]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Merge remote-tracking branch 'remotes/xtensa/tags/20180122-xtensa' into staging
[mirror_qemu.git] / target / arm / helper.c
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24 unsigned int attrs:8; /* as in the MAIR register encoding */
25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
27
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31 target_ulong *page_size,
32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
33
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35 MMUAccessType access_type, ARMMMUIdx mmu_idx,
36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37 target_ulong *page_size_ptr,
38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42 bool ns;
43 bool nsc;
44 uint8_t sregion;
45 bool srvalid;
46 uint8_t iregion;
47 bool irvalid;
48 } V8M_SAttributes;
49
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52 V8M_SAttributes *sattrs);
53
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD 0x8
56 #define PMCRC 0x4
57 #define PMCRE 0x1
58 #endif
59
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 {
62 int nregs;
63
64 /* VFP data registers are always little-endian. */
65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66 if (reg < nregs) {
67 stfq_le_p(buf, env->vfp.regs[reg]);
68 return 8;
69 }
70 if (arm_feature(env, ARM_FEATURE_NEON)) {
71 /* Aliases for Q regs. */
72 nregs += 16;
73 if (reg < nregs) {
74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76 return 16;
77 }
78 }
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83 }
84 return 0;
85 }
86
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89 int nregs;
90
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92 if (reg < nregs) {
93 env->vfp.regs[reg] = ldfq_le_p(buf);
94 return 8;
95 }
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
97 nregs += 16;
98 if (reg < nregs) {
99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101 return 16;
102 }
103 }
104 switch (reg - nregs) {
105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
108 }
109 return 0;
110 }
111
112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113 {
114 switch (reg) {
115 case 0 ... 31:
116 /* 128 bit FP register */
117 stfq_le_p(buf, env->vfp.regs[reg * 2]);
118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119 return 16;
120 case 32:
121 /* FPSR */
122 stl_p(buf, vfp_get_fpsr(env));
123 return 4;
124 case 33:
125 /* FPCR */
126 stl_p(buf, vfp_get_fpcr(env));
127 return 4;
128 default:
129 return 0;
130 }
131 }
132
133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
134 {
135 switch (reg) {
136 case 0 ... 31:
137 /* 128 bit FP register */
138 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140 return 16;
141 case 32:
142 /* FPSR */
143 vfp_set_fpsr(env, ldl_p(buf));
144 return 4;
145 case 33:
146 /* FPCR */
147 vfp_set_fpcr(env, ldl_p(buf));
148 return 4;
149 default:
150 return 0;
151 }
152 }
153
154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
155 {
156 assert(ri->fieldoffset);
157 if (cpreg_field_is_64bit(ri)) {
158 return CPREG_FIELD64(env, ri);
159 } else {
160 return CPREG_FIELD32(env, ri);
161 }
162 }
163
164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165 uint64_t value)
166 {
167 assert(ri->fieldoffset);
168 if (cpreg_field_is_64bit(ri)) {
169 CPREG_FIELD64(env, ri) = value;
170 } else {
171 CPREG_FIELD32(env, ri) = value;
172 }
173 }
174
175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
176 {
177 return (char *)env + ri->fieldoffset;
178 }
179
180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
181 {
182 /* Raw read of a coprocessor register (as needed for migration, etc). */
183 if (ri->type & ARM_CP_CONST) {
184 return ri->resetvalue;
185 } else if (ri->raw_readfn) {
186 return ri->raw_readfn(env, ri);
187 } else if (ri->readfn) {
188 return ri->readfn(env, ri);
189 } else {
190 return raw_read(env, ri);
191 }
192 }
193
194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
195 uint64_t v)
196 {
197 /* Raw write of a coprocessor register (as needed for migration, etc).
198 * Note that constant registers are treated as write-ignored; the
199 * caller should check for success by whether a readback gives the
200 * value written.
201 */
202 if (ri->type & ARM_CP_CONST) {
203 return;
204 } else if (ri->raw_writefn) {
205 ri->raw_writefn(env, ri, v);
206 } else if (ri->writefn) {
207 ri->writefn(env, ri, v);
208 } else {
209 raw_write(env, ri, v);
210 }
211 }
212
213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
214 {
215 /* Return true if the regdef would cause an assertion if you called
216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217 * program bug for it not to have the NO_RAW flag).
218 * NB that returning false here doesn't necessarily mean that calling
219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220 * read/write access functions which are safe for raw use" from "has
221 * read/write access functions which have side effects but has forgotten
222 * to provide raw access functions".
223 * The tests here line up with the conditions in read/write_raw_cp_reg()
224 * and assertions in raw_read()/raw_write().
225 */
226 if ((ri->type & ARM_CP_CONST) ||
227 ri->fieldoffset ||
228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229 return false;
230 }
231 return true;
232 }
233
234 bool write_cpustate_to_list(ARMCPU *cpu)
235 {
236 /* Write the coprocessor state from cpu->env to the (index,value) list. */
237 int i;
238 bool ok = true;
239
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 const ARMCPRegInfo *ri;
243
244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
245 if (!ri) {
246 ok = false;
247 continue;
248 }
249 if (ri->type & ARM_CP_NO_RAW) {
250 continue;
251 }
252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
253 }
254 return ok;
255 }
256
257 bool write_list_to_cpustate(ARMCPU *cpu)
258 {
259 int i;
260 bool ok = true;
261
262 for (i = 0; i < cpu->cpreg_array_len; i++) {
263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264 uint64_t v = cpu->cpreg_values[i];
265 const ARMCPRegInfo *ri;
266
267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268 if (!ri) {
269 ok = false;
270 continue;
271 }
272 if (ri->type & ARM_CP_NO_RAW) {
273 continue;
274 }
275 /* Write value and confirm it reads back as written
276 * (to catch read-only registers and partially read-only
277 * registers where the incoming migration value doesn't match)
278 */
279 write_raw_cp_reg(&cpu->env, ri, v);
280 if (read_raw_cp_reg(&cpu->env, ri) != v) {
281 ok = false;
282 }
283 }
284 return ok;
285 }
286
287 static void add_cpreg_to_list(gpointer key, gpointer opaque)
288 {
289 ARMCPU *cpu = opaque;
290 uint64_t regidx;
291 const ARMCPRegInfo *ri;
292
293 regidx = *(uint32_t *)key;
294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
295
296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298 /* The value array need not be initialized at this point */
299 cpu->cpreg_array_len++;
300 }
301 }
302
303 static void count_cpreg(gpointer key, gpointer opaque)
304 {
305 ARMCPU *cpu = opaque;
306 uint64_t regidx;
307 const ARMCPRegInfo *ri;
308
309 regidx = *(uint32_t *)key;
310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
311
312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
313 cpu->cpreg_array_len++;
314 }
315 }
316
317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
318 {
319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
321
322 if (aidx > bidx) {
323 return 1;
324 }
325 if (aidx < bidx) {
326 return -1;
327 }
328 return 0;
329 }
330
331 void init_cpreg_list(ARMCPU *cpu)
332 {
333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334 * Note that we require cpreg_tuples[] to be sorted by key ID.
335 */
336 GList *keys;
337 int arraylen;
338
339 keys = g_hash_table_get_keys(cpu->cp_regs);
340 keys = g_list_sort(keys, cpreg_key_compare);
341
342 cpu->cpreg_array_len = 0;
343
344 g_list_foreach(keys, count_cpreg, cpu);
345
346 arraylen = cpu->cpreg_array_len;
347 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348 cpu->cpreg_values = g_new(uint64_t, arraylen);
349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352 cpu->cpreg_array_len = 0;
353
354 g_list_foreach(keys, add_cpreg_to_list, cpu);
355
356 assert(cpu->cpreg_array_len == arraylen);
357
358 g_list_free(keys);
359 }
360
361 /*
362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
364 *
365 * access_el3_aa32ns: Used to check AArch32 register views.
366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
367 */
368 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
369 const ARMCPRegInfo *ri,
370 bool isread)
371 {
372 bool secure = arm_is_secure_below_el3(env);
373
374 assert(!arm_el_is_aa64(env, 3));
375 if (secure) {
376 return CP_ACCESS_TRAP_UNCATEGORIZED;
377 }
378 return CP_ACCESS_OK;
379 }
380
381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
382 const ARMCPRegInfo *ri,
383 bool isread)
384 {
385 if (!arm_el_is_aa64(env, 3)) {
386 return access_el3_aa32ns(env, ri, isread);
387 }
388 return CP_ACCESS_OK;
389 }
390
391 /* Some secure-only AArch32 registers trap to EL3 if used from
392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394 * We assume that the .access field is set to PL1_RW.
395 */
396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
397 const ARMCPRegInfo *ri,
398 bool isread)
399 {
400 if (arm_current_el(env) == 3) {
401 return CP_ACCESS_OK;
402 }
403 if (arm_is_secure_below_el3(env)) {
404 return CP_ACCESS_TRAP_EL3;
405 }
406 /* This will be EL1 NS and EL2 NS, which just UNDEF */
407 return CP_ACCESS_TRAP_UNCATEGORIZED;
408 }
409
410 /* Check for traps to "powerdown debug" registers, which are controlled
411 * by MDCR.TDOSA
412 */
413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414 bool isread)
415 {
416 int el = arm_current_el(env);
417
418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419 && !arm_is_secure_below_el3(env)) {
420 return CP_ACCESS_TRAP_EL2;
421 }
422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423 return CP_ACCESS_TRAP_EL3;
424 }
425 return CP_ACCESS_OK;
426 }
427
428 /* Check for traps to "debug ROM" registers, which are controlled
429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
430 */
431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432 bool isread)
433 {
434 int el = arm_current_el(env);
435
436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437 && !arm_is_secure_below_el3(env)) {
438 return CP_ACCESS_TRAP_EL2;
439 }
440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441 return CP_ACCESS_TRAP_EL3;
442 }
443 return CP_ACCESS_OK;
444 }
445
446 /* Check for traps to general debug registers, which are controlled
447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
448 */
449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450 bool isread)
451 {
452 int el = arm_current_el(env);
453
454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455 && !arm_is_secure_below_el3(env)) {
456 return CP_ACCESS_TRAP_EL2;
457 }
458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459 return CP_ACCESS_TRAP_EL3;
460 }
461 return CP_ACCESS_OK;
462 }
463
464 /* Check for traps to performance monitor registers, which are controlled
465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
466 */
467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468 bool isread)
469 {
470 int el = arm_current_el(env);
471
472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473 && !arm_is_secure_below_el3(env)) {
474 return CP_ACCESS_TRAP_EL2;
475 }
476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477 return CP_ACCESS_TRAP_EL3;
478 }
479 return CP_ACCESS_OK;
480 }
481
482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
483 {
484 ARMCPU *cpu = arm_env_get_cpu(env);
485
486 raw_write(env, ri, value);
487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
488 }
489
490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
491 {
492 ARMCPU *cpu = arm_env_get_cpu(env);
493
494 if (raw_read(env, ri) != value) {
495 /* Unlike real hardware the qemu TLB uses virtual addresses,
496 * not modified virtual addresses, so this causes a TLB flush.
497 */
498 tlb_flush(CPU(cpu));
499 raw_write(env, ri, value);
500 }
501 }
502
503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504 uint64_t value)
505 {
506 ARMCPU *cpu = arm_env_get_cpu(env);
507
508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
509 && !extended_addresses_enabled(env)) {
510 /* For VMSA (when not using the LPAE long descriptor page table
511 * format) this register includes the ASID, so do a TLB flush.
512 * For PMSA it is purely a process ID and no action is needed.
513 */
514 tlb_flush(CPU(cpu));
515 }
516 raw_write(env, ri, value);
517 }
518
519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520 uint64_t value)
521 {
522 /* Invalidate all (TLBIALL) */
523 ARMCPU *cpu = arm_env_get_cpu(env);
524
525 tlb_flush(CPU(cpu));
526 }
527
528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529 uint64_t value)
530 {
531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
532 ARMCPU *cpu = arm_env_get_cpu(env);
533
534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 }
536
537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538 uint64_t value)
539 {
540 /* Invalidate by ASID (TLBIASID) */
541 ARMCPU *cpu = arm_env_get_cpu(env);
542
543 tlb_flush(CPU(cpu));
544 }
545
546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
548 {
549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
550 ARMCPU *cpu = arm_env_get_cpu(env);
551
552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
553 }
554
555 /* IS variants of TLB operations must affect all cores */
556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = ENV_GET_CPU(env);
560
561 tlb_flush_all_cpus_synced(cs);
562 }
563
564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = ENV_GET_CPU(env);
568
569 tlb_flush_all_cpus_synced(cs);
570 }
571
572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574 {
575 CPUState *cs = ENV_GET_CPU(env);
576
577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
578 }
579
580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
582 {
583 CPUState *cs = ENV_GET_CPU(env);
584
585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
586 }
587
588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589 uint64_t value)
590 {
591 CPUState *cs = ENV_GET_CPU(env);
592
593 tlb_flush_by_mmuidx(cs,
594 ARMMMUIdxBit_S12NSE1 |
595 ARMMMUIdxBit_S12NSE0 |
596 ARMMMUIdxBit_S2NS);
597 }
598
599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
601 {
602 CPUState *cs = ENV_GET_CPU(env);
603
604 tlb_flush_by_mmuidx_all_cpus_synced(cs,
605 ARMMMUIdxBit_S12NSE1 |
606 ARMMMUIdxBit_S12NSE0 |
607 ARMMMUIdxBit_S2NS);
608 }
609
610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611 uint64_t value)
612 {
613 /* Invalidate by IPA. This has to invalidate any structures that
614 * contain only stage 2 translation information, but does not need
615 * to apply to structures that contain combined stage 1 and stage 2
616 * translation information.
617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
618 */
619 CPUState *cs = ENV_GET_CPU(env);
620 uint64_t pageaddr;
621
622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623 return;
624 }
625
626 pageaddr = sextract64(value << 12, 0, 40);
627
628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
629 }
630
631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633 {
634 CPUState *cs = ENV_GET_CPU(env);
635 uint64_t pageaddr;
636
637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638 return;
639 }
640
641 pageaddr = sextract64(value << 12, 0, 40);
642
643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
644 ARMMMUIdxBit_S2NS);
645 }
646
647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 uint64_t value)
649 {
650 CPUState *cs = ENV_GET_CPU(env);
651
652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
653 }
654
655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657 {
658 CPUState *cs = ENV_GET_CPU(env);
659
660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
661 }
662
663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664 uint64_t value)
665 {
666 CPUState *cs = ENV_GET_CPU(env);
667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668
669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
670 }
671
672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 uint64_t value)
674 {
675 CPUState *cs = ENV_GET_CPU(env);
676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677
678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
679 ARMMMUIdxBit_S1E2);
680 }
681
682 static const ARMCPRegInfo cp_reginfo[] = {
683 /* Define the secure and non-secure FCSE identifier CP registers
684 * separately because there is no secure bank in V8 (no _EL3). This allows
685 * the secure register to be properly reset and migrated. There is also no
686 * v8 EL1 version of the register so the non-secure instance stands alone.
687 */
688 { .name = "FCSEIDR(NS)",
689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693 { .name = "FCSEIDR(S)",
694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
698 /* Define the secure and non-secure context identifier CP registers
699 * separately because there is no secure bank in V8 (no _EL3). This allows
700 * the secure register to be properly reset and migrated. In the
701 * non-secure case, the 32-bit register will have reset and migration
702 * disabled during registration as it is handled by the 64-bit instance.
703 */
704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
714 REGINFO_SENTINEL
715 };
716
717 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718 /* NB: Some of these registers exist in v8 but with more precise
719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
720 */
721 /* MMU Domain access control / MPU write buffer control */
722 { .name = "DACR",
723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724 .access = PL1_RW, .resetvalue = 0,
725 .writefn = dacr_write, .raw_writefn = raw_write,
726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729 * For v6 and v5, these mappings are overly broad.
730 */
731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
739 /* Cache maintenance ops; some of this space may be overridden later. */
740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
743 REGINFO_SENTINEL
744 };
745
746 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747 /* Not all pre-v6 cores implemented this WFI, so this is slightly
748 * over-broad.
749 */
750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751 .access = PL1_W, .type = ARM_CP_WFI },
752 REGINFO_SENTINEL
753 };
754
755 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757 * is UNPREDICTABLE; we choose to NOP as most implementations do).
758 */
759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760 .access = PL1_W, .type = ARM_CP_WFI },
761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763 * OMAPCP will override this space.
764 */
765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767 .resetvalue = 0 },
768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770 .resetvalue = 0 },
771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
774 .resetvalue = 0 },
775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776 * implementing it as RAZ means the "debug architecture version" bits
777 * will read as a reserved value, which should cause Linux to not try
778 * to use the debug hardware.
779 */
780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
782 /* MMU TLB control. Note that the wildcarding means we cover not just
783 * the unified TLB ops but also the dside/iside/inner-shareable variants.
784 */
785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
787 .type = ARM_CP_NO_RAW },
788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
790 .type = ARM_CP_NO_RAW },
791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
793 .type = ARM_CP_NO_RAW },
794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
796 .type = ARM_CP_NO_RAW },
797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
801 REGINFO_SENTINEL
802 };
803
804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805 uint64_t value)
806 {
807 uint32_t mask = 0;
808
809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810 if (!arm_feature(env, ARM_FEATURE_V8)) {
811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
814 */
815 if (arm_feature(env, ARM_FEATURE_VFP)) {
816 /* VFP coprocessor: cp10 & cp11 [23:20] */
817 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
818
819 if (!arm_feature(env, ARM_FEATURE_NEON)) {
820 /* ASEDIS [31] bit is RAO/WI */
821 value |= (1 << 31);
822 }
823
824 /* VFPv3 and upwards with NEON implement 32 double precision
825 * registers (D0-D31).
826 */
827 if (!arm_feature(env, ARM_FEATURE_NEON) ||
828 !arm_feature(env, ARM_FEATURE_VFP3)) {
829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830 value |= (1 << 30);
831 }
832 }
833 value &= mask;
834 }
835 env->cp15.cpacr_el1 = value;
836 }
837
838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839 bool isread)
840 {
841 if (arm_feature(env, ARM_FEATURE_V8)) {
842 /* Check if CPACR accesses are to be trapped to EL2 */
843 if (arm_current_el(env) == 1 &&
844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845 return CP_ACCESS_TRAP_EL2;
846 /* Check if CPACR accesses are to be trapped to EL3 */
847 } else if (arm_current_el(env) < 3 &&
848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849 return CP_ACCESS_TRAP_EL3;
850 }
851 }
852
853 return CP_ACCESS_OK;
854 }
855
856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857 bool isread)
858 {
859 /* Check if CPTR accesses are set to trap to EL3 */
860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861 return CP_ACCESS_TRAP_EL3;
862 }
863
864 return CP_ACCESS_OK;
865 }
866
867 static const ARMCPRegInfo v6_cp_reginfo[] = {
868 /* prefetch by MVA in v6, NOP in v7 */
869 { .name = "MVA_prefetch",
870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871 .access = PL1_W, .type = ARM_CP_NOP },
872 /* We need to break the TB after ISB to execute self-modifying code
873 * correctly and also to take any pending interrupts immediately.
874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
875 */
876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
879 .access = PL0_W, .type = ARM_CP_NOP },
880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
881 .access = PL0_W, .type = ARM_CP_NOP },
882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
883 .access = PL1_RW,
884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885 offsetof(CPUARMState, cp15.ifar_ns) },
886 .resetvalue = 0, },
887 /* Watchpoint Fault Address Register : should actually only be present
888 * for 1136, 1176, 11MPCore.
889 */
890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
895 .resetvalue = 0, .writefn = cpacr_write },
896 REGINFO_SENTINEL
897 };
898
899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900 bool isread)
901 {
902 /* Performance monitor registers user accessibility is controlled
903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904 * trapping to EL2 or EL3 for other accesses.
905 */
906 int el = arm_current_el(env);
907
908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
909 return CP_ACCESS_TRAP;
910 }
911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912 && !arm_is_secure_below_el3(env)) {
913 return CP_ACCESS_TRAP_EL2;
914 }
915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916 return CP_ACCESS_TRAP_EL3;
917 }
918
919 return CP_ACCESS_OK;
920 }
921
922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923 const ARMCPRegInfo *ri,
924 bool isread)
925 {
926 /* ER: event counter read trap control */
927 if (arm_feature(env, ARM_FEATURE_V8)
928 && arm_current_el(env) == 0
929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930 && isread) {
931 return CP_ACCESS_OK;
932 }
933
934 return pmreg_access(env, ri, isread);
935 }
936
937 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938 const ARMCPRegInfo *ri,
939 bool isread)
940 {
941 /* SW: software increment write trap control */
942 if (arm_feature(env, ARM_FEATURE_V8)
943 && arm_current_el(env) == 0
944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945 && !isread) {
946 return CP_ACCESS_OK;
947 }
948
949 return pmreg_access(env, ri, isread);
950 }
951
952 #ifndef CONFIG_USER_ONLY
953
954 static CPAccessResult pmreg_access_selr(CPUARMState *env,
955 const ARMCPRegInfo *ri,
956 bool isread)
957 {
958 /* ER: event counter read trap control */
959 if (arm_feature(env, ARM_FEATURE_V8)
960 && arm_current_el(env) == 0
961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962 return CP_ACCESS_OK;
963 }
964
965 return pmreg_access(env, ri, isread);
966 }
967
968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969 const ARMCPRegInfo *ri,
970 bool isread)
971 {
972 /* CR: cycle counter read trap control */
973 if (arm_feature(env, ARM_FEATURE_V8)
974 && arm_current_el(env) == 0
975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976 && isread) {
977 return CP_ACCESS_OK;
978 }
979
980 return pmreg_access(env, ri, isread);
981 }
982
983 static inline bool arm_ccnt_enabled(CPUARMState *env)
984 {
985 /* This does not support checking PMCCFILTR_EL0 register */
986
987 if (!(env->cp15.c9_pmcr & PMCRE)) {
988 return false;
989 }
990
991 return true;
992 }
993
994 void pmccntr_sync(CPUARMState *env)
995 {
996 uint64_t temp_ticks;
997
998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1000
1001 if (env->cp15.c9_pmcr & PMCRD) {
1002 /* Increment once every 64 processor clock cycles */
1003 temp_ticks /= 64;
1004 }
1005
1006 if (arm_ccnt_enabled(env)) {
1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1008 }
1009 }
1010
1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012 uint64_t value)
1013 {
1014 pmccntr_sync(env);
1015
1016 if (value & PMCRC) {
1017 /* The counter has been reset */
1018 env->cp15.c15_ccnt = 0;
1019 }
1020
1021 /* only the DP, X, D and E bits are writable */
1022 env->cp15.c9_pmcr &= ~0x39;
1023 env->cp15.c9_pmcr |= (value & 0x39);
1024
1025 pmccntr_sync(env);
1026 }
1027
1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1029 {
1030 uint64_t total_ticks;
1031
1032 if (!arm_ccnt_enabled(env)) {
1033 /* Counter is disabled, do not change value */
1034 return env->cp15.c15_ccnt;
1035 }
1036
1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1039
1040 if (env->cp15.c9_pmcr & PMCRD) {
1041 /* Increment once every 64 processor clock cycles */
1042 total_ticks /= 64;
1043 }
1044 return total_ticks - env->cp15.c15_ccnt;
1045 }
1046
1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048 uint64_t value)
1049 {
1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053 * accessed.
1054 */
1055 env->cp15.c9_pmselr = value & 0x1f;
1056 }
1057
1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059 uint64_t value)
1060 {
1061 uint64_t total_ticks;
1062
1063 if (!arm_ccnt_enabled(env)) {
1064 /* Counter is disabled, set the absolute value */
1065 env->cp15.c15_ccnt = value;
1066 return;
1067 }
1068
1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1071
1072 if (env->cp15.c9_pmcr & PMCRD) {
1073 /* Increment once every 64 processor clock cycles */
1074 total_ticks /= 64;
1075 }
1076 env->cp15.c15_ccnt = total_ticks - value;
1077 }
1078
1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080 uint64_t value)
1081 {
1082 uint64_t cur_val = pmccntr_read(env, NULL);
1083
1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1085 }
1086
1087 #else /* CONFIG_USER_ONLY */
1088
1089 void pmccntr_sync(CPUARMState *env)
1090 {
1091 }
1092
1093 #endif
1094
1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1097 {
1098 pmccntr_sync(env);
1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100 pmccntr_sync(env);
1101 }
1102
1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1105 {
1106 value &= (1 << 31);
1107 env->cp15.c9_pmcnten |= value;
1108 }
1109
1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111 uint64_t value)
1112 {
1113 value &= (1 << 31);
1114 env->cp15.c9_pmcnten &= ~value;
1115 }
1116
1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118 uint64_t value)
1119 {
1120 env->cp15.c9_pmovsr &= ~value;
1121 }
1122
1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
1125 {
1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127 * PMSELR value is equal to or greater than the number of implemented
1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1129 */
1130 if (env->cp15.c9_pmselr == 0x1f) {
1131 pmccfiltr_write(env, ri, value);
1132 }
1133 }
1134
1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136 {
1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1139 */
1140 if (env->cp15.c9_pmselr == 0x1f) {
1141 return env->cp15.pmccfiltr_el0;
1142 } else {
1143 return 0;
1144 }
1145 }
1146
1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148 uint64_t value)
1149 {
1150 if (arm_feature(env, ARM_FEATURE_V8)) {
1151 env->cp15.c9_pmuserenr = value & 0xf;
1152 } else {
1153 env->cp15.c9_pmuserenr = value & 1;
1154 }
1155 }
1156
1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
1159 {
1160 /* We have no event counters so only the C bit can be changed */
1161 value &= (1 << 31);
1162 env->cp15.c9_pminten |= value;
1163 }
1164
1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
1167 {
1168 value &= (1 << 31);
1169 env->cp15.c9_pminten &= ~value;
1170 }
1171
1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173 uint64_t value)
1174 {
1175 /* Note that even though the AArch64 view of this register has bits
1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177 * architectural requirements for bits which are RES0 only in some
1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1180 */
1181 raw_write(env, ri, value & ~0x1FULL);
1182 }
1183
1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1185 {
1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187 * For bits that vary between AArch32/64, code needs to check the
1188 * current execution mode before directly using the feature bit.
1189 */
1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1191
1192 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193 valid_mask &= ~SCR_HCE;
1194
1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196 * supported if EL2 exists. The bit is UNK/SBZP when
1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198 * when EL2 is unavailable.
1199 * On ARMv8, this bit is always available.
1200 */
1201 if (arm_feature(env, ARM_FEATURE_V7) &&
1202 !arm_feature(env, ARM_FEATURE_V8)) {
1203 valid_mask &= ~SCR_SMD;
1204 }
1205 }
1206
1207 /* Clear all-context RES0 bits. */
1208 value &= valid_mask;
1209 raw_write(env, ri, value);
1210 }
1211
1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 {
1214 ARMCPU *cpu = arm_env_get_cpu(env);
1215
1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217 * bank
1218 */
1219 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220 ri->secure & ARM_CP_SECSTATE_S);
1221
1222 return cpu->ccsidr[index];
1223 }
1224
1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226 uint64_t value)
1227 {
1228 raw_write(env, ri, value & 0xf);
1229 }
1230
1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232 {
1233 CPUState *cs = ENV_GET_CPU(env);
1234 uint64_t ret = 0;
1235
1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237 ret |= CPSR_I;
1238 }
1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240 ret |= CPSR_F;
1241 }
1242 /* External aborts are not possible in QEMU so A bit is always clear */
1243 return ret;
1244 }
1245
1246 static const ARMCPRegInfo v7_cp_reginfo[] = {
1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249 .access = PL1_W, .type = ARM_CP_NOP },
1250 /* Performance monitors are implementation defined in v7,
1251 * but with an ARM recommended set of registers, which we
1252 * follow (although we don't actually implement any counters)
1253 *
1254 * Performance registers fall into three categories:
1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1260 */
1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1262 .access = PL0_RW, .type = ARM_CP_ALIAS,
1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1264 .writefn = pmcntenset_write,
1265 .accessfn = pmreg_access,
1266 .raw_writefn = raw_write },
1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269 .access = PL0_RW, .accessfn = pmreg_access,
1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1273 .access = PL0_RW,
1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1275 .accessfn = pmreg_access,
1276 .writefn = pmcntenclr_write,
1277 .type = ARM_CP_ALIAS },
1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280 .access = PL0_RW, .accessfn = pmreg_access,
1281 .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283 .writefn = pmcntenclr_write },
1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1286 .accessfn = pmreg_access,
1287 .writefn = pmovsr_write,
1288 .raw_writefn = raw_write },
1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291 .access = PL0_RW, .accessfn = pmreg_access,
1292 .type = ARM_CP_ALIAS,
1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294 .writefn = pmovsr_write,
1295 .raw_writefn = raw_write },
1296 /* Unimplemented so WI. */
1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1299 #ifndef CONFIG_USER_ONLY
1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301 .access = PL0_RW, .type = ARM_CP_ALIAS,
1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1304 .raw_writefn = raw_write},
1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1307 .access = PL0_RW, .accessfn = pmreg_access_selr,
1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309 .writefn = pmselr_write, .raw_writefn = raw_write, },
1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1312 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1313 .accessfn = pmreg_access_ccntr },
1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1317 .type = ARM_CP_IO,
1318 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1319 #endif
1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1322 .writefn = pmccfiltr_write,
1323 .access = PL0_RW, .accessfn = pmreg_access,
1324 .type = ARM_CP_IO,
1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326 .resetvalue = 0, },
1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1334 /* Unimplemented, RAZ/WI. */
1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1337 .accessfn = pmreg_access_xevcntr },
1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341 .resetvalue = 0,
1342 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347 .resetvalue = 0,
1348 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1350 .access = PL1_RW, .accessfn = access_tpm,
1351 .type = ARM_CP_ALIAS,
1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1353 .resetvalue = 0,
1354 .writefn = pmintenset_write, .raw_writefn = raw_write },
1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357 .access = PL1_RW, .accessfn = access_tpm,
1358 .type = ARM_CP_IO,
1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360 .writefn = pmintenset_write, .raw_writefn = raw_write,
1361 .resetvalue = 0x0 },
1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1365 .writefn = pmintenclr_write, },
1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370 .writefn = pmintenclr_write },
1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378 offsetof(CPUARMState, cp15.csselr_ns) } },
1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380 * just RAZ for all cores:
1381 */
1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1385 /* Auxiliary fault status registers: these also are IMPDEF, and we
1386 * choose to RAZ/WI for all cores.
1387 */
1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1394 /* MAIR can just read-as-written because we don't implement caches
1395 * and so don't need to care about memory attributes.
1396 */
1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1400 .resetvalue = 0 },
1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404 .resetvalue = 0 },
1405 /* For non-long-descriptor page tables these are PRRR and NMRR;
1406 * regardless they still act as reads-as-written for QEMU.
1407 */
1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1409 * allows them to assign the correct fieldoffset based on the endianness
1410 * handled in the field definitions.
1411 */
1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415 offsetof(CPUARMState, cp15.mair0_ns) },
1416 .resetfn = arm_cp_reset_ignore },
1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420 offsetof(CPUARMState, cp15.mair1_ns) },
1421 .resetfn = arm_cp_reset_ignore },
1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1425 /* 32 bit ITLB invalidates */
1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1432 /* 32 bit DTLB invalidates */
1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1439 /* 32 bit TLB invalidates */
1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1448 REGINFO_SENTINEL
1449 };
1450
1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452 /* 32 bit TLB invalidates, Inner Shareable */
1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1458 .type = ARM_CP_NO_RAW, .access = PL1_W,
1459 .writefn = tlbiasid_is_write },
1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1461 .type = ARM_CP_NO_RAW, .access = PL1_W,
1462 .writefn = tlbimvaa_is_write },
1463 REGINFO_SENTINEL
1464 };
1465
1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467 uint64_t value)
1468 {
1469 value &= 1;
1470 env->teecr = value;
1471 }
1472
1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474 bool isread)
1475 {
1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1477 return CP_ACCESS_TRAP;
1478 }
1479 return CP_ACCESS_OK;
1480 }
1481
1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485 .resetvalue = 0,
1486 .writefn = teecr_write },
1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1489 .accessfn = teehbr_access, .resetvalue = 0 },
1490 REGINFO_SENTINEL
1491 };
1492
1493 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496 .access = PL0_RW,
1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499 .access = PL0_RW,
1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1502 .resetfn = arm_cp_reset_ignore },
1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505 .access = PL0_R|PL1_W,
1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507 .resetvalue = 0},
1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509 .access = PL0_R|PL1_W,
1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1512 .resetfn = arm_cp_reset_ignore },
1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1515 .access = PL1_RW,
1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518 .access = PL1_RW,
1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521 .resetvalue = 0 },
1522 REGINFO_SENTINEL
1523 };
1524
1525 #ifndef CONFIG_USER_ONLY
1526
1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528 bool isread)
1529 {
1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531 * Writable only at the highest implemented exception level.
1532 */
1533 int el = arm_current_el(env);
1534
1535 switch (el) {
1536 case 0:
1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538 return CP_ACCESS_TRAP;
1539 }
1540 break;
1541 case 1:
1542 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543 arm_is_secure_below_el3(env)) {
1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545 return CP_ACCESS_TRAP_UNCATEGORIZED;
1546 }
1547 break;
1548 case 2:
1549 case 3:
1550 break;
1551 }
1552
1553 if (!isread && el < arm_highest_el(env)) {
1554 return CP_ACCESS_TRAP_UNCATEGORIZED;
1555 }
1556
1557 return CP_ACCESS_OK;
1558 }
1559
1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561 bool isread)
1562 {
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1567 if (cur_el == 0 &&
1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569 return CP_ACCESS_TRAP;
1570 }
1571
1572 if (arm_feature(env, ARM_FEATURE_EL2) &&
1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575 return CP_ACCESS_TRAP_EL2;
1576 }
1577 return CP_ACCESS_OK;
1578 }
1579
1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581 bool isread)
1582 {
1583 unsigned int cur_el = arm_current_el(env);
1584 bool secure = arm_is_secure(env);
1585
1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587 * EL0[PV]TEN is zero.
1588 */
1589 if (cur_el == 0 &&
1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591 return CP_ACCESS_TRAP;
1592 }
1593
1594 if (arm_feature(env, ARM_FEATURE_EL2) &&
1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597 return CP_ACCESS_TRAP_EL2;
1598 }
1599 return CP_ACCESS_OK;
1600 }
1601
1602 static CPAccessResult gt_pct_access(CPUARMState *env,
1603 const ARMCPRegInfo *ri,
1604 bool isread)
1605 {
1606 return gt_counter_access(env, GTIMER_PHYS, isread);
1607 }
1608
1609 static CPAccessResult gt_vct_access(CPUARMState *env,
1610 const ARMCPRegInfo *ri,
1611 bool isread)
1612 {
1613 return gt_counter_access(env, GTIMER_VIRT, isread);
1614 }
1615
1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617 bool isread)
1618 {
1619 return gt_timer_access(env, GTIMER_PHYS, isread);
1620 }
1621
1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623 bool isread)
1624 {
1625 return gt_timer_access(env, GTIMER_VIRT, isread);
1626 }
1627
1628 static CPAccessResult gt_stimer_access(CPUARMState *env,
1629 const ARMCPRegInfo *ri,
1630 bool isread)
1631 {
1632 /* The AArch64 register view of the secure physical timer is
1633 * always accessible from EL3, and configurably accessible from
1634 * Secure EL1.
1635 */
1636 switch (arm_current_el(env)) {
1637 case 1:
1638 if (!arm_is_secure(env)) {
1639 return CP_ACCESS_TRAP;
1640 }
1641 if (!(env->cp15.scr_el3 & SCR_ST)) {
1642 return CP_ACCESS_TRAP_EL3;
1643 }
1644 return CP_ACCESS_OK;
1645 case 0:
1646 case 2:
1647 return CP_ACCESS_TRAP;
1648 case 3:
1649 return CP_ACCESS_OK;
1650 default:
1651 g_assert_not_reached();
1652 }
1653 }
1654
1655 static uint64_t gt_get_countervalue(CPUARMState *env)
1656 {
1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1658 }
1659
1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1661 {
1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1663
1664 if (gt->ctl & 1) {
1665 /* Timer enabled: calculate and set current ISTATUS, irq, and
1666 * reset timer to when ISTATUS next has to change
1667 */
1668 uint64_t offset = timeridx == GTIMER_VIRT ?
1669 cpu->env.cp15.cntvoff_el2 : 0;
1670 uint64_t count = gt_get_countervalue(&cpu->env);
1671 /* Note that this must be unsigned 64 bit arithmetic: */
1672 int istatus = count - offset >= gt->cval;
1673 uint64_t nexttick;
1674 int irqstate;
1675
1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1677
1678 irqstate = (istatus && !(gt->ctl & 2));
1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1680
1681 if (istatus) {
1682 /* Next transition is when count rolls back over to zero */
1683 nexttick = UINT64_MAX;
1684 } else {
1685 /* Next transition is when we hit cval */
1686 nexttick = gt->cval + offset;
1687 }
1688 /* Note that the desired next expiry time might be beyond the
1689 * signed-64-bit range of a QEMUTimer -- in this case we just
1690 * set the timer for as far in the future as possible. When the
1691 * timer expires we will reset the timer for any remaining period.
1692 */
1693 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694 nexttick = INT64_MAX / GTIMER_SCALE;
1695 }
1696 timer_mod(cpu->gt_timer[timeridx], nexttick);
1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1698 } else {
1699 /* Timer disabled: ISTATUS and timer output always clear */
1700 gt->ctl &= ~4;
1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1702 timer_del(cpu->gt_timer[timeridx]);
1703 trace_arm_gt_recalc_disabled(timeridx);
1704 }
1705 }
1706
1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708 int timeridx)
1709 {
1710 ARMCPU *cpu = arm_env_get_cpu(env);
1711
1712 timer_del(cpu->gt_timer[timeridx]);
1713 }
1714
1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 {
1717 return gt_get_countervalue(env);
1718 }
1719
1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 {
1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1723 }
1724
1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726 int timeridx,
1727 uint64_t value)
1728 {
1729 trace_arm_gt_cval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = value;
1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1732 }
1733
1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735 int timeridx)
1736 {
1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1738
1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1740 (gt_get_countervalue(env) - offset));
1741 }
1742
1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744 int timeridx,
1745 uint64_t value)
1746 {
1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748
1749 trace_arm_gt_tval_write(timeridx, value);
1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1751 sextract64(value, 0, 32);
1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1753 }
1754
1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 int timeridx,
1757 uint64_t value)
1758 {
1759 ARMCPU *cpu = arm_env_get_cpu(env);
1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1761
1762 trace_arm_gt_ctl_write(timeridx, value);
1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1764 if ((oldval ^ value) & 1) {
1765 /* Enable toggled */
1766 gt_recalc_timer(cpu, timeridx);
1767 } else if ((oldval ^ value) & 2) {
1768 /* IMASK toggled: don't need to recalculate,
1769 * just set the interrupt line based on ISTATUS
1770 */
1771 int irqstate = (oldval & 4) && !(value & 2);
1772
1773 trace_arm_gt_imask_toggle(timeridx, irqstate);
1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1775 }
1776 }
1777
1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780 gt_timer_reset(env, ri, GTIMER_PHYS);
1781 }
1782
1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1785 {
1786 gt_cval_write(env, ri, GTIMER_PHYS, value);
1787 }
1788
1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791 return gt_tval_read(env, ri, GTIMER_PHYS);
1792 }
1793
1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1796 {
1797 gt_tval_write(env, ri, GTIMER_PHYS, value);
1798 }
1799
1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801 uint64_t value)
1802 {
1803 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1804 }
1805
1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1807 {
1808 gt_timer_reset(env, ri, GTIMER_VIRT);
1809 }
1810
1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812 uint64_t value)
1813 {
1814 gt_cval_write(env, ri, GTIMER_VIRT, value);
1815 }
1816
1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819 return gt_tval_read(env, ri, GTIMER_VIRT);
1820 }
1821
1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1824 {
1825 gt_tval_write(env, ri, GTIMER_VIRT, value);
1826 }
1827
1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829 uint64_t value)
1830 {
1831 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1832 }
1833
1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835 uint64_t value)
1836 {
1837 ARMCPU *cpu = arm_env_get_cpu(env);
1838
1839 trace_arm_gt_cntvoff_write(value);
1840 raw_write(env, ri, value);
1841 gt_recalc_timer(cpu, GTIMER_VIRT);
1842 }
1843
1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1845 {
1846 gt_timer_reset(env, ri, GTIMER_HYP);
1847 }
1848
1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1851 {
1852 gt_cval_write(env, ri, GTIMER_HYP, value);
1853 }
1854
1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1856 {
1857 return gt_tval_read(env, ri, GTIMER_HYP);
1858 }
1859
1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1862 {
1863 gt_tval_write(env, ri, GTIMER_HYP, value);
1864 }
1865
1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867 uint64_t value)
1868 {
1869 gt_ctl_write(env, ri, GTIMER_HYP, value);
1870 }
1871
1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1873 {
1874 gt_timer_reset(env, ri, GTIMER_SEC);
1875 }
1876
1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878 uint64_t value)
1879 {
1880 gt_cval_write(env, ri, GTIMER_SEC, value);
1881 }
1882
1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1884 {
1885 return gt_tval_read(env, ri, GTIMER_SEC);
1886 }
1887
1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889 uint64_t value)
1890 {
1891 gt_tval_write(env, ri, GTIMER_SEC, value);
1892 }
1893
1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895 uint64_t value)
1896 {
1897 gt_ctl_write(env, ri, GTIMER_SEC, value);
1898 }
1899
1900 void arm_gt_ptimer_cb(void *opaque)
1901 {
1902 ARMCPU *cpu = opaque;
1903
1904 gt_recalc_timer(cpu, GTIMER_PHYS);
1905 }
1906
1907 void arm_gt_vtimer_cb(void *opaque)
1908 {
1909 ARMCPU *cpu = opaque;
1910
1911 gt_recalc_timer(cpu, GTIMER_VIRT);
1912 }
1913
1914 void arm_gt_htimer_cb(void *opaque)
1915 {
1916 ARMCPU *cpu = opaque;
1917
1918 gt_recalc_timer(cpu, GTIMER_HYP);
1919 }
1920
1921 void arm_gt_stimer_cb(void *opaque)
1922 {
1923 ARMCPU *cpu = opaque;
1924
1925 gt_recalc_timer(cpu, GTIMER_SEC);
1926 }
1927
1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929 /* Note that CNTFRQ is purely reads-as-written for the benefit
1930 * of software; writing it doesn't actually change the timer frequency.
