]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
target/arm: Convert get_phys_addr_lpae() to not return FSC values
[mirror_qemu.git] / target / arm / helper.c
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24 unsigned int attrs:8; /* as in the MAIR register encoding */
25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
27
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29 MMUAccessType access_type, ARMMMUIdx mmu_idx,
30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31 target_ulong *page_size, uint32_t *fsr,
32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
33
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35 MMUAccessType access_type, ARMMMUIdx mmu_idx,
36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37 target_ulong *page_size_ptr,
38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42 bool ns;
43 bool nsc;
44 uint8_t sregion;
45 bool srvalid;
46 uint8_t iregion;
47 bool irvalid;
48 } V8M_SAttributes;
49
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52 V8M_SAttributes *sattrs);
53
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD 0x8
56 #define PMCRC 0x4
57 #define PMCRE 0x1
58 #endif
59
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 {
62 int nregs;
63
64 /* VFP data registers are always little-endian. */
65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66 if (reg < nregs) {
67 stfq_le_p(buf, env->vfp.regs[reg]);
68 return 8;
69 }
70 if (arm_feature(env, ARM_FEATURE_NEON)) {
71 /* Aliases for Q regs. */
72 nregs += 16;
73 if (reg < nregs) {
74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76 return 16;
77 }
78 }
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83 }
84 return 0;
85 }
86
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89 int nregs;
90
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92 if (reg < nregs) {
93 env->vfp.regs[reg] = ldfq_le_p(buf);
94 return 8;
95 }
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
97 nregs += 16;
98 if (reg < nregs) {
99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101 return 16;
102 }
103 }
104 switch (reg - nregs) {
105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
108 }
109 return 0;
110 }
111
112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113 {
114 switch (reg) {
115 case 0 ... 31:
116 /* 128 bit FP register */
117 stfq_le_p(buf, env->vfp.regs[reg * 2]);
118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119 return 16;
120 case 32:
121 /* FPSR */
122 stl_p(buf, vfp_get_fpsr(env));
123 return 4;
124 case 33:
125 /* FPCR */
126 stl_p(buf, vfp_get_fpcr(env));
127 return 4;
128 default:
129 return 0;
130 }
131 }
132
133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
134 {
135 switch (reg) {
136 case 0 ... 31:
137 /* 128 bit FP register */
138 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140 return 16;
141 case 32:
142 /* FPSR */
143 vfp_set_fpsr(env, ldl_p(buf));
144 return 4;
145 case 33:
146 /* FPCR */
147 vfp_set_fpcr(env, ldl_p(buf));
148 return 4;
149 default:
150 return 0;
151 }
152 }
153
154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
155 {
156 assert(ri->fieldoffset);
157 if (cpreg_field_is_64bit(ri)) {
158 return CPREG_FIELD64(env, ri);
159 } else {
160 return CPREG_FIELD32(env, ri);
161 }
162 }
163
164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165 uint64_t value)
166 {
167 assert(ri->fieldoffset);
168 if (cpreg_field_is_64bit(ri)) {
169 CPREG_FIELD64(env, ri) = value;
170 } else {
171 CPREG_FIELD32(env, ri) = value;
172 }
173 }
174
175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
176 {
177 return (char *)env + ri->fieldoffset;
178 }
179
180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
181 {
182 /* Raw read of a coprocessor register (as needed for migration, etc). */
183 if (ri->type & ARM_CP_CONST) {
184 return ri->resetvalue;
185 } else if (ri->raw_readfn) {
186 return ri->raw_readfn(env, ri);
187 } else if (ri->readfn) {
188 return ri->readfn(env, ri);
189 } else {
190 return raw_read(env, ri);
191 }
192 }
193
194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
195 uint64_t v)
196 {
197 /* Raw write of a coprocessor register (as needed for migration, etc).
198 * Note that constant registers are treated as write-ignored; the
199 * caller should check for success by whether a readback gives the
200 * value written.
201 */
202 if (ri->type & ARM_CP_CONST) {
203 return;
204 } else if (ri->raw_writefn) {
205 ri->raw_writefn(env, ri, v);
206 } else if (ri->writefn) {
207 ri->writefn(env, ri, v);
208 } else {
209 raw_write(env, ri, v);
210 }
211 }
212
213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
214 {
215 /* Return true if the regdef would cause an assertion if you called
216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217 * program bug for it not to have the NO_RAW flag).
218 * NB that returning false here doesn't necessarily mean that calling
219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220 * read/write access functions which are safe for raw use" from "has
221 * read/write access functions which have side effects but has forgotten
222 * to provide raw access functions".
223 * The tests here line up with the conditions in read/write_raw_cp_reg()
224 * and assertions in raw_read()/raw_write().
225 */
226 if ((ri->type & ARM_CP_CONST) ||
227 ri->fieldoffset ||
228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229 return false;
230 }
231 return true;
232 }
233
234 bool write_cpustate_to_list(ARMCPU *cpu)
235 {
236 /* Write the coprocessor state from cpu->env to the (index,value) list. */
237 int i;
238 bool ok = true;
239
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 const ARMCPRegInfo *ri;
243
244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
245 if (!ri) {
246 ok = false;
247 continue;
248 }
249 if (ri->type & ARM_CP_NO_RAW) {
250 continue;
251 }
252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
253 }
254 return ok;
255 }
256
257 bool write_list_to_cpustate(ARMCPU *cpu)
258 {
259 int i;
260 bool ok = true;
261
262 for (i = 0; i < cpu->cpreg_array_len; i++) {
263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264 uint64_t v = cpu->cpreg_values[i];
265 const ARMCPRegInfo *ri;
266
267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268 if (!ri) {
269 ok = false;
270 continue;
271 }
272 if (ri->type & ARM_CP_NO_RAW) {
273 continue;
274 }
275 /* Write value and confirm it reads back as written
276 * (to catch read-only registers and partially read-only
277 * registers where the incoming migration value doesn't match)
278 */
279 write_raw_cp_reg(&cpu->env, ri, v);
280 if (read_raw_cp_reg(&cpu->env, ri) != v) {
281 ok = false;
282 }
283 }
284 return ok;
285 }
286
287 static void add_cpreg_to_list(gpointer key, gpointer opaque)
288 {
289 ARMCPU *cpu = opaque;
290 uint64_t regidx;
291 const ARMCPRegInfo *ri;
292
293 regidx = *(uint32_t *)key;
294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
295
296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298 /* The value array need not be initialized at this point */
299 cpu->cpreg_array_len++;
300 }
301 }
302
303 static void count_cpreg(gpointer key, gpointer opaque)
304 {
305 ARMCPU *cpu = opaque;
306 uint64_t regidx;
307 const ARMCPRegInfo *ri;
308
309 regidx = *(uint32_t *)key;
310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
311
312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
313 cpu->cpreg_array_len++;
314 }
315 }
316
317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
318 {
319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
321
322 if (aidx > bidx) {
323 return 1;
324 }
325 if (aidx < bidx) {
326 return -1;
327 }
328 return 0;
329 }
330
331 void init_cpreg_list(ARMCPU *cpu)
332 {
333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334 * Note that we require cpreg_tuples[] to be sorted by key ID.
335 */
336 GList *keys;
337 int arraylen;
338
339 keys = g_hash_table_get_keys(cpu->cp_regs);
340 keys = g_list_sort(keys, cpreg_key_compare);
341
342 cpu->cpreg_array_len = 0;
343
344 g_list_foreach(keys, count_cpreg, cpu);
345
346 arraylen = cpu->cpreg_array_len;
347 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348 cpu->cpreg_values = g_new(uint64_t, arraylen);
349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352 cpu->cpreg_array_len = 0;
353
354 g_list_foreach(keys, add_cpreg_to_list, cpu);
355
356 assert(cpu->cpreg_array_len == arraylen);
357
358 g_list_free(keys);
359 }
360
361 /*
362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
364 *
365 * access_el3_aa32ns: Used to check AArch32 register views.
366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
367 */
368 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
369 const ARMCPRegInfo *ri,
370 bool isread)
371 {
372 bool secure = arm_is_secure_below_el3(env);
373
374 assert(!arm_el_is_aa64(env, 3));
375 if (secure) {
376 return CP_ACCESS_TRAP_UNCATEGORIZED;
377 }
378 return CP_ACCESS_OK;
379 }
380
381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
382 const ARMCPRegInfo *ri,
383 bool isread)
384 {
385 if (!arm_el_is_aa64(env, 3)) {
386 return access_el3_aa32ns(env, ri, isread);
387 }
388 return CP_ACCESS_OK;
389 }
390
391 /* Some secure-only AArch32 registers trap to EL3 if used from
392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394 * We assume that the .access field is set to PL1_RW.
395 */
396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
397 const ARMCPRegInfo *ri,
398 bool isread)
399 {
400 if (arm_current_el(env) == 3) {
401 return CP_ACCESS_OK;
402 }
403 if (arm_is_secure_below_el3(env)) {
404 return CP_ACCESS_TRAP_EL3;
405 }
406 /* This will be EL1 NS and EL2 NS, which just UNDEF */
407 return CP_ACCESS_TRAP_UNCATEGORIZED;
408 }
409
410 /* Check for traps to "powerdown debug" registers, which are controlled
411 * by MDCR.TDOSA
412 */
413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414 bool isread)
415 {
416 int el = arm_current_el(env);
417
418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419 && !arm_is_secure_below_el3(env)) {
420 return CP_ACCESS_TRAP_EL2;
421 }
422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423 return CP_ACCESS_TRAP_EL3;
424 }
425 return CP_ACCESS_OK;
426 }
427
428 /* Check for traps to "debug ROM" registers, which are controlled
429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
430 */
431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432 bool isread)
433 {
434 int el = arm_current_el(env);
435
436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437 && !arm_is_secure_below_el3(env)) {
438 return CP_ACCESS_TRAP_EL2;
439 }
440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441 return CP_ACCESS_TRAP_EL3;
442 }
443 return CP_ACCESS_OK;
444 }
445
446 /* Check for traps to general debug registers, which are controlled
447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
448 */
449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450 bool isread)
451 {
452 int el = arm_current_el(env);
453
454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455 && !arm_is_secure_below_el3(env)) {
456 return CP_ACCESS_TRAP_EL2;
457 }
458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459 return CP_ACCESS_TRAP_EL3;
460 }
461 return CP_ACCESS_OK;
462 }
463
464 /* Check for traps to performance monitor registers, which are controlled
465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
466 */
467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468 bool isread)
469 {
470 int el = arm_current_el(env);
471
472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473 && !arm_is_secure_below_el3(env)) {
474 return CP_ACCESS_TRAP_EL2;
475 }
476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477 return CP_ACCESS_TRAP_EL3;
478 }
479 return CP_ACCESS_OK;
480 }
481
482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
483 {
484 ARMCPU *cpu = arm_env_get_cpu(env);
485
486 raw_write(env, ri, value);
487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
488 }
489
490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
491 {
492 ARMCPU *cpu = arm_env_get_cpu(env);
493
494 if (raw_read(env, ri) != value) {
495 /* Unlike real hardware the qemu TLB uses virtual addresses,
496 * not modified virtual addresses, so this causes a TLB flush.
497 */
498 tlb_flush(CPU(cpu));
499 raw_write(env, ri, value);
500 }
501 }
502
503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504 uint64_t value)
505 {
506 ARMCPU *cpu = arm_env_get_cpu(env);
507
508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
509 && !extended_addresses_enabled(env)) {
510 /* For VMSA (when not using the LPAE long descriptor page table
511 * format) this register includes the ASID, so do a TLB flush.
512 * For PMSA it is purely a process ID and no action is needed.
513 */
514 tlb_flush(CPU(cpu));
515 }
516 raw_write(env, ri, value);
517 }
518
519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520 uint64_t value)
521 {
522 /* Invalidate all (TLBIALL) */
523 ARMCPU *cpu = arm_env_get_cpu(env);
524
525 tlb_flush(CPU(cpu));
526 }
527
528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529 uint64_t value)
530 {
531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
532 ARMCPU *cpu = arm_env_get_cpu(env);
533
534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 }
536
537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538 uint64_t value)
539 {
540 /* Invalidate by ASID (TLBIASID) */
541 ARMCPU *cpu = arm_env_get_cpu(env);
542
543 tlb_flush(CPU(cpu));
544 }
545
546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
548 {
549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
550 ARMCPU *cpu = arm_env_get_cpu(env);
551
552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
553 }
554
555 /* IS variants of TLB operations must affect all cores */
556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = ENV_GET_CPU(env);
560
561 tlb_flush_all_cpus_synced(cs);
562 }
563
564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = ENV_GET_CPU(env);
568
569 tlb_flush_all_cpus_synced(cs);
570 }
571
572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574 {
575 CPUState *cs = ENV_GET_CPU(env);
576
577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
578 }
579
580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581 uint64_t value)
582 {
583 CPUState *cs = ENV_GET_CPU(env);
584
585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
586 }
587
588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589 uint64_t value)
590 {
591 CPUState *cs = ENV_GET_CPU(env);
592
593 tlb_flush_by_mmuidx(cs,
594 ARMMMUIdxBit_S12NSE1 |
595 ARMMMUIdxBit_S12NSE0 |
596 ARMMMUIdxBit_S2NS);
597 }
598
599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
601 {
602 CPUState *cs = ENV_GET_CPU(env);
603
604 tlb_flush_by_mmuidx_all_cpus_synced(cs,
605 ARMMMUIdxBit_S12NSE1 |
606 ARMMMUIdxBit_S12NSE0 |
607 ARMMMUIdxBit_S2NS);
608 }
609
610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611 uint64_t value)
612 {
613 /* Invalidate by IPA. This has to invalidate any structures that
614 * contain only stage 2 translation information, but does not need
615 * to apply to structures that contain combined stage 1 and stage 2
616 * translation information.
617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
618 */
619 CPUState *cs = ENV_GET_CPU(env);
620 uint64_t pageaddr;
621
622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623 return;
624 }
625
626 pageaddr = sextract64(value << 12, 0, 40);
627
628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
629 }
630
631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633 {
634 CPUState *cs = ENV_GET_CPU(env);
635 uint64_t pageaddr;
636
637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638 return;
639 }
640
641 pageaddr = sextract64(value << 12, 0, 40);
642
643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
644 ARMMMUIdxBit_S2NS);
645 }
646
647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 uint64_t value)
649 {
650 CPUState *cs = ENV_GET_CPU(env);
651
652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
653 }
654
655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657 {
658 CPUState *cs = ENV_GET_CPU(env);
659
660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
661 }
662
663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664 uint64_t value)
665 {
666 CPUState *cs = ENV_GET_CPU(env);
667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668
669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
670 }
671
672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673 uint64_t value)
674 {
675 CPUState *cs = ENV_GET_CPU(env);
676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677
678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
679 ARMMMUIdxBit_S1E2);
680 }
681
682 static const ARMCPRegInfo cp_reginfo[] = {
683 /* Define the secure and non-secure FCSE identifier CP registers
684 * separately because there is no secure bank in V8 (no _EL3). This allows
685 * the secure register to be properly reset and migrated. There is also no
686 * v8 EL1 version of the register so the non-secure instance stands alone.
687 */
688 { .name = "FCSEIDR(NS)",
689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693 { .name = "FCSEIDR(S)",
694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
698 /* Define the secure and non-secure context identifier CP registers
699 * separately because there is no secure bank in V8 (no _EL3). This allows
700 * the secure register to be properly reset and migrated. In the
701 * non-secure case, the 32-bit register will have reset and migration
702 * disabled during registration as it is handled by the 64-bit instance.
703 */
704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
714 REGINFO_SENTINEL
715 };
716
717 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718 /* NB: Some of these registers exist in v8 but with more precise
719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
720 */
721 /* MMU Domain access control / MPU write buffer control */
722 { .name = "DACR",
723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724 .access = PL1_RW, .resetvalue = 0,
725 .writefn = dacr_write, .raw_writefn = raw_write,
726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729 * For v6 and v5, these mappings are overly broad.
730 */
731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
739 /* Cache maintenance ops; some of this space may be overridden later. */
740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
743 REGINFO_SENTINEL
744 };
745
746 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747 /* Not all pre-v6 cores implemented this WFI, so this is slightly
748 * over-broad.
749 */
750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751 .access = PL1_W, .type = ARM_CP_WFI },
752 REGINFO_SENTINEL
753 };
754
755 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757 * is UNPREDICTABLE; we choose to NOP as most implementations do).
758 */
759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760 .access = PL1_W, .type = ARM_CP_WFI },
761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763 * OMAPCP will override this space.
764 */
765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767 .resetvalue = 0 },
768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770 .resetvalue = 0 },
771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
774 .resetvalue = 0 },
775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776 * implementing it as RAZ means the "debug architecture version" bits
777 * will read as a reserved value, which should cause Linux to not try
778 * to use the debug hardware.
779 */
780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
782 /* MMU TLB control. Note that the wildcarding means we cover not just
783 * the unified TLB ops but also the dside/iside/inner-shareable variants.
784 */
785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
787 .type = ARM_CP_NO_RAW },
788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
790 .type = ARM_CP_NO_RAW },
791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
793 .type = ARM_CP_NO_RAW },
794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
796 .type = ARM_CP_NO_RAW },
797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
801 REGINFO_SENTINEL
802 };
803
804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805 uint64_t value)
806 {
807 uint32_t mask = 0;
808
809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810 if (!arm_feature(env, ARM_FEATURE_V8)) {
811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
814 */
815 if (arm_feature(env, ARM_FEATURE_VFP)) {
816 /* VFP coprocessor: cp10 & cp11 [23:20] */
817 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
818
819 if (!arm_feature(env, ARM_FEATURE_NEON)) {
820 /* ASEDIS [31] bit is RAO/WI */
821 value |= (1 << 31);
822 }
823
824 /* VFPv3 and upwards with NEON implement 32 double precision
825 * registers (D0-D31).
826 */
827 if (!arm_feature(env, ARM_FEATURE_NEON) ||
828 !arm_feature(env, ARM_FEATURE_VFP3)) {
829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830 value |= (1 << 30);
831 }
832 }
833 value &= mask;
834 }
835 env->cp15.cpacr_el1 = value;
836 }
837
838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839 bool isread)
840 {
841 if (arm_feature(env, ARM_FEATURE_V8)) {
842 /* Check if CPACR accesses are to be trapped to EL2 */
843 if (arm_current_el(env) == 1 &&
844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845 return CP_ACCESS_TRAP_EL2;
846 /* Check if CPACR accesses are to be trapped to EL3 */
847 } else if (arm_current_el(env) < 3 &&
848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849 return CP_ACCESS_TRAP_EL3;
850 }
851 }
852
853 return CP_ACCESS_OK;
854 }
855
856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857 bool isread)
858 {
859 /* Check if CPTR accesses are set to trap to EL3 */
860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861 return CP_ACCESS_TRAP_EL3;
862 }
863
864 return CP_ACCESS_OK;
865 }
866
867 static const ARMCPRegInfo v6_cp_reginfo[] = {
868 /* prefetch by MVA in v6, NOP in v7 */
869 { .name = "MVA_prefetch",
870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871 .access = PL1_W, .type = ARM_CP_NOP },
872 /* We need to break the TB after ISB to execute self-modifying code
873 * correctly and also to take any pending interrupts immediately.
874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
875 */
876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
879 .access = PL0_W, .type = ARM_CP_NOP },
880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
881 .access = PL0_W, .type = ARM_CP_NOP },
882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
883 .access = PL1_RW,
884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885 offsetof(CPUARMState, cp15.ifar_ns) },
886 .resetvalue = 0, },
887 /* Watchpoint Fault Address Register : should actually only be present
888 * for 1136, 1176, 11MPCore.
889 */
890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
895 .resetvalue = 0, .writefn = cpacr_write },
896 REGINFO_SENTINEL
897 };
898
899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900 bool isread)
901 {
902 /* Performance monitor registers user accessibility is controlled
903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904 * trapping to EL2 or EL3 for other accesses.
905 */
906 int el = arm_current_el(env);
907
908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
909 return CP_ACCESS_TRAP;
910 }
911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912 && !arm_is_secure_below_el3(env)) {
913 return CP_ACCESS_TRAP_EL2;
914 }
915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916 return CP_ACCESS_TRAP_EL3;
917 }
918
919 return CP_ACCESS_OK;
920 }
921
922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923 const ARMCPRegInfo *ri,
924 bool isread)
925 {
926 /* ER: event counter read trap control */
927 if (arm_feature(env, ARM_FEATURE_V8)
928 && arm_current_el(env) == 0
929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930 && isread) {
931 return CP_ACCESS_OK;
932 }
933
934 return pmreg_access(env, ri, isread);
935 }
936
937 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938 const ARMCPRegInfo *ri,
939 bool isread)
940 {
941 /* SW: software increment write trap control */
942 if (arm_feature(env, ARM_FEATURE_V8)
943 && arm_current_el(env) == 0
944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945 && !isread) {
946 return CP_ACCESS_OK;
947 }
948
949 return pmreg_access(env, ri, isread);
950 }
951
952 #ifndef CONFIG_USER_ONLY
953
954 static CPAccessResult pmreg_access_selr(CPUARMState *env,
955 const ARMCPRegInfo *ri,
956 bool isread)
957 {
958 /* ER: event counter read trap control */
959 if (arm_feature(env, ARM_FEATURE_V8)
960 && arm_current_el(env) == 0
961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962 return CP_ACCESS_OK;
963 }
964
965 return pmreg_access(env, ri, isread);
966 }
967
968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969 const ARMCPRegInfo *ri,
970 bool isread)
971 {
972 /* CR: cycle counter read trap control */
973 if (arm_feature(env, ARM_FEATURE_V8)
974 && arm_current_el(env) == 0
975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976 && isread) {
977 return CP_ACCESS_OK;
978 }
979
980 return pmreg_access(env, ri, isread);
981 }
982
983 static inline bool arm_ccnt_enabled(CPUARMState *env)
984 {
985 /* This does not support checking PMCCFILTR_EL0 register */
986
987 if (!(env->cp15.c9_pmcr & PMCRE)) {
988 return false;
989 }
990
991 return true;
992 }
993
994 void pmccntr_sync(CPUARMState *env)
995 {
996 uint64_t temp_ticks;
997
998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1000
1001 if (env->cp15.c9_pmcr & PMCRD) {
1002 /* Increment once every 64 processor clock cycles */
1003 temp_ticks /= 64;
1004 }
1005
1006 if (arm_ccnt_enabled(env)) {
1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1008 }
1009 }
1010
1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012 uint64_t value)
1013 {
1014 pmccntr_sync(env);
1015
1016 if (value & PMCRC) {
1017 /* The counter has been reset */
1018 env->cp15.c15_ccnt = 0;
1019 }
1020
1021 /* only the DP, X, D and E bits are writable */
1022 env->cp15.c9_pmcr &= ~0x39;
1023 env->cp15.c9_pmcr |= (value & 0x39);
1024
1025 pmccntr_sync(env);
1026 }
1027
1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1029 {
1030 uint64_t total_ticks;
1031
1032 if (!arm_ccnt_enabled(env)) {
1033 /* Counter is disabled, do not change value */
1034 return env->cp15.c15_ccnt;
1035 }
1036
1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1039
1040 if (env->cp15.c9_pmcr & PMCRD) {
1041 /* Increment once every 64 processor clock cycles */
1042 total_ticks /= 64;
1043 }
1044 return total_ticks - env->cp15.c15_ccnt;
1045 }
1046
1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048 uint64_t value)
1049 {
1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053 * accessed.
1054 */
1055 env->cp15.c9_pmselr = value & 0x1f;
1056 }
1057
1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059 uint64_t value)
1060 {
1061 uint64_t total_ticks;
1062
1063 if (!arm_ccnt_enabled(env)) {
1064 /* Counter is disabled, set the absolute value */
1065 env->cp15.c15_ccnt = value;
1066 return;
1067 }
1068
1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1071
1072 if (env->cp15.c9_pmcr & PMCRD) {
1073 /* Increment once every 64 processor clock cycles */
1074 total_ticks /= 64;
1075 }
1076 env->cp15.c15_ccnt = total_ticks - value;
1077 }
1078
1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080 uint64_t value)
1081 {
1082 uint64_t cur_val = pmccntr_read(env, NULL);
1083
1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1085 }
1086
1087 #else /* CONFIG_USER_ONLY */
1088
1089 void pmccntr_sync(CPUARMState *env)
1090 {
1091 }
1092
1093 #endif
1094
1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096 uint64_t value)
1097 {
1098 pmccntr_sync(env);
1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100 pmccntr_sync(env);
1101 }
1102
1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104 uint64_t value)
1105 {
1106 value &= (1 << 31);
1107 env->cp15.c9_pmcnten |= value;
1108 }
1109
1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111 uint64_t value)
1112 {
1113 value &= (1 << 31);
1114 env->cp15.c9_pmcnten &= ~value;
1115 }
1116
1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118 uint64_t value)
1119 {
1120 env->cp15.c9_pmovsr &= ~value;
1121 }
1122
1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124 uint64_t value)
1125 {
1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127 * PMSELR value is equal to or greater than the number of implemented
1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1129 */
1130 if (env->cp15.c9_pmselr == 0x1f) {
1131 pmccfiltr_write(env, ri, value);
1132 }
1133 }
1134
1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136 {
1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1139 */
1140 if (env->cp15.c9_pmselr == 0x1f) {
1141 return env->cp15.pmccfiltr_el0;
1142 } else {
1143 return 0;
1144 }
1145 }
1146
1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148 uint64_t value)
1149 {
1150 if (arm_feature(env, ARM_FEATURE_V8)) {
1151 env->cp15.c9_pmuserenr = value & 0xf;
1152 } else {
1153 env->cp15.c9_pmuserenr = value & 1;
1154 }
1155 }
1156
1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
1159 {
1160 /* We have no event counters so only the C bit can be changed */
1161 value &= (1 << 31);
1162 env->cp15.c9_pminten |= value;
1163 }
1164
1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166 uint64_t value)
1167 {
1168 value &= (1 << 31);
1169 env->cp15.c9_pminten &= ~value;
1170 }
1171
1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173 uint64_t value)
1174 {
1175 /* Note that even though the AArch64 view of this register has bits
1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177 * architectural requirements for bits which are RES0 only in some
1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1180 */
1181 raw_write(env, ri, value & ~0x1FULL);
1182 }
1183
1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1185 {
1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187 * For bits that vary between AArch32/64, code needs to check the
1188 * current execution mode before directly using the feature bit.
1189 */
1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1191
1192 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193 valid_mask &= ~SCR_HCE;
1194
1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196 * supported if EL2 exists. The bit is UNK/SBZP when
1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198 * when EL2 is unavailable.
1199 * On ARMv8, this bit is always available.
