aa64_sel2, cpu)) {
1874 valid_mask |= SCR_EEL2;
1875 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1876 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1877 value |= SCR_NS;
1878 }
1879 if (cpu_isar_feature(aa64_mte, cpu)) {
1880 valid_mask |= SCR_ATA;
1881 }
1882 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1883 valid_mask |= SCR_ENSCXT;
1884 }
1885 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1886 valid_mask |= SCR_EASE | SCR_NMEA;
1887 }
1888 if (cpu_isar_feature(aa64_sme, cpu)) {
1889 valid_mask |= SCR_ENTP2;
1890 }
1891 if (cpu_isar_feature(aa64_hcx, cpu)) {
1892 valid_mask |= SCR_HXEN;
1893 }
1894 if (cpu_isar_feature(aa64_fgt, cpu)) {
1895 valid_mask |= SCR_FGTEN;
1896 }
1897 if (cpu_isar_feature(aa64_rme, cpu)) {
1898 valid_mask |= SCR_NSE | SCR_GPF;
1899 }
1900 } else {
1901 valid_mask &= ~(SCR_RW | SCR_ST);
1902 if (cpu_isar_feature(aa32_ras, cpu)) {
1903 valid_mask |= SCR_TERR;
1904 }
1905 }
1906
1907 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1908 valid_mask &= ~SCR_HCE;
1909
1910 /*
1911 * On ARMv7, SMD (or SCD as it is called in v7) is only
1912 * supported if EL2 exists. The bit is UNK/SBZP when
1913 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1914 * when EL2 is unavailable.
1915 * On ARMv8, this bit is always available.
1916 */
1917 if (arm_feature(env, ARM_FEATURE_V7) &&
1918 !arm_feature(env, ARM_FEATURE_V8)) {
1919 valid_mask &= ~SCR_SMD;
1920 }
1921 }
1922
1923 /* Clear all-context RES0 bits. */
1924 value &= valid_mask;
1925 changed = env->cp15.scr_el3 ^ value;
1926 env->cp15.scr_el3 = value;
1927
1928 /*
1929 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1930 * we must invalidate all TLBs below EL3.
1931 */
1932 if (changed & (SCR_NS | SCR_NSE)) {
1933 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1934 ARMMMUIdxBit_E20_0 |
1935 ARMMMUIdxBit_E10_1 |
1936 ARMMMUIdxBit_E20_2 |
1937 ARMMMUIdxBit_E10_1_PAN |
1938 ARMMMUIdxBit_E20_2_PAN |
1939 ARMMMUIdxBit_E2));
1940 }
1941 }
1942
1943 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1944 {
1945 /*
1946 * scr_write will set the RES1 bits on an AArch64-only CPU.
1947 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1948 */
1949 scr_write(env, ri, 0);
1950 }
1951
1952 static CPAccessResult access_tid4(CPUARMState *env,
1953 const ARMCPRegInfo *ri,
1954 bool isread)
1955 {
1956 if (arm_current_el(env) == 1 &&
1957 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1958 return CP_ACCESS_TRAP_EL2;
1959 }
1960
1961 return CP_ACCESS_OK;
1962 }
1963
1964 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1965 {
1966 ARMCPU *cpu = env_archcpu(env);
1967
1968 /*
1969 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1970 * bank
1971 */
1972 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1973 ri->secure & ARM_CP_SECSTATE_S);
1974
1975 return cpu->ccsidr[index];
1976 }
1977
1978 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1979 uint64_t value)
1980 {
1981 raw_write(env, ri, value & 0xf);
1982 }
1983
1984 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1985 {
1986 CPUState *cs = env_cpu(env);
1987 bool el1 = arm_current_el(env) == 1;
1988 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1989 uint64_t ret = 0;
1990
1991 if (hcr_el2 & HCR_IMO) {
1992 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1993 ret |= CPSR_I;
1994 }
1995 } else {
1996 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1997 ret |= CPSR_I;
1998 }
1999 }
2000
2001 if (hcr_el2 & HCR_FMO) {
2002 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2003 ret |= CPSR_F;
2004 }
2005 } else {
2006 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2007 ret |= CPSR_F;
2008 }
2009 }
2010
2011 if (hcr_el2 & HCR_AMO) {
2012 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2013 ret |= CPSR_A;
2014 }
2015 }
2016
2017 return ret;
2018 }
2019
2020 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2021 bool isread)
2022 {
2023 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2024 return CP_ACCESS_TRAP_EL2;
2025 }
2026
2027 return CP_ACCESS_OK;
2028 }
2029
2030 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2031 bool isread)
2032 {
2033 if (arm_feature(env, ARM_FEATURE_V8)) {
2034 return access_aa64_tid1(env, ri, isread);
2035 }
2036
2037 return CP_ACCESS_OK;
2038 }
2039
2040 static const ARMCPRegInfo v7_cp_reginfo[] = {
2041 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2042 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2043 .access = PL1_W, .type = ARM_CP_NOP },
2044 /*
2045 * Performance monitors are implementation defined in v7,
2046 * but with an ARM recommended set of registers, which we
2047 * follow.
2048 *
2049 * Performance registers fall into three categories:
2050 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2051 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2052 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2053 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2054 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2055 */
2056 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2057 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2059 .writefn = pmcntenset_write,
2060 .accessfn = pmreg_access,
2061 .fgt = FGT_PMCNTEN,
2062 .raw_writefn = raw_write },
2063 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2064 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2065 .access = PL0_RW, .accessfn = pmreg_access,
2066 .fgt = FGT_PMCNTEN,
2067 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2068 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2069 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2070 .access = PL0_RW,
2071 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2072 .accessfn = pmreg_access,
2073 .fgt = FGT_PMCNTEN,
2074 .writefn = pmcntenclr_write,
2075 .type = ARM_CP_ALIAS | ARM_CP_IO },
2076 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2078 .access = PL0_RW, .accessfn = pmreg_access,
2079 .fgt = FGT_PMCNTEN,
2080 .type = ARM_CP_ALIAS | ARM_CP_IO,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2082 .writefn = pmcntenclr_write },
2083 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2084 .access = PL0_RW, .type = ARM_CP_IO,
2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2086 .accessfn = pmreg_access,
2087 .fgt = FGT_PMOVS,
2088 .writefn = pmovsr_write,
2089 .raw_writefn = raw_write },
2090 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2092 .access = PL0_RW, .accessfn = pmreg_access,
2093 .fgt = FGT_PMOVS,
2094 .type = ARM_CP_ALIAS | ARM_CP_IO,
2095 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2096 .writefn = pmovsr_write,
2097 .raw_writefn = raw_write },
2098 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2099 .access = PL0_W, .accessfn = pmreg_access_swinc,
2100 .fgt = FGT_PMSWINC_EL0,
2101 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2102 .writefn = pmswinc_write },
2103 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2105 .access = PL0_W, .accessfn = pmreg_access_swinc,
2106 .fgt = FGT_PMSWINC_EL0,
2107 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2108 .writefn = pmswinc_write },
2109 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2110 .access = PL0_RW, .type = ARM_CP_ALIAS,
2111 .fgt = FGT_PMSELR_EL0,
2112 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2113 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2114 .raw_writefn = raw_write},
2115 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2116 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2117 .access = PL0_RW, .accessfn = pmreg_access_selr,
2118 .fgt = FGT_PMSELR_EL0,
2119 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2120 .writefn = pmselr_write, .raw_writefn = raw_write, },
2121 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2122 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2123 .fgt = FGT_PMCCNTR_EL0,
2124 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2125 .accessfn = pmreg_access_ccntr },
2126 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2127 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2128 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2129 .fgt = FGT_PMCCNTR_EL0,
2130 .type = ARM_CP_IO,
2131 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2132 .readfn = pmccntr_read, .writefn = pmccntr_write,
2133 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2134 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2135 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2136 .access = PL0_RW, .accessfn = pmreg_access,
2137 .fgt = FGT_PMCCFILTR_EL0,
2138 .type = ARM_CP_ALIAS | ARM_CP_IO,
2139 .resetvalue = 0, },
2140 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2142 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2143 .access = PL0_RW, .accessfn = pmreg_access,
2144 .fgt = FGT_PMCCFILTR_EL0,
2145 .type = ARM_CP_IO,
2146 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2147 .resetvalue = 0, },
2148 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .accessfn = pmreg_access,
2151 .fgt = FGT_PMEVTYPERN_EL0,
2152 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2153 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2154 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2155 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2156 .accessfn = pmreg_access,
2157 .fgt = FGT_PMEVTYPERN_EL0,
2158 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2159 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2160 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2161 .accessfn = pmreg_access_xevcntr,
2162 .fgt = FGT_PMEVCNTRN_EL0,
2163 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2164 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2165 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2166 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2167 .accessfn = pmreg_access_xevcntr,
2168 .fgt = FGT_PMEVCNTRN_EL0,
2169 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2170 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2171 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2172 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2173 .resetvalue = 0,
2174 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2175 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2176 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2177 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2179 .resetvalue = 0,
2180 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2181 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2182 .access = PL1_RW, .accessfn = access_tpm,
2183 .fgt = FGT_PMINTEN,
2184 .type = ARM_CP_ALIAS | ARM_CP_IO,
2185 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2186 .resetvalue = 0,
2187 .writefn = pmintenset_write, .raw_writefn = raw_write },
2188 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2189 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2190 .access = PL1_RW, .accessfn = access_tpm,
2191 .fgt = FGT_PMINTEN,
2192 .type = ARM_CP_IO,
2193 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2194 .writefn = pmintenset_write, .raw_writefn = raw_write,
2195 .resetvalue = 0x0 },
2196 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2197 .access = PL1_RW, .accessfn = access_tpm,
2198 .fgt = FGT_PMINTEN,
2199 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2200 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2201 .writefn = pmintenclr_write, },
2202 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2204 .access = PL1_RW, .accessfn = access_tpm,
2205 .fgt = FGT_PMINTEN,
2206 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2208 .writefn = pmintenclr_write },
2209 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2210 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2211 .access = PL1_R,
2212 .accessfn = access_tid4,
2213 .fgt = FGT_CCSIDR_EL1,
2214 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2215 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2216 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2217 .access = PL1_RW,
2218 .accessfn = access_tid4,
2219 .fgt = FGT_CSSELR_EL1,
2220 .writefn = csselr_write, .resetvalue = 0,
2221 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2222 offsetof(CPUARMState, cp15.csselr_ns) } },
2223 /*
2224 * Auxiliary ID register: this actually has an IMPDEF value but for now
2225 * just RAZ for all cores:
2226 */
2227 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2228 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2229 .access = PL1_R, .type = ARM_CP_CONST,
2230 .accessfn = access_aa64_tid1,
2231 .fgt = FGT_AIDR_EL1,
2232 .resetvalue = 0 },
2233 /*
2234 * Auxiliary fault status registers: these also are IMPDEF, and we
2235 * choose to RAZ/WI for all cores.
2236 */
2237 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2238 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2239 .access = PL1_RW, .accessfn = access_tvm_trvm,
2240 .fgt = FGT_AFSR0_EL1,
2241 .type = ARM_CP_CONST, .resetvalue = 0 },
2242 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2243 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2244 .access = PL1_RW, .accessfn = access_tvm_trvm,
2245 .fgt = FGT_AFSR1_EL1,
2246 .type = ARM_CP_CONST, .resetvalue = 0 },
2247 /*
2248 * MAIR can just read-as-written because we don't implement caches
2249 * and so don't need to care about memory attributes.
2250 */
2251 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2253 .access = PL1_RW, .accessfn = access_tvm_trvm,
2254 .fgt = FGT_MAIR_EL1,
2255 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2256 .resetvalue = 0 },
2257 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2258 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2259 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2260 .resetvalue = 0 },
2261 /*
2262 * For non-long-descriptor page tables these are PRRR and NMRR;
2263 * regardless they still act as reads-as-written for QEMU.
2264 */
2265 /*
2266 * MAIR0/1 are defined separately from their 64-bit counterpart which
2267 * allows them to assign the correct fieldoffset based on the endianness
2268 * handled in the field definitions.
2269 */
2270 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2271 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2272 .access = PL1_RW, .accessfn = access_tvm_trvm,
2273 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2274 offsetof(CPUARMState, cp15.mair0_ns) },
2275 .resetfn = arm_cp_reset_ignore },
2276 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2277 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2278 .access = PL1_RW, .accessfn = access_tvm_trvm,
2279 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2280 offsetof(CPUARMState, cp15.mair1_ns) },
2281 .resetfn = arm_cp_reset_ignore },
2282 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2284 .fgt = FGT_ISR_EL1,
2285 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2286 /* 32 bit ITLB invalidates */
2287 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2288 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289 .writefn = tlbiall_write },
2290 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbimva_write },
2293 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbiasid_write },
2296 /* 32 bit DTLB invalidates */
2297 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2298 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299 .writefn = tlbiall_write },
2300 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2301 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302 .writefn = tlbimva_write },
2303 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2304 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2305 .writefn = tlbiasid_write },
2306 /* 32 bit TLB invalidates */
2307 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2309 .writefn = tlbiall_write },
2310 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2312 .writefn = tlbimva_write },
2313 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2314 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2315 .writefn = tlbiasid_write },
2316 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2317 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2318 .writefn = tlbimvaa_write },
2319 };
2320
2321 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2322 /* 32 bit TLB invalidates, Inner Shareable */
2323 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2324 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2325 .writefn = tlbiall_is_write },
2326 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2327 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2328 .writefn = tlbimva_is_write },
2329 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2331 .writefn = tlbiasid_is_write },
2332 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2334 .writefn = tlbimvaa_is_write },
2335 };
2336
2337 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2338 /* PMOVSSET is not implemented in v7 before v7ve */
2339 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2340 .access = PL0_RW, .accessfn = pmreg_access,
2341 .fgt = FGT_PMOVS,
2342 .type = ARM_CP_ALIAS | ARM_CP_IO,
2343 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2344 .writefn = pmovsset_write,
2345 .raw_writefn = raw_write },
2346 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2347 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2348 .access = PL0_RW, .accessfn = pmreg_access,
2349 .fgt = FGT_PMOVS,
2350 .type = ARM_CP_ALIAS | ARM_CP_IO,
2351 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2352 .writefn = pmovsset_write,
2353 .raw_writefn = raw_write },
2354 };
2355
2356 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2357 uint64_t value)
2358 {
2359 value &= 1;
2360 env->teecr = value;
2361 }
2362
2363 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2364 bool isread)
2365 {
2366 /*
2367 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2368 * at all, so we don't need to check whether we're v8A.
2369 */
2370 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2371 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2372 return CP_ACCESS_TRAP_EL2;
2373 }
2374 return CP_ACCESS_OK;
2375 }
2376
2377 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2378 bool isread)
2379 {
2380 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2381 return CP_ACCESS_TRAP;
2382 }
2383 return teecr_access(env, ri, isread);
2384 }
2385
2386 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2387 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2388 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2389 .resetvalue = 0,
2390 .writefn = teecr_write, .accessfn = teecr_access },
2391 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2392 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2393 .accessfn = teehbr_access, .resetvalue = 0 },
2394 };
2395
2396 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2397 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2398 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2399 .access = PL0_RW,
2400 .fgt = FGT_TPIDR_EL0,
2401 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2402 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2403 .access = PL0_RW,
2404 .fgt = FGT_TPIDR_EL0,
2405 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2406 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2407 .resetfn = arm_cp_reset_ignore },
2408 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2409 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2410 .access = PL0_R | PL1_W,
2411 .fgt = FGT_TPIDRRO_EL0,
2412 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2413 .resetvalue = 0},
2414 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2415 .access = PL0_R | PL1_W,
2416 .fgt = FGT_TPIDRRO_EL0,
2417 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2418 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2419 .resetfn = arm_cp_reset_ignore },
2420 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2421 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2422 .access = PL1_RW,
2423 .fgt = FGT_TPIDR_EL1,
2424 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2425 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2426 .access = PL1_RW,
2427 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2428 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2429 .resetvalue = 0 },
2430 };
2431
2432 #ifndef CONFIG_USER_ONLY
2433
2434 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2435 bool isread)
2436 {
2437 /*
2438 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2439 * Writable only at the highest implemented exception level.
2440 */
2441 int el = arm_current_el(env);
2442 uint64_t hcr;
2443 uint32_t cntkctl;
2444
2445 switch (el) {
2446 case 0:
2447 hcr = arm_hcr_el2_eff(env);
2448 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2449 cntkctl = env->cp15.cnthctl_el2;
2450 } else {
2451 cntkctl = env->cp15.c14_cntkctl;
2452 }
2453 if (!extract32(cntkctl, 0, 2)) {
2454 return CP_ACCESS_TRAP;
2455 }
2456 break;
2457 case 1:
2458 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2459 arm_is_secure_below_el3(env)) {
2460 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2461 return CP_ACCESS_TRAP_UNCATEGORIZED;
2462 }
2463 break;
2464 case 2:
2465 case 3:
2466 break;
2467 }
2468
2469 if (!isread && el < arm_highest_el(env)) {
2470 return CP_ACCESS_TRAP_UNCATEGORIZED;
2471 }
2472
2473 return CP_ACCESS_OK;
2474 }
2475
2476 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2477 bool isread)
2478 {
2479 unsigned int cur_el = arm_current_el(env);
2480 bool has_el2 = arm_is_el2_enabled(env);
2481 uint64_t hcr = arm_hcr_el2_eff(env);
2482
2483 switch (cur_el) {
2484 case 0:
2485 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2487 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2488 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2489 }
2490
2491 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2492 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2493 return CP_ACCESS_TRAP;
2494 }
2495 /* fall through */
2496 case 1:
2497 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2498 if (has_el2 && timeridx == GTIMER_PHYS &&
2499 (hcr & HCR_E2H
2500 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2501 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2502 return CP_ACCESS_TRAP_EL2;
2503 }
2504 break;
2505 }
2506 return CP_ACCESS_OK;
2507 }
2508
2509 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2510 bool isread)
2511 {
2512 unsigned int cur_el = arm_current_el(env);
2513 bool has_el2 = arm_is_el2_enabled(env);
2514 uint64_t hcr = arm_hcr_el2_eff(env);
2515
2516 switch (cur_el) {
2517 case 0:
2518 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2519 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2520 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2521 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2522 }
2523
2524 /*
2525 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2526 * EL0 if EL0[PV]TEN is zero.
2527 */
2528 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2529 return CP_ACCESS_TRAP;
2530 }
2531 /* fall through */
2532
2533 case 1:
2534 if (has_el2 && timeridx == GTIMER_PHYS) {
2535 if (hcr & HCR_E2H) {
2536 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2537 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2538 return CP_ACCESS_TRAP_EL2;
2539 }
2540 } else {
2541 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2542 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2543 return CP_ACCESS_TRAP_EL2;
2544 }
2545 }
2546 }
2547 break;
2548 }
2549 return CP_ACCESS_OK;
2550 }
2551
2552 static CPAccessResult gt_pct_access(CPUARMState *env,
2553 const ARMCPRegInfo *ri,
2554 bool isread)
2555 {
2556 return gt_counter_access(env, GTIMER_PHYS, isread);
2557 }
2558
2559 static CPAccessResult gt_vct_access(CPUARMState *env,
2560 const ARMCPRegInfo *ri,
2561 bool isread)
2562 {
2563 return gt_counter_access(env, GTIMER_VIRT, isread);
2564 }
2565
2566 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2567 bool isread)
2568 {
2569 return gt_timer_access(env, GTIMER_PHYS, isread);
2570 }
2571
2572 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2573 bool isread)
2574 {
2575 return gt_timer_access(env, GTIMER_VIRT, isread);
2576 }
2577
2578 static CPAccessResult gt_stimer_access(CPUARMState *env,
2579 const ARMCPRegInfo *ri,
2580 bool isread)
2581 {
2582 /*
2583 * The AArch64 register view of the secure physical timer is
2584 * always accessible from EL3, and configurably accessible from
2585 * Secure EL1.
2586 */
2587 switch (arm_current_el(env)) {
2588 case 1:
2589 if (!arm_is_secure(env)) {
2590 return CP_ACCESS_TRAP;
2591 }
2592 if (!(env->cp15.scr_el3 & SCR_ST)) {
2593 return CP_ACCESS_TRAP_EL3;
2594 }
2595 return CP_ACCESS_OK;
2596 case 0:
2597 case 2:
2598 return CP_ACCESS_TRAP;
2599 case 3:
2600 return CP_ACCESS_OK;
2601 default:
2602 g_assert_not_reached();
2603 }
2604 }
2605
2606 static uint64_t gt_get_countervalue(CPUARMState *env)
2607 {
2608 ARMCPU *cpu = env_archcpu(env);
2609
2610 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2611 }
2612
2613 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2614 {
2615 CPUARMState *env = &cpu->env;
2616 uint64_t cnthctl = env->cp15.cnthctl_el2;
2617 ARMSecuritySpace ss = arm_security_space(env);
2618 /* ISTATUS && !IMASK */
2619 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2620
2621 /*
2622 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2623 * It is RES0 in Secure and NonSecure state.
2624 */
2625 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2626 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2627 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2628 irqstate = 0;
2629 }
2630
2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632 trace_arm_gt_update_irq(timeridx, irqstate);
2633 }
2634
2635 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2636 {
2637 /*
2638 * Changing security state between Root and Secure/NonSecure, which may
2639 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2640 * mask bits. Update the IRQ state accordingly.
2641 */
2642 gt_update_irq(cpu, GTIMER_VIRT);
2643 gt_update_irq(cpu, GTIMER_PHYS);
2644 }
2645
2646 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2647 {
2648 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2649
2650 if (gt->ctl & 1) {
2651 /*
2652 * Timer enabled: calculate and set current ISTATUS, irq, and
2653 * reset timer to when ISTATUS next has to change
2654 */
2655 uint64_t offset = timeridx == GTIMER_VIRT ?
2656 cpu->env.cp15.cntvoff_el2 : 0;
2657 uint64_t count = gt_get_countervalue(&cpu->env);
2658 /* Note that this must be unsigned 64 bit arithmetic: */
2659 int istatus = count - offset >= gt->cval;
2660 uint64_t nexttick;
2661
2662 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2663
2664 if (istatus) {
2665 /*
2666 * Next transition is when (count - offset) rolls back over to 0.
2667 * If offset > count then this is when count == offset;
2668 * if offset <= count then this is when count == offset + 2^64
2669 * For the latter case we set nexttick to an "as far in future
2670 * as possible" value and let the code below handle it.
2671 */
2672 if (offset > count) {
2673 nexttick = offset;
2674 } else {
2675 nexttick = UINT64_MAX;
2676 }
2677 } else {
2678 /*
2679 * Next transition is when (count - offset) == cval, i.e.
2680 * when count == (cval + offset).
2681 * If that would overflow, then again we set up the next interrupt
2682 * for "as far in the future as possible" for the code below.
2683 */
2684 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2685 nexttick = UINT64_MAX;
2686 }
2687 }
2688 /*
2689 * Note that the desired next expiry time might be beyond the
2690 * signed-64-bit range of a QEMUTimer -- in this case we just
2691 * set the timer for as far in the future as possible. When the
2692 * timer expires we will reset the timer for any remaining period.
2693 */
2694 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2695 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2696 } else {
2697 timer_mod(cpu->gt_timer[timeridx], nexttick);
2698 }
2699 trace_arm_gt_recalc(timeridx, nexttick);
2700 } else {
2701 /* Timer disabled: ISTATUS and timer output always clear */
2702 gt->ctl &= ~4;
2703 timer_del(cpu->gt_timer[timeridx]);
2704 trace_arm_gt_recalc_disabled(timeridx);
2705 }
2706 gt_update_irq(cpu, timeridx);
2707 }
2708
2709 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2710 int timeridx)
2711 {
2712 ARMCPU *cpu = env_archcpu(env);
2713
2714 timer_del(cpu->gt_timer[timeridx]);
2715 }
2716
2717 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2718 {
2719 return gt_get_countervalue(env);
2720 }
2721
2722 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2723 {
2724 uint64_t hcr;
2725
2726 switch (arm_current_el(env)) {
2727 case 2:
2728 hcr = arm_hcr_el2_eff(env);
2729 if (hcr & HCR_E2H) {
2730 return 0;
2731 }
2732 break;
2733 case 0:
2734 hcr = arm_hcr_el2_eff(env);
2735 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2736 return 0;
2737 }
2738 break;
2739 }
2740
2741 return env->cp15.cntvoff_el2;
2742 }
2743
2744 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2745 {
2746 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2747 }
2748
2749 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2750 int timeridx,
2751 uint64_t value)
2752 {
2753 trace_arm_gt_cval_write(timeridx, value);
2754 env->cp15.c14_timer[timeridx].cval = value;
2755 gt_recalc_timer(env_archcpu(env), timeridx);
2756 }
2757
2758 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2759 int timeridx)
2760 {
2761 uint64_t offset = 0;
2762
2763 switch (timeridx) {
2764 case GTIMER_VIRT:
2765 case GTIMER_HYPVIRT:
2766 offset = gt_virt_cnt_offset(env);
2767 break;
2768 }
2769
2770 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2771 (gt_get_countervalue(env) - offset));
2772 }
2773
2774 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775 int timeridx,
2776 uint64_t value)
2777 {
2778 uint64_t offset = 0;
2779
2780 switch (timeridx) {
2781 case GTIMER_VIRT:
2782 case GTIMER_HYPVIRT:
2783 offset = gt_virt_cnt_offset(env);
2784 break;
2785 }
2786
2787 trace_arm_gt_tval_write(timeridx, value);
2788 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2789 sextract64(value, 0, 32);
2790 gt_recalc_timer(env_archcpu(env), timeridx);
2791 }
2792
2793 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794 int timeridx,
2795 uint64_t value)
2796 {
2797 ARMCPU *cpu = env_archcpu(env);
2798 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2799
2800 trace_arm_gt_ctl_write(timeridx, value);
2801 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2802 if ((oldval ^ value) & 1) {
2803 /* Enable toggled */
2804 gt_recalc_timer(cpu, timeridx);
2805 } else if ((oldval ^ value) & 2) {
2806 /*
2807 * IMASK toggled: don't need to recalculate,
2808 * just set the interrupt line based on ISTATUS
2809 */
2810 trace_arm_gt_imask_toggle(timeridx);
2811 gt_update_irq(cpu, timeridx);
2812 }
2813 }
2814
2815 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2816 {
2817 gt_timer_reset(env, ri, GTIMER_PHYS);
2818 }
2819
2820 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2821 uint64_t value)
2822 {
2823 gt_cval_write(env, ri, GTIMER_PHYS, value);
2824 }
2825
2826 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2827 {
2828 return gt_tval_read(env, ri, GTIMER_PHYS);
2829 }
2830
2831 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2832 uint64_t value)
2833 {
2834 gt_tval_write(env, ri, GTIMER_PHYS, value);
2835 }
2836
2837 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838 uint64_t value)
2839 {
2840 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2841 }
2842
2843 static int gt_phys_redir_timeridx(CPUARMState *env)
2844 {
2845 switch (arm_mmu_idx(env)) {
2846 case ARMMMUIdx_E20_0:
2847 case ARMMMUIdx_E20_2:
2848 case ARMMMUIdx_E20_2_PAN:
2849 return GTIMER_HYP;
2850 default:
2851 return GTIMER_PHYS;
2852 }
2853 }
2854
2855 static int gt_virt_redir_timeridx(CPUARMState *env)
2856 {
2857 switch (arm_mmu_idx(env)) {
2858 case ARMMMUIdx_E20_0:
2859 case ARMMMUIdx_E20_2:
2860 case ARMMMUIdx_E20_2_PAN:
2861 return GTIMER_HYPVIRT;
2862 default:
2863 return GTIMER_VIRT;
2864 }
2865 }
2866
2867 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2868 const ARMCPRegInfo *ri)
2869 {
2870 int timeridx = gt_phys_redir_timeridx(env);
2871 return env->cp15.c14_timer[timeridx].cval;
2872 }
2873
2874 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2875 uint64_t value)
2876 {
2877 int timeridx = gt_phys_redir_timeridx(env);
2878 gt_cval_write(env, ri, timeridx, value);
2879 }
2880
2881 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2882 const ARMCPRegInfo *ri)
2883 {
2884 int timeridx = gt_phys_redir_timeridx(env);
2885 return gt_tval_read(env, ri, timeridx);
2886 }
2887
2888 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2889 uint64_t value)
2890 {
2891 int timeridx = gt_phys_redir_timeridx(env);
2892 gt_tval_write(env, ri, timeridx, value);
2893 }
2894
2895 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2896 const ARMCPRegInfo *ri)
2897 {
2898 int timeridx = gt_phys_redir_timeridx(env);
2899 return env->cp15.c14_timer[timeridx].ctl;
2900 }
2901
2902 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903 uint64_t value)
2904 {
2905 int timeridx = gt_phys_redir_timeridx(env);
2906 gt_ctl_write(env, ri, timeridx, value);
2907 }
2908
2909 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2910 {
2911 gt_timer_reset(env, ri, GTIMER_VIRT);
2912 }
2913
2914 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2916 {
2917 gt_cval_write(env, ri, GTIMER_VIRT, value);
2918 }
2919
2920 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2921 {
2922 return gt_tval_read(env, ri, GTIMER_VIRT);
2923 }
2924
2925 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2926 uint64_t value)
2927 {
2928 gt_tval_write(env, ri, GTIMER_VIRT, value);
2929 }
2930
2931 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2932 uint64_t value)
2933 {
2934 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2935 }
2936
2937 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2938 uint64_t value)
2939 {
2940 ARMCPU *cpu = env_archcpu(env);
2941 uint32_t oldval = env->cp15.cnthctl_el2;
2942
2943 raw_write(env, ri, value);
2944
2945 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2946 gt_update_irq(cpu, GTIMER_VIRT);
2947 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2948 gt_update_irq(cpu, GTIMER_PHYS);
2949 }
2950 }
2951
2952 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953 uint64_t value)
2954 {
2955 ARMCPU *cpu = env_archcpu(env);
2956
2957 trace_arm_gt_cntvoff_write(value);
2958 raw_write(env, ri, value);
2959 gt_recalc_timer(cpu, GTIMER_VIRT);
2960 }
2961
2962 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2963 const ARMCPRegInfo *ri)
2964 {
2965 int timeridx = gt_virt_redir_timeridx(env);
2966 return env->cp15.c14_timer[timeridx].cval;
2967 }
2968
2969 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2971 {
2972 int timeridx = gt_virt_redir_timeridx(env);
2973 gt_cval_write(env, ri, timeridx, value);
2974 }
2975
2976 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2977 const ARMCPRegInfo *ri)
2978 {
2979 int timeridx = gt_virt_redir_timeridx(env);
2980 return gt_tval_read(env, ri, timeridx);
2981 }
2982
2983 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2984 uint64_t value)
2985 {
2986 int timeridx = gt_virt_redir_timeridx(env);
2987 gt_tval_write(env, ri, timeridx, value);
2988 }
2989
2990 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2991 const ARMCPRegInfo *ri)
2992 {
2993 int timeridx = gt_virt_redir_timeridx(env);
2994 return env->cp15.c14_timer[timeridx].ctl;
2995 }
2996
2997 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2998 uint64_t value)
2999 {
3000 int timeridx = gt_virt_redir_timeridx(env);
3001 gt_ctl_write(env, ri, timeridx, value);
3002 }
3003
3004 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3005 {
3006 gt_timer_reset(env, ri, GTIMER_HYP);
3007 }
3008
3009 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3011 {
3012 gt_cval_write(env, ri, GTIMER_HYP, value);
3013 }
3014
3015 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3016 {
3017 return gt_tval_read(env, ri, GTIMER_HYP);
3018 }
3019
3020 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3021 uint64_t value)
3022 {
3023 gt_tval_write(env, ri, GTIMER_HYP, value);
3024 }
3025
3026 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027 uint64_t value)
3028 {
3029 gt_ctl_write(env, ri, GTIMER_HYP, value);
3030 }
3031
3032 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3033 {
3034 gt_timer_reset(env, ri, GTIMER_SEC);
3035 }
3036
3037 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038 uint64_t value)
3039 {
3040 gt_cval_write(env, ri, GTIMER_SEC, value);
3041 }
3042
3043 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3044 {
3045 return gt_tval_read(env, ri, GTIMER_SEC);
3046 }
3047
3048 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3049 uint64_t value)
3050 {
3051 gt_tval_write(env, ri, GTIMER_SEC, value);
3052 }
3053
3054 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055 uint64_t value)
3056 {
3057 gt_ctl_write(env, ri, GTIMER_SEC, value);
3058 }
3059
3060 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3061 {
3062 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3063 }
3064
3065 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066 uint64_t value)
3067 {
3068 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3069 }
3070
3071 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3072 {
3073 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3074 }
3075
3076 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3077 uint64_t value)
3078 {
3079 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3080 }
3081
3082 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083 uint64_t value)
3084 {
3085 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3086 }
3087
3088 void arm_gt_ptimer_cb(void *opaque)
3089 {
3090 ARMCPU *cpu = opaque;
3091
3092 gt_recalc_timer(cpu, GTIMER_PHYS);
3093 }
3094
3095 void arm_gt_vtimer_cb(void *opaque)
3096 {
3097 ARMCPU *cpu = opaque;
3098
3099 gt_recalc_timer(cpu, GTIMER_VIRT);
3100 }
3101
3102 void arm_gt_htimer_cb(void *opaque)
3103 {
3104 ARMCPU *cpu = opaque;
3105
3106 gt_recalc_timer(cpu, GTIMER_HYP);
3107 }
3108
3109 void arm_gt_stimer_cb(void *opaque)
3110 {
3111 ARMCPU *cpu = opaque;
3112
3113 gt_recalc_timer(cpu, GTIMER_SEC);
3114 }
3115
3116 void arm_gt_hvtimer_cb(void *opaque)
3117 {
3118 ARMCPU *cpu = opaque;
3119
3120 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3121 }
3122
3123 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3124 {
3125 ARMCPU *cpu = env_archcpu(env);
3126
3127 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3128 }
3129
3130 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3131 /*
3132 * Note that CNTFRQ is purely reads-as-written for the benefit
3133 * of software; writing it doesn't actually change the timer frequency.
3134 * Our reset value matches the fixed frequency we implement the timer at.
3135 */
3136 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3137 .type = ARM_CP_ALIAS,
3138 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3139 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3140 },
3141 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3142 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3143 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3144 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3145 .resetfn = arm_gt_cntfrq_reset,
3146 },
3147 /* overall control: mostly access permissions */
3148 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3149 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3150 .access = PL1_RW,
3151 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3152 .resetvalue = 0,
3153 },
3154 /* per-timer control */
3155 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3156 .secure = ARM_CP_SECSTATE_NS,
3157 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3158 .accessfn = gt_ptimer_access,
3159 .fieldoffset = offsetoflow32(CPUARMState,
3160 cp15.c14_timer[GTIMER_PHYS].ctl),
3161 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3162 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3163 },
3164 { .name = "CNTP_CTL_S",
3165 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3166 .secure = ARM_CP_SECSTATE_S,
3167 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3168 .accessfn = gt_ptimer_access,
3169 .fieldoffset = offsetoflow32(CPUARMState,
3170 cp15.c14_timer[GTIMER_SEC].ctl),
3171 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3172 },
3173 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3174 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3175 .type = ARM_CP_IO, .access = PL0_RW,
3176 .accessfn = gt_ptimer_access,
3177 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3178 .resetvalue = 0,
3179 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3180 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3181 },
3182 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3183 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3184 .accessfn = gt_vtimer_access,
3185 .fieldoffset = offsetoflow32(CPUARMState,
3186 cp15.c14_timer[GTIMER_VIRT].ctl),
3187 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3188 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3189 },
3190 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3192 .type = ARM_CP_IO, .access = PL0_RW,
3193 .accessfn = gt_vtimer_access,
3194 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3195 .resetvalue = 0,
3196 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3197 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3198 },
3199 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3200 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3201 .secure = ARM_CP_SECSTATE_NS,
3202 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3203 .accessfn = gt_ptimer_access,
3204 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3205 },
3206 { .name = "CNTP_TVAL_S",
3207 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3208 .secure = ARM_CP_SECSTATE_S,
3209 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3210 .accessfn = gt_ptimer_access,
3211 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3212 },
3213 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3215 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3216 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3217 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3218 },
3219 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3220 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3221 .accessfn = gt_vtimer_access,
3222 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3223 },
3224 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3225 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3226 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3227 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3228 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3229 },
3230 /* The counter itself */
3231 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3232 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3233 .accessfn = gt_pct_access,
3234 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3235 },
3236 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3238 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3239 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3240 },
3241 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3242 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3243 .accessfn = gt_vct_access,
3244 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3245 },
3246 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3248 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3249 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3250 },
3251 /* Comparison value, indicating when the timer goes off */
3252 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3253 .secure = ARM_CP_SECSTATE_NS,
3254 .access = PL0_RW,
3255 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3256 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3257 .accessfn = gt_ptimer_access,
3258 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3259 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3260 },
3261 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3262 .secure = ARM_CP_SECSTATE_S,
3263 .access = PL0_RW,
3264 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3266 .accessfn = gt_ptimer_access,
3267 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3268 },
3269 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3271 .access = PL0_RW,
3272 .type = ARM_CP_IO,
3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3274 .resetvalue = 0, .accessfn = gt_ptimer_access,
3275 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3276 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3277 },
3278 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3279 .access = PL0_RW,
3280 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3282 .accessfn = gt_vtimer_access,
3283 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3284 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3285 },
3286 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3288 .access = PL0_RW,
3289 .type = ARM_CP_IO,
3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3291 .resetvalue = 0, .accessfn = gt_vtimer_access,
3292 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3293 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3294 },
3295 /*
3296 * Secure timer -- this is actually restricted to only EL3
3297 * and configurably Secure-EL1 via the accessfn.
