]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190816' into...
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
36
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
38
39 #ifndef CONFIG_USER_ONLY
40
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42 MMUAccessType access_type, ARMMMUIdx mmu_idx,
43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44 target_ulong *page_size_ptr,
45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
47
48 static void switch_mode(CPUARMState *env, int mode);
49
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
51 {
52 int nregs;
53
54 /* VFP data registers are always little-endian. */
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56 if (reg < nregs) {
57 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58 return 8;
59 }
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
61 /* Aliases for Q regs. */
62 nregs += 16;
63 if (reg < nregs) {
64 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65 stq_le_p(buf, q[0]);
66 stq_le_p(buf + 8, q[1]);
67 return 16;
68 }
69 }
70 switch (reg - nregs) {
71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74 }
75 return 0;
76 }
77
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 {
80 int nregs;
81
82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83 if (reg < nregs) {
84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85 return 8;
86 }
87 if (arm_feature(env, ARM_FEATURE_NEON)) {
88 nregs += 16;
89 if (reg < nregs) {
90 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91 q[0] = ldq_le_p(buf);
92 q[1] = ldq_le_p(buf + 8);
93 return 16;
94 }
95 }
96 switch (reg - nregs) {
97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100 }
101 return 0;
102 }
103
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
105 {
106 switch (reg) {
107 case 0 ... 31:
108 /* 128 bit FP register */
109 {
110 uint64_t *q = aa64_vfp_qreg(env, reg);
111 stq_le_p(buf, q[0]);
112 stq_le_p(buf + 8, q[1]);
113 return 16;
114 }
115 case 32:
116 /* FPSR */
117 stl_p(buf, vfp_get_fpsr(env));
118 return 4;
119 case 33:
120 /* FPCR */
121 stl_p(buf, vfp_get_fpcr(env));
122 return 4;
123 default:
124 return 0;
125 }
126 }
127
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130 switch (reg) {
131 case 0 ... 31:
132 /* 128 bit FP register */
133 {
134 uint64_t *q = aa64_vfp_qreg(env, reg);
135 q[0] = ldq_le_p(buf);
136 q[1] = ldq_le_p(buf + 8);
137 return 16;
138 }
139 case 32:
140 /* FPSR */
141 vfp_set_fpsr(env, ldl_p(buf));
142 return 4;
143 case 33:
144 /* FPCR */
145 vfp_set_fpcr(env, ldl_p(buf));
146 return 4;
147 default:
148 return 0;
149 }
150 }
151
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154 assert(ri->fieldoffset);
155 if (cpreg_field_is_64bit(ri)) {
156 return CPREG_FIELD64(env, ri);
157 } else {
158 return CPREG_FIELD32(env, ri);
159 }
160 }
161
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163 uint64_t value)
164 {
165 assert(ri->fieldoffset);
166 if (cpreg_field_is_64bit(ri)) {
167 CPREG_FIELD64(env, ri) = value;
168 } else {
169 CPREG_FIELD32(env, ri) = value;
170 }
171 }
172
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175 return (char *)env + ri->fieldoffset;
176 }
177
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180 /* Raw read of a coprocessor register (as needed for migration, etc). */
181 if (ri->type & ARM_CP_CONST) {
182 return ri->resetvalue;
183 } else if (ri->raw_readfn) {
184 return ri->raw_readfn(env, ri);
185 } else if (ri->readfn) {
186 return ri->readfn(env, ri);
187 } else {
188 return raw_read(env, ri);
189 }
190 }
191
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193 uint64_t v)
194 {
195 /* Raw write of a coprocessor register (as needed for migration, etc).
196 * Note that constant registers are treated as write-ignored; the
197 * caller should check for success by whether a readback gives the
198 * value written.
199 */
200 if (ri->type & ARM_CP_CONST) {
201 return;
202 } else if (ri->raw_writefn) {
203 ri->raw_writefn(env, ri, v);
204 } else if (ri->writefn) {
205 ri->writefn(env, ri, v);
206 } else {
207 raw_write(env, ri, v);
208 }
209 }
210
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
212 {
213 ARMCPU *cpu = env_archcpu(env);
214 const ARMCPRegInfo *ri;
215 uint32_t key;
216
217 key = cpu->dyn_xml.cpregs_keys[reg];
218 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219 if (ri) {
220 if (cpreg_field_is_64bit(ri)) {
221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222 } else {
223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224 }
225 }
226 return 0;
227 }
228
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
230 {
231 return 0;
232 }
233
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
235 {
236 /* Return true if the regdef would cause an assertion if you called
237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238 * program bug for it not to have the NO_RAW flag).
239 * NB that returning false here doesn't necessarily mean that calling
240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241 * read/write access functions which are safe for raw use" from "has
242 * read/write access functions which have side effects but has forgotten
243 * to provide raw access functions".
244 * The tests here line up with the conditions in read/write_raw_cp_reg()
245 * and assertions in raw_read()/raw_write().
246 */
247 if ((ri->type & ARM_CP_CONST) ||
248 ri->fieldoffset ||
249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250 return false;
251 }
252 return true;
253 }
254
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
256 {
257 /* Write the coprocessor state from cpu->env to the (index,value) list. */
258 int i;
259 bool ok = true;
260
261 for (i = 0; i < cpu->cpreg_array_len; i++) {
262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263 const ARMCPRegInfo *ri;
264 uint64_t newval;
265
266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267 if (!ri) {
268 ok = false;
269 continue;
270 }
271 if (ri->type & ARM_CP_NO_RAW) {
272 continue;
273 }
274
275 newval = read_raw_cp_reg(&cpu->env, ri);
276 if (kvm_sync) {
277 /*
278 * Only sync if the previous list->cpustate sync succeeded.
279 * Rather than tracking the success/failure state for every
280 * item in the list, we just recheck "does the raw write we must
281 * have made in write_list_to_cpustate() read back OK" here.
282 */
283 uint64_t oldval = cpu->cpreg_values[i];
284
285 if (oldval == newval) {
286 continue;
287 }
288
289 write_raw_cp_reg(&cpu->env, ri, oldval);
290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291 continue;
292 }
293
294 write_raw_cp_reg(&cpu->env, ri, newval);
295 }
296 cpu->cpreg_values[i] = newval;
297 }
298 return ok;
299 }
300
301 bool write_list_to_cpustate(ARMCPU *cpu)
302 {
303 int i;
304 bool ok = true;
305
306 for (i = 0; i < cpu->cpreg_array_len; i++) {
307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308 uint64_t v = cpu->cpreg_values[i];
309 const ARMCPRegInfo *ri;
310
311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312 if (!ri) {
313 ok = false;
314 continue;
315 }
316 if (ri->type & ARM_CP_NO_RAW) {
317 continue;
318 }
319 /* Write value and confirm it reads back as written
320 * (to catch read-only registers and partially read-only
321 * registers where the incoming migration value doesn't match)
322 */
323 write_raw_cp_reg(&cpu->env, ri, v);
324 if (read_raw_cp_reg(&cpu->env, ri) != v) {
325 ok = false;
326 }
327 }
328 return ok;
329 }
330
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
332 {
333 ARMCPU *cpu = opaque;
334 uint64_t regidx;
335 const ARMCPRegInfo *ri;
336
337 regidx = *(uint32_t *)key;
338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339
340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342 /* The value array need not be initialized at this point */
343 cpu->cpreg_array_len++;
344 }
345 }
346
347 static void count_cpreg(gpointer key, gpointer opaque)
348 {
349 ARMCPU *cpu = opaque;
350 uint64_t regidx;
351 const ARMCPRegInfo *ri;
352
353 regidx = *(uint32_t *)key;
354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
355
356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357 cpu->cpreg_array_len++;
358 }
359 }
360
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
362 {
363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
365
366 if (aidx > bidx) {
367 return 1;
368 }
369 if (aidx < bidx) {
370 return -1;
371 }
372 return 0;
373 }
374
375 void init_cpreg_list(ARMCPU *cpu)
376 {
377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378 * Note that we require cpreg_tuples[] to be sorted by key ID.
379 */
380 GList *keys;
381 int arraylen;
382
383 keys = g_hash_table_get_keys(cpu->cp_regs);
384 keys = g_list_sort(keys, cpreg_key_compare);
385
386 cpu->cpreg_array_len = 0;
387
388 g_list_foreach(keys, count_cpreg, cpu);
389
390 arraylen = cpu->cpreg_array_len;
391 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396 cpu->cpreg_array_len = 0;
397
398 g_list_foreach(keys, add_cpreg_to_list, cpu);
399
400 assert(cpu->cpreg_array_len == arraylen);
401
402 g_list_free(keys);
403 }
404
405 /*
406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
408 *
409 * access_el3_aa32ns: Used to check AArch32 register views.
410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
411 */
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413 const ARMCPRegInfo *ri,
414 bool isread)
415 {
416 bool secure = arm_is_secure_below_el3(env);
417
418 assert(!arm_el_is_aa64(env, 3));
419 if (secure) {
420 return CP_ACCESS_TRAP_UNCATEGORIZED;
421 }
422 return CP_ACCESS_OK;
423 }
424
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426 const ARMCPRegInfo *ri,
427 bool isread)
428 {
429 if (!arm_el_is_aa64(env, 3)) {
430 return access_el3_aa32ns(env, ri, isread);
431 }
432 return CP_ACCESS_OK;
433 }
434
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438 * We assume that the .access field is set to PL1_RW.
439 */
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441 const ARMCPRegInfo *ri,
442 bool isread)
443 {
444 if (arm_current_el(env) == 3) {
445 return CP_ACCESS_OK;
446 }
447 if (arm_is_secure_below_el3(env)) {
448 return CP_ACCESS_TRAP_EL3;
449 }
450 /* This will be EL1 NS and EL2 NS, which just UNDEF */
451 return CP_ACCESS_TRAP_UNCATEGORIZED;
452 }
453
454 /* Check for traps to "powerdown debug" registers, which are controlled
455 * by MDCR.TDOSA
456 */
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458 bool isread)
459 {
460 int el = arm_current_el(env);
461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462 (env->cp15.mdcr_el2 & MDCR_TDE) ||
463 (arm_hcr_el2_eff(env) & HCR_TGE);
464
465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466 return CP_ACCESS_TRAP_EL2;
467 }
468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469 return CP_ACCESS_TRAP_EL3;
470 }
471 return CP_ACCESS_OK;
472 }
473
474 /* Check for traps to "debug ROM" registers, which are controlled
475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
476 */
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478 bool isread)
479 {
480 int el = arm_current_el(env);
481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482 (env->cp15.mdcr_el2 & MDCR_TDE) ||
483 (arm_hcr_el2_eff(env) & HCR_TGE);
484
485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486 return CP_ACCESS_TRAP_EL2;
487 }
488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489 return CP_ACCESS_TRAP_EL3;
490 }
491 return CP_ACCESS_OK;
492 }
493
494 /* Check for traps to general debug registers, which are controlled
495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
496 */
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498 bool isread)
499 {
500 int el = arm_current_el(env);
501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502 (env->cp15.mdcr_el2 & MDCR_TDE) ||
503 (arm_hcr_el2_eff(env) & HCR_TGE);
504
505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506 return CP_ACCESS_TRAP_EL2;
507 }
508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509 return CP_ACCESS_TRAP_EL3;
510 }
511 return CP_ACCESS_OK;
512 }
513
514 /* Check for traps to performance monitor registers, which are controlled
515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
516 */
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518 bool isread)
519 {
520 int el = arm_current_el(env);
521
522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523 && !arm_is_secure_below_el3(env)) {
524 return CP_ACCESS_TRAP_EL2;
525 }
526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527 return CP_ACCESS_TRAP_EL3;
528 }
529 return CP_ACCESS_OK;
530 }
531
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
533 {
534 ARMCPU *cpu = env_archcpu(env);
535
536 raw_write(env, ri, value);
537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
538 }
539
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
541 {
542 ARMCPU *cpu = env_archcpu(env);
543
544 if (raw_read(env, ri) != value) {
545 /* Unlike real hardware the qemu TLB uses virtual addresses,
546 * not modified virtual addresses, so this causes a TLB flush.
547 */
548 tlb_flush(CPU(cpu));
549 raw_write(env, ri, value);
550 }
551 }
552
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
555 {
556 ARMCPU *cpu = env_archcpu(env);
557
558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559 && !extended_addresses_enabled(env)) {
560 /* For VMSA (when not using the LPAE long descriptor page table
561 * format) this register includes the ASID, so do a TLB flush.
562 * For PMSA it is purely a process ID and no action is needed.
563 */
564 tlb_flush(CPU(cpu));
565 }
566 raw_write(env, ri, value);
567 }
568
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571 uint64_t value)
572 {
573 CPUState *cs = env_cpu(env);
574
575 tlb_flush_all_cpus_synced(cs);
576 }
577
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
580 {
581 CPUState *cs = env_cpu(env);
582
583 tlb_flush_all_cpus_synced(cs);
584 }
585
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
588 {
589 CPUState *cs = env_cpu(env);
590
591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592 }
593
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
596 {
597 CPUState *cs = env_cpu(env);
598
599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
600 }
601
602 /*
603 * Non-IS variants of TLB operations are upgraded to
604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605 * force broadcast of these operations.
606 */
607 static bool tlb_force_broadcast(CPUARMState *env)
608 {
609 return (env->cp15.hcr_el2 & HCR_FB) &&
610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611 }
612
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
615 {
616 /* Invalidate all (TLBIALL) */
617 ARMCPU *cpu = env_archcpu(env);
618
619 if (tlb_force_broadcast(env)) {
620 tlbiall_is_write(env, NULL, value);
621 return;
622 }
623
624 tlb_flush(CPU(cpu));
625 }
626
627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
629 {
630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631 ARMCPU *cpu = env_archcpu(env);
632
633 if (tlb_force_broadcast(env)) {
634 tlbimva_is_write(env, NULL, value);
635 return;
636 }
637
638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
639 }
640
641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642 uint64_t value)
643 {
644 /* Invalidate by ASID (TLBIASID) */
645 ARMCPU *cpu = env_archcpu(env);
646
647 if (tlb_force_broadcast(env)) {
648 tlbiasid_is_write(env, NULL, value);
649 return;
650 }
651
652 tlb_flush(CPU(cpu));
653 }
654
655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657 {
658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
659 ARMCPU *cpu = env_archcpu(env);
660
661 if (tlb_force_broadcast(env)) {
662 tlbimvaa_is_write(env, NULL, value);
663 return;
664 }
665
666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
667 }
668
669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 uint64_t value)
671 {
672 CPUState *cs = env_cpu(env);
673
674 tlb_flush_by_mmuidx(cs,
675 ARMMMUIdxBit_S12NSE1 |
676 ARMMMUIdxBit_S12NSE0 |
677 ARMMMUIdxBit_S2NS);
678 }
679
680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
682 {
683 CPUState *cs = env_cpu(env);
684
685 tlb_flush_by_mmuidx_all_cpus_synced(cs,
686 ARMMMUIdxBit_S12NSE1 |
687 ARMMMUIdxBit_S12NSE0 |
688 ARMMMUIdxBit_S2NS);
689 }
690
691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
693 {
694 /* Invalidate by IPA. This has to invalidate any structures that
695 * contain only stage 2 translation information, but does not need
696 * to apply to structures that contain combined stage 1 and stage 2
697 * translation information.
698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
699 */
700 CPUState *cs = env_cpu(env);
701 uint64_t pageaddr;
702
703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
704 return;
705 }
706
707 pageaddr = sextract64(value << 12, 0, 40);
708
709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
710 }
711
712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
713 uint64_t value)
714 {
715 CPUState *cs = env_cpu(env);
716 uint64_t pageaddr;
717
718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
719 return;
720 }
721
722 pageaddr = sextract64(value << 12, 0, 40);
723
724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
725 ARMMMUIdxBit_S2NS);
726 }
727
728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
729 uint64_t value)
730 {
731 CPUState *cs = env_cpu(env);
732
733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
734 }
735
736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
737 uint64_t value)
738 {
739 CPUState *cs = env_cpu(env);
740
741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
742 }
743
744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
745 uint64_t value)
746 {
747 CPUState *cs = env_cpu(env);
748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749
750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
751 }
752
753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
755 {
756 CPUState *cs = env_cpu(env);
757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
758
759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
760 ARMMMUIdxBit_S1E2);
761 }
762
763 static const ARMCPRegInfo cp_reginfo[] = {
764 /* Define the secure and non-secure FCSE identifier CP registers
765 * separately because there is no secure bank in V8 (no _EL3). This allows
766 * the secure register to be properly reset and migrated. There is also no
767 * v8 EL1 version of the register so the non-secure instance stands alone.
768 */
769 { .name = "FCSEIDR",
770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
774 { .name = "FCSEIDR_S",
775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
779 /* Define the secure and non-secure context identifier CP registers
780 * separately because there is no secure bank in V8 (no _EL3). This allows
781 * the secure register to be properly reset and migrated. In the
782 * non-secure case, the 32-bit register will have reset and migration
783 * disabled during registration as it is handled by the 64-bit instance.
784 */
785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
795 REGINFO_SENTINEL
796 };
797
798 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
799 /* NB: Some of these registers exist in v8 but with more precise
800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
801 */
802 /* MMU Domain access control / MPU write buffer control */
803 { .name = "DACR",
804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
805 .access = PL1_RW, .resetvalue = 0,
806 .writefn = dacr_write, .raw_writefn = raw_write,
807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
808 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
810 * For v6 and v5, these mappings are overly broad.
811 */
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
820 /* Cache maintenance ops; some of this space may be overridden later. */
821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
824 REGINFO_SENTINEL
825 };
826
827 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
828 /* Not all pre-v6 cores implemented this WFI, so this is slightly
829 * over-broad.
830 */
831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
832 .access = PL1_W, .type = ARM_CP_WFI },
833 REGINFO_SENTINEL
834 };
835
836 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
838 * is UNPREDICTABLE; we choose to NOP as most implementations do).
839 */
840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
841 .access = PL1_W, .type = ARM_CP_WFI },
842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
844 * OMAPCP will override this space.
845 */
846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
848 .resetvalue = 0 },
849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
851 .resetvalue = 0 },
852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
855 .resetvalue = 0 },
856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
857 * implementing it as RAZ means the "debug architecture version" bits
858 * will read as a reserved value, which should cause Linux to not try
859 * to use the debug hardware.
860 */
861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
863 /* MMU TLB control. Note that the wildcarding means we cover not just
864 * the unified TLB ops but also the dside/iside/inner-shareable variants.
865 */
866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
868 .type = ARM_CP_NO_RAW },
869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
871 .type = ARM_CP_NO_RAW },
872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
874 .type = ARM_CP_NO_RAW },
875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
877 .type = ARM_CP_NO_RAW },
878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
882 REGINFO_SENTINEL
883 };
884
885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
886 uint64_t value)
887 {
888 uint32_t mask = 0;
889
890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
891 if (!arm_feature(env, ARM_FEATURE_V8)) {
892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
895 */
896 if (arm_feature(env, ARM_FEATURE_VFP)) {
897 /* VFP coprocessor: cp10 & cp11 [23:20] */
898 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
899
900 if (!arm_feature(env, ARM_FEATURE_NEON)) {
901 /* ASEDIS [31] bit is RAO/WI */
902 value |= (1 << 31);
903 }
904
905 /* VFPv3 and upwards with NEON implement 32 double precision
906 * registers (D0-D31).
907 */
908 if (!arm_feature(env, ARM_FEATURE_NEON) ||
909 !arm_feature(env, ARM_FEATURE_VFP3)) {
910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911 value |= (1 << 30);
912 }
913 }
914 value &= mask;
915 }
916
917 /*
918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
920 */
921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923 value &= ~(0xf << 20);
924 value |= env->cp15.cpacr_el1 & (0xf << 20);
925 }
926
927 env->cp15.cpacr_el1 = value;
928 }
929
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931 {
932 /*
933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
935 */
936 uint64_t value = env->cp15.cpacr_el1;
937
938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940 value &= ~(0xf << 20);
941 }
942 return value;
943 }
944
945
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
947 {
948 /* Call cpacr_write() so that we reset with the correct RAO bits set
949 * for our CPU features.
950 */
951 cpacr_write(env, ri, 0);
952 }
953
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955 bool isread)
956 {
957 if (arm_feature(env, ARM_FEATURE_V8)) {
958 /* Check if CPACR accesses are to be trapped to EL2 */
959 if (arm_current_el(env) == 1 &&
960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961 return CP_ACCESS_TRAP_EL2;
962 /* Check if CPACR accesses are to be trapped to EL3 */
963 } else if (arm_current_el(env) < 3 &&
964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965 return CP_ACCESS_TRAP_EL3;
966 }
967 }
968
969 return CP_ACCESS_OK;
970 }
971
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973 bool isread)
974 {
975 /* Check if CPTR accesses are set to trap to EL3 */
976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977 return CP_ACCESS_TRAP_EL3;
978 }
979
980 return CP_ACCESS_OK;
981 }
982
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984 /* prefetch by MVA in v6, NOP in v7 */
985 { .name = "MVA_prefetch",
986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987 .access = PL1_W, .type = ARM_CP_NOP },
988 /* We need to break the TB after ISB to execute self-modifying code
989 * correctly and also to take any pending interrupts immediately.
990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
991 */
992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995 .access = PL0_W, .type = ARM_CP_NOP },
996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997 .access = PL0_W, .type = ARM_CP_NOP },
998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999 .access = PL1_RW,
1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001 offsetof(CPUARMState, cp15.ifar_ns) },
1002 .resetvalue = 0, },
1003 /* Watchpoint Fault Address Register : should actually only be present
1004 * for 1136, 1176, 11MPCore.
1005 */
1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012 REGINFO_SENTINEL
1013 };
1014
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK 0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC 0x40
1019 #define PMCRDP 0x10
1020 #define PMCRD 0x8
1021 #define PMCRC 0x4
1022 #define PMCRP 0x2
1023 #define PMCRE 0x1
1024
1025 #define PMXEVTYPER_P 0x80000000
1026 #define PMXEVTYPER_U 0x40000000
1027 #define PMXEVTYPER_NSK 0x20000000
1028 #define PMXEVTYPER_NSU 0x10000000
1029 #define PMXEVTYPER_NSH 0x08000000
1030 #define PMXEVTYPER_M 0x04000000
1031 #define PMXEVTYPER_MT 0x02000000
1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1035 PMXEVTYPER_M | PMXEVTYPER_MT | \
1036 PMXEVTYPER_EVTCOUNT)
1037
1038 #define PMCCFILTR 0xf8000000
1039 #define PMCCFILTR_M PMXEVTYPER_M
1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1041
1042 static inline uint32_t pmu_num_counters(CPUARMState *env)
1043 {
1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1045 }
1046
1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1048 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1049 {
1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1051 }
1052
1053 typedef struct pm_event {
1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1056 bool (*supported)(CPUARMState *);
1057 /*
1058 * Retrieve the current count of the underlying event. The programmed
1059 * counters hold a difference from the return value from this function
1060 */
1061 uint64_t (*get_count)(CPUARMState *);
1062 /*
1063 * Return how many nanoseconds it will take (at a minimum) for count events
1064 * to occur. A negative value indicates the counter will never overflow, or
1065 * that the counter has otherwise arranged for the overflow bit to be set
1066 * and the PMU interrupt to be raised on overflow.
1067 */
1068 int64_t (*ns_per_count)(uint64_t);
1069 } pm_event;
1070
1071 static bool event_always_supported(CPUARMState *env)
1072 {
1073 return true;
1074 }
1075
1076 static uint64_t swinc_get_count(CPUARMState *env)
1077 {
1078 /*
1079 * SW_INCR events are written directly to the pmevcntr's by writes to
1080 * PMSWINC, so there is no underlying count maintained by the PMU itself
1081 */
1082 return 0;
1083 }
1084
1085 static int64_t swinc_ns_per(uint64_t ignored)
1086 {
1087 return -1;
1088 }
1089
1090 /*
1091 * Return the underlying cycle count for the PMU cycle counters. If we're in
1092 * usermode, simply return 0.
1093 */
1094 static uint64_t cycles_get_count(CPUARMState *env)
1095 {
1096 #ifndef CONFIG_USER_ONLY
1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1099 #else
1100 return cpu_get_host_ticks();
1101 #endif
1102 }
1103
1104 #ifndef CONFIG_USER_ONLY
1105 static int64_t cycles_ns_per(uint64_t cycles)
1106 {
1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1108 }
1109
1110 static bool instructions_supported(CPUARMState *env)
1111 {
1112 return use_icount == 1 /* Precise instruction counting */;
1113 }
1114
1115 static uint64_t instructions_get_count(CPUARMState *env)
1116 {
1117 return (uint64_t)cpu_get_icount_raw();
1118 }
1119
1120 static int64_t instructions_ns_per(uint64_t icount)
1121 {
1122 return cpu_icount_to_ns((int64_t)icount);
1123 }
1124 #endif
1125
1126 static const pm_event pm_events[] = {
1127 { .number = 0x000, /* SW_INCR */
1128 .supported = event_always_supported,
1129 .get_count = swinc_get_count,
1130 .ns_per_count = swinc_ns_per,
1131 },
1132 #ifndef CONFIG_USER_ONLY
1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1134 .supported = instructions_supported,
1135 .get_count = instructions_get_count,
1136 .ns_per_count = instructions_ns_per,
1137 },
1138 { .number = 0x011, /* CPU_CYCLES, Cycle */
1139 .supported = event_always_supported,
1140 .get_count = cycles_get_count,
1141 .ns_per_count = cycles_ns_per,
1142 }
1143 #endif
1144 };
1145
1146 /*
1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1148 * events (i.e. the statistical profiling extension), this implementation
1149 * should first be updated to something sparse instead of the current
1150 * supported_event_map[] array.
1151 */
1152 #define MAX_EVENT_ID 0x11
1153 #define UNSUPPORTED_EVENT UINT16_MAX
1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1155
1156 /*
1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1158 * of ARM event numbers to indices in our pm_events array.
1159 *
1160 * Note: Events in the 0x40XX range are not currently supported.
1161 */
1162 void pmu_init(ARMCPU *cpu)
1163 {
1164 unsigned int i;
1165
1166 /*
1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1168 * events to them
1169 */
1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1171 supported_event_map[i] = UNSUPPORTED_EVENT;
1172 }
1173 cpu->pmceid0 = 0;
1174 cpu->pmceid1 = 0;
1175
1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1177 const pm_event *cnt = &pm_events[i];
1178 assert(cnt->number <= MAX_EVENT_ID);
1179 /* We do not currently support events in the 0x40xx range */
1180 assert(cnt->number <= 0x3f);
1181
1182 if (cnt->supported(&cpu->env)) {
1183 supported_event_map[cnt->number] = i;
1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1185 if (cnt->number & 0x20) {
1186 cpu->pmceid1 |= event_mask;
1187 } else {
1188 cpu->pmceid0 |= event_mask;
1189 }
1190 }
1191 }
1192 }
1193
1194 /*
1195 * Check at runtime whether a PMU event is supported for the current machine
1196 */
1197 static bool event_supported(uint16_t number)
1198 {
1199 if (number > MAX_EVENT_ID) {
1200 return false;
1201 }
1202 return supported_event_map[number] != UNSUPPORTED_EVENT;
1203 }
1204
1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1206 bool isread)
1207 {
1208 /* Performance monitor registers user accessibility is controlled
1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1210 * trapping to EL2 or EL3 for other accesses.
1211 */
1212 int el = arm_current_el(env);
1213
1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1215 return CP_ACCESS_TRAP;
1216 }
1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1218 && !arm_is_secure_below_el3(env)) {
1219 return CP_ACCESS_TRAP_EL2;
1220 }
1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1222 return CP_ACCESS_TRAP_EL3;
1223 }
1224
1225 return CP_ACCESS_OK;
1226 }
1227
1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1229 const ARMCPRegInfo *ri,
1230 bool isread)
1231 {
1232 /* ER: event counter read trap control */
1233 if (arm_feature(env, ARM_FEATURE_V8)
1234 && arm_current_el(env) == 0
1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1236 && isread) {
1237 return CP_ACCESS_OK;
1238 }
1239
1240 return pmreg_access(env, ri, isread);
1241 }
1242
1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1244 const ARMCPRegInfo *ri,
1245 bool isread)
1246 {
1247 /* SW: software increment write trap control */
1248 if (arm_feature(env, ARM_FEATURE_V8)
1249 && arm_current_el(env) == 0
1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1251 && !isread) {
1252 return CP_ACCESS_OK;
1253 }
1254
1255 return pmreg_access(env, ri, isread);
1256 }
1257
1258 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1259 const ARMCPRegInfo *ri,
1260 bool isread)
1261 {
1262 /* ER: event counter read trap control */
1263 if (arm_feature(env, ARM_FEATURE_V8)
1264 && arm_current_el(env) == 0
1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1266 return CP_ACCESS_OK;
1267 }
1268
1269 return pmreg_access(env, ri, isread);
1270 }
1271
1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1273 const ARMCPRegInfo *ri,
1274 bool isread)
1275 {
1276 /* CR: cycle counter read trap control */
1277 if (arm_feature(env, ARM_FEATURE_V8)
1278 && arm_current_el(env) == 0
1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1280 && isread) {
1281 return CP_ACCESS_OK;
1282 }
1283
1284 return pmreg_access(env, ri, isread);
1285 }
1286
1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1288 * the current EL, security state, and register configuration.
1289 */
1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1291 {
1292 uint64_t filter;
1293 bool e, p, u, nsk, nsu, nsh, m;
1294 bool enabled, prohibited, filtered;
1295 bool secure = arm_is_secure(env);
1296 int el = arm_current_el(env);
1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1298
1299 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1300 return false;
1301 }
1302
1303 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1304 (counter < hpmn || counter == 31)) {
1305 e = env->cp15.c9_pmcr & PMCRE;
1306 } else {
1307 e = env->cp15.mdcr_el2 & MDCR_HPME;
1308 }
1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1310
1311 if (!secure) {
1312 if (el == 2 && (counter < hpmn || counter == 31)) {
1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1314 } else {
1315 prohibited = false;
1316 }
1317 } else {
1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1319 (env->cp15.mdcr_el3 & MDCR_SPME);
1320 }
1321
1322 if (prohibited && counter == 31) {
1323 prohibited = env->cp15.c9_pmcr & PMCRDP;
1324 }
1325
1326 if (counter == 31) {
1327 filter = env->cp15.pmccfiltr_el0;
1328 } else {
1329 filter = env->cp15.c14_pmevtyper[counter];
1330 }
1331
1332 p = filter & PMXEVTYPER_P;
1333 u = filter & PMXEVTYPER_U;
1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1337 m = arm_el_is_aa64(env, 1) &&
1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1339
1340 if (el == 0) {
1341 filtered = secure ? u : u != nsu;
1342 } else if (el == 1) {
1343 filtered = secure ? p : p != nsk;
1344 } else if (el == 2) {
1345 filtered = !nsh;
1346 } else { /* EL3 */
1347 filtered = m != p;
1348 }
1349
1350 if (counter != 31) {
1351 /*
1352 * If not checking PMCCNTR, ensure the counter is setup to an event we
1353 * support
1354 */
1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1356 if (!event_supported(event)) {
1357 return false;
1358 }
1359 }
1360
1361 return enabled && !prohibited && !filtered;
1362 }
1363
1364 static void pmu_update_irq(CPUARMState *env)
1365 {
1366 ARMCPU *cpu = env_archcpu(env);
1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1369 }
1370
1371 /*
1372 * Ensure c15_ccnt is the guest-visible count so that operations such as
1373 * enabling/disabling the counter or filtering, modifying the count itself,
1374 * etc. can be done logically. This is essentially a no-op if the counter is
1375 * not enabled at the time of the call.
1376 */
1377 static void pmccntr_op_start(CPUARMState *env)
1378 {
1379 uint64_t cycles = cycles_get_count(env);
1380
1381 if (pmu_counter_enabled(env, 31)) {
1382 uint64_t eff_cycles = cycles;
1383 if (env->cp15.c9_pmcr & PMCRD) {
1384 /* Increment once every 64 processor clock cycles */
1385 eff_cycles /= 64;
1386 }
1387
1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1389
1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1391 1ull << 63 : 1ull << 31;
1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1393 env->cp15.c9_pmovsr |= (1 << 31);
1394 pmu_update_irq(env);
1395 }
1396
1397 env->cp15.c15_ccnt = new_pmccntr;
1398 }
1399 env->cp15.c15_ccnt_delta = cycles;
1400 }
1401
1402 /*
1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1405 * pmccntr_op_start.
1406 */
1407 static void pmccntr_op_finish(CPUARMState *env)
1408 {
1409 if (pmu_counter_enabled(env, 31)) {
1410 #ifndef CONFIG_USER_ONLY
1411 /* Calculate when the counter will next overflow */
1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1413 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1414 remaining_cycles = (uint32_t)remaining_cycles;
1415 }
1416 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1417
1418 if (overflow_in > 0) {
1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1420 overflow_in;
1421 ARMCPU *cpu = env_archcpu(env);
1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1423 }
1424 #endif
1425
1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1427 if (env->cp15.c9_pmcr & PMCRD) {
1428 /* Increment once every 64 processor clock cycles */
1429 prev_cycles /= 64;
1430 }
1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1432 }
1433 }
1434
1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1436 {
1437
1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1439 uint64_t count = 0;
1440 if (event_supported(event)) {
1441 uint16_t event_idx = supported_event_map[event];
1442 count = pm_events[event_idx].get_count(env);
1443 }
1444
1445 if (pmu_counter_enabled(env, counter)) {
1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1447
1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1449 env->cp15.c9_pmovsr |= (1 << counter);
1450 pmu_update_irq(env);
1451 }
1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1453 }
1454 env->cp15.c14_pmevcntr_delta[counter] = count;
1455 }
1456
1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1458 {
1459 if (pmu_counter_enabled(env, counter)) {
1460 #ifndef CONFIG_USER_ONLY
1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1462 uint16_t event_idx = supported_event_map[event];
1463 uint64_t delta = UINT32_MAX -
1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1466
1467 if (overflow_in > 0) {
1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1469 overflow_in;
1470 ARMCPU *cpu = env_archcpu(env);
1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1472 }
1473 #endif
1474
1475 env->cp15.c14_pmevcntr_delta[counter] -=
1476 env->cp15.c14_pmevcntr[counter];
1477 }
1478 }
1479
1480 void pmu_op_start(CPUARMState *env)
1481 {
1482 unsigned int i;
1483 pmccntr_op_start(env);
1484 for (i = 0; i < pmu_num_counters(env); i++) {
1485 pmevcntr_op_start(env, i);
1486 }
1487 }
1488
1489 void pmu_op_finish(CPUARMState *env)
1490 {
1491 unsigned int i;
1492 pmccntr_op_finish(env);
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 pmevcntr_op_finish(env, i);
1495 }
1496 }
1497
1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1499 {
1500 pmu_op_start(&cpu->env);
1501 }
1502
1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1504 {
1505 pmu_op_finish(&cpu->env);
1506 }
1507
1508 void arm_pmu_timer_cb(void *opaque)
1509 {
1510 ARMCPU *cpu = opaque;
1511
1512 /*
1513 * Update all the counter values based on the current underlying counts,
1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1516 * counter may expire.
1517 */
1518 pmu_op_start(&cpu->env);
1519 pmu_op_finish(&cpu->env);
1520 }
1521
1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1524 {
1525 pmu_op_start(env);
1526
1527 if (value & PMCRC) {
1528 /* The counter has been reset */
1529 env->cp15.c15_ccnt = 0;
1530 }
1531
1532 if (value & PMCRP) {
1533 unsigned int i;
1534 for (i = 0; i < pmu_num_counters(env); i++) {
1535 env->cp15.c14_pmevcntr[i] = 0;
1536 }
1537 }
1538
1539 /* only the DP, X, D and E bits are writable */
1540 env->cp15.c9_pmcr &= ~0x39;
1541 env->cp15.c9_pmcr |= (value & 0x39);
1542
1543 pmu_op_finish(env);
1544 }
1545
1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547 uint64_t value)
1548 {
1549 unsigned int i;
1550 for (i = 0; i < pmu_num_counters(env); i++) {
1551 /* Increment a counter's count iff: */
1552 if ((value & (1 << i)) && /* counter's bit is set */
1553 /* counter is enabled and not filtered */
1554 pmu_counter_enabled(env, i) &&
1555 /* counter is SW_INCR */
1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1557 pmevcntr_op_start(env, i);
1558
1559 /*
1560 * Detect if this write causes an overflow since we can't predict
1561 * PMSWINC overflows like we can for other events
1562 */
1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1564
1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1566 env->cp15.c9_pmovsr |= (1 << i);
1567 pmu_update_irq(env);
1568 }
1569
1570 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1571
1572 pmevcntr_op_finish(env, i);
1573 }
1574 }
1575 }
1576
1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1578 {
1579 uint64_t ret;
1580 pmccntr_op_start(env);
1581 ret = env->cp15.c15_ccnt;
1582 pmccntr_op_finish(env);
1583 return ret;
1584 }
1585
1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1587 uint64_t value)
1588 {
1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1592 * accessed.
1593 */
1594 env->cp15.c9_pmselr = value & 0x1f;
1595 }
1596
1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1598 uint64_t value)
1599 {
1600 pmccntr_op_start(env);
1601 env->cp15.c15_ccnt = value;
1602 pmccntr_op_finish(env);
1603 }
1604
1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1607 {
1608 uint64_t cur_val = pmccntr_read(env, NULL);
1609
1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1611 }
1612
1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1614 uint64_t value)
1615 {
1616 pmccntr_op_start(env);
1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1618 pmccntr_op_finish(env);
1619 }
1620
1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1622 uint64_t value)
1623 {
1624 pmccntr_op_start(env);
1625 /* M is not accessible from AArch32 */
1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1627 (value & PMCCFILTR);
1628 pmccntr_op_finish(env);
1629 }
1630
1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1632 {
1633 /* M is not visible in AArch32 */
1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1635 }
1636
1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638 uint64_t value)
1639 {
1640 value &= pmu_counter_mask(env);
1641 env->cp15.c9_pmcnten |= value;
1642 }
1643
1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645 uint64_t value)
1646 {
1647 value &= pmu_counter_mask(env);
1648 env->cp15.c9_pmcnten &= ~value;
1649 }
1650
1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1652 uint64_t value)
1653 {
1654 value &= pmu_counter_mask(env);
1655 env->cp15.c9_pmovsr &= ~value;
1656 pmu_update_irq(env);
1657 }
1658
1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1661 {
1662 value &= pmu_counter_mask(env);
1663 env->cp15.c9_pmovsr |= value;
1664 pmu_update_irq(env);
1665 }
1666
1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value, const uint8_t counter)
1669 {
1670 if (counter == 31) {
1671 pmccfiltr_write(env, ri, value);
1672 } else if (counter < pmu_num_counters(env)) {
1673 pmevcntr_op_start(env, counter);
1674
1675 /*
1676 * If this counter's event type is changing, store the current
1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1678 * pmevcntr_op_finish has the correct baseline when it converts back to
1679 * a delta.