1931 * Our reset value matches the fixed frequency we implement the timer at.
1932 */
1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1934 .type = ARM_CP_ALIAS,
1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1937 },
1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1943 },
1944 /* overall control: mostly access permissions */
1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1947 .access = PL1_RW,
1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949 .resetvalue = 0,
1950 },
1951 /* per-timer control */
1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1953 .secure = ARM_CP_SECSTATE_NS,
1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1955 .accessfn = gt_ptimer_access,
1956 .fieldoffset = offsetoflow32(CPUARMState,
1957 cp15.c14_timer[GTIMER_PHYS].ctl),
1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1959 },
1960 { .name = "CNTP_CTL(S)",
1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962 .secure = ARM_CP_SECSTATE_S,
1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964 .accessfn = gt_ptimer_access,
1965 .fieldoffset = offsetoflow32(CPUARMState,
1966 cp15.c14_timer[GTIMER_SEC].ctl),
1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1968 },
1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1972 .accessfn = gt_ptimer_access,
1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974 .resetvalue = 0,
1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1976 },
1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1979 .accessfn = gt_vtimer_access,
1980 .fieldoffset = offsetoflow32(CPUARMState,
1981 cp15.c14_timer[GTIMER_VIRT].ctl),
1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1983 },
1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1987 .accessfn = gt_vtimer_access,
1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989 .resetvalue = 0,
1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1991 },
1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1994 .secure = ARM_CP_SECSTATE_NS,
1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1996 .accessfn = gt_ptimer_access,
1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1998 },
1999 { .name = "CNTP_TVAL(S)",
2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001 .secure = ARM_CP_SECSTATE_S,
2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003 .accessfn = gt_ptimer_access,
2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2005 },
2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2011 },
2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014 .accessfn = gt_vtimer_access,
2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2016 },
2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2022 },
2023 /* The counter itself */
2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026 .accessfn = gt_pct_access,
2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2028 },
2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2033 },
2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036 .accessfn = gt_vct_access,
2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2038 },
2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2043 },
2044 /* Comparison value, indicating when the timer goes off */
2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2046 .secure = ARM_CP_SECSTATE_NS,
2047 .access = PL1_RW | PL0_R,
2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2050 .accessfn = gt_ptimer_access,
2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2052 },
2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054 .secure = ARM_CP_SECSTATE_S,
2055 .access = PL1_RW | PL0_R,
2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058 .accessfn = gt_ptimer_access,
2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2060 },
2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063 .access = PL1_RW | PL0_R,
2064 .type = ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2066 .resetvalue = 0, .accessfn = gt_ptimer_access,
2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2068 },
2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070 .access = PL1_RW | PL0_R,
2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2073 .accessfn = gt_vtimer_access,
2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2075 },
2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078 .access = PL1_RW | PL0_R,
2079 .type = ARM_CP_IO,
2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081 .resetvalue = 0, .accessfn = gt_vtimer_access,
2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2083 },
2084 /* Secure timer -- this is actually restricted to only EL3
2085 * and configurably Secure-EL1 via the accessfn.
2086 */
2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090 .accessfn = gt_stimer_access,
2091 .readfn = gt_sec_tval_read,
2092 .writefn = gt_sec_tval_write,
2093 .resetfn = gt_sec_timer_reset,
2094 },
2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097 .type = ARM_CP_IO, .access = PL1_RW,
2098 .accessfn = gt_stimer_access,
2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100 .resetvalue = 0,
2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2102 },
2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105 .type = ARM_CP_IO, .access = PL1_RW,
2106 .accessfn = gt_stimer_access,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2109 },
2110 REGINFO_SENTINEL
2111 };
2112
2113 #else
2114 /* In user-mode none of the generic timer registers are accessible,
2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2116 * so instead just don't register any of them.
2117 */
2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2119 REGINFO_SENTINEL
2120 };
2121
2122 #endif
2123
2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2125 {
2126 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2127 raw_write(env, ri, value);
2128 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2129 raw_write(env, ri, value & 0xfffff6ff);
2130 } else {
2131 raw_write(env, ri, value & 0xfffff1ff);
2132 }
2133 }
2134
2135 #ifndef CONFIG_USER_ONLY
2136 /* get_phys_addr() isn't present for user-mode-only targets */
2137
2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139 bool isread)
2140 {
2141 if (ri->opc2 & 4) {
2142 /* The ATS12NSO* operations must trap to EL3 if executed in
2143 * Secure EL1 (which can only happen if EL3 is AArch64).
2144 * They are simply UNDEF if executed from NS EL1.
2145 * They function normally from EL2 or EL3.
2146 */
2147 if (arm_current_el(env) == 1) {
2148 if (arm_is_secure_below_el3(env)) {
2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2150 }
2151 return CP_ACCESS_TRAP_UNCATEGORIZED;
2152 }
2153 }
2154 return CP_ACCESS_OK;
2155 }
2156
2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2158 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2159 {
2160 hwaddr phys_addr;
2161 target_ulong page_size;
2162 int prot;
2163 bool ret;
2164 uint64_t par64;
2165 bool format64 = false;
2166 MemTxAttrs attrs = {};
2167 ARMMMUFaultInfo fi = {};
2168 ARMCacheAttrs cacheattrs = {};
2169
2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171 &prot, &page_size, &fi, &cacheattrs);
2172
2173 if (is_a64(env)) {
2174 format64 = true;
2175 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2176 /*
2177 * ATS1Cxx:
2178 * * TTBCR.EAE determines whether the result is returned using the
2179 * 32-bit or the 64-bit PAR format
2180 * * Instructions executed in Hyp mode always use the 64bit format
2181 *
2182 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2183 * * The Non-secure TTBCR.EAE bit is set to 1
2184 * * The implementation includes EL2, and the value of HCR.VM is 1
2185 *
2186 * ATS1Hx always uses the 64bit format (not supported yet).
2187 */
2188 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2189
2190 if (arm_feature(env, ARM_FEATURE_EL2)) {
2191 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2192 format64 |= env->cp15.hcr_el2 & HCR_VM;
2193 } else {
2194 format64 |= arm_current_el(env) == 2;
2195 }
2196 }
2197 }
2198
2199 if (format64) {
2200 /* Create a 64-bit PAR */
2201 par64 = (1 << 11); /* LPAE bit always set */
2202 if (!ret) {
2203 par64 |= phys_addr & ~0xfffULL;
2204 if (!attrs.secure) {
2205 par64 |= (1 << 9); /* NS */
2206 }
2207 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2208 par64 |= cacheattrs.shareability << 7; /* SH */
2209 } else {
2210 uint32_t fsr = arm_fi_to_lfsc(&fi);
2211
2212 par64 |= 1; /* F */
2213 par64 |= (fsr & 0x3f) << 1; /* FS */
2214 /* Note that S2WLK and FSTAGE are always zero, because we don't
2215 * implement virtualization and therefore there can't be a stage 2
2216 * fault.
2217 */
2218 }
2219 } else {
2220 /* fsr is a DFSR/IFSR value for the short descriptor
2221 * translation table format (with WnR always clear).
2222 * Convert it to a 32-bit PAR.
2223 */
2224 if (!ret) {
2225 /* We do not set any attribute bits in the PAR */
2226 if (page_size == (1 << 24)
2227 && arm_feature(env, ARM_FEATURE_V7)) {
2228 par64 = (phys_addr & 0xff000000) | (1 << 1);
2229 } else {
2230 par64 = phys_addr & 0xfffff000;
2231 }
2232 if (!attrs.secure) {
2233 par64 |= (1 << 9); /* NS */
2234 }
2235 } else {
2236 uint32_t fsr = arm_fi_to_sfsc(&fi);
2237
2238 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2239 ((fsr & 0xf) << 1) | 1;
2240 }
2241 }
2242 return par64;
2243 }
2244
2245 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2246 {
2247 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2248 uint64_t par64;
2249 ARMMMUIdx mmu_idx;
2250 int el = arm_current_el(env);
2251 bool secure = arm_is_secure_below_el3(env);
2252
2253 switch (ri->opc2 & 6) {
2254 case 0:
2255 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2256 switch (el) {
2257 case 3:
2258 mmu_idx = ARMMMUIdx_S1E3;
2259 break;
2260 case 2:
2261 mmu_idx = ARMMMUIdx_S1NSE1;
2262 break;
2263 case 1:
2264 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2265 break;
2266 default:
2267 g_assert_not_reached();
2268 }
2269 break;
2270 case 2:
2271 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2272 switch (el) {
2273 case 3:
2274 mmu_idx = ARMMMUIdx_S1SE0;
2275 break;
2276 case 2:
2277 mmu_idx = ARMMMUIdx_S1NSE0;
2278 break;
2279 case 1:
2280 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2281 break;
2282 default:
2283 g_assert_not_reached();
2284 }
2285 break;
2286 case 4:
2287 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2288 mmu_idx = ARMMMUIdx_S12NSE1;
2289 break;
2290 case 6:
2291 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2292 mmu_idx = ARMMMUIdx_S12NSE0;
2293 break;
2294 default:
2295 g_assert_not_reached();
2296 }
2297
2298 par64 = do_ats_write(env, value, access_type, mmu_idx);
2299
2300 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2301 }
2302
2303 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2304 uint64_t value)
2305 {
2306 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2307 uint64_t par64;
2308
2309 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2310
2311 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2312 }
2313
2314 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2315 bool isread)
2316 {
2317 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2318 return CP_ACCESS_TRAP;
2319 }
2320 return CP_ACCESS_OK;
2321 }
2322
2323 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2324 uint64_t value)
2325 {
2326 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2327 ARMMMUIdx mmu_idx;
2328 int secure = arm_is_secure_below_el3(env);
2329
2330 switch (ri->opc2 & 6) {
2331 case 0:
2332 switch (ri->opc1) {
2333 case 0: /* AT S1E1R, AT S1E1W */
2334 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2335 break;
2336 case 4: /* AT S1E2R, AT S1E2W */
2337 mmu_idx = ARMMMUIdx_S1E2;
2338 break;
2339 case 6: /* AT S1E3R, AT S1E3W */
2340 mmu_idx = ARMMMUIdx_S1E3;
2341 break;
2342 default:
2343 g_assert_not_reached();
2344 }
2345 break;
2346 case 2: /* AT S1E0R, AT S1E0W */
2347 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2348 break;
2349 case 4: /* AT S12E1R, AT S12E1W */
2350 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2351 break;
2352 case 6: /* AT S12E0R, AT S12E0W */
2353 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2354 break;
2355 default:
2356 g_assert_not_reached();
2357 }
2358
2359 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2360 }
2361 #endif
2362
2363 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2364 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2365 .access = PL1_RW, .resetvalue = 0,
2366 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2367 offsetoflow32(CPUARMState, cp15.par_ns) },
2368 .writefn = par_write },
2369 #ifndef CONFIG_USER_ONLY
2370 /* This underdecoding is safe because the reginfo is NO_RAW. */
2371 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2372 .access = PL1_W, .accessfn = ats_access,
2373 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2374 #endif
2375 REGINFO_SENTINEL
2376 };
2377
2378 /* Return basic MPU access permission bits. */
2379 static uint32_t simple_mpu_ap_bits(uint32_t val)
2380 {
2381 uint32_t ret;
2382 uint32_t mask;
2383 int i;
2384 ret = 0;
2385 mask = 3;
2386 for (i = 0; i < 16; i += 2) {
2387 ret |= (val >> i) & mask;
2388 mask <<= 2;
2389 }
2390 return ret;
2391 }
2392
2393 /* Pad basic MPU access permission bits to extended format. */
2394 static uint32_t extended_mpu_ap_bits(uint32_t val)
2395 {
2396 uint32_t ret;
2397 uint32_t mask;
2398 int i;
2399 ret = 0;
2400 mask = 3;
2401 for (i = 0; i < 16; i += 2) {
2402 ret |= (val & mask) << i;
2403 mask <<= 2;
2404 }
2405 return ret;
2406 }
2407
2408 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2409 uint64_t value)
2410 {
2411 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2412 }
2413
2414 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2415 {
2416 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2417 }
2418
2419 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420 uint64_t value)
2421 {
2422 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2423 }
2424
2425 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2426 {
2427 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2428 }
2429
2430 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2431 {
2432 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2433
2434 if (!u32p) {
2435 return 0;
2436 }
2437
2438 u32p += env->pmsav7.rnr[M_REG_NS];
2439 return *u32p;
2440 }
2441
2442 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443 uint64_t value)
2444 {
2445 ARMCPU *cpu = arm_env_get_cpu(env);
2446 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2447
2448 if (!u32p) {
2449 return;
2450 }
2451
2452 u32p += env->pmsav7.rnr[M_REG_NS];
2453 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2454 *u32p = value;
2455 }
2456
2457 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2458 uint64_t value)
2459 {
2460 ARMCPU *cpu = arm_env_get_cpu(env);
2461 uint32_t nrgs = cpu->pmsav7_dregion;
2462
2463 if (value >= nrgs) {
2464 qemu_log_mask(LOG_GUEST_ERROR,
2465 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2466 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2467 return;
2468 }
2469
2470 raw_write(env, ri, value);
2471 }
2472
2473 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2474 /* Reset for all these registers is handled in arm_cpu_reset(),
2475 * because the PMSAv7 is also used by M-profile CPUs, which do
2476 * not register cpregs but still need the state to be reset.
2477 */
2478 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2479 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2480 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2481 .readfn = pmsav7_read, .writefn = pmsav7_write,
2482 .resetfn = arm_cp_reset_ignore },
2483 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2484 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2485 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2486 .readfn = pmsav7_read, .writefn = pmsav7_write,
2487 .resetfn = arm_cp_reset_ignore },
2488 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2489 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2490 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2491 .readfn = pmsav7_read, .writefn = pmsav7_write,
2492 .resetfn = arm_cp_reset_ignore },
2493 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2494 .access = PL1_RW,
2495 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2496 .writefn = pmsav7_rgnr_write,
2497 .resetfn = arm_cp_reset_ignore },
2498 REGINFO_SENTINEL
2499 };
2500
2501 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2502 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2503 .access = PL1_RW, .type = ARM_CP_ALIAS,
2504 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2505 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2506 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2507 .access = PL1_RW, .type = ARM_CP_ALIAS,
2508 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2509 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2510 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2511 .access = PL1_RW,
2512 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2513 .resetvalue = 0, },
2514 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2515 .access = PL1_RW,
2516 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2517 .resetvalue = 0, },
2518 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2519 .access = PL1_RW,
2520 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2521 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2522 .access = PL1_RW,
2523 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2524 /* Protection region base and size registers */
2525 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2526 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2527 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2528 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2529 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2530 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2531 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2532 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2533 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2534 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2535 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2536 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2537 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2538 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2539 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2540 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2541 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2542 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2543 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2544 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2545 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2546 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2547 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2548 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2549 REGINFO_SENTINEL
2550 };
2551
2552 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2553 uint64_t value)
2554 {
2555 TCR *tcr = raw_ptr(env, ri);
2556 int maskshift = extract32(value, 0, 3);
2557
2558 if (!arm_feature(env, ARM_FEATURE_V8)) {
2559 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2560 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2561 * using Long-desciptor translation table format */
2562 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2563 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2564 /* In an implementation that includes the Security Extensions
2565 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2566 * Short-descriptor translation table format.
2567 */
2568 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2569 } else {
2570 value &= TTBCR_N;
2571 }
2572 }
2573
2574 /* Update the masks corresponding to the TCR bank being written
2575 * Note that we always calculate mask and base_mask, but
2576 * they are only used for short-descriptor tables (ie if EAE is 0);
2577 * for long-descriptor tables the TCR fields are used differently
2578 * and the mask and base_mask values are meaningless.
2579 */
2580 tcr->raw_tcr = value;
2581 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2582 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2583 }
2584
2585 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586 uint64_t value)
2587 {
2588 ARMCPU *cpu = arm_env_get_cpu(env);
2589
2590 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2591 /* With LPAE the TTBCR could result in a change of ASID
2592 * via the TTBCR.A1 bit, so do a TLB flush.
2593 */
2594 tlb_flush(CPU(cpu));
2595 }
2596 vmsa_ttbcr_raw_write(env, ri, value);
2597 }
2598
2599 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2600 {
2601 TCR *tcr = raw_ptr(env, ri);
2602
2603 /* Reset both the TCR as well as the masks corresponding to the bank of
2604 * the TCR being reset.
2605 */
2606 tcr->raw_tcr = 0;
2607 tcr->mask = 0;
2608 tcr->base_mask = 0xffffc000u;
2609 }
2610
2611 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2612 uint64_t value)
2613 {
2614 ARMCPU *cpu = arm_env_get_cpu(env);
2615 TCR *tcr = raw_ptr(env, ri);
2616
2617 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2618 tlb_flush(CPU(cpu));
2619 tcr->raw_tcr = value;
2620 }
2621
2622 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623 uint64_t value)
2624 {
2625 /* 64 bit accesses to the TTBRs can change the ASID and so we
2626 * must flush the TLB.
2627 */
2628 if (cpreg_field_is_64bit(ri)) {
2629 ARMCPU *cpu = arm_env_get_cpu(env);
2630
2631 tlb_flush(CPU(cpu));
2632 }
2633 raw_write(env, ri, value);
2634 }
2635
2636 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637 uint64_t value)
2638 {
2639 ARMCPU *cpu = arm_env_get_cpu(env);
2640 CPUState *cs = CPU(cpu);
2641
2642 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2643 if (raw_read(env, ri) != value) {
2644 tlb_flush_by_mmuidx(cs,
2645 ARMMMUIdxBit_S12NSE1 |
2646 ARMMMUIdxBit_S12NSE0 |
2647 ARMMMUIdxBit_S2NS);
2648 raw_write(env, ri, value);
2649 }
2650 }
2651
2652 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2653 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2654 .access = PL1_RW, .type = ARM_CP_ALIAS,
2655 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2656 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2657 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2658 .access = PL1_RW, .resetvalue = 0,
2659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2660 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2661 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2662 .access = PL1_RW, .resetvalue = 0,
2663 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2664 offsetof(CPUARMState, cp15.dfar_ns) } },
2665 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2666 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2667 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2668 .resetvalue = 0, },
2669 REGINFO_SENTINEL
2670 };
2671
2672 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2673 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2674 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2675 .access = PL1_RW,
2676 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2677 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2678 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2679 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2680 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2681 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2682 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2684 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2685 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2686 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2687 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2688 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2689 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2690 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2691 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2692 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2693 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2694 .raw_writefn = vmsa_ttbcr_raw_write,
2695 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2696 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2697 REGINFO_SENTINEL
2698 };
2699
2700 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2701 uint64_t value)
2702 {
2703 env->cp15.c15_ticonfig = value & 0xe7;
2704 /* The OS_TYPE bit in this register changes the reported CPUID! */
2705 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2706 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2707 }
2708
2709 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2710 uint64_t value)
2711 {
2712 env->cp15.c15_threadid = value & 0xffff;
2713 }
2714
2715 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716 uint64_t value)
2717 {
2718 /* Wait-for-interrupt (deprecated) */
2719 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2720 }
2721
2722 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 uint64_t value)
2724 {
2725 /* On OMAP there are registers indicating the max/min index of dcache lines
2726 * containing a dirty line; cache flush operations have to reset these.
2727 */
2728 env->cp15.c15_i_max = 0x000;
2729 env->cp15.c15_i_min = 0xff0;
2730 }
2731
2732 static const ARMCPRegInfo omap_cp_reginfo[] = {
2733 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2735 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2736 .resetvalue = 0, },
2737 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2738 .access = PL1_RW, .type = ARM_CP_NOP },
2739 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2740 .access = PL1_RW,
2741 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2742 .writefn = omap_ticonfig_write },
2743 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2744 .access = PL1_RW,
2745 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2746 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2747 .access = PL1_RW, .resetvalue = 0xff0,
2748 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2749 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2750 .access = PL1_RW,
2751 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2752 .writefn = omap_threadid_write },
2753 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2754 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2755 .type = ARM_CP_NO_RAW,
2756 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2757 /* TODO: Peripheral port remap register:
2758 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2759 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2760 * when MMU is off.
2761 */
2762 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2763 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2764 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2765 .writefn = omap_cachemaint_write },
2766 { .name = "C9", .cp = 15, .crn = 9,
2767 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2768 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2769 REGINFO_SENTINEL
2770 };
2771
2772 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2773 uint64_t value)
2774 {
2775 env->cp15.c15_cpar = value & 0x3fff;
2776 }
2777
2778 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2779 { .name = "XSCALE_CPAR",
2780 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2781 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2782 .writefn = xscale_cpar_write, },
2783 { .name = "XSCALE_AUXCR",
2784 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2785 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2786 .resetvalue = 0, },
2787 /* XScale specific cache-lockdown: since we have no cache we NOP these
2788 * and hope the guest does not really rely on cache behaviour.
2789 */
2790 { .name = "XSCALE_LOCK_ICACHE_LINE",
2791 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2792 .access = PL1_W, .type = ARM_CP_NOP },
2793 { .name = "XSCALE_UNLOCK_ICACHE",
2794 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2795 .access = PL1_W, .type = ARM_CP_NOP },
2796 { .name = "XSCALE_DCACHE_LOCK",
2797 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2798 .access = PL1_RW, .type = ARM_CP_NOP },
2799 { .name = "XSCALE_UNLOCK_DCACHE",
2800 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2801 .access = PL1_W, .type = ARM_CP_NOP },
2802 REGINFO_SENTINEL
2803 };
2804
2805 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2806 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2807 * implementation of this implementation-defined space.
2808 * Ideally this should eventually disappear in favour of actually
2809 * implementing the correct behaviour for all cores.
2810 */
2811 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2812 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2813 .access = PL1_RW,
2814 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2815 .resetvalue = 0 },
2816 REGINFO_SENTINEL
2817 };
2818
2819 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2820 /* Cache status: RAZ because we have no cache so it's always clean */
2821 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2822 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2823 .resetvalue = 0 },
2824 REGINFO_SENTINEL
2825 };
2826
2827 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2828 /* We never have a a block transfer operation in progress */
2829 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2830 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2831 .resetvalue = 0 },
2832 /* The cache ops themselves: these all NOP for QEMU */
2833 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2834 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2835 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2836 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2837 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2838 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2839 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2840 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2841 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2842 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2843 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2844 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2845 REGINFO_SENTINEL
2846 };
2847
2848 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2849 /* The cache test-and-clean instructions always return (1 << 30)
2850 * to indicate that there are no dirty cache lines.
2851 */
2852 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2853 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2854 .resetvalue = (1 << 30) },
2855 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2856 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2857 .resetvalue = (1 << 30) },
2858 REGINFO_SENTINEL
2859 };
2860
2861 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2862 /* Ignore ReadBuffer accesses */
2863 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2864 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2865 .access = PL1_RW, .resetvalue = 0,
2866 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2867 REGINFO_SENTINEL
2868 };
2869
2870 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2871 {
2872 ARMCPU *cpu = arm_env_get_cpu(env);
2873 unsigned int cur_el = arm_current_el(env);
2874 bool secure = arm_is_secure(env);
2875
2876 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2877 return env->cp15.vpidr_el2;
2878 }
2879 return raw_read(env, ri);
2880 }
2881
2882 static uint64_t mpidr_read_val(CPUARMState *env)
2883 {
2884 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2885 uint64_t mpidr = cpu->mp_affinity;
2886
2887 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2888 mpidr |= (1U << 31);
2889 /* Cores which are uniprocessor (non-coherent)
2890 * but still implement the MP extensions set
2891 * bit 30. (For instance, Cortex-R5).
2892 */
2893 if (cpu->mp_is_up) {
2894 mpidr |= (1u << 30);
2895 }
2896 }
2897 return mpidr;
2898 }
2899
2900 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2901 {
2902 unsigned int cur_el = arm_current_el(env);
2903 bool secure = arm_is_secure(env);
2904
2905 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2906 return env->cp15.vmpidr_el2;
2907 }
2908 return mpidr_read_val(env);
2909 }
2910
2911 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2912 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2913 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2914 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2915 REGINFO_SENTINEL
2916 };
2917
2918 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2919 /* NOP AMAIR0/1 */
2920 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2921 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2922 .access = PL1_RW, .type = ARM_CP_CONST,
2923 .resetvalue = 0 },
2924 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2925 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2926 .access = PL1_RW, .type = ARM_CP_CONST,
2927 .resetvalue = 0 },
2928 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2929 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2930 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2931 offsetof(CPUARMState, cp15.par_ns)} },
2932 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2933 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2934 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2935 offsetof(CPUARMState, cp15.ttbr0_ns) },
2936 .writefn = vmsa_ttbr_write, },
2937 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2938 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2939 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2940 offsetof(CPUARMState, cp15.ttbr1_ns) },
2941 .writefn = vmsa_ttbr_write, },
2942 REGINFO_SENTINEL
2943 };
2944
2945 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2946 {
2947 return vfp_get_fpcr(env);
2948 }
2949
2950 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951 uint64_t value)
2952 {
2953 vfp_set_fpcr(env, value);
2954 }
2955
2956 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2957 {
2958 return vfp_get_fpsr(env);
2959 }
2960
2961 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2962 uint64_t value)
2963 {
2964 vfp_set_fpsr(env, value);
2965 }
2966
2967 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2968 bool isread)
2969 {
2970 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2971 return CP_ACCESS_TRAP;
2972 }
2973 return CP_ACCESS_OK;
2974 }
2975
2976 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2978 {
2979 env->daif = value & PSTATE_DAIF;
2980 }
2981
2982 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2983 const ARMCPRegInfo *ri,
2984 bool isread)
2985 {
2986 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2987 * SCTLR_EL1.UCI is set.
2988 */
2989 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2990 return CP_ACCESS_TRAP;
2991 }
2992 return CP_ACCESS_OK;
2993 }
2994
2995 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2996 * Page D4-1736 (DDI0487A.b)
2997 */
2998
2999 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3000 uint64_t value)
3001 {
3002 CPUState *cs = ENV_GET_CPU(env);
3003
3004 if (arm_is_secure_below_el3(env)) {
3005 tlb_flush_by_mmuidx(cs,
3006 ARMMMUIdxBit_S1SE1 |
3007 ARMMMUIdxBit_S1SE0);
3008 } else {
3009 tlb_flush_by_mmuidx(cs,
3010 ARMMMUIdxBit_S12NSE1 |
3011 ARMMMUIdxBit_S12NSE0);
3012 }
3013 }
3014
3015 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017 {
3018 CPUState *cs = ENV_GET_CPU(env);
3019 bool sec = arm_is_secure_below_el3(env);
3020
3021 if (sec) {
3022 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3023 ARMMMUIdxBit_S1SE1 |
3024 ARMMMUIdxBit_S1SE0);
3025 } else {
3026 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3027 ARMMMUIdxBit_S12NSE1 |
3028 ARMMMUIdxBit_S12NSE0);
3029 }
3030 }
3031
3032 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034 {
3035 /* Note that the 'ALL' scope must invalidate both stage 1 and
3036 * stage 2 translations, whereas most other scopes only invalidate
3037 * stage 1 translations.
3038 */
3039 ARMCPU *cpu = arm_env_get_cpu(env);
3040 CPUState *cs = CPU(cpu);
3041
3042 if (arm_is_secure_below_el3(env)) {
3043 tlb_flush_by_mmuidx(cs,
3044 ARMMMUIdxBit_S1SE1 |
3045 ARMMMUIdxBit_S1SE0);
3046 } else {
3047 if (arm_feature(env, ARM_FEATURE_EL2)) {
3048 tlb_flush_by_mmuidx(cs,
3049 ARMMMUIdxBit_S12NSE1 |
3050 ARMMMUIdxBit_S12NSE0 |
3051 ARMMMUIdxBit_S2NS);
3052 } else {
3053 tlb_flush_by_mmuidx(cs,
3054 ARMMMUIdxBit_S12NSE1 |
3055 ARMMMUIdxBit_S12NSE0);
3056 }
3057 }
3058 }
3059
3060 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061 uint64_t value)
3062 {
3063 ARMCPU *cpu = arm_env_get_cpu(env);
3064 CPUState *cs = CPU(cpu);
3065
3066 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3067 }
3068
3069 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3071 {
3072 ARMCPU *cpu = arm_env_get_cpu(env);
3073 CPUState *cs = CPU(cpu);
3074
3075 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3076 }
3077
3078 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3079 uint64_t value)
3080 {
3081 /* Note that the 'ALL' scope must invalidate both stage 1 and
3082 * stage 2 translations, whereas most other scopes only invalidate
3083 * stage 1 translations.
3084 */
3085 CPUState *cs = ENV_GET_CPU(env);
3086 bool sec = arm_is_secure_below_el3(env);
3087 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3088
3089 if (sec) {
3090 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3091 ARMMMUIdxBit_S1SE1 |
3092 ARMMMUIdxBit_S1SE0);
3093 } else if (has_el2) {
3094 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3095 ARMMMUIdxBit_S12NSE1 |
3096 ARMMMUIdxBit_S12NSE0 |
3097 ARMMMUIdxBit_S2NS);
3098 } else {
3099 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3100 ARMMMUIdxBit_S12NSE1 |
3101 ARMMMUIdxBit_S12NSE0);
3102 }
3103 }
3104
3105 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3106 uint64_t value)
3107 {
3108 CPUState *cs = ENV_GET_CPU(env);
3109
3110 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3111 }
3112
3113 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3114 uint64_t value)
3115 {
3116 CPUState *cs = ENV_GET_CPU(env);
3117
3118 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3119 }
3120
3121 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3122 uint64_t value)
3123 {
3124 /* Invalidate by VA, EL1&0 (AArch64 version).
3125 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3126 * since we don't support flush-for-specific-ASID-only or
3127 * flush-last-level-only.
3128 */
3129 ARMCPU *cpu = arm_env_get_cpu(env);
3130 CPUState *cs = CPU(cpu);
3131 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3132
3133 if (arm_is_secure_below_el3(env)) {
3134 tlb_flush_page_by_mmuidx(cs, pageaddr,
3135 ARMMMUIdxBit_S1SE1 |
3136 ARMMMUIdxBit_S1SE0);
3137 } else {
3138 tlb_flush_page_by_mmuidx(cs, pageaddr,
3139 ARMMMUIdxBit_S12NSE1 |
3140 ARMMMUIdxBit_S12NSE0);
3141 }
3142 }
3143
3144 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3146 {
3147 /* Invalidate by VA, EL2
3148 * Currently handles both VAE2 and VALE2, since we don't support
3149 * flush-last-level-only.
3150 */
3151 ARMCPU *cpu = arm_env_get_cpu(env);
3152 CPUState *cs = CPU(cpu);
3153 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3154
3155 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3156 }
3157
3158 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3159 uint64_t value)
3160 {
3161 /* Invalidate by VA, EL3
3162 * Currently handles both VAE3 and VALE3, since we don't support
3163 * flush-last-level-only.
3164 */
3165 ARMCPU *cpu = arm_env_get_cpu(env);
3166 CPUState *cs = CPU(cpu);
3167 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3168
3169 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3170 }
3171
3172 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3173 uint64_t value)
3174 {
3175 ARMCPU *cpu = arm_env_get_cpu(env);
3176 CPUState *cs = CPU(cpu);
3177 bool sec = arm_is_secure_below_el3(env);
3178 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3179
3180 if (sec) {
3181 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3182 ARMMMUIdxBit_S1SE1 |
3183 ARMMMUIdxBit_S1SE0);
3184 } else {
3185 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3186 ARMMMUIdxBit_S12NSE1 |
3187 ARMMMUIdxBit_S12NSE0);
3188 }
3189 }
3190
3191 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192 uint64_t value)
3193 {
3194 CPUState *cs = ENV_GET_CPU(env);
3195 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3196
3197 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3198 ARMMMUIdxBit_S1E2);
3199 }
3200
3201 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3202 uint64_t value)
3203 {
3204 CPUState *cs = ENV_GET_CPU(env);
3205 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3206
3207 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3208 ARMMMUIdxBit_S1E3);
3209 }
3210
3211 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3212 uint64_t value)
3213 {
3214 /* Invalidate by IPA. This has to invalidate any structures that
3215 * contain only stage 2 translation information, but does not need
3216 * to apply to structures that contain combined stage 1 and stage 2
3217 * translation information.
3218 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3219 */
3220 ARMCPU *cpu = arm_env_get_cpu(env);
3221 CPUState *cs = CPU(cpu);
3222 uint64_t pageaddr;
3223
3224 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3225 return;
3226 }
3227
3228 pageaddr = sextract64(value << 12, 0, 48);
3229
3230 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3231 }
3232
3233 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3234 uint64_t value)
3235 {
3236 CPUState *cs = ENV_GET_CPU(env);
3237 uint64_t pageaddr;
3238
3239 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3240 return;
3241 }
3242
3243 pageaddr = sextract64(value << 12, 0, 48);
3244
3245 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3246 ARMMMUIdxBit_S2NS);
3247 }
3248
3249 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3250 bool isread)
3251 {
3252 /* We don't implement EL2, so the only control on DC ZVA is the
3253 * bit in the SCTLR which can prohibit access for EL0.
3254 */
3255 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3256 return CP_ACCESS_TRAP;
3257 }
3258 return CP_ACCESS_OK;
3259 }
3260
3261 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3262 {
3263 ARMCPU *cpu = arm_env_get_cpu(env);
3264 int dzp_bit = 1 << 4;
3265
3266 /* DZP indicates whether DC ZVA access is allowed */
3267 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3268 dzp_bit = 0;
3269 }
3270 return cpu->dcz_blocksize | dzp_bit;
3271 }
3272
3273 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3274 bool isread)
3275 {
3276 if (!(env->pstate & PSTATE_SP)) {
3277 /* Access to SP_EL0 is undefined if it's being used as
3278 * the stack pointer.
3279 */
3280 return CP_ACCESS_TRAP_UNCATEGORIZED;
3281 }
3282 return CP_ACCESS_OK;
3283 }
3284
3285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3286 {
3287 return env->pstate & PSTATE_SP;
3288 }
3289
3290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3291 {
3292 update_spsel(env, val);
3293 }
3294
3295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296 uint64_t value)
3297 {
3298 ARMCPU *cpu = arm_env_get_cpu(env);
3299
3300 if (raw_read(env, ri) == value) {
3301 /* Skip the TLB flush if nothing actually changed; Linux likes
3302 * to do a lot of pointless SCTLR writes.
3303 */
3304 return;
3305 }
3306
3307 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3308 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3309 value &= ~SCTLR_M;
3310 }
3311
3312 raw_write(env, ri, value);
3313 /* ??? Lots of these bits are not implemented. */
3314 /* This may enable/disable the MMU, so do a TLB flush. */
3315 tlb_flush(CPU(cpu));
3316 }
3317
3318 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3319 bool isread)
3320 {
3321 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3322 return CP_ACCESS_TRAP_FP_EL2;
3323 }
3324 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3325 return CP_ACCESS_TRAP_FP_EL3;
3326 }
3327 return CP_ACCESS_OK;
3328 }
3329
3330 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3331 uint64_t value)
3332 {
3333 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3334 }
3335
3336 static const ARMCPRegInfo v8_cp_reginfo[] = {
3337 /* Minimal set of EL0-visible registers. This will need to be expanded
3338 * significantly for system emulation of AArch64 CPUs.