3298 */
3299 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3300 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3301 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3302 .accessfn = gt_stimer_access,
3303 .readfn = gt_sec_tval_read,
3304 .writefn = gt_sec_tval_write,
3305 .resetfn = gt_sec_timer_reset,
3306 },
3307 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3308 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3309 .type = ARM_CP_IO, .access = PL1_RW,
3310 .accessfn = gt_stimer_access,
3311 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3312 .resetvalue = 0,
3313 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3314 },
3315 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3317 .type = ARM_CP_IO, .access = PL1_RW,
3318 .accessfn = gt_stimer_access,
3319 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3320 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3321 },
3322 };
3323
3324 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3325 bool isread)
3326 {
3327 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3328 return CP_ACCESS_TRAP;
3329 }
3330 return CP_ACCESS_OK;
3331 }
3332
3333 #else
3334
3335 /*
3336 * In user-mode most of the generic timer registers are inaccessible
3337 * however modern kernels (4.12+) allow access to cntvct_el0
3338 */
3339
3340 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3341 {
3342 ARMCPU *cpu = env_archcpu(env);
3343
3344 /*
3345 * Currently we have no support for QEMUTimer in linux-user so we
3346 * can't call gt_get_countervalue(env), instead we directly
3347 * call the lower level functions.
3348 */
3349 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3350 }
3351
3352 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3353 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3355 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3356 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3357 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3358 },
3359 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3361 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3362 .readfn = gt_virt_cnt_read,
3363 },
3364 };
3365
3366 #endif
3367
3368 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3369 {
3370 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3371 raw_write(env, ri, value);
3372 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3373 raw_write(env, ri, value & 0xfffff6ff);
3374 } else {
3375 raw_write(env, ri, value & 0xfffff1ff);
3376 }
3377 }
3378
3379 #ifndef CONFIG_USER_ONLY
3380 /* get_phys_addr() isn't present for user-mode-only targets */
3381
3382 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3383 bool isread)
3384 {
3385 if (ri->opc2 & 4) {
3386 /*
3387 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3388 * Secure EL1 (which can only happen if EL3 is AArch64).
3389 * They are simply UNDEF if executed from NS EL1.
3390 * They function normally from EL2 or EL3.
3391 */
3392 if (arm_current_el(env) == 1) {
3393 if (arm_is_secure_below_el3(env)) {
3394 if (env->cp15.scr_el3 & SCR_EEL2) {
3395 return CP_ACCESS_TRAP_EL2;
3396 }
3397 return CP_ACCESS_TRAP_EL3;
3398 }
3399 return CP_ACCESS_TRAP_UNCATEGORIZED;
3400 }
3401 }
3402 return CP_ACCESS_OK;
3403 }
3404
3405 #ifdef CONFIG_TCG
3406 static int par_el1_shareability(GetPhysAddrResult *res)
3407 {
3408 /*
3409 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3410 * memory -- see pseudocode PAREncodeShareability().
3411 */
3412 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3413 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3414 return 2;
3415 }
3416 return res->cacheattrs.shareability;
3417 }
3418
3419 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3420 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3421 ARMSecuritySpace ss)
3422 {
3423 bool ret;
3424 uint64_t par64;
3425 bool format64 = false;
3426 ARMMMUFaultInfo fi = {};
3427 GetPhysAddrResult res = {};
3428
3429 /*
3430 * I_MXTJT: Granule protection checks are not performed on the final address
3431 * of a successful translation.
3432 */
3433 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3434 &res, &fi);
3435
3436 /*
3437 * ATS operations only do S1 or S1+S2 translations, so we never
3438 * have to deal with the ARMCacheAttrs format for S2 only.
3439 */
3440 assert(!res.cacheattrs.is_s2_format);
3441
3442 if (ret) {
3443 /*
3444 * Some kinds of translation fault must cause exceptions rather
3445 * than being reported in the PAR.
3446 */
3447 int current_el = arm_current_el(env);
3448 int target_el;
3449 uint32_t syn, fsr, fsc;
3450 bool take_exc = false;
3451
3452 if (fi.s1ptw && current_el == 1
3453 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3454 /*
3455 * Synchronous stage 2 fault on an access made as part of the
3456 * translation table walk for AT S1E0* or AT S1E1* insn
3457 * executed from NS EL1. If this is a synchronous external abort
3458 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3459 * to EL3. Otherwise the fault is taken as an exception to EL2,
3460 * and HPFAR_EL2 holds the faulting IPA.
3461 */
3462 if (fi.type == ARMFault_SyncExternalOnWalk &&
3463 (env->cp15.scr_el3 & SCR_EA)) {
3464 target_el = 3;
3465 } else {
3466 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3467 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3468 env->cp15.hpfar_el2 |= HPFAR_NS;
3469 }
3470 target_el = 2;
3471 }
3472 take_exc = true;
3473 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3474 /*
3475 * Synchronous external aborts during a translation table walk
3476 * are taken as Data Abort exceptions.
3477 */
3478 if (fi.stage2) {
3479 if (current_el == 3) {
3480 target_el = 3;
3481 } else {
3482 target_el = 2;
3483 }
3484 } else {
3485 target_el = exception_target_el(env);
3486 }
3487 take_exc = true;
3488 }
3489
3490 if (take_exc) {
3491 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3492 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3493 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3494 fsr = arm_fi_to_lfsc(&fi);
3495 fsc = extract32(fsr, 0, 6);
3496 } else {
3497 fsr = arm_fi_to_sfsc(&fi);
3498 fsc = 0x3f;
3499 }
3500 /*
3501 * Report exception with ESR indicating a fault due to a
3502 * translation table walk for a cache maintenance instruction.
3503 */
3504 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3505 fi.ea, 1, fi.s1ptw, 1, fsc);
3506 env->exception.vaddress = value;
3507 env->exception.fsr = fsr;
3508 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3509 }
3510 }
3511
3512 if (is_a64(env)) {
3513 format64 = true;
3514 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3515 /*
3516 * ATS1Cxx:
3517 * * TTBCR.EAE determines whether the result is returned using the
3518 * 32-bit or the 64-bit PAR format
3519 * * Instructions executed in Hyp mode always use the 64bit format
3520 *
3521 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3522 * * The Non-secure TTBCR.EAE bit is set to 1
3523 * * The implementation includes EL2, and the value of HCR.VM is 1
3524 *
3525 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3526 *
3527 * ATS1Hx always uses the 64bit format.
3528 */
3529 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3530
3531 if (arm_feature(env, ARM_FEATURE_EL2)) {
3532 if (mmu_idx == ARMMMUIdx_E10_0 ||
3533 mmu_idx == ARMMMUIdx_E10_1 ||
3534 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3535 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3536 } else {
3537 format64 |= arm_current_el(env) == 2;
3538 }
3539 }
3540 }
3541
3542 if (format64) {
3543 /* Create a 64-bit PAR */
3544 par64 = (1 << 11); /* LPAE bit always set */
3545 if (!ret) {
3546 par64 |= res.f.phys_addr & ~0xfffULL;
3547 if (!res.f.attrs.secure) {
3548 par64 |= (1 << 9); /* NS */
3549 }
3550 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3551 par64 |= par_el1_shareability(&res) << 7; /* SH */
3552 } else {
3553 uint32_t fsr = arm_fi_to_lfsc(&fi);
3554
3555 par64 |= 1; /* F */
3556 par64 |= (fsr & 0x3f) << 1; /* FS */
3557 if (fi.stage2) {
3558 par64 |= (1 << 9); /* S */
3559 }
3560 if (fi.s1ptw) {
3561 par64 |= (1 << 8); /* PTW */
3562 }
3563 }
3564 } else {
3565 /*
3566 * fsr is a DFSR/IFSR value for the short descriptor
3567 * translation table format (with WnR always clear).
3568 * Convert it to a 32-bit PAR.
3569 */
3570 if (!ret) {
3571 /* We do not set any attribute bits in the PAR */
3572 if (res.f.lg_page_size == 24
3573 && arm_feature(env, ARM_FEATURE_V7)) {
3574 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3575 } else {
3576 par64 = res.f.phys_addr & 0xfffff000;
3577 }
3578 if (!res.f.attrs.secure) {
3579 par64 |= (1 << 9); /* NS */
3580 }
3581 } else {
3582 uint32_t fsr = arm_fi_to_sfsc(&fi);
3583
3584 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3585 ((fsr & 0xf) << 1) | 1;
3586 }
3587 }
3588 return par64;
3589 }
3590 #endif /* CONFIG_TCG */
3591
3592 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3593 {
3594 #ifdef CONFIG_TCG
3595 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3596 uint64_t par64;
3597 ARMMMUIdx mmu_idx;
3598 int el = arm_current_el(env);
3599 ARMSecuritySpace ss = arm_security_space(env);
3600
3601 switch (ri->opc2 & 6) {
3602 case 0:
3603 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3604 switch (el) {
3605 case 3:
3606 mmu_idx = ARMMMUIdx_E3;
3607 break;
3608 case 2:
3609 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3610 /* fall through */
3611 case 1:
3612 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3613 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3614 } else {
3615 mmu_idx = ARMMMUIdx_Stage1_E1;
3616 }
3617 break;
3618 default:
3619 g_assert_not_reached();
3620 }
3621 break;
3622 case 2:
3623 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3624 switch (el) {
3625 case 3:
3626 mmu_idx = ARMMMUIdx_E10_0;
3627 break;
3628 case 2:
3629 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3630 mmu_idx = ARMMMUIdx_Stage1_E0;
3631 break;
3632 case 1:
3633 mmu_idx = ARMMMUIdx_Stage1_E0;
3634 break;
3635 default:
3636 g_assert_not_reached();
3637 }
3638 break;
3639 case 4:
3640 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3641 mmu_idx = ARMMMUIdx_E10_1;
3642 ss = ARMSS_NonSecure;
3643 break;
3644 case 6:
3645 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3646 mmu_idx = ARMMMUIdx_E10_0;
3647 ss = ARMSS_NonSecure;
3648 break;
3649 default:
3650 g_assert_not_reached();
3651 }
3652
3653 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3654
3655 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3656 #else
3657 /* Handled by hardware accelerator. */
3658 g_assert_not_reached();
3659 #endif /* CONFIG_TCG */
3660 }
3661
3662 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3663 uint64_t value)
3664 {
3665 #ifdef CONFIG_TCG
3666 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3667 uint64_t par64;
3668
3669 /* There is no SecureEL2 for AArch32. */
3670 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3671 ARMSS_NonSecure);
3672
3673 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3674 #else
3675 /* Handled by hardware accelerator. */
3676 g_assert_not_reached();
3677 #endif /* CONFIG_TCG */
3678 }
3679
3680 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3681 bool isread)
3682 {
3683 /*
3684 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3685 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3686 * only happen when executing at EL3 because that combination also causes an
3687 * illegal exception return. We don't need to check FEAT_RME either, because
3688 * scr_write() ensures that the NSE bit is not set otherwise.
3689 */
3690 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3691 return CP_ACCESS_TRAP;
3692 }
3693 return CP_ACCESS_OK;
3694 }
3695
3696 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3697 bool isread)
3698 {
3699 if (arm_current_el(env) == 3 &&
3700 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3701 return CP_ACCESS_TRAP;
3702 }
3703 return at_e012_access(env, ri, isread);
3704 }
3705
3706 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3707 bool isread)
3708 {
3709 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3710 return CP_ACCESS_TRAP_EL2;
3711 }
3712 return at_e012_access(env, ri, isread);
3713 }
3714
3715 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3716 uint64_t value)
3717 {
3718 #ifdef CONFIG_TCG
3719 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3720 ARMMMUIdx mmu_idx;
3721 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3722 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3723
3724 switch (ri->opc2 & 6) {
3725 case 0:
3726 switch (ri->opc1) {
3727 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3728 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3729 mmu_idx = regime_e20 ?
3730 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3731 } else {
3732 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3733 }
3734 break;
3735 case 4: /* AT S1E2R, AT S1E2W */
3736 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3737 break;
3738 case 6: /* AT S1E3R, AT S1E3W */
3739 mmu_idx = ARMMMUIdx_E3;
3740 break;
3741 default:
3742 g_assert_not_reached();
3743 }
3744 break;
3745 case 2: /* AT S1E0R, AT S1E0W */
3746 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3747 break;
3748 case 4: /* AT S12E1R, AT S12E1W */
3749 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3750 break;
3751 case 6: /* AT S12E0R, AT S12E0W */
3752 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3753 break;
3754 default:
3755 g_assert_not_reached();
3756 }
3757
3758 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3759 mmu_idx, arm_security_space(env));
3760 #else
3761 /* Handled by hardware accelerator. */
3762 g_assert_not_reached();
3763 #endif /* CONFIG_TCG */
3764 }
3765 #endif
3766
3767 /* Return basic MPU access permission bits. */
3768 static uint32_t simple_mpu_ap_bits(uint32_t val)
3769 {
3770 uint32_t ret;
3771 uint32_t mask;
3772 int i;
3773 ret = 0;
3774 mask = 3;
3775 for (i = 0; i < 16; i += 2) {
3776 ret |= (val >> i) & mask;
3777 mask <<= 2;
3778 }
3779 return ret;
3780 }
3781
3782 /* Pad basic MPU access permission bits to extended format. */
3783 static uint32_t extended_mpu_ap_bits(uint32_t val)
3784 {
3785 uint32_t ret;
3786 uint32_t mask;
3787 int i;
3788 ret = 0;
3789 mask = 3;
3790 for (i = 0; i < 16; i += 2) {
3791 ret |= (val & mask) << i;
3792 mask <<= 2;
3793 }
3794 return ret;
3795 }
3796
3797 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3798 uint64_t value)
3799 {
3800 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3801 }
3802
3803 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3804 {
3805 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3806 }
3807
3808 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3809 uint64_t value)
3810 {
3811 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3812 }
3813
3814 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3815 {
3816 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3817 }
3818
3819 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3820 {
3821 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3822
3823 if (!u32p) {
3824 return 0;
3825 }
3826
3827 u32p += env->pmsav7.rnr[M_REG_NS];
3828 return *u32p;
3829 }
3830
3831 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832 uint64_t value)
3833 {
3834 ARMCPU *cpu = env_archcpu(env);
3835 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3836
3837 if (!u32p) {
3838 return;
3839 }
3840
3841 u32p += env->pmsav7.rnr[M_REG_NS];
3842 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3843 *u32p = value;
3844 }
3845
3846 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3847 uint64_t value)
3848 {
3849 ARMCPU *cpu = env_archcpu(env);
3850 uint32_t nrgs = cpu->pmsav7_dregion;
3851
3852 if (value >= nrgs) {
3853 qemu_log_mask(LOG_GUEST_ERROR,
3854 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3855 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3856 return;
3857 }
3858
3859 raw_write(env, ri, value);
3860 }
3861
3862 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3863 uint64_t value)
3864 {
3865 ARMCPU *cpu = env_archcpu(env);
3866
3867 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3868 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3869 }
3870
3871 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3872 {
3873 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3874 }
3875
3876 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877 uint64_t value)
3878 {
3879 ARMCPU *cpu = env_archcpu(env);
3880
3881 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3882 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3883 }
3884
3885 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3886 {
3887 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3888 }
3889
3890 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3891 uint64_t value)
3892 {
3893 ARMCPU *cpu = env_archcpu(env);
3894
3895 /*
3896 * Ignore writes that would select not implemented region.
3897 * This is architecturally UNPREDICTABLE.
3898 */
3899 if (value >= cpu->pmsav7_dregion) {
3900 return;
3901 }
3902
3903 env->pmsav7.rnr[M_REG_NS] = value;
3904 }
3905
3906 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907 uint64_t value)
3908 {
3909 ARMCPU *cpu = env_archcpu(env);
3910
3911 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3912 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3913 }
3914
3915 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3916 {
3917 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3918 }
3919
3920 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921 uint64_t value)
3922 {
3923 ARMCPU *cpu = env_archcpu(env);
3924
3925 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3926 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3927 }
3928
3929 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3930 {
3931 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3932 }
3933
3934 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3935 uint64_t value)
3936 {
3937 uint32_t n;
3938 uint32_t bit;
3939 ARMCPU *cpu = env_archcpu(env);
3940
3941 /* Ignore writes to unimplemented regions */
3942 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3943 value &= MAKE_64BIT_MASK(0, rmax);
3944
3945 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3946
3947 /* Register alias is only valid for first 32 indexes */
3948 for (n = 0; n < rmax; ++n) {
3949 bit = extract32(value, n, 1);
3950 env->pmsav8.hprlar[n] = deposit32(
3951 env->pmsav8.hprlar[n], 0, 1, bit);
3952 }
3953 }
3954
3955 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3956 {
3957 uint32_t n;
3958 uint32_t result = 0x0;
3959 ARMCPU *cpu = env_archcpu(env);
3960
3961 /* Register alias is only valid for first 32 indexes */
3962 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3963 if (env->pmsav8.hprlar[n] & 0x1) {
3964 result |= (0x1 << n);
3965 }
3966 }
3967 return result;
3968 }
3969
3970 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3971 uint64_t value)
3972 {
3973 ARMCPU *cpu = env_archcpu(env);
3974
3975 /*
3976 * Ignore writes that would select not implemented region.
3977 * This is architecturally UNPREDICTABLE.
3978 */
3979 if (value >= cpu->pmsav8r_hdregion) {
3980 return;
3981 }
3982
3983 env->pmsav8.hprselr = value;
3984 }
3985
3986 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3988 {
3989 ARMCPU *cpu = env_archcpu(env);
3990 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3991 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3992
3993 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3994
3995 if (ri->opc1 & 4) {
3996 if (index >= cpu->pmsav8r_hdregion) {
3997 return;
3998 }
3999 if (ri->opc2 & 0x1) {
4000 env->pmsav8.hprlar[index] = value;
4001 } else {
4002 env->pmsav8.hprbar[index] = value;
4003 }
4004 } else {
4005 if (index >= cpu->pmsav7_dregion) {
4006 return;
4007 }
4008 if (ri->opc2 & 0x1) {
4009 env->pmsav8.rlar[M_REG_NS][index] = value;
4010 } else {
4011 env->pmsav8.rbar[M_REG_NS][index] = value;
4012 }
4013 }
4014 }
4015
4016 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4017 {
4018 ARMCPU *cpu = env_archcpu(env);
4019 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4020 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4021
4022 if (ri->opc1 & 4) {
4023 if (index >= cpu->pmsav8r_hdregion) {
4024 return 0x0;
4025 }
4026 if (ri->opc2 & 0x1) {
4027 return env->pmsav8.hprlar[index];
4028 } else {
4029 return env->pmsav8.hprbar[index];
4030 }
4031 } else {
4032 if (index >= cpu->pmsav7_dregion) {
4033 return 0x0;
4034 }
4035 if (ri->opc2 & 0x1) {
4036 return env->pmsav8.rlar[M_REG_NS][index];
4037 } else {
4038 return env->pmsav8.rbar[M_REG_NS][index];
4039 }
4040 }
4041 }
4042
4043 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4044 { .name = "PRBAR",
4045 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4046 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4047 .accessfn = access_tvm_trvm,
4048 .readfn = prbar_read, .writefn = prbar_write },
4049 { .name = "PRLAR",
4050 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4051 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4052 .accessfn = access_tvm_trvm,
4053 .readfn = prlar_read, .writefn = prlar_write },
4054 { .name = "PRSELR", .resetvalue = 0,
4055 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4056 .access = PL1_RW, .accessfn = access_tvm_trvm,
4057 .writefn = prselr_write,
4058 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4059 { .name = "HPRBAR", .resetvalue = 0,
4060 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4061 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4062 .readfn = hprbar_read, .writefn = hprbar_write },
4063 { .name = "HPRLAR",
4064 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4065 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4066 .readfn = hprlar_read, .writefn = hprlar_write },
4067 { .name = "HPRSELR", .resetvalue = 0,
4068 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4069 .access = PL2_RW,
4070 .writefn = hprselr_write,
4071 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4072 { .name = "HPRENR",
4073 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4074 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4075 .readfn = hprenr_read, .writefn = hprenr_write },
4076 };
4077
4078 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4079 /*
4080 * Reset for all these registers is handled in arm_cpu_reset(),
4081 * because the PMSAv7 is also used by M-profile CPUs, which do
4082 * not register cpregs but still need the state to be reset.
4083 */
4084 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4085 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4086 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4087 .readfn = pmsav7_read, .writefn = pmsav7_write,
4088 .resetfn = arm_cp_reset_ignore },
4089 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4090 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4091 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4092 .readfn = pmsav7_read, .writefn = pmsav7_write,
4093 .resetfn = arm_cp_reset_ignore },
4094 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4095 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4096 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4097 .readfn = pmsav7_read, .writefn = pmsav7_write,
4098 .resetfn = arm_cp_reset_ignore },
4099 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4100 .access = PL1_RW,
4101 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4102 .writefn = pmsav7_rgnr_write,
4103 .resetfn = arm_cp_reset_ignore },
4104 };
4105
4106 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4107 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4108 .access = PL1_RW, .type = ARM_CP_ALIAS,
4109 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4110 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4111 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4112 .access = PL1_RW, .type = ARM_CP_ALIAS,
4113 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4114 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4115 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4116 .access = PL1_RW,
4117 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4118 .resetvalue = 0, },
4119 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4120 .access = PL1_RW,
4121 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4122 .resetvalue = 0, },
4123 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4124 .access = PL1_RW,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4126 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4127 .access = PL1_RW,
4128 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4129 /* Protection region base and size registers */
4130 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4131 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4132 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4133 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4134 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4135 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4136 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4137 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4138 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4139 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4140 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4141 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4142 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4143 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4144 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4145 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4146 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4147 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4148 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4149 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4150 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4151 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4152 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4153 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4154 };
4155
4156 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4157 uint64_t value)
4158 {
4159 ARMCPU *cpu = env_archcpu(env);
4160
4161 if (!arm_feature(env, ARM_FEATURE_V8)) {
4162 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4163 /*
4164 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4165 * using Long-descriptor translation table format
4166 */
4167 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4168 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4169 /*
4170 * In an implementation that includes the Security Extensions
4171 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4172 * Short-descriptor translation table format.
4173 */
4174 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4175 } else {
4176 value &= TTBCR_N;
4177 }
4178 }
4179
4180 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4181 /*
4182 * With LPAE the TTBCR could result in a change of ASID
4183 * via the TTBCR.A1 bit, so do a TLB flush.
4184 */
4185 tlb_flush(CPU(cpu));
4186 }
4187 raw_write(env, ri, value);
4188 }
4189
4190 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4191 uint64_t value)
4192 {
4193 ARMCPU *cpu = env_archcpu(env);
4194
4195 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4196 tlb_flush(CPU(cpu));
4197 raw_write(env, ri, value);
4198 }
4199
4200 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4201 uint64_t value)
4202 {
4203 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4204 if (cpreg_field_is_64bit(ri) &&
4205 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4206 ARMCPU *cpu = env_archcpu(env);
4207 tlb_flush(CPU(cpu));
4208 }
4209 raw_write(env, ri, value);
4210 }
4211
4212 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4213 uint64_t value)
4214 {
4215 /*
4216 * If we are running with E2&0 regime, then an ASID is active.
4217 * Flush if that might be changing. Note we're not checking
4218 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4219 * holds the active ASID, only checking the field that might.
4220 */
4221 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4222 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4223 uint16_t mask = ARMMMUIdxBit_E20_2 |
4224 ARMMMUIdxBit_E20_2_PAN |
4225 ARMMMUIdxBit_E20_0;
4226 tlb_flush_by_mmuidx(env_cpu(env), mask);
4227 }
4228 raw_write(env, ri, value);
4229 }
4230
4231 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4232 uint64_t value)
4233 {
4234 ARMCPU *cpu = env_archcpu(env);
4235 CPUState *cs = CPU(cpu);
4236
4237 /*
4238 * A change in VMID to the stage2 page table (Stage2) invalidates
4239 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4240 */
4241 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4242 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4243 }
4244 raw_write(env, ri, value);
4245 }
4246
4247 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4248 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4249 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4250 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4251 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4252 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4253 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4254 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4255 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4256 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4257 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4258 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4259 offsetof(CPUARMState, cp15.dfar_ns) } },
4260 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4262 .access = PL1_RW, .accessfn = access_tvm_trvm,
4263 .fgt = FGT_FAR_EL1,
4264 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4265 .resetvalue = 0, },
4266 };
4267
4268 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4269 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4270 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4271 .access = PL1_RW, .accessfn = access_tvm_trvm,
4272 .fgt = FGT_ESR_EL1,
4273 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4274 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4275 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4276 .access = PL1_RW, .accessfn = access_tvm_trvm,
4277 .fgt = FGT_TTBR0_EL1,
4278 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4279 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4280 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4281 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4282 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4283 .access = PL1_RW, .accessfn = access_tvm_trvm,
4284 .fgt = FGT_TTBR1_EL1,
4285 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4286 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4287 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4288 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4289 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4290 .access = PL1_RW, .accessfn = access_tvm_trvm,
4291 .fgt = FGT_TCR_EL1,
4292 .writefn = vmsa_tcr_el12_write,
4293 .raw_writefn = raw_write,
4294 .resetvalue = 0,
4295 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4296 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4297 .access = PL1_RW, .accessfn = access_tvm_trvm,
4298 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4299 .raw_writefn = raw_write,
4300 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4301 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4302 };
4303
4304 /*
4305 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4306 * qemu tlbs nor adjusting cached masks.
4307 */
4308 static const ARMCPRegInfo ttbcr2_reginfo = {
4309 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4310 .access = PL1_RW, .accessfn = access_tvm_trvm,
4311 .type = ARM_CP_ALIAS,
4312 .bank_fieldoffsets = {
4313 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4314 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4315 },
4316 };
4317
4318 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4319 uint64_t value)
4320 {
4321 env->cp15.c15_ticonfig = value & 0xe7;
4322 /* The OS_TYPE bit in this register changes the reported CPUID! */
4323 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4324 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4325 }
4326
4327 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4328 uint64_t value)
4329 {
4330 env->cp15.c15_threadid = value & 0xffff;
4331 }
4332
4333 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4334 uint64_t value)
4335 {
4336 /* Wait-for-interrupt (deprecated) */
4337 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4338 }
4339
4340 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4341 uint64_t value)
4342 {
4343 /*
4344 * On OMAP there are registers indicating the max/min index of dcache lines
4345 * containing a dirty line; cache flush operations have to reset these.
4346 */
4347 env->cp15.c15_i_max = 0x000;
4348 env->cp15.c15_i_min = 0xff0;
4349 }
4350
4351 static const ARMCPRegInfo omap_cp_reginfo[] = {
4352 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4353 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4354 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4355 .resetvalue = 0, },
4356 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4357 .access = PL1_RW, .type = ARM_CP_NOP },
4358 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4359 .access = PL1_RW,
4360 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4361 .writefn = omap_ticonfig_write },
4362 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4363 .access = PL1_RW,
4364 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4365 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4366 .access = PL1_RW, .resetvalue = 0xff0,
4367 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4368 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4369 .access = PL1_RW,
4370 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4371 .writefn = omap_threadid_write },
4372 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4373 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4374 .type = ARM_CP_NO_RAW,
4375 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4376 /*
4377 * TODO: Peripheral port remap register:
4378 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4379 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4380 * when MMU is off.
4381 */
4382 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4383 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4384 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4385 .writefn = omap_cachemaint_write },
4386 { .name = "C9", .cp = 15, .crn = 9,
4387 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4388 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4389 };
4390
4391 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4392 uint64_t value)
4393 {
4394 env->cp15.c15_cpar = value & 0x3fff;
4395 }
4396
4397 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4398 { .name = "XSCALE_CPAR",
4399 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4400 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4401 .writefn = xscale_cpar_write, },
4402 { .name = "XSCALE_AUXCR",
4403 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4404 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4405 .resetvalue = 0, },
4406 /*
4407 * XScale specific cache-lockdown: since we have no cache we NOP these
4408 * and hope the guest does not really rely on cache behaviour.
4409 */
4410 { .name = "XSCALE_LOCK_ICACHE_LINE",
4411 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4412 .access = PL1_W, .type = ARM_CP_NOP },
4413 { .name = "XSCALE_UNLOCK_ICACHE",
4414 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4415 .access = PL1_W, .type = ARM_CP_NOP },
4416 { .name = "XSCALE_DCACHE_LOCK",
4417 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4418 .access = PL1_RW, .type = ARM_CP_NOP },
4419 { .name = "XSCALE_UNLOCK_DCACHE",
4420 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4421 .access = PL1_W, .type = ARM_CP_NOP },
4422 };
4423
4424 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4425 /*
4426 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4427 * implementation of this implementation-defined space.
4428 * Ideally this should eventually disappear in favour of actually
4429 * implementing the correct behaviour for all cores.
4430 */
4431 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4432 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4433 .access = PL1_RW,
4434 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4435 .resetvalue = 0 },
4436 };
4437
4438 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4439 /* Cache status: RAZ because we have no cache so it's always clean */
4440 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4441 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4442 .resetvalue = 0 },
4443 };
4444
4445 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4446 /* We never have a block transfer operation in progress */
4447 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4448 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4449 .resetvalue = 0 },
4450 /* The cache ops themselves: these all NOP for QEMU */
4451 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4452 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4453 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4454 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4455 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4456 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4457 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4458 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4459 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4460 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4461 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4462 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4463 };
4464
4465 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4466 /*
4467 * The cache test-and-clean instructions always return (1 << 30)
4468 * to indicate that there are no dirty cache lines.
4469 */
4470 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4471 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4472 .resetvalue = (1 << 30) },
4473 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4474 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4475 .resetvalue = (1 << 30) },
4476 };
4477
4478 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4479 /* Ignore ReadBuffer accesses */
4480 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4481 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4482 .access = PL1_RW, .resetvalue = 0,
4483 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4484 };
4485
4486 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4487 {
4488 unsigned int cur_el = arm_current_el(env);
4489
4490 if (arm_is_el2_enabled(env) && cur_el == 1) {
4491 return env->cp15.vpidr_el2;
4492 }
4493 return raw_read(env, ri);
4494 }
4495
4496 static uint64_t mpidr_read_val(CPUARMState *env)
4497 {
4498 ARMCPU *cpu = env_archcpu(env);
4499 uint64_t mpidr = cpu->mp_affinity;
4500
4501 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4502 mpidr |= (1U << 31);
4503 /*
4504 * Cores which are uniprocessor (non-coherent)
4505 * but still implement the MP extensions set
4506 * bit 30. (For instance, Cortex-R5).
4507 */
4508 if (cpu->mp_is_up) {
4509 mpidr |= (1u << 30);
4510 }
4511 }
4512 return mpidr;
4513 }
4514
4515 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4516 {
4517 unsigned int cur_el = arm_current_el(env);
4518
4519 if (arm_is_el2_enabled(env) && cur_el == 1) {
4520 return env->cp15.vmpidr_el2;
4521 }
4522 return mpidr_read_val(env);
4523 }
4524
4525 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4526 /* NOP AMAIR0/1 */
4527 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4528 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4529 .access = PL1_RW, .accessfn = access_tvm_trvm,
4530 .fgt = FGT_AMAIR_EL1,
4531 .type = ARM_CP_CONST, .resetvalue = 0 },
4532 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4533 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4534 .access = PL1_RW, .accessfn = access_tvm_trvm,
4535 .type = ARM_CP_CONST, .resetvalue = 0 },
4536 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4537 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4538 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4539 offsetof(CPUARMState, cp15.par_ns)} },
4540 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4541 .access = PL1_RW, .accessfn = access_tvm_trvm,
4542 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4543 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4544 offsetof(CPUARMState, cp15.ttbr0_ns) },
4545 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4546 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4547 .access = PL1_RW, .accessfn = access_tvm_trvm,
4548 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4549 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4550 offsetof(CPUARMState, cp15.ttbr1_ns) },
4551 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4552 };
4553
4554 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4555 {
4556 return vfp_get_fpcr(env);
4557 }
4558
4559 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4560 uint64_t value)
4561 {
4562 vfp_set_fpcr(env, value);
4563 }
4564
4565 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4566 {
4567 return vfp_get_fpsr(env);
4568 }
4569
4570 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4571 uint64_t value)
4572 {
4573 vfp_set_fpsr(env, value);
4574 }
4575
4576 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4577 bool isread)
4578 {
4579 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4580 return CP_ACCESS_TRAP;
4581 }
4582 return CP_ACCESS_OK;
4583 }
4584
4585 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4586 uint64_t value)
4587 {
4588 env->daif = value & PSTATE_DAIF;
4589 }
4590
4591 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4592 {
4593 return env->pstate & PSTATE_PAN;
4594 }
4595
4596 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4597 uint64_t value)
4598 {
4599 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4600 }
4601
4602 static const ARMCPRegInfo pan_reginfo = {
4603 .name = "PAN", .state = ARM_CP_STATE_AA64,
4604 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4605 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4606 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4607 };
4608
4609 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4610 {
4611 return env->pstate & PSTATE_UAO;
4612 }
4613
4614 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4615 uint64_t value)
4616 {
4617 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4618 }
4619
4620 static const ARMCPRegInfo uao_reginfo = {
4621 .name = "UAO", .state = ARM_CP_STATE_AA64,
4622 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4623 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4624 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4625 };
4626
4627 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4628 {
4629 return env->pstate & PSTATE_DIT;
4630 }
4631
4632 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4633 uint64_t value)
4634 {
4635 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4636 }
4637
4638 static const ARMCPRegInfo dit_reginfo = {
4639 .name = "DIT", .state = ARM_CP_STATE_AA64,
4640 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4641 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4642 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4643 };
4644
4645 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4646 {
4647 return env->pstate & PSTATE_SSBS;
4648 }
4649
4650 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4651 uint64_t value)
4652 {
4653 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4654 }
4655
4656 static const ARMCPRegInfo ssbs_reginfo = {
4657 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4658 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4659 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4660 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4661 };
4662
4663 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4664 const ARMCPRegInfo *ri,
4665 bool isread)
4666 {
4667 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4668 switch (arm_current_el(env)) {
4669 case 0:
4670 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4671 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4672 return CP_ACCESS_TRAP;
4673 }
4674 /* fall through */
4675 case 1:
4676 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4677 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4678 return CP_ACCESS_TRAP_EL2;
4679 }
4680 break;
4681 }
4682 return CP_ACCESS_OK;
4683 }
4684
4685 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4686 {
4687 /* Cache invalidate/clean to Point of Unification... */
4688 switch (arm_current_el(env)) {
4689 case 0:
4690 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4691 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4692 return CP_ACCESS_TRAP;
4693 }
4694 /* fall through */
4695 case 1:
4696 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4697 if (arm_hcr_el2_eff(env) & hcrflags) {
4698 return CP_ACCESS_TRAP_EL2;
4699 }
4700 break;
4701 }
4702 return CP_ACCESS_OK;
4703 }
4704
4705 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4706 bool isread)
4707 {
4708 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4709 }
4710
4711 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4712 bool isread)
4713 {
4714 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4715 }
4716
4717 /*
4718 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4719 * Page D4-1736 (DDI0487A.b)
4720 */
4721
4722 static int vae1_tlbmask(CPUARMState *env)
4723 {
4724 uint64_t hcr = arm_hcr_el2_eff(env);
4725 uint16_t mask;
4726
4727 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4728 mask = ARMMMUIdxBit_E20_2 |
4729 ARMMMUIdxBit_E20_2_PAN |
4730 ARMMMUIdxBit_E20_0;
4731 } else {
4732 mask = ARMMMUIdxBit_E10_1 |
4733 ARMMMUIdxBit_E10_1_PAN |
4734 ARMMMUIdxBit_E10_0;
4735 }
4736 return mask;
4737 }
4738
4739 static int vae2_tlbmask(CPUARMState *env)
4740 {
4741 uint64_t hcr = arm_hcr_el2_eff(env);
4742 uint16_t mask;
4743
4744 if (hcr & HCR_E2H) {
4745 mask = ARMMMUIdxBit_E20_2 |
4746 ARMMMUIdxBit_E20_2_PAN |
4747 ARMMMUIdxBit_E20_0;
4748 } else {
4749 mask = ARMMMUIdxBit_E2;
4750 }
4751 return mask;
4752 }
4753
4754 /* Return 56 if TBI is enabled, 64 otherwise. */
4755 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4756 uint64_t addr)
4757 {
4758 uint64_t tcr = regime_tcr(env, mmu_idx);
4759 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4760 int select = extract64(addr, 55, 1);
4761
4762 return (tbi >> select) & 1 ? 56 : 64;
4763 }
4764
4765 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4766 {
4767 uint64_t hcr = arm_hcr_el2_eff(env);
4768 ARMMMUIdx mmu_idx;
4769
4770 /* Only the regime of the mmu_idx below is significant. */
4771 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4772 mmu_idx = ARMMMUIdx_E20_0;
4773 } else {
4774 mmu_idx = ARMMMUIdx_E10_0;
4775 }
4776
4777 return tlbbits_for_regime(env, mmu_idx, addr);
4778 }
4779
4780 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4781 {
4782 uint64_t hcr = arm_hcr_el2_eff(env);
4783 ARMMMUIdx mmu_idx;
4784
4785 /*
4786 * Only the regime of the mmu_idx below is significant.