1200 */
1201 if (arm_feature(env, ARM_FEATURE_V7) &&
1202 !arm_feature(env, ARM_FEATURE_V8)) {
1203 valid_mask &= ~SCR_SMD;
1204 }
1205 }
1206
1207 /* Clear all-context RES0 bits. */
1208 value &= valid_mask;
1209 raw_write(env, ri, value);
1210 }
1211
1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 {
1214 ARMCPU *cpu = arm_env_get_cpu(env);
1215
1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217 * bank
1218 */
1219 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220 ri->secure & ARM_CP_SECSTATE_S);
1221
1222 return cpu->ccsidr[index];
1223 }
1224
1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226 uint64_t value)
1227 {
1228 raw_write(env, ri, value & 0xf);
1229 }
1230
1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232 {
1233 CPUState *cs = ENV_GET_CPU(env);
1234 uint64_t ret = 0;
1235
1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237 ret |= CPSR_I;
1238 }
1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240 ret |= CPSR_F;
1241 }
1242 /* External aborts are not possible in QEMU so A bit is always clear */
1243 return ret;
1244 }
1245
1246 static const ARMCPRegInfo v7_cp_reginfo[] = {
1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249 .access = PL1_W, .type = ARM_CP_NOP },
1250 /* Performance monitors are implementation defined in v7,
1251 * but with an ARM recommended set of registers, which we
1252 * follow (although we don't actually implement any counters)
1253 *
1254 * Performance registers fall into three categories:
1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1260 */
1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1262 .access = PL0_RW, .type = ARM_CP_ALIAS,
1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1264 .writefn = pmcntenset_write,
1265 .accessfn = pmreg_access,
1266 .raw_writefn = raw_write },
1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269 .access = PL0_RW, .accessfn = pmreg_access,
1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1273 .access = PL0_RW,
1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1275 .accessfn = pmreg_access,
1276 .writefn = pmcntenclr_write,
1277 .type = ARM_CP_ALIAS },
1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280 .access = PL0_RW, .accessfn = pmreg_access,
1281 .type = ARM_CP_ALIAS,
1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283 .writefn = pmcntenclr_write },
1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1286 .accessfn = pmreg_access,
1287 .writefn = pmovsr_write,
1288 .raw_writefn = raw_write },
1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291 .access = PL0_RW, .accessfn = pmreg_access,
1292 .type = ARM_CP_ALIAS,
1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294 .writefn = pmovsr_write,
1295 .raw_writefn = raw_write },
1296 /* Unimplemented so WI. */
1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1299 #ifndef CONFIG_USER_ONLY
1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301 .access = PL0_RW, .type = ARM_CP_ALIAS,
1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1304 .raw_writefn = raw_write},
1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1307 .access = PL0_RW, .accessfn = pmreg_access_selr,
1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309 .writefn = pmselr_write, .raw_writefn = raw_write, },
1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1312 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1313 .accessfn = pmreg_access_ccntr },
1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1317 .type = ARM_CP_IO,
1318 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1319 #endif
1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1322 .writefn = pmccfiltr_write,
1323 .access = PL0_RW, .accessfn = pmreg_access,
1324 .type = ARM_CP_IO,
1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326 .resetvalue = 0, },
1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1334 /* Unimplemented, RAZ/WI. */
1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1337 .accessfn = pmreg_access_xevcntr },
1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341 .resetvalue = 0,
1342 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347 .resetvalue = 0,
1348 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1350 .access = PL1_RW, .accessfn = access_tpm,
1351 .type = ARM_CP_ALIAS,
1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1353 .resetvalue = 0,
1354 .writefn = pmintenset_write, .raw_writefn = raw_write },
1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357 .access = PL1_RW, .accessfn = access_tpm,
1358 .type = ARM_CP_IO,
1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360 .writefn = pmintenset_write, .raw_writefn = raw_write,
1361 .resetvalue = 0x0 },
1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1365 .writefn = pmintenclr_write, },
1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370 .writefn = pmintenclr_write },
1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378 offsetof(CPUARMState, cp15.csselr_ns) } },
1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380 * just RAZ for all cores:
1381 */
1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1385 /* Auxiliary fault status registers: these also are IMPDEF, and we
1386 * choose to RAZ/WI for all cores.
1387 */
1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1394 /* MAIR can just read-as-written because we don't implement caches
1395 * and so don't need to care about memory attributes.
1396 */
1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1400 .resetvalue = 0 },
1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404 .resetvalue = 0 },
1405 /* For non-long-descriptor page tables these are PRRR and NMRR;
1406 * regardless they still act as reads-as-written for QEMU.
1407 */
1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1409 * allows them to assign the correct fieldoffset based on the endianness
1410 * handled in the field definitions.
1411 */
1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415 offsetof(CPUARMState, cp15.mair0_ns) },
1416 .resetfn = arm_cp_reset_ignore },
1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420 offsetof(CPUARMState, cp15.mair1_ns) },
1421 .resetfn = arm_cp_reset_ignore },
1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1425 /* 32 bit ITLB invalidates */
1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1432 /* 32 bit DTLB invalidates */
1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1439 /* 32 bit TLB invalidates */
1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1448 REGINFO_SENTINEL
1449 };
1450
1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452 /* 32 bit TLB invalidates, Inner Shareable */
1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1458 .type = ARM_CP_NO_RAW, .access = PL1_W,
1459 .writefn = tlbiasid_is_write },
1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1461 .type = ARM_CP_NO_RAW, .access = PL1_W,
1462 .writefn = tlbimvaa_is_write },
1463 REGINFO_SENTINEL
1464 };
1465
1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467 uint64_t value)
1468 {
1469 value &= 1;
1470 env->teecr = value;
1471 }
1472
1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474 bool isread)
1475 {
1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1477 return CP_ACCESS_TRAP;
1478 }
1479 return CP_ACCESS_OK;
1480 }
1481
1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485 .resetvalue = 0,
1486 .writefn = teecr_write },
1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1489 .accessfn = teehbr_access, .resetvalue = 0 },
1490 REGINFO_SENTINEL
1491 };
1492
1493 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496 .access = PL0_RW,
1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499 .access = PL0_RW,
1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1502 .resetfn = arm_cp_reset_ignore },
1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505 .access = PL0_R|PL1_W,
1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507 .resetvalue = 0},
1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509 .access = PL0_R|PL1_W,
1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1512 .resetfn = arm_cp_reset_ignore },
1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1515 .access = PL1_RW,
1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518 .access = PL1_RW,
1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521 .resetvalue = 0 },
1522 REGINFO_SENTINEL
1523 };
1524
1525 #ifndef CONFIG_USER_ONLY
1526
1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528 bool isread)
1529 {
1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531 * Writable only at the highest implemented exception level.
1532 */
1533 int el = arm_current_el(env);
1534
1535 switch (el) {
1536 case 0:
1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538 return CP_ACCESS_TRAP;
1539 }
1540 break;
1541 case 1:
1542 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543 arm_is_secure_below_el3(env)) {
1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545 return CP_ACCESS_TRAP_UNCATEGORIZED;
1546 }
1547 break;
1548 case 2:
1549 case 3:
1550 break;
1551 }
1552
1553 if (!isread && el < arm_highest_el(env)) {
1554 return CP_ACCESS_TRAP_UNCATEGORIZED;
1555 }
1556
1557 return CP_ACCESS_OK;
1558 }
1559
1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561 bool isread)
1562 {
1563 unsigned int cur_el = arm_current_el(env);
1564 bool secure = arm_is_secure(env);
1565
1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1567 if (cur_el == 0 &&
1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569 return CP_ACCESS_TRAP;
1570 }
1571
1572 if (arm_feature(env, ARM_FEATURE_EL2) &&
1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575 return CP_ACCESS_TRAP_EL2;
1576 }
1577 return CP_ACCESS_OK;
1578 }
1579
1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581 bool isread)
1582 {
1583 unsigned int cur_el = arm_current_el(env);
1584 bool secure = arm_is_secure(env);
1585
1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587 * EL0[PV]TEN is zero.
1588 */
1589 if (cur_el == 0 &&
1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591 return CP_ACCESS_TRAP;
1592 }
1593
1594 if (arm_feature(env, ARM_FEATURE_EL2) &&
1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597 return CP_ACCESS_TRAP_EL2;
1598 }
1599 return CP_ACCESS_OK;
1600 }
1601
1602 static CPAccessResult gt_pct_access(CPUARMState *env,
1603 const ARMCPRegInfo *ri,
1604 bool isread)
1605 {
1606 return gt_counter_access(env, GTIMER_PHYS, isread);
1607 }
1608
1609 static CPAccessResult gt_vct_access(CPUARMState *env,
1610 const ARMCPRegInfo *ri,
1611 bool isread)
1612 {
1613 return gt_counter_access(env, GTIMER_VIRT, isread);
1614 }
1615
1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617 bool isread)
1618 {
1619 return gt_timer_access(env, GTIMER_PHYS, isread);
1620 }
1621
1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623 bool isread)
1624 {
1625 return gt_timer_access(env, GTIMER_VIRT, isread);
1626 }
1627
1628 static CPAccessResult gt_stimer_access(CPUARMState *env,
1629 const ARMCPRegInfo *ri,
1630 bool isread)
1631 {
1632 /* The AArch64 register view of the secure physical timer is
1633 * always accessible from EL3, and configurably accessible from
1634 * Secure EL1.
1635 */
1636 switch (arm_current_el(env)) {
1637 case 1:
1638 if (!arm_is_secure(env)) {
1639 return CP_ACCESS_TRAP;
1640 }
1641 if (!(env->cp15.scr_el3 & SCR_ST)) {
1642 return CP_ACCESS_TRAP_EL3;
1643 }
1644 return CP_ACCESS_OK;
1645 case 0:
1646 case 2:
1647 return CP_ACCESS_TRAP;
1648 case 3:
1649 return CP_ACCESS_OK;
1650 default:
1651 g_assert_not_reached();
1652 }
1653 }
1654
1655 static uint64_t gt_get_countervalue(CPUARMState *env)
1656 {
1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1658 }
1659
1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1661 {
1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1663
1664 if (gt->ctl & 1) {
1665 /* Timer enabled: calculate and set current ISTATUS, irq, and
1666 * reset timer to when ISTATUS next has to change
1667 */
1668 uint64_t offset = timeridx == GTIMER_VIRT ?
1669 cpu->env.cp15.cntvoff_el2 : 0;
1670 uint64_t count = gt_get_countervalue(&cpu->env);
1671 /* Note that this must be unsigned 64 bit arithmetic: */
1672 int istatus = count - offset >= gt->cval;
1673 uint64_t nexttick;
1674 int irqstate;
1675
1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1677
1678 irqstate = (istatus && !(gt->ctl & 2));
1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1680
1681 if (istatus) {
1682 /* Next transition is when count rolls back over to zero */
1683 nexttick = UINT64_MAX;
1684 } else {
1685 /* Next transition is when we hit cval */
1686 nexttick = gt->cval + offset;
1687 }
1688 /* Note that the desired next expiry time might be beyond the
1689 * signed-64-bit range of a QEMUTimer -- in this case we just
1690 * set the timer for as far in the future as possible. When the
1691 * timer expires we will reset the timer for any remaining period.
1692 */
1693 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694 nexttick = INT64_MAX / GTIMER_SCALE;
1695 }
1696 timer_mod(cpu->gt_timer[timeridx], nexttick);
1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1698 } else {
1699 /* Timer disabled: ISTATUS and timer output always clear */
1700 gt->ctl &= ~4;
1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1702 timer_del(cpu->gt_timer[timeridx]);
1703 trace_arm_gt_recalc_disabled(timeridx);
1704 }
1705 }
1706
1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708 int timeridx)
1709 {
1710 ARMCPU *cpu = arm_env_get_cpu(env);
1711
1712 timer_del(cpu->gt_timer[timeridx]);
1713 }
1714
1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 {
1717 return gt_get_countervalue(env);
1718 }
1719
1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 {
1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1723 }
1724
1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726 int timeridx,
1727 uint64_t value)
1728 {
1729 trace_arm_gt_cval_write(timeridx, value);
1730 env->cp15.c14_timer[timeridx].cval = value;
1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1732 }
1733
1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735 int timeridx)
1736 {
1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1738
1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1740 (gt_get_countervalue(env) - offset));
1741 }
1742
1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744 int timeridx,
1745 uint64_t value)
1746 {
1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748
1749 trace_arm_gt_tval_write(timeridx, value);
1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1751 sextract64(value, 0, 32);
1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1753 }
1754
1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 int timeridx,
1757 uint64_t value)
1758 {
1759 ARMCPU *cpu = arm_env_get_cpu(env);
1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1761
1762 trace_arm_gt_ctl_write(timeridx, value);
1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1764 if ((oldval ^ value) & 1) {
1765 /* Enable toggled */
1766 gt_recalc_timer(cpu, timeridx);
1767 } else if ((oldval ^ value) & 2) {
1768 /* IMASK toggled: don't need to recalculate,
1769 * just set the interrupt line based on ISTATUS
1770 */
1771 int irqstate = (oldval & 4) && !(value & 2);
1772
1773 trace_arm_gt_imask_toggle(timeridx, irqstate);
1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1775 }
1776 }
1777
1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780 gt_timer_reset(env, ri, GTIMER_PHYS);
1781 }
1782
1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1785 {
1786 gt_cval_write(env, ri, GTIMER_PHYS, value);
1787 }
1788
1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791 return gt_tval_read(env, ri, GTIMER_PHYS);
1792 }
1793
1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1796 {
1797 gt_tval_write(env, ri, GTIMER_PHYS, value);
1798 }
1799
1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801 uint64_t value)
1802 {
1803 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1804 }
1805
1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1807 {
1808 gt_timer_reset(env, ri, GTIMER_VIRT);
1809 }
1810
1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812 uint64_t value)
1813 {
1814 gt_cval_write(env, ri, GTIMER_VIRT, value);
1815 }
1816
1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819 return gt_tval_read(env, ri, GTIMER_VIRT);
1820 }
1821
1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1824 {
1825 gt_tval_write(env, ri, GTIMER_VIRT, value);
1826 }
1827
1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829 uint64_t value)
1830 {
1831 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1832 }
1833
1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835 uint64_t value)
1836 {
1837 ARMCPU *cpu = arm_env_get_cpu(env);
1838
1839 trace_arm_gt_cntvoff_write(value);
1840 raw_write(env, ri, value);
1841 gt_recalc_timer(cpu, GTIMER_VIRT);
1842 }
1843
1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1845 {
1846 gt_timer_reset(env, ri, GTIMER_HYP);
1847 }
1848
1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1851 {
1852 gt_cval_write(env, ri, GTIMER_HYP, value);
1853 }
1854
1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1856 {
1857 return gt_tval_read(env, ri, GTIMER_HYP);
1858 }
1859
1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1862 {
1863 gt_tval_write(env, ri, GTIMER_HYP, value);
1864 }
1865
1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867 uint64_t value)
1868 {
1869 gt_ctl_write(env, ri, GTIMER_HYP, value);
1870 }
1871
1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1873 {
1874 gt_timer_reset(env, ri, GTIMER_SEC);
1875 }
1876
1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878 uint64_t value)
1879 {
1880 gt_cval_write(env, ri, GTIMER_SEC, value);
1881 }
1882
1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1884 {
1885 return gt_tval_read(env, ri, GTIMER_SEC);
1886 }
1887
1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889 uint64_t value)
1890 {
1891 gt_tval_write(env, ri, GTIMER_SEC, value);
1892 }
1893
1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895 uint64_t value)
1896 {
1897 gt_ctl_write(env, ri, GTIMER_SEC, value);
1898 }
1899
1900 void arm_gt_ptimer_cb(void *opaque)
1901 {
1902 ARMCPU *cpu = opaque;
1903
1904 gt_recalc_timer(cpu, GTIMER_PHYS);
1905 }
1906
1907 void arm_gt_vtimer_cb(void *opaque)
1908 {
1909 ARMCPU *cpu = opaque;
1910
1911 gt_recalc_timer(cpu, GTIMER_VIRT);
1912 }
1913
1914 void arm_gt_htimer_cb(void *opaque)
1915 {
1916 ARMCPU *cpu = opaque;
1917
1918 gt_recalc_timer(cpu, GTIMER_HYP);
1919 }
1920
1921 void arm_gt_stimer_cb(void *opaque)
1922 {
1923 ARMCPU *cpu = opaque;
1924
1925 gt_recalc_timer(cpu, GTIMER_SEC);
1926 }
1927
1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929 /* Note that CNTFRQ is purely reads-as-written for the benefit
1930 * of software; writing it doesn't actually change the timer frequency.
1931 * Our reset value matches the fixed frequency we implement the timer at.
1932 */
1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1934 .type = ARM_CP_ALIAS,
1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1937 },
1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1943 },
1944 /* overall control: mostly access permissions */
1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1947 .access = PL1_RW,
1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949 .resetvalue = 0,
1950 },
1951 /* per-timer control */
1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1953 .secure = ARM_CP_SECSTATE_NS,
1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1955 .accessfn = gt_ptimer_access,
1956 .fieldoffset = offsetoflow32(CPUARMState,
1957 cp15.c14_timer[GTIMER_PHYS].ctl),
1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1959 },
1960 { .name = "CNTP_CTL(S)",
1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962 .secure = ARM_CP_SECSTATE_S,
1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964 .accessfn = gt_ptimer_access,
1965 .fieldoffset = offsetoflow32(CPUARMState,
1966 cp15.c14_timer[GTIMER_SEC].ctl),
1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1968 },
1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1972 .accessfn = gt_ptimer_access,
1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974 .resetvalue = 0,
1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1976 },
1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1979 .accessfn = gt_vtimer_access,
1980 .fieldoffset = offsetoflow32(CPUARMState,
1981 cp15.c14_timer[GTIMER_VIRT].ctl),
1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1983 },
1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1987 .accessfn = gt_vtimer_access,
1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989 .resetvalue = 0,
1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1991 },
1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1994 .secure = ARM_CP_SECSTATE_NS,
1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1996 .accessfn = gt_ptimer_access,
1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1998 },
1999 { .name = "CNTP_TVAL(S)",
2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001 .secure = ARM_CP_SECSTATE_S,
2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003 .accessfn = gt_ptimer_access,
2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2005 },
2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2011 },
2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014 .accessfn = gt_vtimer_access,
2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2016 },
2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2022 },
2023 /* The counter itself */
2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026 .accessfn = gt_pct_access,
2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2028 },
2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2033 },
2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036 .accessfn = gt_vct_access,
2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2038 },
2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2043 },
2044 /* Comparison value, indicating when the timer goes off */
2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2046 .secure = ARM_CP_SECSTATE_NS,
2047 .access = PL1_RW | PL0_R,
2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2050 .accessfn = gt_ptimer_access,
2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2052 },
2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054 .secure = ARM_CP_SECSTATE_S,
2055 .access = PL1_RW | PL0_R,
2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058 .accessfn = gt_ptimer_access,
2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2060 },
2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063 .access = PL1_RW | PL0_R,
2064 .type = ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2066 .resetvalue = 0, .accessfn = gt_ptimer_access,
2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2068 },
2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070 .access = PL1_RW | PL0_R,
2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2073 .accessfn = gt_vtimer_access,
2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2075 },
2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078 .access = PL1_RW | PL0_R,
2079 .type = ARM_CP_IO,
2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081 .resetvalue = 0, .accessfn = gt_vtimer_access,
2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2083 },
2084 /* Secure timer -- this is actually restricted to only EL3
2085 * and configurably Secure-EL1 via the accessfn.
2086 */
2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090 .accessfn = gt_stimer_access,
2091 .readfn = gt_sec_tval_read,
2092 .writefn = gt_sec_tval_write,
2093 .resetfn = gt_sec_timer_reset,
2094 },
2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097 .type = ARM_CP_IO, .access = PL1_RW,
2098 .accessfn = gt_stimer_access,
2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100 .resetvalue = 0,
2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2102 },
2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105 .type = ARM_CP_IO, .access = PL1_RW,
2106 .accessfn = gt_stimer_access,
2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2109 },
2110 REGINFO_SENTINEL
2111 };
2112
2113 #else
2114 /* In user-mode none of the generic timer registers are accessible,
2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2116 * so instead just don't register any of them.
2117 */
2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2119 REGINFO_SENTINEL
2120 };
2121
2122 #endif
2123
2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2125 {
2126 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2127 raw_write(env, ri, value);
2128 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2129 raw_write(env, ri, value & 0xfffff6ff);
2130 } else {
2131 raw_write(env, ri, value & 0xfffff1ff);
2132 }
2133 }
2134
2135 #ifndef CONFIG_USER_ONLY
2136 /* get_phys_addr() isn't present for user-mode-only targets */
2137
2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139 bool isread)
2140 {
2141 if (ri->opc2 & 4) {
2142 /* The ATS12NSO* operations must trap to EL3 if executed in
2143 * Secure EL1 (which can only happen if EL3 is AArch64).
2144 * They are simply UNDEF if executed from NS EL1.
2145 * They function normally from EL2 or EL3.
2146 */
2147 if (arm_current_el(env) == 1) {
2148 if (arm_is_secure_below_el3(env)) {
2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2150 }
2151 return CP_ACCESS_TRAP_UNCATEGORIZED;
2152 }
2153 }
2154 return CP_ACCESS_OK;
2155 }
2156
2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2158 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2159 {
2160 hwaddr phys_addr;
2161 target_ulong page_size;
2162 int prot;
2163 uint32_t fsr;
2164 bool ret;
2165 uint64_t par64;
2166 MemTxAttrs attrs = {};
2167 ARMMMUFaultInfo fi = {};
2168 ARMCacheAttrs cacheattrs = {};
2169
2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171 &prot, &page_size, &fsr, &fi, &cacheattrs);
2172 if (arm_s1_regime_using_lpae_format(env, mmu_idx)) {
2173 /* fsr is a DFSR/IFSR value for the long descriptor
2174 * translation table format, but with WnR always clear.
2175 * Convert it to a 64-bit PAR.
2176 */
2177 par64 = (1 << 11); /* LPAE bit always set */
2178 if (!ret) {
2179 par64 |= phys_addr & ~0xfffULL;
2180 if (!attrs.secure) {
2181 par64 |= (1 << 9); /* NS */
2182 }
2183 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2184 par64 |= cacheattrs.shareability << 7; /* SH */
2185 } else {
2186 par64 |= 1; /* F */
2187 par64 |= (fsr & 0x3f) << 1; /* FS */
2188 /* Note that S2WLK and FSTAGE are always zero, because we don't
2189 * implement virtualization and therefore there can't be a stage 2
2190 * fault.
2191 */
2192 }
2193 } else {
2194 /* fsr is a DFSR/IFSR value for the short descriptor
2195 * translation table format (with WnR always clear).
2196 * Convert it to a 32-bit PAR.
2197 */
2198 if (!ret) {
2199 /* We do not set any attribute bits in the PAR */
2200 if (page_size == (1 << 24)
2201 && arm_feature(env, ARM_FEATURE_V7)) {
2202 par64 = (phys_addr & 0xff000000) | (1 << 1);
2203 } else {
2204 par64 = phys_addr & 0xfffff000;
2205 }
2206 if (!attrs.secure) {
2207 par64 |= (1 << 9); /* NS */
2208 }
2209 } else {
2210 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2211 ((fsr & 0xf) << 1) | 1;
2212 }
2213 }
2214 return par64;
2215 }
2216
2217 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2218 {
2219 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2220 uint64_t par64;
2221 ARMMMUIdx mmu_idx;
2222 int el = arm_current_el(env);
2223 bool secure = arm_is_secure_below_el3(env);
2224
2225 switch (ri->opc2 & 6) {
2226 case 0:
2227 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2228 switch (el) {
2229 case 3:
2230 mmu_idx = ARMMMUIdx_S1E3;
2231 break;
2232 case 2:
2233 mmu_idx = ARMMMUIdx_S1NSE1;
2234 break;
2235 case 1:
2236 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2237 break;
2238 default:
2239 g_assert_not_reached();
2240 }
2241 break;
2242 case 2:
2243 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2244 switch (el) {
2245 case 3:
2246 mmu_idx = ARMMMUIdx_S1SE0;
2247 break;
2248 case 2:
2249 mmu_idx = ARMMMUIdx_S1NSE0;
2250 break;
2251 case 1:
2252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2253 break;
2254 default:
2255 g_assert_not_reached();
2256 }
2257 break;
2258 case 4:
2259 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2260 mmu_idx = ARMMMUIdx_S12NSE1;
2261 break;
2262 case 6:
2263 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2264 mmu_idx = ARMMMUIdx_S12NSE0;
2265 break;
2266 default:
2267 g_assert_not_reached();
2268 }
2269
2270 par64 = do_ats_write(env, value, access_type, mmu_idx);
2271
2272 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2273 }
2274
2275 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2276 uint64_t value)
2277 {
2278 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2279 uint64_t par64;
2280
2281 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2282
2283 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2284 }
2285
2286 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2287 bool isread)
2288 {
2289 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2290 return CP_ACCESS_TRAP;
2291 }
2292 return CP_ACCESS_OK;
2293 }
2294
2295 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2296 uint64_t value)
2297 {
2298 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2299 ARMMMUIdx mmu_idx;
2300 int secure = arm_is_secure_below_el3(env);
2301
2302 switch (ri->opc2 & 6) {
2303 case 0:
2304 switch (ri->opc1) {
2305 case 0: /* AT S1E1R, AT S1E1W */
2306 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2307 break;
2308 case 4: /* AT S1E2R, AT S1E2W */
2309 mmu_idx = ARMMMUIdx_S1E2;
2310 break;
2311 case 6: /* AT S1E3R, AT S1E3W */
2312 mmu_idx = ARMMMUIdx_S1E3;
2313 break;
2314 default:
2315 g_assert_not_reached();
2316 }
2317 break;
2318 case 2: /* AT S1E0R, AT S1E0W */
2319 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2320 break;
2321 case 4: /* AT S12E1R, AT S12E1W */
2322 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2323 break;
2324 case 6: /* AT S12E0R, AT S12E0W */
2325 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2326 break;
2327 default:
2328 g_assert_not_reached();
2329 }
2330
2331 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2332 }
2333 #endif
2334
2335 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2336 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2337 .access = PL1_RW, .resetvalue = 0,
2338 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2339 offsetoflow32(CPUARMState, cp15.par_ns) },
2340 .writefn = par_write },
2341 #ifndef CONFIG_USER_ONLY
2342 /* This underdecoding is safe because the reginfo is NO_RAW. */
2343 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2344 .access = PL1_W, .accessfn = ats_access,
2345 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2346 #endif
2347 REGINFO_SENTINEL
2348 };
2349
2350 /* Return basic MPU access permission bits. */
2351 static uint32_t simple_mpu_ap_bits(uint32_t val)
2352 {
2353 uint32_t ret;
2354 uint32_t mask;
2355 int i;
2356 ret = 0;
2357 mask = 3;
2358 for (i = 0; i < 16; i += 2) {
2359 ret |= (val >> i) & mask;
2360 mask <<= 2;
2361 }
2362 return ret;
2363 }
2364
2365 /* Pad basic MPU access permission bits to extended format. */
2366 static uint32_t extended_mpu_ap_bits(uint32_t val)
2367 {
2368 uint32_t ret;
2369 uint32_t mask;
2370 int i;
2371 ret = 0;
2372 mask = 3;
2373 for (i = 0; i < 16; i += 2) {
2374 ret |= (val & mask) << i;
2375 mask <<= 2;
2376 }
2377 return ret;
2378 }
2379
2380 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2381 uint64_t value)
2382 {
2383 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2384 }
2385
2386 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2387 {
2388 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2389 }
2390
2391 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392 uint64_t value)
2393 {
2394 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2395 }
2396
2397 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2398 {
2399 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2400 }
2401
2402 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2403 {
2404 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2405
2406 if (!u32p) {
2407 return 0;
2408 }
2409
2410 u32p += env->pmsav7.rnr[M_REG_NS];
2411 return *u32p;
2412 }
2413
2414 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2415 uint64_t value)
2416 {
2417 ARMCPU *cpu = arm_env_get_cpu(env);
2418 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2419
2420 if (!u32p) {
2421 return;
2422 }
2423
2424 u32p += env->pmsav7.rnr[M_REG_NS];
2425 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2426 *u32p = value;
2427 }
2428
2429 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2430 uint64_t value)
2431 {
2432 ARMCPU *cpu = arm_env_get_cpu(env);
2433 uint32_t nrgs = cpu->pmsav7_dregion;
2434
2435 if (value >= nrgs) {
2436 qemu_log_mask(LOG_GUEST_ERROR,
2437 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2438 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2439 return;
2440 }
2441
2442 raw_write(env, ri, value);
2443 }
2444
2445 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2446 /* Reset for all these registers is handled in arm_cpu_reset(),
2447 * because the PMSAv7 is also used by M-profile CPUs, which do
2448 * not register cpregs but still need the state to be reset.
2449 */
2450 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2451 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2452 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2453 .readfn = pmsav7_read, .writefn = pmsav7_write,
2454 .resetfn = arm_cp_reset_ignore },
2455 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2456 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2457 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2458 .readfn = pmsav7_read, .writefn = pmsav7_write,
2459 .resetfn = arm_cp_reset_ignore },
2460 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2461 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2462 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2463 .readfn = pmsav7_read, .writefn = pmsav7_write,
2464 .resetfn = arm_cp_reset_ignore },
2465 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2466 .access = PL1_RW,
2467 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2468 .writefn = pmsav7_rgnr_write,
2469 .resetfn = arm_cp_reset_ignore },
2470 REGINFO_SENTINEL
2471 };
2472
2473 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2474 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2475 .access = PL1_RW, .type = ARM_CP_ALIAS,
2476 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2477 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2478 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2479 .access = PL1_RW, .type = ARM_CP_ALIAS,
2480 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2481 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2482 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2483 .access = PL1_RW,
2484 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2485 .resetvalue = 0, },
2486 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2487 .access = PL1_RW,
2488 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2489 .resetvalue = 0, },
2490 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2491 .access = PL1_RW,
2492 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2493 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2494 .access = PL1_RW,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2496 /* Protection region base and size registers */
2497 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2500 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2503 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2504 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2505 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2506 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2507 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2508 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2509 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2510 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2511 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2512 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2513 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2514 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2515 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2516 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2517 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2518 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2519 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2520 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2521 REGINFO_SENTINEL
2522 };
2523
2524 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2525 uint64_t value)
2526 {
2527 TCR *tcr = raw_ptr(env, ri);
2528 int maskshift = extract32(value, 0, 3);
2529
2530 if (!arm_feature(env, ARM_FEATURE_V8)) {
2531 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2532 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2533 * using Long-desciptor translation table format */
2534 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2535 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2536 /* In an implementation that includes the Security Extensions
2537 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2538 * Short-descriptor translation table format.