3339 */
3340 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3341 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3342 .access = PL0_RW, .type = ARM_CP_NZCV },
3343 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3345 .type = ARM_CP_NO_RAW,
3346 .access = PL0_RW, .accessfn = aa64_daif_access,
3347 .fieldoffset = offsetof(CPUARMState, daif),
3348 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3349 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3351 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3352 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3354 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3355 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3357 .access = PL0_R, .type = ARM_CP_NO_RAW,
3358 .readfn = aa64_dczid_read },
3359 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3361 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3362 #ifndef CONFIG_USER_ONLY
3363 /* Avoid overhead of an access check that always passes in user-mode */
3364 .accessfn = aa64_zva_access,
3365 #endif
3366 },
3367 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3368 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3369 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3370 /* Cache ops: all NOPs since we don't emulate caches */
3371 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3372 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3373 .access = PL1_W, .type = ARM_CP_NOP },
3374 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3376 .access = PL1_W, .type = ARM_CP_NOP },
3377 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3378 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3379 .access = PL0_W, .type = ARM_CP_NOP,
3380 .accessfn = aa64_cacheop_access },
3381 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3382 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3383 .access = PL1_W, .type = ARM_CP_NOP },
3384 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3386 .access = PL1_W, .type = ARM_CP_NOP },
3387 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3388 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3389 .access = PL0_W, .type = ARM_CP_NOP,
3390 .accessfn = aa64_cacheop_access },
3391 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3392 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3393 .access = PL1_W, .type = ARM_CP_NOP },
3394 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3396 .access = PL0_W, .type = ARM_CP_NOP,
3397 .accessfn = aa64_cacheop_access },
3398 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3400 .access = PL0_W, .type = ARM_CP_NOP,
3401 .accessfn = aa64_cacheop_access },
3402 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3404 .access = PL1_W, .type = ARM_CP_NOP },
3405 /* TLBI operations */
3406 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3408 .access = PL1_W, .type = ARM_CP_NO_RAW,
3409 .writefn = tlbi_aa64_vmalle1is_write },
3410 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3412 .access = PL1_W, .type = ARM_CP_NO_RAW,
3413 .writefn = tlbi_aa64_vae1is_write },
3414 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3416 .access = PL1_W, .type = ARM_CP_NO_RAW,
3417 .writefn = tlbi_aa64_vmalle1is_write },
3418 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3420 .access = PL1_W, .type = ARM_CP_NO_RAW,
3421 .writefn = tlbi_aa64_vae1is_write },
3422 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3424 .access = PL1_W, .type = ARM_CP_NO_RAW,
3425 .writefn = tlbi_aa64_vae1is_write },
3426 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3427 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3428 .access = PL1_W, .type = ARM_CP_NO_RAW,
3429 .writefn = tlbi_aa64_vae1is_write },
3430 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3432 .access = PL1_W, .type = ARM_CP_NO_RAW,
3433 .writefn = tlbi_aa64_vmalle1_write },
3434 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3436 .access = PL1_W, .type = ARM_CP_NO_RAW,
3437 .writefn = tlbi_aa64_vae1_write },
3438 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3440 .access = PL1_W, .type = ARM_CP_NO_RAW,
3441 .writefn = tlbi_aa64_vmalle1_write },
3442 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3444 .access = PL1_W, .type = ARM_CP_NO_RAW,
3445 .writefn = tlbi_aa64_vae1_write },
3446 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3448 .access = PL1_W, .type = ARM_CP_NO_RAW,
3449 .writefn = tlbi_aa64_vae1_write },
3450 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3452 .access = PL1_W, .type = ARM_CP_NO_RAW,
3453 .writefn = tlbi_aa64_vae1_write },
3454 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3456 .access = PL2_W, .type = ARM_CP_NO_RAW,
3457 .writefn = tlbi_aa64_ipas2e1is_write },
3458 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3460 .access = PL2_W, .type = ARM_CP_NO_RAW,
3461 .writefn = tlbi_aa64_ipas2e1is_write },
3462 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3463 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3464 .access = PL2_W, .type = ARM_CP_NO_RAW,
3465 .writefn = tlbi_aa64_alle1is_write },
3466 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3468 .access = PL2_W, .type = ARM_CP_NO_RAW,
3469 .writefn = tlbi_aa64_alle1is_write },
3470 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3472 .access = PL2_W, .type = ARM_CP_NO_RAW,
3473 .writefn = tlbi_aa64_ipas2e1_write },
3474 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3475 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3476 .access = PL2_W, .type = ARM_CP_NO_RAW,
3477 .writefn = tlbi_aa64_ipas2e1_write },
3478 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3479 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3480 .access = PL2_W, .type = ARM_CP_NO_RAW,
3481 .writefn = tlbi_aa64_alle1_write },
3482 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3483 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3484 .access = PL2_W, .type = ARM_CP_NO_RAW,
3485 .writefn = tlbi_aa64_alle1is_write },
3486 #ifndef CONFIG_USER_ONLY
3487 /* 64 bit address translation operations */
3488 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3490 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3491 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3492 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3493 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3494 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3495 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3496 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3497 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3498 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3499 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3500 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3501 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3502 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3503 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3504 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3505 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3506 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3507 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3508 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3509 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3510 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3511 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3512 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3513 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3514 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3515 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3516 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3518 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3519 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3520 .type = ARM_CP_ALIAS,
3521 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3522 .access = PL1_RW, .resetvalue = 0,
3523 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3524 .writefn = par_write },
3525 #endif
3526 /* TLB invalidate last level of translation table walk */
3527 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3528 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3529 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3530 .type = ARM_CP_NO_RAW, .access = PL1_W,
3531 .writefn = tlbimvaa_is_write },
3532 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3533 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3534 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3535 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3536 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3537 .type = ARM_CP_NO_RAW, .access = PL2_W,
3538 .writefn = tlbimva_hyp_write },
3539 { .name = "TLBIMVALHIS",
3540 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3541 .type = ARM_CP_NO_RAW, .access = PL2_W,
3542 .writefn = tlbimva_hyp_is_write },
3543 { .name = "TLBIIPAS2",
3544 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3545 .type = ARM_CP_NO_RAW, .access = PL2_W,
3546 .writefn = tlbiipas2_write },
3547 { .name = "TLBIIPAS2IS",
3548 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3549 .type = ARM_CP_NO_RAW, .access = PL2_W,
3550 .writefn = tlbiipas2_is_write },
3551 { .name = "TLBIIPAS2L",
3552 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3553 .type = ARM_CP_NO_RAW, .access = PL2_W,
3554 .writefn = tlbiipas2_write },
3555 { .name = "TLBIIPAS2LIS",
3556 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3557 .type = ARM_CP_NO_RAW, .access = PL2_W,
3558 .writefn = tlbiipas2_is_write },
3559 /* 32 bit cache operations */
3560 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3561 .type = ARM_CP_NOP, .access = PL1_W },
3562 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3563 .type = ARM_CP_NOP, .access = PL1_W },
3564 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3565 .type = ARM_CP_NOP, .access = PL1_W },
3566 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3567 .type = ARM_CP_NOP, .access = PL1_W },
3568 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3569 .type = ARM_CP_NOP, .access = PL1_W },
3570 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3571 .type = ARM_CP_NOP, .access = PL1_W },
3572 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3573 .type = ARM_CP_NOP, .access = PL1_W },
3574 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3575 .type = ARM_CP_NOP, .access = PL1_W },
3576 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3577 .type = ARM_CP_NOP, .access = PL1_W },
3578 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3579 .type = ARM_CP_NOP, .access = PL1_W },
3580 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3581 .type = ARM_CP_NOP, .access = PL1_W },
3582 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3583 .type = ARM_CP_NOP, .access = PL1_W },
3584 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3585 .type = ARM_CP_NOP, .access = PL1_W },
3586 /* MMU Domain access control / MPU write buffer control */
3587 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3588 .access = PL1_RW, .resetvalue = 0,
3589 .writefn = dacr_write, .raw_writefn = raw_write,
3590 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3591 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3592 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3593 .type = ARM_CP_ALIAS,
3594 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3595 .access = PL1_RW,
3596 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3597 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3598 .type = ARM_CP_ALIAS,
3599 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3600 .access = PL1_RW,
3601 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3602 /* We rely on the access checks not allowing the guest to write to the
3603 * state field when SPSel indicates that it's being used as the stack
3604 * pointer.
3605 */
3606 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3607 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3608 .access = PL1_RW, .accessfn = sp_el0_access,
3609 .type = ARM_CP_ALIAS,
3610 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3611 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3613 .access = PL2_RW, .type = ARM_CP_ALIAS,
3614 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3615 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3616 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3617 .type = ARM_CP_NO_RAW,
3618 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3619 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3620 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3621 .type = ARM_CP_ALIAS,
3622 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3623 .access = PL2_RW, .accessfn = fpexc32_access },
3624 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3625 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3626 .access = PL2_RW, .resetvalue = 0,
3627 .writefn = dacr_write, .raw_writefn = raw_write,
3628 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3629 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3630 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3631 .access = PL2_RW, .resetvalue = 0,
3632 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3633 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3634 .type = ARM_CP_ALIAS,
3635 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3636 .access = PL2_RW,
3637 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3638 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3639 .type = ARM_CP_ALIAS,
3640 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3641 .access = PL2_RW,
3642 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3643 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3644 .type = ARM_CP_ALIAS,
3645 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3646 .access = PL2_RW,
3647 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3648 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3649 .type = ARM_CP_ALIAS,
3650 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3651 .access = PL2_RW,
3652 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3653 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3654 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3655 .resetvalue = 0,
3656 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3657 { .name = "SDCR", .type = ARM_CP_ALIAS,
3658 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3659 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3660 .writefn = sdcr_write,
3661 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3662 REGINFO_SENTINEL
3663 };
3664
3665 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3666 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3667 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3668 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3669 .access = PL2_RW,
3670 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3671 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3672 .type = ARM_CP_NO_RAW,
3673 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3674 .access = PL2_RW,
3675 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3676 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3677 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3678 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3679 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3680 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3681 .access = PL2_RW, .type = ARM_CP_CONST,
3682 .resetvalue = 0 },
3683 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3684 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3685 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3686 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3687 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3688 .access = PL2_RW, .type = ARM_CP_CONST,
3689 .resetvalue = 0 },
3690 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3691 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3692 .access = PL2_RW, .type = ARM_CP_CONST,
3693 .resetvalue = 0 },
3694 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3695 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3696 .access = PL2_RW, .type = ARM_CP_CONST,
3697 .resetvalue = 0 },
3698 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3699 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3700 .access = PL2_RW, .type = ARM_CP_CONST,
3701 .resetvalue = 0 },
3702 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3703 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3705 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3706 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3707 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3708 .type = ARM_CP_CONST, .resetvalue = 0 },
3709 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3710 .cp = 15, .opc1 = 6, .crm = 2,
3711 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3712 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3713 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3714 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3715 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3716 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3717 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3718 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3719 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3720 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3721 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3722 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3723 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3724 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3725 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3726 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3727 .resetvalue = 0 },
3728 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3729 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3730 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3731 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3732 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3733 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3734 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3735 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3736 .resetvalue = 0 },
3737 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3738 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3739 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3740 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3741 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3742 .resetvalue = 0 },
3743 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3744 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3745 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3746 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3747 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3748 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3749 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3750 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3751 .access = PL2_RW, .accessfn = access_tda,
3752 .type = ARM_CP_CONST, .resetvalue = 0 },
3753 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3754 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3755 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3756 .type = ARM_CP_CONST, .resetvalue = 0 },
3757 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3759 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3760 REGINFO_SENTINEL
3761 };
3762
3763 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3764 {
3765 ARMCPU *cpu = arm_env_get_cpu(env);
3766 uint64_t valid_mask = HCR_MASK;
3767
3768 if (arm_feature(env, ARM_FEATURE_EL3)) {
3769 valid_mask &= ~HCR_HCD;
3770 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3771 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3772 * However, if we're using the SMC PSCI conduit then QEMU is
3773 * effectively acting like EL3 firmware and so the guest at
3774 * EL2 should retain the ability to prevent EL1 from being
3775 * able to make SMC calls into the ersatz firmware, so in
3776 * that case HCR.TSC should be read/write.
3777 */
3778 valid_mask &= ~HCR_TSC;
3779 }
3780
3781 /* Clear RES0 bits. */
3782 value &= valid_mask;
3783
3784 /* These bits change the MMU setup:
3785 * HCR_VM enables stage 2 translation
3786 * HCR_PTW forbids certain page-table setups
3787 * HCR_DC Disables stage1 and enables stage2 translation
3788 */
3789 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3790 tlb_flush(CPU(cpu));
3791 }
3792 raw_write(env, ri, value);
3793 }
3794
3795 static const ARMCPRegInfo el2_cp_reginfo[] = {
3796 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3797 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3798 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3799 .writefn = hcr_write },
3800 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3801 .type = ARM_CP_ALIAS,
3802 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3803 .access = PL2_RW,
3804 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3805 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3806 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3807 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3808 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3810 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3811 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3812 .type = ARM_CP_ALIAS,
3813 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3814 .access = PL2_RW,
3815 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3816 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3817 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3818 .access = PL2_RW, .writefn = vbar_write,
3819 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3820 .resetvalue = 0 },
3821 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3822 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3823 .access = PL3_RW, .type = ARM_CP_ALIAS,
3824 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3825 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3826 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3827 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3828 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3829 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3831 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3832 .resetvalue = 0 },
3833 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3834 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3835 .access = PL2_RW, .type = ARM_CP_ALIAS,
3836 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3837 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3838 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3839 .access = PL2_RW, .type = ARM_CP_CONST,
3840 .resetvalue = 0 },
3841 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3842 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3843 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3844 .access = PL2_RW, .type = ARM_CP_CONST,
3845 .resetvalue = 0 },
3846 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3848 .access = PL2_RW, .type = ARM_CP_CONST,
3849 .resetvalue = 0 },
3850 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3851 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3852 .access = PL2_RW, .type = ARM_CP_CONST,
3853 .resetvalue = 0 },
3854 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3855 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3856 .access = PL2_RW,
3857 /* no .writefn needed as this can't cause an ASID change;
3858 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3859 */
3860 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3861 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3862 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3863 .type = ARM_CP_ALIAS,
3864 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3865 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3866 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3867 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3868 .access = PL2_RW,
3869 /* no .writefn needed as this can't cause an ASID change;
3870 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3871 */
3872 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3873 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3874 .cp = 15, .opc1 = 6, .crm = 2,
3875 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3876 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3877 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3878 .writefn = vttbr_write },
3879 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3880 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3881 .access = PL2_RW, .writefn = vttbr_write,
3882 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3883 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3884 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3885 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3886 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3887 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3888 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3889 .access = PL2_RW, .resetvalue = 0,
3890 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3891 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3892 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3893 .access = PL2_RW, .resetvalue = 0,
3894 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3895 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3896 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3897 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3898 { .name = "TLBIALLNSNH",
3899 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3900 .type = ARM_CP_NO_RAW, .access = PL2_W,
3901 .writefn = tlbiall_nsnh_write },
3902 { .name = "TLBIALLNSNHIS",
3903 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3904 .type = ARM_CP_NO_RAW, .access = PL2_W,
3905 .writefn = tlbiall_nsnh_is_write },
3906 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3907 .type = ARM_CP_NO_RAW, .access = PL2_W,
3908 .writefn = tlbiall_hyp_write },
3909 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3910 .type = ARM_CP_NO_RAW, .access = PL2_W,
3911 .writefn = tlbiall_hyp_is_write },
3912 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3913 .type = ARM_CP_NO_RAW, .access = PL2_W,
3914 .writefn = tlbimva_hyp_write },
3915 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3916 .type = ARM_CP_NO_RAW, .access = PL2_W,
3917 .writefn = tlbimva_hyp_is_write },
3918 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3920 .type = ARM_CP_NO_RAW, .access = PL2_W,
3921 .writefn = tlbi_aa64_alle2_write },
3922 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3924 .type = ARM_CP_NO_RAW, .access = PL2_W,
3925 .writefn = tlbi_aa64_vae2_write },
3926 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3928 .access = PL2_W, .type = ARM_CP_NO_RAW,
3929 .writefn = tlbi_aa64_vae2_write },
3930 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3932 .access = PL2_W, .type = ARM_CP_NO_RAW,
3933 .writefn = tlbi_aa64_alle2is_write },
3934 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3936 .type = ARM_CP_NO_RAW, .access = PL2_W,
3937 .writefn = tlbi_aa64_vae2is_write },
3938 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3940 .access = PL2_W, .type = ARM_CP_NO_RAW,
3941 .writefn = tlbi_aa64_vae2is_write },
3942 #ifndef CONFIG_USER_ONLY
3943 /* Unlike the other EL2-related AT operations, these must
3944 * UNDEF from EL3 if EL2 is not implemented, which is why we
3945 * define them here rather than with the rest of the AT ops.
3946 */
3947 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3948 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3949 .access = PL2_W, .accessfn = at_s1e2_access,
3950 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3951 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3952 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3953 .access = PL2_W, .accessfn = at_s1e2_access,
3954 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3955 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3956 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3957 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3958 * to behave as if SCR.NS was 1.
3959 */
3960 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3961 .access = PL2_W,
3962 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3963 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3964 .access = PL2_W,
3965 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3966 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3967 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3968 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3969 * reset values as IMPDEF. We choose to reset to 3 to comply with
3970 * both ARMv7 and ARMv8.
3971 */
3972 .access = PL2_RW, .resetvalue = 3,
3973 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3974 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3975 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3976 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3977 .writefn = gt_cntvoff_write,
3978 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3979 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3980 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3981 .writefn = gt_cntvoff_write,
3982 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3983 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3984 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3985 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3986 .type = ARM_CP_IO, .access = PL2_RW,
3987 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3988 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3989 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3990 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3991 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3992 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3993 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3994 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3995 .resetfn = gt_hyp_timer_reset,
3996 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3997 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3998 .type = ARM_CP_IO,
3999 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4000 .access = PL2_RW,
4001 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4002 .resetvalue = 0,
4003 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4004 #endif
4005 /* The only field of MDCR_EL2 that has a defined architectural reset value
4006 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4007 * don't impelment any PMU event counters, so using zero as a reset
4008 * value for MDCR_EL2 is okay
4009 */
4010 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4011 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4012 .access = PL2_RW, .resetvalue = 0,
4013 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4014 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4015 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4016 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4017 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4018 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4019 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4020 .access = PL2_RW,
4021 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4022 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4023 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4024 .access = PL2_RW,
4025 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4026 REGINFO_SENTINEL
4027 };
4028
4029 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4030 bool isread)
4031 {
4032 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4033 * At Secure EL1 it traps to EL3.
4034 */
4035 if (arm_current_el(env) == 3) {
4036 return CP_ACCESS_OK;
4037 }
4038 if (arm_is_secure_below_el3(env)) {
4039 return CP_ACCESS_TRAP_EL3;
4040 }
4041 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4042 if (isread) {
4043 return CP_ACCESS_OK;
4044 }
4045 return CP_ACCESS_TRAP_UNCATEGORIZED;
4046 }
4047
4048 static const ARMCPRegInfo el3_cp_reginfo[] = {
4049 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4050 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4051 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4052 .resetvalue = 0, .writefn = scr_write },
4053 { .name = "SCR", .type = ARM_CP_ALIAS,
4054 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4055 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4056 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4057 .writefn = scr_write },
4058 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4059 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4060 .access = PL3_RW, .resetvalue = 0,
4061 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4062 { .name = "SDER",
4063 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4064 .access = PL3_RW, .resetvalue = 0,
4065 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4066 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4067 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4068 .writefn = vbar_write, .resetvalue = 0,
4069 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4070 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4071 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4072 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4073 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4074 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4075 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4076 .access = PL3_RW,
4077 /* no .writefn needed as this can't cause an ASID change;
4078 * we must provide a .raw_writefn and .resetfn because we handle
4079 * reset and migration for the AArch32 TTBCR(S), which might be
4080 * using mask and base_mask.
4081 */
4082 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4083 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4084 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4085 .type = ARM_CP_ALIAS,
4086 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4087 .access = PL3_RW,
4088 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4089 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4092 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4093 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4094 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4095 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4096 .type = ARM_CP_ALIAS,
4097 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4098 .access = PL3_RW,
4099 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4100 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4101 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4102 .access = PL3_RW, .writefn = vbar_write,
4103 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4104 .resetvalue = 0 },
4105 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4107 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4109 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4110 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4111 .access = PL3_RW, .resetvalue = 0,
4112 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4113 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4115 .access = PL3_RW, .type = ARM_CP_CONST,
4116 .resetvalue = 0 },
4117 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4118 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4119 .access = PL3_RW, .type = ARM_CP_CONST,
4120 .resetvalue = 0 },
4121 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4122 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4123 .access = PL3_RW, .type = ARM_CP_CONST,
4124 .resetvalue = 0 },
4125 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4126 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4127 .access = PL3_W, .type = ARM_CP_NO_RAW,
4128 .writefn = tlbi_aa64_alle3is_write },
4129 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4130 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4131 .access = PL3_W, .type = ARM_CP_NO_RAW,
4132 .writefn = tlbi_aa64_vae3is_write },
4133 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4134 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4135 .access = PL3_W, .type = ARM_CP_NO_RAW,
4136 .writefn = tlbi_aa64_vae3is_write },
4137 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4139 .access = PL3_W, .type = ARM_CP_NO_RAW,
4140 .writefn = tlbi_aa64_alle3_write },
4141 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4143 .access = PL3_W, .type = ARM_CP_NO_RAW,
4144 .writefn = tlbi_aa64_vae3_write },
4145 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4147 .access = PL3_W, .type = ARM_CP_NO_RAW,
4148 .writefn = tlbi_aa64_vae3_write },
4149 REGINFO_SENTINEL
4150 };
4151
4152 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4153 bool isread)
4154 {
4155 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4156 * but the AArch32 CTR has its own reginfo struct)
4157 */
4158 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4159 return CP_ACCESS_TRAP;
4160 }
4161 return CP_ACCESS_OK;
4162 }
4163
4164 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4165 uint64_t value)
4166 {
4167 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4168 * read via a bit in OSLSR_EL1.
4169 */
4170 int oslock;
4171
4172 if (ri->state == ARM_CP_STATE_AA32) {
4173 oslock = (value == 0xC5ACCE55);
4174 } else {
4175 oslock = value & 1;
4176 }
4177
4178 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4179 }
4180
4181 static const ARMCPRegInfo debug_cp_reginfo[] = {
4182 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4183 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4184 * unlike DBGDRAR it is never accessible from EL0.
4185 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4186 * accessor.
4187 */
4188 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4189 .access = PL0_R, .accessfn = access_tdra,
4190 .type = ARM_CP_CONST, .resetvalue = 0 },
4191 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4193 .access = PL1_R, .accessfn = access_tdra,
4194 .type = ARM_CP_CONST, .resetvalue = 0 },
4195 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4196 .access = PL0_R, .accessfn = access_tdra,
4197 .type = ARM_CP_CONST, .resetvalue = 0 },
4198 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4199 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4200 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4201 .access = PL1_RW, .accessfn = access_tda,
4202 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4203 .resetvalue = 0 },
4204 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4205 * We don't implement the configurable EL0 access.
4206 */
4207 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4208 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4209 .type = ARM_CP_ALIAS,
4210 .access = PL1_R, .accessfn = access_tda,
4211 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4212 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4213 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
4215 .accessfn = access_tdosa,
4216 .writefn = oslar_write },
4217 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4219 .access = PL1_R, .resetvalue = 10,
4220 .accessfn = access_tdosa,
4221 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4222 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4223 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4224 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4225 .access = PL1_RW, .accessfn = access_tdosa,
4226 .type = ARM_CP_NOP },
4227 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4228 * implement vector catch debug events yet.
4229 */
4230 { .name = "DBGVCR",
4231 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4232 .access = PL1_RW, .accessfn = access_tda,
4233 .type = ARM_CP_NOP },
4234 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4235 * to save and restore a 32-bit guest's DBGVCR)
4236 */
4237 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4238 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4239 .access = PL2_RW, .accessfn = access_tda,
4240 .type = ARM_CP_NOP },
4241 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4242 * Channel but Linux may try to access this register. The 32-bit
4243 * alias is DBGDCCINT.
4244 */
4245 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4246 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4247 .access = PL1_RW, .accessfn = access_tda,
4248 .type = ARM_CP_NOP },
4249 REGINFO_SENTINEL
4250 };
4251
4252 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4253 /* 64 bit access versions of the (dummy) debug registers */
4254 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4255 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4256 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4257 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4258 REGINFO_SENTINEL
4259 };
4260
4261 void hw_watchpoint_update(ARMCPU *cpu, int n)
4262 {
4263 CPUARMState *env = &cpu->env;
4264 vaddr len = 0;
4265 vaddr wvr = env->cp15.dbgwvr[n];
4266 uint64_t wcr = env->cp15.dbgwcr[n];
4267 int mask;
4268 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4269
4270 if (env->cpu_watchpoint[n]) {
4271 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4272 env->cpu_watchpoint[n] = NULL;
4273 }
4274
4275 if (!extract64(wcr, 0, 1)) {
4276 /* E bit clear : watchpoint disabled */
4277 return;
4278 }
4279
4280 switch (extract64(wcr, 3, 2)) {
4281 case 0:
4282 /* LSC 00 is reserved and must behave as if the wp is disabled */
4283 return;
4284 case 1:
4285 flags |= BP_MEM_READ;
4286 break;
4287 case 2:
4288 flags |= BP_MEM_WRITE;
4289 break;
4290 case 3:
4291 flags |= BP_MEM_ACCESS;
4292 break;
4293 }
4294
4295 /* Attempts to use both MASK and BAS fields simultaneously are
4296 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4297 * thus generating a watchpoint for every byte in the masked region.
4298 */
4299 mask = extract64(wcr, 24, 4);
4300 if (mask == 1 || mask == 2) {
4301 /* Reserved values of MASK; we must act as if the mask value was
4302 * some non-reserved value, or as if the watchpoint were disabled.
4303 * We choose the latter.
4304 */
4305 return;
4306 } else if (mask) {
4307 /* Watchpoint covers an aligned area up to 2GB in size */
4308 len = 1ULL << mask;
4309 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4310 * whether the watchpoint fires when the unmasked bits match; we opt
4311 * to generate the exceptions.
4312 */
4313 wvr &= ~(len - 1);
4314 } else {
4315 /* Watchpoint covers bytes defined by the byte address select bits */
4316 int bas = extract64(wcr, 5, 8);
4317 int basstart;
4318
4319 if (bas == 0) {
4320 /* This must act as if the watchpoint is disabled */
4321 return;
4322 }
4323
4324 if (extract64(wvr, 2, 1)) {
4325 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4326 * ignored, and BAS[3:0] define which bytes to watch.
4327 */
4328 bas &= 0xf;
4329 }
4330 /* The BAS bits are supposed to be programmed to indicate a contiguous
4331 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4332 * we fire for each byte in the word/doubleword addressed by the WVR.
4333 * We choose to ignore any non-zero bits after the first range of 1s.
4334 */
4335 basstart = ctz32(bas);
4336 len = cto32(bas >> basstart);
4337 wvr += basstart;
4338 }
4339
4340 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4341 &env->cpu_watchpoint[n]);
4342 }
4343
4344 void hw_watchpoint_update_all(ARMCPU *cpu)
4345 {
4346 int i;
4347 CPUARMState *env = &cpu->env;
4348
4349 /* Completely clear out existing QEMU watchpoints and our array, to
4350 * avoid possible stale entries following migration load.
4351 */
4352 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4353 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4354
4355 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4356 hw_watchpoint_update(cpu, i);
4357 }
4358 }
4359
4360 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4361 uint64_t value)
4362 {
4363 ARMCPU *cpu = arm_env_get_cpu(env);
4364 int i = ri->crm;
4365
4366 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4367 * register reads and behaves as if values written are sign extended.
4368 * Bits [1:0] are RES0.
4369 */
4370 value = sextract64(value, 0, 49) & ~3ULL;
4371
4372 raw_write(env, ri, value);
4373 hw_watchpoint_update(cpu, i);
4374 }
4375
4376 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4377 uint64_t value)
4378 {
4379 ARMCPU *cpu = arm_env_get_cpu(env);
4380 int i = ri->crm;
4381
4382 raw_write(env, ri, value);
4383 hw_watchpoint_update(cpu, i);
4384 }
4385
4386 void hw_breakpoint_update(ARMCPU *cpu, int n)
4387 {
4388 CPUARMState *env = &cpu->env;
4389 uint64_t bvr = env->cp15.dbgbvr[n];
4390 uint64_t bcr = env->cp15.dbgbcr[n];
4391 vaddr addr;
4392 int bt;
4393 int flags = BP_CPU;
4394
4395 if (env->cpu_breakpoint[n]) {
4396 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4397 env->cpu_breakpoint[n] = NULL;
4398 }
4399
4400 if (!extract64(bcr, 0, 1)) {
4401 /* E bit clear : watchpoint disabled */
4402 return;
4403 }
4404
4405 bt = extract64(bcr, 20, 4);
4406
4407 switch (bt) {
4408 case 4: /* unlinked address mismatch (reserved if AArch64) */
4409 case 5: /* linked address mismatch (reserved if AArch64) */
4410 qemu_log_mask(LOG_UNIMP,
4411 "arm: address mismatch breakpoint types not implemented");
4412 return;
4413 case 0: /* unlinked address match */
4414 case 1: /* linked address match */
4415 {
4416 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4417 * we behave as if the register was sign extended. Bits [1:0] are
4418 * RES0. The BAS field is used to allow setting breakpoints on 16
4419 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4420 * a bp will fire if the addresses covered by the bp and the addresses
4421 * covered by the insn overlap but the insn doesn't start at the
4422 * start of the bp address range. We choose to require the insn and
4423 * the bp to have the same address. The constraints on writing to
4424 * BAS enforced in dbgbcr_write mean we have only four cases:
4425 * 0b0000 => no breakpoint
4426 * 0b0011 => breakpoint on addr
4427 * 0b1100 => breakpoint on addr + 2
4428 * 0b1111 => breakpoint on addr
4429 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4430 */
4431 int bas = extract64(bcr, 5, 4);
4432 addr = sextract64(bvr, 0, 49) & ~3ULL;
4433 if (bas == 0) {
4434 return;
4435 }
4436 if (bas == 0xc) {
4437 addr += 2;
4438 }
4439 break;
4440 }
4441 case 2: /* unlinked context ID match */
4442 case 8: /* unlinked VMID match (reserved if no EL2) */
4443 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4444 qemu_log_mask(LOG_UNIMP,
4445 "arm: unlinked context breakpoint types not implemented");
4446 return;
4447 case 9: /* linked VMID match (reserved if no EL2) */
4448 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4449 case 3: /* linked context ID match */
4450 default:
4451 /* We must generate no events for Linked context matches (unless
4452 * they are linked to by some other bp/wp, which is handled in
4453 * updates for the linking bp/wp). We choose to also generate no events
4454 * for reserved values.
4455 */
4456 return;
4457 }
4458
4459 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4460 }
4461
4462 void hw_breakpoint_update_all(ARMCPU *cpu)
4463 {
4464 int i;
4465 CPUARMState *env = &cpu->env;
4466
4467 /* Completely clear out existing QEMU breakpoints and our array, to
4468 * avoid possible stale entries following migration load.
4469 */
4470 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4471 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4472
4473 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4474 hw_breakpoint_update(cpu, i);
4475 }
4476 }
4477
4478 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479 uint64_t value)
4480 {
4481 ARMCPU *cpu = arm_env_get_cpu(env);
4482 int i = ri->crm;
4483
4484 raw_write(env, ri, value);
4485 hw_breakpoint_update(cpu, i);
4486 }
4487
4488 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4489 uint64_t value)
4490 {
4491 ARMCPU *cpu = arm_env_get_cpu(env);
4492 int i = ri->crm;
4493
4494 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4495 * copy of BAS[0].
4496 */
4497 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4498 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4499
4500 raw_write(env, ri, value);
4501 hw_breakpoint_update(cpu, i);
4502 }
4503
4504 static void define_debug_regs(ARMCPU *cpu)
4505 {
4506 /* Define v7 and v8 architectural debug registers.
4507 * These are just dummy implementations for now.
4508 */
4509 int i;
4510 int wrps, brps, ctx_cmps;
4511 ARMCPRegInfo dbgdidr = {
4512 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4513 .access = PL0_R, .accessfn = access_tda,
4514 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4515 };
4516
4517 /* Note that all these register fields hold "number of Xs minus 1". */
4518 brps = extract32(cpu->dbgdidr, 24, 4);
4519 wrps = extract32(cpu->dbgdidr, 28, 4);
4520 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4521
4522 assert(ctx_cmps <= brps);
4523
4524 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4525 * of the debug registers such as number of breakpoints;
4526 * check that if they both exist then they agree.
4527 */
4528 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4529 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4530 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4531 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4532 }
4533
4534 define_one_arm_cp_reg(cpu, &dbgdidr);
4535 define_arm_cp_regs(cpu, debug_cp_reginfo);
4536
4537 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4538 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4539 }
4540
4541 for (i = 0; i < brps + 1; i++) {
4542 ARMCPRegInfo dbgregs[] = {
4543 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4544 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4545 .access = PL1_RW, .accessfn = access_tda,
4546 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4547 .writefn = dbgbvr_write, .raw_writefn = raw_write
4548 },
4549 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4550 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4551 .access = PL1_RW, .accessfn = access_tda,
4552 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4553 .writefn = dbgbcr_write, .raw_writefn = raw_write
4554 },
4555 REGINFO_SENTINEL
4556 };
4557 define_arm_cp_regs(cpu, dbgregs);
4558 }
4559
4560 for (i = 0; i < wrps + 1; i++) {
4561 ARMCPRegInfo dbgregs[] = {
4562 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4563 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4564 .access = PL1_RW, .accessfn = access_tda,
4565 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4566 .writefn = dbgwvr_write, .raw_writefn = raw_write
4567 },
4568 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4569 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4570 .access = PL1_RW, .accessfn = access_tda,
4571 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4572 .writefn = dbgwcr_write, .raw_writefn = raw_write
4573 },
4574 REGINFO_SENTINEL
4575 };
4576 define_arm_cp_regs(cpu, dbgregs);
4577 }
4578 }
4579
4580 /* We don't know until after realize whether there's a GICv3
4581 * attached, and that is what registers the gicv3 sysregs.
4582 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4583 * at runtime.
4584 */
4585 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4586 {
4587 ARMCPU *cpu = arm_env_get_cpu(env);
4588 uint64_t pfr1 = cpu->id_pfr1;
4589
4590 if (env->gicv3state) {
4591 pfr1 |= 1 << 28;
4592 }
4593 return pfr1;
4594 }
4595
4596 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4597 {
4598 ARMCPU *cpu = arm_env_get_cpu(env);
4599 uint64_t pfr0 = cpu->id_aa64pfr0;
4600
4601 if (env->gicv3state) {
4602 pfr0 |= 1 << 24;
4603 }
4604 return pfr0;
4605 }
4606
4607 void register_cp_regs_for_features(ARMCPU *cpu)
4608 {
4609 /* Register all the coprocessor registers based on feature bits */
4610 CPUARMState *env = &cpu->env;
4611 if (arm_feature(env, ARM_FEATURE_M)) {
4612 /* M profile has no coprocessor registers */
4613 return;
4614 }
4615
4616 define_arm_cp_regs(cpu, cp_reginfo);
4617 if (!arm_feature(env, ARM_FEATURE_V8)) {
4618 /* Must go early as it is full of wildcards that may be
4619 * overridden by later definitions.
4620 */
4621 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4622 }
4623
4624 if (arm_feature(env, ARM_FEATURE_V6)) {
4625 /* The ID registers all have impdef reset values */
4626 ARMCPRegInfo v6_idregs[] = {
4627 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4629 .access = PL1_R, .type = ARM_CP_CONST,
4630 .resetvalue = cpu->id_pfr0 },
4631 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4632 * the value of the GIC field until after we define these regs.
4633 */
4634 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4636 .access = PL1_R, .type = ARM_CP_NO_RAW,
4637 .readfn = id_pfr1_read,
4638 .writefn = arm_cp_write_ignore },
4639 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4641 .access = PL1_R, .type = ARM_CP_CONST,
4642 .resetvalue = cpu->id_dfr0 },
4643 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4645 .access = PL1_R, .type = ARM_CP_CONST,
4646 .resetvalue = cpu->id_afr0 },
4647 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4649 .access = PL1_R, .type = ARM_CP_CONST,
4650 .resetvalue = cpu->id_mmfr0 },
4651 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4653 .access = PL1_R, .type = ARM_CP_CONST,
4654 .resetvalue = cpu->id_mmfr1 },
4655 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4657 .access = PL1_R, .type = ARM_CP_CONST,
4658 .resetvalue = cpu->id_mmfr2 },
4659 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4661 .access = PL1_R, .type = ARM_CP_CONST,
4662 .resetvalue = cpu->id_mmfr3 },
4663 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4664 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4665 .access = PL1_R, .type = ARM_CP_CONST,
4666 .resetvalue = cpu->id_isar0 },
4667 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4668 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4669 .access = PL1_R, .type = ARM_CP_CONST,
4670 .resetvalue = cpu->id_isar1 },
4671 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4673 .access = PL1_R, .type = ARM_CP_CONST,
4674 .resetvalue = cpu->id_isar2 },
4675 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4676 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4677 .access = PL1_R, .type = ARM_CP_CONST,
4678 .resetvalue = cpu->id_isar3 },
4679 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4680 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4681 .access = PL1_R, .type = ARM_CP_CONST,
4682 .resetvalue = cpu->id_isar4 },
4683 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4685 .access = PL1_R, .type = ARM_CP_CONST,
4686 .resetvalue = cpu->id_isar5 },
4687 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4688 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4689 .access = PL1_R, .type = ARM_CP_CONST,
4690 .resetvalue = cpu->id_mmfr4 },
4691 /* 7 is as yet unallocated and must RAZ */
4692 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4693 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4694 .access = PL1_R, .type = ARM_CP_CONST,
4695 .resetvalue = 0 },
4696 REGINFO_SENTINEL
4697 };
4698 define_arm_cp_regs(cpu, v6_idregs);
4699 define_arm_cp_regs(cpu, v6_cp_reginfo);
4700 } else {
4701 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4702 }
4703 if (arm_feature(env, ARM_FEATURE_V6K)) {
4704 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4705 }
4706 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4707 !arm_feature(env, ARM_FEATURE_PMSA)) {
4708 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4709 }
4710 if (arm_feature(env, ARM_FEATURE_V7)) {
4711 /* v7 performance monitor control register: same implementor
4712 * field as main ID register, and we implement only the cycle
4713 * count register.
4714 */
4715 #ifndef CONFIG_USER_ONLY
4716 ARMCPRegInfo pmcr = {
4717 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4718 .access = PL0_RW,
4719 .type = ARM_CP_IO | ARM_CP_ALIAS,
4720 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4721 .accessfn = pmreg_access, .writefn = pmcr_write,
4722 .raw_writefn = raw_write,
4723 };
4724 ARMCPRegInfo pmcr64 = {
4725 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4726 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4727 .access = PL0_RW, .accessfn = pmreg_access,
4728 .type = ARM_CP_IO,
4729 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4730 .resetvalue = cpu->midr & 0xff000000,
4731 .writefn = pmcr_write, .raw_writefn = raw_write,
4732 };
4733 define_one_arm_cp_reg(cpu, &pmcr);
4734 define_one_arm_cp_reg(cpu, &pmcr64);
4735 #endif
4736 ARMCPRegInfo clidr = {
4737 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4738 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4739 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4740 };
4741 define_one_arm_cp_reg(cpu, &clidr);
4742 define_arm_cp_regs(cpu, v7_cp_reginfo);
4743 define_debug_regs(cpu);
4744 } else {
4745 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4746 }
4747 if (arm_feature(env, ARM_FEATURE_V8)) {
4748 /* AArch64 ID registers, which all have impdef reset values.
4749 * Note that within the ID register ranges the unused slots
4750 * must all RAZ, not UNDEF; future architecture versions may
4751 * define new registers here.
4752 */
4753 ARMCPRegInfo v8_idregs[] = {
4754 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4755 * know the right value for the GIC field until after we
4756 * define these regs.
4757 */
4758 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4760 .access = PL1_R, .type = ARM_CP_NO_RAW,
4761 .readfn = id_aa64pfr0_read,
4762 .writefn = arm_cp_write_ignore },
4763 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4765 .access = PL1_R, .type = ARM_CP_CONST,
4766 .resetvalue = cpu->id_aa64pfr1},
4767 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4769 .access = PL1_R, .type = ARM_CP_CONST,
4770 .resetvalue = 0 },
4771 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4773 .access = PL1_R, .type = ARM_CP_CONST,
4774 .resetvalue = 0 },
4775 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4777 .access = PL1_R, .type = ARM_CP_CONST,
4778 .resetvalue = 0 },
4779 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4781 .access = PL1_R, .type = ARM_CP_CONST,
4782 .resetvalue = 0 },
4783 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4785 .access = PL1_R, .type = ARM_CP_CONST,
4786 .resetvalue = 0 },
4787 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4789 .access = PL1_R, .type = ARM_CP_CONST,
4790 .resetvalue = 0 },
4791 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4793 .access = PL1_R, .type = ARM_CP_CONST,
4794 .resetvalue = cpu->id_aa64dfr0 },
4795 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4797 .access = PL1_R, .type = ARM_CP_CONST,
4798 .resetvalue = cpu->id_aa64dfr1 },
4799 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4801 .access = PL1_R, .type = ARM_CP_CONST,
4802 .resetvalue = 0 },
4803 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4805 .access = PL1_R, .type = ARM_CP_CONST,
4806 .resetvalue = 0 },
4807 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4809 .access = PL1_R, .type = ARM_CP_CONST,
4810 .resetvalue = cpu->id_aa64afr0 },
4811 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4813 .access = PL1_R, .type = ARM_CP_CONST,
4814 .resetvalue = cpu->id_aa64afr1 },
4815 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4817 .access = PL1_R, .type = ARM_CP_CONST,
4818 .resetvalue = 0 },
4819 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4821 .access = PL1_R, .type = ARM_CP_CONST,
4822 .resetvalue = 0 },
4823 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4825 .access = PL1_R, .type = ARM_CP_CONST,
4826 .resetvalue = cpu->id_aa64isar0 },
4827 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4829 .access = PL1_R, .type = ARM_CP_CONST,
4830 .resetvalue = cpu->id_aa64isar1 },
4831 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4833 .access = PL1_R, .type = ARM_CP_CONST,
4834 .resetvalue = 0 },
4835 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4837 .access = PL1_R, .type = ARM_CP_CONST,
4838 .resetvalue = 0 },
4839 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4841 .access = PL1_R, .type = ARM_CP_CONST,
4842 .resetvalue = 0 },
4843 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4845 .access = PL1_R, .type = ARM_CP_CONST,
4846 .resetvalue = 0 },
4847 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4849 .access = PL1_R, .type = ARM_CP_CONST,
4850 .resetvalue = 0 },
4851 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4853 .access = PL1_R, .type = ARM_CP_CONST,
4854 .resetvalue = 0 },
4855 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4857 .access = PL1_R, .type = ARM_CP_CONST,
4858 .resetvalue = cpu->id_aa64mmfr0 },
4859 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4861 .access = PL1_R, .type = ARM_CP_CONST,
4862 .resetvalue = cpu->id_aa64mmfr1 },
4863 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4865 .access = PL1_R, .type = ARM_CP_CONST,
4866 .resetvalue = 0 },
4867 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4869 .access = PL1_R, .type = ARM_CP_CONST,
4870 .resetvalue = 0 },
4871 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4873 .access = PL1_R, .type = ARM_CP_CONST,
4874 .resetvalue = 0 },
4875 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4877 .access = PL1_R, .type = ARM_CP_CONST,
4878 .resetvalue = 0 },
4879 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4881 .access = PL1_R, .type = ARM_CP_CONST,
4882 .resetvalue = 0 },
4883 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4885 .access = PL1_R, .type = ARM_CP_CONST,
4886 .resetvalue = 0 },
4887 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4889 .access = PL1_R, .type = ARM_CP_CONST,
4890 .resetvalue = cpu->mvfr0 },
4891 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4893 .access = PL1_R, .type = ARM_CP_CONST,
4894 .resetvalue = cpu->mvfr1 },
4895 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4897 .access = PL1_R, .type = ARM_CP_CONST,
4898 .resetvalue = cpu->mvfr2 },
4899 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4901 .access = PL1_R, .type = ARM_CP_CONST,
4902 .resetvalue = 0 },
4903 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4905 .access = PL1_R, .type = ARM_CP_CONST,
4906 .resetvalue = 0 },
4907 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4909 .access = PL1_R, .type = ARM_CP_CONST,
4910 .resetvalue = 0 },
4911 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4913 .access = PL1_R, .type = ARM_CP_CONST,
4914 .resetvalue = 0 },
4915 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4917 .access = PL1_R, .type = ARM_CP_CONST,
4918 .resetvalue = 0 },
4919 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4920 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4921 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4922 .resetvalue = cpu->pmceid0 },
4923 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4925 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4926 .resetvalue = cpu->pmceid0 },
4927 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4928 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4929 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4930 .resetvalue = cpu->pmceid1 },
4931 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4932 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4933 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4934 .resetvalue = cpu->pmceid1 },
4935 REGINFO_SENTINEL
4936 };
4937 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4938 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4939 !arm_feature(env, ARM_FEATURE_EL2)) {
4940 ARMCPRegInfo rvbar = {
4941 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4942 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4943 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4944 };
4945 define_one_arm_cp_reg(cpu, &rvbar);
4946 }
4947 define_arm_cp_regs(cpu, v8_idregs);
4948 define_arm_cp_regs(cpu, v8_cp_reginfo);
4949 }
4950 if (arm_feature(env, ARM_FEATURE_EL2)) {
4951 uint64_t vmpidr_def = mpidr_read_val(env);
4952 ARMCPRegInfo vpidr_regs[] = {
4953 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4954 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4955 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4956 .resetvalue = cpu->midr,
4957 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4958 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4960 .access = PL2_RW, .resetvalue = cpu->midr,
4961 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4962 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4963 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4964 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4965 .resetvalue = vmpidr_def,
4966 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4967 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4968 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4969 .access = PL2_RW,
4970 .resetvalue = vmpidr_def,
4971 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4972 REGINFO_SENTINEL
4973 };
4974 define_arm_cp_regs(cpu, vpidr_regs);
4975 define_arm_cp_regs(cpu, el2_cp_reginfo);
4976 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4977 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4978 ARMCPRegInfo rvbar = {
4979 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4980 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4981 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4982 };
4983 define_one_arm_cp_reg(cpu, &rvbar);
4984 }
4985 } else {
4986 /* If EL2 is missing but higher ELs are enabled, we need to
4987 * register the no_el2 reginfos.