4787 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4788 * only has one.
4789 */
4790 if (hcr & HCR_E2H) {
4791 mmu_idx = ARMMMUIdx_E20_2;
4792 } else {
4793 mmu_idx = ARMMMUIdx_E2;
4794 }
4795
4796 return tlbbits_for_regime(env, mmu_idx, addr);
4797 }
4798
4799 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4800 uint64_t value)
4801 {
4802 CPUState *cs = env_cpu(env);
4803 int mask = vae1_tlbmask(env);
4804
4805 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4806 }
4807
4808 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4809 uint64_t value)
4810 {
4811 CPUState *cs = env_cpu(env);
4812 int mask = vae1_tlbmask(env);
4813
4814 if (tlb_force_broadcast(env)) {
4815 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4816 } else {
4817 tlb_flush_by_mmuidx(cs, mask);
4818 }
4819 }
4820
4821 static int e2_tlbmask(CPUARMState *env)
4822 {
4823 return (ARMMMUIdxBit_E20_0 |
4824 ARMMMUIdxBit_E20_2 |
4825 ARMMMUIdxBit_E20_2_PAN |
4826 ARMMMUIdxBit_E2);
4827 }
4828
4829 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4831 {
4832 CPUState *cs = env_cpu(env);
4833 int mask = alle1_tlbmask(env);
4834
4835 tlb_flush_by_mmuidx(cs, mask);
4836 }
4837
4838 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4839 uint64_t value)
4840 {
4841 CPUState *cs = env_cpu(env);
4842 int mask = e2_tlbmask(env);
4843
4844 tlb_flush_by_mmuidx(cs, mask);
4845 }
4846
4847 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4848 uint64_t value)
4849 {
4850 ARMCPU *cpu = env_archcpu(env);
4851 CPUState *cs = CPU(cpu);
4852
4853 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4854 }
4855
4856 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4857 uint64_t value)
4858 {
4859 CPUState *cs = env_cpu(env);
4860 int mask = alle1_tlbmask(env);
4861
4862 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4863 }
4864
4865 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4866 uint64_t value)
4867 {
4868 CPUState *cs = env_cpu(env);
4869 int mask = e2_tlbmask(env);
4870
4871 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4872 }
4873
4874 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4875 uint64_t value)
4876 {
4877 CPUState *cs = env_cpu(env);
4878
4879 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4880 }
4881
4882 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4883 uint64_t value)
4884 {
4885 /*
4886 * Invalidate by VA, EL2
4887 * Currently handles both VAE2 and VALE2, since we don't support
4888 * flush-last-level-only.
4889 */
4890 CPUState *cs = env_cpu(env);
4891 int mask = vae2_tlbmask(env);
4892 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4893 int bits = vae2_tlbbits(env, pageaddr);
4894
4895 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4896 }
4897
4898 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4899 uint64_t value)
4900 {
4901 /*
4902 * Invalidate by VA, EL3
4903 * Currently handles both VAE3 and VALE3, since we don't support
4904 * flush-last-level-only.
4905 */
4906 ARMCPU *cpu = env_archcpu(env);
4907 CPUState *cs = CPU(cpu);
4908 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4909
4910 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4911 }
4912
4913 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4914 uint64_t value)
4915 {
4916 CPUState *cs = env_cpu(env);
4917 int mask = vae1_tlbmask(env);
4918 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4919 int bits = vae1_tlbbits(env, pageaddr);
4920
4921 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4922 }
4923
4924 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4925 uint64_t value)
4926 {
4927 /*
4928 * Invalidate by VA, EL1&0 (AArch64 version).
4929 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4930 * since we don't support flush-for-specific-ASID-only or
4931 * flush-last-level-only.
4932 */
4933 CPUState *cs = env_cpu(env);
4934 int mask = vae1_tlbmask(env);
4935 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4936 int bits = vae1_tlbbits(env, pageaddr);
4937
4938 if (tlb_force_broadcast(env)) {
4939 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4940 } else {
4941 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4942 }
4943 }
4944
4945 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4946 uint64_t value)
4947 {
4948 CPUState *cs = env_cpu(env);
4949 int mask = vae2_tlbmask(env);
4950 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4951 int bits = vae2_tlbbits(env, pageaddr);
4952
4953 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4954 }
4955
4956 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4957 uint64_t value)
4958 {
4959 CPUState *cs = env_cpu(env);
4960 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4961 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4962
4963 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4964 ARMMMUIdxBit_E3, bits);
4965 }
4966
4967 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4968 {
4969 /*
4970 * The MSB of value is the NS field, which only applies if SEL2
4971 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4972 */
4973 return (value >= 0
4974 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4975 && arm_is_secure_below_el3(env)
4976 ? ARMMMUIdxBit_Stage2_S
4977 : ARMMMUIdxBit_Stage2);
4978 }
4979
4980 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4981 uint64_t value)
4982 {
4983 CPUState *cs = env_cpu(env);
4984 int mask = ipas2e1_tlbmask(env, value);
4985 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4986
4987 if (tlb_force_broadcast(env)) {
4988 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4989 } else {
4990 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4991 }
4992 }
4993
4994 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4995 uint64_t value)
4996 {
4997 CPUState *cs = env_cpu(env);
4998 int mask = ipas2e1_tlbmask(env, value);
4999 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5000
5001 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5002 }
5003
5004 #ifdef TARGET_AARCH64
5005 typedef struct {
5006 uint64_t base;
5007 uint64_t length;
5008 } TLBIRange;
5009
5010 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5011 {
5012 /*
5013 * Note that the TLBI range TG field encoding differs from both
5014 * TG0 and TG1 encodings.
5015 */
5016 switch (tg) {
5017 case 1:
5018 return Gran4K;
5019 case 2:
5020 return Gran16K;
5021 case 3:
5022 return Gran64K;
5023 default:
5024 return GranInvalid;
5025 }
5026 }
5027
5028 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5029 uint64_t value)
5030 {
5031 unsigned int page_size_granule, page_shift, num, scale, exponent;
5032 /* Extract one bit to represent the va selector in use. */
5033 uint64_t select = sextract64(value, 36, 1);
5034 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5035 TLBIRange ret = { };
5036 ARMGranuleSize gran;
5037
5038 page_size_granule = extract64(value, 46, 2);
5039 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5040
5041 /* The granule encoded in value must match the granule in use. */
5042 if (gran != param.gran) {
5043 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5044 page_size_granule);
5045 return ret;
5046 }
5047
5048 page_shift = arm_granule_bits(gran);
5049 num = extract64(value, 39, 5);
5050 scale = extract64(value, 44, 2);
5051 exponent = (5 * scale) + 1;
5052
5053 ret.length = (num + 1) << (exponent + page_shift);
5054
5055 if (param.select) {
5056 ret.base = sextract64(value, 0, 37);
5057 } else {
5058 ret.base = extract64(value, 0, 37);
5059 }
5060 if (param.ds) {
5061 /*
5062 * With DS=1, BaseADDR is always shifted 16 so that it is able
5063 * to address all 52 va bits. The input address is perforce
5064 * aligned on a 64k boundary regardless of translation granule.
5065 */
5066 page_shift = 16;
5067 }
5068 ret.base <<= page_shift;
5069
5070 return ret;
5071 }
5072
5073 static void do_rvae_write(CPUARMState *env, uint64_t value,
5074 int idxmap, bool synced)
5075 {
5076 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5077 TLBIRange range;
5078 int bits;
5079
5080 range = tlbi_aa64_get_range(env, one_idx, value);
5081 bits = tlbbits_for_regime(env, one_idx, range.base);
5082
5083 if (synced) {
5084 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5085 range.base,
5086 range.length,
5087 idxmap,
5088 bits);
5089 } else {
5090 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5091 range.length, idxmap, bits);
5092 }
5093 }
5094
5095 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5096 const ARMCPRegInfo *ri,
5097 uint64_t value)
5098 {
5099 /*
5100 * Invalidate by VA range, EL1&0.
5101 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5102 * since we don't support flush-for-specific-ASID-only or
5103 * flush-last-level-only.
5104 */
5105
5106 do_rvae_write(env, value, vae1_tlbmask(env),
5107 tlb_force_broadcast(env));
5108 }
5109
5110 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5111 const ARMCPRegInfo *ri,
5112 uint64_t value)
5113 {
5114 /*
5115 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5116 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5117 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5118 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5119 * shareable specific flushes.
5120 */
5121
5122 do_rvae_write(env, value, vae1_tlbmask(env), true);
5123 }
5124
5125 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5126 const ARMCPRegInfo *ri,
5127 uint64_t value)
5128 {
5129 /*
5130 * Invalidate by VA range, EL2.
5131 * Currently handles all of RVAE2 and RVALE2,
5132 * since we don't support flush-for-specific-ASID-only or
5133 * flush-last-level-only.
5134 */
5135
5136 do_rvae_write(env, value, vae2_tlbmask(env),
5137 tlb_force_broadcast(env));
5138
5139
5140 }
5141
5142 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5143 const ARMCPRegInfo *ri,
5144 uint64_t value)
5145 {
5146 /*
5147 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5148 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5149 * since we don't support flush-for-specific-ASID-only,
5150 * flush-last-level-only or inner/outer shareable specific flushes.
5151 */
5152
5153 do_rvae_write(env, value, vae2_tlbmask(env), true);
5154
5155 }
5156
5157 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5158 const ARMCPRegInfo *ri,
5159 uint64_t value)
5160 {
5161 /*
5162 * Invalidate by VA range, EL3.
5163 * Currently handles all of RVAE3 and RVALE3,
5164 * since we don't support flush-for-specific-ASID-only or
5165 * flush-last-level-only.
5166 */
5167
5168 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5169 }
5170
5171 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5172 const ARMCPRegInfo *ri,
5173 uint64_t value)
5174 {
5175 /*
5176 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5177 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5178 * since we don't support flush-for-specific-ASID-only,
5179 * flush-last-level-only or inner/outer specific flushes.
5180 */
5181
5182 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5183 }
5184
5185 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5186 uint64_t value)
5187 {
5188 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5189 tlb_force_broadcast(env));
5190 }
5191
5192 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5193 const ARMCPRegInfo *ri,
5194 uint64_t value)
5195 {
5196 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5197 }
5198 #endif
5199
5200 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5201 bool isread)
5202 {
5203 int cur_el = arm_current_el(env);
5204
5205 if (cur_el < 2) {
5206 uint64_t hcr = arm_hcr_el2_eff(env);
5207
5208 if (cur_el == 0) {
5209 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5210 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5211 return CP_ACCESS_TRAP_EL2;
5212 }
5213 } else {
5214 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5215 return CP_ACCESS_TRAP;
5216 }
5217 if (hcr & HCR_TDZ) {
5218 return CP_ACCESS_TRAP_EL2;
5219 }
5220 }
5221 } else if (hcr & HCR_TDZ) {
5222 return CP_ACCESS_TRAP_EL2;
5223 }
5224 }
5225 return CP_ACCESS_OK;
5226 }
5227
5228 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5229 {
5230 ARMCPU *cpu = env_archcpu(env);
5231 int dzp_bit = 1 << 4;
5232
5233 /* DZP indicates whether DC ZVA access is allowed */
5234 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5235 dzp_bit = 0;
5236 }
5237 return cpu->dcz_blocksize | dzp_bit;
5238 }
5239
5240 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5241 bool isread)
5242 {
5243 if (!(env->pstate & PSTATE_SP)) {
5244 /*
5245 * Access to SP_EL0 is undefined if it's being used as
5246 * the stack pointer.
5247 */
5248 return CP_ACCESS_TRAP_UNCATEGORIZED;
5249 }
5250 return CP_ACCESS_OK;
5251 }
5252
5253 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5254 {
5255 return env->pstate & PSTATE_SP;
5256 }
5257
5258 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5259 {
5260 update_spsel(env, val);
5261 }
5262
5263 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5264 uint64_t value)
5265 {
5266 ARMCPU *cpu = env_archcpu(env);
5267
5268 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5269 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5270 value &= ~SCTLR_M;
5271 }
5272
5273 /* ??? Lots of these bits are not implemented. */
5274
5275 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5276 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5277 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5278 } else {
5279 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5280 SCTLR_ATA0 | SCTLR_ATA);
5281 }
5282 }
5283
5284 if (raw_read(env, ri) == value) {
5285 /*
5286 * Skip the TLB flush if nothing actually changed; Linux likes
5287 * to do a lot of pointless SCTLR writes.
5288 */
5289 return;
5290 }
5291
5292 raw_write(env, ri, value);
5293
5294 /* This may enable/disable the MMU, so do a TLB flush. */
5295 tlb_flush(CPU(cpu));
5296
5297 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5298 /*
5299 * Normally we would always end the TB on an SCTLR write; see the
5300 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5301 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5302 * of hflags from the translator, so do it here.
5303 */
5304 arm_rebuild_hflags(env);
5305 }
5306 }
5307
5308 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5309 uint64_t value)
5310 {
5311 /*
5312 * Some MDCR_EL3 bits affect whether PMU counters are running:
5313 * if we are trying to change any of those then we must
5314 * bracket this update with PMU start/finish calls.
5315 */
5316 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5317
5318 if (pmu_op) {
5319 pmu_op_start(env);
5320 }
5321 env->cp15.mdcr_el3 = value;
5322 if (pmu_op) {
5323 pmu_op_finish(env);
5324 }
5325 }
5326
5327 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5328 uint64_t value)
5329 {
5330 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5331 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5332 }
5333
5334 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5335 uint64_t value)
5336 {
5337 /*
5338 * Some MDCR_EL2 bits affect whether PMU counters are running:
5339 * if we are trying to change any of those then we must
5340 * bracket this update with PMU start/finish calls.
5341 */
5342 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5343
5344 if (pmu_op) {
5345 pmu_op_start(env);
5346 }
5347 env->cp15.mdcr_el2 = value;
5348 if (pmu_op) {
5349 pmu_op_finish(env);
5350 }
5351 }
5352
5353 #ifdef CONFIG_USER_ONLY
5354 /*
5355 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5356 * code to get around W^X restrictions, where one region is writable and the
5357 * other is executable.
5358 *
5359 * Since the executable region is never written to we cannot detect code
5360 * changes when running in user mode, and rely on the emulated JIT telling us
5361 * that the code has changed by executing this instruction.
5362 */
5363 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5364 uint64_t value)
5365 {
5366 uint64_t icache_line_mask, start_address, end_address;
5367 const ARMCPU *cpu;
5368
5369 cpu = env_archcpu(env);
5370
5371 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5372 start_address = value & ~icache_line_mask;
5373 end_address = value | icache_line_mask;
5374
5375 mmap_lock();
5376
5377 tb_invalidate_phys_range(start_address, end_address);
5378
5379 mmap_unlock();
5380 }
5381 #endif
5382
5383 static const ARMCPRegInfo v8_cp_reginfo[] = {
5384 /*
5385 * Minimal set of EL0-visible registers. This will need to be expanded
5386 * significantly for system emulation of AArch64 CPUs.
5387 */
5388 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5389 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5390 .access = PL0_RW, .type = ARM_CP_NZCV },
5391 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5392 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5393 .type = ARM_CP_NO_RAW,
5394 .access = PL0_RW, .accessfn = aa64_daif_access,
5395 .fieldoffset = offsetof(CPUARMState, daif),
5396 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5397 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5398 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5399 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5400 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5401 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5402 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5403 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5404 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5405 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5406 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5407 .access = PL0_R, .type = ARM_CP_NO_RAW,
5408 .fgt = FGT_DCZID_EL0,
5409 .readfn = aa64_dczid_read },
5410 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5411 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5412 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5413 #ifndef CONFIG_USER_ONLY
5414 /* Avoid overhead of an access check that always passes in user-mode */
5415 .accessfn = aa64_zva_access,
5416 .fgt = FGT_DCZVA,
5417 #endif
5418 },
5419 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5420 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5421 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5422 /*
5423 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5424 * don't emulate caches.
5425 */
5426 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5427 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5428 .access = PL1_W, .type = ARM_CP_NOP,
5429 .fgt = FGT_ICIALLUIS,
5430 .accessfn = access_ticab },
5431 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5432 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5433 .access = PL1_W, .type = ARM_CP_NOP,
5434 .fgt = FGT_ICIALLU,
5435 .accessfn = access_tocu },
5436 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5437 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5438 .access = PL0_W,
5439 .fgt = FGT_ICIVAU,
5440 .accessfn = access_tocu,
5441 #ifdef CONFIG_USER_ONLY
5442 .type = ARM_CP_NO_RAW,
5443 .writefn = ic_ivau_write
5444 #else
5445 .type = ARM_CP_NOP
5446 #endif
5447 },
5448 /* Cache ops: all NOPs since we don't emulate caches */
5449 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5451 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5452 .fgt = FGT_DCIVAC,
5453 .type = ARM_CP_NOP },
5454 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5455 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5456 .fgt = FGT_DCISW,
5457 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5458 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5459 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5460 .access = PL0_W, .type = ARM_CP_NOP,
5461 .fgt = FGT_DCCVAC,
5462 .accessfn = aa64_cacheop_poc_access },
5463 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5465 .fgt = FGT_DCCSW,
5466 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5467 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5468 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5469 .access = PL0_W, .type = ARM_CP_NOP,
5470 .fgt = FGT_DCCVAU,
5471 .accessfn = access_tocu },
5472 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5473 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5474 .access = PL0_W, .type = ARM_CP_NOP,
5475 .fgt = FGT_DCCIVAC,
5476 .accessfn = aa64_cacheop_poc_access },
5477 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5479 .fgt = FGT_DCCISW,
5480 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5481 /* TLBI operations */
5482 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5483 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5484 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5485 .fgt = FGT_TLBIVMALLE1IS,
5486 .writefn = tlbi_aa64_vmalle1is_write },
5487 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5489 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5490 .fgt = FGT_TLBIVAE1IS,
5491 .writefn = tlbi_aa64_vae1is_write },
5492 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5494 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5495 .fgt = FGT_TLBIASIDE1IS,
5496 .writefn = tlbi_aa64_vmalle1is_write },
5497 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5499 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5500 .fgt = FGT_TLBIVAAE1IS,
5501 .writefn = tlbi_aa64_vae1is_write },
5502 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5503 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5504 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5505 .fgt = FGT_TLBIVALE1IS,
5506 .writefn = tlbi_aa64_vae1is_write },
5507 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5509 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5510 .fgt = FGT_TLBIVAALE1IS,
5511 .writefn = tlbi_aa64_vae1is_write },
5512 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5514 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5515 .fgt = FGT_TLBIVMALLE1,
5516 .writefn = tlbi_aa64_vmalle1_write },
5517 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5519 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5520 .fgt = FGT_TLBIVAE1,
5521 .writefn = tlbi_aa64_vae1_write },
5522 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5524 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5525 .fgt = FGT_TLBIASIDE1,
5526 .writefn = tlbi_aa64_vmalle1_write },
5527 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5529 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5530 .fgt = FGT_TLBIVAAE1,
5531 .writefn = tlbi_aa64_vae1_write },
5532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5534 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5535 .fgt = FGT_TLBIVALE1,
5536 .writefn = tlbi_aa64_vae1_write },
5537 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5539 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5540 .fgt = FGT_TLBIVAALE1,
5541 .writefn = tlbi_aa64_vae1_write },
5542 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5544 .access = PL2_W, .type = ARM_CP_NO_RAW,
5545 .writefn = tlbi_aa64_ipas2e1is_write },
5546 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5548 .access = PL2_W, .type = ARM_CP_NO_RAW,
5549 .writefn = tlbi_aa64_ipas2e1is_write },
5550 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5552 .access = PL2_W, .type = ARM_CP_NO_RAW,
5553 .writefn = tlbi_aa64_alle1is_write },
5554 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5556 .access = PL2_W, .type = ARM_CP_NO_RAW,
5557 .writefn = tlbi_aa64_alle1is_write },
5558 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5560 .access = PL2_W, .type = ARM_CP_NO_RAW,
5561 .writefn = tlbi_aa64_ipas2e1_write },
5562 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5564 .access = PL2_W, .type = ARM_CP_NO_RAW,
5565 .writefn = tlbi_aa64_ipas2e1_write },
5566 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5568 .access = PL2_W, .type = ARM_CP_NO_RAW,
5569 .writefn = tlbi_aa64_alle1_write },
5570 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5572 .access = PL2_W, .type = ARM_CP_NO_RAW,
5573 .writefn = tlbi_aa64_alle1is_write },
5574 #ifndef CONFIG_USER_ONLY
5575 /* 64 bit address translation operations */
5576 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5577 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5578 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5579 .fgt = FGT_ATS1E1R,
5580 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5581 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5583 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5584 .fgt = FGT_ATS1E1W,
5585 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5586 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5587 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5588 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5589 .fgt = FGT_ATS1E0R,
5590 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5591 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5592 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5593 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5594 .fgt = FGT_ATS1E0W,
5595 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5596 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5597 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5598 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5599 .accessfn = at_e012_access, .writefn = ats_write64 },
5600 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5601 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5602 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5603 .accessfn = at_e012_access, .writefn = ats_write64 },
5604 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5605 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5606 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5607 .accessfn = at_e012_access, .writefn = ats_write64 },
5608 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5609 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5610 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5611 .accessfn = at_e012_access, .writefn = ats_write64 },
5612 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5613 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5614 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5615 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5616 .writefn = ats_write64 },
5617 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5618 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5619 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5620 .writefn = ats_write64 },
5621 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5622 .type = ARM_CP_ALIAS,
5623 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5624 .access = PL1_RW, .resetvalue = 0,
5625 .fgt = FGT_PAR_EL1,
5626 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5627 .writefn = par_write },
5628 #endif
5629 /* TLB invalidate last level of translation table walk */
5630 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5631 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5632 .writefn = tlbimva_is_write },
5633 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5634 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5635 .writefn = tlbimvaa_is_write },
5636 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5637 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5638 .writefn = tlbimva_write },
5639 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5640 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5641 .writefn = tlbimvaa_write },
5642 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5643 .type = ARM_CP_NO_RAW, .access = PL2_W,
5644 .writefn = tlbimva_hyp_write },
5645 { .name = "TLBIMVALHIS",
5646 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5647 .type = ARM_CP_NO_RAW, .access = PL2_W,
5648 .writefn = tlbimva_hyp_is_write },
5649 { .name = "TLBIIPAS2",
5650 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5651 .type = ARM_CP_NO_RAW, .access = PL2_W,
5652 .writefn = tlbiipas2_hyp_write },
5653 { .name = "TLBIIPAS2IS",
5654 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5655 .type = ARM_CP_NO_RAW, .access = PL2_W,
5656 .writefn = tlbiipas2is_hyp_write },
5657 { .name = "TLBIIPAS2L",
5658 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5659 .type = ARM_CP_NO_RAW, .access = PL2_W,
5660 .writefn = tlbiipas2_hyp_write },
5661 { .name = "TLBIIPAS2LIS",
5662 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5663 .type = ARM_CP_NO_RAW, .access = PL2_W,
5664 .writefn = tlbiipas2is_hyp_write },
5665 /* 32 bit cache operations */
5666 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5667 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5668 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5669 .type = ARM_CP_NOP, .access = PL1_W },
5670 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5671 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5672 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5673 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5674 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5675 .type = ARM_CP_NOP, .access = PL1_W },
5676 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5677 .type = ARM_CP_NOP, .access = PL1_W },
5678 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5679 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5680 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5681 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5682 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5683 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5684 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5685 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5686 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5687 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5688 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5689 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5690 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5691 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5692 /* MMU Domain access control / MPU write buffer control */
5693 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5694 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5695 .writefn = dacr_write, .raw_writefn = raw_write,
5696 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5697 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5698 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5699 .type = ARM_CP_ALIAS,
5700 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5701 .access = PL1_RW,
5702 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5703 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5704 .type = ARM_CP_ALIAS,
5705 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5706 .access = PL1_RW,
5707 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5708 /*
5709 * We rely on the access checks not allowing the guest to write to the
5710 * state field when SPSel indicates that it's being used as the stack
5711 * pointer.
5712 */
5713 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5714 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5715 .access = PL1_RW, .accessfn = sp_el0_access,
5716 .type = ARM_CP_ALIAS,
5717 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5718 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5719 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5720 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5721 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5722 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5723 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5724 .type = ARM_CP_NO_RAW,
5725 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5726 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5727 .type = ARM_CP_ALIAS,
5728 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5729 .access = PL2_RW,
5730 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5731 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5732 .type = ARM_CP_ALIAS,
5733 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5734 .access = PL2_RW,
5735 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5736 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5737 .type = ARM_CP_ALIAS,
5738 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5739 .access = PL2_RW,
5740 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5741 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5742 .type = ARM_CP_ALIAS,
5743 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5744 .access = PL2_RW,
5745 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5746 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5747 .type = ARM_CP_IO,
5748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5749 .resetvalue = 0,
5750 .access = PL3_RW,
5751 .writefn = mdcr_el3_write,
5752 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5753 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5754 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5755 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5756 .writefn = sdcr_write,
5757 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5758 };
5759
5760 /* These are present only when EL1 supports AArch32 */
5761 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5762 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5764 .access = PL2_RW,
5765 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5766 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5767 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5768 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5769 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5770 .writefn = dacr_write, .raw_writefn = raw_write,
5771 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5772 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5773 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5774 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5775 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5776 };
5777
5778 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5779 {
5780 ARMCPU *cpu = env_archcpu(env);
5781
5782 if (arm_feature(env, ARM_FEATURE_V8)) {
5783 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5784 } else {
5785 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5786 }
5787
5788 if (arm_feature(env, ARM_FEATURE_EL3)) {
5789 valid_mask &= ~HCR_HCD;
5790 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5791 /*
5792 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5793 * However, if we're using the SMC PSCI conduit then QEMU is
5794 * effectively acting like EL3 firmware and so the guest at
5795 * EL2 should retain the ability to prevent EL1 from being
5796 * able to make SMC calls into the ersatz firmware, so in
5797 * that case HCR.TSC should be read/write.
5798 */
5799 valid_mask &= ~HCR_TSC;
5800 }
5801
5802 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5803 if (cpu_isar_feature(aa64_vh, cpu)) {
5804 valid_mask |= HCR_E2H;
5805 }
5806 if (cpu_isar_feature(aa64_ras, cpu)) {
5807 valid_mask |= HCR_TERR | HCR_TEA;
5808 }
5809 if (cpu_isar_feature(aa64_lor, cpu)) {
5810 valid_mask |= HCR_TLOR;
5811 }
5812 if (cpu_isar_feature(aa64_pauth, cpu)) {
5813 valid_mask |= HCR_API | HCR_APK;
5814 }
5815 if (cpu_isar_feature(aa64_mte, cpu)) {
5816 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5817 }
5818 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5819 valid_mask |= HCR_ENSCXT;
5820 }
5821 if (cpu_isar_feature(aa64_fwb, cpu)) {
5822 valid_mask |= HCR_FWB;
5823 }
5824 if (cpu_isar_feature(aa64_rme, cpu)) {
5825 valid_mask |= HCR_GPF;
5826 }
5827 if (cpu_isar_feature(aa64_nv, cpu)) {
5828 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5829 }
5830 }
5831
5832 if (cpu_isar_feature(any_evt, cpu)) {
5833 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5834 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5835 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5836 }
5837
5838 /* Clear RES0 bits. */
5839 value &= valid_mask;
5840
5841 /*
5842 * These bits change the MMU setup:
5843 * HCR_VM enables stage 2 translation
5844 * HCR_PTW forbids certain page-table setups
5845 * HCR_DC disables stage1 and enables stage2 translation
5846 * HCR_DCT enables tagging on (disabled) stage1 translation
5847 * HCR_FWB changes the interpretation of stage2 descriptor bits
5848 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5849 */
5850 if ((env->cp15.hcr_el2 ^ value) &
5851 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5852 tlb_flush(CPU(cpu));
5853 }
5854 env->cp15.hcr_el2 = value;
5855
5856 /*
5857 * Updates to VI and VF require us to update the status of
5858 * virtual interrupts, which are the logical OR of these bits
5859 * and the state of the input lines from the GIC. (This requires
5860 * that we have the BQL, which is done by marking the
5861 * reginfo structs as ARM_CP_IO.)
5862 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5863 * possible for it to be taken immediately, because VIRQ and
5864 * VFIQ are masked unless running at EL0 or EL1, and HCR
5865 * can only be written at EL2.
5866 */
5867 g_assert(bql_locked());
5868 arm_cpu_update_virq(cpu);
5869 arm_cpu_update_vfiq(cpu);
5870 arm_cpu_update_vserr(cpu);
5871 }
5872
5873 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5874 {
5875 do_hcr_write(env, value, 0);
5876 }
5877
5878 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5879 uint64_t value)
5880 {
5881 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5882 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5883 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5884 }
5885
5886 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5887 uint64_t value)
5888 {
5889 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5890 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5891 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5892 }
5893
5894 /*
5895 * Return the effective value of HCR_EL2, at the given security state.
5896 * Bits that are not included here:
5897 * RW (read from SCR_EL3.RW as needed)
5898 */
5899 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5900 {
5901 uint64_t ret = env->cp15.hcr_el2;
5902
5903 assert(space != ARMSS_Root);
5904
5905 if (!arm_is_el2_enabled_secstate(env, space)) {
5906 /*
5907 * "This register has no effect if EL2 is not enabled in the
5908 * current Security state". This is ARMv8.4-SecEL2 speak for
5909 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5910 *
5911 * Prior to that, the language was "In an implementation that
5912 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5913 * as if this field is 0 for all purposes other than a direct
5914 * read or write access of HCR_EL2". With lots of enumeration
5915 * on a per-field basis. In current QEMU, this is condition
5916 * is arm_is_secure_below_el3.
5917 *
5918 * Since the v8.4 language applies to the entire register, and
5919 * appears to be backward compatible, use that.
5920 */
5921 return 0;
5922 }
5923
5924 /*
5925 * For a cpu that supports both aarch64 and aarch32, we can set bits
5926 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5927 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5928 */
5929 if (!arm_el_is_aa64(env, 2)) {
5930 uint64_t aa32_valid;
5931
5932 /*
5933 * These bits are up-to-date as of ARMv8.6.
5934 * For HCR, it's easiest to list just the 2 bits that are invalid.
5935 * For HCR2, list those that are valid.
5936 */
5937 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5938 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5939 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5940 ret &= aa32_valid;
5941 }
5942
5943 if (ret & HCR_TGE) {
5944 /* These bits are up-to-date as of ARMv8.6. */
5945 if (ret & HCR_E2H) {
5946 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5947 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5948 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5949 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5950 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5951 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5952 } else {
5953 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5954 }
5955 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5956 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5957 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5958 HCR_TLOR);
5959 }
5960
5961 return ret;
5962 }
5963
5964 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5965 {
5966 if (arm_feature(env, ARM_FEATURE_M)) {
5967 return 0;
5968 }
5969 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5970 }
5971
5972 /*
5973 * Corresponds to ARM pseudocode function ELIsInHost().
5974 */
5975 bool el_is_in_host(CPUARMState *env, int el)
5976 {
5977 uint64_t mask;
5978
5979 /*
5980 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5981 * Perform the simplest bit tests first, and validate EL2 afterward.
5982 */
5983 if (el & 1) {
5984 return false; /* EL1 or EL3 */
5985 }
5986
5987 /*
5988 * Note that hcr_write() checks isar_feature_aa64_vh(),
5989 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5990 */
5991 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5992 if ((env->cp15.hcr_el2 & mask) != mask) {
5993 return false;
5994 }
5995
5996 /* TGE and/or E2H set: double check those bits are currently legal. */
5997 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5998 }
5999
6000 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6001 uint64_t value)
6002 {
6003 uint64_t valid_mask = 0;
6004
6005 /* FEAT_MOPS adds MSCEn and MCE2 */
6006 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6007 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6008 }
6009
6010 /* Clear RES0 bits. */
6011 env->cp15.hcrx_el2 = value & valid_mask;
6012 }
6013
6014 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6015 bool isread)
6016 {
6017 if (arm_current_el(env) < 3
6018 && arm_feature(env, ARM_FEATURE_EL3)
6019 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6020 return CP_ACCESS_TRAP_EL3;
6021 }
6022 return CP_ACCESS_OK;
6023 }
6024
6025 static const ARMCPRegInfo hcrx_el2_reginfo = {
6026 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6027 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6028 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6029 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6030 };
6031
6032 /* Return the effective value of HCRX_EL2. */
6033 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6034 {
6035 /*
6036 * The bits in this register behave as 0 for all purposes other than
6037 * direct reads of the register if SCR_EL3.HXEn is 0.
6038 * If EL2 is not enabled in the current security state, then the
6039 * bit may behave as if 0, or as if 1, depending on the bit.
6040 * For the moment, we treat the EL2-disabled case as taking
6041 * priority over the HXEn-disabled case. This is true for the only
6042 * bit for a feature which we implement where the answer is different
6043 * for the two cases (MSCEn for FEAT_MOPS).
6044 * This may need to be revisited for future bits.