1680 */
1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1682 PMXEVTYPER_EVTCOUNT;
1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1684 if (old_event != new_event) {
1685 uint64_t count = 0;
1686 if (event_supported(new_event)) {
1687 uint16_t event_idx = supported_event_map[new_event];
1688 count = pm_events[event_idx].get_count(env);
1689 }
1690 env->cp15.c14_pmevcntr_delta[counter] = count;
1691 }
1692
1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1694 pmevcntr_op_finish(env, counter);
1695 }
1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1697 * PMSELR value is equal to or greater than the number of implemented
1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1699 */
1700 }
1701
1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1703 const uint8_t counter)
1704 {
1705 if (counter == 31) {
1706 return env->cp15.pmccfiltr_el0;
1707 } else if (counter < pmu_num_counters(env)) {
1708 return env->cp15.c14_pmevtyper[counter];
1709 } else {
1710 /*
1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1713 */
1714 return 0;
1715 }
1716 }
1717
1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1719 uint64_t value)
1720 {
1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1722 pmevtyper_write(env, ri, value, counter);
1723 }
1724
1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1727 {
1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1729 env->cp15.c14_pmevtyper[counter] = value;
1730
1731 /*
1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1733 * pmu_op_finish calls when loading saved state for a migration. Because
1734 * we're potentially updating the type of event here, the value written to
1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1736 * different counter type. Therefore, we need to set this value to the
1737 * current count for the counter type we're writing so that pmu_op_finish
1738 * has the correct count for its calculation.
1739 */
1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1741 if (event_supported(event)) {
1742 uint16_t event_idx = supported_event_map[event];
1743 env->cp15.c14_pmevcntr_delta[counter] =
1744 pm_events[event_idx].get_count(env);
1745 }
1746 }
1747
1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1749 {
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 return pmevtyper_read(env, ri, counter);
1752 }
1753
1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1756 {
1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1758 }
1759
1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1761 {
1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1763 }
1764
1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766 uint64_t value, uint8_t counter)
1767 {
1768 if (counter < pmu_num_counters(env)) {
1769 pmevcntr_op_start(env, counter);
1770 env->cp15.c14_pmevcntr[counter] = value;
1771 pmevcntr_op_finish(env, counter);
1772 }
1773 /*
1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1775 * are CONSTRAINED UNPREDICTABLE.
1776 */
1777 }
1778
1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint8_t counter)
1781 {
1782 if (counter < pmu_num_counters(env)) {
1783 uint64_t ret;
1784 pmevcntr_op_start(env, counter);
1785 ret = env->cp15.c14_pmevcntr[counter];
1786 pmevcntr_op_finish(env, counter);
1787 return ret;
1788 } else {
1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1790 * are CONSTRAINED UNPREDICTABLE. */
1791 return 0;
1792 }
1793 }
1794
1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1797 {
1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1799 pmevcntr_write(env, ri, value, counter);
1800 }
1801
1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1803 {
1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1805 return pmevcntr_read(env, ri, counter);
1806 }
1807
1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1809 uint64_t value)
1810 {
1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1812 assert(counter < pmu_num_counters(env));
1813 env->cp15.c14_pmevcntr[counter] = value;
1814 pmevcntr_write(env, ri, value, counter);
1815 }
1816
1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1820 assert(counter < pmu_num_counters(env));
1821 return env->cp15.c14_pmevcntr[counter];
1822 }
1823
1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1825 uint64_t value)
1826 {
1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1828 }
1829
1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1831 {
1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1833 }
1834
1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836 uint64_t value)
1837 {
1838 if (arm_feature(env, ARM_FEATURE_V8)) {
1839 env->cp15.c9_pmuserenr = value & 0xf;
1840 } else {
1841 env->cp15.c9_pmuserenr = value & 1;
1842 }
1843 }
1844
1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846 uint64_t value)
1847 {
1848 /* We have no event counters so only the C bit can be changed */
1849 value &= pmu_counter_mask(env);
1850 env->cp15.c9_pminten |= value;
1851 pmu_update_irq(env);
1852 }
1853
1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
1856 {
1857 value &= pmu_counter_mask(env);
1858 env->cp15.c9_pminten &= ~value;
1859 pmu_update_irq(env);
1860 }
1861
1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
1864 {
1865 /* Note that even though the AArch64 view of this register has bits
1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1867 * architectural requirements for bits which are RES0 only in some
1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1870 */
1871 raw_write(env, ri, value & ~0x1FULL);
1872 }
1873
1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1875 {
1876 /* Begin with base v8.0 state. */
1877 uint32_t valid_mask = 0x3fff;
1878 ARMCPU *cpu = env_archcpu(env);
1879
1880 if (arm_el_is_aa64(env, 3)) {
1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1882 valid_mask &= ~SCR_NET;
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1885 }
1886
1887 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1888 valid_mask &= ~SCR_HCE;
1889
1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1891 * supported if EL2 exists. The bit is UNK/SBZP when
1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1893 * when EL2 is unavailable.
1894 * On ARMv8, this bit is always available.
1895 */
1896 if (arm_feature(env, ARM_FEATURE_V7) &&
1897 !arm_feature(env, ARM_FEATURE_V8)) {
1898 valid_mask &= ~SCR_SMD;
1899 }
1900 }
1901 if (cpu_isar_feature(aa64_lor, cpu)) {
1902 valid_mask |= SCR_TLOR;
1903 }
1904 if (cpu_isar_feature(aa64_pauth, cpu)) {
1905 valid_mask |= SCR_API | SCR_APK;
1906 }
1907
1908 /* Clear all-context RES0 bits. */
1909 value &= valid_mask;
1910 raw_write(env, ri, value);
1911 }
1912
1913 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1914 {
1915 ARMCPU *cpu = env_archcpu(env);
1916
1917 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1918 * bank
1919 */
1920 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1921 ri->secure & ARM_CP_SECSTATE_S);
1922
1923 return cpu->ccsidr[index];
1924 }
1925
1926 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1927 uint64_t value)
1928 {
1929 raw_write(env, ri, value & 0xf);
1930 }
1931
1932 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1933 {
1934 CPUState *cs = env_cpu(env);
1935 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1936 uint64_t ret = 0;
1937
1938 if (hcr_el2 & HCR_IMO) {
1939 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1940 ret |= CPSR_I;
1941 }
1942 } else {
1943 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1944 ret |= CPSR_I;
1945 }
1946 }
1947
1948 if (hcr_el2 & HCR_FMO) {
1949 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1950 ret |= CPSR_F;
1951 }
1952 } else {
1953 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1954 ret |= CPSR_F;
1955 }
1956 }
1957
1958 /* External aborts are not possible in QEMU so A bit is always clear */
1959 return ret;
1960 }
1961
1962 static const ARMCPRegInfo v7_cp_reginfo[] = {
1963 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1964 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1965 .access = PL1_W, .type = ARM_CP_NOP },
1966 /* Performance monitors are implementation defined in v7,
1967 * but with an ARM recommended set of registers, which we
1968 * follow.
1969 *
1970 * Performance registers fall into three categories:
1971 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1972 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1973 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1974 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1975 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1976 */
1977 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1978 .access = PL0_RW, .type = ARM_CP_ALIAS,
1979 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1980 .writefn = pmcntenset_write,
1981 .accessfn = pmreg_access,
1982 .raw_writefn = raw_write },
1983 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1984 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1985 .access = PL0_RW, .accessfn = pmreg_access,
1986 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1987 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1988 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1989 .access = PL0_RW,
1990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1991 .accessfn = pmreg_access,
1992 .writefn = pmcntenclr_write,
1993 .type = ARM_CP_ALIAS },
1994 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1995 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1996 .access = PL0_RW, .accessfn = pmreg_access,
1997 .type = ARM_CP_ALIAS,
1998 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1999 .writefn = pmcntenclr_write },
2000 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2001 .access = PL0_RW, .type = ARM_CP_IO,
2002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2003 .accessfn = pmreg_access,
2004 .writefn = pmovsr_write,
2005 .raw_writefn = raw_write },
2006 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2008 .access = PL0_RW, .accessfn = pmreg_access,
2009 .type = ARM_CP_ALIAS | ARM_CP_IO,
2010 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2011 .writefn = pmovsr_write,
2012 .raw_writefn = raw_write },
2013 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2014 .access = PL0_W, .accessfn = pmreg_access_swinc,
2015 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2016 .writefn = pmswinc_write },
2017 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2019 .access = PL0_W, .accessfn = pmreg_access_swinc,
2020 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021 .writefn = pmswinc_write },
2022 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2023 .access = PL0_RW, .type = ARM_CP_ALIAS,
2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2025 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2026 .raw_writefn = raw_write},
2027 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2029 .access = PL0_RW, .accessfn = pmreg_access_selr,
2030 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2031 .writefn = pmselr_write, .raw_writefn = raw_write, },
2032 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2033 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2034 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2035 .accessfn = pmreg_access_ccntr },
2036 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2037 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2038 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2039 .type = ARM_CP_IO,
2040 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2041 .readfn = pmccntr_read, .writefn = pmccntr_write,
2042 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2043 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2044 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2045 .access = PL0_RW, .accessfn = pmreg_access,
2046 .type = ARM_CP_ALIAS | ARM_CP_IO,
2047 .resetvalue = 0, },
2048 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2049 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2050 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2051 .access = PL0_RW, .accessfn = pmreg_access,
2052 .type = ARM_CP_IO,
2053 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2054 .resetvalue = 0, },
2055 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2056 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2057 .accessfn = pmreg_access,
2058 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2059 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2061 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2062 .accessfn = pmreg_access,
2063 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2064 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2065 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2066 .accessfn = pmreg_access_xevcntr,
2067 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2068 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2070 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2071 .accessfn = pmreg_access_xevcntr,
2072 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2073 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2074 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2076 .resetvalue = 0,
2077 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2078 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2079 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2080 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2082 .resetvalue = 0,
2083 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2084 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2085 .access = PL1_RW, .accessfn = access_tpm,
2086 .type = ARM_CP_ALIAS | ARM_CP_IO,
2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2088 .resetvalue = 0,
2089 .writefn = pmintenset_write, .raw_writefn = raw_write },
2090 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2092 .access = PL1_RW, .accessfn = access_tpm,
2093 .type = ARM_CP_IO,
2094 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2095 .writefn = pmintenset_write, .raw_writefn = raw_write,
2096 .resetvalue = 0x0 },
2097 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2098 .access = PL1_RW, .accessfn = access_tpm,
2099 .type = ARM_CP_ALIAS | ARM_CP_IO,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2101 .writefn = pmintenclr_write, },
2102 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2104 .access = PL1_RW, .accessfn = access_tpm,
2105 .type = ARM_CP_ALIAS | ARM_CP_IO,
2106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2107 .writefn = pmintenclr_write },
2108 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2109 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2110 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2113 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2114 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2115 offsetof(CPUARMState, cp15.csselr_ns) } },
2116 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2117 * just RAZ for all cores:
2118 */
2119 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2120 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2122 /* Auxiliary fault status registers: these also are IMPDEF, and we
2123 * choose to RAZ/WI for all cores.
2124 */
2125 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2126 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2127 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2128 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2129 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2130 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2131 /* MAIR can just read-as-written because we don't implement caches
2132 * and so don't need to care about memory attributes.
2133 */
2134 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2135 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2136 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2137 .resetvalue = 0 },
2138 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2139 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2141 .resetvalue = 0 },
2142 /* For non-long-descriptor page tables these are PRRR and NMRR;
2143 * regardless they still act as reads-as-written for QEMU.
2144 */
2145 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2146 * allows them to assign the correct fieldoffset based on the endianness
2147 * handled in the field definitions.
2148 */
2149 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2150 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2151 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2152 offsetof(CPUARMState, cp15.mair0_ns) },
2153 .resetfn = arm_cp_reset_ignore },
2154 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2155 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2156 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2157 offsetof(CPUARMState, cp15.mair1_ns) },
2158 .resetfn = arm_cp_reset_ignore },
2159 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2161 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2162 /* 32 bit ITLB invalidates */
2163 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2165 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2167 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2168 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2169 /* 32 bit DTLB invalidates */
2170 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2172 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2174 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2175 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2176 /* 32 bit TLB invalidates */
2177 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2179 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2181 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2183 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2184 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2185 REGINFO_SENTINEL
2186 };
2187
2188 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2189 /* 32 bit TLB invalidates, Inner Shareable */
2190 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2192 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2194 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2195 .type = ARM_CP_NO_RAW, .access = PL1_W,
2196 .writefn = tlbiasid_is_write },
2197 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2198 .type = ARM_CP_NO_RAW, .access = PL1_W,
2199 .writefn = tlbimvaa_is_write },
2200 REGINFO_SENTINEL
2201 };
2202
2203 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2204 /* PMOVSSET is not implemented in v7 before v7ve */
2205 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2206 .access = PL0_RW, .accessfn = pmreg_access,
2207 .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2209 .writefn = pmovsset_write,
2210 .raw_writefn = raw_write },
2211 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2213 .access = PL0_RW, .accessfn = pmreg_access,
2214 .type = ARM_CP_ALIAS | ARM_CP_IO,
2215 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2216 .writefn = pmovsset_write,
2217 .raw_writefn = raw_write },
2218 REGINFO_SENTINEL
2219 };
2220
2221 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2222 uint64_t value)
2223 {
2224 value &= 1;
2225 env->teecr = value;
2226 }
2227
2228 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2229 bool isread)
2230 {
2231 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2232 return CP_ACCESS_TRAP;
2233 }
2234 return CP_ACCESS_OK;
2235 }
2236
2237 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2238 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2239 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2240 .resetvalue = 0,
2241 .writefn = teecr_write },
2242 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2243 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2244 .accessfn = teehbr_access, .resetvalue = 0 },
2245 REGINFO_SENTINEL
2246 };
2247
2248 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2249 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2250 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2251 .access = PL0_RW,
2252 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2253 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2254 .access = PL0_RW,
2255 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2256 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2257 .resetfn = arm_cp_reset_ignore },
2258 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2259 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2260 .access = PL0_R|PL1_W,
2261 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2262 .resetvalue = 0},
2263 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2264 .access = PL0_R|PL1_W,
2265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2266 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2267 .resetfn = arm_cp_reset_ignore },
2268 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2269 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2270 .access = PL1_RW,
2271 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2272 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2273 .access = PL1_RW,
2274 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2275 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2276 .resetvalue = 0 },
2277 REGINFO_SENTINEL
2278 };
2279
2280 #ifndef CONFIG_USER_ONLY
2281
2282 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2283 bool isread)
2284 {
2285 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2286 * Writable only at the highest implemented exception level.
2287 */
2288 int el = arm_current_el(env);
2289
2290 switch (el) {
2291 case 0:
2292 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2293 return CP_ACCESS_TRAP;
2294 }
2295 break;
2296 case 1:
2297 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2298 arm_is_secure_below_el3(env)) {
2299 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2300 return CP_ACCESS_TRAP_UNCATEGORIZED;
2301 }
2302 break;
2303 case 2:
2304 case 3:
2305 break;
2306 }
2307
2308 if (!isread && el < arm_highest_el(env)) {
2309 return CP_ACCESS_TRAP_UNCATEGORIZED;
2310 }
2311
2312 return CP_ACCESS_OK;
2313 }
2314
2315 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2316 bool isread)
2317 {
2318 unsigned int cur_el = arm_current_el(env);
2319 bool secure = arm_is_secure(env);
2320
2321 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2322 if (cur_el == 0 &&
2323 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2324 return CP_ACCESS_TRAP;
2325 }
2326
2327 if (arm_feature(env, ARM_FEATURE_EL2) &&
2328 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2329 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2330 return CP_ACCESS_TRAP_EL2;
2331 }
2332 return CP_ACCESS_OK;
2333 }
2334
2335 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2336 bool isread)
2337 {
2338 unsigned int cur_el = arm_current_el(env);
2339 bool secure = arm_is_secure(env);
2340
2341 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2342 * EL0[PV]TEN is zero.
2343 */
2344 if (cur_el == 0 &&
2345 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2346 return CP_ACCESS_TRAP;
2347 }
2348
2349 if (arm_feature(env, ARM_FEATURE_EL2) &&
2350 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2351 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2352 return CP_ACCESS_TRAP_EL2;
2353 }
2354 return CP_ACCESS_OK;
2355 }
2356
2357 static CPAccessResult gt_pct_access(CPUARMState *env,
2358 const ARMCPRegInfo *ri,
2359 bool isread)
2360 {
2361 return gt_counter_access(env, GTIMER_PHYS, isread);
2362 }
2363
2364 static CPAccessResult gt_vct_access(CPUARMState *env,
2365 const ARMCPRegInfo *ri,
2366 bool isread)
2367 {
2368 return gt_counter_access(env, GTIMER_VIRT, isread);
2369 }
2370
2371 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2372 bool isread)
2373 {
2374 return gt_timer_access(env, GTIMER_PHYS, isread);
2375 }
2376
2377 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2378 bool isread)
2379 {
2380 return gt_timer_access(env, GTIMER_VIRT, isread);
2381 }
2382
2383 static CPAccessResult gt_stimer_access(CPUARMState *env,
2384 const ARMCPRegInfo *ri,
2385 bool isread)
2386 {
2387 /* The AArch64 register view of the secure physical timer is
2388 * always accessible from EL3, and configurably accessible from
2389 * Secure EL1.
2390 */
2391 switch (arm_current_el(env)) {
2392 case 1:
2393 if (!arm_is_secure(env)) {
2394 return CP_ACCESS_TRAP;
2395 }
2396 if (!(env->cp15.scr_el3 & SCR_ST)) {
2397 return CP_ACCESS_TRAP_EL3;
2398 }
2399 return CP_ACCESS_OK;
2400 case 0:
2401 case 2:
2402 return CP_ACCESS_TRAP;
2403 case 3:
2404 return CP_ACCESS_OK;
2405 default:
2406 g_assert_not_reached();
2407 }
2408 }
2409
2410 static uint64_t gt_get_countervalue(CPUARMState *env)
2411 {
2412 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2413 }
2414
2415 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2416 {
2417 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2418
2419 if (gt->ctl & 1) {
2420 /* Timer enabled: calculate and set current ISTATUS, irq, and
2421 * reset timer to when ISTATUS next has to change
2422 */
2423 uint64_t offset = timeridx == GTIMER_VIRT ?
2424 cpu->env.cp15.cntvoff_el2 : 0;
2425 uint64_t count = gt_get_countervalue(&cpu->env);
2426 /* Note that this must be unsigned 64 bit arithmetic: */
2427 int istatus = count - offset >= gt->cval;
2428 uint64_t nexttick;
2429 int irqstate;
2430
2431 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2432
2433 irqstate = (istatus && !(gt->ctl & 2));
2434 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2435
2436 if (istatus) {
2437 /* Next transition is when count rolls back over to zero */
2438 nexttick = UINT64_MAX;
2439 } else {
2440 /* Next transition is when we hit cval */
2441 nexttick = gt->cval + offset;
2442 }
2443 /* Note that the desired next expiry time might be beyond the
2444 * signed-64-bit range of a QEMUTimer -- in this case we just
2445 * set the timer for as far in the future as possible. When the
2446 * timer expires we will reset the timer for any remaining period.
2447 */
2448 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2449 nexttick = INT64_MAX / GTIMER_SCALE;
2450 }
2451 timer_mod(cpu->gt_timer[timeridx], nexttick);
2452 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2453 } else {
2454 /* Timer disabled: ISTATUS and timer output always clear */
2455 gt->ctl &= ~4;
2456 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2457 timer_del(cpu->gt_timer[timeridx]);
2458 trace_arm_gt_recalc_disabled(timeridx);
2459 }
2460 }
2461
2462 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2463 int timeridx)
2464 {
2465 ARMCPU *cpu = env_archcpu(env);
2466
2467 timer_del(cpu->gt_timer[timeridx]);
2468 }
2469
2470 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2471 {
2472 return gt_get_countervalue(env);
2473 }
2474
2475 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2476 {
2477 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2478 }
2479
2480 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481 int timeridx,
2482 uint64_t value)
2483 {
2484 trace_arm_gt_cval_write(timeridx, value);
2485 env->cp15.c14_timer[timeridx].cval = value;
2486 gt_recalc_timer(env_archcpu(env), timeridx);
2487 }
2488
2489 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2490 int timeridx)
2491 {
2492 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2493
2494 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2495 (gt_get_countervalue(env) - offset));
2496 }
2497
2498 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2499 int timeridx,
2500 uint64_t value)
2501 {
2502 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2503
2504 trace_arm_gt_tval_write(timeridx, value);
2505 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2506 sextract64(value, 0, 32);
2507 gt_recalc_timer(env_archcpu(env), timeridx);
2508 }
2509
2510 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511 int timeridx,
2512 uint64_t value)
2513 {
2514 ARMCPU *cpu = env_archcpu(env);
2515 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2516
2517 trace_arm_gt_ctl_write(timeridx, value);
2518 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2519 if ((oldval ^ value) & 1) {
2520 /* Enable toggled */
2521 gt_recalc_timer(cpu, timeridx);
2522 } else if ((oldval ^ value) & 2) {
2523 /* IMASK toggled: don't need to recalculate,
2524 * just set the interrupt line based on ISTATUS
2525 */
2526 int irqstate = (oldval & 4) && !(value & 2);
2527
2528 trace_arm_gt_imask_toggle(timeridx, irqstate);
2529 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2530 }
2531 }
2532
2533 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2534 {
2535 gt_timer_reset(env, ri, GTIMER_PHYS);
2536 }
2537
2538 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2539 uint64_t value)
2540 {
2541 gt_cval_write(env, ri, GTIMER_PHYS, value);
2542 }
2543
2544 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2545 {
2546 return gt_tval_read(env, ri, GTIMER_PHYS);
2547 }
2548
2549 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2550 uint64_t value)
2551 {
2552 gt_tval_write(env, ri, GTIMER_PHYS, value);
2553 }
2554
2555 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556 uint64_t value)
2557 {
2558 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2559 }
2560
2561 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2562 {
2563 gt_timer_reset(env, ri, GTIMER_VIRT);
2564 }
2565
2566 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2567 uint64_t value)
2568 {
2569 gt_cval_write(env, ri, GTIMER_VIRT, value);
2570 }
2571
2572 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2573 {
2574 return gt_tval_read(env, ri, GTIMER_VIRT);
2575 }
2576
2577 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2578 uint64_t value)
2579 {
2580 gt_tval_write(env, ri, GTIMER_VIRT, value);
2581 }
2582
2583 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584 uint64_t value)
2585 {
2586 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2587 }
2588
2589 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2590 uint64_t value)
2591 {
2592 ARMCPU *cpu = env_archcpu(env);
2593
2594 trace_arm_gt_cntvoff_write(value);
2595 raw_write(env, ri, value);
2596 gt_recalc_timer(cpu, GTIMER_VIRT);
2597 }
2598
2599 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2600 {
2601 gt_timer_reset(env, ri, GTIMER_HYP);
2602 }
2603
2604 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2605 uint64_t value)
2606 {
2607 gt_cval_write(env, ri, GTIMER_HYP, value);
2608 }
2609
2610 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2611 {
2612 return gt_tval_read(env, ri, GTIMER_HYP);
2613 }
2614
2615 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2616 uint64_t value)
2617 {
2618 gt_tval_write(env, ri, GTIMER_HYP, value);
2619 }
2620
2621 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2622 uint64_t value)
2623 {
2624 gt_ctl_write(env, ri, GTIMER_HYP, value);
2625 }
2626
2627 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2628 {
2629 gt_timer_reset(env, ri, GTIMER_SEC);
2630 }
2631
2632 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2633 uint64_t value)
2634 {
2635 gt_cval_write(env, ri, GTIMER_SEC, value);
2636 }
2637
2638 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2639 {
2640 return gt_tval_read(env, ri, GTIMER_SEC);
2641 }
2642
2643 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2644 uint64_t value)
2645 {
2646 gt_tval_write(env, ri, GTIMER_SEC, value);
2647 }
2648
2649 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650 uint64_t value)
2651 {
2652 gt_ctl_write(env, ri, GTIMER_SEC, value);
2653 }
2654
2655 void arm_gt_ptimer_cb(void *opaque)
2656 {
2657 ARMCPU *cpu = opaque;
2658
2659 gt_recalc_timer(cpu, GTIMER_PHYS);
2660 }
2661
2662 void arm_gt_vtimer_cb(void *opaque)
2663 {
2664 ARMCPU *cpu = opaque;
2665
2666 gt_recalc_timer(cpu, GTIMER_VIRT);
2667 }
2668
2669 void arm_gt_htimer_cb(void *opaque)
2670 {
2671 ARMCPU *cpu = opaque;
2672
2673 gt_recalc_timer(cpu, GTIMER_HYP);
2674 }
2675
2676 void arm_gt_stimer_cb(void *opaque)
2677 {
2678 ARMCPU *cpu = opaque;
2679
2680 gt_recalc_timer(cpu, GTIMER_SEC);
2681 }
2682
2683 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2684 /* Note that CNTFRQ is purely reads-as-written for the benefit
2685 * of software; writing it doesn't actually change the timer frequency.
2686 * Our reset value matches the fixed frequency we implement the timer at.
2687 */
2688 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2689 .type = ARM_CP_ALIAS,
2690 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2691 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2692 },
2693 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2694 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2695 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2696 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2697 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2698 },
2699 /* overall control: mostly access permissions */
2700 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2701 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2702 .access = PL1_RW,
2703 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2704 .resetvalue = 0,
2705 },
2706 /* per-timer control */
2707 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2708 .secure = ARM_CP_SECSTATE_NS,
2709 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2710 .accessfn = gt_ptimer_access,
2711 .fieldoffset = offsetoflow32(CPUARMState,
2712 cp15.c14_timer[GTIMER_PHYS].ctl),
2713 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2714 },
2715 { .name = "CNTP_CTL_S",
2716 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2717 .secure = ARM_CP_SECSTATE_S,
2718 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2719 .accessfn = gt_ptimer_access,
2720 .fieldoffset = offsetoflow32(CPUARMState,
2721 cp15.c14_timer[GTIMER_SEC].ctl),
2722 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2723 },
2724 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2725 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2726 .type = ARM_CP_IO, .access = PL0_RW,
2727 .accessfn = gt_ptimer_access,
2728 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2729 .resetvalue = 0,
2730 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2731 },
2732 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2733 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2734 .accessfn = gt_vtimer_access,
2735 .fieldoffset = offsetoflow32(CPUARMState,
2736 cp15.c14_timer[GTIMER_VIRT].ctl),
2737 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2738 },
2739 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2740 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2741 .type = ARM_CP_IO, .access = PL0_RW,
2742 .accessfn = gt_vtimer_access,
2743 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2744 .resetvalue = 0,
2745 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2746 },
2747 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2748 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2749 .secure = ARM_CP_SECSTATE_NS,
2750 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2751 .accessfn = gt_ptimer_access,
2752 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2753 },
2754 { .name = "CNTP_TVAL_S",
2755 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2756 .secure = ARM_CP_SECSTATE_S,
2757 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2758 .accessfn = gt_ptimer_access,
2759 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2760 },
2761 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2762 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2763 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2764 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2765 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2766 },
2767 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2768 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2769 .accessfn = gt_vtimer_access,
2770 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2771 },
2772 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2773 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2774 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2775 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2776 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2777 },
2778 /* The counter itself */
2779 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2780 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2781 .accessfn = gt_pct_access,
2782 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2783 },
2784 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2785 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2786 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2787 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2788 },
2789 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2790 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2791 .accessfn = gt_vct_access,
2792 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2793 },
2794 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2795 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2796 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2797 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2798 },
2799 /* Comparison value, indicating when the timer goes off */
2800 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2801 .secure = ARM_CP_SECSTATE_NS,
2802 .access = PL0_RW,
2803 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2804 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2805 .accessfn = gt_ptimer_access,
2806 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2807 },
2808 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2809 .secure = ARM_CP_SECSTATE_S,
2810 .access = PL0_RW,
2811 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2812 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2813 .accessfn = gt_ptimer_access,
2814 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2815 },
2816 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2817 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2818 .access = PL0_RW,
2819 .type = ARM_CP_IO,
2820 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2821 .resetvalue = 0, .accessfn = gt_ptimer_access,
2822 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2823 },
2824 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2825 .access = PL0_RW,
2826 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2827 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2828 .accessfn = gt_vtimer_access,
2829 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2830 },
2831 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2832 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2833 .access = PL0_RW,
2834 .type = ARM_CP_IO,
2835 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2836 .resetvalue = 0, .accessfn = gt_vtimer_access,
2837 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2838 },
2839 /* Secure timer -- this is actually restricted to only EL3
2840 * and configurably Secure-EL1 via the accessfn.
2841 */
2842 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2843 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2844 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2845 .accessfn = gt_stimer_access,
2846 .readfn = gt_sec_tval_read,
2847 .writefn = gt_sec_tval_write,
2848 .resetfn = gt_sec_timer_reset,
2849 },
2850 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2851 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2852 .type = ARM_CP_IO, .access = PL1_RW,
2853 .accessfn = gt_stimer_access,
2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2855 .resetvalue = 0,
2856 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2857 },
2858 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2859 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2860 .type = ARM_CP_IO, .access = PL1_RW,
2861 .accessfn = gt_stimer_access,
2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2863 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2864 },
2865 REGINFO_SENTINEL
2866 };
2867
2868 #else
2869
2870 /* In user-mode most of the generic timer registers are inaccessible
2871 * however modern kernels (4.12+) allow access to cntvct_el0
2872 */
2873
2874 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876 /* Currently we have no support for QEMUTimer in linux-user so we
2877 * can't call gt_get_countervalue(env), instead we directly
2878 * call the lower level functions.
2879 */
2880 return cpu_get_clock() / GTIMER_SCALE;
2881 }
2882
2883 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2884 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2886 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2887 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2888 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2889 },
2890 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2891 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2892 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2893 .readfn = gt_virt_cnt_read,
2894 },
2895 REGINFO_SENTINEL
2896 };
2897
2898 #endif
2899
2900 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2901 {
2902 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2903 raw_write(env, ri, value);
2904 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2905 raw_write(env, ri, value & 0xfffff6ff);
2906 } else {
2907 raw_write(env, ri, value & 0xfffff1ff);
2908 }
2909 }
2910
2911 #ifndef CONFIG_USER_ONLY
2912 /* get_phys_addr() isn't present for user-mode-only targets */
2913
2914 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2915 bool isread)
2916 {
2917 if (ri->opc2 & 4) {
2918 /* The ATS12NSO* operations must trap to EL3 if executed in
2919 * Secure EL1 (which can only happen if EL3 is AArch64).
2920 * They are simply UNDEF if executed from NS EL1.
2921 * They function normally from EL2 or EL3.
2922 */
2923 if (arm_current_el(env) == 1) {
2924 if (arm_is_secure_below_el3(env)) {
2925 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2926 }
2927 return CP_ACCESS_TRAP_UNCATEGORIZED;
2928 }
2929 }
2930 return CP_ACCESS_OK;
2931 }
2932
2933 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2934 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2935 {
2936 hwaddr phys_addr;
2937 target_ulong page_size;
2938 int prot;
2939 bool ret;
2940 uint64_t par64;
2941 bool format64 = false;
2942 MemTxAttrs attrs = {};
2943 ARMMMUFaultInfo fi = {};
2944 ARMCacheAttrs cacheattrs = {};
2945
2946 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2947 &prot, &page_size, &fi, &cacheattrs);
2948
2949 if (is_a64(env)) {
2950 format64 = true;
2951 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2952 /*
2953 * ATS1Cxx:
2954 * * TTBCR.EAE determines whether the result is returned using the
2955 * 32-bit or the 64-bit PAR format
2956 * * Instructions executed in Hyp mode always use the 64bit format
2957 *
2958 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2959 * * The Non-secure TTBCR.EAE bit is set to 1
2960 * * The implementation includes EL2, and the value of HCR.VM is 1
2961 *
2962 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2963 *
2964 * ATS1Hx always uses the 64bit format.
2965 */
2966 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2967
2968 if (arm_feature(env, ARM_FEATURE_EL2)) {
2969 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2970 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2971 } else {
2972 format64 |= arm_current_el(env) == 2;
2973 }
2974 }
2975 }
2976
2977 if (format64) {
2978 /* Create a 64-bit PAR */
2979 par64 = (1 << 11); /* LPAE bit always set */
2980 if (!ret) {
2981 par64 |= phys_addr & ~0xfffULL;
2982 if (!attrs.secure) {
2983 par64 |= (1 << 9); /* NS */
2984 }
2985 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2986 par64 |= cacheattrs.shareability << 7; /* SH */
2987 } else {
2988 uint32_t fsr = arm_fi_to_lfsc(&fi);
2989
2990 par64 |= 1; /* F */
2991 par64 |= (fsr & 0x3f) << 1; /* FS */
2992 if (fi.stage2) {
2993 par64 |= (1 << 9); /* S */
2994 }
2995 if (fi.s1ptw) {
2996 par64 |= (1 << 8); /* PTW */
2997 }
2998 }
2999 } else {
3000 /* fsr is a DFSR/IFSR value for the short descriptor
3001 * translation table format (with WnR always clear).
3002 * Convert it to a 32-bit PAR.
3003 */
3004 if (!ret) {
3005 /* We do not set any attribute bits in the PAR */
3006 if (page_size == (1 << 24)
3007 && arm_feature(env, ARM_FEATURE_V7)) {
3008 par64 = (phys_addr & 0xff000000) | (1 << 1);
3009 } else {
3010 par64 = phys_addr & 0xfffff000;
3011 }
3012 if (!attrs.secure) {
3013 par64 |= (1 << 9); /* NS */
3014 }
3015 } else {
3016 uint32_t fsr = arm_fi_to_sfsc(&fi);
3017
3018 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3019 ((fsr & 0xf) << 1) | 1;
3020 }
3021 }
3022 return par64;
3023 }
3024
3025 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3026 {
3027 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3028 uint64_t par64;
3029 ARMMMUIdx mmu_idx;
3030 int el = arm_current_el(env);
3031 bool secure = arm_is_secure_below_el3(env);
3032
3033 switch (ri->opc2 & 6) {
3034 case 0:
3035 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3036 switch (el) {
3037 case 3:
3038 mmu_idx = ARMMMUIdx_S1E3;
3039 break;
3040 case 2:
3041 mmu_idx = ARMMMUIdx_S1NSE1;
3042 break;
3043 case 1:
3044 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3045 break;
3046 default:
3047 g_assert_not_reached();
3048 }
3049 break;
3050 case 2:
3051 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3052 switch (el) {
3053 case 3:
3054 mmu_idx = ARMMMUIdx_S1SE0;
3055 break;
3056 case 2:
3057 mmu_idx = ARMMMUIdx_S1NSE0;
3058 break;
3059 case 1:
3060 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3061 break;
3062 default:
3063 g_assert_not_reached();
3064 }
3065 break;
3066 case 4:
3067 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3068 mmu_idx = ARMMMUIdx_S12NSE1;
3069 break;
3070 case 6:
3071 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3072 mmu_idx = ARMMMUIdx_S12NSE0;
3073 break;
3074 default:
3075 g_assert_not_reached();
3076 }
3077
3078 par64 = do_ats_write(env, value, access_type, mmu_idx);
3079
3080 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3081 }
3082
3083 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084 uint64_t value)
3085 {
3086 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3087 uint64_t par64;
3088
3089 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3090
3091 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3092 }
3093
3094 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3095 bool isread)
3096 {
3097 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3098 return CP_ACCESS_TRAP;
3099 }
3100 return CP_ACCESS_OK;
3101 }
3102
3103 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3104 uint64_t value)
3105 {
3106 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3107 ARMMMUIdx mmu_idx;
3108 int secure = arm_is_secure_below_el3(env);
3109
3110 switch (ri->opc2 & 6) {
3111 case 0:
3112 switch (ri->opc1) {
3113 case 0: /* AT S1E1R, AT S1E1W */
3114 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3115 break;
3116 case 4: /* AT S1E2R, AT S1E2W */
3117 mmu_idx = ARMMMUIdx_S1E2;
3118 break;
3119 case 6: /* AT S1E3R, AT S1E3W */
3120 mmu_idx = ARMMMUIdx_S1E3;
3121 break;
3122 default:
3123 g_assert_not_reached();
3124 }
3125 break;
3126 case 2: /* AT S1E0R, AT S1E0W */
3127 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3128 break;
3129 case 4: /* AT S12E1R, AT S12E1W */
3130 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3131 break;
3132 case 6: /* AT S12E0R, AT S12E0W */
3133 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3134 break;
3135 default:
3136 g_assert_not_reached();
3137 }
3138
3139 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3140 }
3141 #endif
3142
3143 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3144 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3145 .access = PL1_RW, .resetvalue = 0,
3146 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3147 offsetoflow32(CPUARMState, cp15.par_ns) },
3148 .writefn = par_write },
3149 #ifndef CONFIG_USER_ONLY
3150 /* This underdecoding is safe because the reginfo is NO_RAW. */
3151 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3152 .access = PL1_W, .accessfn = ats_access,
3153 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3154 #endif
3155 REGINFO_SENTINEL
3156 };
3157
3158 /* Return basic MPU access permission bits. */
3159 static uint32_t simple_mpu_ap_bits(uint32_t val)
3160 {
3161 uint32_t ret;
3162 uint32_t mask;
3163 int i;
3164 ret = 0;
3165 mask = 3;
3166 for (i = 0; i < 16; i += 2) {
3167 ret |= (val >> i) & mask;
3168 mask <<= 2;
3169 }
3170 return ret;
3171 }
3172
3173 /* Pad basic MPU access permission bits to extended format. */
3174 static uint32_t extended_mpu_ap_bits(uint32_t val)
3175 {
3176 uint32_t ret;
3177 uint32_t mask;
3178 int i;
3179 ret = 0;
3180 mask = 3;
3181 for (i = 0; i < 16; i += 2) {
3182 ret |= (val & mask) << i;
3183 mask <<= 2;
3184 }
3185 return ret;
3186 }
3187
3188 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3189 uint64_t value)
3190 {
3191 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3192 }
3193
3194 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3195 {
3196 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3197 }
3198
3199 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200 uint64_t value)
3201 {
3202 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3203 }
3204
3205 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3206 {
3207 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3208 }
3209
3210 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3211 {
3212 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3213
3214 if (!u32p) {
3215 return 0;
3216 }
3217
3218 u32p += env->pmsav7.rnr[M_REG_NS];
3219 return *u32p;
3220 }
3221
3222 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3223 uint64_t value)
3224 {
3225 ARMCPU *cpu = env_archcpu(env);
3226 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3227
3228 if (!u32p) {
3229 return;
3230 }
3231
3232 u32p += env->pmsav7.rnr[M_REG_NS];
3233 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3234 *u32p = value;
3235 }
3236
3237 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3238 uint64_t value)
3239 {
3240 ARMCPU *cpu = env_archcpu(env);
3241 uint32_t nrgs = cpu->pmsav7_dregion;
3242
3243 if (value >= nrgs) {
3244 qemu_log_mask(LOG_GUEST_ERROR,
3245 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3246 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3247 return;
3248 }
3249
3250 raw_write(env, ri, value);
3251 }
3252
3253 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3254 /* Reset for all these registers is handled in arm_cpu_reset(),
3255 * because the PMSAv7 is also used by M-profile CPUs, which do
3256 * not register cpregs but still need the state to be reset.