2539 */
2540 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2541 } else {
2542 value &= TTBCR_N;
2543 }
2544 }
2545
2546 /* Update the masks corresponding to the TCR bank being written
2547 * Note that we always calculate mask and base_mask, but
2548 * they are only used for short-descriptor tables (ie if EAE is 0);
2549 * for long-descriptor tables the TCR fields are used differently
2550 * and the mask and base_mask values are meaningless.
2551 */
2552 tcr->raw_tcr = value;
2553 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2554 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2555 }
2556
2557 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2558 uint64_t value)
2559 {
2560 ARMCPU *cpu = arm_env_get_cpu(env);
2561
2562 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2563 /* With LPAE the TTBCR could result in a change of ASID
2564 * via the TTBCR.A1 bit, so do a TLB flush.
2565 */
2566 tlb_flush(CPU(cpu));
2567 }
2568 vmsa_ttbcr_raw_write(env, ri, value);
2569 }
2570
2571 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2572 {
2573 TCR *tcr = raw_ptr(env, ri);
2574
2575 /* Reset both the TCR as well as the masks corresponding to the bank of
2576 * the TCR being reset.
2577 */
2578 tcr->raw_tcr = 0;
2579 tcr->mask = 0;
2580 tcr->base_mask = 0xffffc000u;
2581 }
2582
2583 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584 uint64_t value)
2585 {
2586 ARMCPU *cpu = arm_env_get_cpu(env);
2587 TCR *tcr = raw_ptr(env, ri);
2588
2589 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2590 tlb_flush(CPU(cpu));
2591 tcr->raw_tcr = value;
2592 }
2593
2594 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2595 uint64_t value)
2596 {
2597 /* 64 bit accesses to the TTBRs can change the ASID and so we
2598 * must flush the TLB.
2599 */
2600 if (cpreg_field_is_64bit(ri)) {
2601 ARMCPU *cpu = arm_env_get_cpu(env);
2602
2603 tlb_flush(CPU(cpu));
2604 }
2605 raw_write(env, ri, value);
2606 }
2607
2608 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609 uint64_t value)
2610 {
2611 ARMCPU *cpu = arm_env_get_cpu(env);
2612 CPUState *cs = CPU(cpu);
2613
2614 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2615 if (raw_read(env, ri) != value) {
2616 tlb_flush_by_mmuidx(cs,
2617 ARMMMUIdxBit_S12NSE1 |
2618 ARMMMUIdxBit_S12NSE0 |
2619 ARMMMUIdxBit_S2NS);
2620 raw_write(env, ri, value);
2621 }
2622 }
2623
2624 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2625 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2626 .access = PL1_RW, .type = ARM_CP_ALIAS,
2627 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2628 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2629 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2630 .access = PL1_RW, .resetvalue = 0,
2631 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2632 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2633 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2634 .access = PL1_RW, .resetvalue = 0,
2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2636 offsetof(CPUARMState, cp15.dfar_ns) } },
2637 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2638 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2639 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2640 .resetvalue = 0, },
2641 REGINFO_SENTINEL
2642 };
2643
2644 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2645 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2646 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2647 .access = PL1_RW,
2648 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2649 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2650 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2651 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2652 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2653 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2654 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2655 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2656 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2658 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2659 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2660 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2661 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2662 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2663 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2664 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2665 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2666 .raw_writefn = vmsa_ttbcr_raw_write,
2667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2668 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2669 REGINFO_SENTINEL
2670 };
2671
2672 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673 uint64_t value)
2674 {
2675 env->cp15.c15_ticonfig = value & 0xe7;
2676 /* The OS_TYPE bit in this register changes the reported CPUID! */
2677 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2678 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2679 }
2680
2681 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2682 uint64_t value)
2683 {
2684 env->cp15.c15_threadid = value & 0xffff;
2685 }
2686
2687 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2688 uint64_t value)
2689 {
2690 /* Wait-for-interrupt (deprecated) */
2691 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2692 }
2693
2694 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2695 uint64_t value)
2696 {
2697 /* On OMAP there are registers indicating the max/min index of dcache lines
2698 * containing a dirty line; cache flush operations have to reset these.
2699 */
2700 env->cp15.c15_i_max = 0x000;
2701 env->cp15.c15_i_min = 0xff0;
2702 }
2703
2704 static const ARMCPRegInfo omap_cp_reginfo[] = {
2705 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2706 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2707 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2708 .resetvalue = 0, },
2709 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2710 .access = PL1_RW, .type = ARM_CP_NOP },
2711 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2712 .access = PL1_RW,
2713 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2714 .writefn = omap_ticonfig_write },
2715 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2716 .access = PL1_RW,
2717 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2718 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2719 .access = PL1_RW, .resetvalue = 0xff0,
2720 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2721 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2722 .access = PL1_RW,
2723 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2724 .writefn = omap_threadid_write },
2725 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2726 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2727 .type = ARM_CP_NO_RAW,
2728 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2729 /* TODO: Peripheral port remap register:
2730 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2731 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2732 * when MMU is off.
2733 */
2734 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2735 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2736 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2737 .writefn = omap_cachemaint_write },
2738 { .name = "C9", .cp = 15, .crn = 9,
2739 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2740 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2741 REGINFO_SENTINEL
2742 };
2743
2744 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2745 uint64_t value)
2746 {
2747 env->cp15.c15_cpar = value & 0x3fff;
2748 }
2749
2750 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2751 { .name = "XSCALE_CPAR",
2752 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2753 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2754 .writefn = xscale_cpar_write, },
2755 { .name = "XSCALE_AUXCR",
2756 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2757 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2758 .resetvalue = 0, },
2759 /* XScale specific cache-lockdown: since we have no cache we NOP these
2760 * and hope the guest does not really rely on cache behaviour.
2761 */
2762 { .name = "XSCALE_LOCK_ICACHE_LINE",
2763 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2764 .access = PL1_W, .type = ARM_CP_NOP },
2765 { .name = "XSCALE_UNLOCK_ICACHE",
2766 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2767 .access = PL1_W, .type = ARM_CP_NOP },
2768 { .name = "XSCALE_DCACHE_LOCK",
2769 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2770 .access = PL1_RW, .type = ARM_CP_NOP },
2771 { .name = "XSCALE_UNLOCK_DCACHE",
2772 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2773 .access = PL1_W, .type = ARM_CP_NOP },
2774 REGINFO_SENTINEL
2775 };
2776
2777 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2778 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2779 * implementation of this implementation-defined space.
2780 * Ideally this should eventually disappear in favour of actually
2781 * implementing the correct behaviour for all cores.
2782 */
2783 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2784 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2785 .access = PL1_RW,
2786 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2787 .resetvalue = 0 },
2788 REGINFO_SENTINEL
2789 };
2790
2791 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2792 /* Cache status: RAZ because we have no cache so it's always clean */
2793 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2794 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2795 .resetvalue = 0 },
2796 REGINFO_SENTINEL
2797 };
2798
2799 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2800 /* We never have a a block transfer operation in progress */
2801 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2802 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2803 .resetvalue = 0 },
2804 /* The cache ops themselves: these all NOP for QEMU */
2805 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2806 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2807 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2808 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2809 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2810 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2811 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2812 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2813 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2814 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2815 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2816 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2817 REGINFO_SENTINEL
2818 };
2819
2820 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2821 /* The cache test-and-clean instructions always return (1 << 30)
2822 * to indicate that there are no dirty cache lines.
2823 */
2824 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2825 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2826 .resetvalue = (1 << 30) },
2827 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2828 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2829 .resetvalue = (1 << 30) },
2830 REGINFO_SENTINEL
2831 };
2832
2833 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2834 /* Ignore ReadBuffer accesses */
2835 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2836 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2837 .access = PL1_RW, .resetvalue = 0,
2838 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2839 REGINFO_SENTINEL
2840 };
2841
2842 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2843 {
2844 ARMCPU *cpu = arm_env_get_cpu(env);
2845 unsigned int cur_el = arm_current_el(env);
2846 bool secure = arm_is_secure(env);
2847
2848 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2849 return env->cp15.vpidr_el2;
2850 }
2851 return raw_read(env, ri);
2852 }
2853
2854 static uint64_t mpidr_read_val(CPUARMState *env)
2855 {
2856 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2857 uint64_t mpidr = cpu->mp_affinity;
2858
2859 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2860 mpidr |= (1U << 31);
2861 /* Cores which are uniprocessor (non-coherent)
2862 * but still implement the MP extensions set
2863 * bit 30. (For instance, Cortex-R5).
2864 */
2865 if (cpu->mp_is_up) {
2866 mpidr |= (1u << 30);
2867 }
2868 }
2869 return mpidr;
2870 }
2871
2872 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2873 {
2874 unsigned int cur_el = arm_current_el(env);
2875 bool secure = arm_is_secure(env);
2876
2877 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2878 return env->cp15.vmpidr_el2;
2879 }
2880 return mpidr_read_val(env);
2881 }
2882
2883 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2884 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2885 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2886 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2887 REGINFO_SENTINEL
2888 };
2889
2890 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2891 /* NOP AMAIR0/1 */
2892 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2893 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2894 .access = PL1_RW, .type = ARM_CP_CONST,
2895 .resetvalue = 0 },
2896 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2897 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2898 .access = PL1_RW, .type = ARM_CP_CONST,
2899 .resetvalue = 0 },
2900 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2901 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2902 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2903 offsetof(CPUARMState, cp15.par_ns)} },
2904 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2905 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2906 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2907 offsetof(CPUARMState, cp15.ttbr0_ns) },
2908 .writefn = vmsa_ttbr_write, },
2909 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2910 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2911 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2912 offsetof(CPUARMState, cp15.ttbr1_ns) },
2913 .writefn = vmsa_ttbr_write, },
2914 REGINFO_SENTINEL
2915 };
2916
2917 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2918 {
2919 return vfp_get_fpcr(env);
2920 }
2921
2922 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923 uint64_t value)
2924 {
2925 vfp_set_fpcr(env, value);
2926 }
2927
2928 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2929 {
2930 return vfp_get_fpsr(env);
2931 }
2932
2933 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934 uint64_t value)
2935 {
2936 vfp_set_fpsr(env, value);
2937 }
2938
2939 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2940 bool isread)
2941 {
2942 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2943 return CP_ACCESS_TRAP;
2944 }
2945 return CP_ACCESS_OK;
2946 }
2947
2948 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2950 {
2951 env->daif = value & PSTATE_DAIF;
2952 }
2953
2954 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2955 const ARMCPRegInfo *ri,
2956 bool isread)
2957 {
2958 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2959 * SCTLR_EL1.UCI is set.
2960 */
2961 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2962 return CP_ACCESS_TRAP;
2963 }
2964 return CP_ACCESS_OK;
2965 }
2966
2967 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2968 * Page D4-1736 (DDI0487A.b)
2969 */
2970
2971 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972 uint64_t value)
2973 {
2974 CPUState *cs = ENV_GET_CPU(env);
2975
2976 if (arm_is_secure_below_el3(env)) {
2977 tlb_flush_by_mmuidx(cs,
2978 ARMMMUIdxBit_S1SE1 |
2979 ARMMMUIdxBit_S1SE0);
2980 } else {
2981 tlb_flush_by_mmuidx(cs,
2982 ARMMMUIdxBit_S12NSE1 |
2983 ARMMMUIdxBit_S12NSE0);
2984 }
2985 }
2986
2987 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2989 {
2990 CPUState *cs = ENV_GET_CPU(env);
2991 bool sec = arm_is_secure_below_el3(env);
2992
2993 if (sec) {
2994 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2995 ARMMMUIdxBit_S1SE1 |
2996 ARMMMUIdxBit_S1SE0);
2997 } else {
2998 tlb_flush_by_mmuidx_all_cpus_synced(cs,
2999 ARMMMUIdxBit_S12NSE1 |
3000 ARMMMUIdxBit_S12NSE0);
3001 }
3002 }
3003
3004 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 /* Note that the 'ALL' scope must invalidate both stage 1 and
3008 * stage 2 translations, whereas most other scopes only invalidate
3009 * stage 1 translations.
3010 */
3011 ARMCPU *cpu = arm_env_get_cpu(env);
3012 CPUState *cs = CPU(cpu);
3013
3014 if (arm_is_secure_below_el3(env)) {
3015 tlb_flush_by_mmuidx(cs,
3016 ARMMMUIdxBit_S1SE1 |
3017 ARMMMUIdxBit_S1SE0);
3018 } else {
3019 if (arm_feature(env, ARM_FEATURE_EL2)) {
3020 tlb_flush_by_mmuidx(cs,
3021 ARMMMUIdxBit_S12NSE1 |
3022 ARMMMUIdxBit_S12NSE0 |
3023 ARMMMUIdxBit_S2NS);
3024 } else {
3025 tlb_flush_by_mmuidx(cs,
3026 ARMMMUIdxBit_S12NSE1 |
3027 ARMMMUIdxBit_S12NSE0);
3028 }
3029 }
3030 }
3031
3032 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033 uint64_t value)
3034 {
3035 ARMCPU *cpu = arm_env_get_cpu(env);
3036 CPUState *cs = CPU(cpu);
3037
3038 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3039 }
3040
3041 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042 uint64_t value)
3043 {
3044 ARMCPU *cpu = arm_env_get_cpu(env);
3045 CPUState *cs = CPU(cpu);
3046
3047 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3048 }
3049
3050 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3051 uint64_t value)
3052 {
3053 /* Note that the 'ALL' scope must invalidate both stage 1 and
3054 * stage 2 translations, whereas most other scopes only invalidate
3055 * stage 1 translations.
3056 */
3057 CPUState *cs = ENV_GET_CPU(env);
3058 bool sec = arm_is_secure_below_el3(env);
3059 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3060
3061 if (sec) {
3062 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3063 ARMMMUIdxBit_S1SE1 |
3064 ARMMMUIdxBit_S1SE0);
3065 } else if (has_el2) {
3066 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3067 ARMMMUIdxBit_S12NSE1 |
3068 ARMMMUIdxBit_S12NSE0 |
3069 ARMMMUIdxBit_S2NS);
3070 } else {
3071 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3072 ARMMMUIdxBit_S12NSE1 |
3073 ARMMMUIdxBit_S12NSE0);
3074 }
3075 }
3076
3077 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078 uint64_t value)
3079 {
3080 CPUState *cs = ENV_GET_CPU(env);
3081
3082 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3083 }
3084
3085 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086 uint64_t value)
3087 {
3088 CPUState *cs = ENV_GET_CPU(env);
3089
3090 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3091 }
3092
3093 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3094 uint64_t value)
3095 {
3096 /* Invalidate by VA, EL1&0 (AArch64 version).
3097 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3098 * since we don't support flush-for-specific-ASID-only or
3099 * flush-last-level-only.
3100 */
3101 ARMCPU *cpu = arm_env_get_cpu(env);
3102 CPUState *cs = CPU(cpu);
3103 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104
3105 if (arm_is_secure_below_el3(env)) {
3106 tlb_flush_page_by_mmuidx(cs, pageaddr,
3107 ARMMMUIdxBit_S1SE1 |
3108 ARMMMUIdxBit_S1SE0);
3109 } else {
3110 tlb_flush_page_by_mmuidx(cs, pageaddr,
3111 ARMMMUIdxBit_S12NSE1 |
3112 ARMMMUIdxBit_S12NSE0);
3113 }
3114 }
3115
3116 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117 uint64_t value)
3118 {
3119 /* Invalidate by VA, EL2
3120 * Currently handles both VAE2 and VALE2, since we don't support
3121 * flush-last-level-only.
3122 */
3123 ARMCPU *cpu = arm_env_get_cpu(env);
3124 CPUState *cs = CPU(cpu);
3125 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3126
3127 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3128 }
3129
3130 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3131 uint64_t value)
3132 {
3133 /* Invalidate by VA, EL3
3134 * Currently handles both VAE3 and VALE3, since we don't support
3135 * flush-last-level-only.
3136 */
3137 ARMCPU *cpu = arm_env_get_cpu(env);
3138 CPUState *cs = CPU(cpu);
3139 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3140
3141 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3142 }
3143
3144 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145 uint64_t value)
3146 {
3147 ARMCPU *cpu = arm_env_get_cpu(env);
3148 CPUState *cs = CPU(cpu);
3149 bool sec = arm_is_secure_below_el3(env);
3150 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151
3152 if (sec) {
3153 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3154 ARMMMUIdxBit_S1SE1 |
3155 ARMMMUIdxBit_S1SE0);
3156 } else {
3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158 ARMMMUIdxBit_S12NSE1 |
3159 ARMMMUIdxBit_S12NSE0);
3160 }
3161 }
3162
3163 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164 uint64_t value)
3165 {
3166 CPUState *cs = ENV_GET_CPU(env);
3167 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3168
3169 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3170 ARMMMUIdxBit_S1E2);
3171 }
3172
3173 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174 uint64_t value)
3175 {
3176 CPUState *cs = ENV_GET_CPU(env);
3177 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3178
3179 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3180 ARMMMUIdxBit_S1E3);
3181 }
3182
3183 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184 uint64_t value)
3185 {
3186 /* Invalidate by IPA. This has to invalidate any structures that
3187 * contain only stage 2 translation information, but does not need
3188 * to apply to structures that contain combined stage 1 and stage 2
3189 * translation information.
3190 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3191 */
3192 ARMCPU *cpu = arm_env_get_cpu(env);
3193 CPUState *cs = CPU(cpu);
3194 uint64_t pageaddr;
3195
3196 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3197 return;
3198 }
3199
3200 pageaddr = sextract64(value << 12, 0, 48);
3201
3202 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3203 }
3204
3205 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206 uint64_t value)
3207 {
3208 CPUState *cs = ENV_GET_CPU(env);
3209 uint64_t pageaddr;
3210
3211 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3212 return;
3213 }
3214
3215 pageaddr = sextract64(value << 12, 0, 48);
3216
3217 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3218 ARMMMUIdxBit_S2NS);
3219 }
3220
3221 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3222 bool isread)
3223 {
3224 /* We don't implement EL2, so the only control on DC ZVA is the
3225 * bit in the SCTLR which can prohibit access for EL0.
3226 */
3227 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3228 return CP_ACCESS_TRAP;
3229 }
3230 return CP_ACCESS_OK;
3231 }
3232
3233 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3234 {
3235 ARMCPU *cpu = arm_env_get_cpu(env);
3236 int dzp_bit = 1 << 4;
3237
3238 /* DZP indicates whether DC ZVA access is allowed */
3239 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3240 dzp_bit = 0;
3241 }
3242 return cpu->dcz_blocksize | dzp_bit;
3243 }
3244
3245 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3246 bool isread)
3247 {
3248 if (!(env->pstate & PSTATE_SP)) {
3249 /* Access to SP_EL0 is undefined if it's being used as
3250 * the stack pointer.
3251 */
3252 return CP_ACCESS_TRAP_UNCATEGORIZED;
3253 }
3254 return CP_ACCESS_OK;
3255 }
3256
3257 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3258 {
3259 return env->pstate & PSTATE_SP;
3260 }
3261
3262 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3263 {
3264 update_spsel(env, val);
3265 }
3266
3267 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3268 uint64_t value)
3269 {
3270 ARMCPU *cpu = arm_env_get_cpu(env);
3271
3272 if (raw_read(env, ri) == value) {
3273 /* Skip the TLB flush if nothing actually changed; Linux likes
3274 * to do a lot of pointless SCTLR writes.
3275 */
3276 return;
3277 }
3278
3279 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3280 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3281 value &= ~SCTLR_M;
3282 }
3283
3284 raw_write(env, ri, value);
3285 /* ??? Lots of these bits are not implemented. */
3286 /* This may enable/disable the MMU, so do a TLB flush. */
3287 tlb_flush(CPU(cpu));
3288 }
3289
3290 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3291 bool isread)
3292 {
3293 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3294 return CP_ACCESS_TRAP_FP_EL2;
3295 }
3296 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3297 return CP_ACCESS_TRAP_FP_EL3;
3298 }
3299 return CP_ACCESS_OK;
3300 }
3301
3302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3303 uint64_t value)
3304 {
3305 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3306 }
3307
3308 static const ARMCPRegInfo v8_cp_reginfo[] = {
3309 /* Minimal set of EL0-visible registers. This will need to be expanded
3310 * significantly for system emulation of AArch64 CPUs.
3311 */
3312 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3314 .access = PL0_RW, .type = ARM_CP_NZCV },
3315 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3316 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3317 .type = ARM_CP_NO_RAW,
3318 .access = PL0_RW, .accessfn = aa64_daif_access,
3319 .fieldoffset = offsetof(CPUARMState, daif),
3320 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3321 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3322 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3323 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3324 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3326 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3327 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3329 .access = PL0_R, .type = ARM_CP_NO_RAW,
3330 .readfn = aa64_dczid_read },
3331 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3333 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3334 #ifndef CONFIG_USER_ONLY
3335 /* Avoid overhead of an access check that always passes in user-mode */
3336 .accessfn = aa64_zva_access,
3337 #endif
3338 },
3339 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3341 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3342 /* Cache ops: all NOPs since we don't emulate caches */
3343 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3345 .access = PL1_W, .type = ARM_CP_NOP },
3346 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3347 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3348 .access = PL1_W, .type = ARM_CP_NOP },
3349 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3351 .access = PL0_W, .type = ARM_CP_NOP,
3352 .accessfn = aa64_cacheop_access },
3353 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3355 .access = PL1_W, .type = ARM_CP_NOP },
3356 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3358 .access = PL1_W, .type = ARM_CP_NOP },
3359 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3361 .access = PL0_W, .type = ARM_CP_NOP,
3362 .accessfn = aa64_cacheop_access },
3363 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3364 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3365 .access = PL1_W, .type = ARM_CP_NOP },
3366 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3368 .access = PL0_W, .type = ARM_CP_NOP,
3369 .accessfn = aa64_cacheop_access },
3370 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3371 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3372 .access = PL0_W, .type = ARM_CP_NOP,
3373 .accessfn = aa64_cacheop_access },
3374 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3376 .access = PL1_W, .type = ARM_CP_NOP },
3377 /* TLBI operations */
3378 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3380 .access = PL1_W, .type = ARM_CP_NO_RAW,
3381 .writefn = tlbi_aa64_vmalle1is_write },
3382 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3383 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3384 .access = PL1_W, .type = ARM_CP_NO_RAW,
3385 .writefn = tlbi_aa64_vae1is_write },
3386 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3388 .access = PL1_W, .type = ARM_CP_NO_RAW,
3389 .writefn = tlbi_aa64_vmalle1is_write },
3390 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3392 .access = PL1_W, .type = ARM_CP_NO_RAW,
3393 .writefn = tlbi_aa64_vae1is_write },
3394 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3396 .access = PL1_W, .type = ARM_CP_NO_RAW,
3397 .writefn = tlbi_aa64_vae1is_write },
3398 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3400 .access = PL1_W, .type = ARM_CP_NO_RAW,
3401 .writefn = tlbi_aa64_vae1is_write },
3402 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3404 .access = PL1_W, .type = ARM_CP_NO_RAW,
3405 .writefn = tlbi_aa64_vmalle1_write },
3406 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3408 .access = PL1_W, .type = ARM_CP_NO_RAW,
3409 .writefn = tlbi_aa64_vae1_write },
3410 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3412 .access = PL1_W, .type = ARM_CP_NO_RAW,
3413 .writefn = tlbi_aa64_vmalle1_write },
3414 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3416 .access = PL1_W, .type = ARM_CP_NO_RAW,
3417 .writefn = tlbi_aa64_vae1_write },
3418 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3420 .access = PL1_W, .type = ARM_CP_NO_RAW,
3421 .writefn = tlbi_aa64_vae1_write },
3422 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3424 .access = PL1_W, .type = ARM_CP_NO_RAW,
3425 .writefn = tlbi_aa64_vae1_write },
3426 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3428 .access = PL2_W, .type = ARM_CP_NO_RAW,
3429 .writefn = tlbi_aa64_ipas2e1is_write },
3430 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3432 .access = PL2_W, .type = ARM_CP_NO_RAW,
3433 .writefn = tlbi_aa64_ipas2e1is_write },
3434 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3436 .access = PL2_W, .type = ARM_CP_NO_RAW,
3437 .writefn = tlbi_aa64_alle1is_write },
3438 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3440 .access = PL2_W, .type = ARM_CP_NO_RAW,
3441 .writefn = tlbi_aa64_alle1is_write },
3442 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3444 .access = PL2_W, .type = ARM_CP_NO_RAW,
3445 .writefn = tlbi_aa64_ipas2e1_write },
3446 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3448 .access = PL2_W, .type = ARM_CP_NO_RAW,
3449 .writefn = tlbi_aa64_ipas2e1_write },
3450 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3451 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3452 .access = PL2_W, .type = ARM_CP_NO_RAW,
3453 .writefn = tlbi_aa64_alle1_write },
3454 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3456 .access = PL2_W, .type = ARM_CP_NO_RAW,
3457 .writefn = tlbi_aa64_alle1is_write },
3458 #ifndef CONFIG_USER_ONLY
3459 /* 64 bit address translation operations */
3460 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3462 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3465 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3468 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3471 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3472 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3473 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3474 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3475 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3476 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3477 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3478 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3479 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3480 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3481 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3482 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3483 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3484 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3485 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3486 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3487 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3488 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3490 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3491 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3492 .type = ARM_CP_ALIAS,
3493 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3494 .access = PL1_RW, .resetvalue = 0,
3495 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3496 .writefn = par_write },
3497 #endif
3498 /* TLB invalidate last level of translation table walk */
3499 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3500 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3501 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3502 .type = ARM_CP_NO_RAW, .access = PL1_W,
3503 .writefn = tlbimvaa_is_write },
3504 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3505 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3506 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3507 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3508 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3509 .type = ARM_CP_NO_RAW, .access = PL2_W,
3510 .writefn = tlbimva_hyp_write },
3511 { .name = "TLBIMVALHIS",
3512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3513 .type = ARM_CP_NO_RAW, .access = PL2_W,
3514 .writefn = tlbimva_hyp_is_write },
3515 { .name = "TLBIIPAS2",
3516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3517 .type = ARM_CP_NO_RAW, .access = PL2_W,
3518 .writefn = tlbiipas2_write },
3519 { .name = "TLBIIPAS2IS",
3520 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3521 .type = ARM_CP_NO_RAW, .access = PL2_W,
3522 .writefn = tlbiipas2_is_write },
3523 { .name = "TLBIIPAS2L",
3524 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3525 .type = ARM_CP_NO_RAW, .access = PL2_W,
3526 .writefn = tlbiipas2_write },
3527 { .name = "TLBIIPAS2LIS",
3528 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3529 .type = ARM_CP_NO_RAW, .access = PL2_W,
3530 .writefn = tlbiipas2_is_write },
3531 /* 32 bit cache operations */
3532 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3533 .type = ARM_CP_NOP, .access = PL1_W },
3534 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3535 .type = ARM_CP_NOP, .access = PL1_W },
3536 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3537 .type = ARM_CP_NOP, .access = PL1_W },
3538 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3539 .type = ARM_CP_NOP, .access = PL1_W },
3540 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3541 .type = ARM_CP_NOP, .access = PL1_W },
3542 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3543 .type = ARM_CP_NOP, .access = PL1_W },
3544 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3545 .type = ARM_CP_NOP, .access = PL1_W },
3546 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3547 .type = ARM_CP_NOP, .access = PL1_W },
3548 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3549 .type = ARM_CP_NOP, .access = PL1_W },
3550 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3551 .type = ARM_CP_NOP, .access = PL1_W },
3552 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3553 .type = ARM_CP_NOP, .access = PL1_W },
3554 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3555 .type = ARM_CP_NOP, .access = PL1_W },
3556 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3557 .type = ARM_CP_NOP, .access = PL1_W },
3558 /* MMU Domain access control / MPU write buffer control */
3559 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3560 .access = PL1_RW, .resetvalue = 0,
3561 .writefn = dacr_write, .raw_writefn = raw_write,
3562 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3563 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3564 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3565 .type = ARM_CP_ALIAS,
3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3567 .access = PL1_RW,
3568 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3569 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3570 .type = ARM_CP_ALIAS,
3571 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3572 .access = PL1_RW,
3573 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3574 /* We rely on the access checks not allowing the guest to write to the
3575 * state field when SPSel indicates that it's being used as the stack
3576 * pointer.