6045 */
6046 if (!arm_is_el2_enabled(env)) {
6047 uint64_t hcrx = 0;
6048 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6049 /* MSCEn behaves as 1 if EL2 is not enabled */
6050 hcrx |= HCRX_MSCEN;
6051 }
6052 return hcrx;
6053 }
6054 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6055 return 0;
6056 }
6057 return env->cp15.hcrx_el2;
6058 }
6059
6060 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6061 uint64_t value)
6062 {
6063 /*
6064 * For A-profile AArch32 EL3, if NSACR.CP10
6065 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6066 */
6067 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6068 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6069 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6070 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6071 }
6072 env->cp15.cptr_el[2] = value;
6073 }
6074
6075 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6076 {
6077 /*
6078 * For A-profile AArch32 EL3, if NSACR.CP10
6079 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6080 */
6081 uint64_t value = env->cp15.cptr_el[2];
6082
6083 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6084 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6085 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6086 }
6087 return value;
6088 }
6089
6090 static const ARMCPRegInfo el2_cp_reginfo[] = {
6091 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6092 .type = ARM_CP_IO,
6093 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6094 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6095 .writefn = hcr_write, .raw_writefn = raw_write },
6096 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6097 .type = ARM_CP_ALIAS | ARM_CP_IO,
6098 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6099 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6100 .writefn = hcr_writelow },
6101 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6102 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6103 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6104 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6105 .type = ARM_CP_ALIAS,
6106 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6107 .access = PL2_RW,
6108 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6109 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6110 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6111 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6112 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6113 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6114 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6115 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6116 .type = ARM_CP_ALIAS,
6117 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6118 .access = PL2_RW,
6119 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6120 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6121 .type = ARM_CP_ALIAS,
6122 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6123 .access = PL2_RW,
6124 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6125 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6126 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6127 .access = PL2_RW, .writefn = vbar_write,
6128 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6129 .resetvalue = 0 },
6130 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6131 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6132 .access = PL3_RW, .type = ARM_CP_ALIAS,
6133 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6134 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6135 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6136 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6137 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6138 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6139 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6140 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6141 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6142 .resetvalue = 0 },
6143 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6144 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6145 .access = PL2_RW, .type = ARM_CP_ALIAS,
6146 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6147 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6148 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6149 .access = PL2_RW, .type = ARM_CP_CONST,
6150 .resetvalue = 0 },
6151 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6152 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6153 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6154 .access = PL2_RW, .type = ARM_CP_CONST,
6155 .resetvalue = 0 },
6156 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6157 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6158 .access = PL2_RW, .type = ARM_CP_CONST,
6159 .resetvalue = 0 },
6160 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6161 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6162 .access = PL2_RW, .type = ARM_CP_CONST,
6163 .resetvalue = 0 },
6164 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6166 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6167 .raw_writefn = raw_write,
6168 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6169 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6170 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6171 .type = ARM_CP_ALIAS,
6172 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6173 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6174 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6175 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6176 .access = PL2_RW,
6177 /* no .writefn needed as this can't cause an ASID change */
6178 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6179 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6180 .cp = 15, .opc1 = 6, .crm = 2,
6181 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6182 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6183 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6184 .writefn = vttbr_write, .raw_writefn = raw_write },
6185 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6186 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6187 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6188 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6189 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6190 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6191 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6192 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6193 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6194 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6195 .access = PL2_RW, .resetvalue = 0,
6196 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6197 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6198 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6199 .access = PL2_RW, .resetvalue = 0,
6200 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6201 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6202 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6203 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6204 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6205 { .name = "TLBIALLNSNH",
6206 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6207 .type = ARM_CP_NO_RAW, .access = PL2_W,
6208 .writefn = tlbiall_nsnh_write },
6209 { .name = "TLBIALLNSNHIS",
6210 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6211 .type = ARM_CP_NO_RAW, .access = PL2_W,
6212 .writefn = tlbiall_nsnh_is_write },
6213 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6214 .type = ARM_CP_NO_RAW, .access = PL2_W,
6215 .writefn = tlbiall_hyp_write },
6216 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6217 .type = ARM_CP_NO_RAW, .access = PL2_W,
6218 .writefn = tlbiall_hyp_is_write },
6219 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6220 .type = ARM_CP_NO_RAW, .access = PL2_W,
6221 .writefn = tlbimva_hyp_write },
6222 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6223 .type = ARM_CP_NO_RAW, .access = PL2_W,
6224 .writefn = tlbimva_hyp_is_write },
6225 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6227 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6228 .writefn = tlbi_aa64_alle2_write },
6229 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6231 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6232 .writefn = tlbi_aa64_vae2_write },
6233 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6235 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6236 .writefn = tlbi_aa64_vae2_write },
6237 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6239 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6240 .writefn = tlbi_aa64_alle2is_write },
6241 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6242 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6243 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6244 .writefn = tlbi_aa64_vae2is_write },
6245 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6247 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6248 .writefn = tlbi_aa64_vae2is_write },
6249 #ifndef CONFIG_USER_ONLY
6250 /*
6251 * Unlike the other EL2-related AT operations, these must
6252 * UNDEF from EL3 if EL2 is not implemented, which is why we
6253 * define them here rather than with the rest of the AT ops.
6254 */
6255 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6256 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6257 .access = PL2_W, .accessfn = at_s1e2_access,
6258 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6259 .writefn = ats_write64 },
6260 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6261 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6262 .access = PL2_W, .accessfn = at_s1e2_access,
6263 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6264 .writefn = ats_write64 },
6265 /*
6266 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6267 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6268 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6269 * to behave as if SCR.NS was 1.
6270 */
6271 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6272 .access = PL2_W,
6273 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6274 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6275 .access = PL2_W,
6276 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6277 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6278 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6279 /*
6280 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6281 * reset values as IMPDEF. We choose to reset to 3 to comply with
6282 * both ARMv7 and ARMv8.
6283 */
6284 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6285 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6286 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6287 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6288 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6289 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6290 .writefn = gt_cntvoff_write,
6291 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6292 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6293 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6294 .writefn = gt_cntvoff_write,
6295 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6296 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6297 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6298 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6299 .type = ARM_CP_IO, .access = PL2_RW,
6300 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6301 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6303 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6304 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6305 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6306 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6307 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6308 .resetfn = gt_hyp_timer_reset,
6309 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6310 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6311 .type = ARM_CP_IO,
6312 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6313 .access = PL2_RW,
6314 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6315 .resetvalue = 0,
6316 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6317 #endif
6318 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6319 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6320 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6321 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6322 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6323 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6324 .access = PL2_RW,
6325 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6326 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6327 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6328 .access = PL2_RW,
6329 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6330 };
6331
6332 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6333 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6334 .type = ARM_CP_ALIAS | ARM_CP_IO,
6335 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6336 .access = PL2_RW,
6337 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6338 .writefn = hcr_writehigh },
6339 };
6340
6341 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6342 bool isread)
6343 {
6344 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6345 return CP_ACCESS_OK;
6346 }
6347 return CP_ACCESS_TRAP_UNCATEGORIZED;
6348 }
6349
6350 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6351 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6352 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6353 .access = PL2_RW, .accessfn = sel2_access,
6354 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6355 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6356 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6357 .access = PL2_RW, .accessfn = sel2_access,
6358 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6359 };
6360
6361 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6362 bool isread)
6363 {
6364 /*
6365 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6366 * At Secure EL1 it traps to EL3 or EL2.
6367 */
6368 if (arm_current_el(env) == 3) {
6369 return CP_ACCESS_OK;
6370 }
6371 if (arm_is_secure_below_el3(env)) {
6372 if (env->cp15.scr_el3 & SCR_EEL2) {
6373 return CP_ACCESS_TRAP_EL2;
6374 }
6375 return CP_ACCESS_TRAP_EL3;
6376 }
6377 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6378 if (isread) {
6379 return CP_ACCESS_OK;
6380 }
6381 return CP_ACCESS_TRAP_UNCATEGORIZED;
6382 }
6383
6384 static const ARMCPRegInfo el3_cp_reginfo[] = {
6385 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6386 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6387 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6388 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6389 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6390 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6391 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6392 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6393 .writefn = scr_write, .raw_writefn = raw_write },
6394 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6395 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6396 .access = PL3_RW, .resetvalue = 0,
6397 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6398 { .name = "SDER",
6399 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6400 .access = PL3_RW, .resetvalue = 0,
6401 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6402 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6403 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6404 .writefn = vbar_write, .resetvalue = 0,
6405 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6406 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6407 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6408 .access = PL3_RW, .resetvalue = 0,
6409 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6410 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6411 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6412 .access = PL3_RW,
6413 /* no .writefn needed as this can't cause an ASID change */
6414 .resetvalue = 0,
6415 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6416 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6417 .type = ARM_CP_ALIAS,
6418 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6419 .access = PL3_RW,
6420 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6421 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6422 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6423 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6424 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6425 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6426 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6427 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6428 .type = ARM_CP_ALIAS,
6429 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6430 .access = PL3_RW,
6431 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6432 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6433 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6434 .access = PL3_RW, .writefn = vbar_write,
6435 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6436 .resetvalue = 0 },
6437 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6438 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6439 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6440 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6441 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6442 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6443 .access = PL3_RW, .resetvalue = 0,
6444 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6445 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6446 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6447 .access = PL3_RW, .type = ARM_CP_CONST,
6448 .resetvalue = 0 },
6449 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6450 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6451 .access = PL3_RW, .type = ARM_CP_CONST,
6452 .resetvalue = 0 },
6453 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6454 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6455 .access = PL3_RW, .type = ARM_CP_CONST,
6456 .resetvalue = 0 },
6457 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6458 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6459 .access = PL3_W, .type = ARM_CP_NO_RAW,
6460 .writefn = tlbi_aa64_alle3is_write },
6461 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6462 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6463 .access = PL3_W, .type = ARM_CP_NO_RAW,
6464 .writefn = tlbi_aa64_vae3is_write },
6465 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6466 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6467 .access = PL3_W, .type = ARM_CP_NO_RAW,
6468 .writefn = tlbi_aa64_vae3is_write },
6469 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6470 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6471 .access = PL3_W, .type = ARM_CP_NO_RAW,
6472 .writefn = tlbi_aa64_alle3_write },
6473 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6474 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6475 .access = PL3_W, .type = ARM_CP_NO_RAW,
6476 .writefn = tlbi_aa64_vae3_write },
6477 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6478 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6479 .access = PL3_W, .type = ARM_CP_NO_RAW,
6480 .writefn = tlbi_aa64_vae3_write },
6481 };
6482
6483 #ifndef CONFIG_USER_ONLY
6484 /* Test if system register redirection is to occur in the current state. */
6485 static bool redirect_for_e2h(CPUARMState *env)
6486 {
6487 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6488 }
6489
6490 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6491 {
6492 CPReadFn *readfn;
6493
6494 if (redirect_for_e2h(env)) {
6495 /* Switch to the saved EL2 version of the register. */
6496 ri = ri->opaque;
6497 readfn = ri->readfn;
6498 } else {
6499 readfn = ri->orig_readfn;
6500 }
6501 if (readfn == NULL) {
6502 readfn = raw_read;
6503 }
6504 return readfn(env, ri);
6505 }
6506
6507 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6508 uint64_t value)
6509 {
6510 CPWriteFn *writefn;
6511
6512 if (redirect_for_e2h(env)) {
6513 /* Switch to the saved EL2 version of the register. */
6514 ri = ri->opaque;
6515 writefn = ri->writefn;
6516 } else {
6517 writefn = ri->orig_writefn;
6518 }
6519 if (writefn == NULL) {
6520 writefn = raw_write;
6521 }
6522 writefn(env, ri, value);
6523 }
6524
6525 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6526 {
6527 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6528 return ri->orig_readfn(env, ri->opaque);
6529 }
6530
6531 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6532 uint64_t value)
6533 {
6534 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6535 return ri->orig_writefn(env, ri->opaque, value);
6536 }
6537
6538 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6539 {
6540 struct E2HAlias {
6541 uint32_t src_key, dst_key, new_key;
6542 const char *src_name, *dst_name, *new_name;
6543 bool (*feature)(const ARMISARegisters *id);
6544 };
6545
6546 #define K(op0, op1, crn, crm, op2) \
6547 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6548
6549 static const struct E2HAlias aliases[] = {
6550 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6551 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6552 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6553 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6554 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6555 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6556 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6557 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6558 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6559 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6560 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6561 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6562 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6563 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6564 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6565 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6566 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6567 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6568 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6569 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6570 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6571 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6572 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6573 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6574 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6575 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6576 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6577 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6578 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6579 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6580 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6581 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6582
6583 /*
6584 * Note that redirection of ZCR is mentioned in the description
6585 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6586 * not in the summary table.
6587 */
6588 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6589 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6590 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6591 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6592
6593 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6594 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6595
6596 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6597 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6598 isar_feature_aa64_scxtnum },
6599
6600 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6601 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6602 };
6603 #undef K
6604
6605 size_t i;
6606
6607 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6608 const struct E2HAlias *a = &aliases[i];
6609 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6610 bool ok;
6611
6612 if (a->feature && !a->feature(&cpu->isar)) {
6613 continue;
6614 }
6615
6616 src_reg = g_hash_table_lookup(cpu->cp_regs,
6617 (gpointer)(uintptr_t)a->src_key);
6618 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6619 (gpointer)(uintptr_t)a->dst_key);
6620 g_assert(src_reg != NULL);
6621 g_assert(dst_reg != NULL);
6622
6623 /* Cross-compare names to detect typos in the keys. */
6624 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6625 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6626
6627 /* None of the core system registers use opaque; we will. */
6628 g_assert(src_reg->opaque == NULL);
6629
6630 /* Create alias before redirection so we dup the right data. */
6631 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6632
6633 new_reg->name = a->new_name;
6634 new_reg->type |= ARM_CP_ALIAS;
6635 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6636 new_reg->access &= PL2_RW | PL3_RW;
6637 /* The new_reg op fields are as per new_key, not the target reg */
6638 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6639 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6640 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6641 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6642 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6643 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6644 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6645 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6646 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6647 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6648 new_reg->opaque = src_reg;
6649 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6650 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6651 if (!new_reg->raw_readfn) {
6652 new_reg->raw_readfn = raw_read;
6653 }
6654 if (!new_reg->raw_writefn) {
6655 new_reg->raw_writefn = raw_write;
6656 }
6657 new_reg->readfn = el2_e2h_e12_read;
6658 new_reg->writefn = el2_e2h_e12_write;
6659
6660 ok = g_hash_table_insert(cpu->cp_regs,
6661 (gpointer)(uintptr_t)a->new_key, new_reg);
6662 g_assert(ok);
6663
6664 src_reg->opaque = dst_reg;
6665 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6666 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6667 if (!src_reg->raw_readfn) {
6668 src_reg->raw_readfn = raw_read;
6669 }
6670 if (!src_reg->raw_writefn) {
6671 src_reg->raw_writefn = raw_write;
6672 }
6673 src_reg->readfn = el2_e2h_read;
6674 src_reg->writefn = el2_e2h_write;
6675 }
6676 }
6677 #endif
6678
6679 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6680 bool isread)
6681 {
6682 int cur_el = arm_current_el(env);
6683
6684 if (cur_el < 2) {
6685 uint64_t hcr = arm_hcr_el2_eff(env);
6686
6687 if (cur_el == 0) {
6688 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6689 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6690 return CP_ACCESS_TRAP_EL2;
6691 }
6692 } else {
6693 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6694 return CP_ACCESS_TRAP;
6695 }
6696 if (hcr & HCR_TID2) {
6697 return CP_ACCESS_TRAP_EL2;
6698 }
6699 }
6700 } else if (hcr & HCR_TID2) {
6701 return CP_ACCESS_TRAP_EL2;
6702 }
6703 }
6704
6705 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6706 return CP_ACCESS_TRAP_EL2;
6707 }
6708
6709 return CP_ACCESS_OK;
6710 }
6711
6712 /*
6713 * Check for traps to RAS registers, which are controlled
6714 * by HCR_EL2.TERR and SCR_EL3.TERR.
6715 */
6716 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6717 bool isread)
6718 {
6719 int el = arm_current_el(env);
6720
6721 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6722 return CP_ACCESS_TRAP_EL2;
6723 }
6724 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6725 return CP_ACCESS_TRAP_EL3;
6726 }
6727 return CP_ACCESS_OK;
6728 }
6729
6730 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6731 {
6732 int el = arm_current_el(env);
6733
6734 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6735 return env->cp15.vdisr_el2;
6736 }
6737 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6738 return 0; /* RAZ/WI */
6739 }
6740 return env->cp15.disr_el1;
6741 }
6742
6743 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6744 {
6745 int el = arm_current_el(env);
6746
6747 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6748 env->cp15.vdisr_el2 = val;
6749 return;
6750 }
6751 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6752 return; /* RAZ/WI */
6753 }
6754 env->cp15.disr_el1 = val;
6755 }
6756
6757 /*
6758 * Minimal RAS implementation with no Error Records.
6759 * Which means that all of the Error Record registers:
6760 * ERXADDR_EL1
6761 * ERXCTLR_EL1
6762 * ERXFR_EL1
6763 * ERXMISC0_EL1
6764 * ERXMISC1_EL1
6765 * ERXMISC2_EL1
6766 * ERXMISC3_EL1
6767 * ERXPFGCDN_EL1 (RASv1p1)
6768 * ERXPFGCTL_EL1 (RASv1p1)
6769 * ERXPFGF_EL1 (RASv1p1)
6770 * ERXSTATUS_EL1
6771 * and
6772 * ERRSELR_EL1
6773 * may generate UNDEFINED, which is the effect we get by not
6774 * listing them at all.
6775 *
6776 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6777 * is higher priority than FGT-to-EL2 so we do not need to list them
6778 * in order to check for an FGT.
6779 */
6780 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6781 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6782 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6783 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6784 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6785 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6786 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6787 .access = PL1_R, .accessfn = access_terr,
6788 .fgt = FGT_ERRIDR_EL1,
6789 .type = ARM_CP_CONST, .resetvalue = 0 },
6790 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6791 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6792 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6793 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6794 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6795 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6796 };
6797
6798 /*
6799 * Return the exception level to which exceptions should be taken
6800 * via SVEAccessTrap. This excludes the check for whether the exception
6801 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6802 * be found by testing 0 < fp_exception_el < sve_exception_el.
6803 *
6804 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6805 * pseudocode does *not* separate out the FP trap checks, but has them
6806 * all in one function.
6807 */
6808 int sve_exception_el(CPUARMState *env, int el)
6809 {
6810 #ifndef CONFIG_USER_ONLY
6811 if (el <= 1 && !el_is_in_host(env, el)) {
6812 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6813 case 1:
6814 if (el != 0) {
6815 break;
6816 }
6817 /* fall through */
6818 case 0:
6819 case 2:
6820 return 1;
6821 }
6822 }
6823
6824 if (el <= 2 && arm_is_el2_enabled(env)) {
6825 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6826 if (env->cp15.hcr_el2 & HCR_E2H) {
6827 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6828 case 1:
6829 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6830 break;
6831 }
6832 /* fall through */
6833 case 0:
6834 case 2:
6835 return 2;
6836 }
6837 } else {
6838 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6839 return 2;
6840 }
6841 }
6842 }
6843
6844 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6845 if (arm_feature(env, ARM_FEATURE_EL3)
6846 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6847 return 3;
6848 }
6849 #endif
6850 return 0;
6851 }
6852
6853 /*
6854 * Return the exception level to which exceptions should be taken for SME.
6855 * C.f. the ARM pseudocode function CheckSMEAccess.
6856 */
6857 int sme_exception_el(CPUARMState *env, int el)
6858 {
6859 #ifndef CONFIG_USER_ONLY
6860 if (el <= 1 && !el_is_in_host(env, el)) {
6861 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6862 case 1:
6863 if (el != 0) {
6864 break;
6865 }
6866 /* fall through */
6867 case 0:
6868 case 2:
6869 return 1;
6870 }
6871 }
6872
6873 if (el <= 2 && arm_is_el2_enabled(env)) {
6874 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6875 if (env->cp15.hcr_el2 & HCR_E2H) {
6876 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6877 case 1:
6878 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6879 break;
6880 }
6881 /* fall through */
6882 case 0:
6883 case 2:
6884 return 2;
6885 }
6886 } else {
6887 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6888 return 2;
6889 }
6890 }
6891 }
6892
6893 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6894 if (arm_feature(env, ARM_FEATURE_EL3)
6895 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6896 return 3;
6897 }
6898 #endif
6899 return 0;
6900 }
6901
6902 /*
6903 * Given that SVE is enabled, return the vector length for EL.
6904 */
6905 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6906 {
6907 ARMCPU *cpu = env_archcpu(env);
6908 uint64_t *cr = env->vfp.zcr_el;
6909 uint32_t map = cpu->sve_vq.map;
6910 uint32_t len = ARM_MAX_VQ - 1;
6911
6912 if (sm) {
6913 cr = env->vfp.smcr_el;
6914 map = cpu->sme_vq.map;
6915 }
6916
6917 if (el <= 1 && !el_is_in_host(env, el)) {
6918 len = MIN(len, 0xf & (uint32_t)cr[1]);
6919 }
6920 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6921 len = MIN(len, 0xf & (uint32_t)cr[2]);
6922 }
6923 if (arm_feature(env, ARM_FEATURE_EL3)) {
6924 len = MIN(len, 0xf & (uint32_t)cr[3]);
6925 }
6926
6927 map &= MAKE_64BIT_MASK(0, len + 1);
6928 if (map != 0) {
6929 return 31 - clz32(map);
6930 }
6931
6932 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6933 assert(sm);
6934 return ctz32(cpu->sme_vq.map);
6935 }
6936
6937 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6938 {
6939 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6940 }
6941
6942 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6943 uint64_t value)
6944 {
6945 int cur_el = arm_current_el(env);
6946 int old_len = sve_vqm1_for_el(env, cur_el);
6947 int new_len;
6948
6949 /* Bits other than [3:0] are RAZ/WI. */
6950 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6951 raw_write(env, ri, value & 0xf);
6952
6953 /*
6954 * Because we arrived here, we know both FP and SVE are enabled;
6955 * otherwise we would have trapped access to the ZCR_ELn register.
6956 */
6957 new_len = sve_vqm1_for_el(env, cur_el);
6958 if (new_len < old_len) {
6959 aarch64_sve_narrow_vq(env, new_len + 1);
6960 }
6961 }
6962
6963 static const ARMCPRegInfo zcr_reginfo[] = {
6964 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6965 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6966 .access = PL1_RW, .type = ARM_CP_SVE,
6967 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6968 .writefn = zcr_write, .raw_writefn = raw_write },
6969 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6970 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6971 .access = PL2_RW, .type = ARM_CP_SVE,
6972 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6973 .writefn = zcr_write, .raw_writefn = raw_write },
6974 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6975 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6976 .access = PL3_RW, .type = ARM_CP_SVE,
6977 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6978 .writefn = zcr_write, .raw_writefn = raw_write },
6979 };
6980
6981 #ifdef TARGET_AARCH64
6982 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6983 bool isread)
6984 {
6985 int el = arm_current_el(env);
6986
6987 if (el == 0) {
6988 uint64_t sctlr = arm_sctlr(env, el);
6989 if (!(sctlr & SCTLR_EnTP2)) {
6990 return CP_ACCESS_TRAP;
6991 }
6992 }
6993 /* TODO: FEAT_FGT */
6994 if (el < 3
6995 && arm_feature(env, ARM_FEATURE_EL3)
6996 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6997 return CP_ACCESS_TRAP_EL3;
6998 }
6999 return CP_ACCESS_OK;
7000 }
7001
7002 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
7003 bool isread)
7004 {
7005 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
7006 if (arm_current_el(env) < 3
7007 && arm_feature(env, ARM_FEATURE_EL3)
7008 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7009 return CP_ACCESS_TRAP_EL3;
7010 }
7011 return CP_ACCESS_OK;
7012 }
7013
7014 /* ResetSVEState */
7015 static void arm_reset_sve_state(CPUARMState *env)
7016 {
7017 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7018 /* Recall that FFR is stored as pregs[16]. */
7019 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7020 vfp_set_fpcr(env, 0x0800009f);
7021 }
7022
7023 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7024 {
7025 uint64_t change = (env->svcr ^ new) & mask;
7026
7027 if (change == 0) {
7028 return;
7029 }
7030 env->svcr ^= change;
7031
7032 if (change & R_SVCR_SM_MASK) {
7033 arm_reset_sve_state(env);
7034 }
7035
7036 /*
7037 * ResetSMEState.
7038 *
7039 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7040 * on enable: while disabled, the storage is inaccessible and the
7041 * value does not matter. We're not saving the storage in vmstate
7042 * when disabled either.
7043 */
7044 if (change & new & R_SVCR_ZA_MASK) {
7045 memset(env->zarray, 0, sizeof(env->zarray));
7046 }
7047
7048 if (tcg_enabled()) {
7049 arm_rebuild_hflags(env);
7050 }
7051 }
7052
7053 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7054 uint64_t value)
7055 {
7056 aarch64_set_svcr(env, value, -1);
7057 }
7058
7059 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7060 uint64_t value)
7061 {
7062 int cur_el = arm_current_el(env);
7063 int old_len = sve_vqm1_for_el(env, cur_el);
7064 int new_len;
7065
7066 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7067 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7068 raw_write(env, ri, value);
7069
7070 /*
7071 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7072 * when SVL is widened (old values kept, or zeros). Choose to keep the
7073 * current values for simplicity. But for QEMU internals, we must still
7074 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7075 * above aarch64_sve_narrow_vq.
7076 */
7077 new_len = sve_vqm1_for_el(env, cur_el);
7078 if (new_len < old_len) {
7079 aarch64_sve_narrow_vq(env, new_len + 1);
7080 }
7081 }
7082
7083 static const ARMCPRegInfo sme_reginfo[] = {
7084 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7085 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7086 .access = PL0_RW, .accessfn = access_tpidr2,
7087 .fgt = FGT_NTPIDR2_EL0,
7088 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7089 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7090 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7091 .access = PL0_RW, .type = ARM_CP_SME,
7092 .fieldoffset = offsetof(CPUARMState, svcr),
7093 .writefn = svcr_write, .raw_writefn = raw_write },
7094 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7095 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7096 .access = PL1_RW, .type = ARM_CP_SME,
7097 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7098 .writefn = smcr_write, .raw_writefn = raw_write },
7099 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7100 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7101 .access = PL2_RW, .type = ARM_CP_SME,
7102 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7103 .writefn = smcr_write, .raw_writefn = raw_write },
7104 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7105 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7106 .access = PL3_RW, .type = ARM_CP_SME,
7107 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7108 .writefn = smcr_write, .raw_writefn = raw_write },
7109 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7110 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7111 .access = PL1_R, .accessfn = access_aa64_tid1,
7112 /*
7113 * IMPLEMENTOR = 0 (software)
7114 * REVISION = 0 (implementation defined)
7115 * SMPS = 0 (no streaming execution priority in QEMU)
7116 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7117 */
7118 .type = ARM_CP_CONST, .resetvalue = 0, },
7119 /*
7120 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7121 */
7122 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7123 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7124 .access = PL1_RW, .accessfn = access_esm,
7125 .fgt = FGT_NSMPRI_EL1,
7126 .type = ARM_CP_CONST, .resetvalue = 0 },
7127 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7129 .access = PL2_RW, .accessfn = access_esm,
7130 .type = ARM_CP_CONST, .resetvalue = 0 },
7131 };
7132
7133 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7134 uint64_t value)
7135 {
7136 CPUState *cs = env_cpu(env);
7137
7138 tlb_flush(cs);
7139 }
7140
7141 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7142 uint64_t value)
7143 {
7144 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7145 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7146 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7147 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7148
7149 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7150 }
7151
7152 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7153 {
7154 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7155 env_archcpu(env)->reset_l0gptsz);
7156 }
7157
7158 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7159 uint64_t value)
7160 {
7161 CPUState *cs = env_cpu(env);
7162
7163 tlb_flush_all_cpus_synced(cs);
7164 }
7165
7166 static const ARMCPRegInfo rme_reginfo[] = {
7167 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7168 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7169 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7170 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7171 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7172 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7173 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7174 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7175 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7176 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7177 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7178 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7179 .access = PL3_W, .type = ARM_CP_NO_RAW,
7180 .writefn = tlbi_aa64_paall_write },
7181 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7182 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7183 .access = PL3_W, .type = ARM_CP_NO_RAW,
7184 .writefn = tlbi_aa64_paallos_write },
7185 /*
7186 * QEMU does not have a way to invalidate by physical address, thus
7187 * invalidating a range of physical addresses is accomplished by
7188 * flushing all tlb entries in the outer shareable domain,
7189 * just like PAALLOS.
7190 */
7191 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7192 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7193 .access = PL3_W, .type = ARM_CP_NO_RAW,
7194 .writefn = tlbi_aa64_paallos_write },
7195 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7196 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7197 .access = PL3_W, .type = ARM_CP_NO_RAW,
7198 .writefn = tlbi_aa64_paallos_write },
7199 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7200 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7201 .access = PL3_W, .type = ARM_CP_NOP },
7202 };
7203
7204 static const ARMCPRegInfo rme_mte_reginfo[] = {
7205 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7206 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7207 .access = PL3_W, .type = ARM_CP_NOP },
7208 };
7209 #endif /* TARGET_AARCH64 */
7210
7211 static void define_pmu_regs(ARMCPU *cpu)
7212 {
7213 /*
7214 * v7 performance monitor control register: same implementor
7215 * field as main ID register, and we implement four counters in
7216 * addition to the cycle count register.
7217 */
7218 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7219 ARMCPRegInfo pmcr = {
7220 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7221 .access = PL0_RW,
7222 .fgt = FGT_PMCR_EL0,
7223 .type = ARM_CP_IO | ARM_CP_ALIAS,
7224 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7225 .accessfn = pmreg_access,
7226 .readfn = pmcr_read, .raw_readfn = raw_read,
7227 .writefn = pmcr_write, .raw_writefn = raw_write,
7228 };
7229 ARMCPRegInfo pmcr64 = {
7230 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7231 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7232 .access = PL0_RW, .accessfn = pmreg_access,
7233 .fgt = FGT_PMCR_EL0,
7234 .type = ARM_CP_IO,
7235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7236 .resetvalue = cpu->isar.reset_pmcr_el0,
7237 .readfn = pmcr_read, .raw_readfn = raw_read,
7238 .writefn = pmcr_write, .raw_writefn = raw_write,
7239 };
7240
7241 define_one_arm_cp_reg(cpu, &pmcr);
7242 define_one_arm_cp_reg(cpu, &pmcr64);
7243 for (i = 0; i < pmcrn; i++) {
7244 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7245 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7246 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7247 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7248 ARMCPRegInfo pmev_regs[] = {
7249 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7250 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7251 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7252 .fgt = FGT_PMEVCNTRN_EL0,
7253 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7254 .accessfn = pmreg_access_xevcntr },
7255 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7257 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7258 .type = ARM_CP_IO,
7259 .fgt = FGT_PMEVCNTRN_EL0,
7260 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7261 .raw_readfn = pmevcntr_rawread,
7262 .raw_writefn = pmevcntr_rawwrite },
7263 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7264 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7265 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7266 .fgt = FGT_PMEVTYPERN_EL0,
7267 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7268 .accessfn = pmreg_access },
7269 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7270 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7271 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7272 .fgt = FGT_PMEVTYPERN_EL0,
7273 .type = ARM_CP_IO,
7274 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7275 .raw_writefn = pmevtyper_rawwrite },
7276 };
7277 define_arm_cp_regs(cpu, pmev_regs);
7278 g_free(pmevcntr_name);
7279 g_free(pmevcntr_el0_name);
7280 g_free(pmevtyper_name);
7281 g_free(pmevtyper_el0_name);
7282 }
7283 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7284 ARMCPRegInfo v81_pmu_regs[] = {
7285 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7286 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7287 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7288 .fgt = FGT_PMCEIDN_EL0,
7289 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7290 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7291 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7292 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7293 .fgt = FGT_PMCEIDN_EL0,
7294 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7295 };
7296 define_arm_cp_regs(cpu, v81_pmu_regs);
7297 }
7298 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7299 static const ARMCPRegInfo v84_pmmir = {
7300 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7301 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7302 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7303 .fgt = FGT_PMMIR_EL1,
7304 .resetvalue = 0
7305 };
7306 define_one_arm_cp_reg(cpu, &v84_pmmir);
7307 }
7308 }
7309
7310 #ifndef CONFIG_USER_ONLY
7311 /*
7312 * We don't know until after realize whether there's a GICv3
7313 * attached, and that is what registers the gicv3 sysregs.
7314 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7315 * at runtime.
7316 */
7317 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7318 {
7319 ARMCPU *cpu = env_archcpu(env);
7320 uint64_t pfr1 = cpu->isar.id_pfr1;
7321
7322 if (env->gicv3state) {
7323 pfr1 |= 1 << 28;
7324 }
7325 return pfr1;
7326 }
7327
7328 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7329 {
7330 ARMCPU *cpu = env_archcpu(env);
7331 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7332
7333 if (env->gicv3state) {
7334 pfr0 |= 1 << 24;
7335 }
7336 return pfr0;
7337 }
7338 #endif
7339
7340 /*
7341 * Shared logic between LORID and the rest of the LOR* registers.
7342 * Secure state exclusion has already been dealt with.
7343 */
7344 static CPAccessResult access_lor_ns(CPUARMState *env,
7345 const ARMCPRegInfo *ri, bool isread)
7346 {
7347 int el = arm_current_el(env);
7348
7349 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7350 return CP_ACCESS_TRAP_EL2;
7351 }
7352 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7353 return CP_ACCESS_TRAP_EL3;
7354 }
7355 return CP_ACCESS_OK;
7356 }
7357
7358 static CPAccessResult access_lor_other(CPUARMState *env,
7359 const ARMCPRegInfo *ri, bool isread)
7360 {
7361 if (arm_is_secure_below_el3(env)) {
7362 /* Access denied in secure mode. */
7363 return CP_ACCESS_TRAP;
7364 }
7365 return access_lor_ns(env, ri, isread);
7366 }
7367
7368 /*
7369 * A trivial implementation of ARMv8.1-LOR leaves all of these
7370 * registers fixed at 0, which indicates that there are zero
7371 * supported Limited Ordering regions.