4988 */
4989 if (arm_feature(env, ARM_FEATURE_EL3)) {
4990 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4991 * of MIDR_EL1 and MPIDR_EL1.
4992 */
4993 ARMCPRegInfo vpidr_regs[] = {
4994 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4995 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4996 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4997 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4998 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4999 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5000 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5001 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5002 .type = ARM_CP_NO_RAW,
5003 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5004 REGINFO_SENTINEL
5005 };
5006 define_arm_cp_regs(cpu, vpidr_regs);
5007 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5008 }
5009 }
5010 if (arm_feature(env, ARM_FEATURE_EL3)) {
5011 define_arm_cp_regs(cpu, el3_cp_reginfo);
5012 ARMCPRegInfo el3_regs[] = {
5013 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5015 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5016 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5017 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5018 .access = PL3_RW,
5019 .raw_writefn = raw_write, .writefn = sctlr_write,
5020 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5021 .resetvalue = cpu->reset_sctlr },
5022 REGINFO_SENTINEL
5023 };
5024
5025 define_arm_cp_regs(cpu, el3_regs);
5026 }
5027 /* The behaviour of NSACR is sufficiently various that we don't
5028 * try to describe it in a single reginfo:
5029 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5030 * reads as constant 0xc00 from NS EL1 and NS EL2
5031 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5032 * if v7 without EL3, register doesn't exist
5033 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5034 */
5035 if (arm_feature(env, ARM_FEATURE_EL3)) {
5036 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5037 ARMCPRegInfo nsacr = {
5038 .name = "NSACR", .type = ARM_CP_CONST,
5039 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5040 .access = PL1_RW, .accessfn = nsacr_access,
5041 .resetvalue = 0xc00
5042 };
5043 define_one_arm_cp_reg(cpu, &nsacr);
5044 } else {
5045 ARMCPRegInfo nsacr = {
5046 .name = "NSACR",
5047 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5048 .access = PL3_RW | PL1_R,
5049 .resetvalue = 0,
5050 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5051 };
5052 define_one_arm_cp_reg(cpu, &nsacr);
5053 }
5054 } else {
5055 if (arm_feature(env, ARM_FEATURE_V8)) {
5056 ARMCPRegInfo nsacr = {
5057 .name = "NSACR", .type = ARM_CP_CONST,
5058 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5059 .access = PL1_R,
5060 .resetvalue = 0xc00
5061 };
5062 define_one_arm_cp_reg(cpu, &nsacr);
5063 }
5064 }
5065
5066 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5067 if (arm_feature(env, ARM_FEATURE_V6)) {
5068 /* PMSAv6 not implemented */
5069 assert(arm_feature(env, ARM_FEATURE_V7));
5070 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5071 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5072 } else {
5073 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5074 }
5075 } else {
5076 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5077 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5078 }
5079 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5080 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5081 }
5082 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5083 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5084 }
5085 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5086 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5087 }
5088 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5089 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5090 }
5091 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5092 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5093 }
5094 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5095 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5096 }
5097 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5098 define_arm_cp_regs(cpu, omap_cp_reginfo);
5099 }
5100 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5101 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5102 }
5103 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5104 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5105 }
5106 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5107 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5108 }
5109 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5110 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5111 }
5112 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5113 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5114 * be read-only (ie write causes UNDEF exception).
5115 */
5116 {
5117 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5118 /* Pre-v8 MIDR space.
5119 * Note that the MIDR isn't a simple constant register because
5120 * of the TI925 behaviour where writes to another register can
5121 * cause the MIDR value to change.
5122 *
5123 * Unimplemented registers in the c15 0 0 0 space default to
5124 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5125 * and friends override accordingly.
5126 */
5127 { .name = "MIDR",
5128 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5129 .access = PL1_R, .resetvalue = cpu->midr,
5130 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5131 .readfn = midr_read,
5132 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5133 .type = ARM_CP_OVERRIDE },
5134 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5135 { .name = "DUMMY",
5136 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5137 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5138 { .name = "DUMMY",
5139 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5140 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5141 { .name = "DUMMY",
5142 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5143 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5144 { .name = "DUMMY",
5145 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5146 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5147 { .name = "DUMMY",
5148 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5149 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5150 REGINFO_SENTINEL
5151 };
5152 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5153 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5155 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5156 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5157 .readfn = midr_read },
5158 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5159 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5160 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5161 .access = PL1_R, .resetvalue = cpu->midr },
5162 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5163 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5164 .access = PL1_R, .resetvalue = cpu->midr },
5165 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5167 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5168 REGINFO_SENTINEL
5169 };
5170 ARMCPRegInfo id_cp_reginfo[] = {
5171 /* These are common to v8 and pre-v8 */
5172 { .name = "CTR",
5173 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5174 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5175 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5176 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5177 .access = PL0_R, .accessfn = ctr_el0_access,
5178 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5179 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5180 { .name = "TCMTR",
5181 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5182 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5183 REGINFO_SENTINEL
5184 };
5185 /* TLBTR is specific to VMSA */
5186 ARMCPRegInfo id_tlbtr_reginfo = {
5187 .name = "TLBTR",
5188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5190 };
5191 /* MPUIR is specific to PMSA V6+ */
5192 ARMCPRegInfo id_mpuir_reginfo = {
5193 .name = "MPUIR",
5194 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5195 .access = PL1_R, .type = ARM_CP_CONST,
5196 .resetvalue = cpu->pmsav7_dregion << 8
5197 };
5198 ARMCPRegInfo crn0_wi_reginfo = {
5199 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5200 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5201 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5202 };
5203 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5204 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5205 ARMCPRegInfo *r;
5206 /* Register the blanket "writes ignored" value first to cover the
5207 * whole space. Then update the specific ID registers to allow write
5208 * access, so that they ignore writes rather than causing them to
5209 * UNDEF.
5210 */
5211 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5212 for (r = id_pre_v8_midr_cp_reginfo;
5213 r->type != ARM_CP_SENTINEL; r++) {
5214 r->access = PL1_RW;
5215 }
5216 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5217 r->access = PL1_RW;
5218 }
5219 id_tlbtr_reginfo.access = PL1_RW;
5220 id_tlbtr_reginfo.access = PL1_RW;
5221 }
5222 if (arm_feature(env, ARM_FEATURE_V8)) {
5223 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5224 } else {
5225 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5226 }
5227 define_arm_cp_regs(cpu, id_cp_reginfo);
5228 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5229 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5230 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5231 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5232 }
5233 }
5234
5235 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5236 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5237 }
5238
5239 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5240 ARMCPRegInfo auxcr_reginfo[] = {
5241 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5242 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5243 .access = PL1_RW, .type = ARM_CP_CONST,
5244 .resetvalue = cpu->reset_auxcr },
5245 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5246 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5247 .access = PL2_RW, .type = ARM_CP_CONST,
5248 .resetvalue = 0 },
5249 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5250 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5251 .access = PL3_RW, .type = ARM_CP_CONST,
5252 .resetvalue = 0 },
5253 REGINFO_SENTINEL
5254 };
5255 define_arm_cp_regs(cpu, auxcr_reginfo);
5256 }
5257
5258 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5259 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5260 /* 32 bit view is [31:18] 0...0 [43:32]. */
5261 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5262 | extract64(cpu->reset_cbar, 32, 12);
5263 ARMCPRegInfo cbar_reginfo[] = {
5264 { .name = "CBAR",
5265 .type = ARM_CP_CONST,
5266 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5267 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5268 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5269 .type = ARM_CP_CONST,
5270 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5271 .access = PL1_R, .resetvalue = cbar32 },
5272 REGINFO_SENTINEL
5273 };
5274 /* We don't implement a r/w 64 bit CBAR currently */
5275 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5276 define_arm_cp_regs(cpu, cbar_reginfo);
5277 } else {
5278 ARMCPRegInfo cbar = {
5279 .name = "CBAR",
5280 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5281 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5282 .fieldoffset = offsetof(CPUARMState,
5283 cp15.c15_config_base_address)
5284 };
5285 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5286 cbar.access = PL1_R;
5287 cbar.fieldoffset = 0;
5288 cbar.type = ARM_CP_CONST;
5289 }
5290 define_one_arm_cp_reg(cpu, &cbar);
5291 }
5292 }
5293
5294 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5295 ARMCPRegInfo vbar_cp_reginfo[] = {
5296 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5297 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5298 .access = PL1_RW, .writefn = vbar_write,
5299 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5300 offsetof(CPUARMState, cp15.vbar_ns) },
5301 .resetvalue = 0 },
5302 REGINFO_SENTINEL
5303 };
5304 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5305 }
5306
5307 /* Generic registers whose values depend on the implementation */
5308 {
5309 ARMCPRegInfo sctlr = {
5310 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5311 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5312 .access = PL1_RW,
5313 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5314 offsetof(CPUARMState, cp15.sctlr_ns) },
5315 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5316 .raw_writefn = raw_write,
5317 };
5318 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5319 /* Normally we would always end the TB on an SCTLR write, but Linux
5320 * arch/arm/mach-pxa/sleep.S expects two instructions following
5321 * an MMU enable to execute from cache. Imitate this behaviour.
5322 */
5323 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5324 }
5325 define_one_arm_cp_reg(cpu, &sctlr);
5326 }
5327 }
5328
5329 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5330 {
5331 CPUState *cs = CPU(cpu);
5332 CPUARMState *env = &cpu->env;
5333
5334 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5335 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5336 aarch64_fpu_gdb_set_reg,
5337 34, "aarch64-fpu.xml", 0);
5338 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5339 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5340 51, "arm-neon.xml", 0);
5341 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5342 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5343 35, "arm-vfp3.xml", 0);
5344 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5345 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5346 19, "arm-vfp.xml", 0);
5347 }
5348 }
5349
5350 /* Sort alphabetically by type name, except for "any". */
5351 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5352 {
5353 ObjectClass *class_a = (ObjectClass *)a;
5354 ObjectClass *class_b = (ObjectClass *)b;
5355 const char *name_a, *name_b;
5356
5357 name_a = object_class_get_name(class_a);
5358 name_b = object_class_get_name(class_b);
5359 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5360 return 1;
5361 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5362 return -1;
5363 } else {
5364 return strcmp(name_a, name_b);
5365 }
5366 }
5367
5368 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5369 {
5370 ObjectClass *oc = data;
5371 CPUListState *s = user_data;
5372 const char *typename;
5373 char *name;
5374
5375 typename = object_class_get_name(oc);
5376 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5377 (*s->cpu_fprintf)(s->file, " %s\n",
5378 name);
5379 g_free(name);
5380 }
5381
5382 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5383 {
5384 CPUListState s = {
5385 .file = f,
5386 .cpu_fprintf = cpu_fprintf,
5387 };
5388 GSList *list;
5389
5390 list = object_class_get_list(TYPE_ARM_CPU, false);
5391 list = g_slist_sort(list, arm_cpu_list_compare);
5392 (*cpu_fprintf)(f, "Available CPUs:\n");
5393 g_slist_foreach(list, arm_cpu_list_entry, &s);
5394 g_slist_free(list);
5395 #ifdef CONFIG_KVM
5396 /* The 'host' CPU type is dynamically registered only if KVM is
5397 * enabled, so we have to special-case it here:
5398 */
5399 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5400 #endif
5401 }
5402
5403 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5404 {
5405 ObjectClass *oc = data;
5406 CpuDefinitionInfoList **cpu_list = user_data;
5407 CpuDefinitionInfoList *entry;
5408 CpuDefinitionInfo *info;
5409 const char *typename;
5410
5411 typename = object_class_get_name(oc);
5412 info = g_malloc0(sizeof(*info));
5413 info->name = g_strndup(typename,
5414 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5415 info->q_typename = g_strdup(typename);
5416
5417 entry = g_malloc0(sizeof(*entry));
5418 entry->value = info;
5419 entry->next = *cpu_list;
5420 *cpu_list = entry;
5421 }
5422
5423 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5424 {
5425 CpuDefinitionInfoList *cpu_list = NULL;
5426 GSList *list;
5427
5428 list = object_class_get_list(TYPE_ARM_CPU, false);
5429 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5430 g_slist_free(list);
5431
5432 return cpu_list;
5433 }
5434
5435 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5436 void *opaque, int state, int secstate,
5437 int crm, int opc1, int opc2)
5438 {
5439 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5440 * add a single reginfo struct to the hash table.
5441 */
5442 uint32_t *key = g_new(uint32_t, 1);
5443 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5444 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5445 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5446
5447 /* Reset the secure state to the specific incoming state. This is
5448 * necessary as the register may have been defined with both states.
5449 */
5450 r2->secure = secstate;
5451
5452 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5453 /* Register is banked (using both entries in array).
5454 * Overwriting fieldoffset as the array is only used to define
5455 * banked registers but later only fieldoffset is used.
5456 */
5457 r2->fieldoffset = r->bank_fieldoffsets[ns];
5458 }
5459
5460 if (state == ARM_CP_STATE_AA32) {
5461 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5462 /* If the register is banked then we don't need to migrate or
5463 * reset the 32-bit instance in certain cases:
5464 *
5465 * 1) If the register has both 32-bit and 64-bit instances then we
5466 * can count on the 64-bit instance taking care of the
5467 * non-secure bank.
5468 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5469 * taking care of the secure bank. This requires that separate
5470 * 32 and 64-bit definitions are provided.
5471 */
5472 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5473 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5474 r2->type |= ARM_CP_ALIAS;
5475 }
5476 } else if ((secstate != r->secure) && !ns) {
5477 /* The register is not banked so we only want to allow migration of
5478 * the non-secure instance.
5479 */
5480 r2->type |= ARM_CP_ALIAS;
5481 }
5482
5483 if (r->state == ARM_CP_STATE_BOTH) {
5484 /* We assume it is a cp15 register if the .cp field is left unset.
5485 */
5486 if (r2->cp == 0) {
5487 r2->cp = 15;
5488 }
5489
5490 #ifdef HOST_WORDS_BIGENDIAN
5491 if (r2->fieldoffset) {
5492 r2->fieldoffset += sizeof(uint32_t);
5493 }
5494 #endif
5495 }
5496 }
5497 if (state == ARM_CP_STATE_AA64) {
5498 /* To allow abbreviation of ARMCPRegInfo
5499 * definitions, we treat cp == 0 as equivalent to
5500 * the value for "standard guest-visible sysreg".
5501 * STATE_BOTH definitions are also always "standard
5502 * sysreg" in their AArch64 view (the .cp value may
5503 * be non-zero for the benefit of the AArch32 view).
5504 */
5505 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5506 r2->cp = CP_REG_ARM64_SYSREG_CP;
5507 }
5508 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5509 r2->opc0, opc1, opc2);
5510 } else {
5511 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5512 }
5513 if (opaque) {
5514 r2->opaque = opaque;
5515 }
5516 /* reginfo passed to helpers is correct for the actual access,
5517 * and is never ARM_CP_STATE_BOTH:
5518 */
5519 r2->state = state;
5520 /* Make sure reginfo passed to helpers for wildcarded regs
5521 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5522 */
5523 r2->crm = crm;
5524 r2->opc1 = opc1;
5525 r2->opc2 = opc2;
5526 /* By convention, for wildcarded registers only the first
5527 * entry is used for migration; the others are marked as
5528 * ALIAS so we don't try to transfer the register
5529 * multiple times. Special registers (ie NOP/WFI) are
5530 * never migratable and not even raw-accessible.
5531 */
5532 if ((r->type & ARM_CP_SPECIAL)) {
5533 r2->type |= ARM_CP_NO_RAW;
5534 }
5535 if (((r->crm == CP_ANY) && crm != 0) ||
5536 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5537 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5538 r2->type |= ARM_CP_ALIAS;
5539 }
5540
5541 /* Check that raw accesses are either forbidden or handled. Note that
5542 * we can't assert this earlier because the setup of fieldoffset for
5543 * banked registers has to be done first.
5544 */
5545 if (!(r2->type & ARM_CP_NO_RAW)) {
5546 assert(!raw_accessors_invalid(r2));
5547 }
5548
5549 /* Overriding of an existing definition must be explicitly
5550 * requested.
5551 */
5552 if (!(r->type & ARM_CP_OVERRIDE)) {
5553 ARMCPRegInfo *oldreg;
5554 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5555 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5556 fprintf(stderr, "Register redefined: cp=%d %d bit "
5557 "crn=%d crm=%d opc1=%d opc2=%d, "
5558 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5559 r2->crn, r2->crm, r2->opc1, r2->opc2,
5560 oldreg->name, r2->name);
5561 g_assert_not_reached();
5562 }
5563 }
5564 g_hash_table_insert(cpu->cp_regs, key, r2);
5565 }
5566
5567
5568 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5569 const ARMCPRegInfo *r, void *opaque)
5570 {
5571 /* Define implementations of coprocessor registers.
5572 * We store these in a hashtable because typically
5573 * there are less than 150 registers in a space which
5574 * is 16*16*16*8*8 = 262144 in size.
5575 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5576 * If a register is defined twice then the second definition is
5577 * used, so this can be used to define some generic registers and
5578 * then override them with implementation specific variations.
5579 * At least one of the original and the second definition should
5580 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5581 * against accidental use.
5582 *
5583 * The state field defines whether the register is to be
5584 * visible in the AArch32 or AArch64 execution state. If the
5585 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5586 * reginfo structure for the AArch32 view, which sees the lower
5587 * 32 bits of the 64 bit register.
5588 *
5589 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5590 * be wildcarded. AArch64 registers are always considered to be 64
5591 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5592 * the register, if any.
5593 */
5594 int crm, opc1, opc2, state;
5595 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5596 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5597 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5598 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5599 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5600 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5601 /* 64 bit registers have only CRm and Opc1 fields */
5602 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5603 /* op0 only exists in the AArch64 encodings */
5604 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5605 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5606 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5607 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5608 * encodes a minimum access level for the register. We roll this
5609 * runtime check into our general permission check code, so check
5610 * here that the reginfo's specified permissions are strict enough
5611 * to encompass the generic architectural permission check.
5612 */
5613 if (r->state != ARM_CP_STATE_AA32) {
5614 int mask = 0;
5615 switch (r->opc1) {
5616 case 0: case 1: case 2:
5617 /* min_EL EL1 */
5618 mask = PL1_RW;
5619 break;
5620 case 3:
5621 /* min_EL EL0 */
5622 mask = PL0_RW;
5623 break;
5624 case 4:
5625 /* min_EL EL2 */
5626 mask = PL2_RW;
5627 break;
5628 case 5:
5629 /* unallocated encoding, so not possible */
5630 assert(false);
5631 break;
5632 case 6:
5633 /* min_EL EL3 */
5634 mask = PL3_RW;
5635 break;
5636 case 7:
5637 /* min_EL EL1, secure mode only (we don't check the latter) */
5638 mask = PL1_RW;
5639 break;
5640 default:
5641 /* broken reginfo with out-of-range opc1 */
5642 assert(false);
5643 break;
5644 }
5645 /* assert our permissions are not too lax (stricter is fine) */
5646 assert((r->access & ~mask) == 0);
5647 }
5648
5649 /* Check that the register definition has enough info to handle
5650 * reads and writes if they are permitted.
5651 */
5652 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5653 if (r->access & PL3_R) {
5654 assert((r->fieldoffset ||
5655 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5656 r->readfn);
5657 }
5658 if (r->access & PL3_W) {
5659 assert((r->fieldoffset ||
5660 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5661 r->writefn);
5662 }
5663 }
5664 /* Bad type field probably means missing sentinel at end of reg list */
5665 assert(cptype_valid(r->type));
5666 for (crm = crmmin; crm <= crmmax; crm++) {
5667 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5668 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5669 for (state = ARM_CP_STATE_AA32;
5670 state <= ARM_CP_STATE_AA64; state++) {
5671 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5672 continue;
5673 }
5674 if (state == ARM_CP_STATE_AA32) {
5675 /* Under AArch32 CP registers can be common
5676 * (same for secure and non-secure world) or banked.
5677 */
5678 switch (r->secure) {
5679 case ARM_CP_SECSTATE_S:
5680 case ARM_CP_SECSTATE_NS:
5681 add_cpreg_to_hashtable(cpu, r, opaque, state,
5682 r->secure, crm, opc1, opc2);
5683 break;
5684 default:
5685 add_cpreg_to_hashtable(cpu, r, opaque, state,
5686 ARM_CP_SECSTATE_S,
5687 crm, opc1, opc2);
5688 add_cpreg_to_hashtable(cpu, r, opaque, state,
5689 ARM_CP_SECSTATE_NS,
5690 crm, opc1, opc2);
5691 break;
5692 }
5693 } else {
5694 /* AArch64 registers get mapped to non-secure instance
5695 * of AArch32 */
5696 add_cpreg_to_hashtable(cpu, r, opaque, state,
5697 ARM_CP_SECSTATE_NS,
5698 crm, opc1, opc2);
5699 }
5700 }
5701 }
5702 }
5703 }
5704 }
5705
5706 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5707 const ARMCPRegInfo *regs, void *opaque)
5708 {
5709 /* Define a whole list of registers */
5710 const ARMCPRegInfo *r;
5711 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5712 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5713 }
5714 }
5715
5716 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5717 {
5718 return g_hash_table_lookup(cpregs, &encoded_cp);
5719 }
5720
5721 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5722 uint64_t value)
5723 {
5724 /* Helper coprocessor write function for write-ignore registers */
5725 }
5726
5727 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5728 {
5729 /* Helper coprocessor write function for read-as-zero registers */
5730 return 0;
5731 }
5732
5733 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5734 {
5735 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5736 }
5737
5738 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5739 {
5740 /* Return true if it is not valid for us to switch to
5741 * this CPU mode (ie all the UNPREDICTABLE cases in
5742 * the ARM ARM CPSRWriteByInstr pseudocode).
5743 */
5744
5745 /* Changes to or from Hyp via MSR and CPS are illegal. */
5746 if (write_type == CPSRWriteByInstr &&
5747 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5748 mode == ARM_CPU_MODE_HYP)) {
5749 return 1;
5750 }
5751
5752 switch (mode) {
5753 case ARM_CPU_MODE_USR:
5754 return 0;
5755 case ARM_CPU_MODE_SYS:
5756 case ARM_CPU_MODE_SVC:
5757 case ARM_CPU_MODE_ABT:
5758 case ARM_CPU_MODE_UND:
5759 case ARM_CPU_MODE_IRQ:
5760 case ARM_CPU_MODE_FIQ:
5761 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5762 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5763 */
5764 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5765 * and CPS are treated as illegal mode changes.
5766 */
5767 if (write_type == CPSRWriteByInstr &&
5768 (env->cp15.hcr_el2 & HCR_TGE) &&
5769 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5770 !arm_is_secure_below_el3(env)) {
5771 return 1;
5772 }
5773 return 0;
5774 case ARM_CPU_MODE_HYP:
5775 return !arm_feature(env, ARM_FEATURE_EL2)
5776 || arm_current_el(env) < 2 || arm_is_secure(env);
5777 case ARM_CPU_MODE_MON:
5778 return arm_current_el(env) < 3;
5779 default:
5780 return 1;
5781 }
5782 }
5783
5784 uint32_t cpsr_read(CPUARMState *env)
5785 {
5786 int ZF;
5787 ZF = (env->ZF == 0);
5788 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5789 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5790 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5791 | ((env->condexec_bits & 0xfc) << 8)
5792 | (env->GE << 16) | (env->daif & CPSR_AIF);
5793 }
5794
5795 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5796 CPSRWriteType write_type)
5797 {
5798 uint32_t changed_daif;
5799
5800 if (mask & CPSR_NZCV) {
5801 env->ZF = (~val) & CPSR_Z;
5802 env->NF = val;
5803 env->CF = (val >> 29) & 1;
5804 env->VF = (val << 3) & 0x80000000;
5805 }
5806 if (mask & CPSR_Q)
5807 env->QF = ((val & CPSR_Q) != 0);
5808 if (mask & CPSR_T)
5809 env->thumb = ((val & CPSR_T) != 0);
5810 if (mask & CPSR_IT_0_1) {
5811 env->condexec_bits &= ~3;
5812 env->condexec_bits |= (val >> 25) & 3;
5813 }
5814 if (mask & CPSR_IT_2_7) {
5815 env->condexec_bits &= 3;
5816 env->condexec_bits |= (val >> 8) & 0xfc;
5817 }
5818 if (mask & CPSR_GE) {
5819 env->GE = (val >> 16) & 0xf;
5820 }
5821
5822 /* In a V7 implementation that includes the security extensions but does
5823 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5824 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5825 * bits respectively.
5826 *
5827 * In a V8 implementation, it is permitted for privileged software to
5828 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5829 */
5830 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5831 arm_feature(env, ARM_FEATURE_EL3) &&
5832 !arm_feature(env, ARM_FEATURE_EL2) &&
5833 !arm_is_secure(env)) {
5834
5835 changed_daif = (env->daif ^ val) & mask;
5836
5837 if (changed_daif & CPSR_A) {
5838 /* Check to see if we are allowed to change the masking of async
5839 * abort exceptions from a non-secure state.
5840 */
5841 if (!(env->cp15.scr_el3 & SCR_AW)) {
5842 qemu_log_mask(LOG_GUEST_ERROR,
5843 "Ignoring attempt to switch CPSR_A flag from "
5844 "non-secure world with SCR.AW bit clear\n");
5845 mask &= ~CPSR_A;
5846 }
5847 }
5848
5849 if (changed_daif & CPSR_F) {
5850 /* Check to see if we are allowed to change the masking of FIQ
5851 * exceptions from a non-secure state.
5852 */
5853 if (!(env->cp15.scr_el3 & SCR_FW)) {
5854 qemu_log_mask(LOG_GUEST_ERROR,
5855 "Ignoring attempt to switch CPSR_F flag from "
5856 "non-secure world with SCR.FW bit clear\n");
5857 mask &= ~CPSR_F;
5858 }
5859
5860 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5861 * If this bit is set software is not allowed to mask
5862 * FIQs, but is allowed to set CPSR_F to 0.
5863 */
5864 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5865 (val & CPSR_F)) {
5866 qemu_log_mask(LOG_GUEST_ERROR,
5867 "Ignoring attempt to enable CPSR_F flag "
5868 "(non-maskable FIQ [NMFI] support enabled)\n");
5869 mask &= ~CPSR_F;
5870 }
5871 }
5872 }
5873
5874 env->daif &= ~(CPSR_AIF & mask);
5875 env->daif |= val & CPSR_AIF & mask;
5876
5877 if (write_type != CPSRWriteRaw &&
5878 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5879 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5880 /* Note that we can only get here in USR mode if this is a
5881 * gdb stub write; for this case we follow the architectural
5882 * behaviour for guest writes in USR mode of ignoring an attempt
5883 * to switch mode. (Those are caught by translate.c for writes
5884 * triggered by guest instructions.)
5885 */
5886 mask &= ~CPSR_M;
5887 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5888 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5889 * v7, and has defined behaviour in v8:
5890 * + leave CPSR.M untouched
5891 * + allow changes to the other CPSR fields
5892 * + set PSTATE.IL
5893 * For user changes via the GDB stub, we don't set PSTATE.IL,
5894 * as this would be unnecessarily harsh for a user error.
5895 */
5896 mask &= ~CPSR_M;
5897 if (write_type != CPSRWriteByGDBStub &&
5898 arm_feature(env, ARM_FEATURE_V8)) {
5899 mask |= CPSR_IL;
5900 val |= CPSR_IL;
5901 }
5902 } else {
5903 switch_mode(env, val & CPSR_M);
5904 }
5905 }
5906 mask &= ~CACHED_CPSR_BITS;
5907 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5908 }
5909
5910 /* Sign/zero extend */
5911 uint32_t HELPER(sxtb16)(uint32_t x)
5912 {
5913 uint32_t res;
5914 res = (uint16_t)(int8_t)x;
5915 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5916 return res;
5917 }
5918
5919 uint32_t HELPER(uxtb16)(uint32_t x)
5920 {
5921 uint32_t res;
5922 res = (uint16_t)(uint8_t)x;
5923 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5924 return res;
5925 }
5926
5927 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5928 {
5929 if (den == 0)
5930 return 0;
5931 if (num == INT_MIN && den == -1)
5932 return INT_MIN;
5933 return num / den;
5934 }
5935
5936 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5937 {
5938 if (den == 0)
5939 return 0;
5940 return num / den;
5941 }
5942
5943 uint32_t HELPER(rbit)(uint32_t x)
5944 {
5945 return revbit32(x);
5946 }
5947
5948 #if defined(CONFIG_USER_ONLY)
5949
5950 /* These should probably raise undefined insn exceptions. */
5951 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5952 {
5953 ARMCPU *cpu = arm_env_get_cpu(env);
5954
5955 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5956 }
5957
5958 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5959 {
5960 ARMCPU *cpu = arm_env_get_cpu(env);
5961
5962 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5963 return 0;
5964 }
5965
5966 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5967 {
5968 /* translate.c should never generate calls here in user-only mode */
5969 g_assert_not_reached();
5970 }
5971
5972 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5973 {
5974 /* translate.c should never generate calls here in user-only mode */
5975 g_assert_not_reached();
5976 }
5977
5978 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
5979 {
5980 /* The TT instructions can be used by unprivileged code, but in
5981 * user-only emulation we don't have the MPU.
5982 * Luckily since we know we are NonSecure unprivileged (and that in
5983 * turn means that the A flag wasn't specified), all the bits in the
5984 * register must be zero:
5985 * IREGION: 0 because IRVALID is 0
5986 * IRVALID: 0 because NS
5987 * S: 0 because NS
5988 * NSRW: 0 because NS
5989 * NSR: 0 because NS
5990 * RW: 0 because unpriv and A flag not set
5991 * R: 0 because unpriv and A flag not set
5992 * SRVALID: 0 because NS
5993 * MRVALID: 0 because unpriv and A flag not set
5994 * SREGION: 0 becaus SRVALID is 0
5995 * MREGION: 0 because MRVALID is 0
5996 */
5997 return 0;
5998 }
5999
6000 void switch_mode(CPUARMState *env, int mode)
6001 {
6002 ARMCPU *cpu = arm_env_get_cpu(env);
6003
6004 if (mode != ARM_CPU_MODE_USR) {
6005 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6006 }
6007 }
6008
6009 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6010 uint32_t cur_el, bool secure)
6011 {
6012 return 1;
6013 }
6014
6015 void aarch64_sync_64_to_32(CPUARMState *env)
6016 {
6017 g_assert_not_reached();
6018 }
6019
6020 #else
6021
6022 void switch_mode(CPUARMState *env, int mode)
6023 {
6024 int old_mode;
6025 int i;
6026
6027 old_mode = env->uncached_cpsr & CPSR_M;
6028 if (mode == old_mode)
6029 return;
6030
6031 if (old_mode == ARM_CPU_MODE_FIQ) {
6032 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6033 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6034 } else if (mode == ARM_CPU_MODE_FIQ) {
6035 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6036 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6037 }
6038
6039 i = bank_number(old_mode);
6040 env->banked_r13[i] = env->regs[13];
6041 env->banked_r14[i] = env->regs[14];
6042 env->banked_spsr[i] = env->spsr;
6043
6044 i = bank_number(mode);
6045 env->regs[13] = env->banked_r13[i];
6046 env->regs[14] = env->banked_r14[i];
6047 env->spsr = env->banked_spsr[i];
6048 }
6049
6050 /* Physical Interrupt Target EL Lookup Table
6051 *
6052 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6053 *
6054 * The below multi-dimensional table is used for looking up the target
6055 * exception level given numerous condition criteria. Specifically, the
6056 * target EL is based on SCR and HCR routing controls as well as the
6057 * currently executing EL and secure state.
6058 *
6059 * Dimensions:
6060 * target_el_table[2][2][2][2][2][4]
6061 * | | | | | +--- Current EL
6062 * | | | | +------ Non-secure(0)/Secure(1)
6063 * | | | +--------- HCR mask override
6064 * | | +------------ SCR exec state control
6065 * | +--------------- SCR mask override
6066 * +------------------ 32-bit(0)/64-bit(1) EL3
6067 *
6068 * The table values are as such:
6069 * 0-3 = EL0-EL3
6070 * -1 = Cannot occur
6071 *
6072 * The ARM ARM target EL table includes entries indicating that an "exception
6073 * is not taken". The two cases where this is applicable are:
6074 * 1) An exception is taken from EL3 but the SCR does not have the exception
6075 * routed to EL3.
6076 * 2) An exception is taken from EL2 but the HCR does not have the exception
6077 * routed to EL2.
6078 * In these two cases, the below table contain a target of EL1. This value is
6079 * returned as it is expected that the consumer of the table data will check
6080 * for "target EL >= current EL" to ensure the exception is not taken.
6081 *
6082 * SCR HCR
6083 * 64 EA AMO From
6084 * BIT IRQ IMO Non-secure Secure
6085 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6086 */
6087 static const int8_t target_el_table[2][2][2][2][2][4] = {
6088 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6089 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6090 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6091 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6092 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6093 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6094 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6095 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6096 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6097 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6098 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6099 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6100 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6101 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6102 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6103 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6104 };
6105
6106 /*
6107 * Determine the target EL for physical exceptions
6108 */
6109 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6110 uint32_t cur_el, bool secure)
6111 {
6112 CPUARMState *env = cs->env_ptr;
6113 int rw;
6114 int scr;
6115 int hcr;
6116 int target_el;
6117 /* Is the highest EL AArch64? */
6118 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6119
6120 if (arm_feature(env, ARM_FEATURE_EL3)) {
6121 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6122 } else {
6123 /* Either EL2 is the highest EL (and so the EL2 register width
6124 * is given by is64); or there is no EL2 or EL3, in which case
6125 * the value of 'rw' does not affect the table lookup anyway.
6126 */
6127 rw = is64;
6128 }
6129
6130 switch (excp_idx) {
6131 case EXCP_IRQ:
6132 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6133 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6134 break;
6135 case EXCP_FIQ:
6136 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6137 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6138 break;
6139 default:
6140 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6141 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6142 break;
6143 };
6144
6145 /* If HCR.TGE is set then HCR is treated as being 1 */
6146 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6147
6148 /* Perform a table-lookup for the target EL given the current state */
6149 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6150
6151 assert(target_el > 0);
6152
6153 return target_el;
6154 }
6155
6156 static void v7m_push(CPUARMState *env, uint32_t val)
6157 {
6158 CPUState *cs = CPU(arm_env_get_cpu(env));
6159
6160 env->regs[13] -= 4;
6161 stl_phys(cs->as, env->regs[13], val);
6162 }
6163
6164 /* Return true if we're using the process stack pointer (not the MSP) */
6165 static bool v7m_using_psp(CPUARMState *env)
6166 {
6167 /* Handler mode always uses the main stack; for thread mode
6168 * the CONTROL.SPSEL bit determines the answer.
6169 * Note that in v7M it is not possible to be in Handler mode with
6170 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6171 */
6172 return !arm_v7m_is_handler_mode(env) &&
6173 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6174 }
6175
6176 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6177 * This may change the current stack pointer between Main and Process
6178 * stack pointers if it is done for the CONTROL register for the current
6179 * security state.
6180 */
6181 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6182 bool new_spsel,
6183 bool secstate)
6184 {
6185 bool old_is_psp = v7m_using_psp(env);
6186
6187 env->v7m.control[secstate] =
6188 deposit32(env->v7m.control[secstate],
6189 R_V7M_CONTROL_SPSEL_SHIFT,
6190 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6191
6192 if (secstate == env->v7m.secure) {
6193 bool new_is_psp = v7m_using_psp(env);
6194 uint32_t tmp;
6195
6196 if (old_is_psp != new_is_psp) {
6197 tmp = env->v7m.other_sp;
6198 env->v7m.other_sp = env->regs[13];
6199 env->regs[13] = tmp;
6200 }
6201 }
6202 }
6203
6204 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6205 * stack pointer between Main and Process stack pointers.
6206 */
6207 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6208 {
6209 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6210 }
6211
6212 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6213 {
6214 /* Write a new value to v7m.exception, thus transitioning into or out
6215 * of Handler mode; this may result in a change of active stack pointer.
6216 */
6217 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6218 uint32_t tmp;
6219
6220 env->v7m.exception = new_exc;
6221
6222 new_is_psp = v7m_using_psp(env);
6223
6224 if (old_is_psp != new_is_psp) {
6225 tmp = env->v7m.other_sp;
6226 env->v7m.other_sp = env->regs[13];
6227 env->regs[13] = tmp;
6228 }
6229 }
6230
6231 /* Switch M profile security state between NS and S */
6232 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6233 {
6234 uint32_t new_ss_msp, new_ss_psp;
6235
6236 if (env->v7m.secure == new_secstate) {
6237 return;
6238 }
6239
6240 /* All the banked state is accessed by looking at env->v7m.secure
6241 * except for the stack pointer; rearrange the SP appropriately.
6242 */
6243 new_ss_msp = env->v7m.other_ss_msp;
6244 new_ss_psp = env->v7m.other_ss_psp;
6245
6246 if (v7m_using_psp(env)) {
6247 env->v7m.other_ss_psp = env->regs[13];
6248 env->v7m.other_ss_msp = env->v7m.other_sp;
6249 } else {
6250 env->v7m.other_ss_msp = env->regs[13];
6251 env->v7m.other_ss_psp = env->v7m.other_sp;
6252 }
6253
6254 env->v7m.secure = new_secstate;
6255
6256 if (v7m_using_psp(env)) {
6257 env->regs[13] = new_ss_psp;
6258 env->v7m.other_sp = new_ss_msp;
6259 } else {
6260 env->regs[13] = new_ss_msp;
6261 env->v7m.other_sp = new_ss_psp;
6262 }
6263 }
6264
6265 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6266 {
6267 /* Handle v7M BXNS:
6268 * - if the return value is a magic value, do exception return (like BX)
6269 * - otherwise bit 0 of the return value is the target security state
6270 */
6271 uint32_t min_magic;
6272
6273 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6274 /* Covers FNC_RETURN and EXC_RETURN magic */
6275 min_magic = FNC_RETURN_MIN_MAGIC;
6276 } else {
6277 /* EXC_RETURN magic only */
6278 min_magic = EXC_RETURN_MIN_MAGIC;
6279 }
6280
6281 if (dest >= min_magic) {
6282 /* This is an exception return magic value; put it where
6283 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6284 * Note that if we ever add gen_ss_advance() singlestep support to
6285 * M profile this should count as an "instruction execution complete"
6286 * event (compare gen_bx_excret_final_code()).