3577 */
3578 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3580 .access = PL1_RW, .accessfn = sp_el0_access,
3581 .type = ARM_CP_ALIAS,
3582 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3583 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3585 .access = PL2_RW, .type = ARM_CP_ALIAS,
3586 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3587 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3588 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3589 .type = ARM_CP_NO_RAW,
3590 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3591 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3592 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3593 .type = ARM_CP_ALIAS,
3594 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3595 .access = PL2_RW, .accessfn = fpexc32_access },
3596 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3597 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3598 .access = PL2_RW, .resetvalue = 0,
3599 .writefn = dacr_write, .raw_writefn = raw_write,
3600 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3601 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3602 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3603 .access = PL2_RW, .resetvalue = 0,
3604 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3605 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3606 .type = ARM_CP_ALIAS,
3607 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3608 .access = PL2_RW,
3609 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3610 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3611 .type = ARM_CP_ALIAS,
3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3613 .access = PL2_RW,
3614 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3615 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3616 .type = ARM_CP_ALIAS,
3617 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3618 .access = PL2_RW,
3619 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3620 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3621 .type = ARM_CP_ALIAS,
3622 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3623 .access = PL2_RW,
3624 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3625 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3626 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3627 .resetvalue = 0,
3628 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3629 { .name = "SDCR", .type = ARM_CP_ALIAS,
3630 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3631 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3632 .writefn = sdcr_write,
3633 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3634 REGINFO_SENTINEL
3635 };
3636
3637 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3638 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3639 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3640 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3641 .access = PL2_RW,
3642 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3643 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3644 .type = ARM_CP_NO_RAW,
3645 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3646 .access = PL2_RW,
3647 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3648 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3649 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3650 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3651 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3652 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3653 .access = PL2_RW, .type = ARM_CP_CONST,
3654 .resetvalue = 0 },
3655 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3656 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3658 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3659 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3660 .access = PL2_RW, .type = ARM_CP_CONST,
3661 .resetvalue = 0 },
3662 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3663 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3664 .access = PL2_RW, .type = ARM_CP_CONST,
3665 .resetvalue = 0 },
3666 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST,
3669 .resetvalue = 0 },
3670 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3671 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3672 .access = PL2_RW, .type = ARM_CP_CONST,
3673 .resetvalue = 0 },
3674 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3675 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3676 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3677 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3678 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3679 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3680 .type = ARM_CP_CONST, .resetvalue = 0 },
3681 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3682 .cp = 15, .opc1 = 6, .crm = 2,
3683 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3684 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3685 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3686 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3688 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3691 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3692 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3695 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3696 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3697 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3698 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3699 .resetvalue = 0 },
3700 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3702 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3703 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3704 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3705 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3706 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3707 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3708 .resetvalue = 0 },
3709 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3710 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3711 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3712 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3714 .resetvalue = 0 },
3715 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3716 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3717 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3718 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3719 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3720 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3721 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3723 .access = PL2_RW, .accessfn = access_tda,
3724 .type = ARM_CP_CONST, .resetvalue = 0 },
3725 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3726 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3727 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3728 .type = ARM_CP_CONST, .resetvalue = 0 },
3729 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3730 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3731 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3732 REGINFO_SENTINEL
3733 };
3734
3735 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3736 {
3737 ARMCPU *cpu = arm_env_get_cpu(env);
3738 uint64_t valid_mask = HCR_MASK;
3739
3740 if (arm_feature(env, ARM_FEATURE_EL3)) {
3741 valid_mask &= ~HCR_HCD;
3742 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3743 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3744 * However, if we're using the SMC PSCI conduit then QEMU is
3745 * effectively acting like EL3 firmware and so the guest at
3746 * EL2 should retain the ability to prevent EL1 from being
3747 * able to make SMC calls into the ersatz firmware, so in
3748 * that case HCR.TSC should be read/write.
3749 */
3750 valid_mask &= ~HCR_TSC;
3751 }
3752
3753 /* Clear RES0 bits. */
3754 value &= valid_mask;
3755
3756 /* These bits change the MMU setup:
3757 * HCR_VM enables stage 2 translation
3758 * HCR_PTW forbids certain page-table setups
3759 * HCR_DC Disables stage1 and enables stage2 translation
3760 */
3761 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3762 tlb_flush(CPU(cpu));
3763 }
3764 raw_write(env, ri, value);
3765 }
3766
3767 static const ARMCPRegInfo el2_cp_reginfo[] = {
3768 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3770 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3771 .writefn = hcr_write },
3772 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3773 .type = ARM_CP_ALIAS,
3774 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3775 .access = PL2_RW,
3776 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3777 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3779 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3780 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3781 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3782 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3783 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3784 .type = ARM_CP_ALIAS,
3785 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3786 .access = PL2_RW,
3787 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3788 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3789 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3790 .access = PL2_RW, .writefn = vbar_write,
3791 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3792 .resetvalue = 0 },
3793 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3794 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3795 .access = PL3_RW, .type = ARM_CP_ALIAS,
3796 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3797 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3798 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3799 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3800 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3801 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3802 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3803 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3804 .resetvalue = 0 },
3805 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3806 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3807 .access = PL2_RW, .type = ARM_CP_ALIAS,
3808 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3809 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3810 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3811 .access = PL2_RW, .type = ARM_CP_CONST,
3812 .resetvalue = 0 },
3813 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3814 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3815 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3816 .access = PL2_RW, .type = ARM_CP_CONST,
3817 .resetvalue = 0 },
3818 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3819 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3820 .access = PL2_RW, .type = ARM_CP_CONST,
3821 .resetvalue = 0 },
3822 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3823 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3824 .access = PL2_RW, .type = ARM_CP_CONST,
3825 .resetvalue = 0 },
3826 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3828 .access = PL2_RW,
3829 /* no .writefn needed as this can't cause an ASID change;
3830 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3831 */
3832 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3833 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3834 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3835 .type = ARM_CP_ALIAS,
3836 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3837 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3838 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3839 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3840 .access = PL2_RW,
3841 /* no .writefn needed as this can't cause an ASID change;
3842 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3843 */
3844 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3845 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3846 .cp = 15, .opc1 = 6, .crm = 2,
3847 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3848 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3849 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3850 .writefn = vttbr_write },
3851 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3852 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3853 .access = PL2_RW, .writefn = vttbr_write,
3854 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3855 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3856 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3857 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3858 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3859 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3860 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3861 .access = PL2_RW, .resetvalue = 0,
3862 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3863 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3864 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3865 .access = PL2_RW, .resetvalue = 0,
3866 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3867 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3869 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3870 { .name = "TLBIALLNSNH",
3871 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3872 .type = ARM_CP_NO_RAW, .access = PL2_W,
3873 .writefn = tlbiall_nsnh_write },
3874 { .name = "TLBIALLNSNHIS",
3875 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3876 .type = ARM_CP_NO_RAW, .access = PL2_W,
3877 .writefn = tlbiall_nsnh_is_write },
3878 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3879 .type = ARM_CP_NO_RAW, .access = PL2_W,
3880 .writefn = tlbiall_hyp_write },
3881 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882 .type = ARM_CP_NO_RAW, .access = PL2_W,
3883 .writefn = tlbiall_hyp_is_write },
3884 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3885 .type = ARM_CP_NO_RAW, .access = PL2_W,
3886 .writefn = tlbimva_hyp_write },
3887 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3888 .type = ARM_CP_NO_RAW, .access = PL2_W,
3889 .writefn = tlbimva_hyp_is_write },
3890 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3892 .type = ARM_CP_NO_RAW, .access = PL2_W,
3893 .writefn = tlbi_aa64_alle2_write },
3894 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3896 .type = ARM_CP_NO_RAW, .access = PL2_W,
3897 .writefn = tlbi_aa64_vae2_write },
3898 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3900 .access = PL2_W, .type = ARM_CP_NO_RAW,
3901 .writefn = tlbi_aa64_vae2_write },
3902 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3904 .access = PL2_W, .type = ARM_CP_NO_RAW,
3905 .writefn = tlbi_aa64_alle2is_write },
3906 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3908 .type = ARM_CP_NO_RAW, .access = PL2_W,
3909 .writefn = tlbi_aa64_vae2is_write },
3910 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3912 .access = PL2_W, .type = ARM_CP_NO_RAW,
3913 .writefn = tlbi_aa64_vae2is_write },
3914 #ifndef CONFIG_USER_ONLY
3915 /* Unlike the other EL2-related AT operations, these must
3916 * UNDEF from EL3 if EL2 is not implemented, which is why we
3917 * define them here rather than with the rest of the AT ops.
3918 */
3919 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3920 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3921 .access = PL2_W, .accessfn = at_s1e2_access,
3922 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3923 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3924 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3925 .access = PL2_W, .accessfn = at_s1e2_access,
3926 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3927 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3928 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3929 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3930 * to behave as if SCR.NS was 1.
3931 */
3932 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3933 .access = PL2_W,
3934 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3935 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3936 .access = PL2_W,
3937 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3938 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3940 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3941 * reset values as IMPDEF. We choose to reset to 3 to comply with
3942 * both ARMv7 and ARMv8.
3943 */
3944 .access = PL2_RW, .resetvalue = 3,
3945 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3946 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3947 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3948 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3949 .writefn = gt_cntvoff_write,
3950 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3951 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3952 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3953 .writefn = gt_cntvoff_write,
3954 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3955 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3956 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3957 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3958 .type = ARM_CP_IO, .access = PL2_RW,
3959 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3960 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3962 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3963 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3964 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3965 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3966 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3967 .resetfn = gt_hyp_timer_reset,
3968 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3969 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3970 .type = ARM_CP_IO,
3971 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3972 .access = PL2_RW,
3973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3974 .resetvalue = 0,
3975 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3976 #endif
3977 /* The only field of MDCR_EL2 that has a defined architectural reset value
3978 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3979 * don't impelment any PMU event counters, so using zero as a reset
3980 * value for MDCR_EL2 is okay
3981 */
3982 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3983 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3984 .access = PL2_RW, .resetvalue = 0,
3985 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3986 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3988 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3989 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3990 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3991 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3992 .access = PL2_RW,
3993 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3994 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3995 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3996 .access = PL2_RW,
3997 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3998 REGINFO_SENTINEL
3999 };
4000
4001 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4002 bool isread)
4003 {
4004 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4005 * At Secure EL1 it traps to EL3.
4006 */
4007 if (arm_current_el(env) == 3) {
4008 return CP_ACCESS_OK;
4009 }
4010 if (arm_is_secure_below_el3(env)) {
4011 return CP_ACCESS_TRAP_EL3;
4012 }
4013 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4014 if (isread) {
4015 return CP_ACCESS_OK;
4016 }
4017 return CP_ACCESS_TRAP_UNCATEGORIZED;
4018 }
4019
4020 static const ARMCPRegInfo el3_cp_reginfo[] = {
4021 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4022 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4023 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4024 .resetvalue = 0, .writefn = scr_write },
4025 { .name = "SCR", .type = ARM_CP_ALIAS,
4026 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4027 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4028 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4029 .writefn = scr_write },
4030 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4031 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4032 .access = PL3_RW, .resetvalue = 0,
4033 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4034 { .name = "SDER",
4035 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4036 .access = PL3_RW, .resetvalue = 0,
4037 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4038 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4039 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4040 .writefn = vbar_write, .resetvalue = 0,
4041 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4042 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4043 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4044 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4045 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4046 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4047 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4048 .access = PL3_RW,
4049 /* no .writefn needed as this can't cause an ASID change;
4050 * we must provide a .raw_writefn and .resetfn because we handle
4051 * reset and migration for the AArch32 TTBCR(S), which might be
4052 * using mask and base_mask.
4053 */
4054 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4055 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4056 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4057 .type = ARM_CP_ALIAS,
4058 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4059 .access = PL3_RW,
4060 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4061 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4062 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4063 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4064 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4065 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4066 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4067 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4068 .type = ARM_CP_ALIAS,
4069 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4070 .access = PL3_RW,
4071 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4072 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4074 .access = PL3_RW, .writefn = vbar_write,
4075 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4076 .resetvalue = 0 },
4077 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4078 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4079 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4080 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4081 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4082 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4083 .access = PL3_RW, .resetvalue = 0,
4084 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4085 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4086 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4087 .access = PL3_RW, .type = ARM_CP_CONST,
4088 .resetvalue = 0 },
4089 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4091 .access = PL3_RW, .type = ARM_CP_CONST,
4092 .resetvalue = 0 },
4093 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4094 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4095 .access = PL3_RW, .type = ARM_CP_CONST,
4096 .resetvalue = 0 },
4097 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4099 .access = PL3_W, .type = ARM_CP_NO_RAW,
4100 .writefn = tlbi_aa64_alle3is_write },
4101 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4103 .access = PL3_W, .type = ARM_CP_NO_RAW,
4104 .writefn = tlbi_aa64_vae3is_write },
4105 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4107 .access = PL3_W, .type = ARM_CP_NO_RAW,
4108 .writefn = tlbi_aa64_vae3is_write },
4109 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4111 .access = PL3_W, .type = ARM_CP_NO_RAW,
4112 .writefn = tlbi_aa64_alle3_write },
4113 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4115 .access = PL3_W, .type = ARM_CP_NO_RAW,
4116 .writefn = tlbi_aa64_vae3_write },
4117 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4118 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4119 .access = PL3_W, .type = ARM_CP_NO_RAW,
4120 .writefn = tlbi_aa64_vae3_write },
4121 REGINFO_SENTINEL
4122 };
4123
4124 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4125 bool isread)
4126 {
4127 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4128 * but the AArch32 CTR has its own reginfo struct)
4129 */
4130 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4131 return CP_ACCESS_TRAP;
4132 }
4133 return CP_ACCESS_OK;
4134 }
4135
4136 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4137 uint64_t value)
4138 {
4139 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4140 * read via a bit in OSLSR_EL1.
4141 */
4142 int oslock;
4143
4144 if (ri->state == ARM_CP_STATE_AA32) {
4145 oslock = (value == 0xC5ACCE55);
4146 } else {
4147 oslock = value & 1;
4148 }
4149
4150 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4151 }
4152
4153 static const ARMCPRegInfo debug_cp_reginfo[] = {
4154 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4155 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4156 * unlike DBGDRAR it is never accessible from EL0.
4157 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4158 * accessor.
4159 */
4160 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4161 .access = PL0_R, .accessfn = access_tdra,
4162 .type = ARM_CP_CONST, .resetvalue = 0 },
4163 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4164 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4165 .access = PL1_R, .accessfn = access_tdra,
4166 .type = ARM_CP_CONST, .resetvalue = 0 },
4167 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4168 .access = PL0_R, .accessfn = access_tdra,
4169 .type = ARM_CP_CONST, .resetvalue = 0 },
4170 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4171 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4173 .access = PL1_RW, .accessfn = access_tda,
4174 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4175 .resetvalue = 0 },
4176 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4177 * We don't implement the configurable EL0 access.
4178 */
4179 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4180 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4181 .type = ARM_CP_ALIAS,
4182 .access = PL1_R, .accessfn = access_tda,
4183 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4184 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4185 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4186 .access = PL1_W, .type = ARM_CP_NO_RAW,
4187 .accessfn = access_tdosa,
4188 .writefn = oslar_write },
4189 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4190 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4191 .access = PL1_R, .resetvalue = 10,
4192 .accessfn = access_tdosa,
4193 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4194 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4195 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4197 .access = PL1_RW, .accessfn = access_tdosa,
4198 .type = ARM_CP_NOP },
4199 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4200 * implement vector catch debug events yet.
4201 */
4202 { .name = "DBGVCR",
4203 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4204 .access = PL1_RW, .accessfn = access_tda,
4205 .type = ARM_CP_NOP },
4206 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4207 * to save and restore a 32-bit guest's DBGVCR)
4208 */
4209 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4210 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4211 .access = PL2_RW, .accessfn = access_tda,
4212 .type = ARM_CP_NOP },
4213 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4214 * Channel but Linux may try to access this register. The 32-bit
4215 * alias is DBGDCCINT.
4216 */
4217 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4219 .access = PL1_RW, .accessfn = access_tda,
4220 .type = ARM_CP_NOP },
4221 REGINFO_SENTINEL
4222 };
4223
4224 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4225 /* 64 bit access versions of the (dummy) debug registers */
4226 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4227 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4228 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4229 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4230 REGINFO_SENTINEL
4231 };
4232
4233 void hw_watchpoint_update(ARMCPU *cpu, int n)
4234 {
4235 CPUARMState *env = &cpu->env;
4236 vaddr len = 0;
4237 vaddr wvr = env->cp15.dbgwvr[n];
4238 uint64_t wcr = env->cp15.dbgwcr[n];
4239 int mask;
4240 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4241
4242 if (env->cpu_watchpoint[n]) {
4243 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4244 env->cpu_watchpoint[n] = NULL;
4245 }
4246
4247 if (!extract64(wcr, 0, 1)) {
4248 /* E bit clear : watchpoint disabled */
4249 return;
4250 }
4251
4252 switch (extract64(wcr, 3, 2)) {
4253 case 0:
4254 /* LSC 00 is reserved and must behave as if the wp is disabled */
4255 return;
4256 case 1:
4257 flags |= BP_MEM_READ;
4258 break;
4259 case 2:
4260 flags |= BP_MEM_WRITE;
4261 break;
4262 case 3:
4263 flags |= BP_MEM_ACCESS;
4264 break;
4265 }
4266
4267 /* Attempts to use both MASK and BAS fields simultaneously are
4268 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4269 * thus generating a watchpoint for every byte in the masked region.
4270 */
4271 mask = extract64(wcr, 24, 4);
4272 if (mask == 1 || mask == 2) {
4273 /* Reserved values of MASK; we must act as if the mask value was
4274 * some non-reserved value, or as if the watchpoint were disabled.
4275 * We choose the latter.
4276 */
4277 return;
4278 } else if (mask) {
4279 /* Watchpoint covers an aligned area up to 2GB in size */
4280 len = 1ULL << mask;
4281 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4282 * whether the watchpoint fires when the unmasked bits match; we opt
4283 * to generate the exceptions.
4284 */
4285 wvr &= ~(len - 1);
4286 } else {
4287 /* Watchpoint covers bytes defined by the byte address select bits */
4288 int bas = extract64(wcr, 5, 8);
4289 int basstart;
4290
4291 if (bas == 0) {
4292 /* This must act as if the watchpoint is disabled */
4293 return;
4294 }
4295
4296 if (extract64(wvr, 2, 1)) {
4297 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4298 * ignored, and BAS[3:0] define which bytes to watch.
4299 */
4300 bas &= 0xf;
4301 }
4302 /* The BAS bits are supposed to be programmed to indicate a contiguous
4303 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4304 * we fire for each byte in the word/doubleword addressed by the WVR.
4305 * We choose to ignore any non-zero bits after the first range of 1s.
4306 */
4307 basstart = ctz32(bas);
4308 len = cto32(bas >> basstart);
4309 wvr += basstart;
4310 }
4311
4312 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4313 &env->cpu_watchpoint[n]);
4314 }
4315
4316 void hw_watchpoint_update_all(ARMCPU *cpu)
4317 {
4318 int i;
4319 CPUARMState *env = &cpu->env;
4320
4321 /* Completely clear out existing QEMU watchpoints and our array, to
4322 * avoid possible stale entries following migration load.
4323 */
4324 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4325 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4326
4327 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4328 hw_watchpoint_update(cpu, i);
4329 }
4330 }
4331
4332 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4333 uint64_t value)
4334 {
4335 ARMCPU *cpu = arm_env_get_cpu(env);
4336 int i = ri->crm;
4337
4338 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4339 * register reads and behaves as if values written are sign extended.
4340 * Bits [1:0] are RES0.
4341 */
4342 value = sextract64(value, 0, 49) & ~3ULL;
4343
4344 raw_write(env, ri, value);
4345 hw_watchpoint_update(cpu, i);
4346 }
4347
4348 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349 uint64_t value)
4350 {
4351 ARMCPU *cpu = arm_env_get_cpu(env);
4352 int i = ri->crm;
4353
4354 raw_write(env, ri, value);
4355 hw_watchpoint_update(cpu, i);
4356 }
4357
4358 void hw_breakpoint_update(ARMCPU *cpu, int n)
4359 {
4360 CPUARMState *env = &cpu->env;
4361 uint64_t bvr = env->cp15.dbgbvr[n];
4362 uint64_t bcr = env->cp15.dbgbcr[n];
4363 vaddr addr;
4364 int bt;
4365 int flags = BP_CPU;
4366
4367 if (env->cpu_breakpoint[n]) {
4368 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4369 env->cpu_breakpoint[n] = NULL;
4370 }
4371
4372 if (!extract64(bcr, 0, 1)) {
4373 /* E bit clear : watchpoint disabled */
4374 return;
4375 }
4376
4377 bt = extract64(bcr, 20, 4);
4378
4379 switch (bt) {
4380 case 4: /* unlinked address mismatch (reserved if AArch64) */
4381 case 5: /* linked address mismatch (reserved if AArch64) */
4382 qemu_log_mask(LOG_UNIMP,
4383 "arm: address mismatch breakpoint types not implemented");
4384 return;
4385 case 0: /* unlinked address match */
4386 case 1: /* linked address match */
4387 {
4388 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4389 * we behave as if the register was sign extended. Bits [1:0] are
4390 * RES0. The BAS field is used to allow setting breakpoints on 16
4391 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4392 * a bp will fire if the addresses covered by the bp and the addresses
4393 * covered by the insn overlap but the insn doesn't start at the
4394 * start of the bp address range. We choose to require the insn and
4395 * the bp to have the same address. The constraints on writing to
4396 * BAS enforced in dbgbcr_write mean we have only four cases:
4397 * 0b0000 => no breakpoint
4398 * 0b0011 => breakpoint on addr
4399 * 0b1100 => breakpoint on addr + 2
4400 * 0b1111 => breakpoint on addr
4401 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4402 */
4403 int bas = extract64(bcr, 5, 4);
4404 addr = sextract64(bvr, 0, 49) & ~3ULL;
4405 if (bas == 0) {
4406 return;
4407 }
4408 if (bas == 0xc) {
4409 addr += 2;
4410 }
4411 break;
4412 }
4413 case 2: /* unlinked context ID match */
4414 case 8: /* unlinked VMID match (reserved if no EL2) */
4415 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4416 qemu_log_mask(LOG_UNIMP,
4417 "arm: unlinked context breakpoint types not implemented");
4418 return;
4419 case 9: /* linked VMID match (reserved if no EL2) */
4420 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4421 case 3: /* linked context ID match */
4422 default:
4423 /* We must generate no events for Linked context matches (unless
4424 * they are linked to by some other bp/wp, which is handled in
4425 * updates for the linking bp/wp). We choose to also generate no events
4426 * for reserved values.
4427 */
4428 return;
4429 }
4430
4431 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4432 }
4433
4434 void hw_breakpoint_update_all(ARMCPU *cpu)
4435 {
4436 int i;
4437 CPUARMState *env = &cpu->env;
4438
4439 /* Completely clear out existing QEMU breakpoints and our array, to
4440 * avoid possible stale entries following migration load.
4441 */
4442 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4443 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4444
4445 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4446 hw_breakpoint_update(cpu, i);
4447 }
4448 }
4449
4450 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4451 uint64_t value)
4452 {
4453 ARMCPU *cpu = arm_env_get_cpu(env);
4454 int i = ri->crm;
4455
4456 raw_write(env, ri, value);
4457 hw_breakpoint_update(cpu, i);
4458 }
4459
4460 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4461 uint64_t value)
4462 {
4463 ARMCPU *cpu = arm_env_get_cpu(env);
4464 int i = ri->crm;
4465
4466 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4467 * copy of BAS[0].
4468 */
4469 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4470 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4471
4472 raw_write(env, ri, value);
4473 hw_breakpoint_update(cpu, i);
4474 }
4475
4476 static void define_debug_regs(ARMCPU *cpu)
4477 {
4478 /* Define v7 and v8 architectural debug registers.
4479 * These are just dummy implementations for now.
4480 */
4481 int i;
4482 int wrps, brps, ctx_cmps;
4483 ARMCPRegInfo dbgdidr = {
4484 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4485 .access = PL0_R, .accessfn = access_tda,
4486 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4487 };
4488
4489 /* Note that all these register fields hold "number of Xs minus 1". */
4490 brps = extract32(cpu->dbgdidr, 24, 4);
4491 wrps = extract32(cpu->dbgdidr, 28, 4);
4492 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4493
4494 assert(ctx_cmps <= brps);
4495
4496 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4497 * of the debug registers such as number of breakpoints;
4498 * check that if they both exist then they agree.
4499 */
4500 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4501 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4502 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4503 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4504 }
4505
4506 define_one_arm_cp_reg(cpu, &dbgdidr);
4507 define_arm_cp_regs(cpu, debug_cp_reginfo);
4508
4509 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4510 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4511 }
4512
4513 for (i = 0; i < brps + 1; i++) {
4514 ARMCPRegInfo dbgregs[] = {
4515 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4517 .access = PL1_RW, .accessfn = access_tda,
4518 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4519 .writefn = dbgbvr_write, .raw_writefn = raw_write
4520 },
4521 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4522 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4523 .access = PL1_RW, .accessfn = access_tda,
4524 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4525 .writefn = dbgbcr_write, .raw_writefn = raw_write
4526 },
4527 REGINFO_SENTINEL
4528 };
4529 define_arm_cp_regs(cpu, dbgregs);
4530 }
4531
4532 for (i = 0; i < wrps + 1; i++) {
4533 ARMCPRegInfo dbgregs[] = {
4534 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4535 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4536 .access = PL1_RW, .accessfn = access_tda,
4537 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4538 .writefn = dbgwvr_write, .raw_writefn = raw_write
4539 },
4540 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4541 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4542 .access = PL1_RW, .accessfn = access_tda,
4543 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4544 .writefn = dbgwcr_write, .raw_writefn = raw_write
4545 },
4546 REGINFO_SENTINEL
4547 };
4548 define_arm_cp_regs(cpu, dbgregs);
4549 }
4550 }
4551
4552 /* We don't know until after realize whether there's a GICv3
4553 * attached, and that is what registers the gicv3 sysregs.
4554 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4555 * at runtime.
4556 */
4557 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4558 {
4559 ARMCPU *cpu = arm_env_get_cpu(env);
4560 uint64_t pfr1 = cpu->id_pfr1;
4561
4562 if (env->gicv3state) {
4563 pfr1 |= 1 << 28;
4564 }
4565 return pfr1;
4566 }
4567
4568 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4569 {
4570 ARMCPU *cpu = arm_env_get_cpu(env);
4571 uint64_t pfr0 = cpu->id_aa64pfr0;
4572
4573 if (env->gicv3state) {
4574 pfr0 |= 1 << 24;
4575 }
4576 return pfr0;
4577 }
4578
4579 void register_cp_regs_for_features(ARMCPU *cpu)
4580 {
4581 /* Register all the coprocessor registers based on feature bits */
4582 CPUARMState *env = &cpu->env;
4583 if (arm_feature(env, ARM_FEATURE_M)) {
4584 /* M profile has no coprocessor registers */
4585 return;
4586 }
4587
4588 define_arm_cp_regs(cpu, cp_reginfo);
4589 if (!arm_feature(env, ARM_FEATURE_V8)) {
4590 /* Must go early as it is full of wildcards that may be
4591 * overridden by later definitions.
4592 */
4593 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4594 }
4595
4596 if (arm_feature(env, ARM_FEATURE_V6)) {
4597 /* The ID registers all have impdef reset values */
4598 ARMCPRegInfo v6_idregs[] = {
4599 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4601 .access = PL1_R, .type = ARM_CP_CONST,
4602 .resetvalue = cpu->id_pfr0 },
4603 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4604 * the value of the GIC field until after we define these regs.