3257 */
3258 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3259 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3260 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3261 .readfn = pmsav7_read, .writefn = pmsav7_write,
3262 .resetfn = arm_cp_reset_ignore },
3263 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3264 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3265 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3266 .readfn = pmsav7_read, .writefn = pmsav7_write,
3267 .resetfn = arm_cp_reset_ignore },
3268 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3269 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3270 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3271 .readfn = pmsav7_read, .writefn = pmsav7_write,
3272 .resetfn = arm_cp_reset_ignore },
3273 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3274 .access = PL1_RW,
3275 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3276 .writefn = pmsav7_rgnr_write,
3277 .resetfn = arm_cp_reset_ignore },
3278 REGINFO_SENTINEL
3279 };
3280
3281 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3282 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3283 .access = PL1_RW, .type = ARM_CP_ALIAS,
3284 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3285 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3286 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3287 .access = PL1_RW, .type = ARM_CP_ALIAS,
3288 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3289 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3290 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3291 .access = PL1_RW,
3292 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3293 .resetvalue = 0, },
3294 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3295 .access = PL1_RW,
3296 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3297 .resetvalue = 0, },
3298 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3299 .access = PL1_RW,
3300 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3301 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3302 .access = PL1_RW,
3303 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3304 /* Protection region base and size registers */
3305 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3306 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3307 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3308 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3309 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3310 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3311 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3312 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3313 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3314 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3315 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3316 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3317 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3318 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3319 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3320 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3321 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3322 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3323 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3324 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3325 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3326 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3327 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3328 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3329 REGINFO_SENTINEL
3330 };
3331
3332 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3333 uint64_t value)
3334 {
3335 TCR *tcr = raw_ptr(env, ri);
3336 int maskshift = extract32(value, 0, 3);
3337
3338 if (!arm_feature(env, ARM_FEATURE_V8)) {
3339 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3340 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3341 * using Long-desciptor translation table format */
3342 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3343 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3344 /* In an implementation that includes the Security Extensions
3345 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3346 * Short-descriptor translation table format.
3347 */
3348 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3349 } else {
3350 value &= TTBCR_N;
3351 }
3352 }
3353
3354 /* Update the masks corresponding to the TCR bank being written
3355 * Note that we always calculate mask and base_mask, but
3356 * they are only used for short-descriptor tables (ie if EAE is 0);
3357 * for long-descriptor tables the TCR fields are used differently
3358 * and the mask and base_mask values are meaningless.
3359 */
3360 tcr->raw_tcr = value;
3361 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3362 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3363 }
3364
3365 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3366 uint64_t value)
3367 {
3368 ARMCPU *cpu = env_archcpu(env);
3369 TCR *tcr = raw_ptr(env, ri);
3370
3371 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3372 /* With LPAE the TTBCR could result in a change of ASID
3373 * via the TTBCR.A1 bit, so do a TLB flush.
3374 */
3375 tlb_flush(CPU(cpu));
3376 }
3377 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3378 value = deposit64(tcr->raw_tcr, 0, 32, value);
3379 vmsa_ttbcr_raw_write(env, ri, value);
3380 }
3381
3382 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3383 {
3384 TCR *tcr = raw_ptr(env, ri);
3385
3386 /* Reset both the TCR as well as the masks corresponding to the bank of
3387 * the TCR being reset.
3388 */
3389 tcr->raw_tcr = 0;
3390 tcr->mask = 0;
3391 tcr->base_mask = 0xffffc000u;
3392 }
3393
3394 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3395 uint64_t value)
3396 {
3397 ARMCPU *cpu = env_archcpu(env);
3398 TCR *tcr = raw_ptr(env, ri);
3399
3400 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3401 tlb_flush(CPU(cpu));
3402 tcr->raw_tcr = value;
3403 }
3404
3405 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3406 uint64_t value)
3407 {
3408 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3409 if (cpreg_field_is_64bit(ri) &&
3410 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3411 ARMCPU *cpu = env_archcpu(env);
3412 tlb_flush(CPU(cpu));
3413 }
3414 raw_write(env, ri, value);
3415 }
3416
3417 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3418 uint64_t value)
3419 {
3420 ARMCPU *cpu = env_archcpu(env);
3421 CPUState *cs = CPU(cpu);
3422
3423 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3424 if (raw_read(env, ri) != value) {
3425 tlb_flush_by_mmuidx(cs,
3426 ARMMMUIdxBit_S12NSE1 |
3427 ARMMMUIdxBit_S12NSE0 |
3428 ARMMMUIdxBit_S2NS);
3429 raw_write(env, ri, value);
3430 }
3431 }
3432
3433 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3434 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3435 .access = PL1_RW, .type = ARM_CP_ALIAS,
3436 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3437 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3438 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3439 .access = PL1_RW, .resetvalue = 0,
3440 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3441 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3442 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3443 .access = PL1_RW, .resetvalue = 0,
3444 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3445 offsetof(CPUARMState, cp15.dfar_ns) } },
3446 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3448 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3449 .resetvalue = 0, },
3450 REGINFO_SENTINEL
3451 };
3452
3453 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3454 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3456 .access = PL1_RW,
3457 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3458 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3459 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3460 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3461 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3462 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3463 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3464 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3465 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3466 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3467 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3468 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3469 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3470 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3471 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3472 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3473 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3474 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3475 .raw_writefn = vmsa_ttbcr_raw_write,
3476 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3477 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3478 REGINFO_SENTINEL
3479 };
3480
3481 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3482 * qemu tlbs nor adjusting cached masks.
3483 */
3484 static const ARMCPRegInfo ttbcr2_reginfo = {
3485 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3486 .access = PL1_RW, .type = ARM_CP_ALIAS,
3487 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3488 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3489 };
3490
3491 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3492 uint64_t value)
3493 {
3494 env->cp15.c15_ticonfig = value & 0xe7;
3495 /* The OS_TYPE bit in this register changes the reported CPUID! */
3496 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3497 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3498 }
3499
3500 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3501 uint64_t value)
3502 {
3503 env->cp15.c15_threadid = value & 0xffff;
3504 }
3505
3506 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3507 uint64_t value)
3508 {
3509 /* Wait-for-interrupt (deprecated) */
3510 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3511 }
3512
3513 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3514 uint64_t value)
3515 {
3516 /* On OMAP there are registers indicating the max/min index of dcache lines
3517 * containing a dirty line; cache flush operations have to reset these.
3518 */
3519 env->cp15.c15_i_max = 0x000;
3520 env->cp15.c15_i_min = 0xff0;
3521 }
3522
3523 static const ARMCPRegInfo omap_cp_reginfo[] = {
3524 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3525 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3526 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3527 .resetvalue = 0, },
3528 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3529 .access = PL1_RW, .type = ARM_CP_NOP },
3530 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3531 .access = PL1_RW,
3532 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3533 .writefn = omap_ticonfig_write },
3534 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3535 .access = PL1_RW,
3536 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3537 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3538 .access = PL1_RW, .resetvalue = 0xff0,
3539 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3540 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3541 .access = PL1_RW,
3542 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3543 .writefn = omap_threadid_write },
3544 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3545 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3546 .type = ARM_CP_NO_RAW,
3547 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3548 /* TODO: Peripheral port remap register:
3549 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3550 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3551 * when MMU is off.
3552 */
3553 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3554 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3555 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3556 .writefn = omap_cachemaint_write },
3557 { .name = "C9", .cp = 15, .crn = 9,
3558 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3559 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3560 REGINFO_SENTINEL
3561 };
3562
3563 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3564 uint64_t value)
3565 {
3566 env->cp15.c15_cpar = value & 0x3fff;
3567 }
3568
3569 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3570 { .name = "XSCALE_CPAR",
3571 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3572 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3573 .writefn = xscale_cpar_write, },
3574 { .name = "XSCALE_AUXCR",
3575 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3576 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3577 .resetvalue = 0, },
3578 /* XScale specific cache-lockdown: since we have no cache we NOP these
3579 * and hope the guest does not really rely on cache behaviour.
3580 */
3581 { .name = "XSCALE_LOCK_ICACHE_LINE",
3582 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3583 .access = PL1_W, .type = ARM_CP_NOP },
3584 { .name = "XSCALE_UNLOCK_ICACHE",
3585 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3586 .access = PL1_W, .type = ARM_CP_NOP },
3587 { .name = "XSCALE_DCACHE_LOCK",
3588 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3589 .access = PL1_RW, .type = ARM_CP_NOP },
3590 { .name = "XSCALE_UNLOCK_DCACHE",
3591 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3592 .access = PL1_W, .type = ARM_CP_NOP },
3593 REGINFO_SENTINEL
3594 };
3595
3596 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3597 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3598 * implementation of this implementation-defined space.
3599 * Ideally this should eventually disappear in favour of actually
3600 * implementing the correct behaviour for all cores.
3601 */
3602 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3603 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3604 .access = PL1_RW,
3605 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3606 .resetvalue = 0 },
3607 REGINFO_SENTINEL
3608 };
3609
3610 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3611 /* Cache status: RAZ because we have no cache so it's always clean */
3612 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3613 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3614 .resetvalue = 0 },
3615 REGINFO_SENTINEL
3616 };
3617
3618 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3619 /* We never have a a block transfer operation in progress */
3620 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3621 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3622 .resetvalue = 0 },
3623 /* The cache ops themselves: these all NOP for QEMU */
3624 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3625 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3626 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3627 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3628 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3629 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3630 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3631 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3632 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3633 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3634 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3635 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3636 REGINFO_SENTINEL
3637 };
3638
3639 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3640 /* The cache test-and-clean instructions always return (1 << 30)
3641 * to indicate that there are no dirty cache lines.
3642 */
3643 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3644 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3645 .resetvalue = (1 << 30) },
3646 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3647 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3648 .resetvalue = (1 << 30) },
3649 REGINFO_SENTINEL
3650 };
3651
3652 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3653 /* Ignore ReadBuffer accesses */
3654 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3655 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3656 .access = PL1_RW, .resetvalue = 0,
3657 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3658 REGINFO_SENTINEL
3659 };
3660
3661 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3662 {
3663 ARMCPU *cpu = env_archcpu(env);
3664 unsigned int cur_el = arm_current_el(env);
3665 bool secure = arm_is_secure(env);
3666
3667 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3668 return env->cp15.vpidr_el2;
3669 }
3670 return raw_read(env, ri);
3671 }
3672
3673 static uint64_t mpidr_read_val(CPUARMState *env)
3674 {
3675 ARMCPU *cpu = env_archcpu(env);
3676 uint64_t mpidr = cpu->mp_affinity;
3677
3678 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3679 mpidr |= (1U << 31);
3680 /* Cores which are uniprocessor (non-coherent)
3681 * but still implement the MP extensions set
3682 * bit 30. (For instance, Cortex-R5).
3683 */
3684 if (cpu->mp_is_up) {
3685 mpidr |= (1u << 30);
3686 }
3687 }
3688 return mpidr;
3689 }
3690
3691 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3692 {
3693 unsigned int cur_el = arm_current_el(env);
3694 bool secure = arm_is_secure(env);
3695
3696 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3697 return env->cp15.vmpidr_el2;
3698 }
3699 return mpidr_read_val(env);
3700 }
3701
3702 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3703 /* NOP AMAIR0/1 */
3704 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3705 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3706 .access = PL1_RW, .type = ARM_CP_CONST,
3707 .resetvalue = 0 },
3708 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3709 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3710 .access = PL1_RW, .type = ARM_CP_CONST,
3711 .resetvalue = 0 },
3712 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3713 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3714 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3715 offsetof(CPUARMState, cp15.par_ns)} },
3716 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3717 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3718 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3719 offsetof(CPUARMState, cp15.ttbr0_ns) },
3720 .writefn = vmsa_ttbr_write, },
3721 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3722 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3723 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3724 offsetof(CPUARMState, cp15.ttbr1_ns) },
3725 .writefn = vmsa_ttbr_write, },
3726 REGINFO_SENTINEL
3727 };
3728
3729 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3730 {
3731 return vfp_get_fpcr(env);
3732 }
3733
3734 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3735 uint64_t value)
3736 {
3737 vfp_set_fpcr(env, value);
3738 }
3739
3740 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3741 {
3742 return vfp_get_fpsr(env);
3743 }
3744
3745 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3746 uint64_t value)
3747 {
3748 vfp_set_fpsr(env, value);
3749 }
3750
3751 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3752 bool isread)
3753 {
3754 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3755 return CP_ACCESS_TRAP;
3756 }
3757 return CP_ACCESS_OK;
3758 }
3759
3760 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761 uint64_t value)
3762 {
3763 env->daif = value & PSTATE_DAIF;
3764 }
3765
3766 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3767 const ARMCPRegInfo *ri,
3768 bool isread)
3769 {
3770 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3771 * SCTLR_EL1.UCI is set.
3772 */
3773 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3774 return CP_ACCESS_TRAP;
3775 }
3776 return CP_ACCESS_OK;
3777 }
3778
3779 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3780 * Page D4-1736 (DDI0487A.b)
3781 */
3782
3783 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784 uint64_t value)
3785 {
3786 CPUState *cs = env_cpu(env);
3787 bool sec = arm_is_secure_below_el3(env);
3788
3789 if (sec) {
3790 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3791 ARMMMUIdxBit_S1SE1 |
3792 ARMMMUIdxBit_S1SE0);
3793 } else {
3794 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3795 ARMMMUIdxBit_S12NSE1 |
3796 ARMMMUIdxBit_S12NSE0);
3797 }
3798 }
3799
3800 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3801 uint64_t value)
3802 {
3803 CPUState *cs = env_cpu(env);
3804
3805 if (tlb_force_broadcast(env)) {
3806 tlbi_aa64_vmalle1is_write(env, NULL, value);
3807 return;
3808 }
3809
3810 if (arm_is_secure_below_el3(env)) {
3811 tlb_flush_by_mmuidx(cs,
3812 ARMMMUIdxBit_S1SE1 |
3813 ARMMMUIdxBit_S1SE0);
3814 } else {
3815 tlb_flush_by_mmuidx(cs,
3816 ARMMMUIdxBit_S12NSE1 |
3817 ARMMMUIdxBit_S12NSE0);
3818 }
3819 }
3820
3821 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3822 uint64_t value)
3823 {
3824 /* Note that the 'ALL' scope must invalidate both stage 1 and
3825 * stage 2 translations, whereas most other scopes only invalidate
3826 * stage 1 translations.
3827 */
3828 ARMCPU *cpu = env_archcpu(env);
3829 CPUState *cs = CPU(cpu);
3830
3831 if (arm_is_secure_below_el3(env)) {
3832 tlb_flush_by_mmuidx(cs,
3833 ARMMMUIdxBit_S1SE1 |
3834 ARMMMUIdxBit_S1SE0);
3835 } else {
3836 if (arm_feature(env, ARM_FEATURE_EL2)) {
3837 tlb_flush_by_mmuidx(cs,
3838 ARMMMUIdxBit_S12NSE1 |
3839 ARMMMUIdxBit_S12NSE0 |
3840 ARMMMUIdxBit_S2NS);
3841 } else {
3842 tlb_flush_by_mmuidx(cs,
3843 ARMMMUIdxBit_S12NSE1 |
3844 ARMMMUIdxBit_S12NSE0);
3845 }
3846 }
3847 }
3848
3849 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3850 uint64_t value)
3851 {
3852 ARMCPU *cpu = env_archcpu(env);
3853 CPUState *cs = CPU(cpu);
3854
3855 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3856 }
3857
3858 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3859 uint64_t value)
3860 {
3861 ARMCPU *cpu = env_archcpu(env);
3862 CPUState *cs = CPU(cpu);
3863
3864 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3865 }
3866
3867 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3868 uint64_t value)
3869 {
3870 /* Note that the 'ALL' scope must invalidate both stage 1 and
3871 * stage 2 translations, whereas most other scopes only invalidate
3872 * stage 1 translations.
3873 */
3874 CPUState *cs = env_cpu(env);
3875 bool sec = arm_is_secure_below_el3(env);
3876 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3877
3878 if (sec) {
3879 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3880 ARMMMUIdxBit_S1SE1 |
3881 ARMMMUIdxBit_S1SE0);
3882 } else if (has_el2) {
3883 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3884 ARMMMUIdxBit_S12NSE1 |
3885 ARMMMUIdxBit_S12NSE0 |
3886 ARMMMUIdxBit_S2NS);
3887 } else {
3888 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3889 ARMMMUIdxBit_S12NSE1 |
3890 ARMMMUIdxBit_S12NSE0);
3891 }
3892 }
3893
3894 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895 uint64_t value)
3896 {
3897 CPUState *cs = env_cpu(env);
3898
3899 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3900 }
3901
3902 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903 uint64_t value)
3904 {
3905 CPUState *cs = env_cpu(env);
3906
3907 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3908 }
3909
3910 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3911 uint64_t value)
3912 {
3913 /* Invalidate by VA, EL2
3914 * Currently handles both VAE2 and VALE2, since we don't support
3915 * flush-last-level-only.
3916 */
3917 ARMCPU *cpu = env_archcpu(env);
3918 CPUState *cs = CPU(cpu);
3919 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3920
3921 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3922 }
3923
3924 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3925 uint64_t value)
3926 {
3927 /* Invalidate by VA, EL3
3928 * Currently handles both VAE3 and VALE3, since we don't support
3929 * flush-last-level-only.
3930 */
3931 ARMCPU *cpu = env_archcpu(env);
3932 CPUState *cs = CPU(cpu);
3933 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3934
3935 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3936 }
3937
3938 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3939 uint64_t value)
3940 {
3941 ARMCPU *cpu = env_archcpu(env);
3942 CPUState *cs = CPU(cpu);
3943 bool sec = arm_is_secure_below_el3(env);
3944 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3945
3946 if (sec) {
3947 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3948 ARMMMUIdxBit_S1SE1 |
3949 ARMMMUIdxBit_S1SE0);
3950 } else {
3951 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3952 ARMMMUIdxBit_S12NSE1 |
3953 ARMMMUIdxBit_S12NSE0);
3954 }
3955 }
3956
3957 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3958 uint64_t value)
3959 {
3960 /* Invalidate by VA, EL1&0 (AArch64 version).
3961 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3962 * since we don't support flush-for-specific-ASID-only or
3963 * flush-last-level-only.
3964 */
3965 ARMCPU *cpu = env_archcpu(env);
3966 CPUState *cs = CPU(cpu);
3967 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3968
3969 if (tlb_force_broadcast(env)) {
3970 tlbi_aa64_vae1is_write(env, NULL, value);
3971 return;
3972 }
3973
3974 if (arm_is_secure_below_el3(env)) {
3975 tlb_flush_page_by_mmuidx(cs, pageaddr,
3976 ARMMMUIdxBit_S1SE1 |
3977 ARMMMUIdxBit_S1SE0);
3978 } else {
3979 tlb_flush_page_by_mmuidx(cs, pageaddr,
3980 ARMMMUIdxBit_S12NSE1 |
3981 ARMMMUIdxBit_S12NSE0);
3982 }
3983 }
3984
3985 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3986 uint64_t value)
3987 {
3988 CPUState *cs = env_cpu(env);
3989 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3990
3991 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3992 ARMMMUIdxBit_S1E2);
3993 }
3994
3995 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3996 uint64_t value)
3997 {
3998 CPUState *cs = env_cpu(env);
3999 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4000
4001 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4002 ARMMMUIdxBit_S1E3);
4003 }
4004
4005 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4006 uint64_t value)
4007 {
4008 /* Invalidate by IPA. This has to invalidate any structures that
4009 * contain only stage 2 translation information, but does not need
4010 * to apply to structures that contain combined stage 1 and stage 2
4011 * translation information.
4012 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4013 */
4014 ARMCPU *cpu = env_archcpu(env);
4015 CPUState *cs = CPU(cpu);
4016 uint64_t pageaddr;
4017
4018 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4019 return;
4020 }
4021
4022 pageaddr = sextract64(value << 12, 0, 48);
4023
4024 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4025 }
4026
4027 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4028 uint64_t value)
4029 {
4030 CPUState *cs = env_cpu(env);
4031 uint64_t pageaddr;
4032
4033 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4034 return;
4035 }
4036
4037 pageaddr = sextract64(value << 12, 0, 48);
4038
4039 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4040 ARMMMUIdxBit_S2NS);
4041 }
4042
4043 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4044 bool isread)
4045 {
4046 /* We don't implement EL2, so the only control on DC ZVA is the
4047 * bit in the SCTLR which can prohibit access for EL0.
4048 */
4049 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4050 return CP_ACCESS_TRAP;
4051 }
4052 return CP_ACCESS_OK;
4053 }
4054
4055 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4056 {
4057 ARMCPU *cpu = env_archcpu(env);
4058 int dzp_bit = 1 << 4;
4059
4060 /* DZP indicates whether DC ZVA access is allowed */
4061 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4062 dzp_bit = 0;
4063 }
4064 return cpu->dcz_blocksize | dzp_bit;
4065 }
4066
4067 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4068 bool isread)
4069 {
4070 if (!(env->pstate & PSTATE_SP)) {
4071 /* Access to SP_EL0 is undefined if it's being used as
4072 * the stack pointer.
4073 */
4074 return CP_ACCESS_TRAP_UNCATEGORIZED;
4075 }
4076 return CP_ACCESS_OK;
4077 }
4078
4079 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4080 {
4081 return env->pstate & PSTATE_SP;
4082 }
4083
4084 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4085 {
4086 update_spsel(env, val);
4087 }
4088
4089 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090 uint64_t value)
4091 {
4092 ARMCPU *cpu = env_archcpu(env);
4093
4094 if (raw_read(env, ri) == value) {
4095 /* Skip the TLB flush if nothing actually changed; Linux likes
4096 * to do a lot of pointless SCTLR writes.
4097 */
4098 return;
4099 }
4100
4101 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4102 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4103 value &= ~SCTLR_M;
4104 }
4105
4106 raw_write(env, ri, value);
4107 /* ??? Lots of these bits are not implemented. */
4108 /* This may enable/disable the MMU, so do a TLB flush. */
4109 tlb_flush(CPU(cpu));
4110 }
4111
4112 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4113 bool isread)
4114 {
4115 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4116 return CP_ACCESS_TRAP_FP_EL2;
4117 }
4118 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4119 return CP_ACCESS_TRAP_FP_EL3;
4120 }
4121 return CP_ACCESS_OK;
4122 }
4123
4124 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4125 uint64_t value)
4126 {
4127 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4128 }
4129
4130 static const ARMCPRegInfo v8_cp_reginfo[] = {
4131 /* Minimal set of EL0-visible registers. This will need to be expanded
4132 * significantly for system emulation of AArch64 CPUs.
4133 */
4134 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4135 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4136 .access = PL0_RW, .type = ARM_CP_NZCV },
4137 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4138 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4139 .type = ARM_CP_NO_RAW,
4140 .access = PL0_RW, .accessfn = aa64_daif_access,
4141 .fieldoffset = offsetof(CPUARMState, daif),
4142 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4143 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4144 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4145 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4146 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4147 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4148 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4149 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4150 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4151 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4152 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4153 .access = PL0_R, .type = ARM_CP_NO_RAW,
4154 .readfn = aa64_dczid_read },
4155 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4156 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4157 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4158 #ifndef CONFIG_USER_ONLY
4159 /* Avoid overhead of an access check that always passes in user-mode */
4160 .accessfn = aa64_zva_access,
4161 #endif
4162 },
4163 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4164 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4165 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4166 /* Cache ops: all NOPs since we don't emulate caches */
4167 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4169 .access = PL1_W, .type = ARM_CP_NOP },
4170 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4171 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4172 .access = PL1_W, .type = ARM_CP_NOP },
4173 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4174 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4175 .access = PL0_W, .type = ARM_CP_NOP,
4176 .accessfn = aa64_cacheop_access },
4177 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4179 .access = PL1_W, .type = ARM_CP_NOP },
4180 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4181 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4182 .access = PL1_W, .type = ARM_CP_NOP },
4183 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4184 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4185 .access = PL0_W, .type = ARM_CP_NOP,
4186 .accessfn = aa64_cacheop_access },
4187 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4189 .access = PL1_W, .type = ARM_CP_NOP },
4190 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4191 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4192 .access = PL0_W, .type = ARM_CP_NOP,
4193 .accessfn = aa64_cacheop_access },
4194 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4195 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4196 .access = PL0_W, .type = ARM_CP_NOP,
4197 .accessfn = aa64_cacheop_access },
4198 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4199 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4200 .access = PL1_W, .type = ARM_CP_NOP },
4201 /* TLBI operations */
4202 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4203 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4204 .access = PL1_W, .type = ARM_CP_NO_RAW,
4205 .writefn = tlbi_aa64_vmalle1is_write },
4206 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4207 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4208 .access = PL1_W, .type = ARM_CP_NO_RAW,
4209 .writefn = tlbi_aa64_vae1is_write },
4210 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4211 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4212 .access = PL1_W, .type = ARM_CP_NO_RAW,
4213 .writefn = tlbi_aa64_vmalle1is_write },
4214 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4215 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4216 .access = PL1_W, .type = ARM_CP_NO_RAW,
4217 .writefn = tlbi_aa64_vae1is_write },
4218 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4219 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4220 .access = PL1_W, .type = ARM_CP_NO_RAW,
4221 .writefn = tlbi_aa64_vae1is_write },
4222 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4223 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4224 .access = PL1_W, .type = ARM_CP_NO_RAW,
4225 .writefn = tlbi_aa64_vae1is_write },
4226 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4227 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4228 .access = PL1_W, .type = ARM_CP_NO_RAW,
4229 .writefn = tlbi_aa64_vmalle1_write },
4230 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4231 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4232 .access = PL1_W, .type = ARM_CP_NO_RAW,
4233 .writefn = tlbi_aa64_vae1_write },
4234 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4235 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4236 .access = PL1_W, .type = ARM_CP_NO_RAW,
4237 .writefn = tlbi_aa64_vmalle1_write },
4238 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4239 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4240 .access = PL1_W, .type = ARM_CP_NO_RAW,
4241 .writefn = tlbi_aa64_vae1_write },
4242 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4243 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4244 .access = PL1_W, .type = ARM_CP_NO_RAW,
4245 .writefn = tlbi_aa64_vae1_write },
4246 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4247 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4248 .access = PL1_W, .type = ARM_CP_NO_RAW,
4249 .writefn = tlbi_aa64_vae1_write },
4250 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4251 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4252 .access = PL2_W, .type = ARM_CP_NO_RAW,
4253 .writefn = tlbi_aa64_ipas2e1is_write },
4254 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4255 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4256 .access = PL2_W, .type = ARM_CP_NO_RAW,
4257 .writefn = tlbi_aa64_ipas2e1is_write },
4258 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4259 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4260 .access = PL2_W, .type = ARM_CP_NO_RAW,
4261 .writefn = tlbi_aa64_alle1is_write },
4262 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4263 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4264 .access = PL2_W, .type = ARM_CP_NO_RAW,
4265 .writefn = tlbi_aa64_alle1is_write },
4266 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4267 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4268 .access = PL2_W, .type = ARM_CP_NO_RAW,
4269 .writefn = tlbi_aa64_ipas2e1_write },
4270 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4271 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4272 .access = PL2_W, .type = ARM_CP_NO_RAW,
4273 .writefn = tlbi_aa64_ipas2e1_write },
4274 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4275 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4276 .access = PL2_W, .type = ARM_CP_NO_RAW,
4277 .writefn = tlbi_aa64_alle1_write },
4278 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4279 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4280 .access = PL2_W, .type = ARM_CP_NO_RAW,
4281 .writefn = tlbi_aa64_alle1is_write },
4282 #ifndef CONFIG_USER_ONLY
4283 /* 64 bit address translation operations */
4284 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4285 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4286 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4287 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4289 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4290 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4291 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4292 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4293 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4294 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4295 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4296 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4297 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4298 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4299 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4300 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4301 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4302 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4303 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4304 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4305 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4306 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4307 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4308 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4309 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4310 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4311 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4312 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4313 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4314 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4315 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4316 .type = ARM_CP_ALIAS,
4317 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4318 .access = PL1_RW, .resetvalue = 0,
4319 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4320 .writefn = par_write },
4321 #endif
4322 /* TLB invalidate last level of translation table walk */
4323 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4324 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4325 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4326 .type = ARM_CP_NO_RAW, .access = PL1_W,
4327 .writefn = tlbimvaa_is_write },
4328 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4329 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4330 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4331 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4332 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4333 .type = ARM_CP_NO_RAW, .access = PL2_W,
4334 .writefn = tlbimva_hyp_write },
4335 { .name = "TLBIMVALHIS",
4336 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4337 .type = ARM_CP_NO_RAW, .access = PL2_W,
4338 .writefn = tlbimva_hyp_is_write },
4339 { .name = "TLBIIPAS2",
4340 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4341 .type = ARM_CP_NO_RAW, .access = PL2_W,
4342 .writefn = tlbiipas2_write },
4343 { .name = "TLBIIPAS2IS",
4344 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4345 .type = ARM_CP_NO_RAW, .access = PL2_W,
4346 .writefn = tlbiipas2_is_write },
4347 { .name = "TLBIIPAS2L",
4348 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4349 .type = ARM_CP_NO_RAW, .access = PL2_W,
4350 .writefn = tlbiipas2_write },
4351 { .name = "TLBIIPAS2LIS",
4352 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4353 .type = ARM_CP_NO_RAW, .access = PL2_W,
4354 .writefn = tlbiipas2_is_write },
4355 /* 32 bit cache operations */
4356 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4357 .type = ARM_CP_NOP, .access = PL1_W },
4358 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4359 .type = ARM_CP_NOP, .access = PL1_W },
4360 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4361 .type = ARM_CP_NOP, .access = PL1_W },
4362 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4363 .type = ARM_CP_NOP, .access = PL1_W },
4364 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4365 .type = ARM_CP_NOP, .access = PL1_W },
4366 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4367 .type = ARM_CP_NOP, .access = PL1_W },
4368 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4369 .type = ARM_CP_NOP, .access = PL1_W },
4370 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4371 .type = ARM_CP_NOP, .access = PL1_W },
4372 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4373 .type = ARM_CP_NOP, .access = PL1_W },
4374 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4375 .type = ARM_CP_NOP, .access = PL1_W },
4376 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4377 .type = ARM_CP_NOP, .access = PL1_W },
4378 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4379 .type = ARM_CP_NOP, .access = PL1_W },
4380 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4381 .type = ARM_CP_NOP, .access = PL1_W },
4382 /* MMU Domain access control / MPU write buffer control */
4383 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4384 .access = PL1_RW, .resetvalue = 0,
4385 .writefn = dacr_write, .raw_writefn = raw_write,
4386 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4387 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4388 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4389 .type = ARM_CP_ALIAS,
4390 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4391 .access = PL1_RW,
4392 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4393 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4394 .type = ARM_CP_ALIAS,
4395 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4396 .access = PL1_RW,
4397 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4398 /* We rely on the access checks not allowing the guest to write to the
4399 * state field when SPSel indicates that it's being used as the stack
4400 * pointer.
4401 */
4402 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4403 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4404 .access = PL1_RW, .accessfn = sp_el0_access,
4405 .type = ARM_CP_ALIAS,
4406 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4407 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4408 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4409 .access = PL2_RW, .type = ARM_CP_ALIAS,
4410 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4411 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4413 .type = ARM_CP_NO_RAW,
4414 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4415 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4416 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4417 .type = ARM_CP_ALIAS,
4418 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4419 .access = PL2_RW, .accessfn = fpexc32_access },
4420 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4421 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4422 .access = PL2_RW, .resetvalue = 0,
4423 .writefn = dacr_write, .raw_writefn = raw_write,
4424 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4425 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4426 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4427 .access = PL2_RW, .resetvalue = 0,
4428 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4429 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4430 .type = ARM_CP_ALIAS,
4431 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4432 .access = PL2_RW,
4433 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4434 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4435 .type = ARM_CP_ALIAS,
4436 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4437 .access = PL2_RW,
4438 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4439 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4440 .type = ARM_CP_ALIAS,
4441 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4442 .access = PL2_RW,
4443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4444 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4445 .type = ARM_CP_ALIAS,
4446 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4447 .access = PL2_RW,
4448 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4449 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4450 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4451 .resetvalue = 0,
4452 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4453 { .name = "SDCR", .type = ARM_CP_ALIAS,
4454 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4455 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4456 .writefn = sdcr_write,
4457 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4458 REGINFO_SENTINEL
4459 };
4460
4461 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4462 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4463 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4464 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4465 .access = PL2_RW,
4466 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4467 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4468 .type = ARM_CP_NO_RAW,
4469 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4470 .access = PL2_RW,
4471 .type = ARM_CP_CONST, .resetvalue = 0 },
4472 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4473 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4474 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4475 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4476 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4477 .access = PL2_RW,
4478 .type = ARM_CP_CONST, .resetvalue = 0 },
4479 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4480 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4481 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4482 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4483 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4484 .access = PL2_RW, .type = ARM_CP_CONST,
4485 .resetvalue = 0 },
4486 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4487 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4488 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4489 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4490 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4491 .access = PL2_RW, .type = ARM_CP_CONST,
4492 .resetvalue = 0 },
4493 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4494 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4495 .access = PL2_RW, .type = ARM_CP_CONST,
4496 .resetvalue = 0 },
4497 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4498 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4499 .access = PL2_RW, .type = ARM_CP_CONST,
4500 .resetvalue = 0 },
4501 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4502 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4503 .access = PL2_RW, .type = ARM_CP_CONST,
4504 .resetvalue = 0 },
4505 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4506 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4507 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4508 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4509 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4510 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4511 .type = ARM_CP_CONST, .resetvalue = 0 },
4512 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4513 .cp = 15, .opc1 = 6, .crm = 2,
4514 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4515 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4516 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4517 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4518 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4519 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4520 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4521 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4522 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4523 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4524 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4525 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4526 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4527 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4528 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4529 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4530 .resetvalue = 0 },
4531 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4532 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4533 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4534 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4535 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4536 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4537 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4538 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4539 .resetvalue = 0 },
4540 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4541 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4542 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4543 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4544 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4545 .resetvalue = 0 },
4546 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4547 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4548 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4549 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4550 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4551 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4552 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4553 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4554 .access = PL2_RW, .accessfn = access_tda,
4555 .type = ARM_CP_CONST, .resetvalue = 0 },
4556 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4557 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4558 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4559 .type = ARM_CP_CONST, .resetvalue = 0 },
4560 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4561 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4562 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4563 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4564 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4565 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4566 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4567 .type = ARM_CP_CONST,
4568 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4569 .access = PL2_RW, .resetvalue = 0 },
4570 REGINFO_SENTINEL
4571 };
4572
4573 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4574 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4575 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4576 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4577 .access = PL2_RW,
4578 .type = ARM_CP_CONST, .resetvalue = 0 },
4579 REGINFO_SENTINEL
4580 };
4581
4582 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4583 {
4584 ARMCPU *cpu = env_archcpu(env);
4585 uint64_t valid_mask = HCR_MASK;
4586
4587 if (arm_feature(env, ARM_FEATURE_EL3)) {
4588 valid_mask &= ~HCR_HCD;
4589 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4590 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4591 * However, if we're using the SMC PSCI conduit then QEMU is
4592 * effectively acting like EL3 firmware and so the guest at
4593 * EL2 should retain the ability to prevent EL1 from being
4594 * able to make SMC calls into the ersatz firmware, so in
4595 * that case HCR.TSC should be read/write.
4596 */
4597 valid_mask &= ~HCR_TSC;
4598 }
4599 if (cpu_isar_feature(aa64_lor, cpu)) {
4600 valid_mask |= HCR_TLOR;
4601 }
4602 if (cpu_isar_feature(aa64_pauth, cpu)) {
4603 valid_mask |= HCR_API | HCR_APK;
4604 }
4605
4606 /* Clear RES0 bits. */
4607 value &= valid_mask;
4608
4609 /* These bits change the MMU setup:
4610 * HCR_VM enables stage 2 translation
4611 * HCR_PTW forbids certain page-table setups
4612 * HCR_DC Disables stage1 and enables stage2 translation
4613 */
4614 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4615 tlb_flush(CPU(cpu));
4616 }
4617 env->cp15.hcr_el2 = value;
4618
4619 /*
4620 * Updates to VI and VF require us to update the status of
4621 * virtual interrupts, which are the logical OR of these bits
4622 * and the state of the input lines from the GIC. (This requires
4623 * that we have the iothread lock, which is done by marking the
4624 * reginfo structs as ARM_CP_IO.)
4625 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4626 * possible for it to be taken immediately, because VIRQ and
4627 * VFIQ are masked unless running at EL0 or EL1, and HCR
4628 * can only be written at EL2.
4629 */
4630 g_assert(qemu_mutex_iothread_locked());
4631 arm_cpu_update_virq(cpu);
4632 arm_cpu_update_vfiq(cpu);
4633 }
4634
4635 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4636 uint64_t value)
4637 {
4638 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4639 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4640 hcr_write(env, NULL, value);
4641 }
4642
4643 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4644 uint64_t value)
4645 {
4646 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4647 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4648 hcr_write(env, NULL, value);
4649 }
4650
4651 /*
4652 * Return the effective value of HCR_EL2.
4653 * Bits that are not included here:
4654 * RW (read from SCR_EL3.RW as needed)
4655 */
4656 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4657 {
4658 uint64_t ret = env->cp15.hcr_el2;
4659
4660 if (arm_is_secure_below_el3(env)) {
4661 /*
4662 * "This register has no effect if EL2 is not enabled in the
4663 * current Security state". This is ARMv8.4-SecEL2 speak for
4664 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4665 *
4666 * Prior to that, the language was "In an implementation that
4667 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4668 * as if this field is 0 for all purposes other than a direct
4669 * read or write access of HCR_EL2". With lots of enumeration
4670 * on a per-field basis. In current QEMU, this is condition
4671 * is arm_is_secure_below_el3.