6287 */
6288 env->regs[15] = dest & ~1;
6289 env->thumb = dest & 1;
6290 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6291 /* notreached */
6292 }
6293
6294 /* translate.c should have made BXNS UNDEF unless we're secure */
6295 assert(env->v7m.secure);
6296
6297 switch_v7m_security_state(env, dest & 1);
6298 env->thumb = 1;
6299 env->regs[15] = dest & ~1;
6300 }
6301
6302 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6303 {
6304 /* Handle v7M BLXNS:
6305 * - bit 0 of the destination address is the target security state
6306 */
6307
6308 /* At this point regs[15] is the address just after the BLXNS */
6309 uint32_t nextinst = env->regs[15] | 1;
6310 uint32_t sp = env->regs[13] - 8;
6311 uint32_t saved_psr;
6312
6313 /* translate.c will have made BLXNS UNDEF unless we're secure */
6314 assert(env->v7m.secure);
6315
6316 if (dest & 1) {
6317 /* target is Secure, so this is just a normal BLX,
6318 * except that the low bit doesn't indicate Thumb/not.
6319 */
6320 env->regs[14] = nextinst;
6321 env->thumb = 1;
6322 env->regs[15] = dest & ~1;
6323 return;
6324 }
6325
6326 /* Target is non-secure: first push a stack frame */
6327 if (!QEMU_IS_ALIGNED(sp, 8)) {
6328 qemu_log_mask(LOG_GUEST_ERROR,
6329 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6330 }
6331
6332 saved_psr = env->v7m.exception;
6333 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6334 saved_psr |= XPSR_SFPA;
6335 }
6336
6337 /* Note that these stores can throw exceptions on MPU faults */
6338 cpu_stl_data(env, sp, nextinst);
6339 cpu_stl_data(env, sp + 4, saved_psr);
6340
6341 env->regs[13] = sp;
6342 env->regs[14] = 0xfeffffff;
6343 if (arm_v7m_is_handler_mode(env)) {
6344 /* Write a dummy value to IPSR, to avoid leaking the current secure
6345 * exception number to non-secure code. This is guaranteed not
6346 * to cause write_v7m_exception() to actually change stacks.
6347 */
6348 write_v7m_exception(env, 1);
6349 }
6350 switch_v7m_security_state(env, 0);
6351 env->thumb = 1;
6352 env->regs[15] = dest;
6353 }
6354
6355 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6356 bool spsel)
6357 {
6358 /* Return a pointer to the location where we currently store the
6359 * stack pointer for the requested security state and thread mode.
6360 * This pointer will become invalid if the CPU state is updated
6361 * such that the stack pointers are switched around (eg changing
6362 * the SPSEL control bit).
6363 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6364 * Unlike that pseudocode, we require the caller to pass us in the
6365 * SPSEL control bit value; this is because we also use this
6366 * function in handling of pushing of the callee-saves registers
6367 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6368 * and in the tailchain codepath the SPSEL bit comes from the exception
6369 * return magic LR value from the previous exception. The pseudocode
6370 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6371 * to make this utility function generic enough to do the job.
6372 */
6373 bool want_psp = threadmode && spsel;
6374
6375 if (secure == env->v7m.secure) {
6376 if (want_psp == v7m_using_psp(env)) {
6377 return &env->regs[13];
6378 } else {
6379 return &env->v7m.other_sp;
6380 }
6381 } else {
6382 if (want_psp) {
6383 return &env->v7m.other_ss_psp;
6384 } else {
6385 return &env->v7m.other_ss_msp;
6386 }
6387 }
6388 }
6389
6390 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6391 {
6392 CPUState *cs = CPU(cpu);
6393 CPUARMState *env = &cpu->env;
6394 MemTxResult result;
6395 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6396 uint32_t addr;
6397
6398 addr = address_space_ldl(cs->as, vec,
6399 MEMTXATTRS_UNSPECIFIED, &result);
6400 if (result != MEMTX_OK) {
6401 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6402 * which would then be immediately followed by our failing to load
6403 * the entry vector for that HardFault, which is a Lockup case.
6404 * Since we don't model Lockup, we just report this guest error
6405 * via cpu_abort().
6406 */
6407 cpu_abort(cs, "Failed to read from %s exception vector table "
6408 "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6409 (unsigned)vec);
6410 }
6411 return addr;
6412 }
6413
6414 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6415 {
6416 /* For v8M, push the callee-saves register part of the stack frame.
6417 * Compare the v8M pseudocode PushCalleeStack().
6418 * In the tailchaining case this may not be the current stack.
6419 */
6420 CPUARMState *env = &cpu->env;
6421 CPUState *cs = CPU(cpu);
6422 uint32_t *frame_sp_p;
6423 uint32_t frameptr;
6424
6425 if (dotailchain) {
6426 frame_sp_p = get_v7m_sp_ptr(env, true,
6427 lr & R_V7M_EXCRET_MODE_MASK,
6428 lr & R_V7M_EXCRET_SPSEL_MASK);
6429 } else {
6430 frame_sp_p = &env->regs[13];
6431 }
6432
6433 frameptr = *frame_sp_p - 0x28;
6434
6435 stl_phys(cs->as, frameptr, 0xfefa125b);
6436 stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6437 stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6438 stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6439 stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6440 stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6441 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6442 stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6443 stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6444
6445 *frame_sp_p = frameptr;
6446 }
6447
6448 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6449 {
6450 /* Do the "take the exception" parts of exception entry,
6451 * but not the pushing of state to the stack. This is
6452 * similar to the pseudocode ExceptionTaken() function.
6453 */
6454 CPUARMState *env = &cpu->env;
6455 uint32_t addr;
6456 bool targets_secure;
6457
6458 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6459
6460 if (arm_feature(env, ARM_FEATURE_V8)) {
6461 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6462 (lr & R_V7M_EXCRET_S_MASK)) {
6463 /* The background code (the owner of the registers in the
6464 * exception frame) is Secure. This means it may either already
6465 * have or now needs to push callee-saves registers.
6466 */
6467 if (targets_secure) {
6468 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6469 /* We took an exception from Secure to NonSecure
6470 * (which means the callee-saved registers got stacked)
6471 * and are now tailchaining to a Secure exception.
6472 * Clear DCRS so eventual return from this Secure
6473 * exception unstacks the callee-saved registers.
6474 */
6475 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6476 }
6477 } else {
6478 /* We're going to a non-secure exception; push the
6479 * callee-saves registers to the stack now, if they're
6480 * not already saved.
6481 */
6482 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6483 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6484 v7m_push_callee_stack(cpu, lr, dotailchain);
6485 }
6486 lr |= R_V7M_EXCRET_DCRS_MASK;
6487 }
6488 }
6489
6490 lr &= ~R_V7M_EXCRET_ES_MASK;
6491 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6492 lr |= R_V7M_EXCRET_ES_MASK;
6493 }
6494 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6495 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6496 lr |= R_V7M_EXCRET_SPSEL_MASK;
6497 }
6498
6499 /* Clear registers if necessary to prevent non-secure exception
6500 * code being able to see register values from secure code.
6501 * Where register values become architecturally UNKNOWN we leave
6502 * them with their previous values.
6503 */
6504 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6505 if (!targets_secure) {
6506 /* Always clear the caller-saved registers (they have been
6507 * pushed to the stack earlier in v7m_push_stack()).
6508 * Clear callee-saved registers if the background code is
6509 * Secure (in which case these regs were saved in
6510 * v7m_push_callee_stack()).
6511 */
6512 int i;
6513
6514 for (i = 0; i < 13; i++) {
6515 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6516 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6517 env->regs[i] = 0;
6518 }
6519 }
6520 /* Clear EAPSR */
6521 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6522 }
6523 }
6524 }
6525
6526 /* Switch to target security state -- must do this before writing SPSEL */
6527 switch_v7m_security_state(env, targets_secure);
6528 write_v7m_control_spsel(env, 0);
6529 arm_clear_exclusive(env);
6530 /* Clear IT bits */
6531 env->condexec_bits = 0;
6532 env->regs[14] = lr;
6533 addr = arm_v7m_load_vector(cpu, targets_secure);
6534 env->regs[15] = addr & 0xfffffffe;
6535 env->thumb = addr & 1;
6536 }
6537
6538 static void v7m_push_stack(ARMCPU *cpu)
6539 {
6540 /* Do the "set up stack frame" part of exception entry,
6541 * similar to pseudocode PushStack().
6542 */
6543 CPUARMState *env = &cpu->env;
6544 uint32_t xpsr = xpsr_read(env);
6545
6546 /* Align stack pointer if the guest wants that */
6547 if ((env->regs[13] & 4) &&
6548 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6549 env->regs[13] -= 4;
6550 xpsr |= XPSR_SPREALIGN;
6551 }
6552 /* Switch to the handler mode. */
6553 v7m_push(env, xpsr);
6554 v7m_push(env, env->regs[15]);
6555 v7m_push(env, env->regs[14]);
6556 v7m_push(env, env->regs[12]);
6557 v7m_push(env, env->regs[3]);
6558 v7m_push(env, env->regs[2]);
6559 v7m_push(env, env->regs[1]);
6560 v7m_push(env, env->regs[0]);
6561 }
6562
6563 static void do_v7m_exception_exit(ARMCPU *cpu)
6564 {
6565 CPUARMState *env = &cpu->env;
6566 CPUState *cs = CPU(cpu);
6567 uint32_t excret;
6568 uint32_t xpsr;
6569 bool ufault = false;
6570 bool sfault = false;
6571 bool return_to_sp_process;
6572 bool return_to_handler;
6573 bool rettobase = false;
6574 bool exc_secure = false;
6575 bool return_to_secure;
6576
6577 /* If we're not in Handler mode then jumps to magic exception-exit
6578 * addresses don't have magic behaviour. However for the v8M
6579 * security extensions the magic secure-function-return has to
6580 * work in thread mode too, so to avoid doing an extra check in
6581 * the generated code we allow exception-exit magic to also cause the
6582 * internal exception and bring us here in thread mode. Correct code
6583 * will never try to do this (the following insn fetch will always
6584 * fault) so we the overhead of having taken an unnecessary exception
6585 * doesn't matter.
6586 */
6587 if (!arm_v7m_is_handler_mode(env)) {
6588 return;
6589 }
6590
6591 /* In the spec pseudocode ExceptionReturn() is called directly
6592 * from BXWritePC() and gets the full target PC value including
6593 * bit zero. In QEMU's implementation we treat it as a normal
6594 * jump-to-register (which is then caught later on), and so split
6595 * the target value up between env->regs[15] and env->thumb in
6596 * gen_bx(). Reconstitute it.
6597 */
6598 excret = env->regs[15];
6599 if (env->thumb) {
6600 excret |= 1;
6601 }
6602
6603 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6604 " previous exception %d\n",
6605 excret, env->v7m.exception);
6606
6607 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6608 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6609 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6610 excret);
6611 }
6612
6613 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6614 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6615 * we pick which FAULTMASK to clear.
6616 */
6617 if (!env->v7m.secure &&
6618 ((excret & R_V7M_EXCRET_ES_MASK) ||
6619 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6620 sfault = 1;
6621 /* For all other purposes, treat ES as 0 (R_HXSR) */
6622 excret &= ~R_V7M_EXCRET_ES_MASK;
6623 }
6624 }
6625
6626 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6627 /* Auto-clear FAULTMASK on return from other than NMI.
6628 * If the security extension is implemented then this only
6629 * happens if the raw execution priority is >= 0; the
6630 * value of the ES bit in the exception return value indicates
6631 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6632 */
6633 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6634 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6635 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6636 env->v7m.faultmask[exc_secure] = 0;
6637 }
6638 } else {
6639 env->v7m.faultmask[M_REG_NS] = 0;
6640 }
6641 }
6642
6643 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6644 exc_secure)) {
6645 case -1:
6646 /* attempt to exit an exception that isn't active */
6647 ufault = true;
6648 break;
6649 case 0:
6650 /* still an irq active now */
6651 break;
6652 case 1:
6653 /* we returned to base exception level, no nesting.
6654 * (In the pseudocode this is written using "NestedActivation != 1"
6655 * where we have 'rettobase == false'.)
6656 */
6657 rettobase = true;
6658 break;
6659 default:
6660 g_assert_not_reached();
6661 }
6662
6663 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6664 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6665 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6666 (excret & R_V7M_EXCRET_S_MASK);
6667
6668 if (arm_feature(env, ARM_FEATURE_V8)) {
6669 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6670 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6671 * we choose to take the UsageFault.
6672 */
6673 if ((excret & R_V7M_EXCRET_S_MASK) ||
6674 (excret & R_V7M_EXCRET_ES_MASK) ||
6675 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6676 ufault = true;
6677 }
6678 }
6679 if (excret & R_V7M_EXCRET_RES0_MASK) {
6680 ufault = true;
6681 }
6682 } else {
6683 /* For v7M we only recognize certain combinations of the low bits */
6684 switch (excret & 0xf) {
6685 case 1: /* Return to Handler */
6686 break;
6687 case 13: /* Return to Thread using Process stack */
6688 case 9: /* Return to Thread using Main stack */
6689 /* We only need to check NONBASETHRDENA for v7M, because in
6690 * v8M this bit does not exist (it is RES1).
6691 */
6692 if (!rettobase &&
6693 !(env->v7m.ccr[env->v7m.secure] &
6694 R_V7M_CCR_NONBASETHRDENA_MASK)) {
6695 ufault = true;
6696 }
6697 break;
6698 default:
6699 ufault = true;
6700 }
6701 }
6702
6703 if (sfault) {
6704 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6705 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6706 v7m_exception_taken(cpu, excret, true);
6707 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6708 "stackframe: failed EXC_RETURN.ES validity check\n");
6709 return;
6710 }
6711
6712 if (ufault) {
6713 /* Bad exception return: instead of popping the exception
6714 * stack, directly take a usage fault on the current stack.
6715 */
6716 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6717 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6718 v7m_exception_taken(cpu, excret, true);
6719 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6720 "stackframe: failed exception return integrity check\n");
6721 return;
6722 }
6723
6724 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6725 * Handler mode (and will be until we write the new XPSR.Interrupt
6726 * field) this does not switch around the current stack pointer.
6727 */
6728 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6729
6730 switch_v7m_security_state(env, return_to_secure);
6731
6732 {
6733 /* The stack pointer we should be reading the exception frame from
6734 * depends on bits in the magic exception return type value (and
6735 * for v8M isn't necessarily the stack pointer we will eventually
6736 * end up resuming execution with). Get a pointer to the location
6737 * in the CPU state struct where the SP we need is currently being
6738 * stored; we will use and modify it in place.
6739 * We use this limited C variable scope so we don't accidentally
6740 * use 'frame_sp_p' after we do something that makes it invalid.
6741 */
6742 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6743 return_to_secure,
6744 !return_to_handler,
6745 return_to_sp_process);
6746 uint32_t frameptr = *frame_sp_p;
6747
6748 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6749 arm_feature(env, ARM_FEATURE_V8)) {
6750 qemu_log_mask(LOG_GUEST_ERROR,
6751 "M profile exception return with non-8-aligned SP "
6752 "for destination state is UNPREDICTABLE\n");
6753 }
6754
6755 /* Do we need to pop callee-saved registers? */
6756 if (return_to_secure &&
6757 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6758 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6759 uint32_t expected_sig = 0xfefa125b;
6760 uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6761
6762 if (expected_sig != actual_sig) {
6763 /* Take a SecureFault on the current stack */
6764 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6765 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6766 v7m_exception_taken(cpu, excret, true);
6767 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6768 "stackframe: failed exception return integrity "
6769 "signature check\n");
6770 return;
6771 }
6772
6773 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6774 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6775 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6776 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6777 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6778 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6779 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6780 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6781
6782 frameptr += 0x28;
6783 }
6784
6785 /* Pop registers. TODO: make these accesses use the correct
6786 * attributes and address space (S/NS, priv/unpriv) and handle
6787 * memory transaction failures.
6788 */
6789 env->regs[0] = ldl_phys(cs->as, frameptr);
6790 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6791 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6792 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6793 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6794 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6795 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6796
6797 /* Returning from an exception with a PC with bit 0 set is defined
6798 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6799 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6800 * the lsbit, and there are several RTOSes out there which incorrectly
6801 * assume the r15 in the stack frame should be a Thumb-style "lsbit
6802 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6803 * complain about the badly behaved guest.
6804 */
6805 if (env->regs[15] & 1) {
6806 env->regs[15] &= ~1U;
6807 if (!arm_feature(env, ARM_FEATURE_V8)) {
6808 qemu_log_mask(LOG_GUEST_ERROR,
6809 "M profile return from interrupt with misaligned "
6810 "PC is UNPREDICTABLE on v7M\n");
6811 }
6812 }
6813
6814 xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6815
6816 if (arm_feature(env, ARM_FEATURE_V8)) {
6817 /* For v8M we have to check whether the xPSR exception field
6818 * matches the EXCRET value for return to handler/thread
6819 * before we commit to changing the SP and xPSR.
6820 */
6821 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6822 if (return_to_handler != will_be_handler) {
6823 /* Take an INVPC UsageFault on the current stack.
6824 * By this point we will have switched to the security state
6825 * for the background state, so this UsageFault will target
6826 * that state.
6827 */
6828 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6829 env->v7m.secure);
6830 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6831 v7m_exception_taken(cpu, excret, true);
6832 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6833 "stackframe: failed exception return integrity "
6834 "check\n");
6835 return;
6836 }
6837 }
6838
6839 /* Commit to consuming the stack frame */
6840 frameptr += 0x20;
6841 /* Undo stack alignment (the SPREALIGN bit indicates that the original
6842 * pre-exception SP was not 8-aligned and we added a padding word to
6843 * align it, so we undo this by ORing in the bit that increases it
6844 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6845 * would work too but a logical OR is how the pseudocode specifies it.)
6846 */
6847 if (xpsr & XPSR_SPREALIGN) {
6848 frameptr |= 4;
6849 }
6850 *frame_sp_p = frameptr;
6851 }
6852 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6853 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6854
6855 /* The restored xPSR exception field will be zero if we're
6856 * resuming in Thread mode. If that doesn't match what the
6857 * exception return excret specified then this is a UsageFault.
6858 * v7M requires we make this check here; v8M did it earlier.
6859 */
6860 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6861 /* Take an INVPC UsageFault by pushing the stack again;
6862 * we know we're v7M so this is never a Secure UsageFault.
6863 */
6864 assert(!arm_feature(env, ARM_FEATURE_V8));
6865 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6866 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6867 v7m_push_stack(cpu);
6868 v7m_exception_taken(cpu, excret, false);
6869 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6870 "failed exception return integrity check\n");
6871 return;
6872 }
6873
6874 /* Otherwise, we have a successful exception exit. */
6875 arm_clear_exclusive(env);
6876 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6877 }
6878
6879 static bool do_v7m_function_return(ARMCPU *cpu)
6880 {
6881 /* v8M security extensions magic function return.
6882 * We may either:
6883 * (1) throw an exception (longjump)
6884 * (2) return true if we successfully handled the function return
6885 * (3) return false if we failed a consistency check and have
6886 * pended a UsageFault that needs to be taken now
6887 *
6888 * At this point the magic return value is split between env->regs[15]
6889 * and env->thumb. We don't bother to reconstitute it because we don't
6890 * need it (all values are handled the same way).
6891 */
6892 CPUARMState *env = &cpu->env;
6893 uint32_t newpc, newpsr, newpsr_exc;
6894
6895 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6896
6897 {
6898 bool threadmode, spsel;
6899 TCGMemOpIdx oi;
6900 ARMMMUIdx mmu_idx;
6901 uint32_t *frame_sp_p;
6902 uint32_t frameptr;
6903
6904 /* Pull the return address and IPSR from the Secure stack */
6905 threadmode = !arm_v7m_is_handler_mode(env);
6906 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6907
6908 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6909 frameptr = *frame_sp_p;
6910
6911 /* These loads may throw an exception (for MPU faults). We want to
6912 * do them as secure, so work out what MMU index that is.
6913 */
6914 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6915 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6916 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6917 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6918
6919 /* Consistency checks on new IPSR */
6920 newpsr_exc = newpsr & XPSR_EXCP;
6921 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6922 (env->v7m.exception == 1 && newpsr_exc != 0))) {
6923 /* Pend the fault and tell our caller to take it */
6924 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6925 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6926 env->v7m.secure);
6927 qemu_log_mask(CPU_LOG_INT,
6928 "...taking INVPC UsageFault: "
6929 "IPSR consistency check failed\n");
6930 return false;
6931 }
6932
6933 *frame_sp_p = frameptr + 8;
6934 }
6935
6936 /* This invalidates frame_sp_p */
6937 switch_v7m_security_state(env, true);
6938 env->v7m.exception = newpsr_exc;
6939 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6940 if (newpsr & XPSR_SFPA) {
6941 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6942 }
6943 xpsr_write(env, 0, XPSR_IT);
6944 env->thumb = newpc & 1;
6945 env->regs[15] = newpc & ~1;
6946
6947 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6948 return true;
6949 }
6950
6951 static void arm_log_exception(int idx)
6952 {
6953 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6954 const char *exc = NULL;
6955 static const char * const excnames[] = {
6956 [EXCP_UDEF] = "Undefined Instruction",
6957 [EXCP_SWI] = "SVC",
6958 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6959 [EXCP_DATA_ABORT] = "Data Abort",
6960 [EXCP_IRQ] = "IRQ",
6961 [EXCP_FIQ] = "FIQ",
6962 [EXCP_BKPT] = "Breakpoint",
6963 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6964 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6965 [EXCP_HVC] = "Hypervisor Call",
6966 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6967 [EXCP_SMC] = "Secure Monitor Call",
6968 [EXCP_VIRQ] = "Virtual IRQ",
6969 [EXCP_VFIQ] = "Virtual FIQ",
6970 [EXCP_SEMIHOST] = "Semihosting call",
6971 [EXCP_NOCP] = "v7M NOCP UsageFault",
6972 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6973 };
6974
6975 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6976 exc = excnames[idx];
6977 }
6978 if (!exc) {
6979 exc = "unknown";
6980 }
6981 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6982 }
6983 }
6984
6985 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6986 uint32_t addr, uint16_t *insn)
6987 {
6988 /* Load a 16-bit portion of a v7M instruction, returning true on success,
6989 * or false on failure (in which case we will have pended the appropriate
6990 * exception).
6991 * We need to do the instruction fetch's MPU and SAU checks
6992 * like this because there is no MMU index that would allow
6993 * doing the load with a single function call. Instead we must
6994 * first check that the security attributes permit the load
6995 * and that they don't mismatch on the two halves of the instruction,
6996 * and then we do the load as a secure load (ie using the security
6997 * attributes of the address, not the CPU, as architecturally required).
6998 */
6999 CPUState *cs = CPU(cpu);
7000 CPUARMState *env = &cpu->env;
7001 V8M_SAttributes sattrs = {};
7002 MemTxAttrs attrs = {};
7003 ARMMMUFaultInfo fi = {};
7004 MemTxResult txres;
7005 target_ulong page_size;
7006 hwaddr physaddr;
7007 int prot;
7008
7009 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7010 if (!sattrs.nsc || sattrs.ns) {
7011 /* This must be the second half of the insn, and it straddles a
7012 * region boundary with the second half not being S&NSC.
7013 */
7014 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7015 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7016 qemu_log_mask(CPU_LOG_INT,
7017 "...really SecureFault with SFSR.INVEP\n");
7018 return false;
7019 }
7020 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7021 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7022 /* the MPU lookup failed */
7023 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7024 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7025 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7026 return false;
7027 }
7028 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7029 attrs, &txres);
7030 if (txres != MEMTX_OK) {
7031 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7033 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7034 return false;
7035 }
7036 return true;
7037 }
7038
7039 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7040 {
7041 /* Check whether this attempt to execute code in a Secure & NS-Callable
7042 * memory region is for an SG instruction; if so, then emulate the
7043 * effect of the SG instruction and return true. Otherwise pend
7044 * the correct kind of exception and return false.
7045 */
7046 CPUARMState *env = &cpu->env;
7047 ARMMMUIdx mmu_idx;
7048 uint16_t insn;
7049
7050 /* We should never get here unless get_phys_addr_pmsav8() caused
7051 * an exception for NS executing in S&NSC memory.
7052 */
7053 assert(!env->v7m.secure);
7054 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7055
7056 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7057 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7058
7059 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7060 return false;
7061 }
7062
7063 if (!env->thumb) {
7064 goto gen_invep;
7065 }
7066
7067 if (insn != 0xe97f) {
7068 /* Not an SG instruction first half (we choose the IMPDEF
7069 * early-SG-check option).
7070 */
7071 goto gen_invep;
7072 }
7073
7074 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7075 return false;
7076 }
7077
7078 if (insn != 0xe97f) {
7079 /* Not an SG instruction second half (yes, both halves of the SG
7080 * insn have the same hex value)
7081 */
7082 goto gen_invep;
7083 }
7084
7085 /* OK, we have confirmed that we really have an SG instruction.
7086 * We know we're NS in S memory so don't need to repeat those checks.
7087 */
7088 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7089 ", executing it\n", env->regs[15]);
7090 env->regs[14] &= ~1;
7091 switch_v7m_security_state(env, true);
7092 xpsr_write(env, 0, XPSR_IT);
7093 env->regs[15] += 4;
7094 return true;
7095
7096 gen_invep:
7097 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7098 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7099 qemu_log_mask(CPU_LOG_INT,
7100 "...really SecureFault with SFSR.INVEP\n");
7101 return false;
7102 }
7103
7104 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7105 {
7106 ARMCPU *cpu = ARM_CPU(cs);
7107 CPUARMState *env = &cpu->env;
7108 uint32_t lr;
7109
7110 arm_log_exception(cs->exception_index);
7111
7112 /* For exceptions we just mark as pending on the NVIC, and let that
7113 handle it. */
7114 switch (cs->exception_index) {
7115 case EXCP_UDEF:
7116 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7117 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7118 break;
7119 case EXCP_NOCP:
7120 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7121 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7122 break;
7123 case EXCP_INVSTATE:
7124 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7125 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7126 break;
7127 case EXCP_SWI:
7128 /* The PC already points to the next instruction. */
7129 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7130 break;
7131 case EXCP_PREFETCH_ABORT:
7132 case EXCP_DATA_ABORT:
7133 /* Note that for M profile we don't have a guest facing FSR, but
7134 * the env->exception.fsr will be populated by the code that
7135 * raises the fault, in the A profile short-descriptor format.
7136 */
7137 switch (env->exception.fsr & 0xf) {
7138 case M_FAKE_FSR_NSC_EXEC:
7139 /* Exception generated when we try to execute code at an address
7140 * which is marked as Secure & Non-Secure Callable and the CPU
7141 * is in the Non-Secure state. The only instruction which can
7142 * be executed like this is SG (and that only if both halves of
7143 * the SG instruction have the same security attributes.)
7144 * Everything else must generate an INVEP SecureFault, so we
7145 * emulate the SG instruction here.
7146 */
7147 if (v7m_handle_execute_nsc(cpu)) {
7148 return;
7149 }
7150 break;
7151 case M_FAKE_FSR_SFAULT:
7152 /* Various flavours of SecureFault for attempts to execute or
7153 * access data in the wrong security state.
7154 */
7155 switch (cs->exception_index) {
7156 case EXCP_PREFETCH_ABORT:
7157 if (env->v7m.secure) {
7158 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7159 qemu_log_mask(CPU_LOG_INT,
7160 "...really SecureFault with SFSR.INVTRAN\n");
7161 } else {
7162 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7163 qemu_log_mask(CPU_LOG_INT,
7164 "...really SecureFault with SFSR.INVEP\n");
7165 }
7166 break;
7167 case EXCP_DATA_ABORT:
7168 /* This must be an NS access to S memory */
7169 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7170 qemu_log_mask(CPU_LOG_INT,
7171 "...really SecureFault with SFSR.AUVIOL\n");
7172 break;
7173 }
7174 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7175 break;
7176 case 0x8: /* External Abort */
7177 switch (cs->exception_index) {
7178 case EXCP_PREFETCH_ABORT:
7179 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7180 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7181 break;
7182 case EXCP_DATA_ABORT:
7183 env->v7m.cfsr[M_REG_NS] |=
7184 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7185 env->v7m.bfar = env->exception.vaddress;
7186 qemu_log_mask(CPU_LOG_INT,
7187 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7188 env->v7m.bfar);
7189 break;
7190 }
7191 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7192 break;
7193 default:
7194 /* All other FSR values are either MPU faults or "can't happen
7195 * for M profile" cases.
7196 */
7197 switch (cs->exception_index) {
7198 case EXCP_PREFETCH_ABORT:
7199 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7200 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7201 break;
7202 case EXCP_DATA_ABORT:
7203 env->v7m.cfsr[env->v7m.secure] |=
7204 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7205 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7206 qemu_log_mask(CPU_LOG_INT,
7207 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7208 env->v7m.mmfar[env->v7m.secure]);
7209 break;
7210 }
7211 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7212 env->v7m.secure);
7213 break;
7214 }
7215 break;
7216 case EXCP_BKPT:
7217 if (semihosting_enabled()) {
7218 int nr;
7219 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7220 if (nr == 0xab) {
7221 env->regs[15] += 2;
7222 qemu_log_mask(CPU_LOG_INT,
7223 "...handling as semihosting call 0x%x\n",
7224 env->regs[0]);
7225 env->regs[0] = do_arm_semihosting(env);
7226 return;
7227 }
7228 }
7229 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7230 break;
7231 case EXCP_IRQ:
7232 break;
7233 case EXCP_EXCEPTION_EXIT:
7234 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7235 /* Must be v8M security extension function return */
7236 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7237 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7238 if (do_v7m_function_return(cpu)) {
7239 return;
7240 }
7241 } else {
7242 do_v7m_exception_exit(cpu);
7243 return;
7244 }
7245 break;
7246 default:
7247 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7248 return; /* Never happens. Keep compiler happy. */
7249 }
7250
7251 if (arm_feature(env, ARM_FEATURE_V8)) {
7252 lr = R_V7M_EXCRET_RES1_MASK |
7253 R_V7M_EXCRET_DCRS_MASK |
7254 R_V7M_EXCRET_FTYPE_MASK;
7255 /* The S bit indicates whether we should return to Secure
7256 * or NonSecure (ie our current state).
7257 * The ES bit indicates whether we're taking this exception
7258 * to Secure or NonSecure (ie our target state). We set it
7259 * later, in v7m_exception_taken().
7260 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7261 * This corresponds to the ARM ARM pseudocode for v8M setting
7262 * some LR bits in PushStack() and some in ExceptionTaken();
7263 * the distinction matters for the tailchain cases where we
7264 * can take an exception without pushing the stack.
7265 */
7266 if (env->v7m.secure) {
7267 lr |= R_V7M_EXCRET_S_MASK;
7268 }
7269 } else {
7270 lr = R_V7M_EXCRET_RES1_MASK |
7271 R_V7M_EXCRET_S_MASK |
7272 R_V7M_EXCRET_DCRS_MASK |
7273 R_V7M_EXCRET_FTYPE_MASK |
7274 R_V7M_EXCRET_ES_MASK;
7275 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7276 lr |= R_V7M_EXCRET_SPSEL_MASK;
7277 }
7278 }
7279 if (!arm_v7m_is_handler_mode(env)) {
7280 lr |= R_V7M_EXCRET_MODE_MASK;
7281 }
7282
7283 v7m_push_stack(cpu);
7284 v7m_exception_taken(cpu, lr, false);
7285 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7286 }
7287
7288 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7289 * register set. This is necessary when switching between AArch32 and AArch64
7290 * execution state.
7291 */
7292 void aarch64_sync_32_to_64(CPUARMState *env)
7293 {
7294 int i;
7295 uint32_t mode = env->uncached_cpsr & CPSR_M;
7296
7297 /* We can blanket copy R[0:7] to X[0:7] */
7298 for (i = 0; i < 8; i++) {
7299 env->xregs[i] = env->regs[i];
7300 }
7301
7302 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7303 * Otherwise, they come from the banked user regs.
7304 */
7305 if (mode == ARM_CPU_MODE_FIQ) {
7306 for (i = 8; i < 13; i++) {
7307 env->xregs[i] = env->usr_regs[i - 8];
7308 }
7309 } else {
7310 for (i = 8; i < 13; i++) {
7311 env->xregs[i] = env->regs[i];
7312 }
7313 }
7314
7315 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7316 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7317 * from the mode banked register.
7318 */
7319 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7320 env->xregs[13] = env->regs[13];
7321 env->xregs[14] = env->regs[14];
7322 } else {
7323 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7324 /* HYP is an exception in that it is copied from r14 */
7325 if (mode == ARM_CPU_MODE_HYP) {
7326 env->xregs[14] = env->regs[14];
7327 } else {
7328 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7329 }
7330 }
7331
7332 if (mode == ARM_CPU_MODE_HYP) {
7333 env->xregs[15] = env->regs[13];
7334 } else {
7335 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7336 }
7337
7338 if (mode == ARM_CPU_MODE_IRQ) {
7339 env->xregs[16] = env->regs[14];
7340 env->xregs[17] = env->regs[13];
7341 } else {
7342 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7343 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7344 }
7345
7346 if (mode == ARM_CPU_MODE_SVC) {
7347 env->xregs[18] = env->regs[14];
7348 env->xregs[19] = env->regs[13];
7349 } else {
7350 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7351 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7352 }
7353
7354 if (mode == ARM_CPU_MODE_ABT) {
7355 env->xregs[20] = env->regs[14];
7356 env->xregs[21] = env->regs[13];
7357 } else {
7358 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7359 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7360 }
7361
7362 if (mode == ARM_CPU_MODE_UND) {
7363 env->xregs[22] = env->regs[14];
7364 env->xregs[23] = env->regs[13];
7365 } else {
7366 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7367 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7368 }
7369
7370 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7371 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7372 * FIQ bank for r8-r14.
7373 */
7374 if (mode == ARM_CPU_MODE_FIQ) {
7375 for (i = 24; i < 31; i++) {
7376 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7377 }
7378 } else {
7379 for (i = 24; i < 29; i++) {
7380 env->xregs[i] = env->fiq_regs[i - 24];
7381 }
7382 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7383 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7384 }
7385
7386 env->pc = env->regs[15];
7387 }
7388
7389 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7390 * register set. This is necessary when switching between AArch32 and AArch64
7391 * execution state.
7392 */
7393 void aarch64_sync_64_to_32(CPUARMState *env)
7394 {
7395 int i;
7396 uint32_t mode = env->uncached_cpsr & CPSR_M;
7397
7398 /* We can blanket copy X[0:7] to R[0:7] */
7399 for (i = 0; i < 8; i++) {
7400 env->regs[i] = env->xregs[i];
7401 }
7402
7403 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7404 * Otherwise, we copy x8-x12 into the banked user regs.
7405 */
7406 if (mode == ARM_CPU_MODE_FIQ) {
7407 for (i = 8; i < 13; i++) {
7408 env->usr_regs[i - 8] = env->xregs[i];
7409 }
7410 } else {
7411 for (i = 8; i < 13; i++) {
7412 env->regs[i] = env->xregs[i];
7413 }
7414 }
7415
7416 /* Registers r13 & r14 depend on the current mode.
7417 * If we are in a given mode, we copy the corresponding x registers to r13
7418 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7419 * for the mode.
7420 */
7421 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7422 env->regs[13] = env->xregs[13];
7423 env->regs[14] = env->xregs[14];
7424 } else {
7425 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7426
7427 /* HYP is an exception in that it does not have its own banked r14 but
7428 * shares the USR r14
7429 */
7430 if (mode == ARM_CPU_MODE_HYP) {
7431 env->regs[14] = env->xregs[14];
7432 } else {
7433 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7434 }
7435 }
7436
7437 if (mode == ARM_CPU_MODE_HYP) {
7438 env->regs[13] = env->xregs[15];
7439 } else {
7440 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7441 }
7442
7443 if (mode == ARM_CPU_MODE_IRQ) {
7444 env->regs[14] = env->xregs[16];
7445 env->regs[13] = env->xregs[17];
7446 } else {
7447 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7448 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7449 }
7450
7451 if (mode == ARM_CPU_MODE_SVC) {
7452 env->regs[14] = env->xregs[18];
7453 env->regs[13] = env->xregs[19];
7454 } else {
7455 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7456 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7457 }
7458
7459 if (mode == ARM_CPU_MODE_ABT) {
7460 env->regs[14] = env->xregs[20];
7461 env->regs[13] = env->xregs[21];
7462 } else {
7463 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7464 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7465 }
7466
7467 if (mode == ARM_CPU_MODE_UND) {
7468 env->regs[14] = env->xregs[22];
7469 env->regs[13] = env->xregs[23];
7470 } else {
7471 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7472 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7473 }
7474
7475 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7476 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7477 * FIQ bank for r8-r14.
7478 */
7479 if (mode == ARM_CPU_MODE_FIQ) {
7480 for (i = 24; i < 31; i++) {
7481 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7482 }
7483 } else {
7484 for (i = 24; i < 29; i++) {
7485 env->fiq_regs[i - 24] = env->xregs[i];
7486 }
7487 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7488 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7489 }
7490
7491 env->regs[15] = env->pc;
7492 }
7493
7494 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7495 {
7496 ARMCPU *cpu = ARM_CPU(cs);
7497 CPUARMState *env = &cpu->env;
7498 uint32_t addr;
7499 uint32_t mask;
7500 int new_mode;
7501 uint32_t offset;
7502 uint32_t moe;
7503
7504 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7505 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7506 case EC_BREAKPOINT:
7507 case EC_BREAKPOINT_SAME_EL:
7508 moe = 1;
7509 break;
7510 case EC_WATCHPOINT:
7511 case EC_WATCHPOINT_SAME_EL:
7512 moe = 10;
7513 break;
7514 case EC_AA32_BKPT:
7515 moe = 3;
7516 break;
7517 case EC_VECTORCATCH:
7518 moe = 5;
7519 break;
7520 default:
7521 moe = 0;
7522 break;
7523 }
7524
7525 if (moe) {
7526 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7527 }
7528
7529 /* TODO: Vectored interrupt controller. */
7530 switch (cs->exception_index) {
7531 case EXCP_UDEF:
7532 new_mode = ARM_CPU_MODE_UND;
7533 addr = 0x04;
7534 mask = CPSR_I;
7535 if (env->thumb)
7536 offset = 2;
7537 else
7538 offset = 4;
7539 break;
7540 case EXCP_SWI:
7541 new_mode = ARM_CPU_MODE_SVC;
7542 addr = 0x08;
7543 mask = CPSR_I;
7544 /* The PC already points to the next instruction. */
7545 offset = 0;
7546 break;
7547 case EXCP_BKPT:
7548 env->exception.fsr = 2;
7549 /* Fall through to prefetch abort. */
7550 case EXCP_PREFETCH_ABORT:
7551 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7552 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7553 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7554 env->exception.fsr, (uint32_t)env->exception.vaddress);
7555 new_mode = ARM_CPU_MODE_ABT;
7556 addr = 0x0c;
7557 mask = CPSR_A | CPSR_I;
7558 offset = 4;
7559 break;
7560 case EXCP_DATA_ABORT:
7561 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7562 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7563 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7564 env->exception.fsr,
7565 (uint32_t)env->exception.vaddress);
7566 new_mode = ARM_CPU_MODE_ABT;
7567 addr = 0x10;
7568 mask = CPSR_A | CPSR_I;
7569 offset = 8;
7570 break;
7571 case EXCP_IRQ:
7572 new_mode = ARM_CPU_MODE_IRQ;
7573 addr = 0x18;
7574 /* Disable IRQ and imprecise data aborts. */
7575 mask = CPSR_A | CPSR_I;
7576 offset = 4;
7577 if (env->cp15.scr_el3 & SCR_IRQ) {
7578 /* IRQ routed to monitor mode */
7579 new_mode = ARM_CPU_MODE_MON;
7580 mask |= CPSR_F;
7581 }
7582 break;
7583 case EXCP_FIQ:
7584 new_mode = ARM_CPU_MODE_FIQ;
7585 addr = 0x1c;
7586 /* Disable FIQ, IRQ and imprecise data aborts. */
7587 mask = CPSR_A | CPSR_I | CPSR_F;
7588 if (env->cp15.scr_el3 & SCR_FIQ) {
7589 /* FIQ routed to monitor mode */
7590 new_mode = ARM_CPU_MODE_MON;
7591 }
7592 offset = 4;
7593 break;
7594 case EXCP_VIRQ:
7595 new_mode = ARM_CPU_MODE_IRQ;
7596 addr = 0x18;
7597 /* Disable IRQ and imprecise data aborts. */
7598 mask = CPSR_A | CPSR_I;
7599 offset = 4;
7600 break;
7601 case EXCP_VFIQ:
7602 new_mode = ARM_CPU_MODE_FIQ;
7603 addr = 0x1c;
7604 /* Disable FIQ, IRQ and imprecise data aborts. */
7605 mask = CPSR_A | CPSR_I | CPSR_F;
7606 offset = 4;
7607 break;
7608 case EXCP_SMC:
7609 new_mode = ARM_CPU_MODE_MON;
7610 addr = 0x08;
7611 mask = CPSR_A | CPSR_I | CPSR_F;
7612 offset = 0;
7613 break;
7614 default:
7615 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7616 return; /* Never happens. Keep compiler happy. */
7617 }
7618
7619 if (new_mode == ARM_CPU_MODE_MON) {
7620 addr += env->cp15.mvbar;
7621 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7622 /* High vectors. When enabled, base address cannot be remapped. */
7623 addr += 0xffff0000;
7624 } else {
7625 /* ARM v7 architectures provide a vector base address register to remap
7626 * the interrupt vector table.