7372 */
7373 static const ARMCPRegInfo lor_reginfo[] = {
7374 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7375 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7376 .access = PL1_RW, .accessfn = access_lor_other,
7377 .fgt = FGT_LORSA_EL1,
7378 .type = ARM_CP_CONST, .resetvalue = 0 },
7379 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7380 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7381 .access = PL1_RW, .accessfn = access_lor_other,
7382 .fgt = FGT_LOREA_EL1,
7383 .type = ARM_CP_CONST, .resetvalue = 0 },
7384 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7385 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7386 .access = PL1_RW, .accessfn = access_lor_other,
7387 .fgt = FGT_LORN_EL1,
7388 .type = ARM_CP_CONST, .resetvalue = 0 },
7389 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7390 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7391 .access = PL1_RW, .accessfn = access_lor_other,
7392 .fgt = FGT_LORC_EL1,
7393 .type = ARM_CP_CONST, .resetvalue = 0 },
7394 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7395 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7396 .access = PL1_R, .accessfn = access_lor_ns,
7397 .fgt = FGT_LORID_EL1,
7398 .type = ARM_CP_CONST, .resetvalue = 0 },
7399 };
7400
7401 #ifdef TARGET_AARCH64
7402 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7403 bool isread)
7404 {
7405 int el = arm_current_el(env);
7406
7407 if (el < 2 &&
7408 arm_is_el2_enabled(env) &&
7409 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7410 return CP_ACCESS_TRAP_EL2;
7411 }
7412 if (el < 3 &&
7413 arm_feature(env, ARM_FEATURE_EL3) &&
7414 !(env->cp15.scr_el3 & SCR_APK)) {
7415 return CP_ACCESS_TRAP_EL3;
7416 }
7417 return CP_ACCESS_OK;
7418 }
7419
7420 static const ARMCPRegInfo pauth_reginfo[] = {
7421 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7422 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7423 .access = PL1_RW, .accessfn = access_pauth,
7424 .fgt = FGT_APDAKEY,
7425 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7426 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7427 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7428 .access = PL1_RW, .accessfn = access_pauth,
7429 .fgt = FGT_APDAKEY,
7430 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7431 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7432 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7433 .access = PL1_RW, .accessfn = access_pauth,
7434 .fgt = FGT_APDBKEY,
7435 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7436 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7437 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7438 .access = PL1_RW, .accessfn = access_pauth,
7439 .fgt = FGT_APDBKEY,
7440 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7441 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7442 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7443 .access = PL1_RW, .accessfn = access_pauth,
7444 .fgt = FGT_APGAKEY,
7445 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7446 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7447 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7448 .access = PL1_RW, .accessfn = access_pauth,
7449 .fgt = FGT_APGAKEY,
7450 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7451 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7452 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7453 .access = PL1_RW, .accessfn = access_pauth,
7454 .fgt = FGT_APIAKEY,
7455 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7456 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7457 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7458 .access = PL1_RW, .accessfn = access_pauth,
7459 .fgt = FGT_APIAKEY,
7460 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7461 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7462 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7463 .access = PL1_RW, .accessfn = access_pauth,
7464 .fgt = FGT_APIBKEY,
7465 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7466 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7467 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7468 .access = PL1_RW, .accessfn = access_pauth,
7469 .fgt = FGT_APIBKEY,
7470 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7471 };
7472
7473 static const ARMCPRegInfo tlbirange_reginfo[] = {
7474 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7476 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7477 .fgt = FGT_TLBIRVAE1IS,
7478 .writefn = tlbi_aa64_rvae1is_write },
7479 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7481 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7482 .fgt = FGT_TLBIRVAAE1IS,
7483 .writefn = tlbi_aa64_rvae1is_write },
7484 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7486 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7487 .fgt = FGT_TLBIRVALE1IS,
7488 .writefn = tlbi_aa64_rvae1is_write },
7489 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7491 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7492 .fgt = FGT_TLBIRVAALE1IS,
7493 .writefn = tlbi_aa64_rvae1is_write },
7494 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7496 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7497 .fgt = FGT_TLBIRVAE1OS,
7498 .writefn = tlbi_aa64_rvae1is_write },
7499 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7500 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7501 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7502 .fgt = FGT_TLBIRVAAE1OS,
7503 .writefn = tlbi_aa64_rvae1is_write },
7504 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7506 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7507 .fgt = FGT_TLBIRVALE1OS,
7508 .writefn = tlbi_aa64_rvae1is_write },
7509 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7510 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7511 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7512 .fgt = FGT_TLBIRVAALE1OS,
7513 .writefn = tlbi_aa64_rvae1is_write },
7514 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7516 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7517 .fgt = FGT_TLBIRVAE1,
7518 .writefn = tlbi_aa64_rvae1_write },
7519 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7520 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7521 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7522 .fgt = FGT_TLBIRVAAE1,
7523 .writefn = tlbi_aa64_rvae1_write },
7524 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7526 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7527 .fgt = FGT_TLBIRVALE1,
7528 .writefn = tlbi_aa64_rvae1_write },
7529 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7530 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7531 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7532 .fgt = FGT_TLBIRVAALE1,
7533 .writefn = tlbi_aa64_rvae1_write },
7534 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7536 .access = PL2_W, .type = ARM_CP_NO_RAW,
7537 .writefn = tlbi_aa64_ripas2e1is_write },
7538 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7540 .access = PL2_W, .type = ARM_CP_NO_RAW,
7541 .writefn = tlbi_aa64_ripas2e1is_write },
7542 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7544 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7545 .writefn = tlbi_aa64_rvae2is_write },
7546 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7548 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7549 .writefn = tlbi_aa64_rvae2is_write },
7550 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7552 .access = PL2_W, .type = ARM_CP_NO_RAW,
7553 .writefn = tlbi_aa64_ripas2e1_write },
7554 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7556 .access = PL2_W, .type = ARM_CP_NO_RAW,
7557 .writefn = tlbi_aa64_ripas2e1_write },
7558 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7561 .writefn = tlbi_aa64_rvae2is_write },
7562 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7565 .writefn = tlbi_aa64_rvae2is_write },
7566 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7568 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7569 .writefn = tlbi_aa64_rvae2_write },
7570 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7572 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7573 .writefn = tlbi_aa64_rvae2_write },
7574 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7575 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7576 .access = PL3_W, .type = ARM_CP_NO_RAW,
7577 .writefn = tlbi_aa64_rvae3is_write },
7578 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7580 .access = PL3_W, .type = ARM_CP_NO_RAW,
7581 .writefn = tlbi_aa64_rvae3is_write },
7582 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7583 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7584 .access = PL3_W, .type = ARM_CP_NO_RAW,
7585 .writefn = tlbi_aa64_rvae3is_write },
7586 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7587 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7588 .access = PL3_W, .type = ARM_CP_NO_RAW,
7589 .writefn = tlbi_aa64_rvae3is_write },
7590 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7591 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7592 .access = PL3_W, .type = ARM_CP_NO_RAW,
7593 .writefn = tlbi_aa64_rvae3_write },
7594 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7596 .access = PL3_W, .type = ARM_CP_NO_RAW,
7597 .writefn = tlbi_aa64_rvae3_write },
7598 };
7599
7600 static const ARMCPRegInfo tlbios_reginfo[] = {
7601 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7602 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7603 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7604 .fgt = FGT_TLBIVMALLE1OS,
7605 .writefn = tlbi_aa64_vmalle1is_write },
7606 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7607 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7608 .fgt = FGT_TLBIVAE1OS,
7609 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7610 .writefn = tlbi_aa64_vae1is_write },
7611 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7612 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7613 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7614 .fgt = FGT_TLBIASIDE1OS,
7615 .writefn = tlbi_aa64_vmalle1is_write },
7616 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7617 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7618 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7619 .fgt = FGT_TLBIVAAE1OS,
7620 .writefn = tlbi_aa64_vae1is_write },
7621 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7622 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7623 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7624 .fgt = FGT_TLBIVALE1OS,
7625 .writefn = tlbi_aa64_vae1is_write },
7626 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7627 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7628 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7629 .fgt = FGT_TLBIVAALE1OS,
7630 .writefn = tlbi_aa64_vae1is_write },
7631 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7632 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7633 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7634 .writefn = tlbi_aa64_alle2is_write },
7635 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7636 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7637 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7638 .writefn = tlbi_aa64_vae2is_write },
7639 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7640 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7641 .access = PL2_W, .type = ARM_CP_NO_RAW,
7642 .writefn = tlbi_aa64_alle1is_write },
7643 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7644 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7645 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7646 .writefn = tlbi_aa64_vae2is_write },
7647 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7648 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7649 .access = PL2_W, .type = ARM_CP_NO_RAW,
7650 .writefn = tlbi_aa64_alle1is_write },
7651 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7652 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7653 .access = PL2_W, .type = ARM_CP_NOP },
7654 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7655 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7656 .access = PL2_W, .type = ARM_CP_NOP },
7657 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7658 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7659 .access = PL2_W, .type = ARM_CP_NOP },
7660 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7661 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7662 .access = PL2_W, .type = ARM_CP_NOP },
7663 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7664 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7665 .access = PL3_W, .type = ARM_CP_NO_RAW,
7666 .writefn = tlbi_aa64_alle3is_write },
7667 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7668 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7669 .access = PL3_W, .type = ARM_CP_NO_RAW,
7670 .writefn = tlbi_aa64_vae3is_write },
7671 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7672 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7673 .access = PL3_W, .type = ARM_CP_NO_RAW,
7674 .writefn = tlbi_aa64_vae3is_write },
7675 };
7676
7677 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7678 {
7679 Error *err = NULL;
7680 uint64_t ret;
7681
7682 /* Success sets NZCV = 0000. */
7683 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7684
7685 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7686 /*
7687 * ??? Failed, for unknown reasons in the crypto subsystem.
7688 * The best we can do is log the reason and return the
7689 * timed-out indication to the guest. There is no reason
7690 * we know to expect this failure to be transitory, so the
7691 * guest may well hang retrying the operation.
7692 */
7693 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7694 ri->name, error_get_pretty(err));
7695 error_free(err);
7696
7697 env->ZF = 0; /* NZCF = 0100 */
7698 return 0;
7699 }
7700 return ret;
7701 }
7702
7703 /* We do not support re-seeding, so the two registers operate the same. */
7704 static const ARMCPRegInfo rndr_reginfo[] = {
7705 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7706 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7707 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7708 .access = PL0_R, .readfn = rndr_readfn },
7709 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7710 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7711 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7712 .access = PL0_R, .readfn = rndr_readfn },
7713 };
7714
7715 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7716 uint64_t value)
7717 {
7718 #ifdef CONFIG_TCG
7719 ARMCPU *cpu = env_archcpu(env);
7720 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7721 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7722 uint64_t vaddr_in = (uint64_t) value;
7723 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7724 void *haddr;
7725 int mem_idx = cpu_mmu_index(env, false);
7726
7727 /* This won't be crossing page boundaries */
7728 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7729 if (haddr) {
7730 #ifndef CONFIG_USER_ONLY
7731
7732 ram_addr_t offset;
7733 MemoryRegion *mr;
7734
7735 /* RCU lock is already being held */
7736 mr = memory_region_from_host(haddr, &offset);
7737
7738 if (mr) {
7739 memory_region_writeback(mr, offset, dline_size);
7740 }
7741 #endif /*CONFIG_USER_ONLY*/
7742 }
7743 #else
7744 /* Handled by hardware accelerator. */
7745 g_assert_not_reached();
7746 #endif /* CONFIG_TCG */
7747 }
7748
7749 static const ARMCPRegInfo dcpop_reg[] = {
7750 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7752 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7753 .fgt = FGT_DCCVAP,
7754 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7755 };
7756
7757 static const ARMCPRegInfo dcpodp_reg[] = {
7758 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7759 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7760 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7761 .fgt = FGT_DCCVADP,
7762 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7763 };
7764
7765 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7766 bool isread)
7767 {
7768 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7769 return CP_ACCESS_TRAP_EL2;
7770 }
7771
7772 return CP_ACCESS_OK;
7773 }
7774
7775 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7776 bool isread)
7777 {
7778 int el = arm_current_el(env);
7779
7780 if (el < 2 && arm_is_el2_enabled(env)) {
7781 uint64_t hcr = arm_hcr_el2_eff(env);
7782 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7783 return CP_ACCESS_TRAP_EL2;
7784 }
7785 }
7786 if (el < 3 &&
7787 arm_feature(env, ARM_FEATURE_EL3) &&
7788 !(env->cp15.scr_el3 & SCR_ATA)) {
7789 return CP_ACCESS_TRAP_EL3;
7790 }
7791 return CP_ACCESS_OK;
7792 }
7793
7794 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7795 {
7796 return env->pstate & PSTATE_TCO;
7797 }
7798
7799 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7800 {
7801 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7802 }
7803
7804 static const ARMCPRegInfo mte_reginfo[] = {
7805 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7806 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7807 .access = PL1_RW, .accessfn = access_mte,
7808 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7809 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7810 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7811 .access = PL1_RW, .accessfn = access_mte,
7812 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7813 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7814 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7815 .access = PL2_RW, .accessfn = access_mte,
7816 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7817 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7818 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7819 .access = PL3_RW,
7820 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7821 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7822 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7823 .access = PL1_RW, .accessfn = access_mte,
7824 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7825 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7827 .access = PL1_RW, .accessfn = access_mte,
7828 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7829 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7830 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7831 .type = ARM_CP_NO_RAW,
7832 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7833 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7834 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7835 .type = ARM_CP_NOP, .access = PL1_W,
7836 .fgt = FGT_DCIVAC,
7837 .accessfn = aa64_cacheop_poc_access },
7838 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7839 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7840 .fgt = FGT_DCISW,
7841 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7842 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7843 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7844 .type = ARM_CP_NOP, .access = PL1_W,
7845 .fgt = FGT_DCIVAC,
7846 .accessfn = aa64_cacheop_poc_access },
7847 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7848 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7849 .fgt = FGT_DCISW,
7850 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7851 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7852 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7853 .fgt = FGT_DCCSW,
7854 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7855 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7857 .fgt = FGT_DCCSW,
7858 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7859 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7860 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7861 .fgt = FGT_DCCISW,
7862 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7863 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7864 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7865 .fgt = FGT_DCCISW,
7866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7867 };
7868
7869 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7870 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7871 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7872 .type = ARM_CP_CONST, .access = PL0_RW, },
7873 };
7874
7875 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7876 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7877 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7878 .type = ARM_CP_NOP, .access = PL0_W,
7879 .fgt = FGT_DCCVAC,
7880 .accessfn = aa64_cacheop_poc_access },
7881 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7882 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7883 .type = ARM_CP_NOP, .access = PL0_W,
7884 .fgt = FGT_DCCVAC,
7885 .accessfn = aa64_cacheop_poc_access },
7886 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7887 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7888 .type = ARM_CP_NOP, .access = PL0_W,
7889 .fgt = FGT_DCCVAP,
7890 .accessfn = aa64_cacheop_poc_access },
7891 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7892 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7893 .type = ARM_CP_NOP, .access = PL0_W,
7894 .fgt = FGT_DCCVAP,
7895 .accessfn = aa64_cacheop_poc_access },
7896 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7898 .type = ARM_CP_NOP, .access = PL0_W,
7899 .fgt = FGT_DCCVADP,
7900 .accessfn = aa64_cacheop_poc_access },
7901 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7902 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7903 .type = ARM_CP_NOP, .access = PL0_W,
7904 .fgt = FGT_DCCVADP,
7905 .accessfn = aa64_cacheop_poc_access },
7906 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7907 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7908 .type = ARM_CP_NOP, .access = PL0_W,
7909 .fgt = FGT_DCCIVAC,
7910 .accessfn = aa64_cacheop_poc_access },
7911 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7912 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7913 .type = ARM_CP_NOP, .access = PL0_W,
7914 .fgt = FGT_DCCIVAC,
7915 .accessfn = aa64_cacheop_poc_access },
7916 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7918 .access = PL0_W, .type = ARM_CP_DC_GVA,
7919 #ifndef CONFIG_USER_ONLY
7920 /* Avoid overhead of an access check that always passes in user-mode */
7921 .accessfn = aa64_zva_access,
7922 .fgt = FGT_DCZVA,
7923 #endif
7924 },
7925 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7926 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7927 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7928 #ifndef CONFIG_USER_ONLY
7929 /* Avoid overhead of an access check that always passes in user-mode */
7930 .accessfn = aa64_zva_access,
7931 .fgt = FGT_DCZVA,
7932 #endif
7933 },
7934 };
7935
7936 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7937 bool isread)
7938 {
7939 uint64_t hcr = arm_hcr_el2_eff(env);
7940 int el = arm_current_el(env);
7941
7942 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7943 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7944 if (hcr & HCR_TGE) {
7945 return CP_ACCESS_TRAP_EL2;
7946 }
7947 return CP_ACCESS_TRAP;
7948 }
7949 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7950 return CP_ACCESS_TRAP_EL2;
7951 }
7952 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7953 return CP_ACCESS_TRAP_EL2;
7954 }
7955 if (el < 3
7956 && arm_feature(env, ARM_FEATURE_EL3)
7957 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7958 return CP_ACCESS_TRAP_EL3;
7959 }
7960 return CP_ACCESS_OK;
7961 }
7962
7963 static const ARMCPRegInfo scxtnum_reginfo[] = {
7964 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7965 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7966 .access = PL0_RW, .accessfn = access_scxtnum,
7967 .fgt = FGT_SCXTNUM_EL0,
7968 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7969 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7970 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7971 .access = PL1_RW, .accessfn = access_scxtnum,
7972 .fgt = FGT_SCXTNUM_EL1,
7973 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7974 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7975 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7976 .access = PL2_RW, .accessfn = access_scxtnum,
7977 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7978 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7979 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7980 .access = PL3_RW,
7981 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7982 };
7983
7984 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7985 bool isread)
7986 {
7987 if (arm_current_el(env) == 2 &&
7988 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7989 return CP_ACCESS_TRAP_EL3;
7990 }
7991 return CP_ACCESS_OK;
7992 }
7993
7994 static const ARMCPRegInfo fgt_reginfo[] = {
7995 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7996 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7997 .access = PL2_RW, .accessfn = access_fgt,
7998 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7999 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8000 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8001 .access = PL2_RW, .accessfn = access_fgt,
8002 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8003 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8004 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8005 .access = PL2_RW, .accessfn = access_fgt,
8006 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8007 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8008 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8009 .access = PL2_RW, .accessfn = access_fgt,
8010 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8011 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8012 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8013 .access = PL2_RW, .accessfn = access_fgt,
8014 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8015 };
8016 #endif /* TARGET_AARCH64 */
8017
8018 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8019 bool isread)
8020 {
8021 int el = arm_current_el(env);
8022
8023 if (el == 0) {
8024 uint64_t sctlr = arm_sctlr(env, el);
8025 if (!(sctlr & SCTLR_EnRCTX)) {
8026 return CP_ACCESS_TRAP;
8027 }
8028 } else if (el == 1) {
8029 uint64_t hcr = arm_hcr_el2_eff(env);
8030 if (hcr & HCR_NV) {
8031 return CP_ACCESS_TRAP_EL2;
8032 }
8033 }
8034 return CP_ACCESS_OK;
8035 }
8036
8037 static const ARMCPRegInfo predinv_reginfo[] = {
8038 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8039 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8040 .fgt = FGT_CFPRCTX,
8041 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8042 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8044 .fgt = FGT_DVPRCTX,
8045 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8046 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8048 .fgt = FGT_CPPRCTX,
8049 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8050 /*
8051 * Note the AArch32 opcodes have a different OPC1.
8052 */
8053 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8054 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8055 .fgt = FGT_CFPRCTX,
8056 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8057 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8058 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8059 .fgt = FGT_DVPRCTX,
8060 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8061 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8062 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8063 .fgt = FGT_CPPRCTX,
8064 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8065 };
8066
8067 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8068 {
8069 /* Read the high 32 bits of the current CCSIDR */
8070 return extract64(ccsidr_read(env, ri), 32, 32);
8071 }
8072
8073 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8074 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8075 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8076 .access = PL1_R,
8077 .accessfn = access_tid4,
8078 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8079 };
8080
8081 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8082 bool isread)
8083 {
8084 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8085 return CP_ACCESS_TRAP_EL2;
8086 }
8087
8088 return CP_ACCESS_OK;
8089 }
8090
8091 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8092 bool isread)
8093 {
8094 if (arm_feature(env, ARM_FEATURE_V8)) {
8095 return access_aa64_tid3(env, ri, isread);
8096 }
8097
8098 return CP_ACCESS_OK;
8099 }
8100
8101 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8102 bool isread)
8103 {
8104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8105 return CP_ACCESS_TRAP_EL2;
8106 }
8107
8108 return CP_ACCESS_OK;
8109 }
8110
8111 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8112 const ARMCPRegInfo *ri, bool isread)
8113 {
8114 /*
8115 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8116 * in v7A, not in v8A.
8117 */
8118 if (!arm_feature(env, ARM_FEATURE_V8) &&
8119 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8120 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8121 return CP_ACCESS_TRAP_EL2;
8122 }
8123 return CP_ACCESS_OK;
8124 }
8125
8126 static const ARMCPRegInfo jazelle_regs[] = {
8127 { .name = "JIDR",
8128 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8129 .access = PL1_R, .accessfn = access_jazelle,
8130 .type = ARM_CP_CONST, .resetvalue = 0 },
8131 { .name = "JOSCR",
8132 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8133 .accessfn = access_joscr_jmcr,
8134 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8135 { .name = "JMCR",
8136 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8137 .accessfn = access_joscr_jmcr,
8138 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8139 };
8140
8141 static const ARMCPRegInfo contextidr_el2 = {
8142 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8143 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8144 .access = PL2_RW,
8145 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8146 };
8147
8148 static const ARMCPRegInfo vhe_reginfo[] = {
8149 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8151 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8152 .raw_writefn = raw_write,
8153 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8154 #ifndef CONFIG_USER_ONLY
8155 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8156 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8157 .fieldoffset =
8158 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8159 .type = ARM_CP_IO, .access = PL2_RW,
8160 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8161 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8162 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8163 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8164 .resetfn = gt_hv_timer_reset,
8165 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8166 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8167 .type = ARM_CP_IO,
8168 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8169 .access = PL2_RW,
8170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8171 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8172 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8173 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8174 .type = ARM_CP_IO | ARM_CP_ALIAS,
8175 .access = PL2_RW, .accessfn = e2h_access,
8176 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8177 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8178 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8179 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8180 .type = ARM_CP_IO | ARM_CP_ALIAS,
8181 .access = PL2_RW, .accessfn = e2h_access,
8182 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8183 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8184 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8185 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8186 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8187 .access = PL2_RW, .accessfn = e2h_access,
8188 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8189 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8190 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8191 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8192 .access = PL2_RW, .accessfn = e2h_access,
8193 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8194 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8195 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8196 .type = ARM_CP_IO | ARM_CP_ALIAS,
8197 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8198 .access = PL2_RW, .accessfn = e2h_access,
8199 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8200 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8201 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8202 .type = ARM_CP_IO | ARM_CP_ALIAS,
8203 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8204 .access = PL2_RW, .accessfn = e2h_access,
8205 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8206 #endif
8207 };
8208
8209 #ifndef CONFIG_USER_ONLY
8210 static const ARMCPRegInfo ats1e1_reginfo[] = {
8211 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8212 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8213 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8214 .fgt = FGT_ATS1E1RP,
8215 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8216 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8217 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8218 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8219 .fgt = FGT_ATS1E1WP,
8220 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8221 };
8222
8223 static const ARMCPRegInfo ats1cp_reginfo[] = {
8224 { .name = "ATS1CPRP",
8225 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8226 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8227 .writefn = ats_write },
8228 { .name = "ATS1CPWP",
8229 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8230 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8231 .writefn = ats_write },
8232 };
8233 #endif
8234
8235 /*
8236 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8237 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8238 * is non-zero, which is never for ARMv7, optionally in ARMv8
8239 * and mandatorily for ARMv8.2 and up.
8240 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8241 * implementation is RAZ/WI we can ignore this detail, as we
8242 * do for ACTLR.
8243 */
8244 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8245 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8246 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8247 .access = PL1_RW, .accessfn = access_tacr,
8248 .type = ARM_CP_CONST, .resetvalue = 0 },
8249 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8250 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8251 .access = PL2_RW, .type = ARM_CP_CONST,
8252 .resetvalue = 0 },
8253 };
8254
8255 void register_cp_regs_for_features(ARMCPU *cpu)
8256 {
8257 /* Register all the coprocessor registers based on feature bits */
8258 CPUARMState *env = &cpu->env;
8259 if (arm_feature(env, ARM_FEATURE_M)) {
8260 /* M profile has no coprocessor registers */
8261 return;
8262 }
8263
8264 define_arm_cp_regs(cpu, cp_reginfo);
8265 if (!arm_feature(env, ARM_FEATURE_V8)) {
8266 /*
8267 * Must go early as it is full of wildcards that may be
8268 * overridden by later definitions.
8269 */
8270 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8271 }
8272
8273 if (arm_feature(env, ARM_FEATURE_V6)) {
8274 /* The ID registers all have impdef reset values */
8275 ARMCPRegInfo v6_idregs[] = {
8276 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8278 .access = PL1_R, .type = ARM_CP_CONST,
8279 .accessfn = access_aa32_tid3,
8280 .resetvalue = cpu->isar.id_pfr0 },
8281 /*
8282 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8283 * the value of the GIC field until after we define these regs.
8284 */
8285 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8286 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8287 .access = PL1_R, .type = ARM_CP_NO_RAW,
8288 .accessfn = access_aa32_tid3,
8289 #ifdef CONFIG_USER_ONLY
8290 .type = ARM_CP_CONST,
8291 .resetvalue = cpu->isar.id_pfr1,
8292 #else
8293 .type = ARM_CP_NO_RAW,
8294 .accessfn = access_aa32_tid3,
8295 .readfn = id_pfr1_read,
8296 .writefn = arm_cp_write_ignore
8297 #endif
8298 },
8299 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8301 .access = PL1_R, .type = ARM_CP_CONST,
8302 .accessfn = access_aa32_tid3,
8303 .resetvalue = cpu->isar.id_dfr0 },
8304 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8305 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8306 .access = PL1_R, .type = ARM_CP_CONST,
8307 .accessfn = access_aa32_tid3,
8308 .resetvalue = cpu->id_afr0 },
8309 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8310 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8311 .access = PL1_R, .type = ARM_CP_CONST,
8312 .accessfn = access_aa32_tid3,
8313 .resetvalue = cpu->isar.id_mmfr0 },
8314 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8315 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8316 .access = PL1_R, .type = ARM_CP_CONST,
8317 .accessfn = access_aa32_tid3,
8318 .resetvalue = cpu->isar.id_mmfr1 },
8319 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8321 .access = PL1_R, .type = ARM_CP_CONST,
8322 .accessfn = access_aa32_tid3,
8323 .resetvalue = cpu->isar.id_mmfr2 },
8324 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8326 .access = PL1_R, .type = ARM_CP_CONST,
8327 .accessfn = access_aa32_tid3,
8328 .resetvalue = cpu->isar.id_mmfr3 },
8329 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8330 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8331 .access = PL1_R, .type = ARM_CP_CONST,
8332 .accessfn = access_aa32_tid3,
8333 .resetvalue = cpu->isar.id_isar0 },
8334 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8335 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8336 .access = PL1_R, .type = ARM_CP_CONST,
8337 .accessfn = access_aa32_tid3,
8338 .resetvalue = cpu->isar.id_isar1 },
8339 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8340 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8341 .access = PL1_R, .type = ARM_CP_CONST,
8342 .accessfn = access_aa32_tid3,
8343 .resetvalue = cpu->isar.id_isar2 },
8344 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8346 .access = PL1_R, .type = ARM_CP_CONST,
8347 .accessfn = access_aa32_tid3,
8348 .resetvalue = cpu->isar.id_isar3 },
8349 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8350 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8351 .access = PL1_R, .type = ARM_CP_CONST,
8352 .accessfn = access_aa32_tid3,
8353 .resetvalue = cpu->isar.id_isar4 },
8354 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8355 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8356 .access = PL1_R, .type = ARM_CP_CONST,
8357 .accessfn = access_aa32_tid3,
8358 .resetvalue = cpu->isar.id_isar5 },
8359 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8360 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8361 .access = PL1_R, .type = ARM_CP_CONST,
8362 .accessfn = access_aa32_tid3,
8363 .resetvalue = cpu->isar.id_mmfr4 },
8364 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8366 .access = PL1_R, .type = ARM_CP_CONST,
8367 .accessfn = access_aa32_tid3,
8368 .resetvalue = cpu->isar.id_isar6 },
8369 };
8370 define_arm_cp_regs(cpu, v6_idregs);
8371 define_arm_cp_regs(cpu, v6_cp_reginfo);
8372 } else {
8373 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8374 }
8375 if (arm_feature(env, ARM_FEATURE_V6K)) {
8376 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8377 }
8378 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8379 !arm_feature(env, ARM_FEATURE_PMSA)) {
8380 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8381 }
8382 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8383 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8384 }
8385 if (arm_feature(env, ARM_FEATURE_V7)) {
8386 ARMCPRegInfo clidr = {
8387 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8388 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8389 .access = PL1_R, .type = ARM_CP_CONST,
8390 .accessfn = access_tid4,
8391 .fgt = FGT_CLIDR_EL1,
8392 .resetvalue = cpu->clidr
8393 };
8394 define_one_arm_cp_reg(cpu, &clidr);
8395 define_arm_cp_regs(cpu, v7_cp_reginfo);
8396 define_debug_regs(cpu);
8397 define_pmu_regs(cpu);
8398 } else {
8399 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8400 }
8401 if (arm_feature(env, ARM_FEATURE_V8)) {
8402 /*
8403 * v8 ID registers, which all have impdef reset values.
8404 * Note that within the ID register ranges the unused slots
8405 * must all RAZ, not UNDEF; future architecture versions may
8406 * define new registers here.
8407 * ID registers which are AArch64 views of the AArch32 ID registers
8408 * which already existed in v6 and v7 are handled elsewhere,
8409 * in v6_idregs[].
8410 */
8411 int i;
8412 ARMCPRegInfo v8_idregs[] = {
8413 /*
8414 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8415 * emulation because we don't know the right value for the
8416 * GIC field until after we define these regs.
8417 */
8418 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8420 .access = PL1_R,
8421 #ifdef CONFIG_USER_ONLY
8422 .type = ARM_CP_CONST,
8423 .resetvalue = cpu->isar.id_aa64pfr0
8424 #else
8425 .type = ARM_CP_NO_RAW,
8426 .accessfn = access_aa64_tid3,
8427 .readfn = id_aa64pfr0_read,
8428 .writefn = arm_cp_write_ignore
8429 #endif
8430 },
8431 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8433 .access = PL1_R, .type = ARM_CP_CONST,
8434 .accessfn = access_aa64_tid3,
8435 .resetvalue = cpu->isar.id_aa64pfr1},
8436 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8438 .access = PL1_R, .type = ARM_CP_CONST,
8439 .accessfn = access_aa64_tid3,
8440 .resetvalue = 0 },
8441 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8443 .access = PL1_R, .type = ARM_CP_CONST,
8444 .accessfn = access_aa64_tid3,
8445 .resetvalue = 0 },
8446 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8448 .access = PL1_R, .type = ARM_CP_CONST,
8449 .accessfn = access_aa64_tid3,
8450 .resetvalue = cpu->isar.id_aa64zfr0 },
8451 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8453 .access = PL1_R, .type = ARM_CP_CONST,
8454 .accessfn = access_aa64_tid3,
8455 .resetvalue = cpu->isar.id_aa64smfr0 },
8456 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8458 .access = PL1_R, .type = ARM_CP_CONST,
8459 .accessfn = access_aa64_tid3,
8460 .resetvalue = 0 },
8461 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8463 .access = PL1_R, .type = ARM_CP_CONST,
8464 .accessfn = access_aa64_tid3,
8465 .resetvalue = 0 },
8466 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8468 .access = PL1_R, .type = ARM_CP_CONST,
8469 .accessfn = access_aa64_tid3,
8470 .resetvalue = cpu->isar.id_aa64dfr0 },
8471 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8473 .access = PL1_R, .type = ARM_CP_CONST,
8474 .accessfn = access_aa64_tid3,
8475 .resetvalue = cpu->isar.id_aa64dfr1 },
8476 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8478 .access = PL1_R, .type = ARM_CP_CONST,
8479 .accessfn = access_aa64_tid3,
8480 .resetvalue = 0 },
8481 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8482 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8483 .access = PL1_R, .type = ARM_CP_CONST,
8484 .accessfn = access_aa64_tid3,
8485 .resetvalue = 0 },
8486 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8487 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8488 .access = PL1_R, .type = ARM_CP_CONST,
8489 .accessfn = access_aa64_tid3,
8490 .resetvalue = cpu->id_aa64afr0 },
8491 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8493 .access = PL1_R, .type = ARM_CP_CONST,
8494 .accessfn = access_aa64_tid3,
8495 .resetvalue = cpu->id_aa64afr1 },
8496 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8497 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8498 .access = PL1_R, .type = ARM_CP_CONST,
8499 .accessfn = access_aa64_tid3,
8500 .resetvalue = 0 },
8501 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8502 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8503 .access = PL1_R, .type = ARM_CP_CONST,
8504 .accessfn = access_aa64_tid3,
8505 .resetvalue = 0 },
8506 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8507 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8508 .access = PL1_R, .type = ARM_CP_CONST,
8509 .accessfn = access_aa64_tid3,
8510 .resetvalue = cpu->isar.id_aa64isar0 },
8511 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8513 .access = PL1_R, .type = ARM_CP_CONST,
8514 .accessfn = access_aa64_tid3,
8515 .resetvalue = cpu->isar.id_aa64isar1 },
8516 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8517 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8518 .access = PL1_R, .type = ARM_CP_CONST,
8519 .accessfn = access_aa64_tid3,
8520 .resetvalue = cpu->isar.id_aa64isar2 },
8521 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8522 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8523 .access = PL1_R, .type = ARM_CP_CONST,
8524 .accessfn = access_aa64_tid3,
8525 .resetvalue = 0 },
8526 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8527 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8528 .access = PL1_R, .type = ARM_CP_CONST,
8529 .accessfn = access_aa64_tid3,
8530 .resetvalue = 0 },
8531 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8533 .access = PL1_R, .type = ARM_CP_CONST,
8534 .accessfn = access_aa64_tid3,
8535 .resetvalue = 0 },
8536 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8538 .access = PL1_R, .type = ARM_CP_CONST,
8539 .accessfn = access_aa64_tid3,
8540 .resetvalue = 0 },
8541 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8543 .access = PL1_R, .type = ARM_CP_CONST,
8544 .accessfn = access_aa64_tid3,
8545 .resetvalue = 0 },
8546 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8547 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8548 .access = PL1_R, .type = ARM_CP_CONST,
8549 .accessfn = access_aa64_tid3,
8550 .resetvalue = cpu->isar.id_aa64mmfr0 },
8551 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8553 .access = PL1_R, .type = ARM_CP_CONST,
8554 .accessfn = access_aa64_tid3,
8555 .resetvalue = cpu->isar.id_aa64mmfr1 },
8556 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8557 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8558 .access = PL1_R, .type = ARM_CP_CONST,
8559 .accessfn = access_aa64_tid3,
8560 .resetvalue = cpu->isar.id_aa64mmfr2 },
8561 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8563 .access = PL1_R, .type = ARM_CP_CONST,
8564 .accessfn = access_aa64_tid3,
8565 .resetvalue = 0 },
8566 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8567 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8568 .access = PL1_R, .type = ARM_CP_CONST,
8569 .accessfn = access_aa64_tid3,
8570 .resetvalue = 0 },
8571 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8572 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8573 .access = PL1_R, .type = ARM_CP_CONST,
8574 .accessfn = access_aa64_tid3,
8575 .resetvalue = 0 },
8576 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8577 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8578 .access = PL1_R, .type = ARM_CP_CONST,
8579 .accessfn = access_aa64_tid3,
8580 .resetvalue = 0 },
8581 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8583 .access = PL1_R, .type = ARM_CP_CONST,
8584 .accessfn = access_aa64_tid3,
8585 .resetvalue = 0 },
8586 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8588 .access = PL1_R, .type = ARM_CP_CONST,
8589 .accessfn = access_aa64_tid3,
8590 .resetvalue = cpu->isar.mvfr0 },
8591 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8593 .access = PL1_R, .type = ARM_CP_CONST,
8594 .accessfn = access_aa64_tid3,
8595 .resetvalue = cpu->isar.mvfr1 },
8596 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8598 .access = PL1_R, .type = ARM_CP_CONST,
8599 .accessfn = access_aa64_tid3,
8600 .resetvalue = cpu->isar.mvfr2 },
8601 /*
8602 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8603 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8604 * as RAZ, since it is in the "reserved for future ID
8605 * registers, RAZ" part of the AArch32 encoding space.
8606 */
8607 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8608 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8609 .access = PL1_R, .type = ARM_CP_CONST,
8610 .accessfn = access_aa64_tid3,
8611 .resetvalue = 0 },
8612 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8613 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8614 .access = PL1_R, .type = ARM_CP_CONST,
8615 .accessfn = access_aa64_tid3,
8616 .resetvalue = 0 },
8617 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8618 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8619 .access = PL1_R, .type = ARM_CP_CONST,
8620 .accessfn = access_aa64_tid3,
8621 .resetvalue = 0 },
8622 /*
8623 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8624 * they're also RAZ for AArch64, and in v8 are gradually
8625 * being filled with AArch64-view-of-AArch32-ID-register
8626 * for new ID registers.