4672 *
4673 * Since the v8.4 language applies to the entire register, and
4674 * appears to be backward compatible, use that.
4675 */
4676 ret = 0;
4677 } else if (ret & HCR_TGE) {
4678 /* These bits are up-to-date as of ARMv8.4. */
4679 if (ret & HCR_E2H) {
4680 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4681 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4682 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4683 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4684 } else {
4685 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4686 }
4687 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4688 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4689 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4690 HCR_TLOR);
4691 }
4692
4693 return ret;
4694 }
4695
4696 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697 uint64_t value)
4698 {
4699 /*
4700 * For A-profile AArch32 EL3, if NSACR.CP10
4701 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4702 */
4703 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4704 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4705 value &= ~(0x3 << 10);
4706 value |= env->cp15.cptr_el[2] & (0x3 << 10);
4707 }
4708 env->cp15.cptr_el[2] = value;
4709 }
4710
4711 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4712 {
4713 /*
4714 * For A-profile AArch32 EL3, if NSACR.CP10
4715 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4716 */
4717 uint64_t value = env->cp15.cptr_el[2];
4718
4719 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4720 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4721 value |= 0x3 << 10;
4722 }
4723 return value;
4724 }
4725
4726 static const ARMCPRegInfo el2_cp_reginfo[] = {
4727 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4728 .type = ARM_CP_IO,
4729 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4730 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4731 .writefn = hcr_write },
4732 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4733 .type = ARM_CP_ALIAS | ARM_CP_IO,
4734 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4735 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4736 .writefn = hcr_writelow },
4737 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4738 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4739 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4740 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4741 .type = ARM_CP_ALIAS,
4742 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4743 .access = PL2_RW,
4744 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4745 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4746 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4747 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4748 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4749 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4750 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4751 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4752 .type = ARM_CP_ALIAS,
4753 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4754 .access = PL2_RW,
4755 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4756 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4757 .type = ARM_CP_ALIAS,
4758 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4759 .access = PL2_RW,
4760 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4761 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4762 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4763 .access = PL2_RW, .writefn = vbar_write,
4764 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4765 .resetvalue = 0 },
4766 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4768 .access = PL3_RW, .type = ARM_CP_ALIAS,
4769 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4770 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4771 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4772 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4773 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4774 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4775 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4776 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4777 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4778 .resetvalue = 0 },
4779 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4780 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4781 .access = PL2_RW, .type = ARM_CP_ALIAS,
4782 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4783 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4784 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4785 .access = PL2_RW, .type = ARM_CP_CONST,
4786 .resetvalue = 0 },
4787 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4788 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4789 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4790 .access = PL2_RW, .type = ARM_CP_CONST,
4791 .resetvalue = 0 },
4792 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4793 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4794 .access = PL2_RW, .type = ARM_CP_CONST,
4795 .resetvalue = 0 },
4796 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4797 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4798 .access = PL2_RW, .type = ARM_CP_CONST,
4799 .resetvalue = 0 },
4800 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4801 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4802 .access = PL2_RW,
4803 /* no .writefn needed as this can't cause an ASID change;
4804 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4805 */
4806 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4807 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4808 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4809 .type = ARM_CP_ALIAS,
4810 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4811 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4812 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4814 .access = PL2_RW,
4815 /* no .writefn needed as this can't cause an ASID change;
4816 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4817 */
4818 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4819 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4820 .cp = 15, .opc1 = 6, .crm = 2,
4821 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4822 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4823 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4824 .writefn = vttbr_write },
4825 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4827 .access = PL2_RW, .writefn = vttbr_write,
4828 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4829 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4830 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4831 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4832 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4833 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4834 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4835 .access = PL2_RW, .resetvalue = 0,
4836 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4837 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4839 .access = PL2_RW, .resetvalue = 0,
4840 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4841 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4842 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4843 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4844 { .name = "TLBIALLNSNH",
4845 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4846 .type = ARM_CP_NO_RAW, .access = PL2_W,
4847 .writefn = tlbiall_nsnh_write },
4848 { .name = "TLBIALLNSNHIS",
4849 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4850 .type = ARM_CP_NO_RAW, .access = PL2_W,
4851 .writefn = tlbiall_nsnh_is_write },
4852 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4853 .type = ARM_CP_NO_RAW, .access = PL2_W,
4854 .writefn = tlbiall_hyp_write },
4855 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4856 .type = ARM_CP_NO_RAW, .access = PL2_W,
4857 .writefn = tlbiall_hyp_is_write },
4858 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4859 .type = ARM_CP_NO_RAW, .access = PL2_W,
4860 .writefn = tlbimva_hyp_write },
4861 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4862 .type = ARM_CP_NO_RAW, .access = PL2_W,
4863 .writefn = tlbimva_hyp_is_write },
4864 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4866 .type = ARM_CP_NO_RAW, .access = PL2_W,
4867 .writefn = tlbi_aa64_alle2_write },
4868 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4869 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4870 .type = ARM_CP_NO_RAW, .access = PL2_W,
4871 .writefn = tlbi_aa64_vae2_write },
4872 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4874 .access = PL2_W, .type = ARM_CP_NO_RAW,
4875 .writefn = tlbi_aa64_vae2_write },
4876 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4877 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4878 .access = PL2_W, .type = ARM_CP_NO_RAW,
4879 .writefn = tlbi_aa64_alle2is_write },
4880 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4882 .type = ARM_CP_NO_RAW, .access = PL2_W,
4883 .writefn = tlbi_aa64_vae2is_write },
4884 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4885 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4886 .access = PL2_W, .type = ARM_CP_NO_RAW,
4887 .writefn = tlbi_aa64_vae2is_write },
4888 #ifndef CONFIG_USER_ONLY
4889 /* Unlike the other EL2-related AT operations, these must
4890 * UNDEF from EL3 if EL2 is not implemented, which is why we
4891 * define them here rather than with the rest of the AT ops.
4892 */
4893 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4895 .access = PL2_W, .accessfn = at_s1e2_access,
4896 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4897 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4898 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4899 .access = PL2_W, .accessfn = at_s1e2_access,
4900 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4901 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4902 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4903 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4904 * to behave as if SCR.NS was 1.
4905 */
4906 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4907 .access = PL2_W,
4908 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4909 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4910 .access = PL2_W,
4911 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4912 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4913 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4914 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4915 * reset values as IMPDEF. We choose to reset to 3 to comply with
4916 * both ARMv7 and ARMv8.
4917 */
4918 .access = PL2_RW, .resetvalue = 3,
4919 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4920 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4922 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4923 .writefn = gt_cntvoff_write,
4924 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4925 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4926 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4927 .writefn = gt_cntvoff_write,
4928 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4929 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4930 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4931 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4932 .type = ARM_CP_IO, .access = PL2_RW,
4933 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4934 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4936 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4937 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4938 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4940 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4941 .resetfn = gt_hyp_timer_reset,
4942 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4943 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4944 .type = ARM_CP_IO,
4945 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4946 .access = PL2_RW,
4947 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4948 .resetvalue = 0,
4949 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4950 #endif
4951 /* The only field of MDCR_EL2 that has a defined architectural reset value
4952 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4953 * don't implement any PMU event counters, so using zero as a reset
4954 * value for MDCR_EL2 is okay
4955 */
4956 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4957 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4958 .access = PL2_RW, .resetvalue = 0,
4959 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4960 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4961 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4962 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4963 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4964 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4965 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4966 .access = PL2_RW,
4967 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4968 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4969 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4970 .access = PL2_RW,
4971 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4972 REGINFO_SENTINEL
4973 };
4974
4975 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4976 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4977 .type = ARM_CP_ALIAS | ARM_CP_IO,
4978 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4979 .access = PL2_RW,
4980 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4981 .writefn = hcr_writehigh },
4982 REGINFO_SENTINEL
4983 };
4984
4985 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4986 bool isread)
4987 {
4988 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4989 * At Secure EL1 it traps to EL3.
4990 */
4991 if (arm_current_el(env) == 3) {
4992 return CP_ACCESS_OK;
4993 }
4994 if (arm_is_secure_below_el3(env)) {
4995 return CP_ACCESS_TRAP_EL3;
4996 }
4997 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4998 if (isread) {
4999 return CP_ACCESS_OK;
5000 }
5001 return CP_ACCESS_TRAP_UNCATEGORIZED;
5002 }
5003
5004 static const ARMCPRegInfo el3_cp_reginfo[] = {
5005 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5006 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5007 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5008 .resetvalue = 0, .writefn = scr_write },
5009 { .name = "SCR", .type = ARM_CP_ALIAS,
5010 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5011 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5012 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5013 .writefn = scr_write },
5014 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5015 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5016 .access = PL3_RW, .resetvalue = 0,
5017 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5018 { .name = "SDER",
5019 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5020 .access = PL3_RW, .resetvalue = 0,
5021 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5022 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5023 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5024 .writefn = vbar_write, .resetvalue = 0,
5025 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5026 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5027 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5028 .access = PL3_RW, .resetvalue = 0,
5029 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5030 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5031 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5032 .access = PL3_RW,
5033 /* no .writefn needed as this can't cause an ASID change;
5034 * we must provide a .raw_writefn and .resetfn because we handle
5035 * reset and migration for the AArch32 TTBCR(S), which might be
5036 * using mask and base_mask.
5037 */
5038 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5039 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5040 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5041 .type = ARM_CP_ALIAS,
5042 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5043 .access = PL3_RW,
5044 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5045 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5046 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5047 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5048 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5049 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5050 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5051 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5052 .type = ARM_CP_ALIAS,
5053 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5054 .access = PL3_RW,
5055 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5056 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5057 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5058 .access = PL3_RW, .writefn = vbar_write,
5059 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5060 .resetvalue = 0 },
5061 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5062 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5063 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5064 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5065 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5067 .access = PL3_RW, .resetvalue = 0,
5068 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5069 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5070 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5071 .access = PL3_RW, .type = ARM_CP_CONST,
5072 .resetvalue = 0 },
5073 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5074 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5075 .access = PL3_RW, .type = ARM_CP_CONST,
5076 .resetvalue = 0 },
5077 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5078 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5079 .access = PL3_RW, .type = ARM_CP_CONST,
5080 .resetvalue = 0 },
5081 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5082 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5083 .access = PL3_W, .type = ARM_CP_NO_RAW,
5084 .writefn = tlbi_aa64_alle3is_write },
5085 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5087 .access = PL3_W, .type = ARM_CP_NO_RAW,
5088 .writefn = tlbi_aa64_vae3is_write },
5089 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5091 .access = PL3_W, .type = ARM_CP_NO_RAW,
5092 .writefn = tlbi_aa64_vae3is_write },
5093 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5095 .access = PL3_W, .type = ARM_CP_NO_RAW,
5096 .writefn = tlbi_aa64_alle3_write },
5097 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5099 .access = PL3_W, .type = ARM_CP_NO_RAW,
5100 .writefn = tlbi_aa64_vae3_write },
5101 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5103 .access = PL3_W, .type = ARM_CP_NO_RAW,
5104 .writefn = tlbi_aa64_vae3_write },
5105 REGINFO_SENTINEL
5106 };
5107
5108 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5109 bool isread)
5110 {
5111 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5112 * but the AArch32 CTR has its own reginfo struct)
5113 */
5114 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5115 return CP_ACCESS_TRAP;
5116 }
5117 return CP_ACCESS_OK;
5118 }
5119
5120 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5121 uint64_t value)
5122 {
5123 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5124 * read via a bit in OSLSR_EL1.
5125 */
5126 int oslock;
5127
5128 if (ri->state == ARM_CP_STATE_AA32) {
5129 oslock = (value == 0xC5ACCE55);
5130 } else {
5131 oslock = value & 1;
5132 }
5133
5134 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5135 }
5136
5137 static const ARMCPRegInfo debug_cp_reginfo[] = {
5138 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5139 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5140 * unlike DBGDRAR it is never accessible from EL0.
5141 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5142 * accessor.
5143 */
5144 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5145 .access = PL0_R, .accessfn = access_tdra,
5146 .type = ARM_CP_CONST, .resetvalue = 0 },
5147 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5148 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5149 .access = PL1_R, .accessfn = access_tdra,
5150 .type = ARM_CP_CONST, .resetvalue = 0 },
5151 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5152 .access = PL0_R, .accessfn = access_tdra,
5153 .type = ARM_CP_CONST, .resetvalue = 0 },
5154 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5155 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5156 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5157 .access = PL1_RW, .accessfn = access_tda,
5158 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5159 .resetvalue = 0 },
5160 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5161 * We don't implement the configurable EL0 access.
5162 */
5163 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5164 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5165 .type = ARM_CP_ALIAS,
5166 .access = PL1_R, .accessfn = access_tda,
5167 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5168 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5169 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5170 .access = PL1_W, .type = ARM_CP_NO_RAW,
5171 .accessfn = access_tdosa,
5172 .writefn = oslar_write },
5173 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5174 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5175 .access = PL1_R, .resetvalue = 10,
5176 .accessfn = access_tdosa,
5177 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5178 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5179 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5180 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5181 .access = PL1_RW, .accessfn = access_tdosa,
5182 .type = ARM_CP_NOP },
5183 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5184 * implement vector catch debug events yet.
5185 */
5186 { .name = "DBGVCR",
5187 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5188 .access = PL1_RW, .accessfn = access_tda,
5189 .type = ARM_CP_NOP },
5190 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5191 * to save and restore a 32-bit guest's DBGVCR)
5192 */
5193 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5194 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5195 .access = PL2_RW, .accessfn = access_tda,
5196 .type = ARM_CP_NOP },
5197 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5198 * Channel but Linux may try to access this register. The 32-bit
5199 * alias is DBGDCCINT.
5200 */
5201 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5202 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5203 .access = PL1_RW, .accessfn = access_tda,
5204 .type = ARM_CP_NOP },
5205 REGINFO_SENTINEL
5206 };
5207
5208 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5209 /* 64 bit access versions of the (dummy) debug registers */
5210 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5211 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5212 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5213 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5214 REGINFO_SENTINEL
5215 };
5216
5217 /* Return the exception level to which exceptions should be taken
5218 * via SVEAccessTrap. If an exception should be routed through
5219 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5220 * take care of raising that exception.
5221 * C.f. the ARM pseudocode function CheckSVEEnabled.
5222 */
5223 int sve_exception_el(CPUARMState *env, int el)
5224 {
5225 #ifndef CONFIG_USER_ONLY
5226 if (el <= 1) {
5227 bool disabled = false;
5228
5229 /* The CPACR.ZEN controls traps to EL1:
5230 * 0, 2 : trap EL0 and EL1 accesses
5231 * 1 : trap only EL0 accesses
5232 * 3 : trap no accesses
5233 */
5234 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5235 disabled = true;
5236 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5237 disabled = el == 0;
5238 }
5239 if (disabled) {
5240 /* route_to_el2 */
5241 return (arm_feature(env, ARM_FEATURE_EL2)
5242 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5243 }
5244
5245 /* Check CPACR.FPEN. */
5246 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5247 disabled = true;
5248 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5249 disabled = el == 0;
5250 }
5251 if (disabled) {
5252 return 0;
5253 }
5254 }
5255
5256 /* CPTR_EL2. Since TZ and TFP are positive,
5257 * they will be zero when EL2 is not present.
5258 */
5259 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5260 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5261 return 2;
5262 }
5263 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5264 return 0;
5265 }
5266 }
5267
5268 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5269 if (arm_feature(env, ARM_FEATURE_EL3)
5270 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5271 return 3;
5272 }
5273 #endif
5274 return 0;
5275 }
5276
5277 /*
5278 * Given that SVE is enabled, return the vector length for EL.
5279 */
5280 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5281 {
5282 ARMCPU *cpu = env_archcpu(env);
5283 uint32_t zcr_len = cpu->sve_max_vq - 1;
5284
5285 if (el <= 1) {
5286 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5287 }
5288 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5289 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5290 }
5291 if (arm_feature(env, ARM_FEATURE_EL3)) {
5292 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5293 }
5294 return zcr_len;
5295 }
5296
5297 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5298 uint64_t value)
5299 {
5300 int cur_el = arm_current_el(env);
5301 int old_len = sve_zcr_len_for_el(env, cur_el);
5302 int new_len;
5303
5304 /* Bits other than [3:0] are RAZ/WI. */
5305 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5306 raw_write(env, ri, value & 0xf);
5307
5308 /*
5309 * Because we arrived here, we know both FP and SVE are enabled;
5310 * otherwise we would have trapped access to the ZCR_ELn register.
5311 */
5312 new_len = sve_zcr_len_for_el(env, cur_el);
5313 if (new_len < old_len) {
5314 aarch64_sve_narrow_vq(env, new_len + 1);
5315 }
5316 }
5317
5318 static const ARMCPRegInfo zcr_el1_reginfo = {
5319 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5320 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5321 .access = PL1_RW, .type = ARM_CP_SVE,
5322 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5323 .writefn = zcr_write, .raw_writefn = raw_write
5324 };
5325
5326 static const ARMCPRegInfo zcr_el2_reginfo = {
5327 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5328 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5329 .access = PL2_RW, .type = ARM_CP_SVE,
5330 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5331 .writefn = zcr_write, .raw_writefn = raw_write
5332 };
5333
5334 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5335 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5336 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5337 .access = PL2_RW, .type = ARM_CP_SVE,
5338 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5339 };
5340
5341 static const ARMCPRegInfo zcr_el3_reginfo = {
5342 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5343 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5344 .access = PL3_RW, .type = ARM_CP_SVE,
5345 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5346 .writefn = zcr_write, .raw_writefn = raw_write
5347 };
5348
5349 void hw_watchpoint_update(ARMCPU *cpu, int n)
5350 {
5351 CPUARMState *env = &cpu->env;
5352 vaddr len = 0;
5353 vaddr wvr = env->cp15.dbgwvr[n];
5354 uint64_t wcr = env->cp15.dbgwcr[n];
5355 int mask;
5356 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5357
5358 if (env->cpu_watchpoint[n]) {
5359 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5360 env->cpu_watchpoint[n] = NULL;
5361 }
5362
5363 if (!extract64(wcr, 0, 1)) {
5364 /* E bit clear : watchpoint disabled */
5365 return;
5366 }
5367
5368 switch (extract64(wcr, 3, 2)) {
5369 case 0:
5370 /* LSC 00 is reserved and must behave as if the wp is disabled */
5371 return;
5372 case 1:
5373 flags |= BP_MEM_READ;
5374 break;
5375 case 2:
5376 flags |= BP_MEM_WRITE;
5377 break;
5378 case 3:
5379 flags |= BP_MEM_ACCESS;
5380 break;
5381 }
5382
5383 /* Attempts to use both MASK and BAS fields simultaneously are
5384 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5385 * thus generating a watchpoint for every byte in the masked region.
5386 */
5387 mask = extract64(wcr, 24, 4);
5388 if (mask == 1 || mask == 2) {
5389 /* Reserved values of MASK; we must act as if the mask value was
5390 * some non-reserved value, or as if the watchpoint were disabled.
5391 * We choose the latter.
5392 */
5393 return;
5394 } else if (mask) {
5395 /* Watchpoint covers an aligned area up to 2GB in size */
5396 len = 1ULL << mask;
5397 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5398 * whether the watchpoint fires when the unmasked bits match; we opt
5399 * to generate the exceptions.
5400 */
5401 wvr &= ~(len - 1);
5402 } else {
5403 /* Watchpoint covers bytes defined by the byte address select bits */
5404 int bas = extract64(wcr, 5, 8);
5405 int basstart;
5406
5407 if (bas == 0) {
5408 /* This must act as if the watchpoint is disabled */
5409 return;
5410 }
5411
5412 if (extract64(wvr, 2, 1)) {
5413 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5414 * ignored, and BAS[3:0] define which bytes to watch.
5415 */
5416 bas &= 0xf;
5417 }
5418 /* The BAS bits are supposed to be programmed to indicate a contiguous
5419 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5420 * we fire for each byte in the word/doubleword addressed by the WVR.
5421 * We choose to ignore any non-zero bits after the first range of 1s.
5422 */
5423 basstart = ctz32(bas);
5424 len = cto32(bas >> basstart);
5425 wvr += basstart;
5426 }
5427
5428 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5429 &env->cpu_watchpoint[n]);
5430 }
5431
5432 void hw_watchpoint_update_all(ARMCPU *cpu)
5433 {
5434 int i;
5435 CPUARMState *env = &cpu->env;
5436
5437 /* Completely clear out existing QEMU watchpoints and our array, to
5438 * avoid possible stale entries following migration load.
5439 */
5440 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5441 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5442
5443 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5444 hw_watchpoint_update(cpu, i);
5445 }
5446 }
5447
5448 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5449 uint64_t value)
5450 {
5451 ARMCPU *cpu = env_archcpu(env);
5452 int i = ri->crm;
5453
5454 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5455 * register reads and behaves as if values written are sign extended.
5456 * Bits [1:0] are RES0.
5457 */
5458 value = sextract64(value, 0, 49) & ~3ULL;
5459
5460 raw_write(env, ri, value);
5461 hw_watchpoint_update(cpu, i);
5462 }
5463
5464 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5465 uint64_t value)
5466 {
5467 ARMCPU *cpu = env_archcpu(env);
5468 int i = ri->crm;
5469
5470 raw_write(env, ri, value);
5471 hw_watchpoint_update(cpu, i);
5472 }
5473
5474 void hw_breakpoint_update(ARMCPU *cpu, int n)
5475 {
5476 CPUARMState *env = &cpu->env;
5477 uint64_t bvr = env->cp15.dbgbvr[n];
5478 uint64_t bcr = env->cp15.dbgbcr[n];
5479 vaddr addr;
5480 int bt;
5481 int flags = BP_CPU;
5482
5483 if (env->cpu_breakpoint[n]) {
5484 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5485 env->cpu_breakpoint[n] = NULL;
5486 }
5487
5488 if (!extract64(bcr, 0, 1)) {
5489 /* E bit clear : watchpoint disabled */
5490 return;
5491 }
5492
5493 bt = extract64(bcr, 20, 4);
5494
5495 switch (bt) {
5496 case 4: /* unlinked address mismatch (reserved if AArch64) */
5497 case 5: /* linked address mismatch (reserved if AArch64) */
5498 qemu_log_mask(LOG_UNIMP,
5499 "arm: address mismatch breakpoint types not implemented\n");
5500 return;
5501 case 0: /* unlinked address match */
5502 case 1: /* linked address match */
5503 {
5504 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5505 * we behave as if the register was sign extended. Bits [1:0] are
5506 * RES0. The BAS field is used to allow setting breakpoints on 16
5507 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5508 * a bp will fire if the addresses covered by the bp and the addresses
5509 * covered by the insn overlap but the insn doesn't start at the
5510 * start of the bp address range. We choose to require the insn and
5511 * the bp to have the same address. The constraints on writing to
5512 * BAS enforced in dbgbcr_write mean we have only four cases:
5513 * 0b0000 => no breakpoint
5514 * 0b0011 => breakpoint on addr
5515 * 0b1100 => breakpoint on addr + 2
5516 * 0b1111 => breakpoint on addr
5517 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5518 */
5519 int bas = extract64(bcr, 5, 4);
5520 addr = sextract64(bvr, 0, 49) & ~3ULL;
5521 if (bas == 0) {
5522 return;
5523 }
5524 if (bas == 0xc) {
5525 addr += 2;
5526 }
5527 break;
5528 }
5529 case 2: /* unlinked context ID match */
5530 case 8: /* unlinked VMID match (reserved if no EL2) */
5531 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5532 qemu_log_mask(LOG_UNIMP,
5533 "arm: unlinked context breakpoint types not implemented\n");
5534 return;
5535 case 9: /* linked VMID match (reserved if no EL2) */
5536 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5537 case 3: /* linked context ID match */
5538 default:
5539 /* We must generate no events for Linked context matches (unless
5540 * they are linked to by some other bp/wp, which is handled in
5541 * updates for the linking bp/wp). We choose to also generate no events
5542 * for reserved values.
5543 */
5544 return;
5545 }
5546
5547 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5548 }
5549
5550 void hw_breakpoint_update_all(ARMCPU *cpu)
5551 {
5552 int i;
5553 CPUARMState *env = &cpu->env;
5554
5555 /* Completely clear out existing QEMU breakpoints and our array, to
5556 * avoid possible stale entries following migration load.
5557 */
5558 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5559 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5560
5561 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5562 hw_breakpoint_update(cpu, i);
5563 }
5564 }
5565
5566 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5567 uint64_t value)
5568 {
5569 ARMCPU *cpu = env_archcpu(env);
5570 int i = ri->crm;
5571
5572 raw_write(env, ri, value);
5573 hw_breakpoint_update(cpu, i);
5574 }
5575
5576 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5577 uint64_t value)
5578 {
5579 ARMCPU *cpu = env_archcpu(env);
5580 int i = ri->crm;
5581
5582 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5583 * copy of BAS[0].
5584 */
5585 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5586 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5587
5588 raw_write(env, ri, value);
5589 hw_breakpoint_update(cpu, i);
5590 }
5591
5592 static void define_debug_regs(ARMCPU *cpu)
5593 {
5594 /* Define v7 and v8 architectural debug registers.
5595 * These are just dummy implementations for now.
5596 */
5597 int i;
5598 int wrps, brps, ctx_cmps;
5599 ARMCPRegInfo dbgdidr = {
5600 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5601 .access = PL0_R, .accessfn = access_tda,
5602 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5603 };
5604
5605 /* Note that all these register fields hold "number of Xs minus 1". */
5606 brps = extract32(cpu->dbgdidr, 24, 4);
5607 wrps = extract32(cpu->dbgdidr, 28, 4);
5608 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5609
5610 assert(ctx_cmps <= brps);
5611
5612 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5613 * of the debug registers such as number of breakpoints;
5614 * check that if they both exist then they agree.
5615 */
5616 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5617 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5618 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5619 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5620 }
5621
5622 define_one_arm_cp_reg(cpu, &dbgdidr);
5623 define_arm_cp_regs(cpu, debug_cp_reginfo);
5624
5625 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5626 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5627 }
5628
5629 for (i = 0; i < brps + 1; i++) {
5630 ARMCPRegInfo dbgregs[] = {
5631 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5632 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5633 .access = PL1_RW, .accessfn = access_tda,
5634 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5635 .writefn = dbgbvr_write, .raw_writefn = raw_write
5636 },
5637 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5638 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5639 .access = PL1_RW, .accessfn = access_tda,
5640 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5641 .writefn = dbgbcr_write, .raw_writefn = raw_write
5642 },
5643 REGINFO_SENTINEL
5644 };
5645 define_arm_cp_regs(cpu, dbgregs);
5646 }
5647
5648 for (i = 0; i < wrps + 1; i++) {
5649 ARMCPRegInfo dbgregs[] = {
5650 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5651 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5652 .access = PL1_RW, .accessfn = access_tda,
5653 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5654 .writefn = dbgwvr_write, .raw_writefn = raw_write
5655 },
5656 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5657 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5658 .access = PL1_RW, .accessfn = access_tda,
5659 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5660 .writefn = dbgwcr_write, .raw_writefn = raw_write
5661 },
5662 REGINFO_SENTINEL
5663 };
5664 define_arm_cp_regs(cpu, dbgregs);
5665 }
5666 }
5667
5668 /* We don't know until after realize whether there's a GICv3
5669 * attached, and that is what registers the gicv3 sysregs.
5670 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5671 * at runtime.
5672 */
5673 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5674 {
5675 ARMCPU *cpu = env_archcpu(env);
5676 uint64_t pfr1 = cpu->id_pfr1;
5677
5678 if (env->gicv3state) {
5679 pfr1 |= 1 << 28;
5680 }
5681 return pfr1;
5682 }
5683
5684 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5685 {
5686 ARMCPU *cpu = env_archcpu(env);
5687 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5688
5689 if (env->gicv3state) {
5690 pfr0 |= 1 << 24;
5691 }
5692 return pfr0;
5693 }
5694
5695 /* Shared logic between LORID and the rest of the LOR* registers.
5696 * Secure state has already been delt with.
5697 */
5698 static CPAccessResult access_lor_ns(CPUARMState *env)
5699 {
5700 int el = arm_current_el(env);
5701
5702 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5703 return CP_ACCESS_TRAP_EL2;
5704 }
5705 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5706 return CP_ACCESS_TRAP_EL3;
5707 }
5708 return CP_ACCESS_OK;
5709 }
5710
5711 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5712 bool isread)
5713 {
5714 if (arm_is_secure_below_el3(env)) {
5715 /* Access ok in secure mode. */
5716 return CP_ACCESS_OK;
5717 }
5718 return access_lor_ns(env);
5719 }
5720
5721 static CPAccessResult access_lor_other(CPUARMState *env,
5722 const ARMCPRegInfo *ri, bool isread)
5723 {
5724 if (arm_is_secure_below_el3(env)) {
5725 /* Access denied in secure mode. */
5726 return CP_ACCESS_TRAP;
5727 }
5728 return access_lor_ns(env);
5729 }
5730
5731 #ifdef TARGET_AARCH64
5732 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5733 bool isread)
5734 {
5735 int el = arm_current_el(env);
5736
5737 if (el < 2 &&
5738 arm_feature(env, ARM_FEATURE_EL2) &&
5739 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5740 return CP_ACCESS_TRAP_EL2;
5741 }
5742 if (el < 3 &&
5743 arm_feature(env, ARM_FEATURE_EL3) &&
5744 !(env->cp15.scr_el3 & SCR_APK)) {
5745 return CP_ACCESS_TRAP_EL3;
5746 }
5747 return CP_ACCESS_OK;
5748 }
5749
5750 static const ARMCPRegInfo pauth_reginfo[] = {
5751 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5752 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5753 .access = PL1_RW, .accessfn = access_pauth,
5754 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5755 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5756 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5757 .access = PL1_RW, .accessfn = access_pauth,
5758 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5759 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5760 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5761 .access = PL1_RW, .accessfn = access_pauth,
5762 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5763 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5765 .access = PL1_RW, .accessfn = access_pauth,
5766 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5767 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5769 .access = PL1_RW, .accessfn = access_pauth,
5770 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5771 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5773 .access = PL1_RW, .accessfn = access_pauth,
5774 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5775 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5776 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5777 .access = PL1_RW, .accessfn = access_pauth,
5778 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5779 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5780 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5781 .access = PL1_RW, .accessfn = access_pauth,
5782 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5783 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5784 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5785 .access = PL1_RW, .accessfn = access_pauth,
5786 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5787 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5788 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5789 .access = PL1_RW, .accessfn = access_pauth,
5790 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5791 REGINFO_SENTINEL
5792 };
5793
5794 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5795 {
5796 Error *err = NULL;
5797 uint64_t ret;
5798
5799 /* Success sets NZCV = 0000. */
5800 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5801
5802 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5803 /*
5804 * ??? Failed, for unknown reasons in the crypto subsystem.
5805 * The best we can do is log the reason and return the
5806 * timed-out indication to the guest. There is no reason
5807 * we know to expect this failure to be transitory, so the
5808 * guest may well hang retrying the operation.
5809 */
5810 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5811 ri->name, error_get_pretty(err));
5812 error_free(err);
5813
5814 env->ZF = 0; /* NZCF = 0100 */
5815 return 0;
5816 }
5817 return ret;
5818 }
5819
5820 /* We do not support re-seeding, so the two registers operate the same. */
5821 static const ARMCPRegInfo rndr_reginfo[] = {
5822 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5823 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5824 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5825 .access = PL0_R, .readfn = rndr_readfn },
5826 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5827 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5828 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5829 .access = PL0_R, .readfn = rndr_readfn },
5830 REGINFO_SENTINEL
5831 };
5832 #endif
5833
5834 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5835 bool isread)
5836 {
5837 int el = arm_current_el(env);
5838
5839 if (el == 0) {
5840 uint64_t sctlr = arm_sctlr(env, el);
5841 if (!(sctlr & SCTLR_EnRCTX)) {
5842 return CP_ACCESS_TRAP;
5843 }
5844 } else if (el == 1) {
5845 uint64_t hcr = arm_hcr_el2_eff(env);
5846 if (hcr & HCR_NV) {
5847 return CP_ACCESS_TRAP_EL2;
5848 }
5849 }
5850 return CP_ACCESS_OK;
5851 }
5852
5853 static const ARMCPRegInfo predinv_reginfo[] = {
5854 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5856 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5857 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5859 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5860 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5861 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5862 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5863 /*
5864 * Note the AArch32 opcodes have a different OPC1.
5865 */
5866 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5867 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5868 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5869 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5870 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5871 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5872 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5873 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5874 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5875 REGINFO_SENTINEL
5876 };
5877
5878 void register_cp_regs_for_features(ARMCPU *cpu)
5879 {
5880 /* Register all the coprocessor registers based on feature bits */
5881 CPUARMState *env = &cpu->env;
5882 if (arm_feature(env, ARM_FEATURE_M)) {
5883 /* M profile has no coprocessor registers */
5884 return;
5885 }
5886
5887 define_arm_cp_regs(cpu, cp_reginfo);
5888 if (!arm_feature(env, ARM_FEATURE_V8)) {
5889 /* Must go early as it is full of wildcards that may be
5890 * overridden by later definitions.
5891 */
5892 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5893 }
5894
5895 if (arm_feature(env, ARM_FEATURE_V6)) {
5896 /* The ID registers all have impdef reset values */
5897 ARMCPRegInfo v6_idregs[] = {
5898 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5900 .access = PL1_R, .type = ARM_CP_CONST,
5901 .resetvalue = cpu->id_pfr0 },
5902 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5903 * the value of the GIC field until after we define these regs.
5904 */
5905 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5907 .access = PL1_R, .type = ARM_CP_NO_RAW,
5908 .readfn = id_pfr1_read,
5909 .writefn = arm_cp_write_ignore },
5910 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5912 .access = PL1_R, .type = ARM_CP_CONST,
5913 .resetvalue = cpu->id_dfr0 },
5914 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5916 .access = PL1_R, .type = ARM_CP_CONST,
5917 .resetvalue = cpu->id_afr0 },
5918 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5920 .access = PL1_R, .type = ARM_CP_CONST,
5921 .resetvalue = cpu->id_mmfr0 },
5922 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5923 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5924 .access = PL1_R, .type = ARM_CP_CONST,
5925 .resetvalue = cpu->id_mmfr1 },
5926 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5928 .access = PL1_R, .type = ARM_CP_CONST,
5929 .resetvalue = cpu->id_mmfr2 },
5930 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5932 .access = PL1_R, .type = ARM_CP_CONST,
5933 .resetvalue = cpu->id_mmfr3 },
5934 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5936 .access = PL1_R, .type = ARM_CP_CONST,
5937 .resetvalue = cpu->isar.id_isar0 },
5938 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5940 .access = PL1_R, .type = ARM_CP_CONST,
5941 .resetvalue = cpu->isar.id_isar1 },
5942 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5944 .access = PL1_R, .type = ARM_CP_CONST,
5945 .resetvalue = cpu->isar.id_isar2 },
5946 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5948 .access = PL1_R, .type = ARM_CP_CONST,
5949 .resetvalue = cpu->isar.id_isar3 },
5950 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5952 .access = PL1_R, .type = ARM_CP_CONST,
5953 .resetvalue = cpu->isar.id_isar4 },
5954 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5956 .access = PL1_R, .type = ARM_CP_CONST,
5957 .resetvalue = cpu->isar.id_isar5 },
5958 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5960 .access = PL1_R, .type = ARM_CP_CONST,
5961 .resetvalue = cpu->id_mmfr4 },
5962 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5964 .access = PL1_R, .type = ARM_CP_CONST,
5965 .resetvalue = cpu->isar.id_isar6 },
5966 REGINFO_SENTINEL
5967 };
5968 define_arm_cp_regs(cpu, v6_idregs);
5969 define_arm_cp_regs(cpu, v6_cp_reginfo);
5970 } else {
5971 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5972 }
5973 if (arm_feature(env, ARM_FEATURE_V6K)) {
5974 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5975 }
5976 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5977 !arm_feature(env, ARM_FEATURE_PMSA)) {
5978 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5979 }
5980 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5981 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5982 }
5983 if (arm_feature(env, ARM_FEATURE_V7)) {
5984 /* v7 performance monitor control register: same implementor
5985 * field as main ID register, and we implement four counters in
5986 * addition to the cycle count register.
5987 */
5988 unsigned int i, pmcrn = 4;
5989 ARMCPRegInfo pmcr = {
5990 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5991 .access = PL0_RW,
5992 .type = ARM_CP_IO | ARM_CP_ALIAS,
5993 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5994 .accessfn = pmreg_access, .writefn = pmcr_write,
5995 .raw_writefn = raw_write,
5996 };
5997 ARMCPRegInfo pmcr64 = {
5998 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5999 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6000 .access = PL0_RW, .accessfn = pmreg_access,
6001 .type = ARM_CP_IO,
6002 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6003 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6004 .writefn = pmcr_write, .raw_writefn = raw_write,
6005 };
6006 define_one_arm_cp_reg(cpu, &pmcr);
6007 define_one_arm_cp_reg(cpu, &pmcr64);
6008 for (i = 0; i < pmcrn; i++) {
6009 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6010 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6011 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6012 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6013 ARMCPRegInfo pmev_regs[] = {
6014 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6015 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6016 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6017 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6018 .accessfn = pmreg_access },
6019 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6021 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6022 .type = ARM_CP_IO,
6023 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6024 .raw_readfn = pmevcntr_rawread,
6025 .raw_writefn = pmevcntr_rawwrite },
6026 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6027 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6028 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6029 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6030 .accessfn = pmreg_access },
6031 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6032 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6033 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6034 .type = ARM_CP_IO,
6035 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6036 .raw_writefn = pmevtyper_rawwrite },
6037 REGINFO_SENTINEL
6038 };
6039 define_arm_cp_regs(cpu, pmev_regs);
6040 g_free(pmevcntr_name);
6041 g_free(pmevcntr_el0_name);
6042 g_free(pmevtyper_name);
6043 g_free(pmevtyper_el0_name);
6044 }
6045 ARMCPRegInfo clidr = {
6046 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6047 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6048 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6049 };
6050 define_one_arm_cp_reg(cpu, &clidr);
6051 define_arm_cp_regs(cpu, v7_cp_reginfo);
6052 define_debug_regs(cpu);
6053 } else {
6054 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6055 }
6056 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6057 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6058 ARMCPRegInfo v81_pmu_regs[] = {
6059 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6060 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6061 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6062 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6063 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6064 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6065 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6066 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6067 REGINFO_SENTINEL
6068 };
6069 define_arm_cp_regs(cpu, v81_pmu_regs);
6070 }
6071 if (arm_feature(env, ARM_FEATURE_V8)) {
6072 /* AArch64 ID registers, which all have impdef reset values.