7627 * This register is only followed in non-monitor mode, and is banked.
7628 * Note: only bits 31:5 are valid.
7629 */
7630 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7631 }
7632
7633 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7634 env->cp15.scr_el3 &= ~SCR_NS;
7635 }
7636
7637 switch_mode (env, new_mode);
7638 /* For exceptions taken to AArch32 we must clear the SS bit in both
7639 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7640 */
7641 env->uncached_cpsr &= ~PSTATE_SS;
7642 env->spsr = cpsr_read(env);
7643 /* Clear IT bits. */
7644 env->condexec_bits = 0;
7645 /* Switch to the new mode, and to the correct instruction set. */
7646 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7647 /* Set new mode endianness */
7648 env->uncached_cpsr &= ~CPSR_E;
7649 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7650 env->uncached_cpsr |= CPSR_E;
7651 }
7652 env->daif |= mask;
7653 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7654 * and we should just guard the thumb mode on V4 */
7655 if (arm_feature(env, ARM_FEATURE_V4T)) {
7656 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7657 }
7658 env->regs[14] = env->regs[15] + offset;
7659 env->regs[15] = addr;
7660 }
7661
7662 /* Handle exception entry to a target EL which is using AArch64 */
7663 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7664 {
7665 ARMCPU *cpu = ARM_CPU(cs);
7666 CPUARMState *env = &cpu->env;
7667 unsigned int new_el = env->exception.target_el;
7668 target_ulong addr = env->cp15.vbar_el[new_el];
7669 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7670
7671 if (arm_current_el(env) < new_el) {
7672 /* Entry vector offset depends on whether the implemented EL
7673 * immediately lower than the target level is using AArch32 or AArch64
7674 */
7675 bool is_aa64;
7676
7677 switch (new_el) {
7678 case 3:
7679 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7680 break;
7681 case 2:
7682 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7683 break;
7684 case 1:
7685 is_aa64 = is_a64(env);
7686 break;
7687 default:
7688 g_assert_not_reached();
7689 }
7690
7691 if (is_aa64) {
7692 addr += 0x400;
7693 } else {
7694 addr += 0x600;
7695 }
7696 } else if (pstate_read(env) & PSTATE_SP) {
7697 addr += 0x200;
7698 }
7699
7700 switch (cs->exception_index) {
7701 case EXCP_PREFETCH_ABORT:
7702 case EXCP_DATA_ABORT:
7703 env->cp15.far_el[new_el] = env->exception.vaddress;
7704 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7705 env->cp15.far_el[new_el]);
7706 /* fall through */
7707 case EXCP_BKPT:
7708 case EXCP_UDEF:
7709 case EXCP_SWI:
7710 case EXCP_HVC:
7711 case EXCP_HYP_TRAP:
7712 case EXCP_SMC:
7713 env->cp15.esr_el[new_el] = env->exception.syndrome;
7714 break;
7715 case EXCP_IRQ:
7716 case EXCP_VIRQ:
7717 addr += 0x80;
7718 break;
7719 case EXCP_FIQ:
7720 case EXCP_VFIQ:
7721 addr += 0x100;
7722 break;
7723 case EXCP_SEMIHOST:
7724 qemu_log_mask(CPU_LOG_INT,
7725 "...handling as semihosting call 0x%" PRIx64 "\n",
7726 env->xregs[0]);
7727 env->xregs[0] = do_arm_semihosting(env);
7728 return;
7729 default:
7730 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7731 }
7732
7733 if (is_a64(env)) {
7734 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7735 aarch64_save_sp(env, arm_current_el(env));
7736 env->elr_el[new_el] = env->pc;
7737 } else {
7738 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7739 env->elr_el[new_el] = env->regs[15];
7740
7741 aarch64_sync_32_to_64(env);
7742
7743 env->condexec_bits = 0;
7744 }
7745 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7746 env->elr_el[new_el]);
7747
7748 pstate_write(env, PSTATE_DAIF | new_mode);
7749 env->aarch64 = 1;
7750 aarch64_restore_sp(env, new_el);
7751
7752 env->pc = addr;
7753
7754 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7755 new_el, env->pc, pstate_read(env));
7756 }
7757
7758 static inline bool check_for_semihosting(CPUState *cs)
7759 {
7760 /* Check whether this exception is a semihosting call; if so
7761 * then handle it and return true; otherwise return false.
7762 */
7763 ARMCPU *cpu = ARM_CPU(cs);
7764 CPUARMState *env = &cpu->env;
7765
7766 if (is_a64(env)) {
7767 if (cs->exception_index == EXCP_SEMIHOST) {
7768 /* This is always the 64-bit semihosting exception.
7769 * The "is this usermode" and "is semihosting enabled"
7770 * checks have been done at translate time.
7771 */
7772 qemu_log_mask(CPU_LOG_INT,
7773 "...handling as semihosting call 0x%" PRIx64 "\n",
7774 env->xregs[0]);
7775 env->xregs[0] = do_arm_semihosting(env);
7776 return true;
7777 }
7778 return false;
7779 } else {
7780 uint32_t imm;
7781
7782 /* Only intercept calls from privileged modes, to provide some
7783 * semblance of security.
7784 */
7785 if (cs->exception_index != EXCP_SEMIHOST &&
7786 (!semihosting_enabled() ||
7787 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7788 return false;
7789 }
7790
7791 switch (cs->exception_index) {
7792 case EXCP_SEMIHOST:
7793 /* This is always a semihosting call; the "is this usermode"
7794 * and "is semihosting enabled" checks have been done at
7795 * translate time.
7796 */
7797 break;
7798 case EXCP_SWI:
7799 /* Check for semihosting interrupt. */
7800 if (env->thumb) {
7801 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7802 & 0xff;
7803 if (imm == 0xab) {
7804 break;
7805 }
7806 } else {
7807 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7808 & 0xffffff;
7809 if (imm == 0x123456) {
7810 break;
7811 }
7812 }
7813 return false;
7814 case EXCP_BKPT:
7815 /* See if this is a semihosting syscall. */
7816 if (env->thumb) {
7817 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7818 & 0xff;
7819 if (imm == 0xab) {
7820 env->regs[15] += 2;
7821 break;
7822 }
7823 }
7824 return false;
7825 default:
7826 return false;
7827 }
7828
7829 qemu_log_mask(CPU_LOG_INT,
7830 "...handling as semihosting call 0x%x\n",
7831 env->regs[0]);
7832 env->regs[0] = do_arm_semihosting(env);
7833 return true;
7834 }
7835 }
7836
7837 /* Handle a CPU exception for A and R profile CPUs.
7838 * Do any appropriate logging, handle PSCI calls, and then hand off
7839 * to the AArch64-entry or AArch32-entry function depending on the
7840 * target exception level's register width.
7841 */
7842 void arm_cpu_do_interrupt(CPUState *cs)
7843 {
7844 ARMCPU *cpu = ARM_CPU(cs);
7845 CPUARMState *env = &cpu->env;
7846 unsigned int new_el = env->exception.target_el;
7847
7848 assert(!arm_feature(env, ARM_FEATURE_M));
7849
7850 arm_log_exception(cs->exception_index);
7851 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7852 new_el);
7853 if (qemu_loglevel_mask(CPU_LOG_INT)
7854 && !excp_is_internal(cs->exception_index)) {
7855 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7856 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7857 env->exception.syndrome);
7858 }
7859
7860 if (arm_is_psci_call(cpu, cs->exception_index)) {
7861 arm_handle_psci_call(cpu);
7862 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7863 return;
7864 }
7865
7866 /* Semihosting semantics depend on the register width of the
7867 * code that caused the exception, not the target exception level,
7868 * so must be handled here.
7869 */
7870 if (check_for_semihosting(cs)) {
7871 return;
7872 }
7873
7874 assert(!excp_is_internal(cs->exception_index));
7875 if (arm_el_is_aa64(env, new_el)) {
7876 arm_cpu_do_interrupt_aarch64(cs);
7877 } else {
7878 arm_cpu_do_interrupt_aarch32(cs);
7879 }
7880
7881 /* Hooks may change global state so BQL should be held, also the
7882 * BQL needs to be held for any modification of
7883 * cs->interrupt_request.
7884 */
7885 g_assert(qemu_mutex_iothread_locked());
7886
7887 arm_call_el_change_hook(cpu);
7888
7889 if (!kvm_enabled()) {
7890 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7891 }
7892 }
7893
7894 /* Return the exception level which controls this address translation regime */
7895 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7896 {
7897 switch (mmu_idx) {
7898 case ARMMMUIdx_S2NS:
7899 case ARMMMUIdx_S1E2:
7900 return 2;
7901 case ARMMMUIdx_S1E3:
7902 return 3;
7903 case ARMMMUIdx_S1SE0:
7904 return arm_el_is_aa64(env, 3) ? 1 : 3;
7905 case ARMMMUIdx_S1SE1:
7906 case ARMMMUIdx_S1NSE0:
7907 case ARMMMUIdx_S1NSE1:
7908 case ARMMMUIdx_MPrivNegPri:
7909 case ARMMMUIdx_MUserNegPri:
7910 case ARMMMUIdx_MPriv:
7911 case ARMMMUIdx_MUser:
7912 case ARMMMUIdx_MSPrivNegPri:
7913 case ARMMMUIdx_MSUserNegPri:
7914 case ARMMMUIdx_MSPriv:
7915 case ARMMMUIdx_MSUser:
7916 return 1;
7917 default:
7918 g_assert_not_reached();
7919 }
7920 }
7921
7922 /* Return the SCTLR value which controls this address translation regime */
7923 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7924 {
7925 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7926 }
7927
7928 /* Return true if the specified stage of address translation is disabled */
7929 static inline bool regime_translation_disabled(CPUARMState *env,
7930 ARMMMUIdx mmu_idx)
7931 {
7932 if (arm_feature(env, ARM_FEATURE_M)) {
7933 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7934 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7935 case R_V7M_MPU_CTRL_ENABLE_MASK:
7936 /* Enabled, but not for HardFault and NMI */
7937 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
7938 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7939 /* Enabled for all cases */
7940 return false;
7941 case 0:
7942 default:
7943 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7944 * we warned about that in armv7m_nvic.c when the guest set it.
7945 */
7946 return true;
7947 }
7948 }
7949
7950 if (mmu_idx == ARMMMUIdx_S2NS) {
7951 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7952 }
7953 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7954 }
7955
7956 static inline bool regime_translation_big_endian(CPUARMState *env,
7957 ARMMMUIdx mmu_idx)
7958 {
7959 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7960 }
7961
7962 /* Return the TCR controlling this translation regime */
7963 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7964 {
7965 if (mmu_idx == ARMMMUIdx_S2NS) {
7966 return &env->cp15.vtcr_el2;
7967 }
7968 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7969 }
7970
7971 /* Convert a possible stage1+2 MMU index into the appropriate
7972 * stage 1 MMU index
7973 */
7974 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7975 {
7976 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7977 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7978 }
7979 return mmu_idx;
7980 }
7981
7982 /* Returns TBI0 value for current regime el */
7983 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7984 {
7985 TCR *tcr;
7986 uint32_t el;
7987
7988 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7989 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7990 */
7991 mmu_idx = stage_1_mmu_idx(mmu_idx);
7992
7993 tcr = regime_tcr(env, mmu_idx);
7994 el = regime_el(env, mmu_idx);
7995
7996 if (el > 1) {
7997 return extract64(tcr->raw_tcr, 20, 1);
7998 } else {
7999 return extract64(tcr->raw_tcr, 37, 1);
8000 }
8001 }
8002
8003 /* Returns TBI1 value for current regime el */
8004 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8005 {
8006 TCR *tcr;
8007 uint32_t el;
8008
8009 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8010 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8011 */
8012 mmu_idx = stage_1_mmu_idx(mmu_idx);
8013
8014 tcr = regime_tcr(env, mmu_idx);
8015 el = regime_el(env, mmu_idx);
8016
8017 if (el > 1) {
8018 return 0;
8019 } else {
8020 return extract64(tcr->raw_tcr, 38, 1);
8021 }
8022 }
8023
8024 /* Return the TTBR associated with this translation regime */
8025 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8026 int ttbrn)
8027 {
8028 if (mmu_idx == ARMMMUIdx_S2NS) {
8029 return env->cp15.vttbr_el2;
8030 }
8031 if (ttbrn == 0) {
8032 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8033 } else {
8034 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8035 }
8036 }
8037
8038 /* Return true if the translation regime is using LPAE format page tables */
8039 static inline bool regime_using_lpae_format(CPUARMState *env,
8040 ARMMMUIdx mmu_idx)
8041 {
8042 int el = regime_el(env, mmu_idx);
8043 if (el == 2 || arm_el_is_aa64(env, el)) {
8044 return true;
8045 }
8046 if (arm_feature(env, ARM_FEATURE_LPAE)
8047 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8048 return true;
8049 }
8050 return false;
8051 }
8052
8053 /* Returns true if the stage 1 translation regime is using LPAE format page
8054 * tables. Used when raising alignment exceptions, whose FSR changes depending
8055 * on whether the long or short descriptor format is in use. */
8056 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8057 {
8058 mmu_idx = stage_1_mmu_idx(mmu_idx);
8059
8060 return regime_using_lpae_format(env, mmu_idx);
8061 }
8062
8063 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8064 {
8065 switch (mmu_idx) {
8066 case ARMMMUIdx_S1SE0:
8067 case ARMMMUIdx_S1NSE0:
8068 case ARMMMUIdx_MUser:
8069 case ARMMMUIdx_MSUser:
8070 case ARMMMUIdx_MUserNegPri:
8071 case ARMMMUIdx_MSUserNegPri:
8072 return true;
8073 default:
8074 return false;
8075 case ARMMMUIdx_S12NSE0:
8076 case ARMMMUIdx_S12NSE1:
8077 g_assert_not_reached();
8078 }
8079 }
8080
8081 /* Translate section/page access permissions to page
8082 * R/W protection flags
8083 *
8084 * @env: CPUARMState
8085 * @mmu_idx: MMU index indicating required translation regime
8086 * @ap: The 3-bit access permissions (AP[2:0])
8087 * @domain_prot: The 2-bit domain access permissions
8088 */
8089 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8090 int ap, int domain_prot)
8091 {
8092 bool is_user = regime_is_user(env, mmu_idx);
8093
8094 if (domain_prot == 3) {
8095 return PAGE_READ | PAGE_WRITE;
8096 }
8097
8098 switch (ap) {
8099 case 0:
8100 if (arm_feature(env, ARM_FEATURE_V7)) {
8101 return 0;
8102 }
8103 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8104 case SCTLR_S:
8105 return is_user ? 0 : PAGE_READ;
8106 case SCTLR_R:
8107 return PAGE_READ;
8108 default:
8109 return 0;
8110 }
8111 case 1:
8112 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8113 case 2:
8114 if (is_user) {
8115 return PAGE_READ;
8116 } else {
8117 return PAGE_READ | PAGE_WRITE;
8118 }
8119 case 3:
8120 return PAGE_READ | PAGE_WRITE;
8121 case 4: /* Reserved. */
8122 return 0;
8123 case 5:
8124 return is_user ? 0 : PAGE_READ;
8125 case 6:
8126 return PAGE_READ;
8127 case 7:
8128 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8129 return 0;
8130 }
8131 return PAGE_READ;
8132 default:
8133 g_assert_not_reached();
8134 }
8135 }
8136
8137 /* Translate section/page access permissions to page
8138 * R/W protection flags.
8139 *
8140 * @ap: The 2-bit simple AP (AP[2:1])
8141 * @is_user: TRUE if accessing from PL0
8142 */
8143 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8144 {
8145 switch (ap) {
8146 case 0:
8147 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8148 case 1:
8149 return PAGE_READ | PAGE_WRITE;
8150 case 2:
8151 return is_user ? 0 : PAGE_READ;
8152 case 3:
8153 return PAGE_READ;
8154 default:
8155 g_assert_not_reached();
8156 }
8157 }
8158
8159 static inline int
8160 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8161 {
8162 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8163 }
8164
8165 /* Translate S2 section/page access permissions to protection flags
8166 *
8167 * @env: CPUARMState
8168 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8169 * @xn: XN (execute-never) bit
8170 */
8171 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8172 {
8173 int prot = 0;
8174
8175 if (s2ap & 1) {
8176 prot |= PAGE_READ;
8177 }
8178 if (s2ap & 2) {
8179 prot |= PAGE_WRITE;
8180 }
8181 if (!xn) {
8182 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8183 prot |= PAGE_EXEC;
8184 }
8185 }
8186 return prot;
8187 }
8188
8189 /* Translate section/page access permissions to protection flags
8190 *
8191 * @env: CPUARMState
8192 * @mmu_idx: MMU index indicating required translation regime
8193 * @is_aa64: TRUE if AArch64
8194 * @ap: The 2-bit simple AP (AP[2:1])
8195 * @ns: NS (non-secure) bit
8196 * @xn: XN (execute-never) bit
8197 * @pxn: PXN (privileged execute-never) bit
8198 */
8199 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8200 int ap, int ns, int xn, int pxn)
8201 {
8202 bool is_user = regime_is_user(env, mmu_idx);
8203 int prot_rw, user_rw;
8204 bool have_wxn;
8205 int wxn = 0;
8206
8207 assert(mmu_idx != ARMMMUIdx_S2NS);
8208
8209 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8210 if (is_user) {
8211 prot_rw = user_rw;
8212 } else {
8213 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8214 }
8215
8216 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8217 return prot_rw;
8218 }
8219
8220 /* TODO have_wxn should be replaced with
8221 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8222 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8223 * compatible processors have EL2, which is required for [U]WXN.
8224 */
8225 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8226
8227 if (have_wxn) {
8228 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8229 }
8230
8231 if (is_aa64) {
8232 switch (regime_el(env, mmu_idx)) {
8233 case 1:
8234 if (!is_user) {
8235 xn = pxn || (user_rw & PAGE_WRITE);
8236 }
8237 break;
8238 case 2:
8239 case 3:
8240 break;
8241 }
8242 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8243 switch (regime_el(env, mmu_idx)) {
8244 case 1:
8245 case 3:
8246 if (is_user) {
8247 xn = xn || !(user_rw & PAGE_READ);
8248 } else {
8249 int uwxn = 0;
8250 if (have_wxn) {
8251 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8252 }
8253 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8254 (uwxn && (user_rw & PAGE_WRITE));
8255 }
8256 break;
8257 case 2:
8258 break;
8259 }
8260 } else {
8261 xn = wxn = 0;
8262 }
8263
8264 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8265 return prot_rw;
8266 }
8267 return prot_rw | PAGE_EXEC;
8268 }
8269
8270 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8271 uint32_t *table, uint32_t address)
8272 {
8273 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8274 TCR *tcr = regime_tcr(env, mmu_idx);
8275
8276 if (address & tcr->mask) {
8277 if (tcr->raw_tcr & TTBCR_PD1) {
8278 /* Translation table walk disabled for TTBR1 */
8279 return false;
8280 }
8281 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8282 } else {
8283 if (tcr->raw_tcr & TTBCR_PD0) {
8284 /* Translation table walk disabled for TTBR0 */
8285 return false;
8286 }
8287 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8288 }
8289 *table |= (address >> 18) & 0x3ffc;
8290 return true;
8291 }
8292
8293 /* Translate a S1 pagetable walk through S2 if needed. */
8294 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8295 hwaddr addr, MemTxAttrs txattrs,
8296 ARMMMUFaultInfo *fi)
8297 {
8298 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8299 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8300 target_ulong s2size;
8301 hwaddr s2pa;
8302 int s2prot;
8303 int ret;
8304
8305 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8306 &txattrs, &s2prot, &s2size, fi, NULL);
8307 if (ret) {
8308 assert(fi->type != ARMFault_None);
8309 fi->s2addr = addr;
8310 fi->stage2 = true;
8311 fi->s1ptw = true;
8312 return ~0;
8313 }
8314 addr = s2pa;
8315 }
8316 return addr;
8317 }
8318
8319 /* All loads done in the course of a page table walk go through here.
8320 * TODO: rather than ignoring errors from physical memory reads (which
8321 * are external aborts in ARM terminology) we should propagate this
8322 * error out so that we can turn it into a Data Abort if this walk
8323 * was being done for a CPU load/store or an address translation instruction
8324 * (but not if it was for a debug access).
8325 */
8326 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8327 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8328 {
8329 ARMCPU *cpu = ARM_CPU(cs);
8330 CPUARMState *env = &cpu->env;
8331 MemTxAttrs attrs = {};
8332 MemTxResult result = MEMTX_OK;
8333 AddressSpace *as;
8334 uint32_t data;
8335
8336 attrs.secure = is_secure;
8337 as = arm_addressspace(cs, attrs);
8338 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8339 if (fi->s1ptw) {
8340 return 0;
8341 }
8342 if (regime_translation_big_endian(env, mmu_idx)) {
8343 data = address_space_ldl_be(as, addr, attrs, &result);
8344 } else {
8345 data = address_space_ldl_le(as, addr, attrs, &result);
8346 }
8347 if (result == MEMTX_OK) {
8348 return data;
8349 }
8350 fi->type = ARMFault_SyncExternalOnWalk;
8351 fi->ea = arm_extabort_type(result);
8352 return 0;
8353 }
8354
8355 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8356 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8357 {
8358 ARMCPU *cpu = ARM_CPU(cs);
8359 CPUARMState *env = &cpu->env;
8360 MemTxAttrs attrs = {};
8361 MemTxResult result = MEMTX_OK;
8362 AddressSpace *as;
8363 uint32_t data;
8364
8365 attrs.secure = is_secure;
8366 as = arm_addressspace(cs, attrs);
8367 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8368 if (fi->s1ptw) {
8369 return 0;
8370 }
8371 if (regime_translation_big_endian(env, mmu_idx)) {
8372 data = address_space_ldq_be(as, addr, attrs, &result);
8373 } else {
8374 data = address_space_ldq_le(as, addr, attrs, &result);
8375 }
8376 if (result == MEMTX_OK) {
8377 return data;
8378 }
8379 fi->type = ARMFault_SyncExternalOnWalk;
8380 fi->ea = arm_extabort_type(result);
8381 return 0;
8382 }
8383
8384 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8385 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8386 hwaddr *phys_ptr, int *prot,
8387 target_ulong *page_size,
8388 ARMMMUFaultInfo *fi)
8389 {
8390 CPUState *cs = CPU(arm_env_get_cpu(env));
8391 int level = 1;
8392 uint32_t table;
8393 uint32_t desc;
8394 int type;
8395 int ap;
8396 int domain = 0;
8397 int domain_prot;
8398 hwaddr phys_addr;
8399 uint32_t dacr;
8400
8401 /* Pagetable walk. */
8402 /* Lookup l1 descriptor. */
8403 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8404 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8405 fi->type = ARMFault_Translation;
8406 goto do_fault;
8407 }
8408 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8409 mmu_idx, fi);
8410 if (fi->type != ARMFault_None) {
8411 goto do_fault;
8412 }
8413 type = (desc & 3);
8414 domain = (desc >> 5) & 0x0f;
8415 if (regime_el(env, mmu_idx) == 1) {
8416 dacr = env->cp15.dacr_ns;
8417 } else {
8418 dacr = env->cp15.dacr_s;
8419 }
8420 domain_prot = (dacr >> (domain * 2)) & 3;
8421 if (type == 0) {
8422 /* Section translation fault. */
8423 fi->type = ARMFault_Translation;
8424 goto do_fault;
8425 }
8426 if (type != 2) {
8427 level = 2;
8428 }
8429 if (domain_prot == 0 || domain_prot == 2) {
8430 fi->type = ARMFault_Domain;
8431 goto do_fault;
8432 }
8433 if (type == 2) {
8434 /* 1Mb section. */
8435 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8436 ap = (desc >> 10) & 3;
8437 *page_size = 1024 * 1024;
8438 } else {
8439 /* Lookup l2 entry. */
8440 if (type == 1) {
8441 /* Coarse pagetable. */
8442 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8443 } else {
8444 /* Fine pagetable. */
8445 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8446 }
8447 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8448 mmu_idx, fi);
8449 if (fi->type != ARMFault_None) {
8450 goto do_fault;
8451 }
8452 switch (desc & 3) {
8453 case 0: /* Page translation fault. */
8454 fi->type = ARMFault_Translation;
8455 goto do_fault;
8456 case 1: /* 64k page. */
8457 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8458 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8459 *page_size = 0x10000;
8460 break;
8461 case 2: /* 4k page. */
8462 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8463 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8464 *page_size = 0x1000;
8465 break;
8466 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8467 if (type == 1) {
8468 /* ARMv6/XScale extended small page format */
8469 if (arm_feature(env, ARM_FEATURE_XSCALE)
8470 || arm_feature(env, ARM_FEATURE_V6)) {
8471 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8472 *page_size = 0x1000;
8473 } else {
8474 /* UNPREDICTABLE in ARMv5; we choose to take a
8475 * page translation fault.
8476 */
8477 fi->type = ARMFault_Translation;
8478 goto do_fault;
8479 }
8480 } else {
8481 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8482 *page_size = 0x400;
8483 }
8484 ap = (desc >> 4) & 3;
8485 break;
8486 default:
8487 /* Never happens, but compiler isn't smart enough to tell. */
8488 abort();
8489 }
8490 }
8491 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8492 *prot |= *prot ? PAGE_EXEC : 0;
8493 if (!(*prot & (1 << access_type))) {
8494 /* Access permission fault. */
8495 fi->type = ARMFault_Permission;
8496 goto do_fault;
8497 }
8498 *phys_ptr = phys_addr;
8499 return false;
8500 do_fault:
8501 fi->domain = domain;
8502 fi->level = level;
8503 return true;
8504 }
8505
8506 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8507 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8508 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8509 target_ulong *page_size, ARMMMUFaultInfo *fi)
8510 {
8511 CPUState *cs = CPU(arm_env_get_cpu(env));
8512 int level = 1;
8513 uint32_t table;
8514 uint32_t desc;
8515 uint32_t xn;
8516 uint32_t pxn = 0;
8517 int type;
8518 int ap;
8519 int domain = 0;
8520 int domain_prot;
8521 hwaddr phys_addr;
8522 uint32_t dacr;
8523 bool ns;
8524
8525 /* Pagetable walk. */
8526 /* Lookup l1 descriptor. */
8527 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8528 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8529 fi->type = ARMFault_Translation;
8530 goto do_fault;
8531 }
8532 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8533 mmu_idx, fi);
8534 if (fi->type != ARMFault_None) {
8535 goto do_fault;
8536 }
8537 type = (desc & 3);
8538 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8539 /* Section translation fault, or attempt to use the encoding
8540 * which is Reserved on implementations without PXN.
8541 */
8542 fi->type = ARMFault_Translation;
8543 goto do_fault;
8544 }
8545 if ((type == 1) || !(desc & (1 << 18))) {
8546 /* Page or Section. */
8547 domain = (desc >> 5) & 0x0f;
8548 }
8549 if (regime_el(env, mmu_idx) == 1) {
8550 dacr = env->cp15.dacr_ns;
8551 } else {
8552 dacr = env->cp15.dacr_s;
8553 }
8554 if (type == 1) {
8555 level = 2;
8556 }
8557 domain_prot = (dacr >> (domain * 2)) & 3;
8558 if (domain_prot == 0 || domain_prot == 2) {
8559 /* Section or Page domain fault */
8560 fi->type = ARMFault_Domain;
8561 goto do_fault;
8562 }
8563 if (type != 1) {
8564 if (desc & (1 << 18)) {
8565 /* Supersection. */
8566 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8567 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8568 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8569 *page_size = 0x1000000;
8570 } else {
8571 /* Section. */
8572 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8573 *page_size = 0x100000;
8574 }
8575 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8576 xn = desc & (1 << 4);
8577 pxn = desc & 1;
8578 ns = extract32(desc, 19, 1);
8579 } else {
8580 if (arm_feature(env, ARM_FEATURE_PXN)) {
8581 pxn = (desc >> 2) & 1;
8582 }
8583 ns = extract32(desc, 3, 1);
8584 /* Lookup l2 entry. */
8585 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8586 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8587 mmu_idx, fi);
8588 if (fi->type != ARMFault_None) {
8589 goto do_fault;
8590 }
8591 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8592 switch (desc & 3) {
8593 case 0: /* Page translation fault. */
8594 fi->type = ARMFault_Translation;
8595 goto do_fault;
8596 case 1: /* 64k page. */
8597 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8598 xn = desc & (1 << 15);
8599 *page_size = 0x10000;
8600 break;
8601 case 2: case 3: /* 4k page. */
8602 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8603 xn = desc & 1;
8604 *page_size = 0x1000;
8605 break;
8606 default:
8607 /* Never happens, but compiler isn't smart enough to tell. */
8608 abort();
8609 }
8610 }
8611 if (domain_prot == 3) {
8612 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8613 } else {
8614 if (pxn && !regime_is_user(env, mmu_idx)) {
8615 xn = 1;
8616 }
8617 if (xn && access_type == MMU_INST_FETCH) {
8618 fi->type = ARMFault_Permission;
8619 goto do_fault;
8620 }
8621
8622 if (arm_feature(env, ARM_FEATURE_V6K) &&
8623 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8624 /* The simplified model uses AP[0] as an access control bit. */
8625 if ((ap & 1) == 0) {
8626 /* Access flag fault. */
8627 fi->type = ARMFault_AccessFlag;
8628 goto do_fault;
8629 }
8630 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8631 } else {
8632 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8633 }
8634 if (*prot && !xn) {
8635 *prot |= PAGE_EXEC;
8636 }
8637 if (!(*prot & (1 << access_type))) {
8638 /* Access permission fault. */
8639 fi->type = ARMFault_Permission;
8640 goto do_fault;
8641 }
8642 }
8643 if (ns) {
8644 /* The NS bit will (as required by the architecture) have no effect if
8645 * the CPU doesn't support TZ or this is a non-secure translation
8646 * regime, because the attribute will already be non-secure.
8647 */
8648 attrs->secure = false;
8649 }
8650 *phys_ptr = phys_addr;
8651 return false;
8652 do_fault:
8653 fi->domain = domain;
8654 fi->level = level;
8655 return true;
8656 }
8657
8658 /*
8659 * check_s2_mmu_setup
8660 * @cpu: ARMCPU
8661 * @is_aa64: True if the translation regime is in AArch64 state
8662 * @startlevel: Suggested starting level
8663 * @inputsize: Bitsize of IPAs
8664 * @stride: Page-table stride (See the ARM ARM)
8665 *
8666 * Returns true if the suggested S2 translation parameters are OK and
8667 * false otherwise.
8668 */
8669 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8670 int inputsize, int stride)
8671 {
8672 const int grainsize = stride + 3;
8673 int startsizecheck;
8674
8675 /* Negative levels are never allowed. */
8676 if (level < 0) {
8677 return false;
8678 }
8679
8680 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8681 if (startsizecheck < 1 || startsizecheck > stride + 4) {
8682 return false;
8683 }
8684
8685 if (is_aa64) {
8686 CPUARMState *env = &cpu->env;
8687 unsigned int pamax = arm_pamax(cpu);
8688
8689 switch (stride) {
8690 case 13: /* 64KB Pages. */
8691 if (level == 0 || (level == 1 && pamax <= 42)) {
8692 return false;
8693 }
8694 break;
8695 case 11: /* 16KB Pages. */
8696 if (level == 0 || (level == 1 && pamax <= 40)) {
8697 return false;
8698 }
8699 break;
8700 case 9: /* 4KB Pages. */
8701 if (level == 0 && pamax <= 42) {
8702 return false;
8703 }
8704 break;
8705 default:
8706 g_assert_not_reached();
8707 }
8708
8709 /* Inputsize checks. */
8710 if (inputsize > pamax &&
8711 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8712 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
8713 return false;
8714 }
8715 } else {
8716 /* AArch32 only supports 4KB pages. Assert on that. */
8717 assert(stride == 9);
8718
8719 if (level == 0) {
8720 return false;
8721 }
8722 }
8723 return true;
8724 }
8725
8726 /* Translate from the 4-bit stage 2 representation of
8727 * memory attributes (without cache-allocation hints) to
8728 * the 8-bit representation of the stage 1 MAIR registers
8729 * (which includes allocation hints).
8730 *
8731 * ref: shared/translation/attrs/S2AttrDecode()
8732 * .../S2ConvertAttrsHints()
8733 */
8734 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8735 {
8736 uint8_t hiattr = extract32(s2attrs, 2, 2);
8737 uint8_t loattr = extract32(s2attrs, 0, 2);
8738 uint8_t hihint = 0, lohint = 0;
8739
8740 if (hiattr != 0) { /* normal memory */
8741 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8742 hiattr = loattr = 1; /* non-cacheable */
8743 } else {
8744 if (hiattr != 1) { /* Write-through or write-back */
8745 hihint = 3; /* RW allocate */
8746 }
8747 if (loattr != 1) { /* Write-through or write-back */
8748 lohint = 3; /* RW allocate */
8749 }
8750 }
8751 }
8752
8753 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8754 }
8755
8756 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8757 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8758 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8759 target_ulong *page_size_ptr,
8760 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
8761 {
8762 ARMCPU *cpu = arm_env_get_cpu(env);
8763 CPUState *cs = CPU(cpu);
8764 /* Read an LPAE long-descriptor translation table. */
8765 ARMFaultType fault_type = ARMFault_Translation;
8766 uint32_t level;
8767 uint32_t epd = 0;
8768 int32_t t0sz, t1sz;
8769 uint32_t tg;
8770 uint64_t ttbr;
8771 int ttbr_select;
8772 hwaddr descaddr, indexmask, indexmask_grainsize;
8773 uint32_t tableattrs;
8774 target_ulong page_size;
8775 uint32_t attrs;
8776 int32_t stride = 9;
8777 int32_t addrsize;
8778 int inputsize;
8779 int32_t tbi = 0;
8780 TCR *tcr = regime_tcr(env, mmu_idx);
8781 int ap, ns, xn, pxn;
8782 uint32_t el = regime_el(env, mmu_idx);
8783 bool ttbr1_valid = true;
8784 uint64_t descaddrmask;
8785 bool aarch64 = arm_el_is_aa64(env, el);
8786
8787 /* TODO:
8788 * This code does not handle the different format TCR for VTCR_EL2.
8789 * This code also does not support shareability levels.
8790 * Attribute and permission bit handling should also be checked when adding
8791 * support for those page table walks.
8792 */
8793 if (aarch64) {
8794 level = 0;
8795 addrsize = 64;
8796 if (el > 1) {
8797 if (mmu_idx != ARMMMUIdx_S2NS) {
8798 tbi = extract64(tcr->raw_tcr, 20, 1);
8799 }
8800 } else {
8801 if (extract64(address, 55, 1)) {
8802 tbi = extract64(tcr->raw_tcr, 38, 1);
8803 } else {
8804 tbi = extract64(tcr->raw_tcr, 37, 1);
8805 }
8806 }
8807 tbi *= 8;
8808
8809 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8810 * invalid.
8811 */
8812 if (el > 1) {
8813 ttbr1_valid = false;
8814 }
8815 } else {
8816 level = 1;
8817 addrsize = 32;
8818 /* There is no TTBR1 for EL2 */
8819 if (el == 2) {
8820 ttbr1_valid = false;
8821 }
8822 }
8823
8824 /* Determine whether this address is in the region controlled by
8825 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8826 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8827 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8828 */
8829 if (aarch64) {
8830 /* AArch64 translation. */
8831 t0sz = extract32(tcr->raw_tcr, 0, 6);
8832 t0sz = MIN(t0sz, 39);
8833 t0sz = MAX(t0sz, 16);
8834 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8835 /* AArch32 stage 1 translation. */
8836 t0sz = extract32(tcr->raw_tcr, 0, 3);
8837 } else {
8838 /* AArch32 stage 2 translation. */
8839 bool sext = extract32(tcr->raw_tcr, 4, 1);
8840 bool sign = extract32(tcr->raw_tcr, 3, 1);
8841 /* Address size is 40-bit for a stage 2 translation,
8842 * and t0sz can be negative (from -8 to 7),
8843 * so we need to adjust it to use the TTBR selecting logic below.
8844 */
8845 addrsize = 40;
8846 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8847
8848 /* If the sign-extend bit is not the same as t0sz[3], the result
8849 * is unpredictable. Flag this as a guest error. */
8850 if (sign != sext) {
8851 qemu_log_mask(LOG_GUEST_ERROR,
8852 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8853 }
8854 }
8855 t1sz = extract32(tcr->raw_tcr, 16, 6);
8856 if (aarch64) {
8857 t1sz = MIN(t1sz, 39);
8858 t1sz = MAX(t1sz, 16);
8859 }
8860 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8861 /* there is a ttbr0 region and we are in it (high bits all zero) */
8862 ttbr_select = 0;
8863 } else if (ttbr1_valid && t1sz &&
8864 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8865 /* there is a ttbr1 region and we are in it (high bits all one) */
8866 ttbr_select = 1;
8867 } else if (!t0sz) {
8868 /* ttbr0 region is "everything not in the ttbr1 region" */
8869 ttbr_select = 0;
8870 } else if (!t1sz && ttbr1_valid) {
8871 /* ttbr1 region is "everything not in the ttbr0 region" */
8872 ttbr_select = 1;
8873 } else {
8874 /* in the gap between the two regions, this is a Translation fault */
8875 fault_type = ARMFault_Translation;
8876 goto do_fault;
8877 }
8878
8879 /* Note that QEMU ignores shareability and cacheability attributes,
8880 * so we don't need to do anything with the SH, ORGN, IRGN fields
8881 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8882 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8883 * implement any ASID-like capability so we can ignore it (instead
8884 * we will always flush the TLB any time the ASID is changed).
8885 */
8886 if (ttbr_select == 0) {
8887 ttbr = regime_ttbr(env, mmu_idx, 0);
8888 if (el < 2) {
8889 epd = extract32(tcr->raw_tcr, 7, 1);
8890 }
8891 inputsize = addrsize - t0sz;
8892
8893 tg = extract32(tcr->raw_tcr, 14, 2);
8894 if (tg == 1) { /* 64KB pages */
8895 stride = 13;
8896 }
8897 if (tg == 2) { /* 16KB pages */
8898 stride = 11;
8899 }
8900 } else {
8901 /* We should only be here if TTBR1 is valid */
8902 assert(ttbr1_valid);
8903
8904 ttbr = regime_ttbr(env, mmu_idx, 1);
8905 epd = extract32(tcr->raw_tcr, 23, 1);
8906 inputsize = addrsize - t1sz;
8907
8908 tg = extract32(tcr->raw_tcr, 30, 2);
8909 if (tg == 3) { /* 64KB pages */
8910 stride = 13;
8911 }
8912 if (tg == 1) { /* 16KB pages */
8913 stride = 11;
8914 }
8915 }
8916
8917 /* Here we should have set up all the parameters for the translation:
8918 * inputsize, ttbr, epd, stride, tbi
8919 */
8920
8921 if (epd) {
8922 /* Translation table walk disabled => Translation fault on TLB miss
8923 * Note: This is always 0 on 64-bit EL2 and EL3.
8924 */
8925 goto do_fault;
8926 }
8927
8928 if (mmu_idx != ARMMMUIdx_S2NS) {
8929 /* The starting level depends on the virtual address size (which can
8930 * be up to 48 bits) and the translation granule size. It indicates
8931 * the number of strides (stride bits at a time) needed to
8932 * consume the bits of the input address. In the pseudocode this is:
8933 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8934 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8935 * our 'stride + 3' and 'stride' is our 'stride'.