8627 */
8628 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8629 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8630 .access = PL1_R, .type = ARM_CP_CONST,
8631 .accessfn = access_aa64_tid3,
8632 .resetvalue = 0 },
8633 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8634 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8635 .access = PL1_R, .type = ARM_CP_CONST,
8636 .accessfn = access_aa64_tid3,
8637 .resetvalue = cpu->isar.id_pfr2 },
8638 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8640 .access = PL1_R, .type = ARM_CP_CONST,
8641 .accessfn = access_aa64_tid3,
8642 .resetvalue = cpu->isar.id_dfr1 },
8643 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8645 .access = PL1_R, .type = ARM_CP_CONST,
8646 .accessfn = access_aa64_tid3,
8647 .resetvalue = cpu->isar.id_mmfr5 },
8648 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8649 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8650 .access = PL1_R, .type = ARM_CP_CONST,
8651 .accessfn = access_aa64_tid3,
8652 .resetvalue = 0 },
8653 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8654 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8655 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8656 .fgt = FGT_PMCEIDN_EL0,
8657 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8658 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8659 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8660 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8661 .fgt = FGT_PMCEIDN_EL0,
8662 .resetvalue = cpu->pmceid0 },
8663 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8664 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8665 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8666 .fgt = FGT_PMCEIDN_EL0,
8667 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8668 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8669 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8670 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8671 .fgt = FGT_PMCEIDN_EL0,
8672 .resetvalue = cpu->pmceid1 },
8673 };
8674 #ifdef CONFIG_USER_ONLY
8675 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8676 { .name = "ID_AA64PFR0_EL1",
8677 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8678 R_ID_AA64PFR0_ADVSIMD_MASK |
8679 R_ID_AA64PFR0_SVE_MASK |
8680 R_ID_AA64PFR0_DIT_MASK,
8681 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8682 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8683 { .name = "ID_AA64PFR1_EL1",
8684 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8685 R_ID_AA64PFR1_SSBS_MASK |
8686 R_ID_AA64PFR1_MTE_MASK |
8687 R_ID_AA64PFR1_SME_MASK },
8688 { .name = "ID_AA64PFR*_EL1_RESERVED",
8689 .is_glob = true },
8690 { .name = "ID_AA64ZFR0_EL1",
8691 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8692 R_ID_AA64ZFR0_AES_MASK |
8693 R_ID_AA64ZFR0_BITPERM_MASK |
8694 R_ID_AA64ZFR0_BFLOAT16_MASK |
8695 R_ID_AA64ZFR0_SHA3_MASK |
8696 R_ID_AA64ZFR0_SM4_MASK |
8697 R_ID_AA64ZFR0_I8MM_MASK |
8698 R_ID_AA64ZFR0_F32MM_MASK |
8699 R_ID_AA64ZFR0_F64MM_MASK },
8700 { .name = "ID_AA64SMFR0_EL1",
8701 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8702 R_ID_AA64SMFR0_BI32I32_MASK |
8703 R_ID_AA64SMFR0_B16F32_MASK |
8704 R_ID_AA64SMFR0_F16F32_MASK |
8705 R_ID_AA64SMFR0_I8I32_MASK |
8706 R_ID_AA64SMFR0_F16F16_MASK |
8707 R_ID_AA64SMFR0_B16B16_MASK |
8708 R_ID_AA64SMFR0_I16I32_MASK |
8709 R_ID_AA64SMFR0_F64F64_MASK |
8710 R_ID_AA64SMFR0_I16I64_MASK |
8711 R_ID_AA64SMFR0_SMEVER_MASK |
8712 R_ID_AA64SMFR0_FA64_MASK },
8713 { .name = "ID_AA64MMFR0_EL1",
8714 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8715 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8716 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8717 { .name = "ID_AA64MMFR1_EL1",
8718 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8719 { .name = "ID_AA64MMFR2_EL1",
8720 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8721 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8722 .is_glob = true },
8723 { .name = "ID_AA64DFR0_EL1",
8724 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8725 { .name = "ID_AA64DFR1_EL1" },
8726 { .name = "ID_AA64DFR*_EL1_RESERVED",
8727 .is_glob = true },
8728 { .name = "ID_AA64AFR*",
8729 .is_glob = true },
8730 { .name = "ID_AA64ISAR0_EL1",
8731 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8732 R_ID_AA64ISAR0_SHA1_MASK |
8733 R_ID_AA64ISAR0_SHA2_MASK |
8734 R_ID_AA64ISAR0_CRC32_MASK |
8735 R_ID_AA64ISAR0_ATOMIC_MASK |
8736 R_ID_AA64ISAR0_RDM_MASK |
8737 R_ID_AA64ISAR0_SHA3_MASK |
8738 R_ID_AA64ISAR0_SM3_MASK |
8739 R_ID_AA64ISAR0_SM4_MASK |
8740 R_ID_AA64ISAR0_DP_MASK |
8741 R_ID_AA64ISAR0_FHM_MASK |
8742 R_ID_AA64ISAR0_TS_MASK |
8743 R_ID_AA64ISAR0_RNDR_MASK },
8744 { .name = "ID_AA64ISAR1_EL1",
8745 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8746 R_ID_AA64ISAR1_APA_MASK |
8747 R_ID_AA64ISAR1_API_MASK |
8748 R_ID_AA64ISAR1_JSCVT_MASK |
8749 R_ID_AA64ISAR1_FCMA_MASK |
8750 R_ID_AA64ISAR1_LRCPC_MASK |
8751 R_ID_AA64ISAR1_GPA_MASK |
8752 R_ID_AA64ISAR1_GPI_MASK |
8753 R_ID_AA64ISAR1_FRINTTS_MASK |
8754 R_ID_AA64ISAR1_SB_MASK |
8755 R_ID_AA64ISAR1_BF16_MASK |
8756 R_ID_AA64ISAR1_DGH_MASK |
8757 R_ID_AA64ISAR1_I8MM_MASK },
8758 { .name = "ID_AA64ISAR2_EL1",
8759 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8760 R_ID_AA64ISAR2_RPRES_MASK |
8761 R_ID_AA64ISAR2_GPA3_MASK |
8762 R_ID_AA64ISAR2_APA3_MASK |
8763 R_ID_AA64ISAR2_MOPS_MASK |
8764 R_ID_AA64ISAR2_BC_MASK |
8765 R_ID_AA64ISAR2_RPRFM_MASK |
8766 R_ID_AA64ISAR2_CSSC_MASK },
8767 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8768 .is_glob = true },
8769 };
8770 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8771 #endif
8772 /*
8773 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8774 * TODO: For RMR, a write with bit 1 set should do something with
8775 * cpu_reset(). In the meantime, "the bit is strictly a request",
8776 * so we are in spec just ignoring writes.
8777 */
8778 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8779 !arm_feature(env, ARM_FEATURE_EL2)) {
8780 ARMCPRegInfo el1_reset_regs[] = {
8781 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8782 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8783 .access = PL1_R,
8784 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8785 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8786 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8787 .access = PL1_RW, .type = ARM_CP_CONST,
8788 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8789 };
8790 define_arm_cp_regs(cpu, el1_reset_regs);
8791 }
8792 define_arm_cp_regs(cpu, v8_idregs);
8793 define_arm_cp_regs(cpu, v8_cp_reginfo);
8794 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8795 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8796 }
8797
8798 for (i = 4; i < 16; i++) {
8799 /*
8800 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8801 * For pre-v8 cores there are RAZ patterns for these in
8802 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8803 * v8 extends the "must RAZ" part of the ID register space
8804 * to also cover c0, 0, c{8-15}, {0-7}.
8805 * These are STATE_AA32 because in the AArch64 sysreg space
8806 * c4-c7 is where the AArch64 ID registers live (and we've
8807 * already defined those in v8_idregs[]), and c8-c15 are not
8808 * "must RAZ" for AArch64.
8809 */
8810 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8811 ARMCPRegInfo v8_aa32_raz_idregs = {
8812 .name = name,
8813 .state = ARM_CP_STATE_AA32,
8814 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8815 .access = PL1_R, .type = ARM_CP_CONST,
8816 .accessfn = access_aa64_tid3,
8817 .resetvalue = 0 };
8818 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8819 }
8820 }
8821
8822 /*
8823 * Register the base EL2 cpregs.
8824 * Pre v8, these registers are implemented only as part of the
8825 * Virtualization Extensions (EL2 present). Beginning with v8,
8826 * if EL2 is missing but EL3 is enabled, mostly these become
8827 * RES0 from EL3, with some specific exceptions.
8828 */
8829 if (arm_feature(env, ARM_FEATURE_EL2)
8830 || (arm_feature(env, ARM_FEATURE_EL3)
8831 && arm_feature(env, ARM_FEATURE_V8))) {
8832 uint64_t vmpidr_def = mpidr_read_val(env);
8833 ARMCPRegInfo vpidr_regs[] = {
8834 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8835 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8836 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8837 .resetvalue = cpu->midr,
8838 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8839 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8840 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8841 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8842 .access = PL2_RW, .resetvalue = cpu->midr,
8843 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8844 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8845 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8846 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8847 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8848 .resetvalue = vmpidr_def,
8849 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8850 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8851 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8852 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8853 .access = PL2_RW, .resetvalue = vmpidr_def,
8854 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8855 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8856 };
8857 /*
8858 * The only field of MDCR_EL2 that has a defined architectural reset
8859 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8860 */
8861 ARMCPRegInfo mdcr_el2 = {
8862 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8863 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8864 .writefn = mdcr_el2_write,
8865 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8866 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8867 };
8868 define_one_arm_cp_reg(cpu, &mdcr_el2);
8869 define_arm_cp_regs(cpu, vpidr_regs);
8870 define_arm_cp_regs(cpu, el2_cp_reginfo);
8871 if (arm_feature(env, ARM_FEATURE_V8)) {
8872 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8873 }
8874 if (cpu_isar_feature(aa64_sel2, cpu)) {
8875 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8876 }
8877 /*
8878 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8879 * See commentary near RMR_EL1.
8880 */
8881 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8882 static const ARMCPRegInfo el2_reset_regs[] = {
8883 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8884 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8885 .access = PL2_R,
8886 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8887 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8888 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8889 .access = PL2_R,
8890 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8891 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8892 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8893 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8894 };
8895 define_arm_cp_regs(cpu, el2_reset_regs);
8896 }
8897 }
8898
8899 /* Register the base EL3 cpregs. */
8900 if (arm_feature(env, ARM_FEATURE_EL3)) {
8901 define_arm_cp_regs(cpu, el3_cp_reginfo);
8902 ARMCPRegInfo el3_regs[] = {
8903 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8904 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8905 .access = PL3_R,
8906 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8907 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8908 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8909 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8910 { .name = "RMR", .state = ARM_CP_STATE_AA32,
8911 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8912 .access = PL3_RW, .type = ARM_CP_CONST,
8913 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8914 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8915 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8916 .access = PL3_RW,
8917 .raw_writefn = raw_write, .writefn = sctlr_write,
8918 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8919 .resetvalue = cpu->reset_sctlr },
8920 };
8921
8922 define_arm_cp_regs(cpu, el3_regs);
8923 }
8924 /*
8925 * The behaviour of NSACR is sufficiently various that we don't
8926 * try to describe it in a single reginfo:
8927 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8928 * reads as constant 0xc00 from NS EL1 and NS EL2
8929 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8930 * if v7 without EL3, register doesn't exist
8931 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8932 */
8933 if (arm_feature(env, ARM_FEATURE_EL3)) {
8934 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8935 static const ARMCPRegInfo nsacr = {
8936 .name = "NSACR", .type = ARM_CP_CONST,
8937 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8938 .access = PL1_RW, .accessfn = nsacr_access,
8939 .resetvalue = 0xc00
8940 };
8941 define_one_arm_cp_reg(cpu, &nsacr);
8942 } else {
8943 static const ARMCPRegInfo nsacr = {
8944 .name = "NSACR",
8945 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8946 .access = PL3_RW | PL1_R,
8947 .resetvalue = 0,
8948 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8949 };
8950 define_one_arm_cp_reg(cpu, &nsacr);
8951 }
8952 } else {
8953 if (arm_feature(env, ARM_FEATURE_V8)) {
8954 static const ARMCPRegInfo nsacr = {
8955 .name = "NSACR", .type = ARM_CP_CONST,
8956 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8957 .access = PL1_R,
8958 .resetvalue = 0xc00
8959 };
8960 define_one_arm_cp_reg(cpu, &nsacr);
8961 }
8962 }
8963
8964 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8965 if (arm_feature(env, ARM_FEATURE_V6)) {
8966 /* PMSAv6 not implemented */
8967 assert(arm_feature(env, ARM_FEATURE_V7));
8968 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8969 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8970 } else {
8971 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8972 }
8973 } else {
8974 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8975 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8976 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8977 if (cpu_isar_feature(aa32_hpd, cpu)) {
8978 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8979 }
8980 }
8981 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8982 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8983 }
8984 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8985 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8986 }
8987 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8988 ARMCPRegInfo vapa_cp_reginfo[] = {
8989 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8990 .access = PL1_RW, .resetvalue = 0,
8991 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8992 offsetoflow32(CPUARMState, cp15.par_ns) },
8993 .writefn = par_write},
8994 #ifndef CONFIG_USER_ONLY
8995 /* This underdecoding is safe because the reginfo is NO_RAW. */
8996 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8997 .access = PL1_W, .accessfn = ats_access,
8998 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8999 #endif
9000 };
9001
9002 /*
9003 * When LPAE exists this 32-bit PAR register is an alias of the
9004 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9005 */
9006 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9007 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9008 }
9009 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9010 }
9011 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9012 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9013 }
9014 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9015 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9016 }
9017 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9018 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9019 }
9020 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9021 define_arm_cp_regs(cpu, omap_cp_reginfo);
9022 }
9023 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9024 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9025 }
9026 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9027 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9028 }
9029 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9030 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9031 }
9032 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9033 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9034 }
9035 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9036 define_arm_cp_regs(cpu, jazelle_regs);
9037 }
9038 /*
9039 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9040 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9041 * be read-only (ie write causes UNDEF exception).
9042 */
9043 {
9044 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9045 /*
9046 * Pre-v8 MIDR space.
9047 * Note that the MIDR isn't a simple constant register because
9048 * of the TI925 behaviour where writes to another register can
9049 * cause the MIDR value to change.
9050 *
9051 * Unimplemented registers in the c15 0 0 0 space default to
9052 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9053 * and friends override accordingly.
9054 */
9055 { .name = "MIDR",
9056 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9057 .access = PL1_R, .resetvalue = cpu->midr,
9058 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9059 .readfn = midr_read,
9060 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9061 .type = ARM_CP_OVERRIDE },
9062 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9063 { .name = "DUMMY",
9064 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9065 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9066 { .name = "DUMMY",
9067 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9068 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9069 { .name = "DUMMY",
9070 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9071 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9072 { .name = "DUMMY",
9073 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9074 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9075 { .name = "DUMMY",
9076 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9077 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9078 };
9079 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9080 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9082 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9083 .fgt = FGT_MIDR_EL1,
9084 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9085 .readfn = midr_read },
9086 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9087 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9088 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9089 .access = PL1_R, .resetvalue = cpu->midr },
9090 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9091 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9092 .access = PL1_R,
9093 .accessfn = access_aa64_tid1,
9094 .fgt = FGT_REVIDR_EL1,
9095 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9096 };
9097 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9098 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9099 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9100 .access = PL1_R, .resetvalue = cpu->midr
9101 };
9102 ARMCPRegInfo id_cp_reginfo[] = {
9103 /* These are common to v8 and pre-v8 */
9104 { .name = "CTR",
9105 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9106 .access = PL1_R, .accessfn = ctr_el0_access,
9107 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9108 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9109 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9110 .access = PL0_R, .accessfn = ctr_el0_access,
9111 .fgt = FGT_CTR_EL0,
9112 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9113 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9114 { .name = "TCMTR",
9115 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9116 .access = PL1_R,
9117 .accessfn = access_aa32_tid1,
9118 .type = ARM_CP_CONST, .resetvalue = 0 },
9119 };
9120 /* TLBTR is specific to VMSA */
9121 ARMCPRegInfo id_tlbtr_reginfo = {
9122 .name = "TLBTR",
9123 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9124 .access = PL1_R,
9125 .accessfn = access_aa32_tid1,
9126 .type = ARM_CP_CONST, .resetvalue = 0,
9127 };
9128 /* MPUIR is specific to PMSA V6+ */
9129 ARMCPRegInfo id_mpuir_reginfo = {
9130 .name = "MPUIR",
9131 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9132 .access = PL1_R, .type = ARM_CP_CONST,
9133 .resetvalue = cpu->pmsav7_dregion << 8
9134 };
9135 /* HMPUIR is specific to PMSA V8 */
9136 ARMCPRegInfo id_hmpuir_reginfo = {
9137 .name = "HMPUIR",
9138 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9139 .access = PL2_R, .type = ARM_CP_CONST,
9140 .resetvalue = cpu->pmsav8r_hdregion
9141 };
9142 static const ARMCPRegInfo crn0_wi_reginfo = {
9143 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9144 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9145 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9146 };
9147 #ifdef CONFIG_USER_ONLY
9148 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9149 { .name = "MIDR_EL1",
9150 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9151 R_MIDR_EL1_PARTNUM_MASK |
9152 R_MIDR_EL1_ARCHITECTURE_MASK |
9153 R_MIDR_EL1_VARIANT_MASK |
9154 R_MIDR_EL1_IMPLEMENTER_MASK },
9155 { .name = "REVIDR_EL1" },
9156 };
9157 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9158 #endif
9159 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9160 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9161 size_t i;
9162 /*
9163 * Register the blanket "writes ignored" value first to cover the
9164 * whole space. Then update the specific ID registers to allow write
9165 * access, so that they ignore writes rather than causing them to
9166 * UNDEF.
9167 */
9168 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9169 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9170 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9171 }
9172 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9173 id_cp_reginfo[i].access = PL1_RW;
9174 }
9175 id_mpuir_reginfo.access = PL1_RW;
9176 id_tlbtr_reginfo.access = PL1_RW;
9177 }
9178 if (arm_feature(env, ARM_FEATURE_V8)) {
9179 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9180 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9181 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9182 }
9183 } else {
9184 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9185 }
9186 define_arm_cp_regs(cpu, id_cp_reginfo);
9187 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9188 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9189 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9190 arm_feature(env, ARM_FEATURE_V8)) {
9191 uint32_t i = 0;
9192 char *tmp_string;
9193
9194 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9195 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9196 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9197
9198 /* Register alias is only valid for first 32 indexes */
9199 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9200 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9201 uint8_t opc1 = extract32(i, 4, 1);
9202 uint8_t opc2 = extract32(i, 0, 1) << 2;
9203
9204 tmp_string = g_strdup_printf("PRBAR%u", i);
9205 ARMCPRegInfo tmp_prbarn_reginfo = {
9206 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9207 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9208 .access = PL1_RW, .resetvalue = 0,
9209 .accessfn = access_tvm_trvm,
9210 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9211 };
9212 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9213 g_free(tmp_string);
9214
9215 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9216 tmp_string = g_strdup_printf("PRLAR%u", i);
9217 ARMCPRegInfo tmp_prlarn_reginfo = {
9218 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9219 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9220 .access = PL1_RW, .resetvalue = 0,
9221 .accessfn = access_tvm_trvm,
9222 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9223 };
9224 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9225 g_free(tmp_string);
9226 }
9227
9228 /* Register alias is only valid for first 32 indexes */
9229 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9230 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9231 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9232 uint8_t opc2 = extract32(i, 0, 1) << 2;
9233
9234 tmp_string = g_strdup_printf("HPRBAR%u", i);
9235 ARMCPRegInfo tmp_hprbarn_reginfo = {
9236 .name = tmp_string,
9237 .type = ARM_CP_NO_RAW,
9238 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9239 .access = PL2_RW, .resetvalue = 0,
9240 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9241 };
9242 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9243 g_free(tmp_string);
9244
9245 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9246 tmp_string = g_strdup_printf("HPRLAR%u", i);
9247 ARMCPRegInfo tmp_hprlarn_reginfo = {
9248 .name = tmp_string,
9249 .type = ARM_CP_NO_RAW,
9250 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9251 .access = PL2_RW, .resetvalue = 0,
9252 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9253 };
9254 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9255 g_free(tmp_string);
9256 }
9257 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9258 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9259 }
9260 }
9261
9262 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9263 ARMCPRegInfo mpidr_cp_reginfo[] = {
9264 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9265 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9266 .fgt = FGT_MPIDR_EL1,
9267 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9268 };
9269 #ifdef CONFIG_USER_ONLY
9270 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9271 { .name = "MPIDR_EL1",
9272 .fixed_bits = 0x0000000080000000 },
9273 };
9274 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9275 #endif
9276 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9277 }
9278
9279 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9280 ARMCPRegInfo auxcr_reginfo[] = {
9281 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9282 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9283 .access = PL1_RW, .accessfn = access_tacr,
9284 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9285 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9286 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9287 .access = PL2_RW, .type = ARM_CP_CONST,
9288 .resetvalue = 0 },
9289 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9290 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9291 .access = PL3_RW, .type = ARM_CP_CONST,
9292 .resetvalue = 0 },
9293 };
9294 define_arm_cp_regs(cpu, auxcr_reginfo);
9295 if (cpu_isar_feature(aa32_ac2, cpu)) {
9296 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9297 }
9298 }
9299
9300 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9301 /*
9302 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9303 * There are two flavours:
9304 * (1) older 32-bit only cores have a simple 32-bit CBAR
9305 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9306 * 32-bit register visible to AArch32 at a different encoding
9307 * to the "flavour 1" register and with the bits rearranged to
9308 * be able to squash a 64-bit address into the 32-bit view.
9309 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9310 * in future if we support AArch32-only configs of some of the
9311 * AArch64 cores we might need to add a specific feature flag
9312 * to indicate cores with "flavour 2" CBAR.
9313 */
9314 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9315 /* 32 bit view is [31:18] 0...0 [43:32]. */
9316 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9317 | extract64(cpu->reset_cbar, 32, 12);
9318 ARMCPRegInfo cbar_reginfo[] = {
9319 { .name = "CBAR",
9320 .type = ARM_CP_CONST,
9321 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9322 .access = PL1_R, .resetvalue = cbar32 },
9323 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9324 .type = ARM_CP_CONST,
9325 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9326 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9327 };
9328 /* We don't implement a r/w 64 bit CBAR currently */
9329 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9330 define_arm_cp_regs(cpu, cbar_reginfo);
9331 } else {
9332 ARMCPRegInfo cbar = {
9333 .name = "CBAR",
9334 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9335 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9336 .fieldoffset = offsetof(CPUARMState,
9337 cp15.c15_config_base_address)
9338 };
9339 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9340 cbar.access = PL1_R;
9341 cbar.fieldoffset = 0;
9342 cbar.type = ARM_CP_CONST;
9343 }
9344 define_one_arm_cp_reg(cpu, &cbar);
9345 }
9346 }
9347
9348 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9349 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9350 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9351 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9352 .access = PL1_RW, .writefn = vbar_write,
9353 .fgt = FGT_VBAR_EL1,
9354 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9355 offsetof(CPUARMState, cp15.vbar_ns) },
9356 .resetvalue = 0 },
9357 };
9358 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9359 }
9360
9361 /* Generic registers whose values depend on the implementation */
9362 {
9363 ARMCPRegInfo sctlr = {
9364 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9365 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9366 .access = PL1_RW, .accessfn = access_tvm_trvm,
9367 .fgt = FGT_SCTLR_EL1,
9368 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9369 offsetof(CPUARMState, cp15.sctlr_ns) },
9370 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9371 .raw_writefn = raw_write,
9372 };
9373 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9374 /*
9375 * Normally we would always end the TB on an SCTLR write, but Linux
9376 * arch/arm/mach-pxa/sleep.S expects two instructions following
9377 * an MMU enable to execute from cache. Imitate this behaviour.
9378 */
9379 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9380 }
9381 define_one_arm_cp_reg(cpu, &sctlr);
9382
9383 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9384 arm_feature(env, ARM_FEATURE_V8)) {
9385 ARMCPRegInfo vsctlr = {
9386 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9387 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9388 .access = PL2_RW, .resetvalue = 0x0,
9389 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9390 };
9391 define_one_arm_cp_reg(cpu, &vsctlr);
9392 }
9393 }
9394
9395 if (cpu_isar_feature(aa64_lor, cpu)) {
9396 define_arm_cp_regs(cpu, lor_reginfo);
9397 }
9398 if (cpu_isar_feature(aa64_pan, cpu)) {
9399 define_one_arm_cp_reg(cpu, &pan_reginfo);
9400 }
9401 #ifndef CONFIG_USER_ONLY
9402 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9403 define_arm_cp_regs(cpu, ats1e1_reginfo);
9404 }
9405 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9406 define_arm_cp_regs(cpu, ats1cp_reginfo);
9407 }
9408 #endif
9409 if (cpu_isar_feature(aa64_uao, cpu)) {
9410 define_one_arm_cp_reg(cpu, &uao_reginfo);
9411 }
9412
9413 if (cpu_isar_feature(aa64_dit, cpu)) {
9414 define_one_arm_cp_reg(cpu, &dit_reginfo);
9415 }
9416 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9417 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9418 }
9419 if (cpu_isar_feature(any_ras, cpu)) {
9420 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9421 }
9422
9423 if (cpu_isar_feature(aa64_vh, cpu) ||
9424 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9425 define_one_arm_cp_reg(cpu, &contextidr_el2);
9426 }
9427 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9428 define_arm_cp_regs(cpu, vhe_reginfo);
9429 }
9430
9431 if (cpu_isar_feature(aa64_sve, cpu)) {
9432 define_arm_cp_regs(cpu, zcr_reginfo);
9433 }
9434
9435 if (cpu_isar_feature(aa64_hcx, cpu)) {
9436 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9437 }
9438
9439 #ifdef TARGET_AARCH64
9440 if (cpu_isar_feature(aa64_sme, cpu)) {
9441 define_arm_cp_regs(cpu, sme_reginfo);
9442 }
9443 if (cpu_isar_feature(aa64_pauth, cpu)) {
9444 define_arm_cp_regs(cpu, pauth_reginfo);
9445 }
9446 if (cpu_isar_feature(aa64_rndr, cpu)) {
9447 define_arm_cp_regs(cpu, rndr_reginfo);
9448 }
9449 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9450 define_arm_cp_regs(cpu, tlbirange_reginfo);
9451 }
9452 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9453 define_arm_cp_regs(cpu, tlbios_reginfo);
9454 }
9455 /* Data Cache clean instructions up to PoP */
9456 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9457 define_one_arm_cp_reg(cpu, dcpop_reg);
9458
9459 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9460 define_one_arm_cp_reg(cpu, dcpodp_reg);
9461 }
9462 }
9463
9464 /*
9465 * If full MTE is enabled, add all of the system registers.
9466 * If only "instructions available at EL0" are enabled,
9467 * then define only a RAZ/WI version of PSTATE.TCO.
9468 */
9469 if (cpu_isar_feature(aa64_mte, cpu)) {
9470 ARMCPRegInfo gmid_reginfo = {
9471 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9472 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9473 .access = PL1_R, .accessfn = access_aa64_tid5,
9474 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9475 };
9476 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9477 define_arm_cp_regs(cpu, mte_reginfo);
9478 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9479 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9480 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9481 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9482 }
9483
9484 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9485 define_arm_cp_regs(cpu, scxtnum_reginfo);
9486 }
9487
9488 if (cpu_isar_feature(aa64_fgt, cpu)) {
9489 define_arm_cp_regs(cpu, fgt_reginfo);
9490 }
9491
9492 if (cpu_isar_feature(aa64_rme, cpu)) {
9493 define_arm_cp_regs(cpu, rme_reginfo);
9494 if (cpu_isar_feature(aa64_mte, cpu)) {
9495 define_arm_cp_regs(cpu, rme_mte_reginfo);
9496 }
9497 }
9498 #endif
9499
9500 if (cpu_isar_feature(any_predinv, cpu)) {
9501 define_arm_cp_regs(cpu, predinv_reginfo);
9502 }
9503
9504 if (cpu_isar_feature(any_ccidx, cpu)) {
9505 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9506 }
9507
9508 #ifndef CONFIG_USER_ONLY
9509 /*
9510 * Register redirections and aliases must be done last,
9511 * after the registers from the other extensions have been defined.
9512 */
9513 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9514 define_arm_vh_e2h_redirects_aliases(cpu);
9515 }
9516 #endif
9517 }
9518
9519 /*
9520 * Private utility function for define_one_arm_cp_reg_with_opaque():
9521 * add a single reginfo struct to the hash table.
9522 */
9523 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9524 void *opaque, CPState state,
9525 CPSecureState secstate,
9526 int crm, int opc1, int opc2,
9527 const char *name)
9528 {
9529 CPUARMState *env = &cpu->env;
9530 uint32_t key;
9531 ARMCPRegInfo *r2;
9532 bool is64 = r->type & ARM_CP_64BIT;
9533 bool ns = secstate & ARM_CP_SECSTATE_NS;
9534 int cp = r->cp;
9535 size_t name_len;
9536 bool make_const;
9537
9538 switch (state) {
9539 case ARM_CP_STATE_AA32:
9540 /* We assume it is a cp15 register if the .cp field is left unset. */
9541 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9542 cp = 15;
9543 }
9544 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9545 break;
9546 case ARM_CP_STATE_AA64:
9547 /*
9548 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9549 * cp == 0 as equivalent to the value for "standard guest-visible
9550 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9551 * in their AArch64 view (the .cp value may be non-zero for the
9552 * benefit of the AArch32 view).
9553 */
9554 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9555 cp = CP_REG_ARM64_SYSREG_CP;
9556 }
9557 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9558 break;
9559 default:
9560 g_assert_not_reached();
9561 }
9562
9563 /* Overriding of an existing definition must be explicitly requested. */
9564 if (!(r->type & ARM_CP_OVERRIDE)) {
9565 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9566 if (oldreg) {
9567 assert(oldreg->type & ARM_CP_OVERRIDE);
9568 }
9569 }
9570
9571 /*
9572 * Eliminate registers that are not present because the EL is missing.
9573 * Doing this here makes it easier to put all registers for a given
9574 * feature into the same ARMCPRegInfo array and define them all at once.
9575 */
9576 make_const = false;
9577 if (arm_feature(env, ARM_FEATURE_EL3)) {
9578 /*
9579 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9580 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9581 */
9582 int min_el = ctz32(r->access) / 2;
9583 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9584 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9585 return;
9586 }
9587 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9588 }
9589 } else {
9590 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9591 ? PL2_RW : PL1_RW);
9592 if ((r->access & max_el) == 0) {
9593 return;
9594 }
9595 }
9596
9597 /* Combine cpreg and name into one allocation. */
9598 name_len = strlen(name) + 1;
9599 r2 = g_malloc(sizeof(*r2) + name_len);
9600 *r2 = *r;
9601 r2->name = memcpy(r2 + 1, name, name_len);
9602
9603 /*
9604 * Update fields to match the instantiation, overwiting wildcards
9605 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9606 */
9607 r2->cp = cp;
9608 r2->crm = crm;
9609 r2->opc1 = opc1;
9610 r2->opc2 = opc2;
9611 r2->state = state;
9612 r2->secure = secstate;
9613 if (opaque) {
9614 r2->opaque = opaque;
9615 }
9616
9617 if (make_const) {
9618 /* This should not have been a very special register to begin. */
9619 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9620 assert(old_special == 0 || old_special == ARM_CP_NOP);
9621 /*
9622 * Set the special function to CONST, retaining the other flags.
9623 * This is important for e.g. ARM_CP_SVE so that we still
9624 * take the SVE trap if CPTR_EL3.EZ == 0.
9625 */
9626 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9627 /*
9628 * Usually, these registers become RES0, but there are a few
9629 * special cases like VPIDR_EL2 which have a constant non-zero
9630 * value with writes ignored.
9631 */
9632 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9633 r2->resetvalue = 0;
9634 }
9635 /*
9636 * ARM_CP_CONST has precedence, so removing the callbacks and
9637 * offsets are not strictly necessary, but it is potentially
9638 * less confusing to debug later.
9639 */
9640 r2->readfn = NULL;
9641 r2->writefn = NULL;
9642 r2->raw_readfn = NULL;
9643 r2->raw_writefn = NULL;
9644 r2->resetfn = NULL;
9645 r2->fieldoffset = 0;
9646 r2->bank_fieldoffsets[0] = 0;
9647 r2->bank_fieldoffsets[1] = 0;
9648 } else {
9649 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9650
9651 if (isbanked) {
9652 /*
9653 * Register is banked (using both entries in array).
9654 * Overwriting fieldoffset as the array is only used to define
9655 * banked registers but later only fieldoffset is used.
9656 */
9657 r2->fieldoffset = r->bank_fieldoffsets[ns];
9658 }
9659 if (state == ARM_CP_STATE_AA32) {
9660 if (isbanked) {
9661 /*
9662 * If the register is banked then we don't need to migrate or
9663 * reset the 32-bit instance in certain cases:
9664 *
9665 * 1) If the register has both 32-bit and 64-bit instances
9666 * then we can count on the 64-bit instance taking care
9667 * of the non-secure bank.
9668 * 2) If ARMv8 is enabled then we can count on a 64-bit
9669 * version taking care of the secure bank. This requires
9670 * that separate 32 and 64-bit definitions are provided.
9671 */
9672 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9673 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9674 r2->type |= ARM_CP_ALIAS;
9675 }
9676 } else if ((secstate != r->secure) && !ns) {
9677 /*
9678 * The register is not banked so we only want to allow
9679 * migration of the non-secure instance.
9680 */
9681 r2->type |= ARM_CP_ALIAS;
9682 }
9683
9684 if (HOST_BIG_ENDIAN &&
9685 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9686 r2->fieldoffset += sizeof(uint32_t);
9687 }
9688 }
9689 }
9690
9691 /*
9692 * By convention, for wildcarded registers only the first
9693 * entry is used for migration; the others are marked as
9694 * ALIAS so we don't try to transfer the register
9695 * multiple times. Special registers (ie NOP/WFI) are
9696 * never migratable and not even raw-accessible.
9697 */
9698 if (r2->type & ARM_CP_SPECIAL_MASK) {
9699 r2->type |= ARM_CP_NO_RAW;
9700 }
9701 if (((r->crm == CP_ANY) && crm != 0) ||
9702 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9703 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9704 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9705 }
9706
9707 /*
9708 * Check that raw accesses are either forbidden or handled. Note that
9709 * we can't assert this earlier because the setup of fieldoffset for
9710 * banked registers has to be done first.
9711 */
9712 if (!(r2->type & ARM_CP_NO_RAW)) {
9713 assert(!raw_accessors_invalid(r2));
9714 }
9715
9716 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9717 }
9718
9719
9720 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9721 const ARMCPRegInfo *r, void *opaque)
9722 {
9723 /*
9724 * Define implementations of coprocessor registers.
9725 * We store these in a hashtable because typically
9726 * there are less than 150 registers in a space which
9727 * is 16*16*16*8*8 = 262144 in size.
9728 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9729 * If a register is defined twice then the second definition is
9730 * used, so this can be used to define some generic registers and
9731 * then override them with implementation specific variations.
9732 * At least one of the original and the second definition should
9733 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9734 * against accidental use.
9735 *
9736 * The state field defines whether the register is to be
9737 * visible in the AArch32 or AArch64 execution state. If the
9738 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9739 * reginfo structure for the AArch32 view, which sees the lower
9740 * 32 bits of the 64 bit register.
9741 *
9742 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9743 * be wildcarded. AArch64 registers are always considered to be 64
9744 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9745 * the register, if any.
9746 */
9747 int crm, opc1, opc2;
9748 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9749 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9750 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9751 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9752 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9753 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9754 CPState state;
9755
9756 /* 64 bit registers have only CRm and Opc1 fields */
9757 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9758 /* op0 only exists in the AArch64 encodings */
9759 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9760 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9761 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9762 /*
9763 * This API is only for Arm's system coprocessors (14 and 15) or
9764 * (M-profile or v7A-and-earlier only) for implementation defined
9765 * coprocessors in the range 0..7. Our decode assumes this, since
9766 * 8..13 can be used for other insns including VFP and Neon. See
9767 * valid_cp() in translate.c. Assert here that we haven't tried
9768 * to use an invalid coprocessor number.
9769 */
9770 switch (r->state) {
9771 case ARM_CP_STATE_BOTH:
9772 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9773 if (r->cp == 0) {
9774 break;
9775 }
9776 /* fall through */
9777 case ARM_CP_STATE_AA32:
9778 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9779 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9780 assert(r->cp >= 14 && r->cp <= 15);
9781 } else {
9782 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9783 }
9784 break;
9785 case ARM_CP_STATE_AA64:
9786 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9787 break;
9788 default:
9789 g_assert_not_reached();
9790 }
9791 /*
9792 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9793 * encodes a minimum access level for the register. We roll this
9794 * runtime check into our general permission check code, so check
9795 * here that the reginfo's specified permissions are strict enough
9796 * to encompass the generic architectural permission check.
9797 */
9798 if (r->state != ARM_CP_STATE_AA32) {
9799 CPAccessRights mask;
9800 switch (r->opc1) {
9801 case 0:
9802 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9803 mask = PL0U_R | PL1_RW;
9804 break;
9805 case 1: case 2:
9806 /* min_EL EL1 */
9807 mask = PL1_RW;
9808 break;
9809 case 3:
9810 /* min_EL EL0 */
9811 mask = PL0_RW;
9812 break;
9813 case 4:
9814 case 5:
9815 /* min_EL EL2 */
9816 mask = PL2_RW;
9817 break;
9818 case 6:
9819 /* min_EL EL3 */
9820 mask = PL3_RW;
9821 break;
9822 case 7:
9823 /* min_EL EL1, secure mode only (we don't check the latter) */
9824 mask = PL1_RW;
9825 break;
9826 default:
9827 /* broken reginfo with out-of-range opc1 */
9828 g_assert_not_reached();
9829 }
9830 /* assert our permissions are not too lax (stricter is fine) */
9831 assert((r->access & ~mask) == 0);
9832 }
9833
9834 /*
9835 * Check that the register definition has enough info to handle
9836 * reads and writes if they are permitted.
9837 */
9838 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9839 if (r->access & PL3_R) {
9840 assert((r->fieldoffset ||
9841 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9842 r->readfn);
9843 }
9844 if (r->access & PL3_W) {
9845 assert((r->fieldoffset ||
9846 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9847 r->writefn);
9848 }
9849 }
9850
9851 for (crm = crmmin; crm <= crmmax; crm++) {
9852 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9853 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9854 for (state = ARM_CP_STATE_AA32;
9855 state <= ARM_CP_STATE_AA64; state++) {
9856 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9857 continue;
9858 }
9859 if (state == ARM_CP_STATE_AA32) {
9860 /*
9861 * Under AArch32 CP registers can be common
9862 * (same for secure and non-secure world) or banked.