4605 */
4606 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4608 .access = PL1_R, .type = ARM_CP_NO_RAW,
4609 .readfn = id_pfr1_read,
4610 .writefn = arm_cp_write_ignore },
4611 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4613 .access = PL1_R, .type = ARM_CP_CONST,
4614 .resetvalue = cpu->id_dfr0 },
4615 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4617 .access = PL1_R, .type = ARM_CP_CONST,
4618 .resetvalue = cpu->id_afr0 },
4619 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4621 .access = PL1_R, .type = ARM_CP_CONST,
4622 .resetvalue = cpu->id_mmfr0 },
4623 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4625 .access = PL1_R, .type = ARM_CP_CONST,
4626 .resetvalue = cpu->id_mmfr1 },
4627 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4629 .access = PL1_R, .type = ARM_CP_CONST,
4630 .resetvalue = cpu->id_mmfr2 },
4631 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4633 .access = PL1_R, .type = ARM_CP_CONST,
4634 .resetvalue = cpu->id_mmfr3 },
4635 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4637 .access = PL1_R, .type = ARM_CP_CONST,
4638 .resetvalue = cpu->id_isar0 },
4639 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4641 .access = PL1_R, .type = ARM_CP_CONST,
4642 .resetvalue = cpu->id_isar1 },
4643 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4645 .access = PL1_R, .type = ARM_CP_CONST,
4646 .resetvalue = cpu->id_isar2 },
4647 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4649 .access = PL1_R, .type = ARM_CP_CONST,
4650 .resetvalue = cpu->id_isar3 },
4651 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4653 .access = PL1_R, .type = ARM_CP_CONST,
4654 .resetvalue = cpu->id_isar4 },
4655 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4657 .access = PL1_R, .type = ARM_CP_CONST,
4658 .resetvalue = cpu->id_isar5 },
4659 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4661 .access = PL1_R, .type = ARM_CP_CONST,
4662 .resetvalue = cpu->id_mmfr4 },
4663 /* 7 is as yet unallocated and must RAZ */
4664 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4666 .access = PL1_R, .type = ARM_CP_CONST,
4667 .resetvalue = 0 },
4668 REGINFO_SENTINEL
4669 };
4670 define_arm_cp_regs(cpu, v6_idregs);
4671 define_arm_cp_regs(cpu, v6_cp_reginfo);
4672 } else {
4673 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4674 }
4675 if (arm_feature(env, ARM_FEATURE_V6K)) {
4676 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4677 }
4678 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4679 !arm_feature(env, ARM_FEATURE_PMSA)) {
4680 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4681 }
4682 if (arm_feature(env, ARM_FEATURE_V7)) {
4683 /* v7 performance monitor control register: same implementor
4684 * field as main ID register, and we implement only the cycle
4685 * count register.
4686 */
4687 #ifndef CONFIG_USER_ONLY
4688 ARMCPRegInfo pmcr = {
4689 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4690 .access = PL0_RW,
4691 .type = ARM_CP_IO | ARM_CP_ALIAS,
4692 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4693 .accessfn = pmreg_access, .writefn = pmcr_write,
4694 .raw_writefn = raw_write,
4695 };
4696 ARMCPRegInfo pmcr64 = {
4697 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4698 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4699 .access = PL0_RW, .accessfn = pmreg_access,
4700 .type = ARM_CP_IO,
4701 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4702 .resetvalue = cpu->midr & 0xff000000,
4703 .writefn = pmcr_write, .raw_writefn = raw_write,
4704 };
4705 define_one_arm_cp_reg(cpu, &pmcr);
4706 define_one_arm_cp_reg(cpu, &pmcr64);
4707 #endif
4708 ARMCPRegInfo clidr = {
4709 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4710 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4711 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4712 };
4713 define_one_arm_cp_reg(cpu, &clidr);
4714 define_arm_cp_regs(cpu, v7_cp_reginfo);
4715 define_debug_regs(cpu);
4716 } else {
4717 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4718 }
4719 if (arm_feature(env, ARM_FEATURE_V8)) {
4720 /* AArch64 ID registers, which all have impdef reset values.
4721 * Note that within the ID register ranges the unused slots
4722 * must all RAZ, not UNDEF; future architecture versions may
4723 * define new registers here.
4724 */
4725 ARMCPRegInfo v8_idregs[] = {
4726 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4727 * know the right value for the GIC field until after we
4728 * define these regs.
4729 */
4730 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4732 .access = PL1_R, .type = ARM_CP_NO_RAW,
4733 .readfn = id_aa64pfr0_read,
4734 .writefn = arm_cp_write_ignore },
4735 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4737 .access = PL1_R, .type = ARM_CP_CONST,
4738 .resetvalue = cpu->id_aa64pfr1},
4739 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4741 .access = PL1_R, .type = ARM_CP_CONST,
4742 .resetvalue = 0 },
4743 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4745 .access = PL1_R, .type = ARM_CP_CONST,
4746 .resetvalue = 0 },
4747 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4749 .access = PL1_R, .type = ARM_CP_CONST,
4750 .resetvalue = 0 },
4751 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4753 .access = PL1_R, .type = ARM_CP_CONST,
4754 .resetvalue = 0 },
4755 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4757 .access = PL1_R, .type = ARM_CP_CONST,
4758 .resetvalue = 0 },
4759 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4761 .access = PL1_R, .type = ARM_CP_CONST,
4762 .resetvalue = 0 },
4763 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4765 .access = PL1_R, .type = ARM_CP_CONST,
4766 .resetvalue = cpu->id_aa64dfr0 },
4767 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4769 .access = PL1_R, .type = ARM_CP_CONST,
4770 .resetvalue = cpu->id_aa64dfr1 },
4771 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4773 .access = PL1_R, .type = ARM_CP_CONST,
4774 .resetvalue = 0 },
4775 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4777 .access = PL1_R, .type = ARM_CP_CONST,
4778 .resetvalue = 0 },
4779 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4781 .access = PL1_R, .type = ARM_CP_CONST,
4782 .resetvalue = cpu->id_aa64afr0 },
4783 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4785 .access = PL1_R, .type = ARM_CP_CONST,
4786 .resetvalue = cpu->id_aa64afr1 },
4787 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4789 .access = PL1_R, .type = ARM_CP_CONST,
4790 .resetvalue = 0 },
4791 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4793 .access = PL1_R, .type = ARM_CP_CONST,
4794 .resetvalue = 0 },
4795 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4797 .access = PL1_R, .type = ARM_CP_CONST,
4798 .resetvalue = cpu->id_aa64isar0 },
4799 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4801 .access = PL1_R, .type = ARM_CP_CONST,
4802 .resetvalue = cpu->id_aa64isar1 },
4803 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4805 .access = PL1_R, .type = ARM_CP_CONST,
4806 .resetvalue = 0 },
4807 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4809 .access = PL1_R, .type = ARM_CP_CONST,
4810 .resetvalue = 0 },
4811 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4813 .access = PL1_R, .type = ARM_CP_CONST,
4814 .resetvalue = 0 },
4815 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4817 .access = PL1_R, .type = ARM_CP_CONST,
4818 .resetvalue = 0 },
4819 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4821 .access = PL1_R, .type = ARM_CP_CONST,
4822 .resetvalue = 0 },
4823 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4825 .access = PL1_R, .type = ARM_CP_CONST,
4826 .resetvalue = 0 },
4827 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4829 .access = PL1_R, .type = ARM_CP_CONST,
4830 .resetvalue = cpu->id_aa64mmfr0 },
4831 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4833 .access = PL1_R, .type = ARM_CP_CONST,
4834 .resetvalue = cpu->id_aa64mmfr1 },
4835 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4837 .access = PL1_R, .type = ARM_CP_CONST,
4838 .resetvalue = 0 },
4839 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4841 .access = PL1_R, .type = ARM_CP_CONST,
4842 .resetvalue = 0 },
4843 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4845 .access = PL1_R, .type = ARM_CP_CONST,
4846 .resetvalue = 0 },
4847 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4849 .access = PL1_R, .type = ARM_CP_CONST,
4850 .resetvalue = 0 },
4851 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4853 .access = PL1_R, .type = ARM_CP_CONST,
4854 .resetvalue = 0 },
4855 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4857 .access = PL1_R, .type = ARM_CP_CONST,
4858 .resetvalue = 0 },
4859 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4861 .access = PL1_R, .type = ARM_CP_CONST,
4862 .resetvalue = cpu->mvfr0 },
4863 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4865 .access = PL1_R, .type = ARM_CP_CONST,
4866 .resetvalue = cpu->mvfr1 },
4867 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4869 .access = PL1_R, .type = ARM_CP_CONST,
4870 .resetvalue = cpu->mvfr2 },
4871 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4873 .access = PL1_R, .type = ARM_CP_CONST,
4874 .resetvalue = 0 },
4875 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4877 .access = PL1_R, .type = ARM_CP_CONST,
4878 .resetvalue = 0 },
4879 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4881 .access = PL1_R, .type = ARM_CP_CONST,
4882 .resetvalue = 0 },
4883 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4885 .access = PL1_R, .type = ARM_CP_CONST,
4886 .resetvalue = 0 },
4887 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4889 .access = PL1_R, .type = ARM_CP_CONST,
4890 .resetvalue = 0 },
4891 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4892 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4893 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4894 .resetvalue = cpu->pmceid0 },
4895 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4897 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4898 .resetvalue = cpu->pmceid0 },
4899 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4900 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4901 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4902 .resetvalue = cpu->pmceid1 },
4903 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4906 .resetvalue = cpu->pmceid1 },
4907 REGINFO_SENTINEL
4908 };
4909 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4910 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4911 !arm_feature(env, ARM_FEATURE_EL2)) {
4912 ARMCPRegInfo rvbar = {
4913 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4914 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4915 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4916 };
4917 define_one_arm_cp_reg(cpu, &rvbar);
4918 }
4919 define_arm_cp_regs(cpu, v8_idregs);
4920 define_arm_cp_regs(cpu, v8_cp_reginfo);
4921 }
4922 if (arm_feature(env, ARM_FEATURE_EL2)) {
4923 uint64_t vmpidr_def = mpidr_read_val(env);
4924 ARMCPRegInfo vpidr_regs[] = {
4925 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4926 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4927 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4928 .resetvalue = cpu->midr,
4929 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4930 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4932 .access = PL2_RW, .resetvalue = cpu->midr,
4933 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4934 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4935 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4936 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4937 .resetvalue = vmpidr_def,
4938 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4939 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4940 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4941 .access = PL2_RW,
4942 .resetvalue = vmpidr_def,
4943 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4944 REGINFO_SENTINEL
4945 };
4946 define_arm_cp_regs(cpu, vpidr_regs);
4947 define_arm_cp_regs(cpu, el2_cp_reginfo);
4948 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4949 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4950 ARMCPRegInfo rvbar = {
4951 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4952 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4953 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4954 };
4955 define_one_arm_cp_reg(cpu, &rvbar);
4956 }
4957 } else {
4958 /* If EL2 is missing but higher ELs are enabled, we need to
4959 * register the no_el2 reginfos.
4960 */
4961 if (arm_feature(env, ARM_FEATURE_EL3)) {
4962 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4963 * of MIDR_EL1 and MPIDR_EL1.
4964 */
4965 ARMCPRegInfo vpidr_regs[] = {
4966 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4967 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4968 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4969 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4970 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4971 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4972 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4973 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4974 .type = ARM_CP_NO_RAW,
4975 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4976 REGINFO_SENTINEL
4977 };
4978 define_arm_cp_regs(cpu, vpidr_regs);
4979 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4980 }
4981 }
4982 if (arm_feature(env, ARM_FEATURE_EL3)) {
4983 define_arm_cp_regs(cpu, el3_cp_reginfo);
4984 ARMCPRegInfo el3_regs[] = {
4985 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4987 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4988 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4989 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4990 .access = PL3_RW,
4991 .raw_writefn = raw_write, .writefn = sctlr_write,
4992 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4993 .resetvalue = cpu->reset_sctlr },
4994 REGINFO_SENTINEL
4995 };
4996
4997 define_arm_cp_regs(cpu, el3_regs);
4998 }
4999 /* The behaviour of NSACR is sufficiently various that we don't
5000 * try to describe it in a single reginfo:
5001 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5002 * reads as constant 0xc00 from NS EL1 and NS EL2
5003 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5004 * if v7 without EL3, register doesn't exist
5005 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5006 */
5007 if (arm_feature(env, ARM_FEATURE_EL3)) {
5008 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5009 ARMCPRegInfo nsacr = {
5010 .name = "NSACR", .type = ARM_CP_CONST,
5011 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5012 .access = PL1_RW, .accessfn = nsacr_access,
5013 .resetvalue = 0xc00
5014 };
5015 define_one_arm_cp_reg(cpu, &nsacr);
5016 } else {
5017 ARMCPRegInfo nsacr = {
5018 .name = "NSACR",
5019 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5020 .access = PL3_RW | PL1_R,
5021 .resetvalue = 0,
5022 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5023 };
5024 define_one_arm_cp_reg(cpu, &nsacr);
5025 }
5026 } else {
5027 if (arm_feature(env, ARM_FEATURE_V8)) {
5028 ARMCPRegInfo nsacr = {
5029 .name = "NSACR", .type = ARM_CP_CONST,
5030 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5031 .access = PL1_R,
5032 .resetvalue = 0xc00
5033 };
5034 define_one_arm_cp_reg(cpu, &nsacr);
5035 }
5036 }
5037
5038 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5039 if (arm_feature(env, ARM_FEATURE_V6)) {
5040 /* PMSAv6 not implemented */
5041 assert(arm_feature(env, ARM_FEATURE_V7));
5042 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5043 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5044 } else {
5045 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5046 }
5047 } else {
5048 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5049 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5050 }
5051 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5052 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5053 }
5054 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5055 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5056 }
5057 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5058 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5059 }
5060 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5061 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5062 }
5063 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5064 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5065 }
5066 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5067 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5068 }
5069 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5070 define_arm_cp_regs(cpu, omap_cp_reginfo);
5071 }
5072 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5073 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5074 }
5075 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5076 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5077 }
5078 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5079 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5080 }
5081 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5082 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5083 }
5084 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5085 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5086 * be read-only (ie write causes UNDEF exception).
5087 */
5088 {
5089 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5090 /* Pre-v8 MIDR space.
5091 * Note that the MIDR isn't a simple constant register because
5092 * of the TI925 behaviour where writes to another register can
5093 * cause the MIDR value to change.
5094 *
5095 * Unimplemented registers in the c15 0 0 0 space default to
5096 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5097 * and friends override accordingly.
5098 */
5099 { .name = "MIDR",
5100 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5101 .access = PL1_R, .resetvalue = cpu->midr,
5102 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5103 .readfn = midr_read,
5104 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5105 .type = ARM_CP_OVERRIDE },
5106 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5107 { .name = "DUMMY",
5108 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5109 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5110 { .name = "DUMMY",
5111 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5112 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5113 { .name = "DUMMY",
5114 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5115 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5116 { .name = "DUMMY",
5117 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5118 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5119 { .name = "DUMMY",
5120 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5122 REGINFO_SENTINEL
5123 };
5124 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5125 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5127 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5128 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5129 .readfn = midr_read },
5130 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5131 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5132 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5133 .access = PL1_R, .resetvalue = cpu->midr },
5134 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5135 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5136 .access = PL1_R, .resetvalue = cpu->midr },
5137 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5139 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5140 REGINFO_SENTINEL
5141 };
5142 ARMCPRegInfo id_cp_reginfo[] = {
5143 /* These are common to v8 and pre-v8 */
5144 { .name = "CTR",
5145 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5146 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5147 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5148 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5149 .access = PL0_R, .accessfn = ctr_el0_access,
5150 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5151 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5152 { .name = "TCMTR",
5153 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5154 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5155 REGINFO_SENTINEL
5156 };
5157 /* TLBTR is specific to VMSA */
5158 ARMCPRegInfo id_tlbtr_reginfo = {
5159 .name = "TLBTR",
5160 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5161 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5162 };
5163 /* MPUIR is specific to PMSA V6+ */
5164 ARMCPRegInfo id_mpuir_reginfo = {
5165 .name = "MPUIR",
5166 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5167 .access = PL1_R, .type = ARM_CP_CONST,
5168 .resetvalue = cpu->pmsav7_dregion << 8
5169 };
5170 ARMCPRegInfo crn0_wi_reginfo = {
5171 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5172 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5173 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5174 };
5175 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5176 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5177 ARMCPRegInfo *r;
5178 /* Register the blanket "writes ignored" value first to cover the
5179 * whole space. Then update the specific ID registers to allow write
5180 * access, so that they ignore writes rather than causing them to
5181 * UNDEF.
5182 */
5183 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5184 for (r = id_pre_v8_midr_cp_reginfo;
5185 r->type != ARM_CP_SENTINEL; r++) {
5186 r->access = PL1_RW;
5187 }
5188 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5189 r->access = PL1_RW;
5190 }
5191 id_tlbtr_reginfo.access = PL1_RW;
5192 id_tlbtr_reginfo.access = PL1_RW;
5193 }
5194 if (arm_feature(env, ARM_FEATURE_V8)) {
5195 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5196 } else {
5197 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5198 }
5199 define_arm_cp_regs(cpu, id_cp_reginfo);
5200 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5201 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5202 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5203 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5204 }
5205 }
5206
5207 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5208 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5209 }
5210
5211 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5212 ARMCPRegInfo auxcr_reginfo[] = {
5213 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5214 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5215 .access = PL1_RW, .type = ARM_CP_CONST,
5216 .resetvalue = cpu->reset_auxcr },
5217 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5219 .access = PL2_RW, .type = ARM_CP_CONST,
5220 .resetvalue = 0 },
5221 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5222 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5223 .access = PL3_RW, .type = ARM_CP_CONST,
5224 .resetvalue = 0 },
5225 REGINFO_SENTINEL
5226 };
5227 define_arm_cp_regs(cpu, auxcr_reginfo);
5228 }
5229
5230 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5231 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5232 /* 32 bit view is [31:18] 0...0 [43:32]. */
5233 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5234 | extract64(cpu->reset_cbar, 32, 12);
5235 ARMCPRegInfo cbar_reginfo[] = {
5236 { .name = "CBAR",
5237 .type = ARM_CP_CONST,
5238 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5239 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5240 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5241 .type = ARM_CP_CONST,
5242 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5243 .access = PL1_R, .resetvalue = cbar32 },
5244 REGINFO_SENTINEL
5245 };
5246 /* We don't implement a r/w 64 bit CBAR currently */
5247 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5248 define_arm_cp_regs(cpu, cbar_reginfo);
5249 } else {
5250 ARMCPRegInfo cbar = {
5251 .name = "CBAR",
5252 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5253 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5254 .fieldoffset = offsetof(CPUARMState,
5255 cp15.c15_config_base_address)
5256 };
5257 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5258 cbar.access = PL1_R;
5259 cbar.fieldoffset = 0;
5260 cbar.type = ARM_CP_CONST;
5261 }
5262 define_one_arm_cp_reg(cpu, &cbar);
5263 }
5264 }
5265
5266 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5267 ARMCPRegInfo vbar_cp_reginfo[] = {
5268 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5269 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5270 .access = PL1_RW, .writefn = vbar_write,
5271 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5272 offsetof(CPUARMState, cp15.vbar_ns) },
5273 .resetvalue = 0 },
5274 REGINFO_SENTINEL
5275 };
5276 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5277 }
5278
5279 /* Generic registers whose values depend on the implementation */
5280 {
5281 ARMCPRegInfo sctlr = {
5282 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5283 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5284 .access = PL1_RW,
5285 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5286 offsetof(CPUARMState, cp15.sctlr_ns) },
5287 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5288 .raw_writefn = raw_write,
5289 };
5290 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5291 /* Normally we would always end the TB on an SCTLR write, but Linux
5292 * arch/arm/mach-pxa/sleep.S expects two instructions following
5293 * an MMU enable to execute from cache. Imitate this behaviour.
5294 */
5295 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5296 }
5297 define_one_arm_cp_reg(cpu, &sctlr);
5298 }
5299 }
5300
5301 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5302 {
5303 CPUState *cs = CPU(cpu);
5304 CPUARMState *env = &cpu->env;
5305
5306 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5307 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5308 aarch64_fpu_gdb_set_reg,
5309 34, "aarch64-fpu.xml", 0);
5310 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5311 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5312 51, "arm-neon.xml", 0);
5313 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5314 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5315 35, "arm-vfp3.xml", 0);
5316 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5317 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5318 19, "arm-vfp.xml", 0);
5319 }
5320 }
5321
5322 /* Sort alphabetically by type name, except for "any". */
5323 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5324 {
5325 ObjectClass *class_a = (ObjectClass *)a;
5326 ObjectClass *class_b = (ObjectClass *)b;
5327 const char *name_a, *name_b;
5328
5329 name_a = object_class_get_name(class_a);
5330 name_b = object_class_get_name(class_b);
5331 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5332 return 1;
5333 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5334 return -1;
5335 } else {
5336 return strcmp(name_a, name_b);
5337 }
5338 }
5339
5340 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5341 {
5342 ObjectClass *oc = data;
5343 CPUListState *s = user_data;
5344 const char *typename;
5345 char *name;
5346
5347 typename = object_class_get_name(oc);
5348 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5349 (*s->cpu_fprintf)(s->file, " %s\n",
5350 name);
5351 g_free(name);
5352 }
5353
5354 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5355 {
5356 CPUListState s = {
5357 .file = f,
5358 .cpu_fprintf = cpu_fprintf,
5359 };
5360 GSList *list;
5361
5362 list = object_class_get_list(TYPE_ARM_CPU, false);
5363 list = g_slist_sort(list, arm_cpu_list_compare);
5364 (*cpu_fprintf)(f, "Available CPUs:\n");
5365 g_slist_foreach(list, arm_cpu_list_entry, &s);
5366 g_slist_free(list);
5367 #ifdef CONFIG_KVM
5368 /* The 'host' CPU type is dynamically registered only if KVM is
5369 * enabled, so we have to special-case it here:
5370 */
5371 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5372 #endif
5373 }
5374
5375 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5376 {
5377 ObjectClass *oc = data;
5378 CpuDefinitionInfoList **cpu_list = user_data;
5379 CpuDefinitionInfoList *entry;
5380 CpuDefinitionInfo *info;
5381 const char *typename;
5382
5383 typename = object_class_get_name(oc);
5384 info = g_malloc0(sizeof(*info));
5385 info->name = g_strndup(typename,
5386 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5387 info->q_typename = g_strdup(typename);
5388
5389 entry = g_malloc0(sizeof(*entry));
5390 entry->value = info;
5391 entry->next = *cpu_list;
5392 *cpu_list = entry;
5393 }
5394
5395 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5396 {
5397 CpuDefinitionInfoList *cpu_list = NULL;
5398 GSList *list;
5399
5400 list = object_class_get_list(TYPE_ARM_CPU, false);
5401 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5402 g_slist_free(list);
5403
5404 return cpu_list;
5405 }
5406
5407 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5408 void *opaque, int state, int secstate,
5409 int crm, int opc1, int opc2)
5410 {
5411 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5412 * add a single reginfo struct to the hash table.
5413 */
5414 uint32_t *key = g_new(uint32_t, 1);
5415 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5416 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5417 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5418
5419 /* Reset the secure state to the specific incoming state. This is
5420 * necessary as the register may have been defined with both states.
5421 */
5422 r2->secure = secstate;
5423
5424 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5425 /* Register is banked (using both entries in array).
5426 * Overwriting fieldoffset as the array is only used to define
5427 * banked registers but later only fieldoffset is used.
5428 */
5429 r2->fieldoffset = r->bank_fieldoffsets[ns];
5430 }
5431
5432 if (state == ARM_CP_STATE_AA32) {
5433 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5434 /* If the register is banked then we don't need to migrate or
5435 * reset the 32-bit instance in certain cases:
5436 *
5437 * 1) If the register has both 32-bit and 64-bit instances then we
5438 * can count on the 64-bit instance taking care of the
5439 * non-secure bank.
5440 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5441 * taking care of the secure bank. This requires that separate
5442 * 32 and 64-bit definitions are provided.
5443 */
5444 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5445 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5446 r2->type |= ARM_CP_ALIAS;
5447 }
5448 } else if ((secstate != r->secure) && !ns) {
5449 /* The register is not banked so we only want to allow migration of
5450 * the non-secure instance.
5451 */
5452 r2->type |= ARM_CP_ALIAS;
5453 }
5454
5455 if (r->state == ARM_CP_STATE_BOTH) {
5456 /* We assume it is a cp15 register if the .cp field is left unset.
5457 */
5458 if (r2->cp == 0) {
5459 r2->cp = 15;
5460 }
5461
5462 #ifdef HOST_WORDS_BIGENDIAN
5463 if (r2->fieldoffset) {
5464 r2->fieldoffset += sizeof(uint32_t);
5465 }
5466 #endif
5467 }
5468 }
5469 if (state == ARM_CP_STATE_AA64) {
5470 /* To allow abbreviation of ARMCPRegInfo
5471 * definitions, we treat cp == 0 as equivalent to
5472 * the value for "standard guest-visible sysreg".
5473 * STATE_BOTH definitions are also always "standard
5474 * sysreg" in their AArch64 view (the .cp value may
5475 * be non-zero for the benefit of the AArch32 view).
5476 */
5477 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5478 r2->cp = CP_REG_ARM64_SYSREG_CP;
5479 }
5480 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5481 r2->opc0, opc1, opc2);
5482 } else {
5483 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5484 }
5485 if (opaque) {
5486 r2->opaque = opaque;
5487 }
5488 /* reginfo passed to helpers is correct for the actual access,
5489 * and is never ARM_CP_STATE_BOTH:
5490 */
5491 r2->state = state;
5492 /* Make sure reginfo passed to helpers for wildcarded regs
5493 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5494 */
5495 r2->crm = crm;
5496 r2->opc1 = opc1;
5497 r2->opc2 = opc2;
5498 /* By convention, for wildcarded registers only the first
5499 * entry is used for migration; the others are marked as
5500 * ALIAS so we don't try to transfer the register
5501 * multiple times. Special registers (ie NOP/WFI) are
5502 * never migratable and not even raw-accessible.
5503 */
5504 if ((r->type & ARM_CP_SPECIAL)) {
5505 r2->type |= ARM_CP_NO_RAW;
5506 }
5507 if (((r->crm == CP_ANY) && crm != 0) ||
5508 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5509 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5510 r2->type |= ARM_CP_ALIAS;
5511 }
5512
5513 /* Check that raw accesses are either forbidden or handled. Note that
5514 * we can't assert this earlier because the setup of fieldoffset for
5515 * banked registers has to be done first.
5516 */
5517 if (!(r2->type & ARM_CP_NO_RAW)) {
5518 assert(!raw_accessors_invalid(r2));
5519 }
5520
5521 /* Overriding of an existing definition must be explicitly
5522 * requested.
5523 */
5524 if (!(r->type & ARM_CP_OVERRIDE)) {
5525 ARMCPRegInfo *oldreg;
5526 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5527 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5528 fprintf(stderr, "Register redefined: cp=%d %d bit "
5529 "crn=%d crm=%d opc1=%d opc2=%d, "
5530 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5531 r2->crn, r2->crm, r2->opc1, r2->opc2,
5532 oldreg->name, r2->name);
5533 g_assert_not_reached();
5534 }
5535 }
5536 g_hash_table_insert(cpu->cp_regs, key, r2);
5537 }
5538
5539
5540 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5541 const ARMCPRegInfo *r, void *opaque)
5542 {
5543 /* Define implementations of coprocessor registers.
5544 * We store these in a hashtable because typically
5545 * there are less than 150 registers in a space which
5546 * is 16*16*16*8*8 = 262144 in size.
5547 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5548 * If a register is defined twice then the second definition is
5549 * used, so this can be used to define some generic registers and
5550 * then override them with implementation specific variations.
5551 * At least one of the original and the second definition should
5552 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5553 * against accidental use.
5554 *
5555 * The state field defines whether the register is to be
5556 * visible in the AArch32 or AArch64 execution state. If the
5557 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5558 * reginfo structure for the AArch32 view, which sees the lower
5559 * 32 bits of the 64 bit register.
5560 *
5561 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5562 * be wildcarded. AArch64 registers are always considered to be 64
5563 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5564 * the register, if any.
5565 */
5566 int crm, opc1, opc2, state;
5567 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5568 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5569 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5570 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5571 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5572 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5573 /* 64 bit registers have only CRm and Opc1 fields */
5574 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5575 /* op0 only exists in the AArch64 encodings */
5576 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5577 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5578 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5579 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5580 * encodes a minimum access level for the register. We roll this
5581 * runtime check into our general permission check code, so check
5582 * here that the reginfo's specified permissions are strict enough
5583 * to encompass the generic architectural permission check.