6073 * Note that within the ID register ranges the unused slots
6074 * must all RAZ, not UNDEF; future architecture versions may
6075 * define new registers here.
6076 */
6077 ARMCPRegInfo v8_idregs[] = {
6078 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6079 * know the right value for the GIC field until after we
6080 * define these regs.
6081 */
6082 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6083 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6084 .access = PL1_R, .type = ARM_CP_NO_RAW,
6085 .readfn = id_aa64pfr0_read,
6086 .writefn = arm_cp_write_ignore },
6087 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6088 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6089 .access = PL1_R, .type = ARM_CP_CONST,
6090 .resetvalue = cpu->isar.id_aa64pfr1},
6091 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6093 .access = PL1_R, .type = ARM_CP_CONST,
6094 .resetvalue = 0 },
6095 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6096 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6097 .access = PL1_R, .type = ARM_CP_CONST,
6098 .resetvalue = 0 },
6099 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6101 .access = PL1_R, .type = ARM_CP_CONST,
6102 /* At present, only SVEver == 0 is defined anyway. */
6103 .resetvalue = 0 },
6104 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6106 .access = PL1_R, .type = ARM_CP_CONST,
6107 .resetvalue = 0 },
6108 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6109 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6110 .access = PL1_R, .type = ARM_CP_CONST,
6111 .resetvalue = 0 },
6112 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6113 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6114 .access = PL1_R, .type = ARM_CP_CONST,
6115 .resetvalue = 0 },
6116 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6118 .access = PL1_R, .type = ARM_CP_CONST,
6119 .resetvalue = cpu->id_aa64dfr0 },
6120 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6122 .access = PL1_R, .type = ARM_CP_CONST,
6123 .resetvalue = cpu->id_aa64dfr1 },
6124 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6126 .access = PL1_R, .type = ARM_CP_CONST,
6127 .resetvalue = 0 },
6128 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6130 .access = PL1_R, .type = ARM_CP_CONST,
6131 .resetvalue = 0 },
6132 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6134 .access = PL1_R, .type = ARM_CP_CONST,
6135 .resetvalue = cpu->id_aa64afr0 },
6136 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6138 .access = PL1_R, .type = ARM_CP_CONST,
6139 .resetvalue = cpu->id_aa64afr1 },
6140 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6142 .access = PL1_R, .type = ARM_CP_CONST,
6143 .resetvalue = 0 },
6144 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6146 .access = PL1_R, .type = ARM_CP_CONST,
6147 .resetvalue = 0 },
6148 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6149 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6150 .access = PL1_R, .type = ARM_CP_CONST,
6151 .resetvalue = cpu->isar.id_aa64isar0 },
6152 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6153 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6154 .access = PL1_R, .type = ARM_CP_CONST,
6155 .resetvalue = cpu->isar.id_aa64isar1 },
6156 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6157 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6158 .access = PL1_R, .type = ARM_CP_CONST,
6159 .resetvalue = 0 },
6160 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6162 .access = PL1_R, .type = ARM_CP_CONST,
6163 .resetvalue = 0 },
6164 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6166 .access = PL1_R, .type = ARM_CP_CONST,
6167 .resetvalue = 0 },
6168 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6169 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6170 .access = PL1_R, .type = ARM_CP_CONST,
6171 .resetvalue = 0 },
6172 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6174 .access = PL1_R, .type = ARM_CP_CONST,
6175 .resetvalue = 0 },
6176 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6178 .access = PL1_R, .type = ARM_CP_CONST,
6179 .resetvalue = 0 },
6180 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6182 .access = PL1_R, .type = ARM_CP_CONST,
6183 .resetvalue = cpu->isar.id_aa64mmfr0 },
6184 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6186 .access = PL1_R, .type = ARM_CP_CONST,
6187 .resetvalue = cpu->isar.id_aa64mmfr1 },
6188 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6189 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6190 .access = PL1_R, .type = ARM_CP_CONST,
6191 .resetvalue = 0 },
6192 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6194 .access = PL1_R, .type = ARM_CP_CONST,
6195 .resetvalue = 0 },
6196 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6198 .access = PL1_R, .type = ARM_CP_CONST,
6199 .resetvalue = 0 },
6200 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6201 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6202 .access = PL1_R, .type = ARM_CP_CONST,
6203 .resetvalue = 0 },
6204 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6205 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6206 .access = PL1_R, .type = ARM_CP_CONST,
6207 .resetvalue = 0 },
6208 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6209 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6210 .access = PL1_R, .type = ARM_CP_CONST,
6211 .resetvalue = 0 },
6212 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6214 .access = PL1_R, .type = ARM_CP_CONST,
6215 .resetvalue = cpu->isar.mvfr0 },
6216 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6218 .access = PL1_R, .type = ARM_CP_CONST,
6219 .resetvalue = cpu->isar.mvfr1 },
6220 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6221 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6222 .access = PL1_R, .type = ARM_CP_CONST,
6223 .resetvalue = cpu->isar.mvfr2 },
6224 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6226 .access = PL1_R, .type = ARM_CP_CONST,
6227 .resetvalue = 0 },
6228 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6230 .access = PL1_R, .type = ARM_CP_CONST,
6231 .resetvalue = 0 },
6232 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6234 .access = PL1_R, .type = ARM_CP_CONST,
6235 .resetvalue = 0 },
6236 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6238 .access = PL1_R, .type = ARM_CP_CONST,
6239 .resetvalue = 0 },
6240 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6242 .access = PL1_R, .type = ARM_CP_CONST,
6243 .resetvalue = 0 },
6244 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6245 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6246 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6247 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6248 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6249 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6250 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6251 .resetvalue = cpu->pmceid0 },
6252 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6253 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6254 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6255 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6256 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6257 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6258 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6259 .resetvalue = cpu->pmceid1 },
6260 REGINFO_SENTINEL
6261 };
6262 #ifdef CONFIG_USER_ONLY
6263 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6264 { .name = "ID_AA64PFR0_EL1",
6265 .exported_bits = 0x000f000f00ff0000,
6266 .fixed_bits = 0x0000000000000011 },
6267 { .name = "ID_AA64PFR1_EL1",
6268 .exported_bits = 0x00000000000000f0 },
6269 { .name = "ID_AA64PFR*_EL1_RESERVED",
6270 .is_glob = true },
6271 { .name = "ID_AA64ZFR0_EL1" },
6272 { .name = "ID_AA64MMFR0_EL1",
6273 .fixed_bits = 0x00000000ff000000 },
6274 { .name = "ID_AA64MMFR1_EL1" },
6275 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6276 .is_glob = true },
6277 { .name = "ID_AA64DFR0_EL1",
6278 .fixed_bits = 0x0000000000000006 },
6279 { .name = "ID_AA64DFR1_EL1" },
6280 { .name = "ID_AA64DFR*_EL1_RESERVED",
6281 .is_glob = true },
6282 { .name = "ID_AA64AFR*",
6283 .is_glob = true },
6284 { .name = "ID_AA64ISAR0_EL1",
6285 .exported_bits = 0x00fffffff0fffff0 },
6286 { .name = "ID_AA64ISAR1_EL1",
6287 .exported_bits = 0x000000f0ffffffff },
6288 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6289 .is_glob = true },
6290 REGUSERINFO_SENTINEL
6291 };
6292 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6293 #endif
6294 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6295 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6296 !arm_feature(env, ARM_FEATURE_EL2)) {
6297 ARMCPRegInfo rvbar = {
6298 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6299 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6300 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6301 };
6302 define_one_arm_cp_reg(cpu, &rvbar);
6303 }
6304 define_arm_cp_regs(cpu, v8_idregs);
6305 define_arm_cp_regs(cpu, v8_cp_reginfo);
6306 }
6307 if (arm_feature(env, ARM_FEATURE_EL2)) {
6308 uint64_t vmpidr_def = mpidr_read_val(env);
6309 ARMCPRegInfo vpidr_regs[] = {
6310 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6311 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6312 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6313 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6314 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6315 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6316 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6317 .access = PL2_RW, .resetvalue = cpu->midr,
6318 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6319 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6320 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6321 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6322 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6323 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6324 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6325 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6326 .access = PL2_RW,
6327 .resetvalue = vmpidr_def,
6328 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6329 REGINFO_SENTINEL
6330 };
6331 define_arm_cp_regs(cpu, vpidr_regs);
6332 define_arm_cp_regs(cpu, el2_cp_reginfo);
6333 if (arm_feature(env, ARM_FEATURE_V8)) {
6334 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6335 }
6336 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6337 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6338 ARMCPRegInfo rvbar = {
6339 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6340 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6341 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6342 };
6343 define_one_arm_cp_reg(cpu, &rvbar);
6344 }
6345 } else {
6346 /* If EL2 is missing but higher ELs are enabled, we need to
6347 * register the no_el2 reginfos.
6348 */
6349 if (arm_feature(env, ARM_FEATURE_EL3)) {
6350 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6351 * of MIDR_EL1 and MPIDR_EL1.
6352 */
6353 ARMCPRegInfo vpidr_regs[] = {
6354 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6355 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6356 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6357 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6358 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6359 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6360 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6361 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6362 .type = ARM_CP_NO_RAW,
6363 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6364 REGINFO_SENTINEL
6365 };
6366 define_arm_cp_regs(cpu, vpidr_regs);
6367 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6368 if (arm_feature(env, ARM_FEATURE_V8)) {
6369 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6370 }
6371 }
6372 }
6373 if (arm_feature(env, ARM_FEATURE_EL3)) {
6374 define_arm_cp_regs(cpu, el3_cp_reginfo);
6375 ARMCPRegInfo el3_regs[] = {
6376 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6377 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6378 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6379 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6380 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6381 .access = PL3_RW,
6382 .raw_writefn = raw_write, .writefn = sctlr_write,
6383 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6384 .resetvalue = cpu->reset_sctlr },
6385 REGINFO_SENTINEL
6386 };
6387
6388 define_arm_cp_regs(cpu, el3_regs);
6389 }
6390 /* The behaviour of NSACR is sufficiently various that we don't
6391 * try to describe it in a single reginfo:
6392 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6393 * reads as constant 0xc00 from NS EL1 and NS EL2
6394 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6395 * if v7 without EL3, register doesn't exist
6396 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6397 */
6398 if (arm_feature(env, ARM_FEATURE_EL3)) {
6399 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6400 ARMCPRegInfo nsacr = {
6401 .name = "NSACR", .type = ARM_CP_CONST,
6402 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6403 .access = PL1_RW, .accessfn = nsacr_access,
6404 .resetvalue = 0xc00
6405 };
6406 define_one_arm_cp_reg(cpu, &nsacr);
6407 } else {
6408 ARMCPRegInfo nsacr = {
6409 .name = "NSACR",
6410 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6411 .access = PL3_RW | PL1_R,
6412 .resetvalue = 0,
6413 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6414 };
6415 define_one_arm_cp_reg(cpu, &nsacr);
6416 }
6417 } else {
6418 if (arm_feature(env, ARM_FEATURE_V8)) {
6419 ARMCPRegInfo nsacr = {
6420 .name = "NSACR", .type = ARM_CP_CONST,
6421 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6422 .access = PL1_R,
6423 .resetvalue = 0xc00
6424 };
6425 define_one_arm_cp_reg(cpu, &nsacr);
6426 }
6427 }
6428
6429 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6430 if (arm_feature(env, ARM_FEATURE_V6)) {
6431 /* PMSAv6 not implemented */
6432 assert(arm_feature(env, ARM_FEATURE_V7));
6433 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6434 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6435 } else {
6436 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6437 }
6438 } else {
6439 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6440 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6441 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6442 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6443 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6444 }
6445 }
6446 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6447 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6448 }
6449 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6450 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6451 }
6452 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6453 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6454 }
6455 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6456 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6457 }
6458 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6459 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6460 }
6461 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6462 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6463 }
6464 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6465 define_arm_cp_regs(cpu, omap_cp_reginfo);
6466 }
6467 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6468 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6469 }
6470 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6471 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6472 }
6473 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6474 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6475 }
6476 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6477 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6478 }
6479 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6480 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6481 * be read-only (ie write causes UNDEF exception).
6482 */
6483 {
6484 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6485 /* Pre-v8 MIDR space.
6486 * Note that the MIDR isn't a simple constant register because
6487 * of the TI925 behaviour where writes to another register can
6488 * cause the MIDR value to change.
6489 *
6490 * Unimplemented registers in the c15 0 0 0 space default to
6491 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6492 * and friends override accordingly.
6493 */
6494 { .name = "MIDR",
6495 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6496 .access = PL1_R, .resetvalue = cpu->midr,
6497 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6498 .readfn = midr_read,
6499 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6500 .type = ARM_CP_OVERRIDE },
6501 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6502 { .name = "DUMMY",
6503 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6504 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6505 { .name = "DUMMY",
6506 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6508 { .name = "DUMMY",
6509 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6510 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6511 { .name = "DUMMY",
6512 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6513 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6514 { .name = "DUMMY",
6515 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6516 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6517 REGINFO_SENTINEL
6518 };
6519 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6520 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6522 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6523 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6524 .readfn = midr_read },
6525 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6526 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6527 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6528 .access = PL1_R, .resetvalue = cpu->midr },
6529 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6530 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6531 .access = PL1_R, .resetvalue = cpu->midr },
6532 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6534 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6535 REGINFO_SENTINEL
6536 };
6537 ARMCPRegInfo id_cp_reginfo[] = {
6538 /* These are common to v8 and pre-v8 */
6539 { .name = "CTR",
6540 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6541 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6542 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6543 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6544 .access = PL0_R, .accessfn = ctr_el0_access,
6545 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6546 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6547 { .name = "TCMTR",
6548 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6549 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6550 REGINFO_SENTINEL
6551 };
6552 /* TLBTR is specific to VMSA */
6553 ARMCPRegInfo id_tlbtr_reginfo = {
6554 .name = "TLBTR",
6555 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6556 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6557 };
6558 /* MPUIR is specific to PMSA V6+ */
6559 ARMCPRegInfo id_mpuir_reginfo = {
6560 .name = "MPUIR",
6561 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6562 .access = PL1_R, .type = ARM_CP_CONST,
6563 .resetvalue = cpu->pmsav7_dregion << 8
6564 };
6565 ARMCPRegInfo crn0_wi_reginfo = {
6566 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6567 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6568 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6569 };
6570 #ifdef CONFIG_USER_ONLY
6571 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6572 { .name = "MIDR_EL1",
6573 .exported_bits = 0x00000000ffffffff },
6574 { .name = "REVIDR_EL1" },
6575 REGUSERINFO_SENTINEL
6576 };
6577 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6578 #endif
6579 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6580 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6581 ARMCPRegInfo *r;
6582 /* Register the blanket "writes ignored" value first to cover the
6583 * whole space. Then update the specific ID registers to allow write
6584 * access, so that they ignore writes rather than causing them to
6585 * UNDEF.
6586 */
6587 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6588 for (r = id_pre_v8_midr_cp_reginfo;
6589 r->type != ARM_CP_SENTINEL; r++) {
6590 r->access = PL1_RW;
6591 }
6592 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6593 r->access = PL1_RW;
6594 }
6595 id_mpuir_reginfo.access = PL1_RW;
6596 id_tlbtr_reginfo.access = PL1_RW;
6597 }
6598 if (arm_feature(env, ARM_FEATURE_V8)) {
6599 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6600 } else {
6601 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6602 }
6603 define_arm_cp_regs(cpu, id_cp_reginfo);
6604 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6605 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6606 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6607 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6608 }
6609 }
6610
6611 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6612 ARMCPRegInfo mpidr_cp_reginfo[] = {
6613 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6614 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6615 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6616 REGINFO_SENTINEL
6617 };
6618 #ifdef CONFIG_USER_ONLY
6619 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6620 { .name = "MPIDR_EL1",
6621 .fixed_bits = 0x0000000080000000 },
6622 REGUSERINFO_SENTINEL
6623 };
6624 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6625 #endif
6626 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6627 }
6628
6629 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6630 ARMCPRegInfo auxcr_reginfo[] = {
6631 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6632 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6633 .access = PL1_RW, .type = ARM_CP_CONST,
6634 .resetvalue = cpu->reset_auxcr },
6635 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6636 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6637 .access = PL2_RW, .type = ARM_CP_CONST,
6638 .resetvalue = 0 },
6639 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6640 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6641 .access = PL3_RW, .type = ARM_CP_CONST,
6642 .resetvalue = 0 },
6643 REGINFO_SENTINEL
6644 };
6645 define_arm_cp_regs(cpu, auxcr_reginfo);
6646 if (arm_feature(env, ARM_FEATURE_V8)) {
6647 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6648 ARMCPRegInfo hactlr2_reginfo = {
6649 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6650 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6651 .access = PL2_RW, .type = ARM_CP_CONST,
6652 .resetvalue = 0
6653 };
6654 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6655 }
6656 }
6657
6658 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6659 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6660 /* 32 bit view is [31:18] 0...0 [43:32]. */
6661 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6662 | extract64(cpu->reset_cbar, 32, 12);
6663 ARMCPRegInfo cbar_reginfo[] = {
6664 { .name = "CBAR",
6665 .type = ARM_CP_CONST,
6666 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6667 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6668 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6669 .type = ARM_CP_CONST,
6670 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6671 .access = PL1_R, .resetvalue = cbar32 },
6672 REGINFO_SENTINEL
6673 };
6674 /* We don't implement a r/w 64 bit CBAR currently */
6675 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6676 define_arm_cp_regs(cpu, cbar_reginfo);
6677 } else {
6678 ARMCPRegInfo cbar = {
6679 .name = "CBAR",
6680 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6681 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6682 .fieldoffset = offsetof(CPUARMState,
6683 cp15.c15_config_base_address)
6684 };
6685 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6686 cbar.access = PL1_R;
6687 cbar.fieldoffset = 0;
6688 cbar.type = ARM_CP_CONST;
6689 }
6690 define_one_arm_cp_reg(cpu, &cbar);
6691 }
6692 }
6693
6694 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6695 ARMCPRegInfo vbar_cp_reginfo[] = {
6696 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6697 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6698 .access = PL1_RW, .writefn = vbar_write,
6699 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6700 offsetof(CPUARMState, cp15.vbar_ns) },
6701 .resetvalue = 0 },
6702 REGINFO_SENTINEL
6703 };
6704 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6705 }
6706
6707 /* Generic registers whose values depend on the implementation */
6708 {
6709 ARMCPRegInfo sctlr = {
6710 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6711 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6712 .access = PL1_RW,
6713 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6714 offsetof(CPUARMState, cp15.sctlr_ns) },
6715 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6716 .raw_writefn = raw_write,
6717 };
6718 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6719 /* Normally we would always end the TB on an SCTLR write, but Linux
6720 * arch/arm/mach-pxa/sleep.S expects two instructions following
6721 * an MMU enable to execute from cache. Imitate this behaviour.
6722 */
6723 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6724 }
6725 define_one_arm_cp_reg(cpu, &sctlr);
6726 }
6727
6728 if (cpu_isar_feature(aa64_lor, cpu)) {
6729 /*
6730 * A trivial implementation of ARMv8.1-LOR leaves all of these
6731 * registers fixed at 0, which indicates that there are zero
6732 * supported Limited Ordering regions.
6733 */
6734 static const ARMCPRegInfo lor_reginfo[] = {
6735 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6736 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6737 .access = PL1_RW, .accessfn = access_lor_other,
6738 .type = ARM_CP_CONST, .resetvalue = 0 },
6739 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6740 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6741 .access = PL1_RW, .accessfn = access_lor_other,
6742 .type = ARM_CP_CONST, .resetvalue = 0 },
6743 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6744 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6745 .access = PL1_RW, .accessfn = access_lor_other,
6746 .type = ARM_CP_CONST, .resetvalue = 0 },
6747 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6748 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6749 .access = PL1_RW, .accessfn = access_lor_other,
6750 .type = ARM_CP_CONST, .resetvalue = 0 },
6751 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6752 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6753 .access = PL1_R, .accessfn = access_lorid,
6754 .type = ARM_CP_CONST, .resetvalue = 0 },
6755 REGINFO_SENTINEL
6756 };
6757 define_arm_cp_regs(cpu, lor_reginfo);
6758 }
6759
6760 if (cpu_isar_feature(aa64_sve, cpu)) {
6761 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6762 if (arm_feature(env, ARM_FEATURE_EL2)) {
6763 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6764 } else {
6765 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6766 }
6767 if (arm_feature(env, ARM_FEATURE_EL3)) {
6768 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6769 }
6770 }
6771
6772 #ifdef TARGET_AARCH64
6773 if (cpu_isar_feature(aa64_pauth, cpu)) {
6774 define_arm_cp_regs(cpu, pauth_reginfo);
6775 }
6776 if (cpu_isar_feature(aa64_rndr, cpu)) {
6777 define_arm_cp_regs(cpu, rndr_reginfo);
6778 }
6779 #endif
6780
6781 /*
6782 * While all v8.0 cpus support aarch64, QEMU does have configurations
6783 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6784 * which will set ID_ISAR6.
6785 */
6786 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6787 ? cpu_isar_feature(aa64_predinv, cpu)
6788 : cpu_isar_feature(aa32_predinv, cpu)) {
6789 define_arm_cp_regs(cpu, predinv_reginfo);
6790 }
6791 }
6792
6793 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6794 {
6795 CPUState *cs = CPU(cpu);
6796 CPUARMState *env = &cpu->env;
6797
6798 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6799 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6800 aarch64_fpu_gdb_set_reg,
6801 34, "aarch64-fpu.xml", 0);
6802 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6803 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6804 51, "arm-neon.xml", 0);
6805 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6806 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6807 35, "arm-vfp3.xml", 0);
6808 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6809 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6810 19, "arm-vfp.xml", 0);
6811 }
6812 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6813 arm_gen_dynamic_xml(cs),
6814 "system-registers.xml", 0);
6815 }
6816
6817 /* Sort alphabetically by type name, except for "any". */
6818 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6819 {
6820 ObjectClass *class_a = (ObjectClass *)a;
6821 ObjectClass *class_b = (ObjectClass *)b;
6822 const char *name_a, *name_b;
6823
6824 name_a = object_class_get_name(class_a);
6825 name_b = object_class_get_name(class_b);
6826 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6827 return 1;
6828 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6829 return -1;
6830 } else {
6831 return strcmp(name_a, name_b);
6832 }
6833 }
6834
6835 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6836 {
6837 ObjectClass *oc = data;
6838 const char *typename;
6839 char *name;
6840
6841 typename = object_class_get_name(oc);
6842 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6843 qemu_printf(" %s\n", name);
6844 g_free(name);
6845 }
6846
6847 void arm_cpu_list(void)
6848 {
6849 GSList *list;
6850
6851 list = object_class_get_list(TYPE_ARM_CPU, false);
6852 list = g_slist_sort(list, arm_cpu_list_compare);
6853 qemu_printf("Available CPUs:\n");
6854 g_slist_foreach(list, arm_cpu_list_entry, NULL);
6855 g_slist_free(list);
6856 }
6857
6858 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6859 {
6860 ObjectClass *oc = data;
6861 CpuDefinitionInfoList **cpu_list = user_data;
6862 CpuDefinitionInfoList *entry;
6863 CpuDefinitionInfo *info;
6864 const char *typename;
6865
6866 typename = object_class_get_name(oc);
6867 info = g_malloc0(sizeof(*info));
6868 info->name = g_strndup(typename,
6869 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6870 info->q_typename = g_strdup(typename);
6871
6872 entry = g_malloc0(sizeof(*entry));
6873 entry->value = info;
6874 entry->next = *cpu_list;
6875 *cpu_list = entry;
6876 }
6877
6878 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6879 {
6880 CpuDefinitionInfoList *cpu_list = NULL;
6881 GSList *list;
6882
6883 list = object_class_get_list(TYPE_ARM_CPU, false);
6884 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6885 g_slist_free(list);
6886
6887 return cpu_list;
6888 }
6889
6890 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6891 void *opaque, int state, int secstate,
6892 int crm, int opc1, int opc2,
6893 const char *name)
6894 {
6895 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6896 * add a single reginfo struct to the hash table.
6897 */
6898 uint32_t *key = g_new(uint32_t, 1);
6899 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6900 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6901 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6902
6903 r2->name = g_strdup(name);
6904 /* Reset the secure state to the specific incoming state. This is
6905 * necessary as the register may have been defined with both states.
6906 */
6907 r2->secure = secstate;
6908
6909 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6910 /* Register is banked (using both entries in array).
6911 * Overwriting fieldoffset as the array is only used to define
6912 * banked registers but later only fieldoffset is used.
6913 */
6914 r2->fieldoffset = r->bank_fieldoffsets[ns];
6915 }
6916
6917 if (state == ARM_CP_STATE_AA32) {
6918 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6919 /* If the register is banked then we don't need to migrate or
6920 * reset the 32-bit instance in certain cases:
6921 *
6922 * 1) If the register has both 32-bit and 64-bit instances then we
6923 * can count on the 64-bit instance taking care of the
6924 * non-secure bank.
6925 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6926 * taking care of the secure bank. This requires that separate
6927 * 32 and 64-bit definitions are provided.
6928 */
6929 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6930 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6931 r2->type |= ARM_CP_ALIAS;
6932 }
6933 } else if ((secstate != r->secure) && !ns) {
6934 /* The register is not banked so we only want to allow migration of
6935 * the non-secure instance.
6936 */
6937 r2->type |= ARM_CP_ALIAS;
6938 }
6939
6940 if (r->state == ARM_CP_STATE_BOTH) {
6941 /* We assume it is a cp15 register if the .cp field is left unset.
6942 */
6943 if (r2->cp == 0) {
6944 r2->cp = 15;
6945 }
6946
6947 #ifdef HOST_WORDS_BIGENDIAN
6948 if (r2->fieldoffset) {
6949 r2->fieldoffset += sizeof(uint32_t);
6950 }
6951 #endif
6952 }
6953 }
6954 if (state == ARM_CP_STATE_AA64) {
6955 /* To allow abbreviation of ARMCPRegInfo
6956 * definitions, we treat cp == 0 as equivalent to
6957 * the value for "standard guest-visible sysreg".
6958 * STATE_BOTH definitions are also always "standard
6959 * sysreg" in their AArch64 view (the .cp value may
6960 * be non-zero for the benefit of the AArch32 view).
6961 */
6962 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6963 r2->cp = CP_REG_ARM64_SYSREG_CP;
6964 }
6965 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6966 r2->opc0, opc1, opc2);
6967 } else {
6968 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6969 }
6970 if (opaque) {
6971 r2->opaque = opaque;
6972 }
6973 /* reginfo passed to helpers is correct for the actual access,
6974 * and is never ARM_CP_STATE_BOTH:
6975 */
6976 r2->state = state;
6977 /* Make sure reginfo passed to helpers for wildcarded regs
6978 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6979 */
6980 r2->crm = crm;
6981 r2->opc1 = opc1;
6982 r2->opc2 = opc2;
6983 /* By convention, for wildcarded registers only the first
6984 * entry is used for migration; the others are marked as
6985 * ALIAS so we don't try to transfer the register
6986 * multiple times. Special registers (ie NOP/WFI) are
6987 * never migratable and not even raw-accessible.
6988 */
6989 if ((r->type & ARM_CP_SPECIAL)) {
6990 r2->type |= ARM_CP_NO_RAW;
6991 }
6992 if (((r->crm == CP_ANY) && crm != 0) ||
6993 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6994 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6995 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6996 }
6997
6998 /* Check that raw accesses are either forbidden or handled. Note that
6999 * we can't assert this earlier because the setup of fieldoffset for
7000 * banked registers has to be done first.
7001 */
7002 if (!(r2->type & ARM_CP_NO_RAW)) {
7003 assert(!raw_accessors_invalid(r2));
7004 }
7005
7006 /* Overriding of an existing definition must be explicitly
7007 * requested.
7008 */
7009 if (!(r->type & ARM_CP_OVERRIDE)) {
7010 ARMCPRegInfo *oldreg;
7011 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7012 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7013 fprintf(stderr, "Register redefined: cp=%d %d bit "
7014 "crn=%d crm=%d opc1=%d opc2=%d, "
7015 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7016 r2->crn, r2->crm, r2->opc1, r2->opc2,
7017 oldreg->name, r2->name);
7018 g_assert_not_reached();
7019 }
7020 }
7021 g_hash_table_insert(cpu->cp_regs, key, r2);
7022 }
7023
7024
7025 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7026 const ARMCPRegInfo *r, void *opaque)
7027 {
7028 /* Define implementations of coprocessor registers.
7029 * We store these in a hashtable because typically
7030 * there are less than 150 registers in a space which
7031 * is 16*16*16*8*8 = 262144 in size.
7032 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7033 * If a register is defined twice then the second definition is
7034 * used, so this can be used to define some generic registers and
7035 * then override them with implementation specific variations.
7036 * At least one of the original and the second definition should
7037 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7038 * against accidental use.
7039 *
7040 * The state field defines whether the register is to be
7041 * visible in the AArch32 or AArch64 execution state. If the
7042 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7043 * reginfo structure for the AArch32 view, which sees the lower
7044 * 32 bits of the 64 bit register.
7045 *
7046 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7047 * be wildcarded. AArch64 registers are always considered to be 64
7048 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7049 * the register, if any.
7050 */
7051 int crm, opc1, opc2, state;
7052 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7053 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7054 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7055 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7056 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7057 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7058 /* 64 bit registers have only CRm and Opc1 fields */
7059 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7060 /* op0 only exists in the AArch64 encodings */
7061 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7062 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7063 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7064 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7065 * encodes a minimum access level for the register. We roll this
7066 * runtime check into our general permission check code, so check
7067 * here that the reginfo's specified permissions are strict enough
7068 * to encompass the generic architectural permission check.
7069 */
7070 if (r->state != ARM_CP_STATE_AA32) {
7071 int mask = 0;
7072 switch (r->opc1) {
7073 case 0:
7074 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7075 mask = PL0U_R | PL1_RW;
7076 break;
7077 case 1: case 2:
7078 /* min_EL EL1 */
7079 mask = PL1_RW;
7080 break;
7081 case 3:
7082 /* min_EL EL0 */
7083 mask = PL0_RW;
7084 break;
7085 case 4:
7086 /* min_EL EL2 */
7087 mask = PL2_RW;
7088 break;
7089 case 5:
7090 /* unallocated encoding, so not possible */
7091 assert(false);
7092 break;
7093 case 6:
7094 /* min_EL EL3 */
7095 mask = PL3_RW;
7096 break;
7097 case 7:
7098 /* min_EL EL1, secure mode only (we don't check the latter) */
7099 mask = PL1_RW;
7100 break;
7101 default:
7102 /* broken reginfo with out-of-range opc1 */
7103 assert(false);
7104 break;
7105 }
7106 /* assert our permissions are not too lax (stricter is fine) */
7107 assert((r->access & ~mask) == 0);
7108 }
7109
7110 /* Check that the register definition has enough info to handle
7111 * reads and writes if they are permitted.
7112 */
7113 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7114 if (r->access & PL3_R) {
7115 assert((r->fieldoffset ||
7116 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7117 r->readfn);
7118 }
7119 if (r->access & PL3_W) {
7120 assert((r->fieldoffset ||
7121 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7122 r->writefn);
7123 }
7124 }
7125 /* Bad type field probably means missing sentinel at end of reg list */
7126 assert(cptype_valid(r->type));
7127 for (crm = crmmin; crm <= crmmax; crm++) {
7128 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7129 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7130 for (state = ARM_CP_STATE_AA32;
7131 state <= ARM_CP_STATE_AA64; state++) {
7132 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7133 continue;
7134 }
7135 if (state == ARM_CP_STATE_AA32) {
7136 /* Under AArch32 CP registers can be common
7137 * (same for secure and non-secure world) or banked.
7138 */
7139 char *name;
7140
7141 switch (r->secure) {
7142 case ARM_CP_SECSTATE_S:
7143 case ARM_CP_SECSTATE_NS:
7144 add_cpreg_to_hashtable(cpu, r, opaque, state,
7145 r->secure, crm, opc1, opc2,
7146 r->name);
7147 break;
7148 default:
7149 name = g_strdup_printf("%s_S", r->name);
7150 add_cpreg_to_hashtable(cpu, r, opaque, state,
7151 ARM_CP_SECSTATE_S,
7152 crm, opc1, opc2, name);
7153 g_free(name);
7154 add_cpreg_to_hashtable(cpu, r, opaque, state,
7155 ARM_CP_SECSTATE_NS,
7156 crm, opc1, opc2, r->name);
7157 break;
7158 }
7159 } else {
7160 /* AArch64 registers get mapped to non-secure instance
7161 * of AArch32 */
7162 add_cpreg_to_hashtable(cpu, r, opaque, state,
7163 ARM_CP_SECSTATE_NS,
7164 crm, opc1, opc2, r->name);
7165 }
7166 }
7167 }
7168 }
7169 }
7170 }
7171
7172 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7173 const ARMCPRegInfo *regs, void *opaque)
7174 {
7175 /* Define a whole list of registers */
7176 const ARMCPRegInfo *r;
7177 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7178 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7179 }
7180 }
7181
7182 /*
7183 * Modify ARMCPRegInfo for access from userspace.
7184 *
7185 * This is a data driven modification directed by
7186 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7187 * user-space cannot alter any values and dynamic values pertaining to
7188 * execution state are hidden from user space view anyway.
7189 */
7190 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7191 {
7192 const ARMCPRegUserSpaceInfo *m;
7193 ARMCPRegInfo *r;
7194
7195 for (m = mods; m->name; m++) {
7196 GPatternSpec *pat = NULL;
7197 if (m->is_glob) {
7198 pat = g_pattern_spec_new(m->name);
7199 }
7200 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7201 if (pat && g_pattern_match_string(pat, r->name)) {
7202 r->type = ARM_CP_CONST;
7203 r->access = PL0U_R;
7204 r->resetvalue = 0;
7205 /* continue */
7206 } else if (strcmp(r->name, m->name) == 0) {
7207 r->type = ARM_CP_CONST;
7208 r->access = PL0U_R;
7209 r->resetvalue &= m->exported_bits;
7210 r->resetvalue |= m->fixed_bits;
7211 break;
7212 }
7213 }
7214 if (pat) {
7215 g_pattern_spec_free(pat);
7216 }
7217 }
7218 }
7219
7220 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7221 {
7222 return g_hash_table_lookup(cpregs, &encoded_cp);
7223 }
7224
7225 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7226 uint64_t value)
7227 {
7228 /* Helper coprocessor write function for write-ignore registers */
7229 }
7230
7231 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7232 {
7233 /* Helper coprocessor write function for read-as-zero registers */
7234 return 0;
7235 }
7236
7237 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7238 {
7239 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7240 }
7241
7242 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7243 {
7244 /* Return true if it is not valid for us to switch to
7245 * this CPU mode (ie all the UNPREDICTABLE cases in
7246 * the ARM ARM CPSRWriteByInstr pseudocode).
7247 */
7248
7249 /* Changes to or from Hyp via MSR and CPS are illegal. */
7250 if (write_type == CPSRWriteByInstr &&
7251 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7252 mode == ARM_CPU_MODE_HYP)) {
7253 return 1;
7254 }
7255
7256 switch (mode) {
7257 case ARM_CPU_MODE_USR:
7258 return 0;
7259 case ARM_CPU_MODE_SYS:
7260 case ARM_CPU_MODE_SVC:
7261 case ARM_CPU_MODE_ABT:
7262 case ARM_CPU_MODE_UND:
7263 case ARM_CPU_MODE_IRQ:
7264 case ARM_CPU_MODE_FIQ:
7265 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7266 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7267 */
7268 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7269 * and CPS are treated as illegal mode changes.
7270 */
7271 if (write_type == CPSRWriteByInstr &&
7272 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7273 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7274 return 1;
7275 }
7276 return 0;
7277 case ARM_CPU_MODE_HYP:
7278 return !arm_feature(env, ARM_FEATURE_EL2)
7279 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7280 case ARM_CPU_MODE_MON:
7281 return arm_current_el(env) < 3;
7282 default:
7283 return 1;
7284 }
7285 }
7286
7287 uint32_t cpsr_read(CPUARMState *env)
7288 {
7289 int ZF;
7290 ZF = (env->ZF == 0);
7291 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7292 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7293 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7294 | ((env->condexec_bits & 0xfc) << 8)
7295 | (env->GE << 16) | (env->daif & CPSR_AIF);
7296 }
7297
7298 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7299 CPSRWriteType write_type)
7300 {
7301 uint32_t changed_daif;
7302
7303 if (mask & CPSR_NZCV) {
7304 env->ZF = (~val) & CPSR_Z;
7305 env->NF = val;
7306 env->CF = (val >> 29) & 1;
7307 env->VF = (val << 3) & 0x80000000;
7308 }
7309 if (mask & CPSR_Q)
7310 env->QF = ((val & CPSR_Q) != 0);
7311 if (mask & CPSR_T)
7312 env->thumb = ((val & CPSR_T) != 0);
7313 if (mask & CPSR_IT_0_1) {
7314 env->condexec_bits &= ~3;
7315 env->condexec_bits |= (val >> 25) & 3;
7316 }
7317 if (mask & CPSR_IT_2_7) {
7318 env->condexec_bits &= 3;
7319 env->condexec_bits |= (val >> 8) & 0xfc;
7320 }
7321 if (mask & CPSR_GE) {
7322 env->GE = (val >> 16) & 0xf;
7323 }
7324
7325 /* In a V7 implementation that includes the security extensions but does
7326 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7327 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7328 * bits respectively.
7329 *
7330 * In a V8 implementation, it is permitted for privileged software to
7331 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7332 */
7333 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7334 arm_feature(env, ARM_FEATURE_EL3) &&
7335 !arm_feature(env, ARM_FEATURE_EL2) &&
7336 !arm_is_secure(env)) {
7337
7338 changed_daif = (env->daif ^ val) & mask;
7339
7340 if (changed_daif & CPSR_A) {
7341 /* Check to see if we are allowed to change the masking of async
7342 * abort exceptions from a non-secure state.
7343 */
7344 if (!(env->cp15.scr_el3 & SCR_AW)) {
7345 qemu_log_mask(LOG_GUEST_ERROR,
7346 "Ignoring attempt to switch CPSR_A flag from "
7347 "non-secure world with SCR.AW bit clear\n");
7348 mask &= ~CPSR_A;
7349 }
7350 }
7351
7352 if (changed_daif & CPSR_F) {
7353 /* Check to see if we are allowed to change the masking of FIQ
7354 * exceptions from a non-secure state.