8936 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8937 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8938 * = 4 - (inputsize - 4) / stride;
8939 */
8940 level = 4 - (inputsize - 4) / stride;
8941 } else {
8942 /* For stage 2 translations the starting level is specified by the
8943 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8944 */
8945 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8946 uint32_t startlevel;
8947 bool ok;
8948
8949 if (!aarch64 || stride == 9) {
8950 /* AArch32 or 4KB pages */
8951 startlevel = 2 - sl0;
8952 } else {
8953 /* 16KB or 64KB pages */
8954 startlevel = 3 - sl0;
8955 }
8956
8957 /* Check that the starting level is valid. */
8958 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8959 inputsize, stride);
8960 if (!ok) {
8961 fault_type = ARMFault_Translation;
8962 goto do_fault;
8963 }
8964 level = startlevel;
8965 }
8966
8967 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8968 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8969
8970 /* Now we can extract the actual base address from the TTBR */
8971 descaddr = extract64(ttbr, 0, 48);
8972 descaddr &= ~indexmask;
8973
8974 /* The address field in the descriptor goes up to bit 39 for ARMv7
8975 * but up to bit 47 for ARMv8, but we use the descaddrmask
8976 * up to bit 39 for AArch32, because we don't need other bits in that case
8977 * to construct next descriptor address (anyway they should be all zeroes).
8978 */
8979 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8980 ~indexmask_grainsize;
8981
8982 /* Secure accesses start with the page table in secure memory and
8983 * can be downgraded to non-secure at any step. Non-secure accesses
8984 * remain non-secure. We implement this by just ORing in the NSTable/NS
8985 * bits at each step.
8986 */
8987 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8988 for (;;) {
8989 uint64_t descriptor;
8990 bool nstable;
8991
8992 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8993 descaddr &= ~7ULL;
8994 nstable = extract32(tableattrs, 4, 1);
8995 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
8996 if (fi->type != ARMFault_None) {
8997 goto do_fault;
8998 }
8999
9000 if (!(descriptor & 1) ||
9001 (!(descriptor & 2) && (level == 3))) {
9002 /* Invalid, or the Reserved level 3 encoding */
9003 goto do_fault;
9004 }
9005 descaddr = descriptor & descaddrmask;
9006
9007 if ((descriptor & 2) && (level < 3)) {
9008 /* Table entry. The top five bits are attributes which may
9009 * propagate down through lower levels of the table (and
9010 * which are all arranged so that 0 means "no effect", so
9011 * we can gather them up by ORing in the bits at each level).
9012 */
9013 tableattrs |= extract64(descriptor, 59, 5);
9014 level++;
9015 indexmask = indexmask_grainsize;
9016 continue;
9017 }
9018 /* Block entry at level 1 or 2, or page entry at level 3.
9019 * These are basically the same thing, although the number
9020 * of bits we pull in from the vaddr varies.
9021 */
9022 page_size = (1ULL << ((stride * (4 - level)) + 3));
9023 descaddr |= (address & (page_size - 1));
9024 /* Extract attributes from the descriptor */
9025 attrs = extract64(descriptor, 2, 10)
9026 | (extract64(descriptor, 52, 12) << 10);
9027
9028 if (mmu_idx == ARMMMUIdx_S2NS) {
9029 /* Stage 2 table descriptors do not include any attribute fields */
9030 break;
9031 }
9032 /* Merge in attributes from table descriptors */
9033 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9034 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9035 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9036 * means "force PL1 access only", which means forcing AP[1] to 0.
9037 */
9038 if (extract32(tableattrs, 2, 1)) {
9039 attrs &= ~(1 << 4);
9040 }
9041 attrs |= nstable << 3; /* NS */
9042 break;
9043 }
9044 /* Here descaddr is the final physical address, and attributes
9045 * are all in attrs.
9046 */
9047 fault_type = ARMFault_AccessFlag;
9048 if ((attrs & (1 << 8)) == 0) {
9049 /* Access flag */
9050 goto do_fault;
9051 }
9052
9053 ap = extract32(attrs, 4, 2);
9054 xn = extract32(attrs, 12, 1);
9055
9056 if (mmu_idx == ARMMMUIdx_S2NS) {
9057 ns = true;
9058 *prot = get_S2prot(env, ap, xn);
9059 } else {
9060 ns = extract32(attrs, 3, 1);
9061 pxn = extract32(attrs, 11, 1);
9062 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9063 }
9064
9065 fault_type = ARMFault_Permission;
9066 if (!(*prot & (1 << access_type))) {
9067 goto do_fault;
9068 }
9069
9070 if (ns) {
9071 /* The NS bit will (as required by the architecture) have no effect if
9072 * the CPU doesn't support TZ or this is a non-secure translation
9073 * regime, because the attribute will already be non-secure.
9074 */
9075 txattrs->secure = false;
9076 }
9077
9078 if (cacheattrs != NULL) {
9079 if (mmu_idx == ARMMMUIdx_S2NS) {
9080 cacheattrs->attrs = convert_stage2_attrs(env,
9081 extract32(attrs, 0, 4));
9082 } else {
9083 /* Index into MAIR registers for cache attributes */
9084 uint8_t attrindx = extract32(attrs, 0, 3);
9085 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9086 assert(attrindx <= 7);
9087 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9088 }
9089 cacheattrs->shareability = extract32(attrs, 6, 2);
9090 }
9091
9092 *phys_ptr = descaddr;
9093 *page_size_ptr = page_size;
9094 return false;
9095
9096 do_fault:
9097 fi->type = fault_type;
9098 fi->level = level;
9099 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9100 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9101 return true;
9102 }
9103
9104 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9105 ARMMMUIdx mmu_idx,
9106 int32_t address, int *prot)
9107 {
9108 if (!arm_feature(env, ARM_FEATURE_M)) {
9109 *prot = PAGE_READ | PAGE_WRITE;
9110 switch (address) {
9111 case 0xF0000000 ... 0xFFFFFFFF:
9112 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9113 /* hivecs execing is ok */
9114 *prot |= PAGE_EXEC;
9115 }
9116 break;
9117 case 0x00000000 ... 0x7FFFFFFF:
9118 *prot |= PAGE_EXEC;
9119 break;
9120 }
9121 } else {
9122 /* Default system address map for M profile cores.
9123 * The architecture specifies which regions are execute-never;
9124 * at the MPU level no other checks are defined.
9125 */
9126 switch (address) {
9127 case 0x00000000 ... 0x1fffffff: /* ROM */
9128 case 0x20000000 ... 0x3fffffff: /* SRAM */
9129 case 0x60000000 ... 0x7fffffff: /* RAM */
9130 case 0x80000000 ... 0x9fffffff: /* RAM */
9131 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9132 break;
9133 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9134 case 0xa0000000 ... 0xbfffffff: /* Device */
9135 case 0xc0000000 ... 0xdfffffff: /* Device */
9136 case 0xe0000000 ... 0xffffffff: /* System */
9137 *prot = PAGE_READ | PAGE_WRITE;
9138 break;
9139 default:
9140 g_assert_not_reached();
9141 }
9142 }
9143 }
9144
9145 static bool pmsav7_use_background_region(ARMCPU *cpu,
9146 ARMMMUIdx mmu_idx, bool is_user)
9147 {
9148 /* Return true if we should use the default memory map as a
9149 * "background" region if there are no hits against any MPU regions.
9150 */
9151 CPUARMState *env = &cpu->env;
9152
9153 if (is_user) {
9154 return false;
9155 }
9156
9157 if (arm_feature(env, ARM_FEATURE_M)) {
9158 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9159 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9160 } else {
9161 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9162 }
9163 }
9164
9165 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9166 {
9167 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9168 return arm_feature(env, ARM_FEATURE_M) &&
9169 extract32(address, 20, 12) == 0xe00;
9170 }
9171
9172 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9173 {
9174 /* True if address is in the M profile system region
9175 * 0xe0000000 - 0xffffffff
9176 */
9177 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9178 }
9179
9180 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9181 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9182 hwaddr *phys_ptr, int *prot,
9183 ARMMMUFaultInfo *fi)
9184 {
9185 ARMCPU *cpu = arm_env_get_cpu(env);
9186 int n;
9187 bool is_user = regime_is_user(env, mmu_idx);
9188
9189 *phys_ptr = address;
9190 *prot = 0;
9191
9192 if (regime_translation_disabled(env, mmu_idx) ||
9193 m_is_ppb_region(env, address)) {
9194 /* MPU disabled or M profile PPB access: use default memory map.
9195 * The other case which uses the default memory map in the
9196 * v7M ARM ARM pseudocode is exception vector reads from the vector
9197 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9198 * which always does a direct read using address_space_ldl(), rather
9199 * than going via this function, so we don't need to check that here.
9200 */
9201 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9202 } else { /* MPU enabled */
9203 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9204 /* region search */
9205 uint32_t base = env->pmsav7.drbar[n];
9206 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9207 uint32_t rmask;
9208 bool srdis = false;
9209
9210 if (!(env->pmsav7.drsr[n] & 0x1)) {
9211 continue;
9212 }
9213
9214 if (!rsize) {
9215 qemu_log_mask(LOG_GUEST_ERROR,
9216 "DRSR[%d]: Rsize field cannot be 0\n", n);
9217 continue;
9218 }
9219 rsize++;
9220 rmask = (1ull << rsize) - 1;
9221
9222 if (base & rmask) {
9223 qemu_log_mask(LOG_GUEST_ERROR,
9224 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9225 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9226 n, base, rmask);
9227 continue;
9228 }
9229
9230 if (address < base || address > base + rmask) {
9231 continue;
9232 }
9233
9234 /* Region matched */
9235
9236 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9237 int i, snd;
9238 uint32_t srdis_mask;
9239
9240 rsize -= 3; /* sub region size (power of 2) */
9241 snd = ((address - base) >> rsize) & 0x7;
9242 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9243
9244 srdis_mask = srdis ? 0x3 : 0x0;
9245 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9246 /* This will check in groups of 2, 4 and then 8, whether
9247 * the subregion bits are consistent. rsize is incremented
9248 * back up to give the region size, considering consistent
9249 * adjacent subregions as one region. Stop testing if rsize
9250 * is already big enough for an entire QEMU page.
9251 */
9252 int snd_rounded = snd & ~(i - 1);
9253 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9254 snd_rounded + 8, i);
9255 if (srdis_mask ^ srdis_multi) {
9256 break;
9257 }
9258 srdis_mask = (srdis_mask << i) | srdis_mask;
9259 rsize++;
9260 }
9261 }
9262 if (rsize < TARGET_PAGE_BITS) {
9263 qemu_log_mask(LOG_UNIMP,
9264 "DRSR[%d]: No support for MPU (sub)region "
9265 "alignment of %" PRIu32 " bits. Minimum is %d\n",
9266 n, rsize, TARGET_PAGE_BITS);
9267 continue;
9268 }
9269 if (srdis) {
9270 continue;
9271 }
9272 break;
9273 }
9274
9275 if (n == -1) { /* no hits */
9276 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9277 /* background fault */
9278 fi->type = ARMFault_Background;
9279 return true;
9280 }
9281 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9282 } else { /* a MPU hit! */
9283 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9284 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9285
9286 if (m_is_system_region(env, address)) {
9287 /* System space is always execute never */
9288 xn = 1;
9289 }
9290
9291 if (is_user) { /* User mode AP bit decoding */
9292 switch (ap) {
9293 case 0:
9294 case 1:
9295 case 5:
9296 break; /* no access */
9297 case 3:
9298 *prot |= PAGE_WRITE;
9299 /* fall through */
9300 case 2:
9301 case 6:
9302 *prot |= PAGE_READ | PAGE_EXEC;
9303 break;
9304 case 7:
9305 /* for v7M, same as 6; for R profile a reserved value */
9306 if (arm_feature(env, ARM_FEATURE_M)) {
9307 *prot |= PAGE_READ | PAGE_EXEC;
9308 break;
9309 }
9310 /* fall through */
9311 default:
9312 qemu_log_mask(LOG_GUEST_ERROR,
9313 "DRACR[%d]: Bad value for AP bits: 0x%"
9314 PRIx32 "\n", n, ap);
9315 }
9316 } else { /* Priv. mode AP bits decoding */
9317 switch (ap) {
9318 case 0:
9319 break; /* no access */
9320 case 1:
9321 case 2:
9322 case 3:
9323 *prot |= PAGE_WRITE;
9324 /* fall through */
9325 case 5:
9326 case 6:
9327 *prot |= PAGE_READ | PAGE_EXEC;
9328 break;
9329 case 7:
9330 /* for v7M, same as 6; for R profile a reserved value */
9331 if (arm_feature(env, ARM_FEATURE_M)) {
9332 *prot |= PAGE_READ | PAGE_EXEC;
9333 break;
9334 }
9335 /* fall through */
9336 default:
9337 qemu_log_mask(LOG_GUEST_ERROR,
9338 "DRACR[%d]: Bad value for AP bits: 0x%"
9339 PRIx32 "\n", n, ap);
9340 }
9341 }
9342
9343 /* execute never */
9344 if (xn) {
9345 *prot &= ~PAGE_EXEC;
9346 }
9347 }
9348 }
9349
9350 fi->type = ARMFault_Permission;
9351 fi->level = 1;
9352 return !(*prot & (1 << access_type));
9353 }
9354
9355 static bool v8m_is_sau_exempt(CPUARMState *env,
9356 uint32_t address, MMUAccessType access_type)
9357 {
9358 /* The architecture specifies that certain address ranges are
9359 * exempt from v8M SAU/IDAU checks.
9360 */
9361 return
9362 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9363 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9364 (address >= 0xe000e000 && address <= 0xe000efff) ||
9365 (address >= 0xe002e000 && address <= 0xe002efff) ||
9366 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9367 (address >= 0xe00ff000 && address <= 0xe00fffff);
9368 }
9369
9370 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9371 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9372 V8M_SAttributes *sattrs)
9373 {
9374 /* Look up the security attributes for this address. Compare the
9375 * pseudocode SecurityCheck() function.
9376 * We assume the caller has zero-initialized *sattrs.
9377 */
9378 ARMCPU *cpu = arm_env_get_cpu(env);
9379 int r;
9380
9381 /* TODO: implement IDAU */
9382
9383 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9384 /* 0xf0000000..0xffffffff is always S for insn fetches */
9385 return;
9386 }
9387
9388 if (v8m_is_sau_exempt(env, address, access_type)) {
9389 sattrs->ns = !regime_is_secure(env, mmu_idx);
9390 return;
9391 }
9392
9393 switch (env->sau.ctrl & 3) {
9394 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9395 break;
9396 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9397 sattrs->ns = true;
9398 break;
9399 default: /* SAU.ENABLE == 1 */
9400 for (r = 0; r < cpu->sau_sregion; r++) {
9401 if (env->sau.rlar[r] & 1) {
9402 uint32_t base = env->sau.rbar[r] & ~0x1f;
9403 uint32_t limit = env->sau.rlar[r] | 0x1f;
9404
9405 if (base <= address && limit >= address) {
9406 if (sattrs->srvalid) {
9407 /* If we hit in more than one region then we must report
9408 * as Secure, not NS-Callable, with no valid region
9409 * number info.
9410 */
9411 sattrs->ns = false;
9412 sattrs->nsc = false;
9413 sattrs->sregion = 0;
9414 sattrs->srvalid = false;
9415 break;
9416 } else {
9417 if (env->sau.rlar[r] & 2) {
9418 sattrs->nsc = true;
9419 } else {
9420 sattrs->ns = true;
9421 }
9422 sattrs->srvalid = true;
9423 sattrs->sregion = r;
9424 }
9425 }
9426 }
9427 }
9428
9429 /* TODO when we support the IDAU then it may override the result here */
9430 break;
9431 }
9432 }
9433
9434 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9435 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9436 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9437 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9438 {
9439 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9440 * that a full phys-to-virt translation does).
9441 * mregion is (if not NULL) set to the region number which matched,
9442 * or -1 if no region number is returned (MPU off, address did not
9443 * hit a region, address hit in multiple regions).
9444 */
9445 ARMCPU *cpu = arm_env_get_cpu(env);
9446 bool is_user = regime_is_user(env, mmu_idx);
9447 uint32_t secure = regime_is_secure(env, mmu_idx);
9448 int n;
9449 int matchregion = -1;
9450 bool hit = false;
9451
9452 *phys_ptr = address;
9453 *prot = 0;
9454 if (mregion) {
9455 *mregion = -1;
9456 }
9457
9458 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9459 * was an exception vector read from the vector table (which is always
9460 * done using the default system address map), because those accesses
9461 * are done in arm_v7m_load_vector(), which always does a direct
9462 * read using address_space_ldl(), rather than going via this function.
9463 */
9464 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9465 hit = true;
9466 } else if (m_is_ppb_region(env, address)) {
9467 hit = true;
9468 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9469 hit = true;
9470 } else {
9471 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9472 /* region search */
9473 /* Note that the base address is bits [31:5] from the register
9474 * with bits [4:0] all zeroes, but the limit address is bits
9475 * [31:5] from the register with bits [4:0] all ones.
9476 */
9477 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9478 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9479
9480 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9481 /* Region disabled */
9482 continue;
9483 }
9484
9485 if (address < base || address > limit) {
9486 continue;
9487 }
9488
9489 if (hit) {
9490 /* Multiple regions match -- always a failure (unlike
9491 * PMSAv7 where highest-numbered-region wins)
9492 */
9493 fi->type = ARMFault_Permission;
9494 fi->level = 1;
9495 return true;
9496 }
9497
9498 matchregion = n;
9499 hit = true;
9500
9501 if (base & ~TARGET_PAGE_MASK) {
9502 qemu_log_mask(LOG_UNIMP,
9503 "MPU_RBAR[%d]: No support for MPU region base"
9504 "address of 0x%" PRIx32 ". Minimum alignment is "
9505 "%d\n",
9506 n, base, TARGET_PAGE_BITS);
9507 continue;
9508 }
9509 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9510 qemu_log_mask(LOG_UNIMP,
9511 "MPU_RBAR[%d]: No support for MPU region limit"
9512 "address of 0x%" PRIx32 ". Minimum alignment is "
9513 "%d\n",
9514 n, limit, TARGET_PAGE_BITS);
9515 continue;
9516 }
9517 }
9518 }
9519
9520 if (!hit) {
9521 /* background fault */
9522 fi->type = ARMFault_Background;
9523 return true;
9524 }
9525
9526 if (matchregion == -1) {
9527 /* hit using the background region */
9528 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9529 } else {
9530 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9531 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9532
9533 if (m_is_system_region(env, address)) {
9534 /* System space is always execute never */
9535 xn = 1;
9536 }
9537
9538 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9539 if (*prot && !xn) {
9540 *prot |= PAGE_EXEC;
9541 }
9542 /* We don't need to look the attribute up in the MAIR0/MAIR1
9543 * registers because that only tells us about cacheability.
9544 */
9545 if (mregion) {
9546 *mregion = matchregion;
9547 }
9548 }
9549
9550 fi->type = ARMFault_Permission;
9551 fi->level = 1;
9552 return !(*prot & (1 << access_type));
9553 }
9554
9555
9556 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9557 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9558 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9559 int *prot, ARMMMUFaultInfo *fi)
9560 {
9561 uint32_t secure = regime_is_secure(env, mmu_idx);
9562 V8M_SAttributes sattrs = {};
9563
9564 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9565 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9566 if (access_type == MMU_INST_FETCH) {
9567 /* Instruction fetches always use the MMU bank and the
9568 * transaction attribute determined by the fetch address,
9569 * regardless of CPU state. This is painful for QEMU
9570 * to handle, because it would mean we need to encode
9571 * into the mmu_idx not just the (user, negpri) information
9572 * for the current security state but also that for the
9573 * other security state, which would balloon the number
9574 * of mmu_idx values needed alarmingly.
9575 * Fortunately we can avoid this because it's not actually
9576 * possible to arbitrarily execute code from memory with
9577 * the wrong security attribute: it will always generate
9578 * an exception of some kind or another, apart from the
9579 * special case of an NS CPU executing an SG instruction
9580 * in S&NSC memory. So we always just fail the translation
9581 * here and sort things out in the exception handler
9582 * (including possibly emulating an SG instruction).
9583 */
9584 if (sattrs.ns != !secure) {
9585 if (sattrs.nsc) {
9586 fi->type = ARMFault_QEMU_NSCExec;
9587 } else {
9588 fi->type = ARMFault_QEMU_SFault;
9589 }
9590 *phys_ptr = address;
9591 *prot = 0;
9592 return true;
9593 }
9594 } else {
9595 /* For data accesses we always use the MMU bank indicated
9596 * by the current CPU state, but the security attributes
9597 * might downgrade a secure access to nonsecure.
9598 */
9599 if (sattrs.ns) {
9600 txattrs->secure = false;
9601 } else if (!secure) {
9602 /* NS access to S memory must fault.
9603 * Architecturally we should first check whether the
9604 * MPU information for this address indicates that we
9605 * are doing an unaligned access to Device memory, which
9606 * should generate a UsageFault instead. QEMU does not
9607 * currently check for that kind of unaligned access though.
9608 * If we added it we would need to do so as a special case
9609 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9610 */
9611 fi->type = ARMFault_QEMU_SFault;
9612 *phys_ptr = address;
9613 *prot = 0;
9614 return true;
9615 }
9616 }
9617 }
9618
9619 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9620 txattrs, prot, fi, NULL);
9621 }
9622
9623 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9624 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9625 hwaddr *phys_ptr, int *prot,
9626 ARMMMUFaultInfo *fi)
9627 {
9628 int n;
9629 uint32_t mask;
9630 uint32_t base;
9631 bool is_user = regime_is_user(env, mmu_idx);
9632
9633 if (regime_translation_disabled(env, mmu_idx)) {
9634 /* MPU disabled. */
9635 *phys_ptr = address;
9636 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9637 return false;
9638 }
9639
9640 *phys_ptr = address;
9641 for (n = 7; n >= 0; n--) {
9642 base = env->cp15.c6_region[n];
9643 if ((base & 1) == 0) {
9644 continue;
9645 }
9646 mask = 1 << ((base >> 1) & 0x1f);
9647 /* Keep this shift separate from the above to avoid an
9648 (undefined) << 32. */
9649 mask = (mask << 1) - 1;
9650 if (((base ^ address) & ~mask) == 0) {
9651 break;
9652 }
9653 }
9654 if (n < 0) {
9655 fi->type = ARMFault_Background;
9656 return true;
9657 }
9658
9659 if (access_type == MMU_INST_FETCH) {
9660 mask = env->cp15.pmsav5_insn_ap;
9661 } else {
9662 mask = env->cp15.pmsav5_data_ap;
9663 }
9664 mask = (mask >> (n * 4)) & 0xf;
9665 switch (mask) {
9666 case 0:
9667 fi->type = ARMFault_Permission;
9668 fi->level = 1;
9669 return true;
9670 case 1:
9671 if (is_user) {
9672 fi->type = ARMFault_Permission;
9673 fi->level = 1;
9674 return true;
9675 }
9676 *prot = PAGE_READ | PAGE_WRITE;
9677 break;
9678 case 2:
9679 *prot = PAGE_READ;
9680 if (!is_user) {
9681 *prot |= PAGE_WRITE;
9682 }
9683 break;
9684 case 3:
9685 *prot = PAGE_READ | PAGE_WRITE;
9686 break;
9687 case 5:
9688 if (is_user) {
9689 fi->type = ARMFault_Permission;
9690 fi->level = 1;
9691 return true;
9692 }
9693 *prot = PAGE_READ;
9694 break;
9695 case 6:
9696 *prot = PAGE_READ;
9697 break;
9698 default:
9699 /* Bad permission. */
9700 fi->type = ARMFault_Permission;
9701 fi->level = 1;
9702 return true;
9703 }
9704 *prot |= PAGE_EXEC;
9705 return false;
9706 }
9707
9708 /* Combine either inner or outer cacheability attributes for normal
9709 * memory, according to table D4-42 and pseudocode procedure
9710 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9711 *
9712 * NB: only stage 1 includes allocation hints (RW bits), leading to
9713 * some asymmetry.
9714 */
9715 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9716 {
9717 if (s1 == 4 || s2 == 4) {
9718 /* non-cacheable has precedence */
9719 return 4;
9720 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9721 /* stage 1 write-through takes precedence */
9722 return s1;
9723 } else if (extract32(s2, 2, 2) == 2) {
9724 /* stage 2 write-through takes precedence, but the allocation hint
9725 * is still taken from stage 1
9726 */
9727 return (2 << 2) | extract32(s1, 0, 2);
9728 } else { /* write-back */
9729 return s1;
9730 }
9731 }
9732
9733 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9734 * and CombineS1S2Desc()
9735 *
9736 * @s1: Attributes from stage 1 walk
9737 * @s2: Attributes from stage 2 walk
9738 */
9739 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9740 {
9741 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9742 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9743 ARMCacheAttrs ret;
9744
9745 /* Combine shareability attributes (table D4-43) */
9746 if (s1.shareability == 2 || s2.shareability == 2) {
9747 /* if either are outer-shareable, the result is outer-shareable */
9748 ret.shareability = 2;
9749 } else if (s1.shareability == 3 || s2.shareability == 3) {
9750 /* if either are inner-shareable, the result is inner-shareable */
9751 ret.shareability = 3;
9752 } else {
9753 /* both non-shareable */
9754 ret.shareability = 0;
9755 }
9756
9757 /* Combine memory type and cacheability attributes */
9758 if (s1hi == 0 || s2hi == 0) {
9759 /* Device has precedence over normal */
9760 if (s1lo == 0 || s2lo == 0) {
9761 /* nGnRnE has precedence over anything */
9762 ret.attrs = 0;
9763 } else if (s1lo == 4 || s2lo == 4) {
9764 /* non-Reordering has precedence over Reordering */
9765 ret.attrs = 4; /* nGnRE */
9766 } else if (s1lo == 8 || s2lo == 8) {
9767 /* non-Gathering has precedence over Gathering */
9768 ret.attrs = 8; /* nGRE */
9769 } else {
9770 ret.attrs = 0xc; /* GRE */
9771 }
9772
9773 /* Any location for which the resultant memory type is any
9774 * type of Device memory is always treated as Outer Shareable.
9775 */
9776 ret.shareability = 2;
9777 } else { /* Normal memory */
9778 /* Outer/inner cacheability combine independently */
9779 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9780 | combine_cacheattr_nibble(s1lo, s2lo);
9781
9782 if (ret.attrs == 0x44) {
9783 /* Any location for which the resultant memory type is Normal
9784 * Inner Non-cacheable, Outer Non-cacheable is always treated
9785 * as Outer Shareable.
9786 */
9787 ret.shareability = 2;
9788 }
9789 }
9790
9791 return ret;
9792 }
9793
9794
9795 /* get_phys_addr - get the physical address for this virtual address
9796 *
9797 * Find the physical address corresponding to the given virtual address,
9798 * by doing a translation table walk on MMU based systems or using the
9799 * MPU state on MPU based systems.
9800 *
9801 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9802 * prot and page_size may not be filled in, and the populated fsr value provides
9803 * information on why the translation aborted, in the format of a
9804 * DFSR/IFSR fault register, with the following caveats:
9805 * * we honour the short vs long DFSR format differences.
9806 * * the WnR bit is never set (the caller must do this).
9807 * * for PSMAv5 based systems we don't bother to return a full FSR format
9808 * value.
9809 *
9810 * @env: CPUARMState
9811 * @address: virtual address to get physical address for
9812 * @access_type: 0 for read, 1 for write, 2 for execute
9813 * @mmu_idx: MMU index indicating required translation regime
9814 * @phys_ptr: set to the physical address corresponding to the virtual address
9815 * @attrs: set to the memory transaction attributes to use
9816 * @prot: set to the permissions for the page containing phys_ptr
9817 * @page_size: set to the size of the page containing phys_ptr
9818 * @fi: set to fault info if the translation fails
9819 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
9820 */
9821 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9822 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9823 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9824 target_ulong *page_size,
9825 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9826 {
9827 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9828 /* Call ourselves recursively to do the stage 1 and then stage 2
9829 * translations.
9830 */
9831 if (arm_feature(env, ARM_FEATURE_EL2)) {
9832 hwaddr ipa;
9833 int s2_prot;
9834 int ret;
9835 ARMCacheAttrs cacheattrs2 = {};
9836
9837 ret = get_phys_addr(env, address, access_type,
9838 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9839 prot, page_size, fi, cacheattrs);
9840
9841 /* If S1 fails or S2 is disabled, return early. */
9842 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9843 *phys_ptr = ipa;
9844 return ret;
9845 }
9846
9847 /* S1 is done. Now do S2 translation. */
9848 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9849 phys_ptr, attrs, &s2_prot,
9850 page_size, fi,
9851 cacheattrs != NULL ? &cacheattrs2 : NULL);
9852 fi->s2addr = ipa;
9853 /* Combine the S1 and S2 perms. */
9854 *prot &= s2_prot;
9855
9856 /* Combine the S1 and S2 cache attributes, if needed */
9857 if (!ret && cacheattrs != NULL) {
9858 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9859 }
9860
9861 return ret;
9862 } else {
9863 /*
9864 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9865 */
9866 mmu_idx = stage_1_mmu_idx(mmu_idx);
9867 }
9868 }
9869
9870 /* The page table entries may downgrade secure to non-secure, but
9871 * cannot upgrade an non-secure translation regime's attributes
9872 * to secure.
9873 */
9874 attrs->secure = regime_is_secure(env, mmu_idx);
9875 attrs->user = regime_is_user(env, mmu_idx);
9876
9877 /* Fast Context Switch Extension. This doesn't exist at all in v8.
9878 * In v7 and earlier it affects all stage 1 translations.
9879 */
9880 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9881 && !arm_feature(env, ARM_FEATURE_V8)) {
9882 if (regime_el(env, mmu_idx) == 3) {
9883 address += env->cp15.fcseidr_s;
9884 } else {
9885 address += env->cp15.fcseidr_ns;
9886 }
9887 }
9888
9889 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9890 bool ret;
9891 *page_size = TARGET_PAGE_SIZE;
9892
9893 if (arm_feature(env, ARM_FEATURE_V8)) {
9894 /* PMSAv8 */
9895 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9896 phys_ptr, attrs, prot, fi);
9897 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9898 /* PMSAv7 */
9899 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9900 phys_ptr, prot, fi);
9901 } else {
9902 /* Pre-v7 MPU */
9903 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9904 phys_ptr, prot, fi);
9905 }
9906 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9907 " mmu_idx %u -> %s (prot %c%c%c)\n",
9908 access_type == MMU_DATA_LOAD ? "reading" :
9909 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9910 (uint32_t)address, mmu_idx,
9911 ret ? "Miss" : "Hit",
9912 *prot & PAGE_READ ? 'r' : '-',
9913 *prot & PAGE_WRITE ? 'w' : '-',
9914 *prot & PAGE_EXEC ? 'x' : '-');
9915
9916 return ret;
9917 }
9918
9919 /* Definitely a real MMU, not an MPU */
9920
9921 if (regime_translation_disabled(env, mmu_idx)) {
9922 /* MMU disabled. */
9923 *phys_ptr = address;
9924 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9925 *page_size = TARGET_PAGE_SIZE;
9926 return 0;
9927 }
9928
9929 if (regime_using_lpae_format(env, mmu_idx)) {
9930 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
9931 phys_ptr, attrs, prot, page_size,
9932 fi, cacheattrs);
9933 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9934 return get_phys_addr_v6(env, address, access_type, mmu_idx,
9935 phys_ptr, attrs, prot, page_size, fi);
9936 } else {
9937 return get_phys_addr_v5(env, address, access_type, mmu_idx,
9938 phys_ptr, prot, page_size, fi);
9939 }
9940 }
9941
9942 /* Walk the page table and (if the mapping exists) add the page
9943 * to the TLB. Return false on success, or true on failure. Populate
9944 * fsr with ARM DFSR/IFSR fault register format value on failure.
9945 */
9946 bool arm_tlb_fill(CPUState *cs, vaddr address,
9947 MMUAccessType access_type, int mmu_idx,
9948 ARMMMUFaultInfo *fi)
9949 {
9950 ARMCPU *cpu = ARM_CPU(cs);
9951 CPUARMState *env = &cpu->env;
9952 hwaddr phys_addr;
9953 target_ulong page_size;
9954 int prot;
9955 int ret;
9956 MemTxAttrs attrs = {};
9957
9958 ret = get_phys_addr(env, address, access_type,
9959 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9960 &attrs, &prot, &page_size, fi, NULL);
9961 if (!ret) {
9962 /* Map a single [sub]page. */
9963 phys_addr &= TARGET_PAGE_MASK;
9964 address &= TARGET_PAGE_MASK;
9965 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9966 prot, mmu_idx, page_size);
9967 return 0;
9968 }
9969
9970 return ret;
9971 }
9972
9973 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9974 MemTxAttrs *attrs)
9975 {
9976 ARMCPU *cpu = ARM_CPU(cs);
9977 CPUARMState *env = &cpu->env;
9978 hwaddr phys_addr;
9979 target_ulong page_size;
9980 int prot;
9981 bool ret;
9982 ARMMMUFaultInfo fi = {};
9983 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9984
9985 *attrs = (MemTxAttrs) {};
9986
9987 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9988 attrs, &prot, &page_size, &fi, NULL);
9989
9990 if (ret) {
9991 return -1;
9992 }
9993 return phys_addr;
9994 }
9995
9996 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9997 {
9998 uint32_t mask;
9999 unsigned el = arm_current_el(env);
10000
10001 /* First handle registers which unprivileged can read */
10002
10003 switch (reg) {
10004 case 0 ... 7: /* xPSR sub-fields */
10005 mask = 0;
10006 if ((reg & 1) && el) {
10007 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10008 }
10009 if (!(reg & 4)) {
10010 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10011 }
10012 /* EPSR reads as zero */
10013 return xpsr_read(env) & mask;
10014 break;
10015 case 20: /* CONTROL */
10016 return env->v7m.control[env->v7m.secure];
10017 case 0x94: /* CONTROL_NS */
10018 /* We have to handle this here because unprivileged Secure code
10019 * can read the NS CONTROL register.
10020 */
10021 if (!env->v7m.secure) {
10022 return 0;
10023 }
10024 return env->v7m.control[M_REG_NS];
10025 }
10026
10027 if (el == 0) {
10028 return 0; /* unprivileged reads others as zero */
10029 }
10030
10031 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10032 switch (reg) {
10033 case 0x88: /* MSP_NS */
10034 if (!env->v7m.secure) {
10035 return 0;
10036 }
10037 return env->v7m.other_ss_msp;
10038 case 0x89: /* PSP_NS */
10039 if (!env->v7m.secure) {
10040 return 0;
10041 }
10042 return env->v7m.other_ss_psp;
10043 case 0x90: /* PRIMASK_NS */
10044 if (!env->v7m.secure) {
10045 return 0;
10046 }
10047 return env->v7m.primask[M_REG_NS];
10048 case 0x91: /* BASEPRI_NS */
10049 if (!env->v7m.secure) {
10050 return 0;
10051 }
10052 return env->v7m.basepri[M_REG_NS];
10053 case 0x93: /* FAULTMASK_NS */
10054 if (!env->v7m.secure) {
10055 return 0;
10056 }
10057 return env->v7m.faultmask[M_REG_NS];
10058 case 0x98: /* SP_NS */
10059 {
10060 /* This gives the non-secure SP selected based on whether we're
10061 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10062 */
10063 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10064
10065 if (!env->v7m.secure) {
10066 return 0;
10067 }
10068 if (!arm_v7m_is_handler_mode(env) && spsel) {
10069 return env->v7m.other_ss_psp;
10070 } else {
10071 return env->v7m.other_ss_msp;
10072 }
10073 }
10074 default:
10075 break;
10076 }
10077 }
10078
10079 switch (reg) {
10080 case 8: /* MSP */
10081 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10082 case 9: /* PSP */
10083 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10084 case 16: /* PRIMASK */
10085 return env->v7m.primask[env->v7m.secure];
10086 case 17: /* BASEPRI */
10087 case 18: /* BASEPRI_MAX */
10088 return env->v7m.basepri[env->v7m.secure];
10089 case 19: /* FAULTMASK */
10090 return env->v7m.faultmask[env->v7m.secure];
10091 default:
10092 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10093 " register %d\n", reg);
10094 return 0;
10095 }
10096 }
10097
10098 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10099 {
10100 /* We're passed bits [11..0] of the instruction; extract
10101 * SYSm and the mask bits.
10102 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10103 * we choose to treat them as if the mask bits were valid.
10104 * NB that the pseudocode 'mask' variable is bits [11..10],
10105 * whereas ours is [11..8].
10106 */
10107 uint32_t mask = extract32(maskreg, 8, 4);
10108 uint32_t reg = extract32(maskreg, 0, 8);
10109
10110 if (arm_current_el(env) == 0 && reg > 7) {
10111 /* only xPSR sub-fields may be written by unprivileged */
10112 return;
10113 }
10114
10115 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10116 switch (reg) {
10117 case 0x88: /* MSP_NS */
10118 if (!env->v7m.secure) {
10119 return;
10120 }
10121 env->v7m.other_ss_msp = val;
10122 return;
10123 case 0x89: /* PSP_NS */
10124 if (!env->v7m.secure) {
10125 return;
10126 }
10127 env->v7m.other_ss_psp = val;
10128 return;
10129 case 0x90: /* PRIMASK_NS */
10130 if (!env->v7m.secure) {
10131 return;
10132 }
10133 env->v7m.primask[M_REG_NS] = val & 1;
10134 return;
10135 case 0x91: /* BASEPRI_NS */
10136 if (!env->v7m.secure) {
10137 return;
10138 }
10139 env->v7m.basepri[M_REG_NS] = val & 0xff;
10140 return;
10141 case 0x93: /* FAULTMASK_NS */
10142 if (!env->v7m.secure) {
10143 return;
10144 }
10145 env->v7m.faultmask[M_REG_NS] = val & 1;
10146 return;
10147 case 0x98: /* SP_NS */
10148 {
10149 /* This gives the non-secure SP selected based on whether we're
10150 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10151 */
10152 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10153
10154 if (!env->v7m.secure) {
10155 return;
10156 }
10157 if (!arm_v7m_is_handler_mode(env) && spsel) {
10158 env->v7m.other_ss_psp = val;
10159 } else {
10160 env->v7m.other_ss_msp = val;
10161 }
10162 return;
10163 }
10164 default:
10165 break;
10166 }
10167 }
10168
10169 switch (reg) {
10170 case 0 ... 7: /* xPSR sub-fields */
10171 /* only APSR is actually writable */
10172 if (!(reg & 4)) {
10173 uint32_t apsrmask = 0;
10174
10175 if (mask & 8) {
10176 apsrmask |= XPSR_NZCV | XPSR_Q;
10177 }
10178 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10179 apsrmask |= XPSR_GE;
10180 }
10181 xpsr_write(env, val, apsrmask);
10182 }
10183 break;
10184 case 8: /* MSP */
10185 if (v7m_using_psp(env)) {
10186 env->v7m.other_sp = val;
10187 } else {
10188 env->regs[13] = val;
10189 }
10190 break;
10191 case 9: /* PSP */
10192 if (v7m_using_psp(env)) {
10193 env->regs[13] = val;
10194 } else {
10195 env->v7m.other_sp = val;
10196 }
10197 break;
10198 case 16: /* PRIMASK */
10199 env->v7m.primask[env->v7m.secure] = val & 1;
10200 break;
10201 case 17: /* BASEPRI */
10202 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10203 break;
10204 case 18: /* BASEPRI_MAX */
10205 val &= 0xff;
10206 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10207 || env->v7m.basepri[env->v7m.secure] == 0)) {
10208 env->v7m.basepri[env->v7m.secure] = val;
10209 }
10210 break;
10211 case 19: /* FAULTMASK */
10212 env->v7m.faultmask[env->v7m.secure] = val & 1;
10213 break;
10214 case 20: /* CONTROL */
10215 /* Writing to the SPSEL bit only has an effect if we are in
10216 * thread mode; other bits can be updated by any privileged code.
10217 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10218 * env->v7m.control, so we only need update the others.
10219 * For v7M, we must just ignore explicit writes to SPSEL in handler
10220 * mode; for v8M the write is permitted but will have no effect.