9863 */
9864 char *name;
9865
9866 switch (r->secure) {
9867 case ARM_CP_SECSTATE_S:
9868 case ARM_CP_SECSTATE_NS:
9869 add_cpreg_to_hashtable(cpu, r, opaque, state,
9870 r->secure, crm, opc1, opc2,
9871 r->name);
9872 break;
9873 case ARM_CP_SECSTATE_BOTH:
9874 name = g_strdup_printf("%s_S", r->name);
9875 add_cpreg_to_hashtable(cpu, r, opaque, state,
9876 ARM_CP_SECSTATE_S,
9877 crm, opc1, opc2, name);
9878 g_free(name);
9879 add_cpreg_to_hashtable(cpu, r, opaque, state,
9880 ARM_CP_SECSTATE_NS,
9881 crm, opc1, opc2, r->name);
9882 break;
9883 default:
9884 g_assert_not_reached();
9885 }
9886 } else {
9887 /*
9888 * AArch64 registers get mapped to non-secure instance
9889 * of AArch32
9890 */
9891 add_cpreg_to_hashtable(cpu, r, opaque, state,
9892 ARM_CP_SECSTATE_NS,
9893 crm, opc1, opc2, r->name);
9894 }
9895 }
9896 }
9897 }
9898 }
9899 }
9900
9901 /* Define a whole list of registers */
9902 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9903 void *opaque, size_t len)
9904 {
9905 size_t i;
9906 for (i = 0; i < len; ++i) {
9907 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9908 }
9909 }
9910
9911 /*
9912 * Modify ARMCPRegInfo for access from userspace.
9913 *
9914 * This is a data driven modification directed by
9915 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9916 * user-space cannot alter any values and dynamic values pertaining to
9917 * execution state are hidden from user space view anyway.
9918 */
9919 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9920 const ARMCPRegUserSpaceInfo *mods,
9921 size_t mods_len)
9922 {
9923 for (size_t mi = 0; mi < mods_len; ++mi) {
9924 const ARMCPRegUserSpaceInfo *m = mods + mi;
9925 GPatternSpec *pat = NULL;
9926
9927 if (m->is_glob) {
9928 pat = g_pattern_spec_new(m->name);
9929 }
9930 for (size_t ri = 0; ri < regs_len; ++ri) {
9931 ARMCPRegInfo *r = regs + ri;
9932
9933 if (pat && g_pattern_match_string(pat, r->name)) {
9934 r->type = ARM_CP_CONST;
9935 r->access = PL0U_R;
9936 r->resetvalue = 0;
9937 /* continue */
9938 } else if (strcmp(r->name, m->name) == 0) {
9939 r->type = ARM_CP_CONST;
9940 r->access = PL0U_R;
9941 r->resetvalue &= m->exported_bits;
9942 r->resetvalue |= m->fixed_bits;
9943 break;
9944 }
9945 }
9946 if (pat) {
9947 g_pattern_spec_free(pat);
9948 }
9949 }
9950 }
9951
9952 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9953 {
9954 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9955 }
9956
9957 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9958 uint64_t value)
9959 {
9960 /* Helper coprocessor write function for write-ignore registers */
9961 }
9962
9963 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9964 {
9965 /* Helper coprocessor write function for read-as-zero registers */
9966 return 0;
9967 }
9968
9969 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9970 {
9971 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9972 }
9973
9974 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9975 {
9976 /*
9977 * Return true if it is not valid for us to switch to
9978 * this CPU mode (ie all the UNPREDICTABLE cases in
9979 * the ARM ARM CPSRWriteByInstr pseudocode).
9980 */
9981
9982 /* Changes to or from Hyp via MSR and CPS are illegal. */
9983 if (write_type == CPSRWriteByInstr &&
9984 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9985 mode == ARM_CPU_MODE_HYP)) {
9986 return 1;
9987 }
9988
9989 switch (mode) {
9990 case ARM_CPU_MODE_USR:
9991 return 0;
9992 case ARM_CPU_MODE_SYS:
9993 case ARM_CPU_MODE_SVC:
9994 case ARM_CPU_MODE_ABT:
9995 case ARM_CPU_MODE_UND:
9996 case ARM_CPU_MODE_IRQ:
9997 case ARM_CPU_MODE_FIQ:
9998 /*
9999 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10000 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10001 */
10002 /*
10003 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10004 * and CPS are treated as illegal mode changes.
10005 */
10006 if (write_type == CPSRWriteByInstr &&
10007 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10008 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10009 return 1;
10010 }
10011 return 0;
10012 case ARM_CPU_MODE_HYP:
10013 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10014 case ARM_CPU_MODE_MON:
10015 return arm_current_el(env) < 3;
10016 default:
10017 return 1;
10018 }
10019 }
10020
10021 uint32_t cpsr_read(CPUARMState *env)
10022 {
10023 int ZF;
10024 ZF = (env->ZF == 0);
10025 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10026 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10027 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10028 | ((env->condexec_bits & 0xfc) << 8)
10029 | (env->GE << 16) | (env->daif & CPSR_AIF);
10030 }
10031
10032 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10033 CPSRWriteType write_type)
10034 {
10035 uint32_t changed_daif;
10036 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10037 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10038
10039 if (mask & CPSR_NZCV) {
10040 env->ZF = (~val) & CPSR_Z;
10041 env->NF = val;
10042 env->CF = (val >> 29) & 1;
10043 env->VF = (val << 3) & 0x80000000;
10044 }
10045 if (mask & CPSR_Q) {
10046 env->QF = ((val & CPSR_Q) != 0);
10047 }
10048 if (mask & CPSR_T) {
10049 env->thumb = ((val & CPSR_T) != 0);
10050 }
10051 if (mask & CPSR_IT_0_1) {
10052 env->condexec_bits &= ~3;
10053 env->condexec_bits |= (val >> 25) & 3;
10054 }
10055 if (mask & CPSR_IT_2_7) {
10056 env->condexec_bits &= 3;
10057 env->condexec_bits |= (val >> 8) & 0xfc;
10058 }
10059 if (mask & CPSR_GE) {
10060 env->GE = (val >> 16) & 0xf;
10061 }
10062
10063 /*
10064 * In a V7 implementation that includes the security extensions but does
10065 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10066 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10067 * bits respectively.
10068 *
10069 * In a V8 implementation, it is permitted for privileged software to
10070 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10071 */
10072 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10073 arm_feature(env, ARM_FEATURE_EL3) &&
10074 !arm_feature(env, ARM_FEATURE_EL2) &&
10075 !arm_is_secure(env)) {
10076
10077 changed_daif = (env->daif ^ val) & mask;
10078
10079 if (changed_daif & CPSR_A) {
10080 /*
10081 * Check to see if we are allowed to change the masking of async
10082 * abort exceptions from a non-secure state.
10083 */
10084 if (!(env->cp15.scr_el3 & SCR_AW)) {
10085 qemu_log_mask(LOG_GUEST_ERROR,
10086 "Ignoring attempt to switch CPSR_A flag from "
10087 "non-secure world with SCR.AW bit clear\n");
10088 mask &= ~CPSR_A;
10089 }
10090 }
10091
10092 if (changed_daif & CPSR_F) {
10093 /*
10094 * Check to see if we are allowed to change the masking of FIQ
10095 * exceptions from a non-secure state.
10096 */
10097 if (!(env->cp15.scr_el3 & SCR_FW)) {
10098 qemu_log_mask(LOG_GUEST_ERROR,
10099 "Ignoring attempt to switch CPSR_F flag from "
10100 "non-secure world with SCR.FW bit clear\n");
10101 mask &= ~CPSR_F;
10102 }
10103
10104 /*
10105 * Check whether non-maskable FIQ (NMFI) support is enabled.
10106 * If this bit is set software is not allowed to mask
10107 * FIQs, but is allowed to set CPSR_F to 0.
10108 */
10109 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10110 (val & CPSR_F)) {
10111 qemu_log_mask(LOG_GUEST_ERROR,
10112 "Ignoring attempt to enable CPSR_F flag "
10113 "(non-maskable FIQ [NMFI] support enabled)\n");
10114 mask &= ~CPSR_F;
10115 }
10116 }
10117 }
10118
10119 env->daif &= ~(CPSR_AIF & mask);
10120 env->daif |= val & CPSR_AIF & mask;
10121
10122 if (write_type != CPSRWriteRaw &&
10123 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10124 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10125 /*
10126 * Note that we can only get here in USR mode if this is a
10127 * gdb stub write; for this case we follow the architectural
10128 * behaviour for guest writes in USR mode of ignoring an attempt
10129 * to switch mode. (Those are caught by translate.c for writes
10130 * triggered by guest instructions.)
10131 */
10132 mask &= ~CPSR_M;
10133 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10134 /*
10135 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10136 * v7, and has defined behaviour in v8:
10137 * + leave CPSR.M untouched
10138 * + allow changes to the other CPSR fields
10139 * + set PSTATE.IL
10140 * For user changes via the GDB stub, we don't set PSTATE.IL,
10141 * as this would be unnecessarily harsh for a user error.
10142 */
10143 mask &= ~CPSR_M;
10144 if (write_type != CPSRWriteByGDBStub &&
10145 arm_feature(env, ARM_FEATURE_V8)) {
10146 mask |= CPSR_IL;
10147 val |= CPSR_IL;
10148 }
10149 qemu_log_mask(LOG_GUEST_ERROR,
10150 "Illegal AArch32 mode switch attempt from %s to %s\n",
10151 aarch32_mode_name(env->uncached_cpsr),
10152 aarch32_mode_name(val));
10153 } else {
10154 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10155 write_type == CPSRWriteExceptionReturn ?
10156 "Exception return from AArch32" :
10157 "AArch32 mode switch from",
10158 aarch32_mode_name(env->uncached_cpsr),
10159 aarch32_mode_name(val), env->regs[15]);
10160 switch_mode(env, val & CPSR_M);
10161 }
10162 }
10163 mask &= ~CACHED_CPSR_BITS;
10164 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10165 if (tcg_enabled() && rebuild_hflags) {
10166 arm_rebuild_hflags(env);
10167 }
10168 }
10169
10170 #ifdef CONFIG_USER_ONLY
10171
10172 static void switch_mode(CPUARMState *env, int mode)
10173 {
10174 ARMCPU *cpu = env_archcpu(env);
10175
10176 if (mode != ARM_CPU_MODE_USR) {
10177 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10178 }
10179 }
10180
10181 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10182 uint32_t cur_el, bool secure)
10183 {
10184 return 1;
10185 }
10186
10187 void aarch64_sync_64_to_32(CPUARMState *env)
10188 {
10189 g_assert_not_reached();
10190 }
10191
10192 #else
10193
10194 static void switch_mode(CPUARMState *env, int mode)
10195 {
10196 int old_mode;
10197 int i;
10198
10199 old_mode = env->uncached_cpsr & CPSR_M;
10200 if (mode == old_mode) {
10201 return;
10202 }
10203
10204 if (old_mode == ARM_CPU_MODE_FIQ) {
10205 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10206 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10207 } else if (mode == ARM_CPU_MODE_FIQ) {
10208 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10209 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10210 }
10211
10212 i = bank_number(old_mode);
10213 env->banked_r13[i] = env->regs[13];
10214 env->banked_spsr[i] = env->spsr;
10215
10216 i = bank_number(mode);
10217 env->regs[13] = env->banked_r13[i];
10218 env->spsr = env->banked_spsr[i];
10219
10220 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10221 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10222 }
10223
10224 /*
10225 * Physical Interrupt Target EL Lookup Table
10226 *
10227 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10228 *
10229 * The below multi-dimensional table is used for looking up the target
10230 * exception level given numerous condition criteria. Specifically, the
10231 * target EL is based on SCR and HCR routing controls as well as the
10232 * currently executing EL and secure state.
10233 *
10234 * Dimensions:
10235 * target_el_table[2][2][2][2][2][4]
10236 * | | | | | +--- Current EL
10237 * | | | | +------ Non-secure(0)/Secure(1)
10238 * | | | +--------- HCR mask override
10239 * | | +------------ SCR exec state control
10240 * | +--------------- SCR mask override
10241 * +------------------ 32-bit(0)/64-bit(1) EL3
10242 *
10243 * The table values are as such:
10244 * 0-3 = EL0-EL3
10245 * -1 = Cannot occur
10246 *
10247 * The ARM ARM target EL table includes entries indicating that an "exception
10248 * is not taken". The two cases where this is applicable are:
10249 * 1) An exception is taken from EL3 but the SCR does not have the exception
10250 * routed to EL3.
10251 * 2) An exception is taken from EL2 but the HCR does not have the exception
10252 * routed to EL2.
10253 * In these two cases, the below table contain a target of EL1. This value is
10254 * returned as it is expected that the consumer of the table data will check
10255 * for "target EL >= current EL" to ensure the exception is not taken.
10256 *
10257 * SCR HCR
10258 * 64 EA AMO From
10259 * BIT IRQ IMO Non-secure Secure
10260 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10261 */
10262 static const int8_t target_el_table[2][2][2][2][2][4] = {
10263 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10264 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10265 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10266 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10267 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10268 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10269 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10270 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10271 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10272 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10273 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10274 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10275 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10276 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10277 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10278 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10279 };
10280
10281 /*
10282 * Determine the target EL for physical exceptions
10283 */
10284 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10285 uint32_t cur_el, bool secure)
10286 {
10287 CPUARMState *env = cpu_env(cs);
10288 bool rw;
10289 bool scr;
10290 bool hcr;
10291 int target_el;
10292 /* Is the highest EL AArch64? */
10293 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10294 uint64_t hcr_el2;
10295
10296 if (arm_feature(env, ARM_FEATURE_EL3)) {
10297 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10298 } else {
10299 /*
10300 * Either EL2 is the highest EL (and so the EL2 register width
10301 * is given by is64); or there is no EL2 or EL3, in which case
10302 * the value of 'rw' does not affect the table lookup anyway.
10303 */
10304 rw = is64;
10305 }
10306
10307 hcr_el2 = arm_hcr_el2_eff(env);
10308 switch (excp_idx) {
10309 case EXCP_IRQ:
10310 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10311 hcr = hcr_el2 & HCR_IMO;
10312 break;
10313 case EXCP_FIQ:
10314 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10315 hcr = hcr_el2 & HCR_FMO;
10316 break;
10317 default:
10318 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10319 hcr = hcr_el2 & HCR_AMO;
10320 break;
10321 };
10322
10323 /*
10324 * For these purposes, TGE and AMO/IMO/FMO both force the
10325 * interrupt to EL2. Fold TGE into the bit extracted above.
10326 */
10327 hcr |= (hcr_el2 & HCR_TGE) != 0;
10328
10329 /* Perform a table-lookup for the target EL given the current state */
10330 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10331
10332 assert(target_el > 0);
10333
10334 return target_el;
10335 }
10336
10337 void arm_log_exception(CPUState *cs)
10338 {
10339 int idx = cs->exception_index;
10340
10341 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10342 const char *exc = NULL;
10343 static const char * const excnames[] = {
10344 [EXCP_UDEF] = "Undefined Instruction",
10345 [EXCP_SWI] = "SVC",
10346 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10347 [EXCP_DATA_ABORT] = "Data Abort",
10348 [EXCP_IRQ] = "IRQ",
10349 [EXCP_FIQ] = "FIQ",
10350 [EXCP_BKPT] = "Breakpoint",
10351 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10352 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10353 [EXCP_HVC] = "Hypervisor Call",
10354 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10355 [EXCP_SMC] = "Secure Monitor Call",
10356 [EXCP_VIRQ] = "Virtual IRQ",
10357 [EXCP_VFIQ] = "Virtual FIQ",
10358 [EXCP_SEMIHOST] = "Semihosting call",
10359 [EXCP_NOCP] = "v7M NOCP UsageFault",
10360 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10361 [EXCP_STKOF] = "v8M STKOF UsageFault",
10362 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10363 [EXCP_LSERR] = "v8M LSERR UsageFault",
10364 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10365 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10366 [EXCP_VSERR] = "Virtual SERR",
10367 [EXCP_GPC] = "Granule Protection Check",
10368 };
10369
10370 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10371 exc = excnames[idx];
10372 }
10373 if (!exc) {
10374 exc = "unknown";
10375 }
10376 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10377 idx, exc, cs->cpu_index);
10378 }
10379 }
10380
10381 /*
10382 * Function used to synchronize QEMU's AArch64 register set with AArch32
10383 * register set. This is necessary when switching between AArch32 and AArch64
10384 * execution state.
10385 */
10386 void aarch64_sync_32_to_64(CPUARMState *env)
10387 {
10388 int i;
10389 uint32_t mode = env->uncached_cpsr & CPSR_M;
10390
10391 /* We can blanket copy R[0:7] to X[0:7] */
10392 for (i = 0; i < 8; i++) {
10393 env->xregs[i] = env->regs[i];
10394 }
10395
10396 /*
10397 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10398 * Otherwise, they come from the banked user regs.
10399 */
10400 if (mode == ARM_CPU_MODE_FIQ) {
10401 for (i = 8; i < 13; i++) {
10402 env->xregs[i] = env->usr_regs[i - 8];
10403 }
10404 } else {
10405 for (i = 8; i < 13; i++) {
10406 env->xregs[i] = env->regs[i];
10407 }
10408 }
10409
10410 /*
10411 * Registers x13-x23 are the various mode SP and FP registers. Registers
10412 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10413 * from the mode banked register.
10414 */
10415 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10416 env->xregs[13] = env->regs[13];
10417 env->xregs[14] = env->regs[14];
10418 } else {
10419 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10420 /* HYP is an exception in that it is copied from r14 */
10421 if (mode == ARM_CPU_MODE_HYP) {
10422 env->xregs[14] = env->regs[14];
10423 } else {
10424 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10425 }
10426 }
10427
10428 if (mode == ARM_CPU_MODE_HYP) {
10429 env->xregs[15] = env->regs[13];
10430 } else {
10431 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10432 }
10433
10434 if (mode == ARM_CPU_MODE_IRQ) {
10435 env->xregs[16] = env->regs[14];
10436 env->xregs[17] = env->regs[13];
10437 } else {
10438 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10439 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10440 }
10441
10442 if (mode == ARM_CPU_MODE_SVC) {
10443 env->xregs[18] = env->regs[14];
10444 env->xregs[19] = env->regs[13];
10445 } else {
10446 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10447 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10448 }
10449
10450 if (mode == ARM_CPU_MODE_ABT) {
10451 env->xregs[20] = env->regs[14];
10452 env->xregs[21] = env->regs[13];
10453 } else {
10454 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10455 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10456 }
10457
10458 if (mode == ARM_CPU_MODE_UND) {
10459 env->xregs[22] = env->regs[14];
10460 env->xregs[23] = env->regs[13];
10461 } else {
10462 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10463 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10464 }
10465
10466 /*
10467 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10468 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10469 * FIQ bank for r8-r14.
10470 */
10471 if (mode == ARM_CPU_MODE_FIQ) {
10472 for (i = 24; i < 31; i++) {
10473 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10474 }
10475 } else {
10476 for (i = 24; i < 29; i++) {
10477 env->xregs[i] = env->fiq_regs[i - 24];
10478 }
10479 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10480 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10481 }
10482
10483 env->pc = env->regs[15];
10484 }
10485
10486 /*
10487 * Function used to synchronize QEMU's AArch32 register set with AArch64
10488 * register set. This is necessary when switching between AArch32 and AArch64
10489 * execution state.
10490 */
10491 void aarch64_sync_64_to_32(CPUARMState *env)
10492 {
10493 int i;
10494 uint32_t mode = env->uncached_cpsr & CPSR_M;
10495
10496 /* We can blanket copy X[0:7] to R[0:7] */
10497 for (i = 0; i < 8; i++) {
10498 env->regs[i] = env->xregs[i];
10499 }
10500
10501 /*
10502 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10503 * Otherwise, we copy x8-x12 into the banked user regs.
10504 */
10505 if (mode == ARM_CPU_MODE_FIQ) {
10506 for (i = 8; i < 13; i++) {
10507 env->usr_regs[i - 8] = env->xregs[i];
10508 }
10509 } else {
10510 for (i = 8; i < 13; i++) {
10511 env->regs[i] = env->xregs[i];
10512 }
10513 }
10514
10515 /*
10516 * Registers r13 & r14 depend on the current mode.
10517 * If we are in a given mode, we copy the corresponding x registers to r13
10518 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10519 * for the mode.
10520 */
10521 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10522 env->regs[13] = env->xregs[13];
10523 env->regs[14] = env->xregs[14];
10524 } else {
10525 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10526
10527 /*
10528 * HYP is an exception in that it does not have its own banked r14 but
10529 * shares the USR r14
10530 */
10531 if (mode == ARM_CPU_MODE_HYP) {
10532 env->regs[14] = env->xregs[14];
10533 } else {
10534 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10535 }
10536 }
10537
10538 if (mode == ARM_CPU_MODE_HYP) {
10539 env->regs[13] = env->xregs[15];
10540 } else {
10541 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10542 }
10543
10544 if (mode == ARM_CPU_MODE_IRQ) {
10545 env->regs[14] = env->xregs[16];
10546 env->regs[13] = env->xregs[17];
10547 } else {
10548 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10549 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10550 }
10551
10552 if (mode == ARM_CPU_MODE_SVC) {
10553 env->regs[14] = env->xregs[18];
10554 env->regs[13] = env->xregs[19];
10555 } else {
10556 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10557 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10558 }
10559
10560 if (mode == ARM_CPU_MODE_ABT) {
10561 env->regs[14] = env->xregs[20];
10562 env->regs[13] = env->xregs[21];
10563 } else {
10564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10565 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10566 }
10567
10568 if (mode == ARM_CPU_MODE_UND) {
10569 env->regs[14] = env->xregs[22];
10570 env->regs[13] = env->xregs[23];
10571 } else {
10572 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10573 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10574 }
10575
10576 /*
10577 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10578 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10579 * FIQ bank for r8-r14.
10580 */
10581 if (mode == ARM_CPU_MODE_FIQ) {
10582 for (i = 24; i < 31; i++) {
10583 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10584 }
10585 } else {
10586 for (i = 24; i < 29; i++) {
10587 env->fiq_regs[i - 24] = env->xregs[i];
10588 }
10589 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10590 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10591 }
10592
10593 env->regs[15] = env->pc;
10594 }
10595
10596 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10597 uint32_t mask, uint32_t offset,
10598 uint32_t newpc)
10599 {
10600 int new_el;
10601
10602 /* Change the CPU state so as to actually take the exception. */
10603 switch_mode(env, new_mode);
10604
10605 /*
10606 * For exceptions taken to AArch32 we must clear the SS bit in both
10607 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10608 */
10609 env->pstate &= ~PSTATE_SS;
10610 env->spsr = cpsr_read(env);
10611 /* Clear IT bits. */
10612 env->condexec_bits = 0;
10613 /* Switch to the new mode, and to the correct instruction set. */
10614 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10615
10616 /* This must be after mode switching. */
10617 new_el = arm_current_el(env);
10618
10619 /* Set new mode endianness */
10620 env->uncached_cpsr &= ~CPSR_E;
10621 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10622 env->uncached_cpsr |= CPSR_E;
10623 }
10624 /* J and IL must always be cleared for exception entry */
10625 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10626 env->daif |= mask;
10627
10628 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10629 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10630 env->uncached_cpsr |= CPSR_SSBS;
10631 } else {
10632 env->uncached_cpsr &= ~CPSR_SSBS;
10633 }
10634 }
10635
10636 if (new_mode == ARM_CPU_MODE_HYP) {
10637 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10638 env->elr_el[2] = env->regs[15];
10639 } else {
10640 /* CPSR.PAN is normally preserved preserved unless... */
10641 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10642 switch (new_el) {
10643 case 3:
10644 if (!arm_is_secure_below_el3(env)) {
10645 /* ... the target is EL3, from non-secure state. */
10646 env->uncached_cpsr &= ~CPSR_PAN;
10647 break;
10648 }
10649 /* ... the target is EL3, from secure state ... */
10650 /* fall through */
10651 case 1:
10652 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10653 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10654 env->uncached_cpsr |= CPSR_PAN;
10655 }
10656 break;
10657 }
10658 }
10659 /*
10660 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10661 * and we should just guard the thumb mode on V4
10662 */
10663 if (arm_feature(env, ARM_FEATURE_V4T)) {
10664 env->thumb =
10665 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10666 }
10667 env->regs[14] = env->regs[15] + offset;
10668 }
10669 env->regs[15] = newpc;
10670
10671 if (tcg_enabled()) {
10672 arm_rebuild_hflags(env);
10673 }
10674 }
10675
10676 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10677 {
10678 /*
10679 * Handle exception entry to Hyp mode; this is sufficiently
10680 * different to entry to other AArch32 modes that we handle it
10681 * separately here.
10682 *
10683 * The vector table entry used is always the 0x14 Hyp mode entry point,
10684 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10685 * The offset applied to the preferred return address is always zero
10686 * (see DDI0487C.a section G1.12.3).
10687 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10688 */
10689 uint32_t addr, mask;
10690 ARMCPU *cpu = ARM_CPU(cs);
10691 CPUARMState *env = &cpu->env;
10692
10693 switch (cs->exception_index) {
10694 case EXCP_UDEF:
10695 addr = 0x04;
10696 break;
10697 case EXCP_SWI:
10698 addr = 0x08;
10699 break;
10700 case EXCP_BKPT:
10701 /* Fall through to prefetch abort. */
10702 case EXCP_PREFETCH_ABORT:
10703 env->cp15.ifar_s = env->exception.vaddress;
10704 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10705 (uint32_t)env->exception.vaddress);
10706 addr = 0x0c;
10707 break;
10708 case EXCP_DATA_ABORT:
10709 env->cp15.dfar_s = env->exception.vaddress;
10710 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10711 (uint32_t)env->exception.vaddress);
10712 addr = 0x10;
10713 break;
10714 case EXCP_IRQ:
10715 addr = 0x18;
10716 break;
10717 case EXCP_FIQ:
10718 addr = 0x1c;
10719 break;
10720 case EXCP_HVC:
10721 addr = 0x08;
10722 break;
10723 case EXCP_HYP_TRAP:
10724 addr = 0x14;
10725 break;
10726 default:
10727 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10728 }
10729
10730 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10731 if (!arm_feature(env, ARM_FEATURE_V8)) {
10732 /*
10733 * QEMU syndrome values are v8-style. v7 has the IL bit
10734 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10735 * If this is a v7 CPU, squash the IL bit in those cases.
10736 */
10737 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10738 (cs->exception_index == EXCP_DATA_ABORT &&
10739 !(env->exception.syndrome & ARM_EL_ISV)) ||
10740 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10741 env->exception.syndrome &= ~ARM_EL_IL;
10742 }
10743 }
10744 env->cp15.esr_el[2] = env->exception.syndrome;
10745 }
10746
10747 if (arm_current_el(env) != 2 && addr < 0x14) {
10748 addr = 0x14;
10749 }
10750
10751 mask = 0;
10752 if (!(env->cp15.scr_el3 & SCR_EA)) {
10753 mask |= CPSR_A;
10754 }
10755 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10756 mask |= CPSR_I;
10757 }
10758 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10759 mask |= CPSR_F;
10760 }
10761
10762 addr += env->cp15.hvbar;
10763
10764 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10765 }
10766
10767 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10768 {
10769 ARMCPU *cpu = ARM_CPU(cs);
10770 CPUARMState *env = &cpu->env;
10771 uint32_t addr;
10772 uint32_t mask;
10773 int new_mode;
10774 uint32_t offset;
10775 uint32_t moe;
10776
10777 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10778 switch (syn_get_ec(env->exception.syndrome)) {
10779 case EC_BREAKPOINT:
10780 case EC_BREAKPOINT_SAME_EL:
10781 moe = 1;
10782 break;
10783 case EC_WATCHPOINT:
10784 case EC_WATCHPOINT_SAME_EL:
10785 moe = 10;
10786 break;
10787 case EC_AA32_BKPT:
10788 moe = 3;
10789 break;
10790 case EC_VECTORCATCH:
10791 moe = 5;
10792 break;
10793 default:
10794 moe = 0;
10795 break;
10796 }
10797
10798 if (moe) {
10799 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10800 }
10801
10802 if (env->exception.target_el == 2) {
10803 arm_cpu_do_interrupt_aarch32_hyp(cs);
10804 return;
10805 }
10806
10807 switch (cs->exception_index) {
10808 case EXCP_UDEF:
10809 new_mode = ARM_CPU_MODE_UND;
10810 addr = 0x04;
10811 mask = CPSR_I;
10812 if (env->thumb) {
10813 offset = 2;
10814 } else {
10815 offset = 4;
10816 }
10817 break;
10818 case EXCP_SWI:
10819 new_mode = ARM_CPU_MODE_SVC;
10820 addr = 0x08;
10821 mask = CPSR_I;
10822 /* The PC already points to the next instruction. */
10823 offset = 0;
10824 break;
10825 case EXCP_BKPT:
10826 /* Fall through to prefetch abort. */
10827 case EXCP_PREFETCH_ABORT:
10828 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10829 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10830 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10831 env->exception.fsr, (uint32_t)env->exception.vaddress);
10832 new_mode = ARM_CPU_MODE_ABT;
10833 addr = 0x0c;
10834 mask = CPSR_A | CPSR_I;
10835 offset = 4;
10836 break;
10837 case EXCP_DATA_ABORT:
10838 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10839 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10840 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10841 env->exception.fsr,
10842 (uint32_t)env->exception.vaddress);
10843 new_mode = ARM_CPU_MODE_ABT;
10844 addr = 0x10;
10845 mask = CPSR_A | CPSR_I;
10846 offset = 8;
10847 break;
10848 case EXCP_IRQ:
10849 new_mode = ARM_CPU_MODE_IRQ;
10850 addr = 0x18;
10851 /* Disable IRQ and imprecise data aborts. */
10852 mask = CPSR_A | CPSR_I;
10853 offset = 4;
10854 if (env->cp15.scr_el3 & SCR_IRQ) {
10855 /* IRQ routed to monitor mode */
10856 new_mode = ARM_CPU_MODE_MON;
10857 mask |= CPSR_F;
10858 }
10859 break;
10860 case EXCP_FIQ:
10861 new_mode = ARM_CPU_MODE_FIQ;
10862 addr = 0x1c;
10863 /* Disable FIQ, IRQ and imprecise data aborts. */
10864 mask = CPSR_A | CPSR_I | CPSR_F;
10865 if (env->cp15.scr_el3 & SCR_FIQ) {
10866 /* FIQ routed to monitor mode */
10867 new_mode = ARM_CPU_MODE_MON;
10868 }
10869 offset = 4;
10870 break;
10871 case EXCP_VIRQ:
10872 new_mode = ARM_CPU_MODE_IRQ;
10873 addr = 0x18;
10874 /* Disable IRQ and imprecise data aborts. */
10875 mask = CPSR_A | CPSR_I;
10876 offset = 4;
10877 break;
10878 case EXCP_VFIQ:
10879 new_mode = ARM_CPU_MODE_FIQ;
10880 addr = 0x1c;
10881 /* Disable FIQ, IRQ and imprecise data aborts. */
10882 mask = CPSR_A | CPSR_I | CPSR_F;
10883 offset = 4;
10884 break;
10885 case EXCP_VSERR:
10886 {
10887 /*
10888 * Note that this is reported as a data abort, but the DFAR
10889 * has an UNKNOWN value. Construct the SError syndrome from
10890 * AET and ExT fields.
10891 */
10892 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10893
10894 if (extended_addresses_enabled(env)) {
10895 env->exception.fsr = arm_fi_to_lfsc(&fi);
10896 } else {
10897 env->exception.fsr = arm_fi_to_sfsc(&fi);
10898 }
10899 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10900 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10901 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10902 env->exception.fsr);
10903
10904 new_mode = ARM_CPU_MODE_ABT;
10905 addr = 0x10;
10906 mask = CPSR_A | CPSR_I;
10907 offset = 8;
10908 }
10909 break;
10910 case EXCP_SMC:
10911 new_mode = ARM_CPU_MODE_MON;
10912 addr = 0x08;
10913 mask = CPSR_A | CPSR_I | CPSR_F;
10914 offset = 0;
10915 break;
10916 default:
10917 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10918 return; /* Never happens. Keep compiler happy. */
10919 }
10920
10921 if (new_mode == ARM_CPU_MODE_MON) {
10922 addr += env->cp15.mvbar;
10923 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10924 /* High vectors. When enabled, base address cannot be remapped. */
10925 addr += 0xffff0000;
10926 } else {
10927 /*
10928 * ARM v7 architectures provide a vector base address register to remap
10929 * the interrupt vector table.
10930 * This register is only followed in non-monitor mode, and is banked.
10931 * Note: only bits 31:5 are valid.
10932 */
10933 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10934 }
10935
10936 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10937 env->cp15.scr_el3 &= ~SCR_NS;
10938 }
10939
10940 take_aarch32_exception(env, new_mode, mask, offset, addr);
10941 }
10942
10943 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10944 {
10945 /*
10946 * Return the register number of the AArch64 view of the AArch32
10947 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10948 * be that of the AArch32 mode the exception came from.
10949 */
10950 int mode = env->uncached_cpsr & CPSR_M;
10951
10952 switch (aarch32_reg) {
10953 case 0 ... 7:
10954 return aarch32_reg;
10955 case 8 ... 12:
10956 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10957 case 13:
10958 switch (mode) {
10959 case ARM_CPU_MODE_USR:
10960 case ARM_CPU_MODE_SYS:
10961 return 13;
10962 case ARM_CPU_MODE_HYP:
10963 return 15;
10964 case ARM_CPU_MODE_IRQ:
10965 return 17;
10966 case ARM_CPU_MODE_SVC:
10967 return 19;
10968 case ARM_CPU_MODE_ABT:
10969 return 21;
10970 case ARM_CPU_MODE_UND:
10971 return 23;
10972 case ARM_CPU_MODE_FIQ:
10973 return 29;
10974 default:
10975 g_assert_not_reached();
10976 }
10977 case 14:
10978 switch (mode) {
10979 case ARM_CPU_MODE_USR:
10980 case ARM_CPU_MODE_SYS:
10981 case ARM_CPU_MODE_HYP:
10982 return 14;
10983 case ARM_CPU_MODE_IRQ:
10984 return 16;
10985 case ARM_CPU_MODE_SVC:
10986 return 18;
10987 case ARM_CPU_MODE_ABT:
10988 return 20;
10989 case ARM_CPU_MODE_UND:
10990 return 22;
10991 case ARM_CPU_MODE_FIQ:
10992 return 30;
10993 default:
10994 g_assert_not_reached();
10995 }
10996 case 15:
10997 return 31;
10998 default:
10999 g_assert_not_reached();
11000 }
11001 }
11002
11003 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11004 {
11005 uint32_t ret = cpsr_read(env);
11006
11007 /* Move DIT to the correct location for SPSR_ELx */
11008 if (ret & CPSR_DIT) {
11009 ret &= ~CPSR_DIT;
11010 ret |= PSTATE_DIT;
11011 }
11012 /* Merge PSTATE.SS into SPSR_ELx */
11013 ret |= env->pstate & PSTATE_SS;
11014
11015 return ret;
11016 }
11017
11018 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11019 {
11020 /* Return true if this syndrome value is a synchronous external abort */
11021 switch (syn_get_ec(syndrome)) {
11022 case EC_INSNABORT:
11023 case EC_INSNABORT_SAME_EL:
11024 case EC_DATAABORT:
11025 case EC_DATAABORT_SAME_EL:
11026 /* Look at fault status code for all the synchronous ext abort cases */
11027 switch (syndrome & 0x3f) {
11028 case 0x10:
11029 case 0x13:
11030 case 0x14:
11031 case 0x15:
11032 case 0x16:
11033 case 0x17:
11034 return true;
11035 default:
11036 return false;
11037 }
11038 default:
11039 return false;
11040 }
11041 }
11042
11043 /* Handle exception entry to a target EL which is using AArch64 */
11044 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11045 {
11046 ARMCPU *cpu = ARM_CPU(cs);
11047 CPUARMState *env = &cpu->env;
11048 unsigned int new_el = env->exception.target_el;
11049 target_ulong addr = env->cp15.vbar_el[new_el];
11050 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11051 unsigned int old_mode;
11052 unsigned int cur_el = arm_current_el(env);
11053 int rt;
11054
11055 if (tcg_enabled()) {
11056 /*
11057 * Note that new_el can never be 0. If cur_el is 0, then
11058 * el0_a64 is is_a64(), else el0_a64 is ignored.