7355 */
7356 if (!(env->cp15.scr_el3 & SCR_FW)) {
7357 qemu_log_mask(LOG_GUEST_ERROR,
7358 "Ignoring attempt to switch CPSR_F flag from "
7359 "non-secure world with SCR.FW bit clear\n");
7360 mask &= ~CPSR_F;
7361 }
7362
7363 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7364 * If this bit is set software is not allowed to mask
7365 * FIQs, but is allowed to set CPSR_F to 0.
7366 */
7367 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7368 (val & CPSR_F)) {
7369 qemu_log_mask(LOG_GUEST_ERROR,
7370 "Ignoring attempt to enable CPSR_F flag "
7371 "(non-maskable FIQ [NMFI] support enabled)\n");
7372 mask &= ~CPSR_F;
7373 }
7374 }
7375 }
7376
7377 env->daif &= ~(CPSR_AIF & mask);
7378 env->daif |= val & CPSR_AIF & mask;
7379
7380 if (write_type != CPSRWriteRaw &&
7381 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7382 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7383 /* Note that we can only get here in USR mode if this is a
7384 * gdb stub write; for this case we follow the architectural
7385 * behaviour for guest writes in USR mode of ignoring an attempt
7386 * to switch mode. (Those are caught by translate.c for writes
7387 * triggered by guest instructions.)
7388 */
7389 mask &= ~CPSR_M;
7390 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7391 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7392 * v7, and has defined behaviour in v8:
7393 * + leave CPSR.M untouched
7394 * + allow changes to the other CPSR fields
7395 * + set PSTATE.IL
7396 * For user changes via the GDB stub, we don't set PSTATE.IL,
7397 * as this would be unnecessarily harsh for a user error.
7398 */
7399 mask &= ~CPSR_M;
7400 if (write_type != CPSRWriteByGDBStub &&
7401 arm_feature(env, ARM_FEATURE_V8)) {
7402 mask |= CPSR_IL;
7403 val |= CPSR_IL;
7404 }
7405 qemu_log_mask(LOG_GUEST_ERROR,
7406 "Illegal AArch32 mode switch attempt from %s to %s\n",
7407 aarch32_mode_name(env->uncached_cpsr),
7408 aarch32_mode_name(val));
7409 } else {
7410 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7411 write_type == CPSRWriteExceptionReturn ?
7412 "Exception return from AArch32" :
7413 "AArch32 mode switch from",
7414 aarch32_mode_name(env->uncached_cpsr),
7415 aarch32_mode_name(val), env->regs[15]);
7416 switch_mode(env, val & CPSR_M);
7417 }
7418 }
7419 mask &= ~CACHED_CPSR_BITS;
7420 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7421 }
7422
7423 /* Sign/zero extend */
7424 uint32_t HELPER(sxtb16)(uint32_t x)
7425 {
7426 uint32_t res;
7427 res = (uint16_t)(int8_t)x;
7428 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7429 return res;
7430 }
7431
7432 uint32_t HELPER(uxtb16)(uint32_t x)
7433 {
7434 uint32_t res;
7435 res = (uint16_t)(uint8_t)x;
7436 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7437 return res;
7438 }
7439
7440 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7441 {
7442 if (den == 0)
7443 return 0;
7444 if (num == INT_MIN && den == -1)
7445 return INT_MIN;
7446 return num / den;
7447 }
7448
7449 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7450 {
7451 if (den == 0)
7452 return 0;
7453 return num / den;
7454 }
7455
7456 uint32_t HELPER(rbit)(uint32_t x)
7457 {
7458 return revbit32(x);
7459 }
7460
7461 #ifdef CONFIG_USER_ONLY
7462
7463 static void switch_mode(CPUARMState *env, int mode)
7464 {
7465 ARMCPU *cpu = env_archcpu(env);
7466
7467 if (mode != ARM_CPU_MODE_USR) {
7468 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7469 }
7470 }
7471
7472 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7473 uint32_t cur_el, bool secure)
7474 {
7475 return 1;
7476 }
7477
7478 void aarch64_sync_64_to_32(CPUARMState *env)
7479 {
7480 g_assert_not_reached();
7481 }
7482
7483 #else
7484
7485 static void switch_mode(CPUARMState *env, int mode)
7486 {
7487 int old_mode;
7488 int i;
7489
7490 old_mode = env->uncached_cpsr & CPSR_M;
7491 if (mode == old_mode)
7492 return;
7493
7494 if (old_mode == ARM_CPU_MODE_FIQ) {
7495 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7496 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7497 } else if (mode == ARM_CPU_MODE_FIQ) {
7498 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7499 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7500 }
7501
7502 i = bank_number(old_mode);
7503 env->banked_r13[i] = env->regs[13];
7504 env->banked_spsr[i] = env->spsr;
7505
7506 i = bank_number(mode);
7507 env->regs[13] = env->banked_r13[i];
7508 env->spsr = env->banked_spsr[i];
7509
7510 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7511 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7512 }
7513
7514 /* Physical Interrupt Target EL Lookup Table
7515 *
7516 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7517 *
7518 * The below multi-dimensional table is used for looking up the target
7519 * exception level given numerous condition criteria. Specifically, the
7520 * target EL is based on SCR and HCR routing controls as well as the
7521 * currently executing EL and secure state.
7522 *
7523 * Dimensions:
7524 * target_el_table[2][2][2][2][2][4]
7525 * | | | | | +--- Current EL
7526 * | | | | +------ Non-secure(0)/Secure(1)
7527 * | | | +--------- HCR mask override
7528 * | | +------------ SCR exec state control
7529 * | +--------------- SCR mask override
7530 * +------------------ 32-bit(0)/64-bit(1) EL3
7531 *
7532 * The table values are as such:
7533 * 0-3 = EL0-EL3
7534 * -1 = Cannot occur
7535 *
7536 * The ARM ARM target EL table includes entries indicating that an "exception
7537 * is not taken". The two cases where this is applicable are:
7538 * 1) An exception is taken from EL3 but the SCR does not have the exception
7539 * routed to EL3.
7540 * 2) An exception is taken from EL2 but the HCR does not have the exception
7541 * routed to EL2.
7542 * In these two cases, the below table contain a target of EL1. This value is
7543 * returned as it is expected that the consumer of the table data will check
7544 * for "target EL >= current EL" to ensure the exception is not taken.
7545 *
7546 * SCR HCR
7547 * 64 EA AMO From
7548 * BIT IRQ IMO Non-secure Secure
7549 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7550 */
7551 static const int8_t target_el_table[2][2][2][2][2][4] = {
7552 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7553 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7554 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7555 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7556 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7557 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7558 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7559 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7560 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7561 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7562 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7563 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7564 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7565 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7566 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7567 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7568 };
7569
7570 /*
7571 * Determine the target EL for physical exceptions
7572 */
7573 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7574 uint32_t cur_el, bool secure)
7575 {
7576 CPUARMState *env = cs->env_ptr;
7577 bool rw;
7578 bool scr;
7579 bool hcr;
7580 int target_el;
7581 /* Is the highest EL AArch64? */
7582 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7583 uint64_t hcr_el2;
7584
7585 if (arm_feature(env, ARM_FEATURE_EL3)) {
7586 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7587 } else {
7588 /* Either EL2 is the highest EL (and so the EL2 register width
7589 * is given by is64); or there is no EL2 or EL3, in which case
7590 * the value of 'rw' does not affect the table lookup anyway.
7591 */
7592 rw = is64;
7593 }
7594
7595 hcr_el2 = arm_hcr_el2_eff(env);
7596 switch (excp_idx) {
7597 case EXCP_IRQ:
7598 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7599 hcr = hcr_el2 & HCR_IMO;
7600 break;
7601 case EXCP_FIQ:
7602 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7603 hcr = hcr_el2 & HCR_FMO;
7604 break;
7605 default:
7606 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7607 hcr = hcr_el2 & HCR_AMO;
7608 break;
7609 };
7610
7611 /* Perform a table-lookup for the target EL given the current state */
7612 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7613
7614 assert(target_el > 0);
7615
7616 return target_el;
7617 }
7618
7619 void arm_log_exception(int idx)
7620 {
7621 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7622 const char *exc = NULL;
7623 static const char * const excnames[] = {
7624 [EXCP_UDEF] = "Undefined Instruction",
7625 [EXCP_SWI] = "SVC",
7626 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7627 [EXCP_DATA_ABORT] = "Data Abort",
7628 [EXCP_IRQ] = "IRQ",
7629 [EXCP_FIQ] = "FIQ",
7630 [EXCP_BKPT] = "Breakpoint",
7631 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7632 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7633 [EXCP_HVC] = "Hypervisor Call",
7634 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7635 [EXCP_SMC] = "Secure Monitor Call",
7636 [EXCP_VIRQ] = "Virtual IRQ",
7637 [EXCP_VFIQ] = "Virtual FIQ",
7638 [EXCP_SEMIHOST] = "Semihosting call",
7639 [EXCP_NOCP] = "v7M NOCP UsageFault",
7640 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7641 [EXCP_STKOF] = "v8M STKOF UsageFault",
7642 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7643 [EXCP_LSERR] = "v8M LSERR UsageFault",
7644 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7645 };
7646
7647 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7648 exc = excnames[idx];
7649 }
7650 if (!exc) {
7651 exc = "unknown";
7652 }
7653 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7654 }
7655 }
7656
7657 /*
7658 * Function used to synchronize QEMU's AArch64 register set with AArch32
7659 * register set. This is necessary when switching between AArch32 and AArch64
7660 * execution state.
7661 */
7662 void aarch64_sync_32_to_64(CPUARMState *env)
7663 {
7664 int i;
7665 uint32_t mode = env->uncached_cpsr & CPSR_M;
7666
7667 /* We can blanket copy R[0:7] to X[0:7] */
7668 for (i = 0; i < 8; i++) {
7669 env->xregs[i] = env->regs[i];
7670 }
7671
7672 /*
7673 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7674 * Otherwise, they come from the banked user regs.
7675 */
7676 if (mode == ARM_CPU_MODE_FIQ) {
7677 for (i = 8; i < 13; i++) {
7678 env->xregs[i] = env->usr_regs[i - 8];
7679 }
7680 } else {
7681 for (i = 8; i < 13; i++) {
7682 env->xregs[i] = env->regs[i];
7683 }
7684 }
7685
7686 /*
7687 * Registers x13-x23 are the various mode SP and FP registers. Registers
7688 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7689 * from the mode banked register.
7690 */
7691 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7692 env->xregs[13] = env->regs[13];
7693 env->xregs[14] = env->regs[14];
7694 } else {
7695 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7696 /* HYP is an exception in that it is copied from r14 */
7697 if (mode == ARM_CPU_MODE_HYP) {
7698 env->xregs[14] = env->regs[14];
7699 } else {
7700 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
7701 }
7702 }
7703
7704 if (mode == ARM_CPU_MODE_HYP) {
7705 env->xregs[15] = env->regs[13];
7706 } else {
7707 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7708 }
7709
7710 if (mode == ARM_CPU_MODE_IRQ) {
7711 env->xregs[16] = env->regs[14];
7712 env->xregs[17] = env->regs[13];
7713 } else {
7714 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
7715 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7716 }
7717
7718 if (mode == ARM_CPU_MODE_SVC) {
7719 env->xregs[18] = env->regs[14];
7720 env->xregs[19] = env->regs[13];
7721 } else {
7722 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
7723 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7724 }
7725
7726 if (mode == ARM_CPU_MODE_ABT) {
7727 env->xregs[20] = env->regs[14];
7728 env->xregs[21] = env->regs[13];
7729 } else {
7730 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
7731 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7732 }
7733
7734 if (mode == ARM_CPU_MODE_UND) {
7735 env->xregs[22] = env->regs[14];
7736 env->xregs[23] = env->regs[13];
7737 } else {
7738 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
7739 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7740 }
7741
7742 /*
7743 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7744 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7745 * FIQ bank for r8-r14.
7746 */
7747 if (mode == ARM_CPU_MODE_FIQ) {
7748 for (i = 24; i < 31; i++) {
7749 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7750 }
7751 } else {
7752 for (i = 24; i < 29; i++) {
7753 env->xregs[i] = env->fiq_regs[i - 24];
7754 }
7755 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7756 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
7757 }
7758
7759 env->pc = env->regs[15];
7760 }
7761
7762 /*
7763 * Function used to synchronize QEMU's AArch32 register set with AArch64
7764 * register set. This is necessary when switching between AArch32 and AArch64
7765 * execution state.
7766 */
7767 void aarch64_sync_64_to_32(CPUARMState *env)
7768 {
7769 int i;
7770 uint32_t mode = env->uncached_cpsr & CPSR_M;
7771
7772 /* We can blanket copy X[0:7] to R[0:7] */
7773 for (i = 0; i < 8; i++) {
7774 env->regs[i] = env->xregs[i];
7775 }
7776
7777 /*
7778 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7779 * Otherwise, we copy x8-x12 into the banked user regs.
7780 */
7781 if (mode == ARM_CPU_MODE_FIQ) {
7782 for (i = 8; i < 13; i++) {
7783 env->usr_regs[i - 8] = env->xregs[i];
7784 }
7785 } else {
7786 for (i = 8; i < 13; i++) {
7787 env->regs[i] = env->xregs[i];
7788 }
7789 }
7790
7791 /*
7792 * Registers r13 & r14 depend on the current mode.
7793 * If we are in a given mode, we copy the corresponding x registers to r13
7794 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7795 * for the mode.
7796 */
7797 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7798 env->regs[13] = env->xregs[13];
7799 env->regs[14] = env->xregs[14];
7800 } else {
7801 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7802
7803 /*
7804 * HYP is an exception in that it does not have its own banked r14 but
7805 * shares the USR r14
7806 */
7807 if (mode == ARM_CPU_MODE_HYP) {
7808 env->regs[14] = env->xregs[14];
7809 } else {
7810 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7811 }
7812 }
7813
7814 if (mode == ARM_CPU_MODE_HYP) {
7815 env->regs[13] = env->xregs[15];
7816 } else {
7817 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7818 }
7819
7820 if (mode == ARM_CPU_MODE_IRQ) {
7821 env->regs[14] = env->xregs[16];
7822 env->regs[13] = env->xregs[17];
7823 } else {
7824 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7825 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7826 }
7827
7828 if (mode == ARM_CPU_MODE_SVC) {
7829 env->regs[14] = env->xregs[18];
7830 env->regs[13] = env->xregs[19];
7831 } else {
7832 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7833 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7834 }
7835
7836 if (mode == ARM_CPU_MODE_ABT) {
7837 env->regs[14] = env->xregs[20];
7838 env->regs[13] = env->xregs[21];
7839 } else {
7840 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7841 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7842 }
7843
7844 if (mode == ARM_CPU_MODE_UND) {
7845 env->regs[14] = env->xregs[22];
7846 env->regs[13] = env->xregs[23];
7847 } else {
7848 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7849 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7850 }
7851
7852 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7853 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7854 * FIQ bank for r8-r14.
7855 */
7856 if (mode == ARM_CPU_MODE_FIQ) {
7857 for (i = 24; i < 31; i++) {
7858 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7859 }
7860 } else {
7861 for (i = 24; i < 29; i++) {
7862 env->fiq_regs[i - 24] = env->xregs[i];
7863 }
7864 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7865 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7866 }
7867
7868 env->regs[15] = env->pc;
7869 }
7870
7871 static void take_aarch32_exception(CPUARMState *env, int new_mode,
7872 uint32_t mask, uint32_t offset,
7873 uint32_t newpc)
7874 {
7875 /* Change the CPU state so as to actually take the exception. */
7876 switch_mode(env, new_mode);
7877 /*
7878 * For exceptions taken to AArch32 we must clear the SS bit in both
7879 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7880 */
7881 env->uncached_cpsr &= ~PSTATE_SS;
7882 env->spsr = cpsr_read(env);
7883 /* Clear IT bits. */
7884 env->condexec_bits = 0;
7885 /* Switch to the new mode, and to the correct instruction set. */
7886 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7887 /* Set new mode endianness */
7888 env->uncached_cpsr &= ~CPSR_E;
7889 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7890 env->uncached_cpsr |= CPSR_E;
7891 }
7892 /* J and IL must always be cleared for exception entry */
7893 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
7894 env->daif |= mask;
7895
7896 if (new_mode == ARM_CPU_MODE_HYP) {
7897 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
7898 env->elr_el[2] = env->regs[15];
7899 } else {
7900 /*
7901 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
7902 * and we should just guard the thumb mode on V4
7903 */
7904 if (arm_feature(env, ARM_FEATURE_V4T)) {
7905 env->thumb =
7906 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7907 }
7908 env->regs[14] = env->regs[15] + offset;
7909 }
7910 env->regs[15] = newpc;
7911 }
7912
7913 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
7914 {
7915 /*
7916 * Handle exception entry to Hyp mode; this is sufficiently
7917 * different to entry to other AArch32 modes that we handle it
7918 * separately here.
7919 *
7920 * The vector table entry used is always the 0x14 Hyp mode entry point,
7921 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
7922 * The offset applied to the preferred return address is always zero
7923 * (see DDI0487C.a section G1.12.3).
7924 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
7925 */
7926 uint32_t addr, mask;
7927 ARMCPU *cpu = ARM_CPU(cs);
7928 CPUARMState *env = &cpu->env;
7929
7930 switch (cs->exception_index) {
7931 case EXCP_UDEF:
7932 addr = 0x04;
7933 break;
7934 case EXCP_SWI:
7935 addr = 0x14;
7936 break;
7937 case EXCP_BKPT:
7938 /* Fall through to prefetch abort. */
7939 case EXCP_PREFETCH_ABORT:
7940 env->cp15.ifar_s = env->exception.vaddress;
7941 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
7942 (uint32_t)env->exception.vaddress);
7943 addr = 0x0c;
7944 break;
7945 case EXCP_DATA_ABORT:
7946 env->cp15.dfar_s = env->exception.vaddress;
7947 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
7948 (uint32_t)env->exception.vaddress);
7949 addr = 0x10;
7950 break;
7951 case EXCP_IRQ:
7952 addr = 0x18;
7953 break;
7954 case EXCP_FIQ:
7955 addr = 0x1c;
7956 break;
7957 case EXCP_HVC:
7958 addr = 0x08;
7959 break;
7960 case EXCP_HYP_TRAP:
7961 addr = 0x14;
7962 break;
7963 default:
7964 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7965 }
7966
7967 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
7968 if (!arm_feature(env, ARM_FEATURE_V8)) {
7969 /*
7970 * QEMU syndrome values are v8-style. v7 has the IL bit
7971 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
7972 * If this is a v7 CPU, squash the IL bit in those cases.
7973 */
7974 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
7975 (cs->exception_index == EXCP_DATA_ABORT &&
7976 !(env->exception.syndrome & ARM_EL_ISV)) ||
7977 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
7978 env->exception.syndrome &= ~ARM_EL_IL;
7979 }
7980 }
7981 env->cp15.esr_el[2] = env->exception.syndrome;
7982 }
7983
7984 if (arm_current_el(env) != 2 && addr < 0x14) {
7985 addr = 0x14;
7986 }
7987
7988 mask = 0;
7989 if (!(env->cp15.scr_el3 & SCR_EA)) {
7990 mask |= CPSR_A;
7991 }
7992 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
7993 mask |= CPSR_I;
7994 }
7995 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
7996 mask |= CPSR_F;
7997 }
7998
7999 addr += env->cp15.hvbar;
8000
8001 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8002 }
8003
8004 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8005 {
8006 ARMCPU *cpu = ARM_CPU(cs);
8007 CPUARMState *env = &cpu->env;
8008 uint32_t addr;
8009 uint32_t mask;
8010 int new_mode;
8011 uint32_t offset;
8012 uint32_t moe;
8013
8014 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8015 switch (syn_get_ec(env->exception.syndrome)) {
8016 case EC_BREAKPOINT:
8017 case EC_BREAKPOINT_SAME_EL:
8018 moe = 1;
8019 break;
8020 case EC_WATCHPOINT:
8021 case EC_WATCHPOINT_SAME_EL:
8022 moe = 10;
8023 break;
8024 case EC_AA32_BKPT:
8025 moe = 3;
8026 break;
8027 case EC_VECTORCATCH:
8028 moe = 5;
8029 break;
8030 default:
8031 moe = 0;
8032 break;
8033 }
8034
8035 if (moe) {
8036 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8037 }
8038
8039 if (env->exception.target_el == 2) {
8040 arm_cpu_do_interrupt_aarch32_hyp(cs);
8041 return;
8042 }
8043
8044 switch (cs->exception_index) {
8045 case EXCP_UDEF:
8046 new_mode = ARM_CPU_MODE_UND;
8047 addr = 0x04;
8048 mask = CPSR_I;
8049 if (env->thumb)
8050 offset = 2;
8051 else
8052 offset = 4;
8053 break;
8054 case EXCP_SWI:
8055 new_mode = ARM_CPU_MODE_SVC;
8056 addr = 0x08;
8057 mask = CPSR_I;
8058 /* The PC already points to the next instruction. */
8059 offset = 0;
8060 break;
8061 case EXCP_BKPT:
8062 /* Fall through to prefetch abort. */
8063 case EXCP_PREFETCH_ABORT:
8064 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8065 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8066 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8067 env->exception.fsr, (uint32_t)env->exception.vaddress);
8068 new_mode = ARM_CPU_MODE_ABT;
8069 addr = 0x0c;
8070 mask = CPSR_A | CPSR_I;
8071 offset = 4;
8072 break;
8073 case EXCP_DATA_ABORT:
8074 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8075 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8076 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8077 env->exception.fsr,
8078 (uint32_t)env->exception.vaddress);
8079 new_mode = ARM_CPU_MODE_ABT;
8080 addr = 0x10;
8081 mask = CPSR_A | CPSR_I;
8082 offset = 8;
8083 break;
8084 case EXCP_IRQ:
8085 new_mode = ARM_CPU_MODE_IRQ;
8086 addr = 0x18;
8087 /* Disable IRQ and imprecise data aborts. */
8088 mask = CPSR_A | CPSR_I;
8089 offset = 4;
8090 if (env->cp15.scr_el3 & SCR_IRQ) {
8091 /* IRQ routed to monitor mode */
8092 new_mode = ARM_CPU_MODE_MON;
8093 mask |= CPSR_F;
8094 }
8095 break;
8096 case EXCP_FIQ:
8097 new_mode = ARM_CPU_MODE_FIQ;
8098 addr = 0x1c;
8099 /* Disable FIQ, IRQ and imprecise data aborts. */
8100 mask = CPSR_A | CPSR_I | CPSR_F;
8101 if (env->cp15.scr_el3 & SCR_FIQ) {
8102 /* FIQ routed to monitor mode */
8103 new_mode = ARM_CPU_MODE_MON;
8104 }
8105 offset = 4;
8106 break;
8107 case EXCP_VIRQ:
8108 new_mode = ARM_CPU_MODE_IRQ;
8109 addr = 0x18;
8110 /* Disable IRQ and imprecise data aborts. */
8111 mask = CPSR_A | CPSR_I;
8112 offset = 4;
8113 break;
8114 case EXCP_VFIQ:
8115 new_mode = ARM_CPU_MODE_FIQ;
8116 addr = 0x1c;
8117 /* Disable FIQ, IRQ and imprecise data aborts. */
8118 mask = CPSR_A | CPSR_I | CPSR_F;
8119 offset = 4;
8120 break;
8121 case EXCP_SMC:
8122 new_mode = ARM_CPU_MODE_MON;
8123 addr = 0x08;
8124 mask = CPSR_A | CPSR_I | CPSR_F;
8125 offset = 0;
8126 break;
8127 default:
8128 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8129 return; /* Never happens. Keep compiler happy. */
8130 }
8131
8132 if (new_mode == ARM_CPU_MODE_MON) {
8133 addr += env->cp15.mvbar;
8134 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8135 /* High vectors. When enabled, base address cannot be remapped. */
8136 addr += 0xffff0000;
8137 } else {
8138 /* ARM v7 architectures provide a vector base address register to remap
8139 * the interrupt vector table.
8140 * This register is only followed in non-monitor mode, and is banked.
8141 * Note: only bits 31:5 are valid.
8142 */
8143 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8144 }
8145
8146 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8147 env->cp15.scr_el3 &= ~SCR_NS;
8148 }
8149
8150 take_aarch32_exception(env, new_mode, mask, offset, addr);
8151 }
8152
8153 /* Handle exception entry to a target EL which is using AArch64 */
8154 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8155 {
8156 ARMCPU *cpu = ARM_CPU(cs);
8157 CPUARMState *env = &cpu->env;
8158 unsigned int new_el = env->exception.target_el;
8159 target_ulong addr = env->cp15.vbar_el[new_el];
8160 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8161 unsigned int cur_el = arm_current_el(env);
8162
8163 /*
8164 * Note that new_el can never be 0. If cur_el is 0, then
8165 * el0_a64 is is_a64(), else el0_a64 is ignored.
8166 */
8167 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8168
8169 if (cur_el < new_el) {
8170 /* Entry vector offset depends on whether the implemented EL
8171 * immediately lower than the target level is using AArch32 or AArch64
8172 */
8173 bool is_aa64;
8174
8175 switch (new_el) {
8176 case 3:
8177 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8178 break;
8179 case 2:
8180 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8181 break;
8182 case 1:
8183 is_aa64 = is_a64(env);
8184 break;
8185 default:
8186 g_assert_not_reached();
8187 }
8188
8189 if (is_aa64) {
8190 addr += 0x400;
8191 } else {
8192 addr += 0x600;
8193 }
8194 } else if (pstate_read(env) & PSTATE_SP) {
8195 addr += 0x200;
8196 }
8197
8198 switch (cs->exception_index) {
8199 case EXCP_PREFETCH_ABORT:
8200 case EXCP_DATA_ABORT:
8201 env->cp15.far_el[new_el] = env->exception.vaddress;
8202 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8203 env->cp15.far_el[new_el]);
8204 /* fall through */
8205 case EXCP_BKPT:
8206 case EXCP_UDEF:
8207 case EXCP_SWI:
8208 case EXCP_HVC:
8209 case EXCP_HYP_TRAP:
8210 case EXCP_SMC:
8211 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8212 /*
8213 * QEMU internal FP/SIMD syndromes from AArch32 include the
8214 * TA and coproc fields which are only exposed if the exception
8215 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8216 * AArch64 format syndrome.
8217 */
8218 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8219 }
8220 env->cp15.esr_el[new_el] = env->exception.syndrome;
8221 break;
8222 case EXCP_IRQ:
8223 case EXCP_VIRQ:
8224 addr += 0x80;
8225 break;
8226 case EXCP_FIQ:
8227 case EXCP_VFIQ:
8228 addr += 0x100;
8229 break;
8230 case EXCP_SEMIHOST:
8231 qemu_log_mask(CPU_LOG_INT,
8232 "...handling as semihosting call 0x%" PRIx64 "\n",
8233 env->xregs[0]);
8234 env->xregs[0] = do_arm_semihosting(env);
8235 return;
8236 default:
8237 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8238 }
8239
8240 if (is_a64(env)) {
8241 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8242 aarch64_save_sp(env, arm_current_el(env));
8243 env->elr_el[new_el] = env->pc;
8244 } else {
8245 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8246 env->elr_el[new_el] = env->regs[15];
8247
8248 aarch64_sync_32_to_64(env);
8249
8250 env->condexec_bits = 0;
8251 }
8252 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8253 env->elr_el[new_el]);
8254
8255 pstate_write(env, PSTATE_DAIF | new_mode);
8256 env->aarch64 = 1;
8257 aarch64_restore_sp(env, new_el);
8258
8259 env->pc = addr;
8260
8261 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8262 new_el, env->pc, pstate_read(env));
8263 }
8264
8265 static inline bool check_for_semihosting(CPUState *cs)
8266 {
8267 #ifdef CONFIG_TCG
8268 /* Check whether this exception is a semihosting call; if so
8269 * then handle it and return true; otherwise return false.
8270 */
8271 ARMCPU *cpu = ARM_CPU(cs);
8272 CPUARMState *env = &cpu->env;
8273
8274 if (is_a64(env)) {
8275 if (cs->exception_index == EXCP_SEMIHOST) {
8276 /* This is always the 64-bit semihosting exception.
8277 * The "is this usermode" and "is semihosting enabled"
8278 * checks have been done at translate time.
8279 */
8280 qemu_log_mask(CPU_LOG_INT,
8281 "...handling as semihosting call 0x%" PRIx64 "\n",
8282 env->xregs[0]);
8283 env->xregs[0] = do_arm_semihosting(env);
8284 return true;
8285 }
8286 return false;
8287 } else {
8288 uint32_t imm;
8289
8290 /* Only intercept calls from privileged modes, to provide some
8291 * semblance of security.
8292 */
8293 if (cs->exception_index != EXCP_SEMIHOST &&
8294 (!semihosting_enabled() ||
8295 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8296 return false;
8297 }
8298
8299 switch (cs->exception_index) {
8300 case EXCP_SEMIHOST:
8301 /* This is always a semihosting call; the "is this usermode"
8302 * and "is semihosting enabled" checks have been done at
8303 * translate time.
8304 */
8305 break;
8306 case EXCP_SWI:
8307 /* Check for semihosting interrupt. */
8308 if (env->thumb) {
8309 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8310 & 0xff;
8311 if (imm == 0xab) {
8312 break;
8313 }
8314 } else {
8315 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8316 & 0xffffff;
8317 if (imm == 0x123456) {
8318 break;
8319 }
8320 }
8321 return false;
8322 case EXCP_BKPT:
8323 /* See if this is a semihosting syscall. */
8324 if (env->thumb) {
8325 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8326 & 0xff;
8327 if (imm == 0xab) {
8328 env->regs[15] += 2;
8329 break;
8330 }
8331 }
8332 return false;
8333 default:
8334 return false;
8335 }
8336
8337 qemu_log_mask(CPU_LOG_INT,
8338 "...handling as semihosting call 0x%x\n",
8339 env->regs[0]);
8340 env->regs[0] = do_arm_semihosting(env);
8341 return true;
8342 }
8343 #else
8344 return false;
8345 #endif
8346 }
8347
8348 /* Handle a CPU exception for A and R profile CPUs.
8349 * Do any appropriate logging, handle PSCI calls, and then hand off
8350 * to the AArch64-entry or AArch32-entry function depending on the
8351 * target exception level's register width.
8352 */
8353 void arm_cpu_do_interrupt(CPUState *cs)
8354 {
8355 ARMCPU *cpu = ARM_CPU(cs);
8356 CPUARMState *env = &cpu->env;
8357 unsigned int new_el = env->exception.target_el;
8358
8359 assert(!arm_feature(env, ARM_FEATURE_M));
8360
8361 arm_log_exception(cs->exception_index);
8362 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8363 new_el);
8364 if (qemu_loglevel_mask(CPU_LOG_INT)
8365 && !excp_is_internal(cs->exception_index)) {
8366 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8367 syn_get_ec(env->exception.syndrome),
8368 env->exception.syndrome);
8369 }
8370
8371 if (arm_is_psci_call(cpu, cs->exception_index)) {
8372 arm_handle_psci_call(cpu);
8373 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8374 return;
8375 }
8376
8377 /* Semihosting semantics depend on the register width of the
8378 * code that caused the exception, not the target exception level,
8379 * so must be handled here.
8380 */
8381 if (check_for_semihosting(cs)) {
8382 return;
8383 }
8384
8385 /* Hooks may change global state so BQL should be held, also the
8386 * BQL needs to be held for any modification of
8387 * cs->interrupt_request.
8388 */
8389 g_assert(qemu_mutex_iothread_locked());
8390
8391 arm_call_pre_el_change_hook(cpu);
8392
8393 assert(!excp_is_internal(cs->exception_index));
8394 if (arm_el_is_aa64(env, new_el)) {
8395 arm_cpu_do_interrupt_aarch64(cs);
8396 } else {
8397 arm_cpu_do_interrupt_aarch32(cs);
8398 }
8399
8400 arm_call_el_change_hook(cpu);
8401
8402 if (!kvm_enabled()) {
8403 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8404 }
8405 }
8406 #endif /* !CONFIG_USER_ONLY */
8407
8408 /* Return the exception level which controls this address translation regime */
8409 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8410 {
8411 switch (mmu_idx) {
8412 case ARMMMUIdx_S2NS:
8413 case ARMMMUIdx_S1E2:
8414 return 2;
8415 case ARMMMUIdx_S1E3:
8416 return 3;
8417 case ARMMMUIdx_S1SE0:
8418 return arm_el_is_aa64(env, 3) ? 1 : 3;
8419 case ARMMMUIdx_S1SE1:
8420 case ARMMMUIdx_S1NSE0:
8421 case ARMMMUIdx_S1NSE1:
8422 case ARMMMUIdx_MPrivNegPri:
8423 case ARMMMUIdx_MUserNegPri:
8424 case ARMMMUIdx_MPriv:
8425 case ARMMMUIdx_MUser:
8426 case ARMMMUIdx_MSPrivNegPri:
8427 case ARMMMUIdx_MSUserNegPri:
8428 case ARMMMUIdx_MSPriv:
8429 case ARMMMUIdx_MSUser:
8430 return 1;
8431 default:
8432 g_assert_not_reached();
8433 }
8434 }
8435
8436 #ifndef CONFIG_USER_ONLY
8437
8438 /* Return the SCTLR value which controls this address translation regime */
8439 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8440 {
8441 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8442 }
8443
8444 /* Return true if the specified stage of address translation is disabled */
8445 static inline bool regime_translation_disabled(CPUARMState *env,
8446 ARMMMUIdx mmu_idx)
8447 {
8448 if (arm_feature(env, ARM_FEATURE_M)) {
8449 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8450 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8451 case R_V7M_MPU_CTRL_ENABLE_MASK:
8452 /* Enabled, but not for HardFault and NMI */
8453 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8454 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8455 /* Enabled for all cases */
8456 return false;
8457 case 0:
8458 default:
8459 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8460 * we warned about that in armv7m_nvic.c when the guest set it.
8461 */
8462 return true;
8463 }
8464 }
8465
8466 if (mmu_idx == ARMMMUIdx_S2NS) {
8467 /* HCR.DC means HCR.VM behaves as 1 */
8468 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8469 }
8470
8471 if (env->cp15.hcr_el2 & HCR_TGE) {
8472 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8473 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8474 return true;
8475 }
8476 }
8477
8478 if ((env->cp15.hcr_el2 & HCR_DC) &&
8479 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8480 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8481 return true;
8482 }
8483
8484 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8485 }
8486
8487 static inline bool regime_translation_big_endian(CPUARMState *env,
8488 ARMMMUIdx mmu_idx)
8489 {
8490 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8491 }
8492
8493 /* Return the TTBR associated with this translation regime */
8494 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8495 int ttbrn)
8496 {
8497 if (mmu_idx == ARMMMUIdx_S2NS) {
8498 return env->cp15.vttbr_el2;
8499 }
8500 if (ttbrn == 0) {
8501 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8502 } else {
8503 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8504 }
8505 }
8506
8507 #endif /* !CONFIG_USER_ONLY */
8508
8509 /* Return the TCR controlling this translation regime */
8510 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8511 {
8512 if (mmu_idx == ARMMMUIdx_S2NS) {
8513 return &env->cp15.vtcr_el2;
8514 }
8515 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8516 }
8517
8518 /* Convert a possible stage1+2 MMU index into the appropriate
8519 * stage 1 MMU index
8520 */
8521 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8522 {
8523 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8524 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8525 }
8526 return mmu_idx;
8527 }
8528
8529 /* Return true if the translation regime is using LPAE format page tables */
8530 static inline bool regime_using_lpae_format(CPUARMState *env,
8531 ARMMMUIdx mmu_idx)
8532 {
8533 int el = regime_el(env, mmu_idx);
8534 if (el == 2 || arm_el_is_aa64(env, el)) {
8535 return true;
8536 }
8537 if (arm_feature(env, ARM_FEATURE_LPAE)
8538 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8539 return true;
8540 }
8541 return false;
8542 }
8543
8544 /* Returns true if the stage 1 translation regime is using LPAE format page
8545 * tables. Used when raising alignment exceptions, whose FSR changes depending
8546 * on whether the long or short descriptor format is in use. */
8547 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8548 {
8549 mmu_idx = stage_1_mmu_idx(mmu_idx);
8550
8551 return regime_using_lpae_format(env, mmu_idx);
8552 }
8553
8554 #ifndef CONFIG_USER_ONLY
8555 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8556 {
8557 switch (mmu_idx) {
8558 case ARMMMUIdx_S1SE0:
8559 case ARMMMUIdx_S1NSE0:
8560 case ARMMMUIdx_MUser:
8561 case ARMMMUIdx_MSUser:
8562 case ARMMMUIdx_MUserNegPri:
8563 case ARMMMUIdx_MSUserNegPri:
8564 return true;
8565 default:
8566 return false;
8567 case ARMMMUIdx_S12NSE0:
8568 case ARMMMUIdx_S12NSE1:
8569 g_assert_not_reached();
8570 }
8571 }
8572
8573 /* Translate section/page access permissions to page
8574 * R/W protection flags
8575 *
8576 * @env: CPUARMState
8577 * @mmu_idx: MMU index indicating required translation regime
8578 * @ap: The 3-bit access permissions (AP[2:0])
8579 * @domain_prot: The 2-bit domain access permissions
8580 */
8581 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8582 int ap, int domain_prot)
8583 {
8584 bool is_user = regime_is_user(env, mmu_idx);
8585
8586 if (domain_prot == 3) {
8587 return PAGE_READ | PAGE_WRITE;
8588 }
8589
8590 switch (ap) {
8591 case 0:
8592 if (arm_feature(env, ARM_FEATURE_V7)) {
8593 return 0;
8594 }
8595 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8596 case SCTLR_S:
8597 return is_user ? 0 : PAGE_READ;
8598 case SCTLR_R:
8599 return PAGE_READ;
8600 default:
8601 return 0;
8602 }
8603 case 1:
8604 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8605 case 2:
8606 if (is_user) {
8607 return PAGE_READ;
8608 } else {
8609 return PAGE_READ | PAGE_WRITE;
8610 }
8611 case 3:
8612 return PAGE_READ | PAGE_WRITE;
8613 case 4: /* Reserved. */
8614 return 0;
8615 case 5:
8616 return is_user ? 0 : PAGE_READ;
8617 case 6:
8618 return PAGE_READ;
8619 case 7:
8620 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8621 return 0;
8622 }
8623 return PAGE_READ;
8624 default:
8625 g_assert_not_reached();
8626 }
8627 }
8628
8629 /* Translate section/page access permissions to page
8630 * R/W protection flags.