10221 */
10222 if (arm_feature(env, ARM_FEATURE_V8) ||
10223 !arm_v7m_is_handler_mode(env)) {
10224 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10225 }
10226 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10227 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10228 break;
10229 default:
10230 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10231 " register %d\n", reg);
10232 return;
10233 }
10234 }
10235
10236 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10237 {
10238 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10239 bool forceunpriv = op & 1;
10240 bool alt = op & 2;
10241 V8M_SAttributes sattrs = {};
10242 uint32_t tt_resp;
10243 bool r, rw, nsr, nsrw, mrvalid;
10244 int prot;
10245 ARMMMUFaultInfo fi = {};
10246 MemTxAttrs attrs = {};
10247 hwaddr phys_addr;
10248 ARMMMUIdx mmu_idx;
10249 uint32_t mregion;
10250 bool targetpriv;
10251 bool targetsec = env->v7m.secure;
10252
10253 /* Work out what the security state and privilege level we're
10254 * interested in is...
10255 */
10256 if (alt) {
10257 targetsec = !targetsec;
10258 }
10259
10260 if (forceunpriv) {
10261 targetpriv = false;
10262 } else {
10263 targetpriv = arm_v7m_is_handler_mode(env) ||
10264 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10265 }
10266
10267 /* ...and then figure out which MMU index this is */
10268 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10269
10270 /* We know that the MPU and SAU don't care about the access type
10271 * for our purposes beyond that we don't want to claim to be
10272 * an insn fetch, so we arbitrarily call this a read.
10273 */
10274
10275 /* MPU region info only available for privileged or if
10276 * inspecting the other MPU state.
10277 */
10278 if (arm_current_el(env) != 0 || alt) {
10279 /* We can ignore the return value as prot is always set */
10280 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10281 &phys_addr, &attrs, &prot, &fi, &mregion);
10282 if (mregion == -1) {
10283 mrvalid = false;
10284 mregion = 0;
10285 } else {
10286 mrvalid = true;
10287 }
10288 r = prot & PAGE_READ;
10289 rw = prot & PAGE_WRITE;
10290 } else {
10291 r = false;
10292 rw = false;
10293 mrvalid = false;
10294 mregion = 0;
10295 }
10296
10297 if (env->v7m.secure) {
10298 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10299 nsr = sattrs.ns && r;
10300 nsrw = sattrs.ns && rw;
10301 } else {
10302 sattrs.ns = true;
10303 nsr = false;
10304 nsrw = false;
10305 }
10306
10307 tt_resp = (sattrs.iregion << 24) |
10308 (sattrs.irvalid << 23) |
10309 ((!sattrs.ns) << 22) |
10310 (nsrw << 21) |
10311 (nsr << 20) |
10312 (rw << 19) |
10313 (r << 18) |
10314 (sattrs.srvalid << 17) |
10315 (mrvalid << 16) |
10316 (sattrs.sregion << 8) |
10317 mregion;
10318
10319 return tt_resp;
10320 }
10321
10322 #endif
10323
10324 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10325 {
10326 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10327 * Note that we do not implement the (architecturally mandated)
10328 * alignment fault for attempts to use this on Device memory
10329 * (which matches the usual QEMU behaviour of not implementing either
10330 * alignment faults or any memory attribute handling).
10331 */
10332
10333 ARMCPU *cpu = arm_env_get_cpu(env);
10334 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10335 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10336
10337 #ifndef CONFIG_USER_ONLY
10338 {
10339 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10340 * the block size so we might have to do more than one TLB lookup.
10341 * We know that in fact for any v8 CPU the page size is at least 4K
10342 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10343 * 1K as an artefact of legacy v5 subpage support being present in the
10344 * same QEMU executable.
10345 */
10346 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10347 void *hostaddr[maxidx];
10348 int try, i;
10349 unsigned mmu_idx = cpu_mmu_index(env, false);
10350 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10351
10352 for (try = 0; try < 2; try++) {
10353
10354 for (i = 0; i < maxidx; i++) {
10355 hostaddr[i] = tlb_vaddr_to_host(env,
10356 vaddr + TARGET_PAGE_SIZE * i,
10357 1, mmu_idx);
10358 if (!hostaddr[i]) {
10359 break;
10360 }
10361 }
10362 if (i == maxidx) {
10363 /* If it's all in the TLB it's fair game for just writing to;
10364 * we know we don't need to update dirty status, etc.
10365 */
10366 for (i = 0; i < maxidx - 1; i++) {
10367 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10368 }
10369 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10370 return;
10371 }
10372 /* OK, try a store and see if we can populate the tlb. This
10373 * might cause an exception if the memory isn't writable,
10374 * in which case we will longjmp out of here. We must for
10375 * this purpose use the actual register value passed to us
10376 * so that we get the fault address right.
10377 */
10378 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10379 /* Now we can populate the other TLB entries, if any */
10380 for (i = 0; i < maxidx; i++) {
10381 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10382 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10383 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10384 }
10385 }
10386 }
10387
10388 /* Slow path (probably attempt to do this to an I/O device or
10389 * similar, or clearing of a block of code we have translations
10390 * cached for). Just do a series of byte writes as the architecture
10391 * demands. It's not worth trying to use a cpu_physical_memory_map(),
10392 * memset(), unmap() sequence here because:
10393 * + we'd need to account for the blocksize being larger than a page
10394 * + the direct-RAM access case is almost always going to be dealt
10395 * with in the fastpath code above, so there's no speed benefit
10396 * + we would have to deal with the map returning NULL because the
10397 * bounce buffer was in use
10398 */
10399 for (i = 0; i < blocklen; i++) {
10400 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10401 }
10402 }
10403 #else
10404 memset(g2h(vaddr), 0, blocklen);
10405 #endif
10406 }
10407
10408 /* Note that signed overflow is undefined in C. The following routines are
10409 careful to use unsigned types where modulo arithmetic is required.
10410 Failure to do so _will_ break on newer gcc. */
10411
10412 /* Signed saturating arithmetic. */
10413
10414 /* Perform 16-bit signed saturating addition. */
10415 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10416 {
10417 uint16_t res;
10418
10419 res = a + b;
10420 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10421 if (a & 0x8000)
10422 res = 0x8000;
10423 else
10424 res = 0x7fff;
10425 }
10426 return res;
10427 }
10428
10429 /* Perform 8-bit signed saturating addition. */
10430 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10431 {
10432 uint8_t res;
10433
10434 res = a + b;
10435 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10436 if (a & 0x80)
10437 res = 0x80;
10438 else
10439 res = 0x7f;
10440 }
10441 return res;
10442 }
10443
10444 /* Perform 16-bit signed saturating subtraction. */
10445 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10446 {
10447 uint16_t res;
10448
10449 res = a - b;
10450 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10451 if (a & 0x8000)
10452 res = 0x8000;
10453 else
10454 res = 0x7fff;
10455 }
10456 return res;
10457 }
10458
10459 /* Perform 8-bit signed saturating subtraction. */
10460 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10461 {
10462 uint8_t res;
10463
10464 res = a - b;
10465 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10466 if (a & 0x80)
10467 res = 0x80;
10468 else
10469 res = 0x7f;
10470 }
10471 return res;
10472 }
10473
10474 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10475 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10476 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10477 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10478 #define PFX q
10479
10480 #include "op_addsub.h"
10481
10482 /* Unsigned saturating arithmetic. */
10483 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10484 {
10485 uint16_t res;
10486 res = a + b;
10487 if (res < a)
10488 res = 0xffff;
10489 return res;
10490 }
10491
10492 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10493 {
10494 if (a > b)
10495 return a - b;
10496 else
10497 return 0;
10498 }
10499
10500 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10501 {
10502 uint8_t res;
10503 res = a + b;
10504 if (res < a)
10505 res = 0xff;
10506 return res;
10507 }
10508
10509 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10510 {
10511 if (a > b)
10512 return a - b;
10513 else
10514 return 0;
10515 }
10516
10517 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10518 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10519 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10520 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10521 #define PFX uq
10522
10523 #include "op_addsub.h"
10524
10525 /* Signed modulo arithmetic. */
10526 #define SARITH16(a, b, n, op) do { \
10527 int32_t sum; \
10528 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10529 RESULT(sum, n, 16); \
10530 if (sum >= 0) \
10531 ge |= 3 << (n * 2); \
10532 } while(0)
10533
10534 #define SARITH8(a, b, n, op) do { \
10535 int32_t sum; \
10536 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10537 RESULT(sum, n, 8); \
10538 if (sum >= 0) \
10539 ge |= 1 << n; \
10540 } while(0)
10541
10542
10543 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10544 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10545 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10546 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10547 #define PFX s
10548 #define ARITH_GE
10549
10550 #include "op_addsub.h"
10551
10552 /* Unsigned modulo arithmetic. */
10553 #define ADD16(a, b, n) do { \
10554 uint32_t sum; \
10555 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10556 RESULT(sum, n, 16); \
10557 if ((sum >> 16) == 1) \
10558 ge |= 3 << (n * 2); \
10559 } while(0)
10560
10561 #define ADD8(a, b, n) do { \
10562 uint32_t sum; \
10563 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10564 RESULT(sum, n, 8); \
10565 if ((sum >> 8) == 1) \
10566 ge |= 1 << n; \
10567 } while(0)
10568
10569 #define SUB16(a, b, n) do { \
10570 uint32_t sum; \
10571 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10572 RESULT(sum, n, 16); \
10573 if ((sum >> 16) == 0) \
10574 ge |= 3 << (n * 2); \
10575 } while(0)
10576
10577 #define SUB8(a, b, n) do { \
10578 uint32_t sum; \
10579 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10580 RESULT(sum, n, 8); \
10581 if ((sum >> 8) == 0) \
10582 ge |= 1 << n; \
10583 } while(0)
10584
10585 #define PFX u
10586 #define ARITH_GE
10587
10588 #include "op_addsub.h"
10589
10590 /* Halved signed arithmetic. */
10591 #define ADD16(a, b, n) \
10592 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10593 #define SUB16(a, b, n) \
10594 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10595 #define ADD8(a, b, n) \
10596 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10597 #define SUB8(a, b, n) \
10598 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10599 #define PFX sh
10600
10601 #include "op_addsub.h"
10602
10603 /* Halved unsigned arithmetic. */
10604 #define ADD16(a, b, n) \
10605 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10606 #define SUB16(a, b, n) \
10607 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10608 #define ADD8(a, b, n) \
10609 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10610 #define SUB8(a, b, n) \
10611 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10612 #define PFX uh
10613
10614 #include "op_addsub.h"
10615
10616 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10617 {
10618 if (a > b)
10619 return a - b;
10620 else
10621 return b - a;
10622 }
10623
10624 /* Unsigned sum of absolute byte differences. */
10625 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10626 {
10627 uint32_t sum;
10628 sum = do_usad(a, b);
10629 sum += do_usad(a >> 8, b >> 8);
10630 sum += do_usad(a >> 16, b >>16);
10631 sum += do_usad(a >> 24, b >> 24);
10632 return sum;
10633 }
10634
10635 /* For ARMv6 SEL instruction. */
10636 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10637 {
10638 uint32_t mask;
10639
10640 mask = 0;
10641 if (flags & 1)
10642 mask |= 0xff;
10643 if (flags & 2)
10644 mask |= 0xff00;
10645 if (flags & 4)
10646 mask |= 0xff0000;
10647 if (flags & 8)
10648 mask |= 0xff000000;
10649 return (a & mask) | (b & ~mask);
10650 }
10651
10652 /* VFP support. We follow the convention used for VFP instructions:
10653 Single precision routines have a "s" suffix, double precision a
10654 "d" suffix. */
10655
10656 /* Convert host exception flags to vfp form. */
10657 static inline int vfp_exceptbits_from_host(int host_bits)
10658 {
10659 int target_bits = 0;
10660
10661 if (host_bits & float_flag_invalid)
10662 target_bits |= 1;
10663 if (host_bits & float_flag_divbyzero)
10664 target_bits |= 2;
10665 if (host_bits & float_flag_overflow)
10666 target_bits |= 4;
10667 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10668 target_bits |= 8;
10669 if (host_bits & float_flag_inexact)
10670 target_bits |= 0x10;
10671 if (host_bits & float_flag_input_denormal)
10672 target_bits |= 0x80;
10673 return target_bits;
10674 }
10675
10676 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10677 {
10678 int i;
10679 uint32_t fpscr;
10680
10681 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10682 | (env->vfp.vec_len << 16)
10683 | (env->vfp.vec_stride << 20);
10684 i = get_float_exception_flags(&env->vfp.fp_status);
10685 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10686 fpscr |= vfp_exceptbits_from_host(i);
10687 return fpscr;
10688 }
10689
10690 uint32_t vfp_get_fpscr(CPUARMState *env)
10691 {
10692 return HELPER(vfp_get_fpscr)(env);
10693 }
10694
10695 /* Convert vfp exception flags to target form. */
10696 static inline int vfp_exceptbits_to_host(int target_bits)
10697 {
10698 int host_bits = 0;
10699
10700 if (target_bits & 1)
10701 host_bits |= float_flag_invalid;
10702 if (target_bits & 2)
10703 host_bits |= float_flag_divbyzero;
10704 if (target_bits & 4)
10705 host_bits |= float_flag_overflow;
10706 if (target_bits & 8)
10707 host_bits |= float_flag_underflow;
10708 if (target_bits & 0x10)
10709 host_bits |= float_flag_inexact;
10710 if (target_bits & 0x80)
10711 host_bits |= float_flag_input_denormal;
10712 return host_bits;
10713 }
10714
10715 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10716 {
10717 int i;
10718 uint32_t changed;
10719
10720 changed = env->vfp.xregs[ARM_VFP_FPSCR];
10721 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10722 env->vfp.vec_len = (val >> 16) & 7;
10723 env->vfp.vec_stride = (val >> 20) & 3;
10724
10725 changed ^= val;
10726 if (changed & (3 << 22)) {
10727 i = (val >> 22) & 3;
10728 switch (i) {
10729 case FPROUNDING_TIEEVEN:
10730 i = float_round_nearest_even;
10731 break;
10732 case FPROUNDING_POSINF:
10733 i = float_round_up;
10734 break;
10735 case FPROUNDING_NEGINF:
10736 i = float_round_down;
10737 break;
10738 case FPROUNDING_ZERO:
10739 i = float_round_to_zero;
10740 break;
10741 }
10742 set_float_rounding_mode(i, &env->vfp.fp_status);
10743 }
10744 if (changed & (1 << 24)) {
10745 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10746 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10747 }
10748 if (changed & (1 << 25))
10749 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10750
10751 i = vfp_exceptbits_to_host(val);
10752 set_float_exception_flags(i, &env->vfp.fp_status);
10753 set_float_exception_flags(0, &env->vfp.standard_fp_status);
10754 }
10755
10756 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10757 {
10758 HELPER(vfp_set_fpscr)(env, val);
10759 }
10760
10761 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10762
10763 #define VFP_BINOP(name) \
10764 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10765 { \
10766 float_status *fpst = fpstp; \
10767 return float32_ ## name(a, b, fpst); \
10768 } \
10769 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10770 { \
10771 float_status *fpst = fpstp; \
10772 return float64_ ## name(a, b, fpst); \
10773 }
10774 VFP_BINOP(add)
10775 VFP_BINOP(sub)
10776 VFP_BINOP(mul)
10777 VFP_BINOP(div)
10778 VFP_BINOP(min)
10779 VFP_BINOP(max)
10780 VFP_BINOP(minnum)
10781 VFP_BINOP(maxnum)
10782 #undef VFP_BINOP
10783
10784 float32 VFP_HELPER(neg, s)(float32 a)
10785 {
10786 return float32_chs(a);
10787 }
10788
10789 float64 VFP_HELPER(neg, d)(float64 a)
10790 {
10791 return float64_chs(a);
10792 }
10793
10794 float32 VFP_HELPER(abs, s)(float32 a)
10795 {
10796 return float32_abs(a);
10797 }
10798
10799 float64 VFP_HELPER(abs, d)(float64 a)
10800 {
10801 return float64_abs(a);
10802 }
10803
10804 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10805 {
10806 return float32_sqrt(a, &env->vfp.fp_status);
10807 }
10808
10809 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10810 {
10811 return float64_sqrt(a, &env->vfp.fp_status);
10812 }
10813
10814 /* XXX: check quiet/signaling case */
10815 #define DO_VFP_cmp(p, type) \
10816 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
10817 { \
10818 uint32_t flags; \
10819 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10820 case 0: flags = 0x6; break; \
10821 case -1: flags = 0x8; break; \
10822 case 1: flags = 0x2; break; \
10823 default: case 2: flags = 0x3; break; \
10824 } \
10825 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10826 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10827 } \
10828 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10829 { \
10830 uint32_t flags; \
10831 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10832 case 0: flags = 0x6; break; \
10833 case -1: flags = 0x8; break; \
10834 case 1: flags = 0x2; break; \
10835 default: case 2: flags = 0x3; break; \
10836 } \
10837 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10838 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10839 }
10840 DO_VFP_cmp(s, float32)
10841 DO_VFP_cmp(d, float64)
10842 #undef DO_VFP_cmp
10843
10844 /* Integer to float and float to integer conversions */
10845
10846 #define CONV_ITOF(name, fsz, sign) \
10847 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10848 { \
10849 float_status *fpst = fpstp; \
10850 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10851 }
10852
10853 #define CONV_FTOI(name, fsz, sign, round) \
10854 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10855 { \
10856 float_status *fpst = fpstp; \
10857 if (float##fsz##_is_any_nan(x)) { \
10858 float_raise(float_flag_invalid, fpst); \
10859 return 0; \
10860 } \
10861 return float##fsz##_to_##sign##int32##round(x, fpst); \
10862 }
10863
10864 #define FLOAT_CONVS(name, p, fsz, sign) \
10865 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10866 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10867 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10868
10869 FLOAT_CONVS(si, s, 32, )
10870 FLOAT_CONVS(si, d, 64, )
10871 FLOAT_CONVS(ui, s, 32, u)
10872 FLOAT_CONVS(ui, d, 64, u)
10873
10874 #undef CONV_ITOF
10875 #undef CONV_FTOI
10876 #undef FLOAT_CONVS
10877
10878 /* floating point conversion */
10879 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10880 {
10881 float64 r = float32_to_float64(x, &env->vfp.fp_status);
10882 /* ARM requires that S<->D conversion of any kind of NaN generates
10883 * a quiet NaN by forcing the most significant frac bit to 1.
10884 */
10885 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10886 }
10887
10888 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10889 {
10890 float32 r = float64_to_float32(x, &env->vfp.fp_status);
10891 /* ARM requires that S<->D conversion of any kind of NaN generates
10892 * a quiet NaN by forcing the most significant frac bit to 1.
10893 */
10894 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10895 }
10896
10897 /* VFP3 fixed point conversion. */
10898 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10899 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
10900 void *fpstp) \
10901 { \
10902 float_status *fpst = fpstp; \
10903 float##fsz tmp; \
10904 tmp = itype##_to_##float##fsz(x, fpst); \
10905 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10906 }
10907
10908 /* Notice that we want only input-denormal exception flags from the
10909 * scalbn operation: the other possible flags (overflow+inexact if
10910 * we overflow to infinity, output-denormal) aren't correct for the
10911 * complete scale-and-convert operation.
10912 */
10913 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10914 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10915 uint32_t shift, \
10916 void *fpstp) \
10917 { \
10918 float_status *fpst = fpstp; \
10919 int old_exc_flags = get_float_exception_flags(fpst); \
10920 float##fsz tmp; \
10921 if (float##fsz##_is_any_nan(x)) { \
10922 float_raise(float_flag_invalid, fpst); \
10923 return 0; \
10924 } \
10925 tmp = float##fsz##_scalbn(x, shift, fpst); \
10926 old_exc_flags |= get_float_exception_flags(fpst) \
10927 & float_flag_input_denormal; \
10928 set_float_exception_flags(old_exc_flags, fpst); \
10929 return float##fsz##_to_##itype##round(tmp, fpst); \
10930 }
10931
10932 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
10933 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10934 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10935 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10936
10937 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
10938 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10939 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10940
10941 VFP_CONV_FIX(sh, d, 64, 64, int16)
10942 VFP_CONV_FIX(sl, d, 64, 64, int32)
10943 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10944 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10945 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10946 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10947 VFP_CONV_FIX(sh, s, 32, 32, int16)
10948 VFP_CONV_FIX(sl, s, 32, 32, int32)
10949 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10950 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10951 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10952 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10953 #undef VFP_CONV_FIX
10954 #undef VFP_CONV_FIX_FLOAT
10955 #undef VFP_CONV_FLOAT_FIX_ROUND
10956
10957 /* Set the current fp rounding mode and return the old one.
10958 * The argument is a softfloat float_round_ value.
10959 */
10960 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10961 {
10962 float_status *fp_status = &env->vfp.fp_status;
10963
10964 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10965 set_float_rounding_mode(rmode, fp_status);
10966
10967 return prev_rmode;
10968 }
10969
10970 /* Set the current fp rounding mode in the standard fp status and return
10971 * the old one. This is for NEON instructions that need to change the
10972 * rounding mode but wish to use the standard FPSCR values for everything
10973 * else. Always set the rounding mode back to the correct value after
10974 * modifying it.
10975 * The argument is a softfloat float_round_ value.
10976 */
10977 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10978 {
10979 float_status *fp_status = &env->vfp.standard_fp_status;
10980
10981 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10982 set_float_rounding_mode(rmode, fp_status);
10983
10984 return prev_rmode;
10985 }
10986
10987 /* Half precision conversions. */
10988 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10989 {
10990 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10991 float32 r = float16_to_float32(make_float16(a), ieee, s);
10992 if (ieee) {
10993 return float32_maybe_silence_nan(r, s);
10994 }
10995 return r;
10996 }
10997
10998 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10999 {
11000 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11001 float16 r = float32_to_float16(a, ieee, s);
11002 if (ieee) {
11003 r = float16_maybe_silence_nan(r, s);
11004 }
11005 return float16_val(r);
11006 }
11007
11008 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11009 {
11010 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
11011 }
11012
11013 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11014 {
11015 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
11016 }
11017
11018 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11019 {
11020 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
11021 }
11022
11023 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11024 {
11025 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
11026 }
11027
11028 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
11029 {
11030 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11031 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
11032 if (ieee) {
11033 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11034 }
11035 return r;
11036 }
11037
11038 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
11039 {
11040 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11041 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
11042 if (ieee) {
11043 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11044 }
11045 return float16_val(r);
11046 }
11047
11048 #define float32_two make_float32(0x40000000)
11049 #define float32_three make_float32(0x40400000)
11050 #define float32_one_point_five make_float32(0x3fc00000)
11051
11052 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11053 {
11054 float_status *s = &env->vfp.standard_fp_status;
11055 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11056 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11057 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11058 float_raise(float_flag_input_denormal, s);
11059 }
11060 return float32_two;
11061 }
11062 return float32_sub(float32_two, float32_mul(a, b, s), s);
11063 }
11064
11065 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11066 {
11067 float_status *s = &env->vfp.standard_fp_status;
11068 float32 product;
11069 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11070 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11071 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11072 float_raise(float_flag_input_denormal, s);
11073 }
11074 return float32_one_point_five;
11075 }
11076 product = float32_mul(a, b, s);
11077 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11078 }
11079
11080 /* NEON helpers. */
11081
11082 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11083 * int->float conversions at run-time. */
11084 #define float64_256 make_float64(0x4070000000000000LL)
11085 #define float64_512 make_float64(0x4080000000000000LL)
11086 #define float32_maxnorm make_float32(0x7f7fffff)
11087 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11088
11089 /* Reciprocal functions
11090 *
11091 * The algorithm that must be used to calculate the estimate
11092 * is specified by the ARM ARM, see FPRecipEstimate()
11093 */
11094
11095 static float64 recip_estimate(float64 a, float_status *real_fp_status)
11096 {
11097 /* These calculations mustn't set any fp exception flags,
11098 * so we use a local copy of the fp_status.
11099 */
11100 float_status dummy_status = *real_fp_status;
11101 float_status *s = &dummy_status;
11102 /* q = (int)(a * 512.0) */
11103 float64 q = float64_mul(float64_512, a, s);
11104 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11105
11106 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
11107 q = int64_to_float64(q_int, s);
11108 q = float64_add(q, float64_half, s);
11109 q = float64_div(q, float64_512, s);
11110 q = float64_div(float64_one, q, s);
11111
11112 /* s = (int)(256.0 * r + 0.5) */
11113 q = float64_mul(q, float64_256, s);
11114 q = float64_add(q, float64_half, s);
11115 q_int = float64_to_int64_round_to_zero(q, s);
11116
11117 /* return (double)s / 256.0 */
11118 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11119 }
11120
11121 /* Common wrapper to call recip_estimate */
11122 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
11123 {
11124 uint64_t val64 = float64_val(num);
11125 uint64_t frac = extract64(val64, 0, 52);
11126 int64_t exp = extract64(val64, 52, 11);
11127 uint64_t sbit;
11128 float64 scaled, estimate;
11129
11130 /* Generate the scaled number for the estimate function */
11131 if (exp == 0) {
11132 if (extract64(frac, 51, 1) == 0) {
11133 exp = -1;
11134 frac = extract64(frac, 0, 50) << 2;
11135 } else {
11136 frac = extract64(frac, 0, 51) << 1;
11137 }
11138 }
11139
11140 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
11141 scaled = make_float64((0x3feULL << 52)
11142 | extract64(frac, 44, 8) << 44);
11143
11144 estimate = recip_estimate(scaled, fpst);
11145
11146 /* Build new result */
11147 val64 = float64_val(estimate);
11148 sbit = 0x8000000000000000ULL & val64;
11149 exp = off - exp;
11150 frac = extract64(val64, 0, 52);
11151
11152 if (exp == 0) {
11153 frac = 1ULL << 51 | extract64(frac, 1, 51);
11154 } else if (exp == -1) {
11155 frac = 1ULL << 50 | extract64(frac, 2, 50);
11156 exp = 0;
11157 }
11158
11159 return make_float64(sbit | (exp << 52) | frac);
11160 }
11161
11162 static bool round_to_inf(float_status *fpst, bool sign_bit)
11163 {
11164 switch (fpst->float_rounding_mode) {
11165 case float_round_nearest_even: /* Round to Nearest */
11166 return true;
11167 case float_round_up: /* Round to +Inf */
11168 return !sign_bit;
11169 case float_round_down: /* Round to -Inf */
11170 return sign_bit;
11171 case float_round_to_zero: /* Round to Zero */
11172 return false;
11173 }
11174
11175 g_assert_not_reached();
11176 }
11177
11178 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11179 {
11180 float_status *fpst = fpstp;
11181 float32 f32 = float32_squash_input_denormal(input, fpst);
11182 uint32_t f32_val = float32_val(f32);
11183 uint32_t f32_sbit = 0x80000000ULL & f32_val;
11184 int32_t f32_exp = extract32(f32_val, 23, 8);
11185 uint32_t f32_frac = extract32(f32_val, 0, 23);
11186 float64 f64, r64;
11187 uint64_t r64_val;
11188 int64_t r64_exp;
11189 uint64_t r64_frac;
11190
11191 if (float32_is_any_nan(f32)) {
11192 float32 nan = f32;
11193 if (float32_is_signaling_nan(f32, fpst)) {
11194 float_raise(float_flag_invalid, fpst);
11195 nan = float32_maybe_silence_nan(f32, fpst);
11196 }
11197 if (fpst->default_nan_mode) {
11198 nan = float32_default_nan(fpst);
11199 }
11200 return nan;
11201 } else if (float32_is_infinity(f32)) {
11202 return float32_set_sign(float32_zero, float32_is_neg(f32));
11203 } else if (float32_is_zero(f32)) {
11204 float_raise(float_flag_divbyzero, fpst);
11205 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11206 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11207 /* Abs(value) < 2.0^-128 */
11208 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11209 if (round_to_inf(fpst, f32_sbit)) {
11210 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11211 } else {
11212 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11213 }
11214 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11215 float_raise(float_flag_underflow, fpst);
11216 return float32_set_sign(float32_zero, float32_is_neg(f32));
11217 }
11218
11219
11220 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11221 r64 = call_recip_estimate(f64, 253, fpst);
11222 r64_val = float64_val(r64);
11223 r64_exp = extract64(r64_val, 52, 11);
11224 r64_frac = extract64(r64_val, 0, 52);
11225
11226 /* result = sign : result_exp<7:0> : fraction<51:29>; */
11227 return make_float32(f32_sbit |
11228 (r64_exp & 0xff) << 23 |
11229 extract64(r64_frac, 29, 24));
11230 }
11231
11232 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11233 {
11234 float_status *fpst = fpstp;
11235 float64 f64 = float64_squash_input_denormal(input, fpst);
11236 uint64_t f64_val = float64_val(f64);
11237 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11238 int64_t f64_exp = extract64(f64_val, 52, 11);
11239 float64 r64;
11240 uint64_t r64_val;
11241 int64_t r64_exp;
11242 uint64_t r64_frac;
11243
11244 /* Deal with any special cases */
11245 if (float64_is_any_nan(f64)) {
11246 float64 nan = f64;
11247 if (float64_is_signaling_nan(f64, fpst)) {
11248 float_raise(float_flag_invalid, fpst);
11249 nan = float64_maybe_silence_nan(f64, fpst);
11250 }
11251 if (fpst->default_nan_mode) {
11252 nan = float64_default_nan(fpst);
11253 }
11254 return nan;
11255 } else if (float64_is_infinity(f64)) {
11256 return float64_set_sign(float64_zero, float64_is_neg(f64));
11257 } else if (float64_is_zero(f64)) {
11258 float_raise(float_flag_divbyzero, fpst);
11259 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11260 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11261 /* Abs(value) < 2.0^-1024 */
11262 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11263 if (round_to_inf(fpst, f64_sbit)) {
11264 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11265 } else {
11266 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11267 }
11268 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11269 float_raise(float_flag_underflow, fpst);
11270 return float64_set_sign(float64_zero, float64_is_neg(f64));
11271 }
11272
11273 r64 = call_recip_estimate(f64, 2045, fpst);
11274 r64_val = float64_val(r64);
11275 r64_exp = extract64(r64_val, 52, 11);
11276 r64_frac = extract64(r64_val, 0, 52);
11277
11278 /* result = sign : result_exp<10:0> : fraction<51:0> */
11279 return make_float64(f64_sbit |
11280 ((r64_exp & 0x7ff) << 52) |
11281 r64_frac);
11282 }
11283
11284 /* The algorithm that must be used to calculate the estimate
11285 * is specified by the ARM ARM.
11286 */
11287 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11288 {
11289 /* These calculations mustn't set any fp exception flags,
11290 * so we use a local copy of the fp_status.
11291 */
11292 float_status dummy_status = *real_fp_status;
11293 float_status *s = &dummy_status;
11294 float64 q;
11295 int64_t q_int;
11296
11297 if (float64_lt(a, float64_half, s)) {
11298 /* range 0.25 <= a < 0.5 */
11299
11300 /* a in units of 1/512 rounded down */
11301 /* q0 = (int)(a * 512.0); */
11302 q = float64_mul(float64_512, a, s);
11303 q_int = float64_to_int64_round_to_zero(q, s);
11304
11305 /* reciprocal root r */
11306 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
11307 q = int64_to_float64(q_int, s);
11308 q = float64_add(q, float64_half, s);
11309 q = float64_div(q, float64_512, s);
11310 q = float64_sqrt(q, s);
11311 q = float64_div(float64_one, q, s);
11312 } else {
11313 /* range 0.5 <= a < 1.0 */
11314
11315 /* a in units of 1/256 rounded down */
11316 /* q1 = (int)(a * 256.0); */
11317 q = float64_mul(float64_256, a, s);
11318 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11319
11320 /* reciprocal root r */
11321 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11322 q = int64_to_float64(q_int, s);
11323 q = float64_add(q, float64_half, s);
11324 q = float64_div(q, float64_256, s);
11325 q = float64_sqrt(q, s);
11326 q = float64_div(float64_one, q, s);
11327 }
11328 /* r in units of 1/256 rounded to nearest */
11329 /* s = (int)(256.0 * r + 0.5); */
11330
11331 q = float64_mul(q, float64_256,s );
11332 q = float64_add(q, float64_half, s);
11333 q_int = float64_to_int64_round_to_zero(q, s);
11334
11335 /* return (double)s / 256.0;*/
11336 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11337 }
11338
11339 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11340 {
11341 float_status *s = fpstp;
11342 float32 f32 = float32_squash_input_denormal(input, s);
11343 uint32_t val = float32_val(f32);
11344 uint32_t f32_sbit = 0x80000000 & val;
11345 int32_t f32_exp = extract32(val, 23, 8);
11346 uint32_t f32_frac = extract32(val, 0, 23);
11347 uint64_t f64_frac;
11348 uint64_t val64;
11349 int result_exp;
11350 float64 f64;
11351
11352 if (float32_is_any_nan(f32)) {
11353 float32 nan = f32;
11354 if (float32_is_signaling_nan(f32, s)) {
11355 float_raise(float_flag_invalid, s);
11356 nan = float32_maybe_silence_nan(f32, s);
11357 }
11358 if (s->default_nan_mode) {
11359 nan = float32_default_nan(s);
11360 }
11361 return nan;
11362 } else if (float32_is_zero(f32)) {
11363 float_raise(float_flag_divbyzero, s);
11364 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11365 } else if (float32_is_neg(f32)) {
11366 float_raise(float_flag_invalid, s);
11367 return float32_default_nan(s);
11368 } else if (float32_is_infinity(f32)) {
11369 return float32_zero;
11370 }
11371
11372 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11373 * preserving the parity of the exponent. */
11374
11375 f64_frac = ((uint64_t) f32_frac) << 29;
11376 if (f32_exp == 0) {
11377 while (extract64(f64_frac, 51, 1) == 0) {
11378 f64_frac = f64_frac << 1;
11379 f32_exp = f32_exp-1;
11380 }
11381 f64_frac = extract64(f64_frac, 0, 51) << 1;
11382 }
11383
11384 if (extract64(f32_exp, 0, 1) == 0) {
11385 f64 = make_float64(((uint64_t) f32_sbit) << 32
11386 | (0x3feULL << 52)
11387 | f64_frac);
11388 } else {
11389 f64 = make_float64(((uint64_t) f32_sbit) << 32
11390 | (0x3fdULL << 52)
11391 | f64_frac);
11392 }
11393
11394 result_exp = (380 - f32_exp) / 2;
11395
11396 f64 = recip_sqrt_estimate(f64, s);
11397
11398 val64 = float64_val(f64);
11399
11400 val = ((result_exp & 0xff) << 23)
11401 | ((val64 >> 29) & 0x7fffff);
11402 return make_float32(val);
11403 }
11404
11405 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11406 {
11407 float_status *s = fpstp;
11408 float64 f64 = float64_squash_input_denormal(input, s);
11409 uint64_t val = float64_val(f64);
11410 uint64_t f64_sbit = 0x8000000000000000ULL & val;
11411 int64_t f64_exp = extract64(val, 52, 11);
11412 uint64_t f64_frac = extract64(val, 0, 52);
11413 int64_t result_exp;
11414 uint64_t result_frac;
11415
11416 if (float64_is_any_nan(f64)) {
11417 float64 nan = f64;
11418 if (float64_is_signaling_nan(f64, s)) {
11419 float_raise(float_flag_invalid, s);
11420 nan = float64_maybe_silence_nan(f64, s);
11421 }
11422 if (s->default_nan_mode) {
11423 nan = float64_default_nan(s);
11424 }
11425 return nan;
11426 } else if (float64_is_zero(f64)) {
11427 float_raise(float_flag_divbyzero, s);
11428 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11429 } else if (float64_is_neg(f64)) {
11430 float_raise(float_flag_invalid, s);
11431 return float64_default_nan(s);
11432 } else if (float64_is_infinity(f64)) {
11433 return float64_zero;
11434 }
11435
11436 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11437 * preserving the parity of the exponent. */
11438
11439 if (f64_exp == 0) {
11440 while (extract64(f64_frac, 51, 1) == 0) {
11441 f64_frac = f64_frac << 1;
11442 f64_exp = f64_exp - 1;
11443 }
11444 f64_frac = extract64(f64_frac, 0, 51) << 1;
11445 }
11446
11447 if (extract64(f64_exp, 0, 1) == 0) {
11448 f64 = make_float64(f64_sbit
11449 | (0x3feULL << 52)
11450 | f64_frac);
11451 } else {
11452 f64 = make_float64(f64_sbit
11453 | (0x3fdULL << 52)
11454 | f64_frac);
11455 }
11456
11457 result_exp = (3068 - f64_exp) / 2;
11458
11459 f64 = recip_sqrt_estimate(f64, s);
11460
11461 result_frac = extract64(float64_val(f64), 0, 52);
11462
11463 return make_float64(f64_sbit |
11464 ((result_exp & 0x7ff) << 52) |
11465 result_frac);
11466 }
11467
11468 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11469 {
11470 float_status *s = fpstp;
11471 float64 f64;
11472
11473 if ((a & 0x80000000) == 0) {
11474 return 0xffffffff;
11475 }
11476
11477 f64 = make_float64((0x3feULL << 52)
11478 | ((int64_t)(a & 0x7fffffff) << 21));
11479
11480 f64 = recip_estimate(f64, s);
11481
11482 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11483 }
11484
11485 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11486 {
11487 float_status *fpst = fpstp;
11488 float64 f64;
11489
11490 if ((a & 0xc0000000) == 0) {
11491 return 0xffffffff;
11492 }
11493
11494 if (a & 0x80000000) {
11495 f64 = make_float64((0x3feULL << 52)
11496 | ((uint64_t)(a & 0x7fffffff) << 21));
11497 } else { /* bits 31-30 == '01' */
11498 f64 = make_float64((0x3fdULL << 52)
11499 | ((uint64_t)(a & 0x3fffffff) << 22));
11500 }
11501
11502 f64 = recip_sqrt_estimate(f64, fpst);
11503
11504 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11505 }
11506
11507 /* VFPv4 fused multiply-accumulate */
11508 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11509 {
11510 float_status *fpst = fpstp;
11511 return float32_muladd(a, b, c, 0, fpst);
11512 }
11513
11514 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11515 {
11516 float_status *fpst = fpstp;
11517 return float64_muladd(a, b, c, 0, fpst);
11518 }
11519
11520 /* ARMv8 round to integral */
11521 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11522 {
11523 return float32_round_to_int(x, fp_status);
11524 }
11525
11526 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11527 {
11528 return float64_round_to_int(x, fp_status);
11529 }
11530
11531 float32 HELPER(rints)(float32 x, void *fp_status)
11532 {
11533 int old_flags = get_float_exception_flags(fp_status), new_flags;
11534 float32 ret;
11535
11536 ret = float32_round_to_int(x, fp_status);
11537
11538 /* Suppress any inexact exceptions the conversion produced */
11539 if (!(old_flags & float_flag_inexact)) {
11540 new_flags = get_float_exception_flags(fp_status);
11541 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11542 }
11543
11544 return ret;
11545 }
11546
11547 float64 HELPER(rintd)(float64 x, void *fp_status)
11548 {
11549 int old_flags = get_float_exception_flags(fp_status), new_flags;
11550 float64 ret;
11551
11552 ret = float64_round_to_int(x, fp_status);
11553
11554 new_flags = get_float_exception_flags(fp_status);
11555
11556 /* Suppress any inexact exceptions the conversion produced */
11557 if (!(old_flags & float_flag_inexact)) {
11558 new_flags = get_float_exception_flags(fp_status);
11559 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11560 }
11561
11562 return ret;
11563 }
11564
11565 /* Convert ARM rounding mode to softfloat */
11566 int arm_rmode_to_sf(int rmode)
11567 {
11568 switch (rmode) {
11569 case FPROUNDING_TIEAWAY:
11570 rmode = float_round_ties_away;
11571 break;
11572 case FPROUNDING_ODD:
11573 /* FIXME: add support for TIEAWAY and ODD */
11574 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11575 rmode);
11576 case FPROUNDING_TIEEVEN:
11577 default:
11578 rmode = float_round_nearest_even;
11579 break;
11580 case FPROUNDING_POSINF:
11581 rmode = float_round_up;
11582 break;
11583 case FPROUNDING_NEGINF:
11584 rmode = float_round_down;
11585 break;
11586 case FPROUNDING_ZERO:
11587 rmode = float_round_to_zero;
11588 break;
11589 }
11590 return rmode;
11591 }
11592
11593 /* CRC helpers.
11594 * The upper bytes of val (above the number specified by 'bytes') must have
11595 * been zeroed out by the caller.
11596 */
11597 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11598 {
11599 uint8_t buf[4];
11600
11601 stl_le_p(buf, val);
11602
11603 /* zlib crc32 converts the accumulator and output to one's complement. */
11604 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11605 }
11606
11607 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11608 {
11609 uint8_t buf[4];
11610
11611 stl_le_p(buf, val);
11612
11613 /* Linux crc32c converts the output to one's complement. */
11614 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11615 }