11059 */
11060 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11061 }
11062
11063 if (cur_el < new_el) {
11064 /*
11065 * Entry vector offset depends on whether the implemented EL
11066 * immediately lower than the target level is using AArch32 or AArch64
11067 */
11068 bool is_aa64;
11069 uint64_t hcr;
11070
11071 switch (new_el) {
11072 case 3:
11073 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11074 break;
11075 case 2:
11076 hcr = arm_hcr_el2_eff(env);
11077 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11078 is_aa64 = (hcr & HCR_RW) != 0;
11079 break;
11080 }
11081 /* fall through */
11082 case 1:
11083 is_aa64 = is_a64(env);
11084 break;
11085 default:
11086 g_assert_not_reached();
11087 }
11088
11089 if (is_aa64) {
11090 addr += 0x400;
11091 } else {
11092 addr += 0x600;
11093 }
11094 } else if (pstate_read(env) & PSTATE_SP) {
11095 addr += 0x200;
11096 }
11097
11098 switch (cs->exception_index) {
11099 case EXCP_GPC:
11100 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11101 env->cp15.mfar_el3);
11102 /* fall through */
11103 case EXCP_PREFETCH_ABORT:
11104 case EXCP_DATA_ABORT:
11105 /*
11106 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11107 * to be taken to the SError vector entrypoint.
11108 */
11109 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11110 syndrome_is_sync_extabt(env->exception.syndrome)) {
11111 addr += 0x180;
11112 }
11113 env->cp15.far_el[new_el] = env->exception.vaddress;
11114 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11115 env->cp15.far_el[new_el]);
11116 /* fall through */
11117 case EXCP_BKPT:
11118 case EXCP_UDEF:
11119 case EXCP_SWI:
11120 case EXCP_HVC:
11121 case EXCP_HYP_TRAP:
11122 case EXCP_SMC:
11123 switch (syn_get_ec(env->exception.syndrome)) {
11124 case EC_ADVSIMDFPACCESSTRAP:
11125 /*
11126 * QEMU internal FP/SIMD syndromes from AArch32 include the
11127 * TA and coproc fields which are only exposed if the exception
11128 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11129 * AArch64 format syndrome.
11130 */
11131 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11132 break;
11133 case EC_CP14RTTRAP:
11134 case EC_CP15RTTRAP:
11135 case EC_CP14DTTRAP:
11136 /*
11137 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11138 * the raw register field from the insn; when taking this to
11139 * AArch64 we must convert it to the AArch64 view of the register
11140 * number. Notice that we read a 4-bit AArch32 register number and
11141 * write back a 5-bit AArch64 one.
11142 */
11143 rt = extract32(env->exception.syndrome, 5, 4);
11144 rt = aarch64_regnum(env, rt);
11145 env->exception.syndrome = deposit32(env->exception.syndrome,
11146 5, 5, rt);
11147 break;
11148 case EC_CP15RRTTRAP:
11149 case EC_CP14RRTTRAP:
11150 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11151 rt = extract32(env->exception.syndrome, 5, 4);
11152 rt = aarch64_regnum(env, rt);
11153 env->exception.syndrome = deposit32(env->exception.syndrome,
11154 5, 5, rt);
11155 rt = extract32(env->exception.syndrome, 10, 4);
11156 rt = aarch64_regnum(env, rt);
11157 env->exception.syndrome = deposit32(env->exception.syndrome,
11158 10, 5, rt);
11159 break;
11160 }
11161 env->cp15.esr_el[new_el] = env->exception.syndrome;
11162 break;
11163 case EXCP_IRQ:
11164 case EXCP_VIRQ:
11165 addr += 0x80;
11166 break;
11167 case EXCP_FIQ:
11168 case EXCP_VFIQ:
11169 addr += 0x100;
11170 break;
11171 case EXCP_VSERR:
11172 addr += 0x180;
11173 /* Construct the SError syndrome from IDS and ISS fields. */
11174 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11175 env->cp15.esr_el[new_el] = env->exception.syndrome;
11176 break;
11177 default:
11178 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11179 }
11180
11181 if (is_a64(env)) {
11182 old_mode = pstate_read(env);
11183 aarch64_save_sp(env, arm_current_el(env));
11184 env->elr_el[new_el] = env->pc;
11185 } else {
11186 old_mode = cpsr_read_for_spsr_elx(env);
11187 env->elr_el[new_el] = env->regs[15];
11188
11189 aarch64_sync_32_to_64(env);
11190
11191 env->condexec_bits = 0;
11192 }
11193 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11194
11195 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11196 env->elr_el[new_el]);
11197
11198 if (cpu_isar_feature(aa64_pan, cpu)) {
11199 /* The value of PSTATE.PAN is normally preserved, except when ... */
11200 new_mode |= old_mode & PSTATE_PAN;
11201 switch (new_el) {
11202 case 2:
11203 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11204 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11205 != (HCR_E2H | HCR_TGE)) {
11206 break;
11207 }
11208 /* fall through */
11209 case 1:
11210 /* ... the target is EL1 ... */
11211 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11212 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11213 new_mode |= PSTATE_PAN;
11214 }
11215 break;
11216 }
11217 }
11218 if (cpu_isar_feature(aa64_mte, cpu)) {
11219 new_mode |= PSTATE_TCO;
11220 }
11221
11222 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11223 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11224 new_mode |= PSTATE_SSBS;
11225 } else {
11226 new_mode &= ~PSTATE_SSBS;
11227 }
11228 }
11229
11230 pstate_write(env, PSTATE_DAIF | new_mode);
11231 env->aarch64 = true;
11232 aarch64_restore_sp(env, new_el);
11233
11234 if (tcg_enabled()) {
11235 helper_rebuild_hflags_a64(env, new_el);
11236 }
11237
11238 env->pc = addr;
11239
11240 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11241 new_el, env->pc, pstate_read(env));
11242 }
11243
11244 /*
11245 * Do semihosting call and set the appropriate return value. All the
11246 * permission and validity checks have been done at translate time.
11247 *
11248 * We only see semihosting exceptions in TCG only as they are not
11249 * trapped to the hypervisor in KVM.
11250 */
11251 #ifdef CONFIG_TCG
11252 static void tcg_handle_semihosting(CPUState *cs)
11253 {
11254 ARMCPU *cpu = ARM_CPU(cs);
11255 CPUARMState *env = &cpu->env;
11256
11257 if (is_a64(env)) {
11258 qemu_log_mask(CPU_LOG_INT,
11259 "...handling as semihosting call 0x%" PRIx64 "\n",
11260 env->xregs[0]);
11261 do_common_semihosting(cs);
11262 env->pc += 4;
11263 } else {
11264 qemu_log_mask(CPU_LOG_INT,
11265 "...handling as semihosting call 0x%x\n",
11266 env->regs[0]);
11267 do_common_semihosting(cs);
11268 env->regs[15] += env->thumb ? 2 : 4;
11269 }
11270 }
11271 #endif
11272
11273 /*
11274 * Handle a CPU exception for A and R profile CPUs.
11275 * Do any appropriate logging, handle PSCI calls, and then hand off
11276 * to the AArch64-entry or AArch32-entry function depending on the
11277 * target exception level's register width.
11278 *
11279 * Note: this is used for both TCG (as the do_interrupt tcg op),
11280 * and KVM to re-inject guest debug exceptions, and to
11281 * inject a Synchronous-External-Abort.
11282 */
11283 void arm_cpu_do_interrupt(CPUState *cs)
11284 {
11285 ARMCPU *cpu = ARM_CPU(cs);
11286 CPUARMState *env = &cpu->env;
11287 unsigned int new_el = env->exception.target_el;
11288
11289 assert(!arm_feature(env, ARM_FEATURE_M));
11290
11291 arm_log_exception(cs);
11292 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11293 new_el);
11294 if (qemu_loglevel_mask(CPU_LOG_INT)
11295 && !excp_is_internal(cs->exception_index)) {
11296 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11297 syn_get_ec(env->exception.syndrome),
11298 env->exception.syndrome);
11299 }
11300
11301 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11302 arm_handle_psci_call(cpu);
11303 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11304 return;
11305 }
11306
11307 /*
11308 * Semihosting semantics depend on the register width of the code
11309 * that caused the exception, not the target exception level, so
11310 * must be handled here.
11311 */
11312 #ifdef CONFIG_TCG
11313 if (cs->exception_index == EXCP_SEMIHOST) {
11314 tcg_handle_semihosting(cs);
11315 return;
11316 }
11317 #endif
11318
11319 /*
11320 * Hooks may change global state so BQL should be held, also the
11321 * BQL needs to be held for any modification of
11322 * cs->interrupt_request.
11323 */
11324 g_assert(bql_locked());
11325
11326 arm_call_pre_el_change_hook(cpu);
11327
11328 assert(!excp_is_internal(cs->exception_index));
11329 if (arm_el_is_aa64(env, new_el)) {
11330 arm_cpu_do_interrupt_aarch64(cs);
11331 } else {
11332 arm_cpu_do_interrupt_aarch32(cs);
11333 }
11334
11335 arm_call_el_change_hook(cpu);
11336
11337 if (!kvm_enabled()) {
11338 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11339 }
11340 }
11341 #endif /* !CONFIG_USER_ONLY */
11342
11343 uint64_t arm_sctlr(CPUARMState *env, int el)
11344 {
11345 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11346 if (el == 0) {
11347 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11348 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11349 }
11350 return env->cp15.sctlr_el[el];
11351 }
11352
11353 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11354 {
11355 if (regime_has_2_ranges(mmu_idx)) {
11356 return extract64(tcr, 37, 2);
11357 } else if (regime_is_stage2(mmu_idx)) {
11358 return 0; /* VTCR_EL2 */
11359 } else {
11360 /* Replicate the single TBI bit so we always have 2 bits. */
11361 return extract32(tcr, 20, 1) * 3;
11362 }
11363 }
11364
11365 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11366 {
11367 if (regime_has_2_ranges(mmu_idx)) {
11368 return extract64(tcr, 51, 2);
11369 } else if (regime_is_stage2(mmu_idx)) {
11370 return 0; /* VTCR_EL2 */
11371 } else {
11372 /* Replicate the single TBID bit so we always have 2 bits. */
11373 return extract32(tcr, 29, 1) * 3;
11374 }
11375 }
11376
11377 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11378 {
11379 if (regime_has_2_ranges(mmu_idx)) {
11380 return extract64(tcr, 57, 2);
11381 } else {
11382 /* Replicate the single TCMA bit so we always have 2 bits. */
11383 return extract32(tcr, 30, 1) * 3;
11384 }
11385 }
11386
11387 static ARMGranuleSize tg0_to_gran_size(int tg)
11388 {
11389 switch (tg) {
11390 case 0:
11391 return Gran4K;
11392 case 1:
11393 return Gran64K;
11394 case 2:
11395 return Gran16K;
11396 default:
11397 return GranInvalid;
11398 }
11399 }
11400
11401 static ARMGranuleSize tg1_to_gran_size(int tg)
11402 {
11403 switch (tg) {
11404 case 1:
11405 return Gran16K;
11406 case 2:
11407 return Gran4K;
11408 case 3:
11409 return Gran64K;
11410 default:
11411 return GranInvalid;
11412 }
11413 }
11414
11415 static inline bool have4k(ARMCPU *cpu, bool stage2)
11416 {
11417 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11418 : cpu_isar_feature(aa64_tgran4, cpu);
11419 }
11420
11421 static inline bool have16k(ARMCPU *cpu, bool stage2)
11422 {
11423 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11424 : cpu_isar_feature(aa64_tgran16, cpu);
11425 }
11426
11427 static inline bool have64k(ARMCPU *cpu, bool stage2)
11428 {
11429 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11430 : cpu_isar_feature(aa64_tgran64, cpu);
11431 }
11432
11433 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11434 bool stage2)
11435 {
11436 switch (gran) {
11437 case Gran4K:
11438 if (have4k(cpu, stage2)) {
11439 return gran;
11440 }
11441 break;
11442 case Gran16K:
11443 if (have16k(cpu, stage2)) {
11444 return gran;
11445 }
11446 break;
11447 case Gran64K:
11448 if (have64k(cpu, stage2)) {
11449 return gran;
11450 }
11451 break;
11452 case GranInvalid:
11453 break;
11454 }
11455 /*
11456 * If the guest selects a granule size that isn't implemented,
11457 * the architecture requires that we behave as if it selected one
11458 * that is (with an IMPDEF choice of which one to pick). We choose
11459 * to implement the smallest supported granule size.
11460 */
11461 if (have4k(cpu, stage2)) {
11462 return Gran4K;
11463 }
11464 if (have16k(cpu, stage2)) {
11465 return Gran16K;
11466 }
11467 assert(have64k(cpu, stage2));
11468 return Gran64K;
11469 }
11470
11471 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11472 ARMMMUIdx mmu_idx, bool data,
11473 bool el1_is_aa32)
11474 {
11475 uint64_t tcr = regime_tcr(env, mmu_idx);
11476 bool epd, hpd, tsz_oob, ds, ha, hd;
11477 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11478 ARMGranuleSize gran;
11479 ARMCPU *cpu = env_archcpu(env);
11480 bool stage2 = regime_is_stage2(mmu_idx);
11481
11482 if (!regime_has_2_ranges(mmu_idx)) {
11483 select = 0;
11484 tsz = extract32(tcr, 0, 6);
11485 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11486 if (stage2) {
11487 /* VTCR_EL2 */
11488 hpd = false;
11489 } else {
11490 hpd = extract32(tcr, 24, 1);
11491 }
11492 epd = false;
11493 sh = extract32(tcr, 12, 2);
11494 ps = extract32(tcr, 16, 3);
11495 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11496 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11497 ds = extract64(tcr, 32, 1);
11498 } else {
11499 bool e0pd;
11500
11501 /*
11502 * Bit 55 is always between the two regions, and is canonical for
11503 * determining if address tagging is enabled.
11504 */
11505 select = extract64(va, 55, 1);
11506 if (!select) {
11507 tsz = extract32(tcr, 0, 6);
11508 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11509 epd = extract32(tcr, 7, 1);
11510 sh = extract32(tcr, 12, 2);
11511 hpd = extract64(tcr, 41, 1);
11512 e0pd = extract64(tcr, 55, 1);
11513 } else {
11514 tsz = extract32(tcr, 16, 6);
11515 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11516 epd = extract32(tcr, 23, 1);
11517 sh = extract32(tcr, 28, 2);
11518 hpd = extract64(tcr, 42, 1);
11519 e0pd = extract64(tcr, 56, 1);
11520 }
11521 ps = extract64(tcr, 32, 3);
11522 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11523 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11524 ds = extract64(tcr, 59, 1);
11525
11526 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11527 regime_is_user(env, mmu_idx)) {
11528 epd = true;
11529 }
11530 }
11531
11532 gran = sanitize_gran_size(cpu, gran, stage2);
11533
11534 if (cpu_isar_feature(aa64_st, cpu)) {
11535 max_tsz = 48 - (gran == Gran64K);
11536 } else {
11537 max_tsz = 39;
11538 }
11539
11540 /*
11541 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11542 * adjust the effective value of DS, as documented.
11543 */
11544 min_tsz = 16;
11545 if (gran == Gran64K) {
11546 if (cpu_isar_feature(aa64_lva, cpu)) {
11547 min_tsz = 12;
11548 }
11549 ds = false;
11550 } else if (ds) {
11551 if (regime_is_stage2(mmu_idx)) {
11552 if (gran == Gran16K) {
11553 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11554 } else {
11555 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11556 }
11557 } else {
11558 if (gran == Gran16K) {
11559 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11560 } else {
11561 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11562 }
11563 }
11564 if (ds) {
11565 min_tsz = 12;
11566 }
11567 }
11568
11569 if (stage2 && el1_is_aa32) {
11570 /*
11571 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11572 * are loosened: a configured IPA of 40 bits is permitted even if
11573 * the implemented PA is less than that (and so a 40 bit IPA would
11574 * fault for an AArch64 EL1). See R_DTLMN.
11575 */
11576 min_tsz = MIN(min_tsz, 24);
11577 }
11578
11579 if (tsz > max_tsz) {
11580 tsz = max_tsz;
11581 tsz_oob = true;
11582 } else if (tsz < min_tsz) {
11583 tsz = min_tsz;
11584 tsz_oob = true;
11585 } else {
11586 tsz_oob = false;
11587 }
11588
11589 /* Present TBI as a composite with TBID. */
11590 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11591 if (!data) {
11592 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11593 }
11594 tbi = (tbi >> select) & 1;
11595
11596 return (ARMVAParameters) {
11597 .tsz = tsz,
11598 .ps = ps,
11599 .sh = sh,
11600 .select = select,
11601 .tbi = tbi,
11602 .epd = epd,
11603 .hpd = hpd,
11604 .tsz_oob = tsz_oob,
11605 .ds = ds,
11606 .ha = ha,
11607 .hd = ha && hd,
11608 .gran = gran,
11609 };
11610 }
11611
11612 /*
11613 * Note that signed overflow is undefined in C. The following routines are
11614 * careful to use unsigned types where modulo arithmetic is required.
11615 * Failure to do so _will_ break on newer gcc.
11616 */
11617
11618 /* Signed saturating arithmetic. */
11619
11620 /* Perform 16-bit signed saturating addition. */
11621 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11622 {
11623 uint16_t res;
11624
11625 res = a + b;
11626 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11627 if (a & 0x8000) {
11628 res = 0x8000;
11629 } else {
11630 res = 0x7fff;
11631 }
11632 }
11633 return res;
11634 }
11635
11636 /* Perform 8-bit signed saturating addition. */
11637 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11638 {
11639 uint8_t res;
11640
11641 res = a + b;
11642 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11643 if (a & 0x80) {
11644 res = 0x80;
11645 } else {
11646 res = 0x7f;
11647 }
11648 }
11649 return res;
11650 }
11651
11652 /* Perform 16-bit signed saturating subtraction. */
11653 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11654 {
11655 uint16_t res;
11656
11657 res = a - b;
11658 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11659 if (a & 0x8000) {
11660 res = 0x8000;
11661 } else {
11662 res = 0x7fff;
11663 }
11664 }
11665 return res;
11666 }
11667
11668 /* Perform 8-bit signed saturating subtraction. */
11669 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11670 {
11671 uint8_t res;
11672
11673 res = a - b;
11674 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11675 if (a & 0x80) {
11676 res = 0x80;
11677 } else {
11678 res = 0x7f;
11679 }
11680 }
11681 return res;
11682 }
11683
11684 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11685 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11686 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11687 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11688 #define PFX q
11689
11690 #include "op_addsub.h"
11691
11692 /* Unsigned saturating arithmetic. */
11693 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11694 {
11695 uint16_t res;
11696 res = a + b;
11697 if (res < a) {
11698 res = 0xffff;
11699 }
11700 return res;
11701 }
11702
11703 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11704 {
11705 if (a > b) {
11706 return a - b;
11707 } else {
11708 return 0;
11709 }
11710 }
11711
11712 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11713 {
11714 uint8_t res;
11715 res = a + b;
11716 if (res < a) {
11717 res = 0xff;
11718 }
11719 return res;
11720 }
11721
11722 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11723 {
11724 if (a > b) {
11725 return a - b;
11726 } else {
11727 return 0;
11728 }
11729 }
11730
11731 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11732 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11733 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11734 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11735 #define PFX uq
11736
11737 #include "op_addsub.h"
11738
11739 /* Signed modulo arithmetic. */
11740 #define SARITH16(a, b, n, op) do { \
11741 int32_t sum; \
11742 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11743 RESULT(sum, n, 16); \
11744 if (sum >= 0) \
11745 ge |= 3 << (n * 2); \
11746 } while (0)
11747
11748 #define SARITH8(a, b, n, op) do { \
11749 int32_t sum; \
11750 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11751 RESULT(sum, n, 8); \
11752 if (sum >= 0) \
11753 ge |= 1 << n; \
11754 } while (0)
11755
11756
11757 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11758 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11759 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11760 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11761 #define PFX s
11762 #define ARITH_GE
11763
11764 #include "op_addsub.h"
11765
11766 /* Unsigned modulo arithmetic. */
11767 #define ADD16(a, b, n) do { \
11768 uint32_t sum; \
11769 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11770 RESULT(sum, n, 16); \
11771 if ((sum >> 16) == 1) \
11772 ge |= 3 << (n * 2); \
11773 } while (0)
11774
11775 #define ADD8(a, b, n) do { \
11776 uint32_t sum; \
11777 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11778 RESULT(sum, n, 8); \
11779 if ((sum >> 8) == 1) \
11780 ge |= 1 << n; \
11781 } while (0)
11782
11783 #define SUB16(a, b, n) do { \
11784 uint32_t sum; \
11785 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11786 RESULT(sum, n, 16); \
11787 if ((sum >> 16) == 0) \
11788 ge |= 3 << (n * 2); \
11789 } while (0)
11790
11791 #define SUB8(a, b, n) do { \
11792 uint32_t sum; \
11793 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11794 RESULT(sum, n, 8); \
11795 if ((sum >> 8) == 0) \
11796 ge |= 1 << n; \
11797 } while (0)
11798
11799 #define PFX u
11800 #define ARITH_GE
11801
11802 #include "op_addsub.h"
11803
11804 /* Halved signed arithmetic. */
11805 #define ADD16(a, b, n) \
11806 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11807 #define SUB16(a, b, n) \
11808 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11809 #define ADD8(a, b, n) \
11810 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11811 #define SUB8(a, b, n) \
11812 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11813 #define PFX sh
11814
11815 #include "op_addsub.h"
11816
11817 /* Halved unsigned arithmetic. */
11818 #define ADD16(a, b, n) \
11819 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11820 #define SUB16(a, b, n) \
11821 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11822 #define ADD8(a, b, n) \
11823 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11824 #define SUB8(a, b, n) \
11825 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11826 #define PFX uh
11827
11828 #include "op_addsub.h"
11829
11830 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11831 {
11832 if (a > b) {
11833 return a - b;
11834 } else {
11835 return b - a;
11836 }
11837 }
11838
11839 /* Unsigned sum of absolute byte differences. */
11840 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11841 {
11842 uint32_t sum;
11843 sum = do_usad(a, b);
11844 sum += do_usad(a >> 8, b >> 8);
11845 sum += do_usad(a >> 16, b >> 16);
11846 sum += do_usad(a >> 24, b >> 24);
11847 return sum;
11848 }
11849
11850 /* For ARMv6 SEL instruction. */
11851 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11852 {
11853 uint32_t mask;
11854
11855 mask = 0;
11856 if (flags & 1) {
11857 mask |= 0xff;
11858 }
11859 if (flags & 2) {
11860 mask |= 0xff00;
11861 }
11862 if (flags & 4) {
11863 mask |= 0xff0000;
11864 }
11865 if (flags & 8) {
11866 mask |= 0xff000000;
11867 }
11868 return (a & mask) | (b & ~mask);
11869 }
11870
11871 /*
11872 * CRC helpers.
11873 * The upper bytes of val (above the number specified by 'bytes') must have
11874 * been zeroed out by the caller.
11875 */
11876 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11877 {
11878 uint8_t buf[4];
11879
11880 stl_le_p(buf, val);
11881
11882 /* zlib crc32 converts the accumulator and output to one's complement. */
11883 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11884 }
11885
11886 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11887 {
11888 uint8_t buf[4];
11889
11890 stl_le_p(buf, val);
11891
11892 /* Linux crc32c converts the output to one's complement. */
11893 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11894 }
11895
11896 /*
11897 * Return the exception level to which FP-disabled exceptions should
11898 * be taken, or 0 if FP is enabled.
11899 */
11900 int fp_exception_el(CPUARMState *env, int cur_el)
11901 {
11902 #ifndef CONFIG_USER_ONLY
11903 uint64_t hcr_el2;
11904
11905 /*
11906 * CPACR and the CPTR registers don't exist before v6, so FP is
11907 * always accessible
11908 */
11909 if (!arm_feature(env, ARM_FEATURE_V6)) {
11910 return 0;
11911 }
11912
11913 if (arm_feature(env, ARM_FEATURE_M)) {
11914 /* CPACR can cause a NOCP UsageFault taken to current security state */
11915 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11916 return 1;
11917 }
11918
11919 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11920 if (!extract32(env->v7m.nsacr, 10, 1)) {
11921 /* FP insns cause a NOCP UsageFault taken to Secure */
11922 return 3;
11923 }
11924 }
11925
11926 return 0;
11927 }
11928
11929 hcr_el2 = arm_hcr_el2_eff(env);
11930
11931 /*
11932 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11933 * 0, 2 : trap EL0 and EL1/PL1 accesses
11934 * 1 : trap only EL0 accesses
11935 * 3 : trap no accesses
11936 * This register is ignored if E2H+TGE are both set.
11937 */
11938 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11939 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11940
11941 switch (fpen) {
11942 case 1:
11943 if (cur_el != 0) {
11944 break;
11945 }
11946 /* fall through */
11947 case 0:
11948 case 2:
11949 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11950 if (!arm_el_is_aa64(env, 3)
11951 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11952 return 3;
11953 }
11954 if (cur_el <= 1) {
11955 return 1;
11956 }
11957 break;
11958 }
11959 }
11960
11961 /*
11962 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11963 * to control non-secure access to the FPU. It doesn't have any
11964 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11965 */
11966 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11967 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11968 if (!extract32(env->cp15.nsacr, 10, 1)) {
11969 /* FP insns act as UNDEF */
11970 return cur_el == 2 ? 2 : 1;
11971 }
11972 }
11973
11974 /*
11975 * CPTR_EL2 is present in v7VE or v8, and changes format
11976 * with HCR_EL2.E2H (regardless of TGE).
11977 */
11978 if (cur_el <= 2) {
11979 if (hcr_el2 & HCR_E2H) {
11980 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11981 case 1:
11982 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11983 break;
11984 }
11985 /* fall through */
11986 case 0:
11987 case 2:
11988 return 2;
11989 }
11990 } else if (arm_is_el2_enabled(env)) {
11991 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11992 return 2;
11993 }
11994 }
11995 }
11996
11997 /* CPTR_EL3 : present in v8 */
11998 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11999 /* Trap all FP ops to EL3 */
12000 return 3;
12001 }
12002 #endif
12003 return 0;
12004 }
12005
12006 /* Return the exception level we're running at if this is our mmu_idx */
12007 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12008 {
12009 if (mmu_idx & ARM_MMU_IDX_M) {
12010 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12011 }
12012
12013 switch (mmu_idx) {
12014 case ARMMMUIdx_E10_0:
12015 case ARMMMUIdx_E20_0:
12016 return 0;
12017 case ARMMMUIdx_E10_1:
12018 case ARMMMUIdx_E10_1_PAN:
12019 return 1;
12020 case ARMMMUIdx_E2:
12021 case ARMMMUIdx_E20_2:
12022 case ARMMMUIdx_E20_2_PAN:
12023 return 2;
12024 case ARMMMUIdx_E3:
12025 return 3;
12026 default:
12027 g_assert_not_reached();
12028 }
12029 }
12030
12031 #ifndef CONFIG_TCG
12032 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12033 {
12034 g_assert_not_reached();
12035 }
12036 #endif
12037
12038 static bool arm_pan_enabled(CPUARMState *env)
12039 {
12040 if (is_a64(env)) {
12041 return env->pstate & PSTATE_PAN;
12042 } else {
12043 return env->uncached_cpsr & CPSR_PAN;
12044 }
12045 }
12046
12047 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12048 {
12049 ARMMMUIdx idx;
12050 uint64_t hcr;
12051
12052 if (arm_feature(env, ARM_FEATURE_M)) {
12053 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12054 }
12055
12056 /* See ARM pseudo-function ELIsInHost. */
12057 switch (el) {
12058 case 0:
12059 hcr = arm_hcr_el2_eff(env);
12060 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12061 idx = ARMMMUIdx_E20_0;
12062 } else {
12063 idx = ARMMMUIdx_E10_0;
12064 }
12065 break;
12066 case 1:
12067 if (arm_pan_enabled(env)) {
12068 idx = ARMMMUIdx_E10_1_PAN;
12069 } else {
12070 idx = ARMMMUIdx_E10_1;
12071 }
12072 break;
12073 case 2:
12074 /* Note that TGE does not apply at EL2. */
12075 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12076 if (arm_pan_enabled(env)) {
12077 idx = ARMMMUIdx_E20_2_PAN;
12078 } else {
12079 idx = ARMMMUIdx_E20_2;
12080 }
12081 } else {
12082 idx = ARMMMUIdx_E2;
12083 }
12084 break;
12085 case 3:
12086 return ARMMMUIdx_E3;
12087 default:
12088 g_assert_not_reached();
12089 }
12090
12091 return idx;
12092 }
12093
12094 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12095 {
12096 return arm_mmu_idx_el(env, arm_current_el(env));
12097 }
12098
12099 static bool mve_no_pred(CPUARMState *env)
12100 {
12101 /*
12102 * Return true if there is definitely no predication of MVE
12103 * instructions by VPR or LTPSIZE. (Returning false even if there
12104 * isn't any predication is OK; generated code will just be
12105 * a little worse.)
12106 * If the CPU does not implement MVE then this TB flag is always 0.
12107 *
12108 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12109 * logic in gen_update_fp_context() needs to be updated to match.
12110 *
12111 * We do not include the effect of the ECI bits here -- they are
12112 * tracked in other TB flags. This simplifies the logic for
12113 * "when did we emit code that changes the MVE_NO_PRED TB flag
12114 * and thus need to end the TB?".
12115 */
12116 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12117 return false;
12118 }
12119 if (env->v7m.vpr) {
12120 return false;
12121 }
12122 if (env->v7m.ltpsize < 4) {
12123 return false;
12124 }
12125 return true;
12126 }
12127
12128 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12129 uint64_t *cs_base, uint32_t *pflags)
12130 {
12131 CPUARMTBFlags flags;
12132
12133 assert_hflags_rebuild_correctly(env);
12134 flags = env->hflags;
12135
12136 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12137 *pc = env->pc;
12138 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12139 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12140 }
12141 } else {
12142 *pc = env->regs[15];
12143
12144 if (arm_feature(env, ARM_FEATURE_M)) {
12145 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12146 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12147 != env->v7m.secure) {
12148 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12149 }
12150
12151 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12152 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12153 (env->v7m.secure &&
12154 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12155 /*
12156 * ASPEN is set, but FPCA/SFPA indicate that there is no
12157 * active FP context; we must create a new FP context before
12158 * executing any FP insn.
12159 */
12160 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12161 }
12162
12163 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12164 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12165 DP_TBFLAG_M32(flags, LSPACT, 1);
12166 }
12167
12168 if (mve_no_pred(env)) {
12169 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12170 }
12171 } else {
12172 /*
12173 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12174 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12175 */
12176 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12177 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12178 } else {
12179 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12180 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12181 }
12182 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12183 DP_TBFLAG_A32(flags, VFPEN, 1);
12184 }
12185 }
12186
12187 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12188 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12189 }
12190
12191 /*
12192 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12193 * states defined in the ARM ARM for software singlestep:
12194 * SS_ACTIVE PSTATE.SS State
12195 * 0 x Inactive (the TB flag for SS is always 0)
12196 * 1 0 Active-pending
12197 * 1 1 Active-not-pending
12198 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12199 */
12200 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12201 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12202 }
12203
12204 *pflags = flags.flags;
12205 *cs_base = flags.flags2;
12206 }
12207
12208 #ifdef TARGET_AARCH64
12209 /*
12210 * The manual says that when SVE is enabled and VQ is widened the
12211 * implementation is allowed to zero the previously inaccessible
12212 * portion of the registers. The corollary to that is that when
12213 * SVE is enabled and VQ is narrowed we are also allowed to zero
12214 * the now inaccessible portion of the registers.
12215 *
12216 * The intent of this is that no predicate bit beyond VQ is ever set.
12217 * Which means that some operations on predicate registers themselves
12218 * may operate on full uint64_t or even unrolled across the maximum
12219 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12220 * may well be cheaper than conditionals to restrict the operation
12221 * to the relevant portion of a uint16_t[16].
12222 */
12223 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12224 {
12225 int i, j;
12226 uint64_t pmask;
12227
12228 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12229 assert(vq <= env_archcpu(env)->sve_max_vq);
12230
12231 /* Zap the high bits of the zregs. */
12232 for (i = 0; i < 32; i++) {
12233 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12234 }
12235
12236 /* Zap the high bits of the pregs and ffr. */
12237 pmask = 0;
12238 if (vq & 3) {
12239 pmask = ~(-1ULL << (16 * (vq & 3)));
12240 }
12241 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12242 for (i = 0; i < 17; ++i) {
12243 env->vfp.pregs[i].p[j] &= pmask;
12244 }
12245 pmask = 0;
12246 }
12247 }
12248
12249 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12250 {
12251 int exc_el;
12252
12253 if (sm) {
12254 exc_el = sme_exception_el(env, el);
12255 } else {
12256 exc_el = sve_exception_el(env, el);
12257 }
12258 if (exc_el) {
12259 return 0; /* disabled */
12260 }
12261 return sve_vqm1_for_el_sm(env, el, sm);
12262 }
12263
12264 /*
12265 * Notice a change in SVE vector size when changing EL.
12266 */
12267 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12268 int new_el, bool el0_a64)
12269 {
12270 ARMCPU *cpu = env_archcpu(env);
12271 int old_len, new_len;
12272 bool old_a64, new_a64, sm;
12273
12274 /* Nothing to do if no SVE. */
12275 if (!cpu_isar_feature(aa64_sve, cpu)) {
12276 return;
12277 }
12278
12279 /* Nothing to do if FP is disabled in either EL. */
12280 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12281 return;
12282 }
12283
12284 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12285 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12286
12287 /*
12288 * Both AArch64.TakeException and AArch64.ExceptionReturn
12289 * invoke ResetSVEState when taking an exception from, or
12290 * returning to, AArch32 state when PSTATE.SM is enabled.
12291 */
12292 sm = FIELD_EX64(env->svcr, SVCR, SM);
12293 if (old_a64 != new_a64 && sm) {
12294 arm_reset_sve_state(env);
12295 return;
12296 }
12297
12298 /*
12299 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12300 * at ELx, or not available because the EL is in AArch32 state, then
12301 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12302 * has an effective value of 0".
12303 *
12304 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12305 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12306 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12307 * we already have the correct register contents when encountering the
12308 * vq0->vq0 transition between EL0->EL1.
12309 */
12310 old_len = new_len = 0;
12311 if (old_a64) {
12312 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12313 }
12314 if (new_a64) {
12315 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12316 }
12317
12318 /* When changing vector length, clear inaccessible state. */
12319 if (new_len < old_len) {
12320 aarch64_sve_narrow_vq(env, new_len + 1);
12321 }
12322 }
12323 #endif
12324
12325 #ifndef CONFIG_USER_ONLY
12326 ARMSecuritySpace arm_security_space(CPUARMState *env)
12327 {
12328 if (arm_feature(env, ARM_FEATURE_M)) {
12329 return arm_secure_to_space(env->v7m.secure);
12330 }
12331
12332 /*
12333 * If EL3 is not supported then the secure state is implementation
12334 * defined, in which case QEMU defaults to non-secure.
12335 */
12336 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12337 return ARMSS_NonSecure;
12338 }
12339
12340 /* Check for AArch64 EL3 or AArch32 Mon. */
12341 if (is_a64(env)) {
12342 if (extract32(env->pstate, 2, 2) == 3) {
12343 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12344 return ARMSS_Root;
12345 } else {
12346 return ARMSS_Secure;
12347 }
12348 }
12349 } else {
12350 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12351 return ARMSS_Secure;
12352 }
12353 }
12354
12355 return arm_security_space_below_el3(env);
12356 }
12357
12358 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12359 {
12360 assert(!arm_feature(env, ARM_FEATURE_M));
12361
12362 /*
12363 * If EL3 is not supported then the secure state is implementation
12364 * defined, in which case QEMU defaults to non-secure.
12365 */
12366 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12367 return ARMSS_NonSecure;
12368 }
12369
12370 /*
12371 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12372 * Ignoring NSE when !NS retains consistency without having to
12373 * modify other predicates.
12374 */
12375 if (!(env->cp15.scr_el3 & SCR_NS)) {
12376 return ARMSS_Secure;
12377 } else if (env->cp15.scr_el3 & SCR_NSE) {
12378 return ARMSS_Realm;
12379 } else {
12380 return ARMSS_NonSecure;
12381 }
12382 }
12383 #endif /* !CONFIG_USER_ONLY */