8631 *
8632 * @ap: The 2-bit simple AP (AP[2:1])
8633 * @is_user: TRUE if accessing from PL0
8634 */
8635 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8636 {
8637 switch (ap) {
8638 case 0:
8639 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8640 case 1:
8641 return PAGE_READ | PAGE_WRITE;
8642 case 2:
8643 return is_user ? 0 : PAGE_READ;
8644 case 3:
8645 return PAGE_READ;
8646 default:
8647 g_assert_not_reached();
8648 }
8649 }
8650
8651 static inline int
8652 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8653 {
8654 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8655 }
8656
8657 /* Translate S2 section/page access permissions to protection flags
8658 *
8659 * @env: CPUARMState
8660 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8661 * @xn: XN (execute-never) bit
8662 */
8663 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8664 {
8665 int prot = 0;
8666
8667 if (s2ap & 1) {
8668 prot |= PAGE_READ;
8669 }
8670 if (s2ap & 2) {
8671 prot |= PAGE_WRITE;
8672 }
8673 if (!xn) {
8674 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8675 prot |= PAGE_EXEC;
8676 }
8677 }
8678 return prot;
8679 }
8680
8681 /* Translate section/page access permissions to protection flags
8682 *
8683 * @env: CPUARMState
8684 * @mmu_idx: MMU index indicating required translation regime
8685 * @is_aa64: TRUE if AArch64
8686 * @ap: The 2-bit simple AP (AP[2:1])
8687 * @ns: NS (non-secure) bit
8688 * @xn: XN (execute-never) bit
8689 * @pxn: PXN (privileged execute-never) bit
8690 */
8691 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8692 int ap, int ns, int xn, int pxn)
8693 {
8694 bool is_user = regime_is_user(env, mmu_idx);
8695 int prot_rw, user_rw;
8696 bool have_wxn;
8697 int wxn = 0;
8698
8699 assert(mmu_idx != ARMMMUIdx_S2NS);
8700
8701 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8702 if (is_user) {
8703 prot_rw = user_rw;
8704 } else {
8705 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8706 }
8707
8708 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8709 return prot_rw;
8710 }
8711
8712 /* TODO have_wxn should be replaced with
8713 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8714 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8715 * compatible processors have EL2, which is required for [U]WXN.
8716 */
8717 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8718
8719 if (have_wxn) {
8720 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8721 }
8722
8723 if (is_aa64) {
8724 switch (regime_el(env, mmu_idx)) {
8725 case 1:
8726 if (!is_user) {
8727 xn = pxn || (user_rw & PAGE_WRITE);
8728 }
8729 break;
8730 case 2:
8731 case 3:
8732 break;
8733 }
8734 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8735 switch (regime_el(env, mmu_idx)) {
8736 case 1:
8737 case 3:
8738 if (is_user) {
8739 xn = xn || !(user_rw & PAGE_READ);
8740 } else {
8741 int uwxn = 0;
8742 if (have_wxn) {
8743 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8744 }
8745 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8746 (uwxn && (user_rw & PAGE_WRITE));
8747 }
8748 break;
8749 case 2:
8750 break;
8751 }
8752 } else {
8753 xn = wxn = 0;
8754 }
8755
8756 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8757 return prot_rw;
8758 }
8759 return prot_rw | PAGE_EXEC;
8760 }
8761
8762 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8763 uint32_t *table, uint32_t address)
8764 {
8765 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8766 TCR *tcr = regime_tcr(env, mmu_idx);
8767
8768 if (address & tcr->mask) {
8769 if (tcr->raw_tcr & TTBCR_PD1) {
8770 /* Translation table walk disabled for TTBR1 */
8771 return false;
8772 }
8773 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8774 } else {
8775 if (tcr->raw_tcr & TTBCR_PD0) {
8776 /* Translation table walk disabled for TTBR0 */
8777 return false;
8778 }
8779 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8780 }
8781 *table |= (address >> 18) & 0x3ffc;
8782 return true;
8783 }
8784
8785 /* Translate a S1 pagetable walk through S2 if needed. */
8786 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8787 hwaddr addr, MemTxAttrs txattrs,
8788 ARMMMUFaultInfo *fi)
8789 {
8790 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8791 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8792 target_ulong s2size;
8793 hwaddr s2pa;
8794 int s2prot;
8795 int ret;
8796 ARMCacheAttrs cacheattrs = {};
8797 ARMCacheAttrs *pcacheattrs = NULL;
8798
8799 if (env->cp15.hcr_el2 & HCR_PTW) {
8800 /*
8801 * PTW means we must fault if this S1 walk touches S2 Device
8802 * memory; otherwise we don't care about the attributes and can
8803 * save the S2 translation the effort of computing them.
8804 */
8805 pcacheattrs = &cacheattrs;
8806 }
8807
8808 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8809 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
8810 if (ret) {
8811 assert(fi->type != ARMFault_None);
8812 fi->s2addr = addr;
8813 fi->stage2 = true;
8814 fi->s1ptw = true;
8815 return ~0;
8816 }
8817 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
8818 /* Access was to Device memory: generate Permission fault */
8819 fi->type = ARMFault_Permission;
8820 fi->s2addr = addr;
8821 fi->stage2 = true;
8822 fi->s1ptw = true;
8823 return ~0;
8824 }
8825 addr = s2pa;
8826 }
8827 return addr;
8828 }
8829
8830 /* All loads done in the course of a page table walk go through here. */
8831 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8832 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8833 {
8834 ARMCPU *cpu = ARM_CPU(cs);
8835 CPUARMState *env = &cpu->env;
8836 MemTxAttrs attrs = {};
8837 MemTxResult result = MEMTX_OK;
8838 AddressSpace *as;
8839 uint32_t data;
8840
8841 attrs.secure = is_secure;
8842 as = arm_addressspace(cs, attrs);
8843 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8844 if (fi->s1ptw) {
8845 return 0;
8846 }
8847 if (regime_translation_big_endian(env, mmu_idx)) {
8848 data = address_space_ldl_be(as, addr, attrs, &result);
8849 } else {
8850 data = address_space_ldl_le(as, addr, attrs, &result);
8851 }
8852 if (result == MEMTX_OK) {
8853 return data;
8854 }
8855 fi->type = ARMFault_SyncExternalOnWalk;
8856 fi->ea = arm_extabort_type(result);
8857 return 0;
8858 }
8859
8860 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8861 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8862 {
8863 ARMCPU *cpu = ARM_CPU(cs);
8864 CPUARMState *env = &cpu->env;
8865 MemTxAttrs attrs = {};
8866 MemTxResult result = MEMTX_OK;
8867 AddressSpace *as;
8868 uint64_t data;
8869
8870 attrs.secure = is_secure;
8871 as = arm_addressspace(cs, attrs);
8872 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8873 if (fi->s1ptw) {
8874 return 0;
8875 }
8876 if (regime_translation_big_endian(env, mmu_idx)) {
8877 data = address_space_ldq_be(as, addr, attrs, &result);
8878 } else {
8879 data = address_space_ldq_le(as, addr, attrs, &result);
8880 }
8881 if (result == MEMTX_OK) {
8882 return data;
8883 }
8884 fi->type = ARMFault_SyncExternalOnWalk;
8885 fi->ea = arm_extabort_type(result);
8886 return 0;
8887 }
8888
8889 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8890 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8891 hwaddr *phys_ptr, int *prot,
8892 target_ulong *page_size,
8893 ARMMMUFaultInfo *fi)
8894 {
8895 CPUState *cs = env_cpu(env);
8896 int level = 1;
8897 uint32_t table;
8898 uint32_t desc;
8899 int type;
8900 int ap;
8901 int domain = 0;
8902 int domain_prot;
8903 hwaddr phys_addr;
8904 uint32_t dacr;
8905
8906 /* Pagetable walk. */
8907 /* Lookup l1 descriptor. */
8908 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8909 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8910 fi->type = ARMFault_Translation;
8911 goto do_fault;
8912 }
8913 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8914 mmu_idx, fi);
8915 if (fi->type != ARMFault_None) {
8916 goto do_fault;
8917 }
8918 type = (desc & 3);
8919 domain = (desc >> 5) & 0x0f;
8920 if (regime_el(env, mmu_idx) == 1) {
8921 dacr = env->cp15.dacr_ns;
8922 } else {
8923 dacr = env->cp15.dacr_s;
8924 }
8925 domain_prot = (dacr >> (domain * 2)) & 3;
8926 if (type == 0) {
8927 /* Section translation fault. */
8928 fi->type = ARMFault_Translation;
8929 goto do_fault;
8930 }
8931 if (type != 2) {
8932 level = 2;
8933 }
8934 if (domain_prot == 0 || domain_prot == 2) {
8935 fi->type = ARMFault_Domain;
8936 goto do_fault;
8937 }
8938 if (type == 2) {
8939 /* 1Mb section. */
8940 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8941 ap = (desc >> 10) & 3;
8942 *page_size = 1024 * 1024;
8943 } else {
8944 /* Lookup l2 entry. */
8945 if (type == 1) {
8946 /* Coarse pagetable. */
8947 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8948 } else {
8949 /* Fine pagetable. */
8950 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8951 }
8952 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8953 mmu_idx, fi);
8954 if (fi->type != ARMFault_None) {
8955 goto do_fault;
8956 }
8957 switch (desc & 3) {
8958 case 0: /* Page translation fault. */
8959 fi->type = ARMFault_Translation;
8960 goto do_fault;
8961 case 1: /* 64k page. */
8962 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8963 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8964 *page_size = 0x10000;
8965 break;
8966 case 2: /* 4k page. */
8967 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8968 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8969 *page_size = 0x1000;
8970 break;
8971 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8972 if (type == 1) {
8973 /* ARMv6/XScale extended small page format */
8974 if (arm_feature(env, ARM_FEATURE_XSCALE)
8975 || arm_feature(env, ARM_FEATURE_V6)) {
8976 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8977 *page_size = 0x1000;
8978 } else {
8979 /* UNPREDICTABLE in ARMv5; we choose to take a
8980 * page translation fault.
8981 */
8982 fi->type = ARMFault_Translation;
8983 goto do_fault;
8984 }
8985 } else {
8986 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8987 *page_size = 0x400;
8988 }
8989 ap = (desc >> 4) & 3;
8990 break;
8991 default:
8992 /* Never happens, but compiler isn't smart enough to tell. */
8993 abort();
8994 }
8995 }
8996 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8997 *prot |= *prot ? PAGE_EXEC : 0;
8998 if (!(*prot & (1 << access_type))) {
8999 /* Access permission fault. */
9000 fi->type = ARMFault_Permission;
9001 goto do_fault;
9002 }
9003 *phys_ptr = phys_addr;
9004 return false;
9005 do_fault:
9006 fi->domain = domain;
9007 fi->level = level;
9008 return true;
9009 }
9010
9011 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9012 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9013 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9014 target_ulong *page_size, ARMMMUFaultInfo *fi)
9015 {
9016 CPUState *cs = env_cpu(env);
9017 int level = 1;
9018 uint32_t table;
9019 uint32_t desc;
9020 uint32_t xn;
9021 uint32_t pxn = 0;
9022 int type;
9023 int ap;
9024 int domain = 0;
9025 int domain_prot;
9026 hwaddr phys_addr;
9027 uint32_t dacr;
9028 bool ns;
9029
9030 /* Pagetable walk. */
9031 /* Lookup l1 descriptor. */
9032 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9033 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9034 fi->type = ARMFault_Translation;
9035 goto do_fault;
9036 }
9037 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9038 mmu_idx, fi);
9039 if (fi->type != ARMFault_None) {
9040 goto do_fault;
9041 }
9042 type = (desc & 3);
9043 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9044 /* Section translation fault, or attempt to use the encoding
9045 * which is Reserved on implementations without PXN.
9046 */
9047 fi->type = ARMFault_Translation;
9048 goto do_fault;
9049 }
9050 if ((type == 1) || !(desc & (1 << 18))) {
9051 /* Page or Section. */
9052 domain = (desc >> 5) & 0x0f;
9053 }
9054 if (regime_el(env, mmu_idx) == 1) {
9055 dacr = env->cp15.dacr_ns;
9056 } else {
9057 dacr = env->cp15.dacr_s;
9058 }
9059 if (type == 1) {
9060 level = 2;
9061 }
9062 domain_prot = (dacr >> (domain * 2)) & 3;
9063 if (domain_prot == 0 || domain_prot == 2) {
9064 /* Section or Page domain fault */
9065 fi->type = ARMFault_Domain;
9066 goto do_fault;
9067 }
9068 if (type != 1) {
9069 if (desc & (1 << 18)) {
9070 /* Supersection. */
9071 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9072 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9073 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9074 *page_size = 0x1000000;
9075 } else {
9076 /* Section. */
9077 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9078 *page_size = 0x100000;
9079 }
9080 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9081 xn = desc & (1 << 4);
9082 pxn = desc & 1;
9083 ns = extract32(desc, 19, 1);
9084 } else {
9085 if (arm_feature(env, ARM_FEATURE_PXN)) {
9086 pxn = (desc >> 2) & 1;
9087 }
9088 ns = extract32(desc, 3, 1);
9089 /* Lookup l2 entry. */
9090 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9091 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9092 mmu_idx, fi);
9093 if (fi->type != ARMFault_None) {
9094 goto do_fault;
9095 }
9096 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9097 switch (desc & 3) {
9098 case 0: /* Page translation fault. */
9099 fi->type = ARMFault_Translation;
9100 goto do_fault;
9101 case 1: /* 64k page. */
9102 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9103 xn = desc & (1 << 15);
9104 *page_size = 0x10000;
9105 break;
9106 case 2: case 3: /* 4k page. */
9107 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9108 xn = desc & 1;
9109 *page_size = 0x1000;
9110 break;
9111 default:
9112 /* Never happens, but compiler isn't smart enough to tell. */
9113 abort();
9114 }
9115 }
9116 if (domain_prot == 3) {
9117 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9118 } else {
9119 if (pxn && !regime_is_user(env, mmu_idx)) {
9120 xn = 1;
9121 }
9122 if (xn && access_type == MMU_INST_FETCH) {
9123 fi->type = ARMFault_Permission;
9124 goto do_fault;
9125 }
9126
9127 if (arm_feature(env, ARM_FEATURE_V6K) &&
9128 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9129 /* The simplified model uses AP[0] as an access control bit. */
9130 if ((ap & 1) == 0) {
9131 /* Access flag fault. */
9132 fi->type = ARMFault_AccessFlag;
9133 goto do_fault;
9134 }
9135 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9136 } else {
9137 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9138 }
9139 if (*prot && !xn) {
9140 *prot |= PAGE_EXEC;
9141 }
9142 if (!(*prot & (1 << access_type))) {
9143 /* Access permission fault. */
9144 fi->type = ARMFault_Permission;
9145 goto do_fault;
9146 }
9147 }
9148 if (ns) {
9149 /* The NS bit will (as required by the architecture) have no effect if
9150 * the CPU doesn't support TZ or this is a non-secure translation
9151 * regime, because the attribute will already be non-secure.
9152 */
9153 attrs->secure = false;
9154 }
9155 *phys_ptr = phys_addr;
9156 return false;
9157 do_fault:
9158 fi->domain = domain;
9159 fi->level = level;
9160 return true;
9161 }
9162
9163 /*
9164 * check_s2_mmu_setup
9165 * @cpu: ARMCPU
9166 * @is_aa64: True if the translation regime is in AArch64 state
9167 * @startlevel: Suggested starting level
9168 * @inputsize: Bitsize of IPAs
9169 * @stride: Page-table stride (See the ARM ARM)
9170 *
9171 * Returns true if the suggested S2 translation parameters are OK and
9172 * false otherwise.
9173 */
9174 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9175 int inputsize, int stride)
9176 {
9177 const int grainsize = stride + 3;
9178 int startsizecheck;
9179
9180 /* Negative levels are never allowed. */
9181 if (level < 0) {
9182 return false;
9183 }
9184
9185 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9186 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9187 return false;
9188 }
9189
9190 if (is_aa64) {
9191 CPUARMState *env = &cpu->env;
9192 unsigned int pamax = arm_pamax(cpu);
9193
9194 switch (stride) {
9195 case 13: /* 64KB Pages. */
9196 if (level == 0 || (level == 1 && pamax <= 42)) {
9197 return false;
9198 }
9199 break;
9200 case 11: /* 16KB Pages. */
9201 if (level == 0 || (level == 1 && pamax <= 40)) {
9202 return false;
9203 }
9204 break;
9205 case 9: /* 4KB Pages. */
9206 if (level == 0 && pamax <= 42) {
9207 return false;
9208 }
9209 break;
9210 default:
9211 g_assert_not_reached();
9212 }
9213
9214 /* Inputsize checks. */
9215 if (inputsize > pamax &&
9216 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9217 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9218 return false;
9219 }
9220 } else {
9221 /* AArch32 only supports 4KB pages. Assert on that. */
9222 assert(stride == 9);
9223
9224 if (level == 0) {
9225 return false;
9226 }
9227 }
9228 return true;
9229 }
9230
9231 /* Translate from the 4-bit stage 2 representation of
9232 * memory attributes (without cache-allocation hints) to
9233 * the 8-bit representation of the stage 1 MAIR registers
9234 * (which includes allocation hints).
9235 *
9236 * ref: shared/translation/attrs/S2AttrDecode()
9237 * .../S2ConvertAttrsHints()
9238 */
9239 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9240 {
9241 uint8_t hiattr = extract32(s2attrs, 2, 2);
9242 uint8_t loattr = extract32(s2attrs, 0, 2);
9243 uint8_t hihint = 0, lohint = 0;
9244
9245 if (hiattr != 0) { /* normal memory */
9246 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9247 hiattr = loattr = 1; /* non-cacheable */
9248 } else {
9249 if (hiattr != 1) { /* Write-through or write-back */
9250 hihint = 3; /* RW allocate */
9251 }
9252 if (loattr != 1) { /* Write-through or write-back */
9253 lohint = 3; /* RW allocate */
9254 }
9255 }
9256 }
9257
9258 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9259 }
9260 #endif /* !CONFIG_USER_ONLY */
9261
9262 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
9263 ARMMMUIdx mmu_idx)
9264 {
9265 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9266 uint32_t el = regime_el(env, mmu_idx);
9267 bool tbi, tbid, epd, hpd, using16k, using64k;
9268 int select, tsz;
9269
9270 /*
9271 * Bit 55 is always between the two regions, and is canonical for
9272 * determining if address tagging is enabled.
9273 */
9274 select = extract64(va, 55, 1);
9275
9276 if (el > 1) {
9277 tsz = extract32(tcr, 0, 6);
9278 using64k = extract32(tcr, 14, 1);
9279 using16k = extract32(tcr, 15, 1);
9280 if (mmu_idx == ARMMMUIdx_S2NS) {
9281 /* VTCR_EL2 */
9282 tbi = tbid = hpd = false;
9283 } else {
9284 tbi = extract32(tcr, 20, 1);
9285 hpd = extract32(tcr, 24, 1);
9286 tbid = extract32(tcr, 29, 1);
9287 }
9288 epd = false;
9289 } else if (!select) {
9290 tsz = extract32(tcr, 0, 6);
9291 epd = extract32(tcr, 7, 1);
9292 using64k = extract32(tcr, 14, 1);
9293 using16k = extract32(tcr, 15, 1);
9294 tbi = extract64(tcr, 37, 1);
9295 hpd = extract64(tcr, 41, 1);
9296 tbid = extract64(tcr, 51, 1);
9297 } else {
9298 int tg = extract32(tcr, 30, 2);
9299 using16k = tg == 1;
9300 using64k = tg == 3;
9301 tsz = extract32(tcr, 16, 6);
9302 epd = extract32(tcr, 23, 1);
9303 tbi = extract64(tcr, 38, 1);
9304 hpd = extract64(tcr, 42, 1);
9305 tbid = extract64(tcr, 52, 1);
9306 }
9307 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
9308 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
9309
9310 return (ARMVAParameters) {
9311 .tsz = tsz,
9312 .select = select,
9313 .tbi = tbi,
9314 .tbid = tbid,
9315 .epd = epd,
9316 .hpd = hpd,
9317 .using16k = using16k,
9318 .using64k = using64k,
9319 };
9320 }
9321
9322 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
9323 ARMMMUIdx mmu_idx, bool data)
9324 {
9325 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
9326
9327 /* Present TBI as a composite with TBID. */
9328 ret.tbi &= (data || !ret.tbid);
9329 return ret;
9330 }
9331
9332 #ifndef CONFIG_USER_ONLY
9333 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
9334 ARMMMUIdx mmu_idx)
9335 {
9336 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
9337 uint32_t el = regime_el(env, mmu_idx);
9338 int select, tsz;
9339 bool epd, hpd;
9340
9341 if (mmu_idx == ARMMMUIdx_S2NS) {
9342 /* VTCR */
9343 bool sext = extract32(tcr, 4, 1);
9344 bool sign = extract32(tcr, 3, 1);
9345
9346 /*
9347 * If the sign-extend bit is not the same as t0sz[3], the result
9348 * is unpredictable. Flag this as a guest error.
9349 */
9350 if (sign != sext) {
9351 qemu_log_mask(LOG_GUEST_ERROR,
9352 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9353 }
9354 tsz = sextract32(tcr, 0, 4) + 8;
9355 select = 0;
9356 hpd = false;
9357 epd = false;
9358 } else if (el == 2) {
9359 /* HTCR */
9360 tsz = extract32(tcr, 0, 3);
9361 select = 0;
9362 hpd = extract64(tcr, 24, 1);
9363 epd = false;
9364 } else {
9365 int t0sz = extract32(tcr, 0, 3);
9366 int t1sz = extract32(tcr, 16, 3);
9367
9368 if (t1sz == 0) {
9369 select = va > (0xffffffffu >> t0sz);
9370 } else {
9371 /* Note that we will detect errors later. */
9372 select = va >= ~(0xffffffffu >> t1sz);
9373 }
9374 if (!select) {
9375 tsz = t0sz;
9376 epd = extract32(tcr, 7, 1);
9377 hpd = extract64(tcr, 41, 1);
9378 } else {
9379 tsz = t1sz;
9380 epd = extract32(tcr, 23, 1);
9381 hpd = extract64(tcr, 42, 1);
9382 }
9383 /* For aarch32, hpd0 is not enabled without t2e as well. */
9384 hpd &= extract32(tcr, 6, 1);
9385 }
9386
9387 return (ARMVAParameters) {
9388 .tsz = tsz,
9389 .select = select,
9390 .epd = epd,
9391 .hpd = hpd,
9392 };
9393 }
9394
9395 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9396 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9397 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9398 target_ulong *page_size_ptr,
9399 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9400 {
9401 ARMCPU *cpu = env_archcpu(env);
9402 CPUState *cs = CPU(cpu);
9403 /* Read an LPAE long-descriptor translation table. */
9404 ARMFaultType fault_type = ARMFault_Translation;
9405 uint32_t level;
9406 ARMVAParameters param;
9407 uint64_t ttbr;
9408 hwaddr descaddr, indexmask, indexmask_grainsize;
9409 uint32_t tableattrs;
9410 target_ulong page_size;
9411 uint32_t attrs;
9412 int32_t stride;
9413 int addrsize, inputsize;
9414 TCR *tcr = regime_tcr(env, mmu_idx);
9415 int ap, ns, xn, pxn;
9416 uint32_t el = regime_el(env, mmu_idx);
9417 bool ttbr1_valid;
9418 uint64_t descaddrmask;
9419 bool aarch64 = arm_el_is_aa64(env, el);
9420 bool guarded = false;
9421
9422 /* TODO:
9423 * This code does not handle the different format TCR for VTCR_EL2.
9424 * This code also does not support shareability levels.
9425 * Attribute and permission bit handling should also be checked when adding
9426 * support for those page table walks.
9427 */
9428 if (aarch64) {
9429 param = aa64_va_parameters(env, address, mmu_idx,
9430 access_type != MMU_INST_FETCH);
9431 level = 0;
9432 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9433 * invalid.
9434 */
9435 ttbr1_valid = (el < 2);
9436 addrsize = 64 - 8 * param.tbi;
9437 inputsize = 64 - param.tsz;
9438 } else {
9439 param = aa32_va_parameters(env, address, mmu_idx);
9440 level = 1;
9441 /* There is no TTBR1 for EL2 */
9442 ttbr1_valid = (el != 2);
9443 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
9444 inputsize = addrsize - param.tsz;
9445 }
9446
9447 /*
9448 * We determined the region when collecting the parameters, but we
9449 * have not yet validated that the address is valid for the region.
9450 * Extract the top bits and verify that they all match select.
9451 *
9452 * For aa32, if inputsize == addrsize, then we have selected the
9453 * region by exclusion in aa32_va_parameters and there is no more
9454 * validation to do here.
9455 */
9456 if (inputsize < addrsize) {
9457 target_ulong top_bits = sextract64(address, inputsize,
9458 addrsize - inputsize);
9459 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
9460 /* The gap between the two regions is a Translation fault */
9461 fault_type = ARMFault_Translation;
9462 goto do_fault;
9463 }
9464 }
9465
9466 if (param.using64k) {
9467 stride = 13;
9468 } else if (param.using16k) {
9469 stride = 11;
9470 } else {
9471 stride = 9;
9472 }
9473
9474 /* Note that QEMU ignores shareability and cacheability attributes,
9475 * so we don't need to do anything with the SH, ORGN, IRGN fields
9476 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9477 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9478 * implement any ASID-like capability so we can ignore it (instead
9479 * we will always flush the TLB any time the ASID is changed).
9480 */
9481 ttbr = regime_ttbr(env, mmu_idx, param.select);
9482
9483 /* Here we should have set up all the parameters for the translation:
9484 * inputsize, ttbr, epd, stride, tbi
9485 */
9486
9487 if (param.epd) {
9488 /* Translation table walk disabled => Translation fault on TLB miss
9489 * Note: This is always 0 on 64-bit EL2 and EL3.
9490 */
9491 goto do_fault;
9492 }
9493
9494 if (mmu_idx != ARMMMUIdx_S2NS) {
9495 /* The starting level depends on the virtual address size (which can
9496 * be up to 48 bits) and the translation granule size. It indicates
9497 * the number of strides (stride bits at a time) needed to
9498 * consume the bits of the input address. In the pseudocode this is:
9499 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9500 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9501 * our 'stride + 3' and 'stride' is our 'stride'.
9502 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9503 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9504 * = 4 - (inputsize - 4) / stride;
9505 */
9506 level = 4 - (inputsize - 4) / stride;
9507 } else {
9508 /* For stage 2 translations the starting level is specified by the
9509 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9510 */
9511 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9512 uint32_t startlevel;
9513 bool ok;
9514
9515 if (!aarch64 || stride == 9) {
9516 /* AArch32 or 4KB pages */
9517 startlevel = 2 - sl0;
9518 } else {
9519 /* 16KB or 64KB pages */
9520 startlevel = 3 - sl0;
9521 }
9522
9523 /* Check that the starting level is valid. */
9524 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9525 inputsize, stride);
9526 if (!ok) {
9527 fault_type = ARMFault_Translation;
9528 goto do_fault;
9529 }
9530 level = startlevel;
9531 }
9532
9533 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9534 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9535
9536 /* Now we can extract the actual base address from the TTBR */
9537 descaddr = extract64(ttbr, 0, 48);
9538 descaddr &= ~indexmask;
9539
9540 /* The address field in the descriptor goes up to bit 39 for ARMv7
9541 * but up to bit 47 for ARMv8, but we use the descaddrmask
9542 * up to bit 39 for AArch32, because we don't need other bits in that case
9543 * to construct next descriptor address (anyway they should be all zeroes).
9544 */
9545 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9546 ~indexmask_grainsize;
9547
9548 /* Secure accesses start with the page table in secure memory and
9549 * can be downgraded to non-secure at any step. Non-secure accesses
9550 * remain non-secure. We implement this by just ORing in the NSTable/NS
9551 * bits at each step.
9552 */
9553 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9554 for (;;) {
9555 uint64_t descriptor;
9556 bool nstable;
9557
9558 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9559 descaddr &= ~7ULL;
9560 nstable = extract32(tableattrs, 4, 1);
9561 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9562 if (fi->type != ARMFault_None) {
9563 goto do_fault;
9564 }
9565
9566 if (!(descriptor & 1) ||
9567 (!(descriptor & 2) && (level == 3))) {
9568 /* Invalid, or the Reserved level 3 encoding */
9569 goto do_fault;
9570 }
9571 descaddr = descriptor & descaddrmask;
9572
9573 if ((descriptor & 2) && (level < 3)) {
9574 /* Table entry. The top five bits are attributes which may
9575 * propagate down through lower levels of the table (and
9576 * which are all arranged so that 0 means "no effect", so
9577 * we can gather them up by ORing in the bits at each level).
9578 */
9579 tableattrs |= extract64(descriptor, 59, 5);
9580 level++;
9581 indexmask = indexmask_grainsize;
9582 continue;
9583 }
9584 /* Block entry at level 1 or 2, or page entry at level 3.
9585 * These are basically the same thing, although the number
9586 * of bits we pull in from the vaddr varies.
9587 */
9588 page_size = (1ULL << ((stride * (4 - level)) + 3));
9589 descaddr |= (address & (page_size - 1));
9590 /* Extract attributes from the descriptor */
9591 attrs = extract64(descriptor, 2, 10)
9592 | (extract64(descriptor, 52, 12) << 10);
9593
9594 if (mmu_idx == ARMMMUIdx_S2NS) {
9595 /* Stage 2 table descriptors do not include any attribute fields */
9596 break;
9597 }
9598 /* Merge in attributes from table descriptors */
9599 attrs |= nstable << 3; /* NS */
9600 guarded = extract64(descriptor, 50, 1); /* GP */
9601 if (param.hpd) {
9602 /* HPD disables all the table attributes except NSTable. */
9603 break;
9604 }
9605 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9606 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9607 * means "force PL1 access only", which means forcing AP[1] to 0.
9608 */
9609 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
9610 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
9611 break;
9612 }
9613 /* Here descaddr is the final physical address, and attributes
9614 * are all in attrs.
9615 */
9616 fault_type = ARMFault_AccessFlag;
9617 if ((attrs & (1 << 8)) == 0) {
9618 /* Access flag */
9619 goto do_fault;
9620 }
9621
9622 ap = extract32(attrs, 4, 2);
9623 xn = extract32(attrs, 12, 1);
9624
9625 if (mmu_idx == ARMMMUIdx_S2NS) {
9626 ns = true;
9627 *prot = get_S2prot(env, ap, xn);
9628 } else {
9629 ns = extract32(attrs, 3, 1);
9630 pxn = extract32(attrs, 11, 1);
9631 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9632 }
9633
9634 fault_type = ARMFault_Permission;
9635 if (!(*prot & (1 << access_type))) {
9636 goto do_fault;
9637 }
9638
9639 if (ns) {
9640 /* The NS bit will (as required by the architecture) have no effect if
9641 * the CPU doesn't support TZ or this is a non-secure translation
9642 * regime, because the attribute will already be non-secure.
9643 */
9644 txattrs->secure = false;
9645 }
9646 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
9647 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
9648 txattrs->target_tlb_bit0 = true;
9649 }
9650
9651 if (cacheattrs != NULL) {
9652 if (mmu_idx == ARMMMUIdx_S2NS) {
9653 cacheattrs->attrs = convert_stage2_attrs(env,
9654 extract32(attrs, 0, 4));
9655 } else {
9656 /* Index into MAIR registers for cache attributes */
9657 uint8_t attrindx = extract32(attrs, 0, 3);
9658 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9659 assert(attrindx <= 7);
9660 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9661 }
9662 cacheattrs->shareability = extract32(attrs, 6, 2);
9663 }
9664
9665 *phys_ptr = descaddr;
9666 *page_size_ptr = page_size;
9667 return false;
9668
9669 do_fault:
9670 fi->type = fault_type;
9671 fi->level = level;
9672 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9673 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9674 return true;
9675 }
9676
9677 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9678 ARMMMUIdx mmu_idx,
9679 int32_t address, int *prot)
9680 {
9681 if (!arm_feature(env, ARM_FEATURE_M)) {
9682 *prot = PAGE_READ | PAGE_WRITE;
9683 switch (address) {
9684 case 0xF0000000 ... 0xFFFFFFFF:
9685 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9686 /* hivecs execing is ok */
9687 *prot |= PAGE_EXEC;
9688 }
9689 break;
9690 case 0x00000000 ... 0x7FFFFFFF:
9691 *prot |= PAGE_EXEC;
9692 break;
9693 }
9694 } else {
9695 /* Default system address map for M profile cores.
9696 * The architecture specifies which regions are execute-never;
9697 * at the MPU level no other checks are defined.
9698 */
9699 switch (address) {
9700 case 0x00000000 ... 0x1fffffff: /* ROM */
9701 case 0x20000000 ... 0x3fffffff: /* SRAM */
9702 case 0x60000000 ... 0x7fffffff: /* RAM */
9703 case 0x80000000 ... 0x9fffffff: /* RAM */
9704 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9705 break;
9706 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9707 case 0xa0000000 ... 0xbfffffff: /* Device */
9708 case 0xc0000000 ... 0xdfffffff: /* Device */
9709 case 0xe0000000 ... 0xffffffff: /* System */
9710 *prot = PAGE_READ | PAGE_WRITE;
9711 break;
9712 default:
9713 g_assert_not_reached();
9714 }
9715 }
9716 }
9717
9718 static bool pmsav7_use_background_region(ARMCPU *cpu,
9719 ARMMMUIdx mmu_idx, bool is_user)
9720 {
9721 /* Return true if we should use the default memory map as a
9722 * "background" region if there are no hits against any MPU regions.
9723 */
9724 CPUARMState *env = &cpu->env;
9725
9726 if (is_user) {
9727 return false;
9728 }
9729
9730 if (arm_feature(env, ARM_FEATURE_M)) {
9731 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9732 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9733 } else {
9734 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9735 }
9736 }
9737
9738 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9739 {
9740 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9741 return arm_feature(env, ARM_FEATURE_M) &&
9742 extract32(address, 20, 12) == 0xe00;
9743 }
9744
9745 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9746 {
9747 /* True if address is in the M profile system region
9748 * 0xe0000000 - 0xffffffff
9749 */
9750 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9751 }
9752
9753 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9754 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9755 hwaddr *phys_ptr, int *prot,
9756 target_ulong *page_size,
9757 ARMMMUFaultInfo *fi)
9758 {
9759 ARMCPU *cpu = env_archcpu(env);
9760 int n;
9761 bool is_user = regime_is_user(env, mmu_idx);
9762
9763 *phys_ptr = address;
9764 *page_size = TARGET_PAGE_SIZE;
9765 *prot = 0;
9766
9767 if (regime_translation_disabled(env, mmu_idx) ||
9768 m_is_ppb_region(env, address)) {
9769 /* MPU disabled or M profile PPB access: use default memory map.
9770 * The other case which uses the default memory map in the
9771 * v7M ARM ARM pseudocode is exception vector reads from the vector
9772 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9773 * which always does a direct read using address_space_ldl(), rather
9774 * than going via this function, so we don't need to check that here.
9775 */
9776 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9777 } else { /* MPU enabled */
9778 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9779 /* region search */
9780 uint32_t base = env->pmsav7.drbar[n];
9781 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9782 uint32_t rmask;
9783 bool srdis = false;
9784
9785 if (!(env->pmsav7.drsr[n] & 0x1)) {
9786 continue;
9787 }
9788
9789 if (!rsize) {
9790 qemu_log_mask(LOG_GUEST_ERROR,
9791 "DRSR[%d]: Rsize field cannot be 0\n", n);
9792 continue;
9793 }
9794 rsize++;
9795 rmask = (1ull << rsize) - 1;
9796
9797 if (base & rmask) {
9798 qemu_log_mask(LOG_GUEST_ERROR,
9799 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9800 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9801 n, base, rmask);
9802 continue;
9803 }
9804
9805 if (address < base || address > base + rmask) {
9806 /*
9807 * Address not in this region. We must check whether the
9808 * region covers addresses in the same page as our address.
9809 * In that case we must not report a size that covers the
9810 * whole page for a subsequent hit against a different MPU
9811 * region or the background region, because it would result in
9812 * incorrect TLB hits for subsequent accesses to addresses that
9813 * are in this MPU region.
9814 */
9815 if (ranges_overlap(base, rmask,
9816 address & TARGET_PAGE_MASK,
9817 TARGET_PAGE_SIZE)) {
9818 *page_size = 1;
9819 }
9820 continue;
9821 }
9822
9823 /* Region matched */
9824
9825 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9826 int i, snd;
9827 uint32_t srdis_mask;
9828
9829 rsize -= 3; /* sub region size (power of 2) */
9830 snd = ((address - base) >> rsize) & 0x7;
9831 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9832
9833 srdis_mask = srdis ? 0x3 : 0x0;
9834 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9835 /* This will check in groups of 2, 4 and then 8, whether
9836 * the subregion bits are consistent. rsize is incremented
9837 * back up to give the region size, considering consistent
9838 * adjacent subregions as one region. Stop testing if rsize
9839 * is already big enough for an entire QEMU page.
9840 */
9841 int snd_rounded = snd & ~(i - 1);
9842 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9843 snd_rounded + 8, i);
9844 if (srdis_mask ^ srdis_multi) {
9845 break;
9846 }
9847 srdis_mask = (srdis_mask << i) | srdis_mask;
9848 rsize++;
9849 }
9850 }
9851 if (srdis) {
9852 continue;
9853 }
9854 if (rsize < TARGET_PAGE_BITS) {
9855 *page_size = 1 << rsize;
9856 }
9857 break;
9858 }
9859
9860 if (n == -1) { /* no hits */
9861 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9862 /* background fault */
9863 fi->type = ARMFault_Background;
9864 return true;
9865 }
9866 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9867 } else { /* a MPU hit! */
9868 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9869 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9870
9871 if (m_is_system_region(env, address)) {
9872 /* System space is always execute never */
9873 xn = 1;
9874 }
9875
9876 if (is_user) { /* User mode AP bit decoding */
9877 switch (ap) {
9878 case 0:
9879 case 1:
9880 case 5:
9881 break; /* no access */
9882 case 3:
9883 *prot |= PAGE_WRITE;
9884 /* fall through */
9885 case 2:
9886 case 6:
9887 *prot |= PAGE_READ | PAGE_EXEC;
9888 break;
9889 case 7:
9890 /* for v7M, same as 6; for R profile a reserved value */
9891 if (arm_feature(env, ARM_FEATURE_M)) {
9892 *prot |= PAGE_READ | PAGE_EXEC;
9893 break;
9894 }
9895 /* fall through */
9896 default:
9897 qemu_log_mask(LOG_GUEST_ERROR,
9898 "DRACR[%d]: Bad value for AP bits: 0x%"
9899 PRIx32 "\n", n, ap);
9900 }
9901 } else { /* Priv. mode AP bits decoding */
9902 switch (ap) {
9903 case 0:
9904 break; /* no access */
9905 case 1:
9906 case 2:
9907 case 3:
9908 *prot |= PAGE_WRITE;
9909 /* fall through */
9910 case 5:
9911 case 6:
9912 *prot |= PAGE_READ | PAGE_EXEC;
9913 break;
9914 case 7:
9915 /* for v7M, same as 6; for R profile a reserved value */
9916 if (arm_feature(env, ARM_FEATURE_M)) {
9917 *prot |= PAGE_READ | PAGE_EXEC;
9918 break;
9919 }
9920 /* fall through */
9921 default:
9922 qemu_log_mask(LOG_GUEST_ERROR,
9923 "DRACR[%d]: Bad value for AP bits: 0x%"
9924 PRIx32 "\n", n, ap);
9925 }
9926 }
9927
9928 /* execute never */
9929 if (xn) {
9930 *prot &= ~PAGE_EXEC;
9931 }
9932 }
9933 }
9934
9935 fi->type = ARMFault_Permission;
9936 fi->level = 1;
9937 return !(*prot & (1 << access_type));
9938 }
9939
9940 static bool v8m_is_sau_exempt(CPUARMState *env,
9941 uint32_t address, MMUAccessType access_type)
9942 {
9943 /* The architecture specifies that certain address ranges are
9944 * exempt from v8M SAU/IDAU checks.