5584 */
5585 if (r->state != ARM_CP_STATE_AA32) {
5586 int mask = 0;
5587 switch (r->opc1) {
5588 case 0: case 1: case 2:
5589 /* min_EL EL1 */
5590 mask = PL1_RW;
5591 break;
5592 case 3:
5593 /* min_EL EL0 */
5594 mask = PL0_RW;
5595 break;
5596 case 4:
5597 /* min_EL EL2 */
5598 mask = PL2_RW;
5599 break;
5600 case 5:
5601 /* unallocated encoding, so not possible */
5602 assert(false);
5603 break;
5604 case 6:
5605 /* min_EL EL3 */
5606 mask = PL3_RW;
5607 break;
5608 case 7:
5609 /* min_EL EL1, secure mode only (we don't check the latter) */
5610 mask = PL1_RW;
5611 break;
5612 default:
5613 /* broken reginfo with out-of-range opc1 */
5614 assert(false);
5615 break;
5616 }
5617 /* assert our permissions are not too lax (stricter is fine) */
5618 assert((r->access & ~mask) == 0);
5619 }
5620
5621 /* Check that the register definition has enough info to handle
5622 * reads and writes if they are permitted.
5623 */
5624 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5625 if (r->access & PL3_R) {
5626 assert((r->fieldoffset ||
5627 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5628 r->readfn);
5629 }
5630 if (r->access & PL3_W) {
5631 assert((r->fieldoffset ||
5632 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5633 r->writefn);
5634 }
5635 }
5636 /* Bad type field probably means missing sentinel at end of reg list */
5637 assert(cptype_valid(r->type));
5638 for (crm = crmmin; crm <= crmmax; crm++) {
5639 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5640 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5641 for (state = ARM_CP_STATE_AA32;
5642 state <= ARM_CP_STATE_AA64; state++) {
5643 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5644 continue;
5645 }
5646 if (state == ARM_CP_STATE_AA32) {
5647 /* Under AArch32 CP registers can be common
5648 * (same for secure and non-secure world) or banked.
5649 */
5650 switch (r->secure) {
5651 case ARM_CP_SECSTATE_S:
5652 case ARM_CP_SECSTATE_NS:
5653 add_cpreg_to_hashtable(cpu, r, opaque, state,
5654 r->secure, crm, opc1, opc2);
5655 break;
5656 default:
5657 add_cpreg_to_hashtable(cpu, r, opaque, state,
5658 ARM_CP_SECSTATE_S,
5659 crm, opc1, opc2);
5660 add_cpreg_to_hashtable(cpu, r, opaque, state,
5661 ARM_CP_SECSTATE_NS,
5662 crm, opc1, opc2);
5663 break;
5664 }
5665 } else {
5666 /* AArch64 registers get mapped to non-secure instance
5667 * of AArch32 */
5668 add_cpreg_to_hashtable(cpu, r, opaque, state,
5669 ARM_CP_SECSTATE_NS,
5670 crm, opc1, opc2);
5671 }
5672 }
5673 }
5674 }
5675 }
5676 }
5677
5678 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5679 const ARMCPRegInfo *regs, void *opaque)
5680 {
5681 /* Define a whole list of registers */
5682 const ARMCPRegInfo *r;
5683 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5684 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5685 }
5686 }
5687
5688 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5689 {
5690 return g_hash_table_lookup(cpregs, &encoded_cp);
5691 }
5692
5693 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5694 uint64_t value)
5695 {
5696 /* Helper coprocessor write function for write-ignore registers */
5697 }
5698
5699 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5700 {
5701 /* Helper coprocessor write function for read-as-zero registers */
5702 return 0;
5703 }
5704
5705 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5706 {
5707 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5708 }
5709
5710 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5711 {
5712 /* Return true if it is not valid for us to switch to
5713 * this CPU mode (ie all the UNPREDICTABLE cases in
5714 * the ARM ARM CPSRWriteByInstr pseudocode).
5715 */
5716
5717 /* Changes to or from Hyp via MSR and CPS are illegal. */
5718 if (write_type == CPSRWriteByInstr &&
5719 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5720 mode == ARM_CPU_MODE_HYP)) {
5721 return 1;
5722 }
5723
5724 switch (mode) {
5725 case ARM_CPU_MODE_USR:
5726 return 0;
5727 case ARM_CPU_MODE_SYS:
5728 case ARM_CPU_MODE_SVC:
5729 case ARM_CPU_MODE_ABT:
5730 case ARM_CPU_MODE_UND:
5731 case ARM_CPU_MODE_IRQ:
5732 case ARM_CPU_MODE_FIQ:
5733 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5734 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5735 */
5736 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5737 * and CPS are treated as illegal mode changes.
5738 */
5739 if (write_type == CPSRWriteByInstr &&
5740 (env->cp15.hcr_el2 & HCR_TGE) &&
5741 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5742 !arm_is_secure_below_el3(env)) {
5743 return 1;
5744 }
5745 return 0;
5746 case ARM_CPU_MODE_HYP:
5747 return !arm_feature(env, ARM_FEATURE_EL2)
5748 || arm_current_el(env) < 2 || arm_is_secure(env);
5749 case ARM_CPU_MODE_MON:
5750 return arm_current_el(env) < 3;
5751 default:
5752 return 1;
5753 }
5754 }
5755
5756 uint32_t cpsr_read(CPUARMState *env)
5757 {
5758 int ZF;
5759 ZF = (env->ZF == 0);
5760 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5761 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5762 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5763 | ((env->condexec_bits & 0xfc) << 8)
5764 | (env->GE << 16) | (env->daif & CPSR_AIF);
5765 }
5766
5767 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5768 CPSRWriteType write_type)
5769 {
5770 uint32_t changed_daif;
5771
5772 if (mask & CPSR_NZCV) {
5773 env->ZF = (~val) & CPSR_Z;
5774 env->NF = val;
5775 env->CF = (val >> 29) & 1;
5776 env->VF = (val << 3) & 0x80000000;
5777 }
5778 if (mask & CPSR_Q)
5779 env->QF = ((val & CPSR_Q) != 0);
5780 if (mask & CPSR_T)
5781 env->thumb = ((val & CPSR_T) != 0);
5782 if (mask & CPSR_IT_0_1) {
5783 env->condexec_bits &= ~3;
5784 env->condexec_bits |= (val >> 25) & 3;
5785 }
5786 if (mask & CPSR_IT_2_7) {
5787 env->condexec_bits &= 3;
5788 env->condexec_bits |= (val >> 8) & 0xfc;
5789 }
5790 if (mask & CPSR_GE) {
5791 env->GE = (val >> 16) & 0xf;
5792 }
5793
5794 /* In a V7 implementation that includes the security extensions but does
5795 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5796 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5797 * bits respectively.
5798 *
5799 * In a V8 implementation, it is permitted for privileged software to
5800 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5801 */
5802 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5803 arm_feature(env, ARM_FEATURE_EL3) &&
5804 !arm_feature(env, ARM_FEATURE_EL2) &&
5805 !arm_is_secure(env)) {
5806
5807 changed_daif = (env->daif ^ val) & mask;
5808
5809 if (changed_daif & CPSR_A) {
5810 /* Check to see if we are allowed to change the masking of async
5811 * abort exceptions from a non-secure state.
5812 */
5813 if (!(env->cp15.scr_el3 & SCR_AW)) {
5814 qemu_log_mask(LOG_GUEST_ERROR,
5815 "Ignoring attempt to switch CPSR_A flag from "
5816 "non-secure world with SCR.AW bit clear\n");
5817 mask &= ~CPSR_A;
5818 }
5819 }
5820
5821 if (changed_daif & CPSR_F) {
5822 /* Check to see if we are allowed to change the masking of FIQ
5823 * exceptions from a non-secure state.
5824 */
5825 if (!(env->cp15.scr_el3 & SCR_FW)) {
5826 qemu_log_mask(LOG_GUEST_ERROR,
5827 "Ignoring attempt to switch CPSR_F flag from "
5828 "non-secure world with SCR.FW bit clear\n");
5829 mask &= ~CPSR_F;
5830 }
5831
5832 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5833 * If this bit is set software is not allowed to mask
5834 * FIQs, but is allowed to set CPSR_F to 0.
5835 */
5836 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5837 (val & CPSR_F)) {
5838 qemu_log_mask(LOG_GUEST_ERROR,
5839 "Ignoring attempt to enable CPSR_F flag "
5840 "(non-maskable FIQ [NMFI] support enabled)\n");
5841 mask &= ~CPSR_F;
5842 }
5843 }
5844 }
5845
5846 env->daif &= ~(CPSR_AIF & mask);
5847 env->daif |= val & CPSR_AIF & mask;
5848
5849 if (write_type != CPSRWriteRaw &&
5850 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5851 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5852 /* Note that we can only get here in USR mode if this is a
5853 * gdb stub write; for this case we follow the architectural
5854 * behaviour for guest writes in USR mode of ignoring an attempt
5855 * to switch mode. (Those are caught by translate.c for writes
5856 * triggered by guest instructions.)
5857 */
5858 mask &= ~CPSR_M;
5859 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5860 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5861 * v7, and has defined behaviour in v8:
5862 * + leave CPSR.M untouched
5863 * + allow changes to the other CPSR fields
5864 * + set PSTATE.IL
5865 * For user changes via the GDB stub, we don't set PSTATE.IL,
5866 * as this would be unnecessarily harsh for a user error.
5867 */
5868 mask &= ~CPSR_M;
5869 if (write_type != CPSRWriteByGDBStub &&
5870 arm_feature(env, ARM_FEATURE_V8)) {
5871 mask |= CPSR_IL;
5872 val |= CPSR_IL;
5873 }
5874 } else {
5875 switch_mode(env, val & CPSR_M);
5876 }
5877 }
5878 mask &= ~CACHED_CPSR_BITS;
5879 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5880 }
5881
5882 /* Sign/zero extend */
5883 uint32_t HELPER(sxtb16)(uint32_t x)
5884 {
5885 uint32_t res;
5886 res = (uint16_t)(int8_t)x;
5887 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5888 return res;
5889 }
5890
5891 uint32_t HELPER(uxtb16)(uint32_t x)
5892 {
5893 uint32_t res;
5894 res = (uint16_t)(uint8_t)x;
5895 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5896 return res;
5897 }
5898
5899 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5900 {
5901 if (den == 0)
5902 return 0;
5903 if (num == INT_MIN && den == -1)
5904 return INT_MIN;
5905 return num / den;
5906 }
5907
5908 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5909 {
5910 if (den == 0)
5911 return 0;
5912 return num / den;
5913 }
5914
5915 uint32_t HELPER(rbit)(uint32_t x)
5916 {
5917 return revbit32(x);
5918 }
5919
5920 #if defined(CONFIG_USER_ONLY)
5921
5922 /* These should probably raise undefined insn exceptions. */
5923 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5924 {
5925 ARMCPU *cpu = arm_env_get_cpu(env);
5926
5927 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5928 }
5929
5930 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5931 {
5932 ARMCPU *cpu = arm_env_get_cpu(env);
5933
5934 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5935 return 0;
5936 }
5937
5938 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5939 {
5940 /* translate.c should never generate calls here in user-only mode */
5941 g_assert_not_reached();
5942 }
5943
5944 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5945 {
5946 /* translate.c should never generate calls here in user-only mode */
5947 g_assert_not_reached();
5948 }
5949
5950 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
5951 {
5952 /* The TT instructions can be used by unprivileged code, but in
5953 * user-only emulation we don't have the MPU.
5954 * Luckily since we know we are NonSecure unprivileged (and that in
5955 * turn means that the A flag wasn't specified), all the bits in the
5956 * register must be zero:
5957 * IREGION: 0 because IRVALID is 0
5958 * IRVALID: 0 because NS
5959 * S: 0 because NS
5960 * NSRW: 0 because NS
5961 * NSR: 0 because NS
5962 * RW: 0 because unpriv and A flag not set
5963 * R: 0 because unpriv and A flag not set
5964 * SRVALID: 0 because NS
5965 * MRVALID: 0 because unpriv and A flag not set
5966 * SREGION: 0 becaus SRVALID is 0
5967 * MREGION: 0 because MRVALID is 0
5968 */
5969 return 0;
5970 }
5971
5972 void switch_mode(CPUARMState *env, int mode)
5973 {
5974 ARMCPU *cpu = arm_env_get_cpu(env);
5975
5976 if (mode != ARM_CPU_MODE_USR) {
5977 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5978 }
5979 }
5980
5981 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5982 uint32_t cur_el, bool secure)
5983 {
5984 return 1;
5985 }
5986
5987 void aarch64_sync_64_to_32(CPUARMState *env)
5988 {
5989 g_assert_not_reached();
5990 }
5991
5992 #else
5993
5994 void switch_mode(CPUARMState *env, int mode)
5995 {
5996 int old_mode;
5997 int i;
5998
5999 old_mode = env->uncached_cpsr & CPSR_M;
6000 if (mode == old_mode)
6001 return;
6002
6003 if (old_mode == ARM_CPU_MODE_FIQ) {
6004 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6005 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6006 } else if (mode == ARM_CPU_MODE_FIQ) {
6007 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6008 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6009 }
6010
6011 i = bank_number(old_mode);
6012 env->banked_r13[i] = env->regs[13];
6013 env->banked_r14[i] = env->regs[14];
6014 env->banked_spsr[i] = env->spsr;
6015
6016 i = bank_number(mode);
6017 env->regs[13] = env->banked_r13[i];
6018 env->regs[14] = env->banked_r14[i];
6019 env->spsr = env->banked_spsr[i];
6020 }
6021
6022 /* Physical Interrupt Target EL Lookup Table
6023 *
6024 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6025 *
6026 * The below multi-dimensional table is used for looking up the target
6027 * exception level given numerous condition criteria. Specifically, the
6028 * target EL is based on SCR and HCR routing controls as well as the
6029 * currently executing EL and secure state.
6030 *
6031 * Dimensions:
6032 * target_el_table[2][2][2][2][2][4]
6033 * | | | | | +--- Current EL
6034 * | | | | +------ Non-secure(0)/Secure(1)
6035 * | | | +--------- HCR mask override
6036 * | | +------------ SCR exec state control
6037 * | +--------------- SCR mask override
6038 * +------------------ 32-bit(0)/64-bit(1) EL3
6039 *
6040 * The table values are as such:
6041 * 0-3 = EL0-EL3
6042 * -1 = Cannot occur
6043 *
6044 * The ARM ARM target EL table includes entries indicating that an "exception
6045 * is not taken". The two cases where this is applicable are:
6046 * 1) An exception is taken from EL3 but the SCR does not have the exception
6047 * routed to EL3.
6048 * 2) An exception is taken from EL2 but the HCR does not have the exception
6049 * routed to EL2.
6050 * In these two cases, the below table contain a target of EL1. This value is
6051 * returned as it is expected that the consumer of the table data will check
6052 * for "target EL >= current EL" to ensure the exception is not taken.
6053 *
6054 * SCR HCR
6055 * 64 EA AMO From
6056 * BIT IRQ IMO Non-secure Secure
6057 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6058 */
6059 static const int8_t target_el_table[2][2][2][2][2][4] = {
6060 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6061 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6062 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6063 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6064 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6065 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6066 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6067 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6068 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6069 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6070 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6071 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6072 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6073 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6074 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6075 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6076 };
6077
6078 /*
6079 * Determine the target EL for physical exceptions
6080 */
6081 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6082 uint32_t cur_el, bool secure)
6083 {
6084 CPUARMState *env = cs->env_ptr;
6085 int rw;
6086 int scr;
6087 int hcr;
6088 int target_el;
6089 /* Is the highest EL AArch64? */
6090 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6091
6092 if (arm_feature(env, ARM_FEATURE_EL3)) {
6093 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6094 } else {
6095 /* Either EL2 is the highest EL (and so the EL2 register width
6096 * is given by is64); or there is no EL2 or EL3, in which case
6097 * the value of 'rw' does not affect the table lookup anyway.
6098 */
6099 rw = is64;
6100 }
6101
6102 switch (excp_idx) {
6103 case EXCP_IRQ:
6104 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6105 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6106 break;
6107 case EXCP_FIQ:
6108 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6109 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6110 break;
6111 default:
6112 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6113 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6114 break;
6115 };
6116
6117 /* If HCR.TGE is set then HCR is treated as being 1 */
6118 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6119
6120 /* Perform a table-lookup for the target EL given the current state */
6121 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6122
6123 assert(target_el > 0);
6124
6125 return target_el;
6126 }
6127
6128 static void v7m_push(CPUARMState *env, uint32_t val)
6129 {
6130 CPUState *cs = CPU(arm_env_get_cpu(env));
6131
6132 env->regs[13] -= 4;
6133 stl_phys(cs->as, env->regs[13], val);
6134 }
6135
6136 /* Return true if we're using the process stack pointer (not the MSP) */
6137 static bool v7m_using_psp(CPUARMState *env)
6138 {
6139 /* Handler mode always uses the main stack; for thread mode
6140 * the CONTROL.SPSEL bit determines the answer.
6141 * Note that in v7M it is not possible to be in Handler mode with
6142 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6143 */
6144 return !arm_v7m_is_handler_mode(env) &&
6145 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6146 }
6147
6148 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6149 * This may change the current stack pointer between Main and Process
6150 * stack pointers if it is done for the CONTROL register for the current
6151 * security state.
6152 */
6153 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6154 bool new_spsel,
6155 bool secstate)
6156 {
6157 bool old_is_psp = v7m_using_psp(env);
6158
6159 env->v7m.control[secstate] =
6160 deposit32(env->v7m.control[secstate],
6161 R_V7M_CONTROL_SPSEL_SHIFT,
6162 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6163
6164 if (secstate == env->v7m.secure) {
6165 bool new_is_psp = v7m_using_psp(env);
6166 uint32_t tmp;
6167
6168 if (old_is_psp != new_is_psp) {
6169 tmp = env->v7m.other_sp;
6170 env->v7m.other_sp = env->regs[13];
6171 env->regs[13] = tmp;
6172 }
6173 }
6174 }
6175
6176 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6177 * stack pointer between Main and Process stack pointers.
6178 */
6179 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6180 {
6181 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6182 }
6183
6184 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6185 {
6186 /* Write a new value to v7m.exception, thus transitioning into or out
6187 * of Handler mode; this may result in a change of active stack pointer.
6188 */
6189 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6190 uint32_t tmp;
6191
6192 env->v7m.exception = new_exc;
6193
6194 new_is_psp = v7m_using_psp(env);
6195
6196 if (old_is_psp != new_is_psp) {
6197 tmp = env->v7m.other_sp;
6198 env->v7m.other_sp = env->regs[13];
6199 env->regs[13] = tmp;
6200 }
6201 }
6202
6203 /* Switch M profile security state between NS and S */
6204 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6205 {
6206 uint32_t new_ss_msp, new_ss_psp;
6207
6208 if (env->v7m.secure == new_secstate) {
6209 return;
6210 }
6211
6212 /* All the banked state is accessed by looking at env->v7m.secure
6213 * except for the stack pointer; rearrange the SP appropriately.
6214 */
6215 new_ss_msp = env->v7m.other_ss_msp;
6216 new_ss_psp = env->v7m.other_ss_psp;
6217
6218 if (v7m_using_psp(env)) {
6219 env->v7m.other_ss_psp = env->regs[13];
6220 env->v7m.other_ss_msp = env->v7m.other_sp;
6221 } else {
6222 env->v7m.other_ss_msp = env->regs[13];
6223 env->v7m.other_ss_psp = env->v7m.other_sp;
6224 }
6225
6226 env->v7m.secure = new_secstate;
6227
6228 if (v7m_using_psp(env)) {
6229 env->regs[13] = new_ss_psp;
6230 env->v7m.other_sp = new_ss_msp;
6231 } else {
6232 env->regs[13] = new_ss_msp;
6233 env->v7m.other_sp = new_ss_psp;
6234 }
6235 }
6236
6237 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6238 {
6239 /* Handle v7M BXNS:
6240 * - if the return value is a magic value, do exception return (like BX)
6241 * - otherwise bit 0 of the return value is the target security state
6242 */
6243 uint32_t min_magic;
6244
6245 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6246 /* Covers FNC_RETURN and EXC_RETURN magic */
6247 min_magic = FNC_RETURN_MIN_MAGIC;
6248 } else {
6249 /* EXC_RETURN magic only */
6250 min_magic = EXC_RETURN_MIN_MAGIC;
6251 }
6252
6253 if (dest >= min_magic) {
6254 /* This is an exception return magic value; put it where
6255 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6256 * Note that if we ever add gen_ss_advance() singlestep support to
6257 * M profile this should count as an "instruction execution complete"
6258 * event (compare gen_bx_excret_final_code()).
6259 */
6260 env->regs[15] = dest & ~1;
6261 env->thumb = dest & 1;
6262 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6263 /* notreached */
6264 }
6265
6266 /* translate.c should have made BXNS UNDEF unless we're secure */
6267 assert(env->v7m.secure);
6268
6269 switch_v7m_security_state(env, dest & 1);
6270 env->thumb = 1;
6271 env->regs[15] = dest & ~1;
6272 }
6273
6274 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6275 {
6276 /* Handle v7M BLXNS:
6277 * - bit 0 of the destination address is the target security state
6278 */
6279
6280 /* At this point regs[15] is the address just after the BLXNS */
6281 uint32_t nextinst = env->regs[15] | 1;
6282 uint32_t sp = env->regs[13] - 8;
6283 uint32_t saved_psr;
6284
6285 /* translate.c will have made BLXNS UNDEF unless we're secure */
6286 assert(env->v7m.secure);
6287
6288 if (dest & 1) {
6289 /* target is Secure, so this is just a normal BLX,
6290 * except that the low bit doesn't indicate Thumb/not.
6291 */
6292 env->regs[14] = nextinst;
6293 env->thumb = 1;
6294 env->regs[15] = dest & ~1;
6295 return;
6296 }
6297
6298 /* Target is non-secure: first push a stack frame */
6299 if (!QEMU_IS_ALIGNED(sp, 8)) {
6300 qemu_log_mask(LOG_GUEST_ERROR,
6301 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6302 }
6303
6304 saved_psr = env->v7m.exception;
6305 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6306 saved_psr |= XPSR_SFPA;
6307 }
6308
6309 /* Note that these stores can throw exceptions on MPU faults */
6310 cpu_stl_data(env, sp, nextinst);
6311 cpu_stl_data(env, sp + 4, saved_psr);
6312
6313 env->regs[13] = sp;
6314 env->regs[14] = 0xfeffffff;
6315 if (arm_v7m_is_handler_mode(env)) {
6316 /* Write a dummy value to IPSR, to avoid leaking the current secure
6317 * exception number to non-secure code. This is guaranteed not
6318 * to cause write_v7m_exception() to actually change stacks.
6319 */
6320 write_v7m_exception(env, 1);
6321 }
6322 switch_v7m_security_state(env, 0);
6323 env->thumb = 1;
6324 env->regs[15] = dest;
6325 }
6326
6327 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6328 bool spsel)
6329 {
6330 /* Return a pointer to the location where we currently store the
6331 * stack pointer for the requested security state and thread mode.
6332 * This pointer will become invalid if the CPU state is updated
6333 * such that the stack pointers are switched around (eg changing
6334 * the SPSEL control bit).
6335 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6336 * Unlike that pseudocode, we require the caller to pass us in the
6337 * SPSEL control bit value; this is because we also use this
6338 * function in handling of pushing of the callee-saves registers
6339 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6340 * and in the tailchain codepath the SPSEL bit comes from the exception
6341 * return magic LR value from the previous exception. The pseudocode
6342 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6343 * to make this utility function generic enough to do the job.
6344 */
6345 bool want_psp = threadmode && spsel;
6346
6347 if (secure == env->v7m.secure) {
6348 if (want_psp == v7m_using_psp(env)) {
6349 return &env->regs[13];
6350 } else {
6351 return &env->v7m.other_sp;
6352 }
6353 } else {
6354 if (want_psp) {
6355 return &env->v7m.other_ss_psp;
6356 } else {
6357 return &env->v7m.other_ss_msp;
6358 }
6359 }
6360 }
6361
6362 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6363 {
6364 CPUState *cs = CPU(cpu);
6365 CPUARMState *env = &cpu->env;
6366 MemTxResult result;
6367 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6368 uint32_t addr;
6369
6370 addr = address_space_ldl(cs->as, vec,
6371 MEMTXATTRS_UNSPECIFIED, &result);
6372 if (result != MEMTX_OK) {
6373 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6374 * which would then be immediately followed by our failing to load
6375 * the entry vector for that HardFault, which is a Lockup case.
6376 * Since we don't model Lockup, we just report this guest error
6377 * via cpu_abort().
6378 */
6379 cpu_abort(cs, "Failed to read from %s exception vector table "
6380 "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6381 (unsigned)vec);
6382 }
6383 return addr;
6384 }
6385
6386 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6387 {
6388 /* For v8M, push the callee-saves register part of the stack frame.
6389 * Compare the v8M pseudocode PushCalleeStack().
6390 * In the tailchaining case this may not be the current stack.
6391 */
6392 CPUARMState *env = &cpu->env;
6393 CPUState *cs = CPU(cpu);
6394 uint32_t *frame_sp_p;
6395 uint32_t frameptr;
6396
6397 if (dotailchain) {
6398 frame_sp_p = get_v7m_sp_ptr(env, true,
6399 lr & R_V7M_EXCRET_MODE_MASK,
6400 lr & R_V7M_EXCRET_SPSEL_MASK);
6401 } else {
6402 frame_sp_p = &env->regs[13];
6403 }
6404
6405 frameptr = *frame_sp_p - 0x28;
6406
6407 stl_phys(cs->as, frameptr, 0xfefa125b);
6408 stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6409 stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6410 stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6411 stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6412 stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6413 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6414 stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6415 stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6416
6417 *frame_sp_p = frameptr;
6418 }
6419
6420 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6421 {
6422 /* Do the "take the exception" parts of exception entry,
6423 * but not the pushing of state to the stack. This is
6424 * similar to the pseudocode ExceptionTaken() function.
6425 */
6426 CPUARMState *env = &cpu->env;
6427 uint32_t addr;
6428 bool targets_secure;
6429
6430 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6431
6432 if (arm_feature(env, ARM_FEATURE_V8)) {
6433 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6434 (lr & R_V7M_EXCRET_S_MASK)) {
6435 /* The background code (the owner of the registers in the
6436 * exception frame) is Secure. This means it may either already
6437 * have or now needs to push callee-saves registers.
6438 */
6439 if (targets_secure) {
6440 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6441 /* We took an exception from Secure to NonSecure
6442 * (which means the callee-saved registers got stacked)
6443 * and are now tailchaining to a Secure exception.
6444 * Clear DCRS so eventual return from this Secure
6445 * exception unstacks the callee-saved registers.
6446 */
6447 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6448 }
6449 } else {
6450 /* We're going to a non-secure exception; push the
6451 * callee-saves registers to the stack now, if they're
6452 * not already saved.
6453 */
6454 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6455 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6456 v7m_push_callee_stack(cpu, lr, dotailchain);
6457 }
6458 lr |= R_V7M_EXCRET_DCRS_MASK;
6459 }
6460 }
6461
6462 lr &= ~R_V7M_EXCRET_ES_MASK;
6463 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6464 lr |= R_V7M_EXCRET_ES_MASK;
6465 }
6466 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6467 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6468 lr |= R_V7M_EXCRET_SPSEL_MASK;
6469 }
6470
6471 /* Clear registers if necessary to prevent non-secure exception
6472 * code being able to see register values from secure code.
6473 * Where register values become architecturally UNKNOWN we leave
6474 * them with their previous values.
6475 */
6476 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6477 if (!targets_secure) {
6478 /* Always clear the caller-saved registers (they have been
6479 * pushed to the stack earlier in v7m_push_stack()).
6480 * Clear callee-saved registers if the background code is
6481 * Secure (in which case these regs were saved in
6482 * v7m_push_callee_stack()).
6483 */
6484 int i;
6485
6486 for (i = 0; i < 13; i++) {
6487 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6488 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6489 env->regs[i] = 0;
6490 }
6491 }
6492 /* Clear EAPSR */
6493 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6494 }
6495 }
6496 }
6497
6498 /* Switch to target security state -- must do this before writing SPSEL */
6499 switch_v7m_security_state(env, targets_secure);
6500 write_v7m_control_spsel(env, 0);
6501 arm_clear_exclusive(env);
6502 /* Clear IT bits */
6503 env->condexec_bits = 0;
6504 env->regs[14] = lr;
6505 addr = arm_v7m_load_vector(cpu, targets_secure);
6506 env->regs[15] = addr & 0xfffffffe;
6507 env->thumb = addr & 1;
6508 }
6509
6510 static void v7m_push_stack(ARMCPU *cpu)
6511 {
6512 /* Do the "set up stack frame" part of exception entry,
6513 * similar to pseudocode PushStack().
6514 */
6515 CPUARMState *env = &cpu->env;
6516 uint32_t xpsr = xpsr_read(env);
6517
6518 /* Align stack pointer if the guest wants that */
6519 if ((env->regs[13] & 4) &&
6520 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6521 env->regs[13] -= 4;
6522 xpsr |= XPSR_SPREALIGN;
6523 }
6524 /* Switch to the handler mode. */
6525 v7m_push(env, xpsr);
6526 v7m_push(env, env->regs[15]);
6527 v7m_push(env, env->regs[14]);
6528 v7m_push(env, env->regs[12]);
6529 v7m_push(env, env->regs[3]);
6530 v7m_push(env, env->regs[2]);
6531 v7m_push(env, env->regs[1]);
6532 v7m_push(env, env->regs[0]);
6533 }
6534
6535 static void do_v7m_exception_exit(ARMCPU *cpu)
6536 {
6537 CPUARMState *env = &cpu->env;
6538 CPUState *cs = CPU(cpu);
6539 uint32_t excret;
6540 uint32_t xpsr;
6541 bool ufault = false;
6542 bool sfault = false;
6543 bool return_to_sp_process;
6544 bool return_to_handler;
6545 bool rettobase = false;
6546 bool exc_secure = false;
6547 bool return_to_secure;
6548
6549 /* If we're not in Handler mode then jumps to magic exception-exit
6550 * addresses don't have magic behaviour. However for the v8M
6551 * security extensions the magic secure-function-return has to
6552 * work in thread mode too, so to avoid doing an extra check in
6553 * the generated code we allow exception-exit magic to also cause the
6554 * internal exception and bring us here in thread mode. Correct code
6555 * will never try to do this (the following insn fetch will always
6556 * fault) so we the overhead of having taken an unnecessary exception
6557 * doesn't matter.
6558 */
6559 if (!arm_v7m_is_handler_mode(env)) {
6560 return;
6561 }
6562
6563 /* In the spec pseudocode ExceptionReturn() is called directly
6564 * from BXWritePC() and gets the full target PC value including
6565 * bit zero. In QEMU's implementation we treat it as a normal
6566 * jump-to-register (which is then caught later on), and so split
6567 * the target value up between env->regs[15] and env->thumb in
6568 * gen_bx(). Reconstitute it.
6569 */
6570 excret = env->regs[15];
6571 if (env->thumb) {
6572 excret |= 1;
6573 }
6574
6575 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6576 " previous exception %d\n",
6577 excret, env->v7m.exception);
6578
6579 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6580 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6581 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6582 excret);
6583 }
6584
6585 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6586 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6587 * we pick which FAULTMASK to clear.
6588 */
6589 if (!env->v7m.secure &&
6590 ((excret & R_V7M_EXCRET_ES_MASK) ||
6591 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6592 sfault = 1;
6593 /* For all other purposes, treat ES as 0 (R_HXSR) */
6594 excret &= ~R_V7M_EXCRET_ES_MASK;
6595 }
6596 }
6597
6598 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6599 /* Auto-clear FAULTMASK on return from other than NMI.
6600 * If the security extension is implemented then this only
6601 * happens if the raw execution priority is >= 0; the
6602 * value of the ES bit in the exception return value indicates
6603 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6604 */
6605 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6606 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6607 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6608 env->v7m.faultmask[exc_secure] = 0;
6609 }
6610 } else {
6611 env->v7m.faultmask[M_REG_NS] = 0;
6612 }
6613 }
6614
6615 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6616 exc_secure)) {
6617 case -1:
6618 /* attempt to exit an exception that isn't active */
6619 ufault = true;
6620 break;
6621 case 0:
6622 /* still an irq active now */
6623 break;
6624 case 1:
6625 /* we returned to base exception level, no nesting.
6626 * (In the pseudocode this is written using "NestedActivation != 1"
6627 * where we have 'rettobase == false'.)
6628 */
6629 rettobase = true;
6630 break;
6631 default:
6632 g_assert_not_reached();
6633 }
6634
6635 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6636 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6637 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6638 (excret & R_V7M_EXCRET_S_MASK);
6639
6640 if (arm_feature(env, ARM_FEATURE_V8)) {
6641 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6642 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6643 * we choose to take the UsageFault.
6644 */
6645 if ((excret & R_V7M_EXCRET_S_MASK) ||
6646 (excret & R_V7M_EXCRET_ES_MASK) ||
6647 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6648 ufault = true;
6649 }
6650 }
6651 if (excret & R_V7M_EXCRET_RES0_MASK) {
6652 ufault = true;
6653 }
6654 } else {
6655 /* For v7M we only recognize certain combinations of the low bits */
6656 switch (excret & 0xf) {
6657 case 1: /* Return to Handler */
6658 break;
6659 case 13: /* Return to Thread using Process stack */
6660 case 9: /* Return to Thread using Main stack */
6661 /* We only need to check NONBASETHRDENA for v7M, because in
6662 * v8M this bit does not exist (it is RES1).
6663 */
6664 if (!rettobase &&
6665 !(env->v7m.ccr[env->v7m.secure] &
6666 R_V7M_CCR_NONBASETHRDENA_MASK)) {
6667 ufault = true;
6668 }
6669 break;
6670 default:
6671 ufault = true;
6672 }
6673 }
6674
6675 if (sfault) {
6676 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6677 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6678 v7m_exception_taken(cpu, excret, true);
6679 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6680 "stackframe: failed EXC_RETURN.ES validity check\n");
6681 return;
6682 }
6683
6684 if (ufault) {
6685 /* Bad exception return: instead of popping the exception
6686 * stack, directly take a usage fault on the current stack.
6687 */
6688 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6689 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6690 v7m_exception_taken(cpu, excret, true);
6691 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6692 "stackframe: failed exception return integrity check\n");
6693 return;
6694 }
6695
6696 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6697 * Handler mode (and will be until we write the new XPSR.Interrupt
6698 * field) this does not switch around the current stack pointer.
6699 */
6700 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6701
6702 switch_v7m_security_state(env, return_to_secure);
6703
6704 {
6705 /* The stack pointer we should be reading the exception frame from
6706 * depends on bits in the magic exception return type value (and
6707 * for v8M isn't necessarily the stack pointer we will eventually
6708 * end up resuming execution with). Get a pointer to the location
6709 * in the CPU state struct where the SP we need is currently being
6710 * stored; we will use and modify it in place.
6711 * We use this limited C variable scope so we don't accidentally
6712 * use 'frame_sp_p' after we do something that makes it invalid.
6713 */
6714 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6715 return_to_secure,
6716 !return_to_handler,
6717 return_to_sp_process);
6718 uint32_t frameptr = *frame_sp_p;
6719
6720 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6721 arm_feature(env, ARM_FEATURE_V8)) {
6722 qemu_log_mask(LOG_GUEST_ERROR,
6723 "M profile exception return with non-8-aligned SP "
6724 "for destination state is UNPREDICTABLE\n");
6725 }
6726
6727 /* Do we need to pop callee-saved registers? */
6728 if (return_to_secure &&
6729 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6730 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6731 uint32_t expected_sig = 0xfefa125b;
6732 uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6733
6734 if (expected_sig != actual_sig) {
6735 /* Take a SecureFault on the current stack */
6736 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6737 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6738 v7m_exception_taken(cpu, excret, true);
6739 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6740 "stackframe: failed exception return integrity "
6741 "signature check\n");
6742 return;
6743 }
6744
6745 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6746 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6747 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6748 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6749 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6750 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6751 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6752 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6753
6754 frameptr += 0x28;
6755 }
6756
6757 /* Pop registers. TODO: make these accesses use the correct
6758 * attributes and address space (S/NS, priv/unpriv) and handle
6759 * memory transaction failures.
6760 */
6761 env->regs[0] = ldl_phys(cs->as, frameptr);
6762 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6763 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6764 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6765 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6766 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6767 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6768
6769 /* Returning from an exception with a PC with bit 0 set is defined
6770 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6771 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6772 * the lsbit, and there are several RTOSes out there which incorrectly
6773 * assume the r15 in the stack frame should be a Thumb-style "lsbit
6774 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6775 * complain about the badly behaved guest.
6776 */
6777 if (env->regs[15] & 1) {
6778 env->regs[15] &= ~1U;
6779 if (!arm_feature(env, ARM_FEATURE_V8)) {
6780 qemu_log_mask(LOG_GUEST_ERROR,
6781 "M profile return from interrupt with misaligned "
6782 "PC is UNPREDICTABLE on v7M\n");
6783 }
6784 }
6785
6786 xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6787
6788 if (arm_feature(env, ARM_FEATURE_V8)) {
6789 /* For v8M we have to check whether the xPSR exception field
6790 * matches the EXCRET value for return to handler/thread
6791 * before we commit to changing the SP and xPSR.
6792 */
6793 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6794 if (return_to_handler != will_be_handler) {
6795 /* Take an INVPC UsageFault on the current stack.
6796 * By this point we will have switched to the security state
6797 * for the background state, so this UsageFault will target
6798 * that state.
6799 */
6800 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6801 env->v7m.secure);
6802 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6803 v7m_exception_taken(cpu, excret, true);
6804 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6805 "stackframe: failed exception return integrity "
6806 "check\n");
6807 return;
6808 }
6809 }
6810
6811 /* Commit to consuming the stack frame */
6812 frameptr += 0x20;
6813 /* Undo stack alignment (the SPREALIGN bit indicates that the original
6814 * pre-exception SP was not 8-aligned and we added a padding word to
6815 * align it, so we undo this by ORing in the bit that increases it
6816 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6817 * would work too but a logical OR is how the pseudocode specifies it.)
6818 */
6819 if (xpsr & XPSR_SPREALIGN) {
6820 frameptr |= 4;
6821 }
6822 *frame_sp_p = frameptr;
6823 }
6824 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6825 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6826
6827 /* The restored xPSR exception field will be zero if we're
6828 * resuming in Thread mode. If that doesn't match what the
6829 * exception return excret specified then this is a UsageFault.
6830 * v7M requires we make this check here; v8M did it earlier.
6831 */
6832 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6833 /* Take an INVPC UsageFault by pushing the stack again;
6834 * we know we're v7M so this is never a Secure UsageFault.
6835 */
6836 assert(!arm_feature(env, ARM_FEATURE_V8));
6837 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6838 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6839 v7m_push_stack(cpu);
6840 v7m_exception_taken(cpu, excret, false);
6841 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6842 "failed exception return integrity check\n");
6843 return;
6844 }
6845
6846 /* Otherwise, we have a successful exception exit. */
6847 arm_clear_exclusive(env);
6848 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6849 }
6850
6851 static bool do_v7m_function_return(ARMCPU *cpu)
6852 {
6853 /* v8M security extensions magic function return.
6854 * We may either:
6855 * (1) throw an exception (longjump)
6856 * (2) return true if we successfully handled the function return
6857 * (3) return false if we failed a consistency check and have
6858 * pended a UsageFault that needs to be taken now
6859 *
6860 * At this point the magic return value is split between env->regs[15]
6861 * and env->thumb. We don't bother to reconstitute it because we don't
6862 * need it (all values are handled the same way).
6863 */
6864 CPUARMState *env = &cpu->env;
6865 uint32_t newpc, newpsr, newpsr_exc;
6866
6867 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6868
6869 {
6870 bool threadmode, spsel;
6871 TCGMemOpIdx oi;
6872 ARMMMUIdx mmu_idx;
6873 uint32_t *frame_sp_p;
6874 uint32_t frameptr;
6875
6876 /* Pull the return address and IPSR from the Secure stack */
6877 threadmode = !arm_v7m_is_handler_mode(env);
6878 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6879
6880 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6881 frameptr = *frame_sp_p;
6882
6883 /* These loads may throw an exception (for MPU faults). We want to
6884 * do them as secure, so work out what MMU index that is.
6885 */
6886 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6887 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6888 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6889 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6890
6891 /* Consistency checks on new IPSR */
6892 newpsr_exc = newpsr & XPSR_EXCP;
6893 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6894 (env->v7m.exception == 1 && newpsr_exc != 0))) {
6895 /* Pend the fault and tell our caller to take it */
6896 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6897 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6898 env->v7m.secure);
6899 qemu_log_mask(CPU_LOG_INT,
6900 "...taking INVPC UsageFault: "
6901 "IPSR consistency check failed\n");
6902 return false;
6903 }
6904
6905 *frame_sp_p = frameptr + 8;
6906 }
6907
6908 /* This invalidates frame_sp_p */
6909 switch_v7m_security_state(env, true);
6910 env->v7m.exception = newpsr_exc;
6911 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6912 if (newpsr & XPSR_SFPA) {
6913 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6914 }
6915 xpsr_write(env, 0, XPSR_IT);
6916 env->thumb = newpc & 1;
6917 env->regs[15] = newpc & ~1;
6918
6919 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6920 return true;
6921 }
6922
6923 static void arm_log_exception(int idx)
6924 {
6925 if (qemu_loglevel_mask(CPU_LOG_INT)) {
6926 const char *exc = NULL;
6927 static const char * const excnames[] = {
6928 [EXCP_UDEF] = "Undefined Instruction",
6929 [EXCP_SWI] = "SVC",
6930 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6931 [EXCP_DATA_ABORT] = "Data Abort",
6932 [EXCP_IRQ] = "IRQ",
6933 [EXCP_FIQ] = "FIQ",
6934 [EXCP_BKPT] = "Breakpoint",
6935 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6936 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6937 [EXCP_HVC] = "Hypervisor Call",
6938 [EXCP_HYP_TRAP] = "Hypervisor Trap",
6939 [EXCP_SMC] = "Secure Monitor Call",
6940 [EXCP_VIRQ] = "Virtual IRQ",
6941 [EXCP_VFIQ] = "Virtual FIQ",
6942 [EXCP_SEMIHOST] = "Semihosting call",
6943 [EXCP_NOCP] = "v7M NOCP UsageFault",
6944 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6945 };
6946
6947 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6948 exc = excnames[idx];
6949 }
6950 if (!exc) {
6951 exc = "unknown";
6952 }
6953 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6954 }
6955 }
6956
6957 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6958 uint32_t addr, uint16_t *insn)
6959 {
6960 /* Load a 16-bit portion of a v7M instruction, returning true on success,
6961 * or false on failure (in which case we will have pended the appropriate
6962 * exception).
6963 * We need to do the instruction fetch's MPU and SAU checks
6964 * like this because there is no MMU index that would allow
6965 * doing the load with a single function call. Instead we must
6966 * first check that the security attributes permit the load
6967 * and that they don't mismatch on the two halves of the instruction,
6968 * and then we do the load as a secure load (ie using the security
6969 * attributes of the address, not the CPU, as architecturally required).
6970 */
6971 CPUState *cs = CPU(cpu);
6972 CPUARMState *env = &cpu->env;
6973 V8M_SAttributes sattrs = {};
6974 MemTxAttrs attrs = {};
6975 ARMMMUFaultInfo fi = {};
6976 MemTxResult txres;
6977 target_ulong page_size;
6978 hwaddr physaddr;
6979 int prot;
6980 uint32_t fsr;
6981
6982 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
6983 if (!sattrs.nsc || sattrs.ns) {
6984 /* This must be the second half of the insn, and it straddles a
6985 * region boundary with the second half not being S&NSC.
6986 */
6987 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6988 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6989 qemu_log_mask(CPU_LOG_INT,
6990 "...really SecureFault with SFSR.INVEP\n");
6991 return false;
6992 }
6993 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
6994 &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) {
6995 /* the MPU lookup failed */
6996 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6997 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
6998 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
6999 return false;
7000 }
7001 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7002 attrs, &txres);
7003 if (txres != MEMTX_OK) {
7004 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7005 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7006 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7007 return false;
7008 }
7009 return true;
7010 }
7011
7012 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7013 {
7014 /* Check whether this attempt to execute code in a Secure & NS-Callable
7015 * memory region is for an SG instruction; if so, then emulate the
7016 * effect of the SG instruction and return true. Otherwise pend
7017 * the correct kind of exception and return false.
7018 */
7019 CPUARMState *env = &cpu->env;
7020 ARMMMUIdx mmu_idx;
7021 uint16_t insn;
7022
7023 /* We should never get here unless get_phys_addr_pmsav8() caused
7024 * an exception for NS executing in S&NSC memory.
7025 */
7026 assert(!env->v7m.secure);
7027 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7028
7029 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7030 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7031
7032 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7033 return false;
7034 }
7035
7036 if (!env->thumb) {
7037 goto gen_invep;
7038 }
7039
7040 if (insn != 0xe97f) {
7041 /* Not an SG instruction first half (we choose the IMPDEF
7042 * early-SG-check option).
7043 */
7044 goto gen_invep;
7045 }
7046
7047 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7048 return false;
7049 }
7050
7051 if (insn != 0xe97f) {
7052 /* Not an SG instruction second half (yes, both halves of the SG
7053 * insn have the same hex value)
7054 */
7055 goto gen_invep;
7056 }
7057
7058 /* OK, we have confirmed that we really have an SG instruction.
7059 * We know we're NS in S memory so don't need to repeat those checks.
7060 */
7061 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7062 ", executing it\n", env->regs[15]);
7063 env->regs[14] &= ~1;
7064 switch_v7m_security_state(env, true);
7065 xpsr_write(env, 0, XPSR_IT);
7066 env->regs[15] += 4;
7067 return true;
7068
7069 gen_invep:
7070 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7071 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7072 qemu_log_mask(CPU_LOG_INT,
7073 "...really SecureFault with SFSR.INVEP\n");
7074 return false;
7075 }
7076
7077 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7078 {
7079 ARMCPU *cpu = ARM_CPU(cs);
7080 CPUARMState *env = &cpu->env;
7081 uint32_t lr;
7082
7083 arm_log_exception(cs->exception_index);
7084
7085 /* For exceptions we just mark as pending on the NVIC, and let that
7086 handle it. */
7087 switch (cs->exception_index) {
7088 case EXCP_UDEF:
7089 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7090 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7091 break;
7092 case EXCP_NOCP:
7093 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7094 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7095 break;
7096 case EXCP_INVSTATE:
7097 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7098 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7099 break;
7100 case EXCP_SWI:
7101 /* The PC already points to the next instruction. */
7102 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7103 break;
7104 case EXCP_PREFETCH_ABORT:
7105 case EXCP_DATA_ABORT:
7106 /* Note that for M profile we don't have a guest facing FSR, but
7107 * the env->exception.fsr will be populated by the code that
7108 * raises the fault, in the A profile short-descriptor format.
7109 */
7110 switch (env->exception.fsr & 0xf) {
7111 case M_FAKE_FSR_NSC_EXEC:
7112 /* Exception generated when we try to execute code at an address
7113 * which is marked as Secure & Non-Secure Callable and the CPU
7114 * is in the Non-Secure state. The only instruction which can
7115 * be executed like this is SG (and that only if both halves of
7116 * the SG instruction have the same security attributes.)
7117 * Everything else must generate an INVEP SecureFault, so we
7118 * emulate the SG instruction here.
7119 */
7120 if (v7m_handle_execute_nsc(cpu)) {
7121 return;
7122 }
7123 break;
7124 case M_FAKE_FSR_SFAULT:
7125 /* Various flavours of SecureFault for attempts to execute or
7126 * access data in the wrong security state.
7127 */
7128 switch (cs->exception_index) {
7129 case EXCP_PREFETCH_ABORT:
7130 if (env->v7m.secure) {
7131 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7132 qemu_log_mask(CPU_LOG_INT,
7133 "...really SecureFault with SFSR.INVTRAN\n");
7134 } else {
7135 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7136 qemu_log_mask(CPU_LOG_INT,
7137 "...really SecureFault with SFSR.INVEP\n");
7138 }
7139 break;
7140 case EXCP_DATA_ABORT:
7141 /* This must be an NS access to S memory */
7142 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7143 qemu_log_mask(CPU_LOG_INT,
7144 "...really SecureFault with SFSR.AUVIOL\n");
7145 break;
7146 }
7147 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7148 break;
7149 case 0x8: /* External Abort */
7150 switch (cs->exception_index) {
7151 case EXCP_PREFETCH_ABORT:
7152 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7153 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7154 break;
7155 case EXCP_DATA_ABORT:
7156 env->v7m.cfsr[M_REG_NS] |=
7157 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7158 env->v7m.bfar = env->exception.vaddress;
7159 qemu_log_mask(CPU_LOG_INT,
7160 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7161 env->v7m.bfar);
7162 break;
7163 }
7164 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7165 break;
7166 default:
7167 /* All other FSR values are either MPU faults or "can't happen
7168 * for M profile" cases.
7169 */
7170 switch (cs->exception_index) {
7171 case EXCP_PREFETCH_ABORT:
7172 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7173 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7174 break;
7175 case EXCP_DATA_ABORT:
7176 env->v7m.cfsr[env->v7m.secure] |=
7177 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7178 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7179 qemu_log_mask(CPU_LOG_INT,
7180 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7181 env->v7m.mmfar[env->v7m.secure]);
7182 break;
7183 }
7184 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7185 env->v7m.secure);
7186 break;
7187 }
7188 break;
7189 case EXCP_BKPT:
7190 if (semihosting_enabled()) {
7191 int nr;
7192 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7193 if (nr == 0xab) {
7194 env->regs[15] += 2;
7195 qemu_log_mask(CPU_LOG_INT,
7196 "...handling as semihosting call 0x%x\n",
7197 env->regs[0]);
7198 env->regs[0] = do_arm_semihosting(env);
7199 return;
7200 }
7201 }
7202 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7203 break;
7204 case EXCP_IRQ:
7205 break;
7206 case EXCP_EXCEPTION_EXIT:
7207 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7208 /* Must be v8M security extension function return */
7209 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7210 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7211 if (do_v7m_function_return(cpu)) {
7212 return;
7213 }
7214 } else {
7215 do_v7m_exception_exit(cpu);
7216 return;
7217 }
7218 break;
7219 default:
7220 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7221 return; /* Never happens. Keep compiler happy. */
7222 }
7223
7224 if (arm_feature(env, ARM_FEATURE_V8)) {
7225 lr = R_V7M_EXCRET_RES1_MASK |
7226 R_V7M_EXCRET_DCRS_MASK |
7227 R_V7M_EXCRET_FTYPE_MASK;
7228 /* The S bit indicates whether we should return to Secure
7229 * or NonSecure (ie our current state).
7230 * The ES bit indicates whether we're taking this exception
7231 * to Secure or NonSecure (ie our target state). We set it
7232 * later, in v7m_exception_taken().
7233 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7234 * This corresponds to the ARM ARM pseudocode for v8M setting
7235 * some LR bits in PushStack() and some in ExceptionTaken();
7236 * the distinction matters for the tailchain cases where we
7237 * can take an exception without pushing the stack.
7238 */
7239 if (env->v7m.secure) {
7240 lr |= R_V7M_EXCRET_S_MASK;
7241 }
7242 } else {
7243 lr = R_V7M_EXCRET_RES1_MASK |
7244 R_V7M_EXCRET_S_MASK |
7245 R_V7M_EXCRET_DCRS_MASK |
7246 R_V7M_EXCRET_FTYPE_MASK |
7247 R_V7M_EXCRET_ES_MASK;
7248 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7249 lr |= R_V7M_EXCRET_SPSEL_MASK;
7250 }
7251 }
7252 if (!arm_v7m_is_handler_mode(env)) {
7253 lr |= R_V7M_EXCRET_MODE_MASK;
7254 }
7255
7256 v7m_push_stack(cpu);
7257 v7m_exception_taken(cpu, lr, false);
7258 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7259 }
7260
7261 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7262 * register set. This is necessary when switching between AArch32 and AArch64
7263 * execution state.
7264 */
7265 void aarch64_sync_32_to_64(CPUARMState *env)
7266 {
7267 int i;
7268 uint32_t mode = env->uncached_cpsr & CPSR_M;
7269
7270 /* We can blanket copy R[0:7] to X[0:7] */
7271 for (i = 0; i < 8; i++) {
7272 env->xregs[i] = env->regs[i];
7273 }
7274
7275 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7276 * Otherwise, they come from the banked user regs.
7277 */
7278 if (mode == ARM_CPU_MODE_FIQ) {
7279 for (i = 8; i < 13; i++) {
7280 env->xregs[i] = env->usr_regs[i - 8];
7281 }
7282 } else {
7283 for (i = 8; i < 13; i++) {
7284 env->xregs[i] = env->regs[i];
7285 }
7286 }
7287
7288 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7289 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7290 * from the mode banked register.
7291 */
7292 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7293 env->xregs[13] = env->regs[13];
7294 env->xregs[14] = env->regs[14];
7295 } else {
7296 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7297 /* HYP is an exception in that it is copied from r14 */
7298 if (mode == ARM_CPU_MODE_HYP) {
7299 env->xregs[14] = env->regs[14];
7300 } else {
7301 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7302 }
7303 }
7304
7305 if (mode == ARM_CPU_MODE_HYP) {
7306 env->xregs[15] = env->regs[13];
7307 } else {
7308 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7309 }
7310
7311 if (mode == ARM_CPU_MODE_IRQ) {
7312 env->xregs[16] = env->regs[14];
7313 env->xregs[17] = env->regs[13];
7314 } else {
7315 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7316 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7317 }
7318
7319 if (mode == ARM_CPU_MODE_SVC) {
7320 env->xregs[18] = env->regs[14];
7321 env->xregs[19] = env->regs[13];
7322 } else {
7323 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7324 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7325 }
7326
7327 if (mode == ARM_CPU_MODE_ABT) {
7328 env->xregs[20] = env->regs[14];
7329 env->xregs[21] = env->regs[13];
7330 } else {
7331 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7332 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7333 }
7334
7335 if (mode == ARM_CPU_MODE_UND) {
7336 env->xregs[22] = env->regs[14];
7337 env->xregs[23] = env->regs[13];
7338 } else {
7339 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7340 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7341 }
7342
7343 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7344 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7345 * FIQ bank for r8-r14.
7346 */
7347 if (mode == ARM_CPU_MODE_FIQ) {
7348 for (i = 24; i < 31; i++) {
7349 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7350 }
7351 } else {
7352 for (i = 24; i < 29; i++) {
7353 env->xregs[i] = env->fiq_regs[i - 24];
7354 }
7355 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7356 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7357 }
7358
7359 env->pc = env->regs[15];
7360 }
7361
7362 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7363 * register set. This is necessary when switching between AArch32 and AArch64
7364 * execution state.
7365 */
7366 void aarch64_sync_64_to_32(CPUARMState *env)
7367 {
7368 int i;
7369 uint32_t mode = env->uncached_cpsr & CPSR_M;
7370
7371 /* We can blanket copy X[0:7] to R[0:7] */
7372 for (i = 0; i < 8; i++) {
7373 env->regs[i] = env->xregs[i];
7374 }
7375
7376 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7377 * Otherwise, we copy x8-x12 into the banked user regs.
7378 */
7379 if (mode == ARM_CPU_MODE_FIQ) {
7380 for (i = 8; i < 13; i++) {
7381 env->usr_regs[i - 8] = env->xregs[i];
7382 }
7383 } else {
7384 for (i = 8; i < 13; i++) {
7385 env->regs[i] = env->xregs[i];
7386 }
7387 }
7388
7389 /* Registers r13 & r14 depend on the current mode.
7390 * If we are in a given mode, we copy the corresponding x registers to r13
7391 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7392 * for the mode.
7393 */
7394 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7395 env->regs[13] = env->xregs[13];
7396 env->regs[14] = env->xregs[14];
7397 } else {
7398 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7399
7400 /* HYP is an exception in that it does not have its own banked r14 but
7401 * shares the USR r14
7402 */
7403 if (mode == ARM_CPU_MODE_HYP) {
7404 env->regs[14] = env->xregs[14];
7405 } else {
7406 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7407 }
7408 }
7409
7410 if (mode == ARM_CPU_MODE_HYP) {
7411 env->regs[13] = env->xregs[15];
7412 } else {
7413 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7414 }
7415
7416 if (mode == ARM_CPU_MODE_IRQ) {
7417 env->regs[14] = env->xregs[16];
7418 env->regs[13] = env->xregs[17];
7419 } else {
7420 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7421 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7422 }
7423
7424 if (mode == ARM_CPU_MODE_SVC) {
7425 env->regs[14] = env->xregs[18];
7426 env->regs[13] = env->xregs[19];
7427 } else {
7428 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7429 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7430 }
7431
7432 if (mode == ARM_CPU_MODE_ABT) {
7433 env->regs[14] = env->xregs[20];
7434 env->regs[13] = env->xregs[21];
7435 } else {
7436 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7437 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7438 }
7439
7440 if (mode == ARM_CPU_MODE_UND) {
7441 env->regs[14] = env->xregs[22];
7442 env->regs[13] = env->xregs[23];
7443 } else {
7444 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7445 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7446 }
7447
7448 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7449 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7450 * FIQ bank for r8-r14.