9945 */
9946 return
9947 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9948 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9949 (address >= 0xe000e000 && address <= 0xe000efff) ||
9950 (address >= 0xe002e000 && address <= 0xe002efff) ||
9951 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9952 (address >= 0xe00ff000 && address <= 0xe00fffff);
9953 }
9954
9955 void v8m_security_lookup(CPUARMState *env, uint32_t address,
9956 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9957 V8M_SAttributes *sattrs)
9958 {
9959 /* Look up the security attributes for this address. Compare the
9960 * pseudocode SecurityCheck() function.
9961 * We assume the caller has zero-initialized *sattrs.
9962 */
9963 ARMCPU *cpu = env_archcpu(env);
9964 int r;
9965 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9966 int idau_region = IREGION_NOTVALID;
9967 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9968 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9969
9970 if (cpu->idau) {
9971 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9972 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9973
9974 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9975 &idau_nsc);
9976 }
9977
9978 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9979 /* 0xf0000000..0xffffffff is always S for insn fetches */
9980 return;
9981 }
9982
9983 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9984 sattrs->ns = !regime_is_secure(env, mmu_idx);
9985 return;
9986 }
9987
9988 if (idau_region != IREGION_NOTVALID) {
9989 sattrs->irvalid = true;
9990 sattrs->iregion = idau_region;
9991 }
9992
9993 switch (env->sau.ctrl & 3) {
9994 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9995 break;
9996 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9997 sattrs->ns = true;
9998 break;
9999 default: /* SAU.ENABLE == 1 */
10000 for (r = 0; r < cpu->sau_sregion; r++) {
10001 if (env->sau.rlar[r] & 1) {
10002 uint32_t base = env->sau.rbar[r] & ~0x1f;
10003 uint32_t limit = env->sau.rlar[r] | 0x1f;
10004
10005 if (base <= address && limit >= address) {
10006 if (base > addr_page_base || limit < addr_page_limit) {
10007 sattrs->subpage = true;
10008 }
10009 if (sattrs->srvalid) {
10010 /* If we hit in more than one region then we must report
10011 * as Secure, not NS-Callable, with no valid region
10012 * number info.
10013 */
10014 sattrs->ns = false;
10015 sattrs->nsc = false;
10016 sattrs->sregion = 0;
10017 sattrs->srvalid = false;
10018 break;
10019 } else {
10020 if (env->sau.rlar[r] & 2) {
10021 sattrs->nsc = true;
10022 } else {
10023 sattrs->ns = true;
10024 }
10025 sattrs->srvalid = true;
10026 sattrs->sregion = r;
10027 }
10028 } else {
10029 /*
10030 * Address not in this region. We must check whether the
10031 * region covers addresses in the same page as our address.
10032 * In that case we must not report a size that covers the
10033 * whole page for a subsequent hit against a different MPU
10034 * region or the background region, because it would result
10035 * in incorrect TLB hits for subsequent accesses to
10036 * addresses that are in this MPU region.
10037 */
10038 if (limit >= base &&
10039 ranges_overlap(base, limit - base + 1,
10040 addr_page_base,
10041 TARGET_PAGE_SIZE)) {
10042 sattrs->subpage = true;
10043 }
10044 }
10045 }
10046 }
10047 break;
10048 }
10049
10050 /*
10051 * The IDAU will override the SAU lookup results if it specifies
10052 * higher security than the SAU does.
10053 */
10054 if (!idau_ns) {
10055 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10056 sattrs->ns = false;
10057 sattrs->nsc = idau_nsc;
10058 }
10059 }
10060 }
10061
10062 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10063 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10064 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10065 int *prot, bool *is_subpage,
10066 ARMMMUFaultInfo *fi, uint32_t *mregion)
10067 {
10068 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10069 * that a full phys-to-virt translation does).
10070 * mregion is (if not NULL) set to the region number which matched,
10071 * or -1 if no region number is returned (MPU off, address did not
10072 * hit a region, address hit in multiple regions).
10073 * We set is_subpage to true if the region hit doesn't cover the
10074 * entire TARGET_PAGE the address is within.
10075 */
10076 ARMCPU *cpu = env_archcpu(env);
10077 bool is_user = regime_is_user(env, mmu_idx);
10078 uint32_t secure = regime_is_secure(env, mmu_idx);
10079 int n;
10080 int matchregion = -1;
10081 bool hit = false;
10082 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10083 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10084
10085 *is_subpage = false;
10086 *phys_ptr = address;
10087 *prot = 0;
10088 if (mregion) {
10089 *mregion = -1;
10090 }
10091
10092 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10093 * was an exception vector read from the vector table (which is always
10094 * done using the default system address map), because those accesses
10095 * are done in arm_v7m_load_vector(), which always does a direct
10096 * read using address_space_ldl(), rather than going via this function.
10097 */
10098 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10099 hit = true;
10100 } else if (m_is_ppb_region(env, address)) {
10101 hit = true;
10102 } else {
10103 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10104 hit = true;
10105 }
10106
10107 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10108 /* region search */
10109 /* Note that the base address is bits [31:5] from the register
10110 * with bits [4:0] all zeroes, but the limit address is bits
10111 * [31:5] from the register with bits [4:0] all ones.
10112 */
10113 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10114 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10115
10116 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10117 /* Region disabled */
10118 continue;
10119 }
10120
10121 if (address < base || address > limit) {
10122 /*
10123 * Address not in this region. We must check whether the
10124 * region covers addresses in the same page as our address.
10125 * In that case we must not report a size that covers the
10126 * whole page for a subsequent hit against a different MPU
10127 * region or the background region, because it would result in
10128 * incorrect TLB hits for subsequent accesses to addresses that
10129 * are in this MPU region.
10130 */
10131 if (limit >= base &&
10132 ranges_overlap(base, limit - base + 1,
10133 addr_page_base,
10134 TARGET_PAGE_SIZE)) {
10135 *is_subpage = true;
10136 }
10137 continue;
10138 }
10139
10140 if (base > addr_page_base || limit < addr_page_limit) {
10141 *is_subpage = true;
10142 }
10143
10144 if (matchregion != -1) {
10145 /* Multiple regions match -- always a failure (unlike
10146 * PMSAv7 where highest-numbered-region wins)
10147 */
10148 fi->type = ARMFault_Permission;
10149 fi->level = 1;
10150 return true;
10151 }
10152
10153 matchregion = n;
10154 hit = true;
10155 }
10156 }
10157
10158 if (!hit) {
10159 /* background fault */
10160 fi->type = ARMFault_Background;
10161 return true;
10162 }
10163
10164 if (matchregion == -1) {
10165 /* hit using the background region */
10166 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10167 } else {
10168 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10169 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10170
10171 if (m_is_system_region(env, address)) {
10172 /* System space is always execute never */
10173 xn = 1;
10174 }
10175
10176 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10177 if (*prot && !xn) {
10178 *prot |= PAGE_EXEC;
10179 }
10180 /* We don't need to look the attribute up in the MAIR0/MAIR1
10181 * registers because that only tells us about cacheability.
10182 */
10183 if (mregion) {
10184 *mregion = matchregion;
10185 }
10186 }
10187
10188 fi->type = ARMFault_Permission;
10189 fi->level = 1;
10190 return !(*prot & (1 << access_type));
10191 }
10192
10193
10194 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10195 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10196 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10197 int *prot, target_ulong *page_size,
10198 ARMMMUFaultInfo *fi)
10199 {
10200 uint32_t secure = regime_is_secure(env, mmu_idx);
10201 V8M_SAttributes sattrs = {};
10202 bool ret;
10203 bool mpu_is_subpage;
10204
10205 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10206 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10207 if (access_type == MMU_INST_FETCH) {
10208 /* Instruction fetches always use the MMU bank and the
10209 * transaction attribute determined by the fetch address,
10210 * regardless of CPU state. This is painful for QEMU
10211 * to handle, because it would mean we need to encode
10212 * into the mmu_idx not just the (user, negpri) information
10213 * for the current security state but also that for the
10214 * other security state, which would balloon the number
10215 * of mmu_idx values needed alarmingly.
10216 * Fortunately we can avoid this because it's not actually
10217 * possible to arbitrarily execute code from memory with
10218 * the wrong security attribute: it will always generate
10219 * an exception of some kind or another, apart from the
10220 * special case of an NS CPU executing an SG instruction
10221 * in S&NSC memory. So we always just fail the translation
10222 * here and sort things out in the exception handler
10223 * (including possibly emulating an SG instruction).
10224 */
10225 if (sattrs.ns != !secure) {
10226 if (sattrs.nsc) {
10227 fi->type = ARMFault_QEMU_NSCExec;
10228 } else {
10229 fi->type = ARMFault_QEMU_SFault;
10230 }
10231 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10232 *phys_ptr = address;
10233 *prot = 0;
10234 return true;
10235 }
10236 } else {
10237 /* For data accesses we always use the MMU bank indicated
10238 * by the current CPU state, but the security attributes
10239 * might downgrade a secure access to nonsecure.
10240 */
10241 if (sattrs.ns) {
10242 txattrs->secure = false;
10243 } else if (!secure) {
10244 /* NS access to S memory must fault.
10245 * Architecturally we should first check whether the
10246 * MPU information for this address indicates that we
10247 * are doing an unaligned access to Device memory, which
10248 * should generate a UsageFault instead. QEMU does not
10249 * currently check for that kind of unaligned access though.
10250 * If we added it we would need to do so as a special case
10251 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10252 */
10253 fi->type = ARMFault_QEMU_SFault;
10254 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10255 *phys_ptr = address;
10256 *prot = 0;
10257 return true;
10258 }
10259 }
10260 }
10261
10262 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10263 txattrs, prot, &mpu_is_subpage, fi, NULL);
10264 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10265 return ret;
10266 }
10267
10268 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10269 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10270 hwaddr *phys_ptr, int *prot,
10271 ARMMMUFaultInfo *fi)
10272 {
10273 int n;
10274 uint32_t mask;
10275 uint32_t base;
10276 bool is_user = regime_is_user(env, mmu_idx);
10277
10278 if (regime_translation_disabled(env, mmu_idx)) {
10279 /* MPU disabled. */
10280 *phys_ptr = address;
10281 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10282 return false;
10283 }
10284
10285 *phys_ptr = address;
10286 for (n = 7; n >= 0; n--) {
10287 base = env->cp15.c6_region[n];
10288 if ((base & 1) == 0) {
10289 continue;
10290 }
10291 mask = 1 << ((base >> 1) & 0x1f);
10292 /* Keep this shift separate from the above to avoid an
10293 (undefined) << 32. */
10294 mask = (mask << 1) - 1;
10295 if (((base ^ address) & ~mask) == 0) {
10296 break;
10297 }
10298 }
10299 if (n < 0) {
10300 fi->type = ARMFault_Background;
10301 return true;
10302 }
10303
10304 if (access_type == MMU_INST_FETCH) {
10305 mask = env->cp15.pmsav5_insn_ap;
10306 } else {
10307 mask = env->cp15.pmsav5_data_ap;
10308 }
10309 mask = (mask >> (n * 4)) & 0xf;
10310 switch (mask) {
10311 case 0:
10312 fi->type = ARMFault_Permission;
10313 fi->level = 1;
10314 return true;
10315 case 1:
10316 if (is_user) {
10317 fi->type = ARMFault_Permission;
10318 fi->level = 1;
10319 return true;
10320 }
10321 *prot = PAGE_READ | PAGE_WRITE;
10322 break;
10323 case 2:
10324 *prot = PAGE_READ;
10325 if (!is_user) {
10326 *prot |= PAGE_WRITE;
10327 }
10328 break;
10329 case 3:
10330 *prot = PAGE_READ | PAGE_WRITE;
10331 break;
10332 case 5:
10333 if (is_user) {
10334 fi->type = ARMFault_Permission;
10335 fi->level = 1;
10336 return true;
10337 }
10338 *prot = PAGE_READ;
10339 break;
10340 case 6:
10341 *prot = PAGE_READ;
10342 break;
10343 default:
10344 /* Bad permission. */
10345 fi->type = ARMFault_Permission;
10346 fi->level = 1;
10347 return true;
10348 }
10349 *prot |= PAGE_EXEC;
10350 return false;
10351 }
10352
10353 /* Combine either inner or outer cacheability attributes for normal
10354 * memory, according to table D4-42 and pseudocode procedure
10355 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10356 *
10357 * NB: only stage 1 includes allocation hints (RW bits), leading to
10358 * some asymmetry.
10359 */
10360 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10361 {
10362 if (s1 == 4 || s2 == 4) {
10363 /* non-cacheable has precedence */
10364 return 4;
10365 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10366 /* stage 1 write-through takes precedence */
10367 return s1;
10368 } else if (extract32(s2, 2, 2) == 2) {
10369 /* stage 2 write-through takes precedence, but the allocation hint
10370 * is still taken from stage 1
10371 */
10372 return (2 << 2) | extract32(s1, 0, 2);
10373 } else { /* write-back */
10374 return s1;
10375 }
10376 }
10377
10378 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10379 * and CombineS1S2Desc()
10380 *
10381 * @s1: Attributes from stage 1 walk
10382 * @s2: Attributes from stage 2 walk
10383 */
10384 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10385 {
10386 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10387 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10388 ARMCacheAttrs ret;
10389
10390 /* Combine shareability attributes (table D4-43) */
10391 if (s1.shareability == 2 || s2.shareability == 2) {
10392 /* if either are outer-shareable, the result is outer-shareable */
10393 ret.shareability = 2;
10394 } else if (s1.shareability == 3 || s2.shareability == 3) {
10395 /* if either are inner-shareable, the result is inner-shareable */
10396 ret.shareability = 3;
10397 } else {
10398 /* both non-shareable */
10399 ret.shareability = 0;
10400 }
10401
10402 /* Combine memory type and cacheability attributes */
10403 if (s1hi == 0 || s2hi == 0) {
10404 /* Device has precedence over normal */
10405 if (s1lo == 0 || s2lo == 0) {
10406 /* nGnRnE has precedence over anything */
10407 ret.attrs = 0;
10408 } else if (s1lo == 4 || s2lo == 4) {
10409 /* non-Reordering has precedence over Reordering */
10410 ret.attrs = 4; /* nGnRE */
10411 } else if (s1lo == 8 || s2lo == 8) {
10412 /* non-Gathering has precedence over Gathering */
10413 ret.attrs = 8; /* nGRE */
10414 } else {
10415 ret.attrs = 0xc; /* GRE */
10416 }
10417
10418 /* Any location for which the resultant memory type is any
10419 * type of Device memory is always treated as Outer Shareable.
10420 */
10421 ret.shareability = 2;
10422 } else { /* Normal memory */
10423 /* Outer/inner cacheability combine independently */
10424 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10425 | combine_cacheattr_nibble(s1lo, s2lo);
10426
10427 if (ret.attrs == 0x44) {
10428 /* Any location for which the resultant memory type is Normal
10429 * Inner Non-cacheable, Outer Non-cacheable is always treated
10430 * as Outer Shareable.
10431 */
10432 ret.shareability = 2;
10433 }
10434 }
10435
10436 return ret;
10437 }
10438
10439
10440 /* get_phys_addr - get the physical address for this virtual address
10441 *
10442 * Find the physical address corresponding to the given virtual address,
10443 * by doing a translation table walk on MMU based systems or using the
10444 * MPU state on MPU based systems.
10445 *
10446 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10447 * prot and page_size may not be filled in, and the populated fsr value provides
10448 * information on why the translation aborted, in the format of a
10449 * DFSR/IFSR fault register, with the following caveats:
10450 * * we honour the short vs long DFSR format differences.
10451 * * the WnR bit is never set (the caller must do this).
10452 * * for PSMAv5 based systems we don't bother to return a full FSR format
10453 * value.
10454 *
10455 * @env: CPUARMState
10456 * @address: virtual address to get physical address for
10457 * @access_type: 0 for read, 1 for write, 2 for execute
10458 * @mmu_idx: MMU index indicating required translation regime
10459 * @phys_ptr: set to the physical address corresponding to the virtual address
10460 * @attrs: set to the memory transaction attributes to use
10461 * @prot: set to the permissions for the page containing phys_ptr
10462 * @page_size: set to the size of the page containing phys_ptr
10463 * @fi: set to fault info if the translation fails
10464 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10465 */
10466 bool get_phys_addr(CPUARMState *env, target_ulong address,
10467 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10468 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10469 target_ulong *page_size,
10470 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10471 {
10472 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10473 /* Call ourselves recursively to do the stage 1 and then stage 2
10474 * translations.
10475 */
10476 if (arm_feature(env, ARM_FEATURE_EL2)) {
10477 hwaddr ipa;
10478 int s2_prot;
10479 int ret;
10480 ARMCacheAttrs cacheattrs2 = {};
10481
10482 ret = get_phys_addr(env, address, access_type,
10483 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10484 prot, page_size, fi, cacheattrs);
10485
10486 /* If S1 fails or S2 is disabled, return early. */
10487 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10488 *phys_ptr = ipa;
10489 return ret;
10490 }
10491
10492 /* S1 is done. Now do S2 translation. */
10493 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10494 phys_ptr, attrs, &s2_prot,
10495 page_size, fi,
10496 cacheattrs != NULL ? &cacheattrs2 : NULL);
10497 fi->s2addr = ipa;
10498 /* Combine the S1 and S2 perms. */
10499 *prot &= s2_prot;
10500
10501 /* Combine the S1 and S2 cache attributes, if needed */
10502 if (!ret && cacheattrs != NULL) {
10503 if (env->cp15.hcr_el2 & HCR_DC) {
10504 /*
10505 * HCR.DC forces the first stage attributes to
10506 * Normal Non-Shareable,
10507 * Inner Write-Back Read-Allocate Write-Allocate,
10508 * Outer Write-Back Read-Allocate Write-Allocate.
10509 */
10510 cacheattrs->attrs = 0xff;
10511 cacheattrs->shareability = 0;
10512 }
10513 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10514 }
10515
10516 return ret;
10517 } else {
10518 /*
10519 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10520 */
10521 mmu_idx = stage_1_mmu_idx(mmu_idx);
10522 }
10523 }
10524
10525 /* The page table entries may downgrade secure to non-secure, but
10526 * cannot upgrade an non-secure translation regime's attributes
10527 * to secure.
10528 */
10529 attrs->secure = regime_is_secure(env, mmu_idx);
10530 attrs->user = regime_is_user(env, mmu_idx);
10531
10532 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10533 * In v7 and earlier it affects all stage 1 translations.
10534 */
10535 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10536 && !arm_feature(env, ARM_FEATURE_V8)) {
10537 if (regime_el(env, mmu_idx) == 3) {
10538 address += env->cp15.fcseidr_s;
10539 } else {
10540 address += env->cp15.fcseidr_ns;
10541 }
10542 }
10543
10544 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10545 bool ret;
10546 *page_size = TARGET_PAGE_SIZE;
10547
10548 if (arm_feature(env, ARM_FEATURE_V8)) {
10549 /* PMSAv8 */
10550 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10551 phys_ptr, attrs, prot, page_size, fi);
10552 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10553 /* PMSAv7 */
10554 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10555 phys_ptr, prot, page_size, fi);
10556 } else {
10557 /* Pre-v7 MPU */
10558 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10559 phys_ptr, prot, fi);
10560 }
10561 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10562 " mmu_idx %u -> %s (prot %c%c%c)\n",
10563 access_type == MMU_DATA_LOAD ? "reading" :
10564 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10565 (uint32_t)address, mmu_idx,
10566 ret ? "Miss" : "Hit",
10567 *prot & PAGE_READ ? 'r' : '-',
10568 *prot & PAGE_WRITE ? 'w' : '-',
10569 *prot & PAGE_EXEC ? 'x' : '-');
10570
10571 return ret;
10572 }
10573
10574 /* Definitely a real MMU, not an MPU */
10575
10576 if (regime_translation_disabled(env, mmu_idx)) {
10577 /* MMU disabled. */
10578 *phys_ptr = address;
10579 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10580 *page_size = TARGET_PAGE_SIZE;
10581 return 0;
10582 }
10583
10584 if (regime_using_lpae_format(env, mmu_idx)) {
10585 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10586 phys_ptr, attrs, prot, page_size,
10587 fi, cacheattrs);
10588 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10589 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10590 phys_ptr, attrs, prot, page_size, fi);
10591 } else {
10592 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10593 phys_ptr, prot, page_size, fi);
10594 }
10595 }
10596
10597 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10598 MemTxAttrs *attrs)
10599 {
10600 ARMCPU *cpu = ARM_CPU(cs);
10601 CPUARMState *env = &cpu->env;
10602 hwaddr phys_addr;
10603 target_ulong page_size;
10604 int prot;
10605 bool ret;
10606 ARMMMUFaultInfo fi = {};
10607 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
10608
10609 *attrs = (MemTxAttrs) {};
10610
10611 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10612 attrs, &prot, &page_size, &fi, NULL);
10613
10614 if (ret) {
10615 return -1;
10616 }
10617 return phys_addr;
10618 }
10619
10620 #endif
10621
10622 /* Note that signed overflow is undefined in C. The following routines are
10623 careful to use unsigned types where modulo arithmetic is required.
10624 Failure to do so _will_ break on newer gcc. */
10625
10626 /* Signed saturating arithmetic. */
10627
10628 /* Perform 16-bit signed saturating addition. */
10629 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10630 {
10631 uint16_t res;
10632
10633 res = a + b;
10634 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10635 if (a & 0x8000)
10636 res = 0x8000;
10637 else
10638 res = 0x7fff;
10639 }
10640 return res;
10641 }
10642
10643 /* Perform 8-bit signed saturating addition. */
10644 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10645 {
10646 uint8_t res;
10647
10648 res = a + b;
10649 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10650 if (a & 0x80)
10651 res = 0x80;
10652 else
10653 res = 0x7f;
10654 }
10655 return res;
10656 }
10657
10658 /* Perform 16-bit signed saturating subtraction. */
10659 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10660 {
10661 uint16_t res;
10662
10663 res = a - b;
10664 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10665 if (a & 0x8000)
10666 res = 0x8000;
10667 else
10668 res = 0x7fff;
10669 }
10670 return res;
10671 }
10672
10673 /* Perform 8-bit signed saturating subtraction. */
10674 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10675 {
10676 uint8_t res;
10677
10678 res = a - b;
10679 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10680 if (a & 0x80)
10681 res = 0x80;
10682 else
10683 res = 0x7f;
10684 }
10685 return res;
10686 }
10687
10688 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10689 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10690 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10691 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10692 #define PFX q
10693
10694 #include "op_addsub.h"
10695
10696 /* Unsigned saturating arithmetic. */
10697 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10698 {
10699 uint16_t res;
10700 res = a + b;
10701 if (res < a)
10702 res = 0xffff;
10703 return res;
10704 }
10705
10706 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10707 {
10708 if (a > b)
10709 return a - b;
10710 else
10711 return 0;
10712 }
10713
10714 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10715 {
10716 uint8_t res;
10717 res = a + b;
10718 if (res < a)
10719 res = 0xff;
10720 return res;
10721 }
10722
10723 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10724 {
10725 if (a > b)
10726 return a - b;
10727 else
10728 return 0;
10729 }
10730
10731 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10732 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10733 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10734 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10735 #define PFX uq
10736
10737 #include "op_addsub.h"
10738
10739 /* Signed modulo arithmetic. */
10740 #define SARITH16(a, b, n, op) do { \
10741 int32_t sum; \
10742 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10743 RESULT(sum, n, 16); \
10744 if (sum >= 0) \
10745 ge |= 3 << (n * 2); \
10746 } while(0)
10747
10748 #define SARITH8(a, b, n, op) do { \
10749 int32_t sum; \
10750 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10751 RESULT(sum, n, 8); \
10752 if (sum >= 0) \
10753 ge |= 1 << n; \
10754 } while(0)
10755
10756
10757 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10758 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10759 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10760 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10761 #define PFX s
10762 #define ARITH_GE
10763
10764 #include "op_addsub.h"
10765
10766 /* Unsigned modulo arithmetic. */
10767 #define ADD16(a, b, n) do { \
10768 uint32_t sum; \
10769 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10770 RESULT(sum, n, 16); \
10771 if ((sum >> 16) == 1) \
10772 ge |= 3 << (n * 2); \
10773 } while(0)
10774
10775 #define ADD8(a, b, n) do { \
10776 uint32_t sum; \
10777 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10778 RESULT(sum, n, 8); \
10779 if ((sum >> 8) == 1) \
10780 ge |= 1 << n; \
10781 } while(0)
10782
10783 #define SUB16(a, b, n) do { \
10784 uint32_t sum; \
10785 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10786 RESULT(sum, n, 16); \
10787 if ((sum >> 16) == 0) \
10788 ge |= 3 << (n * 2); \
10789 } while(0)
10790
10791 #define SUB8(a, b, n) do { \
10792 uint32_t sum; \
10793 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10794 RESULT(sum, n, 8); \
10795 if ((sum >> 8) == 0) \
10796 ge |= 1 << n; \
10797 } while(0)
10798
10799 #define PFX u
10800 #define ARITH_GE
10801
10802 #include "op_addsub.h"
10803
10804 /* Halved signed arithmetic. */
10805 #define ADD16(a, b, n) \
10806 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10807 #define SUB16(a, b, n) \
10808 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10809 #define ADD8(a, b, n) \
10810 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10811 #define SUB8(a, b, n) \
10812 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10813 #define PFX sh
10814
10815 #include "op_addsub.h"
10816
10817 /* Halved unsigned arithmetic. */
10818 #define ADD16(a, b, n) \
10819 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10820 #define SUB16(a, b, n) \
10821 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10822 #define ADD8(a, b, n) \
10823 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10824 #define SUB8(a, b, n) \
10825 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10826 #define PFX uh
10827
10828 #include "op_addsub.h"
10829
10830 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10831 {
10832 if (a > b)
10833 return a - b;
10834 else
10835 return b - a;
10836 }
10837
10838 /* Unsigned sum of absolute byte differences. */
10839 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10840 {
10841 uint32_t sum;
10842 sum = do_usad(a, b);
10843 sum += do_usad(a >> 8, b >> 8);
10844 sum += do_usad(a >> 16, b >>16);
10845 sum += do_usad(a >> 24, b >> 24);
10846 return sum;
10847 }
10848
10849 /* For ARMv6 SEL instruction. */
10850 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10851 {
10852 uint32_t mask;
10853
10854 mask = 0;
10855 if (flags & 1)
10856 mask |= 0xff;
10857 if (flags & 2)
10858 mask |= 0xff00;
10859 if (flags & 4)
10860 mask |= 0xff0000;
10861 if (flags & 8)
10862 mask |= 0xff000000;
10863 return (a & mask) | (b & ~mask);
10864 }
10865
10866 /* CRC helpers.
10867 * The upper bytes of val (above the number specified by 'bytes') must have
10868 * been zeroed out by the caller.
10869 */
10870 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10871 {
10872 uint8_t buf[4];
10873
10874 stl_le_p(buf, val);
10875
10876 /* zlib crc32 converts the accumulator and output to one's complement. */
10877 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10878 }
10879
10880 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10881 {
10882 uint8_t buf[4];
10883
10884 stl_le_p(buf, val);
10885
10886 /* Linux crc32c converts the output to one's complement. */
10887 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10888 }
10889
10890 /* Return the exception level to which FP-disabled exceptions should
10891 * be taken, or 0 if FP is enabled.
10892 */
10893 int fp_exception_el(CPUARMState *env, int cur_el)
10894 {
10895 #ifndef CONFIG_USER_ONLY
10896 int fpen;
10897
10898 /* CPACR and the CPTR registers don't exist before v6, so FP is
10899 * always accessible
10900 */
10901 if (!arm_feature(env, ARM_FEATURE_V6)) {
10902 return 0;
10903 }
10904
10905 if (arm_feature(env, ARM_FEATURE_M)) {
10906 /* CPACR can cause a NOCP UsageFault taken to current security state */
10907 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10908 return 1;
10909 }
10910
10911 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10912 if (!extract32(env->v7m.nsacr, 10, 1)) {
10913 /* FP insns cause a NOCP UsageFault taken to Secure */
10914 return 3;
10915 }
10916 }
10917
10918 return 0;
10919 }
10920
10921 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10922 * 0, 2 : trap EL0 and EL1/PL1 accesses
10923 * 1 : trap only EL0 accesses
10924 * 3 : trap no accesses
10925 */
10926 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
10927 switch (fpen) {
10928 case 0:
10929 case 2:
10930 if (cur_el == 0 || cur_el == 1) {
10931 /* Trap to PL1, which might be EL1 or EL3 */
10932 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
10933 return 3;
10934 }
10935 return 1;
10936 }
10937 if (cur_el == 3 && !is_a64(env)) {
10938 /* Secure PL1 running at EL3 */
10939 return 3;
10940 }
10941 break;
10942 case 1:
10943 if (cur_el == 0) {
10944 return 1;
10945 }
10946 break;
10947 case 3:
10948 break;
10949 }
10950
10951 /*
10952 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10953 * to control non-secure access to the FPU. It doesn't have any
10954 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10955 */
10956 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10957 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10958 if (!extract32(env->cp15.nsacr, 10, 1)) {
10959 /* FP insns act as UNDEF */
10960 return cur_el == 2 ? 2 : 1;
10961 }
10962 }
10963
10964 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
10965 * check because zero bits in the registers mean "don't trap".
10966 */
10967
10968 /* CPTR_EL2 : present in v7VE or v8 */
10969 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
10970 && !arm_is_secure_below_el3(env)) {
10971 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
10972 return 2;
10973 }
10974
10975 /* CPTR_EL3 : present in v8 */
10976 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
10977 /* Trap all FP ops to EL3 */
10978 return 3;
10979 }
10980 #endif
10981 return 0;
10982 }
10983
10984 #ifndef CONFIG_TCG
10985 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10986 {
10987 g_assert_not_reached();
10988 }
10989 #endif
10990
10991 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10992 {
10993 int el;
10994
10995 if (arm_feature(env, ARM_FEATURE_M)) {
10996 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10997 }
10998
10999 el = arm_current_el(env);
11000 if (el < 2 && arm_is_secure_below_el3(env)) {
11001 return ARMMMUIdx_S1SE0 + el;
11002 } else {
11003 return ARMMMUIdx_S12NSE0 + el;
11004 }
11005 }
11006
11007 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11008 {
11009 return arm_to_core_mmu_idx(arm_mmu_idx(env));
11010 }
11011
11012 #ifndef CONFIG_USER_ONLY
11013 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11014 {
11015 return stage_1_mmu_idx(arm_mmu_idx(env));
11016 }
11017 #endif
11018
11019 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11020 target_ulong *cs_base, uint32_t *pflags)
11021 {
11022 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11023 int current_el = arm_current_el(env);
11024 int fp_el = fp_exception_el(env, current_el);
11025 uint32_t flags = 0;
11026
11027 if (is_a64(env)) {
11028 ARMCPU *cpu = env_archcpu(env);
11029 uint64_t sctlr;
11030
11031 *pc = env->pc;
11032 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11033
11034 /* Get control bits for tagged addresses. */
11035 {
11036 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11037 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11038 int tbii, tbid;
11039
11040 /* FIXME: ARMv8.1-VHE S2 translation regime. */
11041 if (regime_el(env, stage1) < 2) {
11042 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11043 tbid = (p1.tbi << 1) | p0.tbi;
11044 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11045 } else {
11046 tbid = p0.tbi;
11047 tbii = tbid & !p0.tbid;
11048 }
11049
11050 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11051 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11052 }
11053
11054 if (cpu_isar_feature(aa64_sve, cpu)) {
11055 int sve_el = sve_exception_el(env, current_el);
11056 uint32_t zcr_len;
11057
11058 /* If SVE is disabled, but FP is enabled,
11059 * then the effective len is 0.
11060 */
11061 if (sve_el != 0 && fp_el == 0) {
11062 zcr_len = 0;
11063 } else {
11064 zcr_len = sve_zcr_len_for_el(env, current_el);
11065 }
11066 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11067 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11068 }
11069
11070 sctlr = arm_sctlr(env, current_el);
11071
11072 if (cpu_isar_feature(aa64_pauth, cpu)) {
11073 /*
11074 * In order to save space in flags, we record only whether
11075 * pauth is "inactive", meaning all insns are implemented as
11076 * a nop, or "active" when some action must be performed.
11077 * The decision of which action to take is left to a helper.
11078 */
11079 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
11080 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
11081 }
11082 }
11083
11084 if (cpu_isar_feature(aa64_bti, cpu)) {
11085 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
11086 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
11087 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
11088 }
11089 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
11090 }
11091 } else {
11092 *pc = env->regs[15];
11093 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
11094 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
11095 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
11096 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
11097 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
11098 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11099 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
11100 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
11101 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11102 }
11103 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
11104 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11105 flags = FIELD_DP32(flags, TBFLAG_A32,
11106 XSCALE_CPAR, env->cp15.c15_cpar);
11107 }
11108 }
11109
11110 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11111
11112 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11113 * states defined in the ARM ARM for software singlestep:
11114 * SS_ACTIVE PSTATE.SS State
11115 * 0 x Inactive (the TB flag for SS is always 0)
11116 * 1 0 Active-pending
11117 * 1 1 Active-not-pending
11118 */
11119 if (arm_singlestep_active(env)) {
11120 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11121 if (is_a64(env)) {
11122 if (env->pstate & PSTATE_SS) {
11123 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11124 }
11125 } else {
11126 if (env->uncached_cpsr & PSTATE_SS) {
11127 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
11128 }
11129 }
11130 }
11131 if (arm_cpu_data_is_big_endian(env)) {
11132 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11133 }
11134 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11135
11136 if (arm_v7m_is_handler_mode(env)) {
11137 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
11138 }
11139
11140 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
11141 * suppressing them because the requested execution priority is less than 0.
11142 */
11143 if (arm_feature(env, ARM_FEATURE_V8) &&
11144 arm_feature(env, ARM_FEATURE_M) &&
11145 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11146 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11147 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
11148 }
11149
11150 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11151 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
11152 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
11153 }
11154
11155 if (arm_feature(env, ARM_FEATURE_M) &&
11156 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11157 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11158 (env->v7m.secure &&
11159 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11160 /*
11161 * ASPEN is set, but FPCA/SFPA indicate that there is no active
11162 * FP context; we must create a new FP context before executing
11163 * any FP insn.
11164 */
11165 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
11166 }
11167
11168 if (arm_feature(env, ARM_FEATURE_M)) {
11169 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11170
11171 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11172 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
11173 }
11174 }
11175
11176 if (!arm_feature(env, ARM_FEATURE_M)) {
11177 int target_el = arm_debug_target_el(env);
11178
11179 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, target_el);
11180 }
11181
11182 *pflags = flags;
11183 *cs_base = 0;
11184 }
11185
11186 #ifdef TARGET_AARCH64
11187 /*
11188 * The manual says that when SVE is enabled and VQ is widened the
11189 * implementation is allowed to zero the previously inaccessible
11190 * portion of the registers. The corollary to that is that when
11191 * SVE is enabled and VQ is narrowed we are also allowed to zero
11192 * the now inaccessible portion of the registers.
11193 *
11194 * The intent of this is that no predicate bit beyond VQ is ever set.
11195 * Which means that some operations on predicate registers themselves
11196 * may operate on full uint64_t or even unrolled across the maximum
11197 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11198 * may well be cheaper than conditionals to restrict the operation
11199 * to the relevant portion of a uint16_t[16].
11200 */
11201 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11202 {
11203 int i, j;
11204 uint64_t pmask;
11205
11206 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11207 assert(vq <= env_archcpu(env)->sve_max_vq);
11208
11209 /* Zap the high bits of the zregs. */
11210 for (i = 0; i < 32; i++) {
11211 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11212 }
11213
11214 /* Zap the high bits of the pregs and ffr. */
11215 pmask = 0;
11216 if (vq & 3) {
11217 pmask = ~(-1ULL << (16 * (vq & 3)));
11218 }
11219 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11220 for (i = 0; i < 17; ++i) {
11221 env->vfp.pregs[i].p[j] &= pmask;
11222 }
11223 pmask = 0;
11224 }
11225 }
11226
11227 /*
11228 * Notice a change in SVE vector size when changing EL.
11229 */
11230 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11231 int new_el, bool el0_a64)
11232 {
11233 ARMCPU *cpu = env_archcpu(env);
11234 int old_len, new_len;
11235 bool old_a64, new_a64;
11236
11237 /* Nothing to do if no SVE. */
11238 if (!cpu_isar_feature(aa64_sve, cpu)) {
11239 return;
11240 }
11241
11242 /* Nothing to do if FP is disabled in either EL. */
11243 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11244 return;
11245 }
11246
11247 /*
11248 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11249 * at ELx, or not available because the EL is in AArch32 state, then
11250 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11251 * has an effective value of 0".
11252 *
11253 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11254 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11255 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11256 * we already have the correct register contents when encountering the
11257 * vq0->vq0 transition between EL0->EL1.
11258 */
11259 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11260 old_len = (old_a64 && !sve_exception_el(env, old_el)
11261 ? sve_zcr_len_for_el(env, old_el) : 0);
11262 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11263 new_len = (new_a64 && !sve_exception_el(env, new_el)
11264 ? sve_zcr_len_for_el(env, new_el) : 0);
11265
11266 /* When changing vector length, clear inaccessible state. */
11267 if (new_len < old_len) {
11268 aarch64_sve_narrow_vq(env, new_len + 1);
11269 }
11270 }
11271 #endif