7451 */
7452 if (mode == ARM_CPU_MODE_FIQ) {
7453 for (i = 24; i < 31; i++) {
7454 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7455 }
7456 } else {
7457 for (i = 24; i < 29; i++) {
7458 env->fiq_regs[i - 24] = env->xregs[i];
7459 }
7460 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7461 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7462 }
7463
7464 env->regs[15] = env->pc;
7465 }
7466
7467 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7468 {
7469 ARMCPU *cpu = ARM_CPU(cs);
7470 CPUARMState *env = &cpu->env;
7471 uint32_t addr;
7472 uint32_t mask;
7473 int new_mode;
7474 uint32_t offset;
7475 uint32_t moe;
7476
7477 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7478 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7479 case EC_BREAKPOINT:
7480 case EC_BREAKPOINT_SAME_EL:
7481 moe = 1;
7482 break;
7483 case EC_WATCHPOINT:
7484 case EC_WATCHPOINT_SAME_EL:
7485 moe = 10;
7486 break;
7487 case EC_AA32_BKPT:
7488 moe = 3;
7489 break;
7490 case EC_VECTORCATCH:
7491 moe = 5;
7492 break;
7493 default:
7494 moe = 0;
7495 break;
7496 }
7497
7498 if (moe) {
7499 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7500 }
7501
7502 /* TODO: Vectored interrupt controller. */
7503 switch (cs->exception_index) {
7504 case EXCP_UDEF:
7505 new_mode = ARM_CPU_MODE_UND;
7506 addr = 0x04;
7507 mask = CPSR_I;
7508 if (env->thumb)
7509 offset = 2;
7510 else
7511 offset = 4;
7512 break;
7513 case EXCP_SWI:
7514 new_mode = ARM_CPU_MODE_SVC;
7515 addr = 0x08;
7516 mask = CPSR_I;
7517 /* The PC already points to the next instruction. */
7518 offset = 0;
7519 break;
7520 case EXCP_BKPT:
7521 env->exception.fsr = 2;
7522 /* Fall through to prefetch abort. */
7523 case EXCP_PREFETCH_ABORT:
7524 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7525 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7526 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7527 env->exception.fsr, (uint32_t)env->exception.vaddress);
7528 new_mode = ARM_CPU_MODE_ABT;
7529 addr = 0x0c;
7530 mask = CPSR_A | CPSR_I;
7531 offset = 4;
7532 break;
7533 case EXCP_DATA_ABORT:
7534 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7535 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7536 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7537 env->exception.fsr,
7538 (uint32_t)env->exception.vaddress);
7539 new_mode = ARM_CPU_MODE_ABT;
7540 addr = 0x10;
7541 mask = CPSR_A | CPSR_I;
7542 offset = 8;
7543 break;
7544 case EXCP_IRQ:
7545 new_mode = ARM_CPU_MODE_IRQ;
7546 addr = 0x18;
7547 /* Disable IRQ and imprecise data aborts. */
7548 mask = CPSR_A | CPSR_I;
7549 offset = 4;
7550 if (env->cp15.scr_el3 & SCR_IRQ) {
7551 /* IRQ routed to monitor mode */
7552 new_mode = ARM_CPU_MODE_MON;
7553 mask |= CPSR_F;
7554 }
7555 break;
7556 case EXCP_FIQ:
7557 new_mode = ARM_CPU_MODE_FIQ;
7558 addr = 0x1c;
7559 /* Disable FIQ, IRQ and imprecise data aborts. */
7560 mask = CPSR_A | CPSR_I | CPSR_F;
7561 if (env->cp15.scr_el3 & SCR_FIQ) {
7562 /* FIQ routed to monitor mode */
7563 new_mode = ARM_CPU_MODE_MON;
7564 }
7565 offset = 4;
7566 break;
7567 case EXCP_VIRQ:
7568 new_mode = ARM_CPU_MODE_IRQ;
7569 addr = 0x18;
7570 /* Disable IRQ and imprecise data aborts. */
7571 mask = CPSR_A | CPSR_I;
7572 offset = 4;
7573 break;
7574 case EXCP_VFIQ:
7575 new_mode = ARM_CPU_MODE_FIQ;
7576 addr = 0x1c;
7577 /* Disable FIQ, IRQ and imprecise data aborts. */
7578 mask = CPSR_A | CPSR_I | CPSR_F;
7579 offset = 4;
7580 break;
7581 case EXCP_SMC:
7582 new_mode = ARM_CPU_MODE_MON;
7583 addr = 0x08;
7584 mask = CPSR_A | CPSR_I | CPSR_F;
7585 offset = 0;
7586 break;
7587 default:
7588 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7589 return; /* Never happens. Keep compiler happy. */
7590 }
7591
7592 if (new_mode == ARM_CPU_MODE_MON) {
7593 addr += env->cp15.mvbar;
7594 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7595 /* High vectors. When enabled, base address cannot be remapped. */
7596 addr += 0xffff0000;
7597 } else {
7598 /* ARM v7 architectures provide a vector base address register to remap
7599 * the interrupt vector table.
7600 * This register is only followed in non-monitor mode, and is banked.
7601 * Note: only bits 31:5 are valid.
7602 */
7603 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7604 }
7605
7606 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7607 env->cp15.scr_el3 &= ~SCR_NS;
7608 }
7609
7610 switch_mode (env, new_mode);
7611 /* For exceptions taken to AArch32 we must clear the SS bit in both
7612 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7613 */
7614 env->uncached_cpsr &= ~PSTATE_SS;
7615 env->spsr = cpsr_read(env);
7616 /* Clear IT bits. */
7617 env->condexec_bits = 0;
7618 /* Switch to the new mode, and to the correct instruction set. */
7619 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7620 /* Set new mode endianness */
7621 env->uncached_cpsr &= ~CPSR_E;
7622 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7623 env->uncached_cpsr |= CPSR_E;
7624 }
7625 env->daif |= mask;
7626 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7627 * and we should just guard the thumb mode on V4 */
7628 if (arm_feature(env, ARM_FEATURE_V4T)) {
7629 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7630 }
7631 env->regs[14] = env->regs[15] + offset;
7632 env->regs[15] = addr;
7633 }
7634
7635 /* Handle exception entry to a target EL which is using AArch64 */
7636 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7637 {
7638 ARMCPU *cpu = ARM_CPU(cs);
7639 CPUARMState *env = &cpu->env;
7640 unsigned int new_el = env->exception.target_el;
7641 target_ulong addr = env->cp15.vbar_el[new_el];
7642 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7643
7644 if (arm_current_el(env) < new_el) {
7645 /* Entry vector offset depends on whether the implemented EL
7646 * immediately lower than the target level is using AArch32 or AArch64
7647 */
7648 bool is_aa64;
7649
7650 switch (new_el) {
7651 case 3:
7652 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7653 break;
7654 case 2:
7655 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7656 break;
7657 case 1:
7658 is_aa64 = is_a64(env);
7659 break;
7660 default:
7661 g_assert_not_reached();
7662 }
7663
7664 if (is_aa64) {
7665 addr += 0x400;
7666 } else {
7667 addr += 0x600;
7668 }
7669 } else if (pstate_read(env) & PSTATE_SP) {
7670 addr += 0x200;
7671 }
7672
7673 switch (cs->exception_index) {
7674 case EXCP_PREFETCH_ABORT:
7675 case EXCP_DATA_ABORT:
7676 env->cp15.far_el[new_el] = env->exception.vaddress;
7677 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7678 env->cp15.far_el[new_el]);
7679 /* fall through */
7680 case EXCP_BKPT:
7681 case EXCP_UDEF:
7682 case EXCP_SWI:
7683 case EXCP_HVC:
7684 case EXCP_HYP_TRAP:
7685 case EXCP_SMC:
7686 env->cp15.esr_el[new_el] = env->exception.syndrome;
7687 break;
7688 case EXCP_IRQ:
7689 case EXCP_VIRQ:
7690 addr += 0x80;
7691 break;
7692 case EXCP_FIQ:
7693 case EXCP_VFIQ:
7694 addr += 0x100;
7695 break;
7696 case EXCP_SEMIHOST:
7697 qemu_log_mask(CPU_LOG_INT,
7698 "...handling as semihosting call 0x%" PRIx64 "\n",
7699 env->xregs[0]);
7700 env->xregs[0] = do_arm_semihosting(env);
7701 return;
7702 default:
7703 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7704 }
7705
7706 if (is_a64(env)) {
7707 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7708 aarch64_save_sp(env, arm_current_el(env));
7709 env->elr_el[new_el] = env->pc;
7710 } else {
7711 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7712 env->elr_el[new_el] = env->regs[15];
7713
7714 aarch64_sync_32_to_64(env);
7715
7716 env->condexec_bits = 0;
7717 }
7718 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7719 env->elr_el[new_el]);
7720
7721 pstate_write(env, PSTATE_DAIF | new_mode);
7722 env->aarch64 = 1;
7723 aarch64_restore_sp(env, new_el);
7724
7725 env->pc = addr;
7726
7727 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7728 new_el, env->pc, pstate_read(env));
7729 }
7730
7731 static inline bool check_for_semihosting(CPUState *cs)
7732 {
7733 /* Check whether this exception is a semihosting call; if so
7734 * then handle it and return true; otherwise return false.
7735 */
7736 ARMCPU *cpu = ARM_CPU(cs);
7737 CPUARMState *env = &cpu->env;
7738
7739 if (is_a64(env)) {
7740 if (cs->exception_index == EXCP_SEMIHOST) {
7741 /* This is always the 64-bit semihosting exception.
7742 * The "is this usermode" and "is semihosting enabled"
7743 * checks have been done at translate time.
7744 */
7745 qemu_log_mask(CPU_LOG_INT,
7746 "...handling as semihosting call 0x%" PRIx64 "\n",
7747 env->xregs[0]);
7748 env->xregs[0] = do_arm_semihosting(env);
7749 return true;
7750 }
7751 return false;
7752 } else {
7753 uint32_t imm;
7754
7755 /* Only intercept calls from privileged modes, to provide some
7756 * semblance of security.
7757 */
7758 if (cs->exception_index != EXCP_SEMIHOST &&
7759 (!semihosting_enabled() ||
7760 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7761 return false;
7762 }
7763
7764 switch (cs->exception_index) {
7765 case EXCP_SEMIHOST:
7766 /* This is always a semihosting call; the "is this usermode"
7767 * and "is semihosting enabled" checks have been done at
7768 * translate time.
7769 */
7770 break;
7771 case EXCP_SWI:
7772 /* Check for semihosting interrupt. */
7773 if (env->thumb) {
7774 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7775 & 0xff;
7776 if (imm == 0xab) {
7777 break;
7778 }
7779 } else {
7780 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7781 & 0xffffff;
7782 if (imm == 0x123456) {
7783 break;
7784 }
7785 }
7786 return false;
7787 case EXCP_BKPT:
7788 /* See if this is a semihosting syscall. */
7789 if (env->thumb) {
7790 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7791 & 0xff;
7792 if (imm == 0xab) {
7793 env->regs[15] += 2;
7794 break;
7795 }
7796 }
7797 return false;
7798 default:
7799 return false;
7800 }
7801
7802 qemu_log_mask(CPU_LOG_INT,
7803 "...handling as semihosting call 0x%x\n",
7804 env->regs[0]);
7805 env->regs[0] = do_arm_semihosting(env);
7806 return true;
7807 }
7808 }
7809
7810 /* Handle a CPU exception for A and R profile CPUs.
7811 * Do any appropriate logging, handle PSCI calls, and then hand off
7812 * to the AArch64-entry or AArch32-entry function depending on the
7813 * target exception level's register width.
7814 */
7815 void arm_cpu_do_interrupt(CPUState *cs)
7816 {
7817 ARMCPU *cpu = ARM_CPU(cs);
7818 CPUARMState *env = &cpu->env;
7819 unsigned int new_el = env->exception.target_el;
7820
7821 assert(!arm_feature(env, ARM_FEATURE_M));
7822
7823 arm_log_exception(cs->exception_index);
7824 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7825 new_el);
7826 if (qemu_loglevel_mask(CPU_LOG_INT)
7827 && !excp_is_internal(cs->exception_index)) {
7828 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7829 env->exception.syndrome >> ARM_EL_EC_SHIFT,
7830 env->exception.syndrome);
7831 }
7832
7833 if (arm_is_psci_call(cpu, cs->exception_index)) {
7834 arm_handle_psci_call(cpu);
7835 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7836 return;
7837 }
7838
7839 /* Semihosting semantics depend on the register width of the
7840 * code that caused the exception, not the target exception level,
7841 * so must be handled here.
7842 */
7843 if (check_for_semihosting(cs)) {
7844 return;
7845 }
7846
7847 assert(!excp_is_internal(cs->exception_index));
7848 if (arm_el_is_aa64(env, new_el)) {
7849 arm_cpu_do_interrupt_aarch64(cs);
7850 } else {
7851 arm_cpu_do_interrupt_aarch32(cs);
7852 }
7853
7854 /* Hooks may change global state so BQL should be held, also the
7855 * BQL needs to be held for any modification of
7856 * cs->interrupt_request.
7857 */
7858 g_assert(qemu_mutex_iothread_locked());
7859
7860 arm_call_el_change_hook(cpu);
7861
7862 if (!kvm_enabled()) {
7863 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7864 }
7865 }
7866
7867 /* Return the exception level which controls this address translation regime */
7868 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7869 {
7870 switch (mmu_idx) {
7871 case ARMMMUIdx_S2NS:
7872 case ARMMMUIdx_S1E2:
7873 return 2;
7874 case ARMMMUIdx_S1E3:
7875 return 3;
7876 case ARMMMUIdx_S1SE0:
7877 return arm_el_is_aa64(env, 3) ? 1 : 3;
7878 case ARMMMUIdx_S1SE1:
7879 case ARMMMUIdx_S1NSE0:
7880 case ARMMMUIdx_S1NSE1:
7881 case ARMMMUIdx_MPrivNegPri:
7882 case ARMMMUIdx_MUserNegPri:
7883 case ARMMMUIdx_MPriv:
7884 case ARMMMUIdx_MUser:
7885 case ARMMMUIdx_MSPrivNegPri:
7886 case ARMMMUIdx_MSUserNegPri:
7887 case ARMMMUIdx_MSPriv:
7888 case ARMMMUIdx_MSUser:
7889 return 1;
7890 default:
7891 g_assert_not_reached();
7892 }
7893 }
7894
7895 /* Return the SCTLR value which controls this address translation regime */
7896 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7897 {
7898 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7899 }
7900
7901 /* Return true if the specified stage of address translation is disabled */
7902 static inline bool regime_translation_disabled(CPUARMState *env,
7903 ARMMMUIdx mmu_idx)
7904 {
7905 if (arm_feature(env, ARM_FEATURE_M)) {
7906 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7907 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7908 case R_V7M_MPU_CTRL_ENABLE_MASK:
7909 /* Enabled, but not for HardFault and NMI */
7910 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
7911 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7912 /* Enabled for all cases */
7913 return false;
7914 case 0:
7915 default:
7916 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7917 * we warned about that in armv7m_nvic.c when the guest set it.
7918 */
7919 return true;
7920 }
7921 }
7922
7923 if (mmu_idx == ARMMMUIdx_S2NS) {
7924 return (env->cp15.hcr_el2 & HCR_VM) == 0;
7925 }
7926 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7927 }
7928
7929 static inline bool regime_translation_big_endian(CPUARMState *env,
7930 ARMMMUIdx mmu_idx)
7931 {
7932 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7933 }
7934
7935 /* Return the TCR controlling this translation regime */
7936 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7937 {
7938 if (mmu_idx == ARMMMUIdx_S2NS) {
7939 return &env->cp15.vtcr_el2;
7940 }
7941 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7942 }
7943
7944 /* Convert a possible stage1+2 MMU index into the appropriate
7945 * stage 1 MMU index
7946 */
7947 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7948 {
7949 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7950 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7951 }
7952 return mmu_idx;
7953 }
7954
7955 /* Returns TBI0 value for current regime el */
7956 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7957 {
7958 TCR *tcr;
7959 uint32_t el;
7960
7961 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7962 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7963 */
7964 mmu_idx = stage_1_mmu_idx(mmu_idx);
7965
7966 tcr = regime_tcr(env, mmu_idx);
7967 el = regime_el(env, mmu_idx);
7968
7969 if (el > 1) {
7970 return extract64(tcr->raw_tcr, 20, 1);
7971 } else {
7972 return extract64(tcr->raw_tcr, 37, 1);
7973 }
7974 }
7975
7976 /* Returns TBI1 value for current regime el */
7977 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7978 {
7979 TCR *tcr;
7980 uint32_t el;
7981
7982 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7983 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7984 */
7985 mmu_idx = stage_1_mmu_idx(mmu_idx);
7986
7987 tcr = regime_tcr(env, mmu_idx);
7988 el = regime_el(env, mmu_idx);
7989
7990 if (el > 1) {
7991 return 0;
7992 } else {
7993 return extract64(tcr->raw_tcr, 38, 1);
7994 }
7995 }
7996
7997 /* Return the TTBR associated with this translation regime */
7998 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7999 int ttbrn)
8000 {
8001 if (mmu_idx == ARMMMUIdx_S2NS) {
8002 return env->cp15.vttbr_el2;
8003 }
8004 if (ttbrn == 0) {
8005 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8006 } else {
8007 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8008 }
8009 }
8010
8011 /* Return true if the translation regime is using LPAE format page tables */
8012 static inline bool regime_using_lpae_format(CPUARMState *env,
8013 ARMMMUIdx mmu_idx)
8014 {
8015 int el = regime_el(env, mmu_idx);
8016 if (el == 2 || arm_el_is_aa64(env, el)) {
8017 return true;
8018 }
8019 if (arm_feature(env, ARM_FEATURE_LPAE)
8020 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8021 return true;
8022 }
8023 return false;
8024 }
8025
8026 /* Returns true if the stage 1 translation regime is using LPAE format page
8027 * tables. Used when raising alignment exceptions, whose FSR changes depending
8028 * on whether the long or short descriptor format is in use. */
8029 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8030 {
8031 mmu_idx = stage_1_mmu_idx(mmu_idx);
8032
8033 return regime_using_lpae_format(env, mmu_idx);
8034 }
8035
8036 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8037 {
8038 switch (mmu_idx) {
8039 case ARMMMUIdx_S1SE0:
8040 case ARMMMUIdx_S1NSE0:
8041 case ARMMMUIdx_MUser:
8042 case ARMMMUIdx_MSUser:
8043 case ARMMMUIdx_MUserNegPri:
8044 case ARMMMUIdx_MSUserNegPri:
8045 return true;
8046 default:
8047 return false;
8048 case ARMMMUIdx_S12NSE0:
8049 case ARMMMUIdx_S12NSE1:
8050 g_assert_not_reached();
8051 }
8052 }
8053
8054 /* Translate section/page access permissions to page
8055 * R/W protection flags
8056 *
8057 * @env: CPUARMState
8058 * @mmu_idx: MMU index indicating required translation regime
8059 * @ap: The 3-bit access permissions (AP[2:0])
8060 * @domain_prot: The 2-bit domain access permissions
8061 */
8062 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8063 int ap, int domain_prot)
8064 {
8065 bool is_user = regime_is_user(env, mmu_idx);
8066
8067 if (domain_prot == 3) {
8068 return PAGE_READ | PAGE_WRITE;
8069 }
8070
8071 switch (ap) {
8072 case 0:
8073 if (arm_feature(env, ARM_FEATURE_V7)) {
8074 return 0;
8075 }
8076 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8077 case SCTLR_S:
8078 return is_user ? 0 : PAGE_READ;
8079 case SCTLR_R:
8080 return PAGE_READ;
8081 default:
8082 return 0;
8083 }
8084 case 1:
8085 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8086 case 2:
8087 if (is_user) {
8088 return PAGE_READ;
8089 } else {
8090 return PAGE_READ | PAGE_WRITE;
8091 }
8092 case 3:
8093 return PAGE_READ | PAGE_WRITE;
8094 case 4: /* Reserved. */
8095 return 0;
8096 case 5:
8097 return is_user ? 0 : PAGE_READ;
8098 case 6:
8099 return PAGE_READ;
8100 case 7:
8101 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8102 return 0;
8103 }
8104 return PAGE_READ;
8105 default:
8106 g_assert_not_reached();
8107 }
8108 }
8109
8110 /* Translate section/page access permissions to page
8111 * R/W protection flags.
8112 *
8113 * @ap: The 2-bit simple AP (AP[2:1])
8114 * @is_user: TRUE if accessing from PL0
8115 */
8116 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8117 {
8118 switch (ap) {
8119 case 0:
8120 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8121 case 1:
8122 return PAGE_READ | PAGE_WRITE;
8123 case 2:
8124 return is_user ? 0 : PAGE_READ;
8125 case 3:
8126 return PAGE_READ;
8127 default:
8128 g_assert_not_reached();
8129 }
8130 }
8131
8132 static inline int
8133 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8134 {
8135 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8136 }
8137
8138 /* Translate S2 section/page access permissions to protection flags
8139 *
8140 * @env: CPUARMState
8141 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8142 * @xn: XN (execute-never) bit
8143 */
8144 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8145 {
8146 int prot = 0;
8147
8148 if (s2ap & 1) {
8149 prot |= PAGE_READ;
8150 }
8151 if (s2ap & 2) {
8152 prot |= PAGE_WRITE;
8153 }
8154 if (!xn) {
8155 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8156 prot |= PAGE_EXEC;
8157 }
8158 }
8159 return prot;
8160 }
8161
8162 /* Translate section/page access permissions to protection flags
8163 *
8164 * @env: CPUARMState
8165 * @mmu_idx: MMU index indicating required translation regime
8166 * @is_aa64: TRUE if AArch64
8167 * @ap: The 2-bit simple AP (AP[2:1])
8168 * @ns: NS (non-secure) bit
8169 * @xn: XN (execute-never) bit
8170 * @pxn: PXN (privileged execute-never) bit
8171 */
8172 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8173 int ap, int ns, int xn, int pxn)
8174 {
8175 bool is_user = regime_is_user(env, mmu_idx);
8176 int prot_rw, user_rw;
8177 bool have_wxn;
8178 int wxn = 0;
8179
8180 assert(mmu_idx != ARMMMUIdx_S2NS);
8181
8182 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8183 if (is_user) {
8184 prot_rw = user_rw;
8185 } else {
8186 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8187 }
8188
8189 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8190 return prot_rw;
8191 }
8192
8193 /* TODO have_wxn should be replaced with
8194 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8195 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8196 * compatible processors have EL2, which is required for [U]WXN.
8197 */
8198 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8199
8200 if (have_wxn) {
8201 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8202 }
8203
8204 if (is_aa64) {
8205 switch (regime_el(env, mmu_idx)) {
8206 case 1:
8207 if (!is_user) {
8208 xn = pxn || (user_rw & PAGE_WRITE);
8209 }
8210 break;
8211 case 2:
8212 case 3:
8213 break;
8214 }
8215 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8216 switch (regime_el(env, mmu_idx)) {
8217 case 1:
8218 case 3:
8219 if (is_user) {
8220 xn = xn || !(user_rw & PAGE_READ);
8221 } else {
8222 int uwxn = 0;
8223 if (have_wxn) {
8224 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8225 }
8226 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8227 (uwxn && (user_rw & PAGE_WRITE));
8228 }
8229 break;
8230 case 2:
8231 break;
8232 }
8233 } else {
8234 xn = wxn = 0;
8235 }
8236
8237 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8238 return prot_rw;
8239 }
8240 return prot_rw | PAGE_EXEC;
8241 }
8242
8243 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8244 uint32_t *table, uint32_t address)
8245 {
8246 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8247 TCR *tcr = regime_tcr(env, mmu_idx);
8248
8249 if (address & tcr->mask) {
8250 if (tcr->raw_tcr & TTBCR_PD1) {
8251 /* Translation table walk disabled for TTBR1 */
8252 return false;
8253 }
8254 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8255 } else {
8256 if (tcr->raw_tcr & TTBCR_PD0) {
8257 /* Translation table walk disabled for TTBR0 */
8258 return false;
8259 }
8260 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8261 }
8262 *table |= (address >> 18) & 0x3ffc;
8263 return true;
8264 }
8265
8266 /* Translate a S1 pagetable walk through S2 if needed. */
8267 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8268 hwaddr addr, MemTxAttrs txattrs,
8269 ARMMMUFaultInfo *fi)
8270 {
8271 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8272 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8273 target_ulong s2size;
8274 hwaddr s2pa;
8275 int s2prot;
8276 int ret;
8277
8278 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8279 &txattrs, &s2prot, &s2size, fi, NULL);
8280 if (ret) {
8281 fi->s2addr = addr;
8282 fi->stage2 = true;
8283 fi->s1ptw = true;
8284 return ~0;
8285 }
8286 addr = s2pa;
8287 }
8288 return addr;
8289 }
8290
8291 /* All loads done in the course of a page table walk go through here.
8292 * TODO: rather than ignoring errors from physical memory reads (which
8293 * are external aborts in ARM terminology) we should propagate this
8294 * error out so that we can turn it into a Data Abort if this walk
8295 * was being done for a CPU load/store or an address translation instruction
8296 * (but not if it was for a debug access).
8297 */
8298 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8299 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8300 {
8301 ARMCPU *cpu = ARM_CPU(cs);
8302 CPUARMState *env = &cpu->env;
8303 MemTxAttrs attrs = {};
8304 AddressSpace *as;
8305
8306 attrs.secure = is_secure;
8307 as = arm_addressspace(cs, attrs);
8308 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8309 if (fi->s1ptw) {
8310 return 0;
8311 }
8312 if (regime_translation_big_endian(env, mmu_idx)) {
8313 return address_space_ldl_be(as, addr, attrs, NULL);
8314 } else {
8315 return address_space_ldl_le(as, addr, attrs, NULL);
8316 }
8317 }
8318
8319 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8320 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8321 {
8322 ARMCPU *cpu = ARM_CPU(cs);
8323 CPUARMState *env = &cpu->env;
8324 MemTxAttrs attrs = {};
8325 AddressSpace *as;
8326
8327 attrs.secure = is_secure;
8328 as = arm_addressspace(cs, attrs);
8329 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8330 if (fi->s1ptw) {
8331 return 0;
8332 }
8333 if (regime_translation_big_endian(env, mmu_idx)) {
8334 return address_space_ldq_be(as, addr, attrs, NULL);
8335 } else {
8336 return address_space_ldq_le(as, addr, attrs, NULL);
8337 }
8338 }
8339
8340 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8341 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8342 hwaddr *phys_ptr, int *prot,
8343 target_ulong *page_size,
8344 ARMMMUFaultInfo *fi)
8345 {
8346 CPUState *cs = CPU(arm_env_get_cpu(env));
8347 int level = 1;
8348 uint32_t table;
8349 uint32_t desc;
8350 int type;
8351 int ap;
8352 int domain = 0;
8353 int domain_prot;
8354 hwaddr phys_addr;
8355 uint32_t dacr;
8356
8357 /* Pagetable walk. */
8358 /* Lookup l1 descriptor. */
8359 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8360 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8361 fi->type = ARMFault_Translation;
8362 goto do_fault;
8363 }
8364 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8365 mmu_idx, fi);
8366 type = (desc & 3);
8367 domain = (desc >> 5) & 0x0f;
8368 if (regime_el(env, mmu_idx) == 1) {
8369 dacr = env->cp15.dacr_ns;
8370 } else {
8371 dacr = env->cp15.dacr_s;
8372 }
8373 domain_prot = (dacr >> (domain * 2)) & 3;
8374 if (type == 0) {
8375 /* Section translation fault. */
8376 fi->type = ARMFault_Translation;
8377 goto do_fault;
8378 }
8379 if (type != 2) {
8380 level = 2;
8381 }
8382 if (domain_prot == 0 || domain_prot == 2) {
8383 fi->type = ARMFault_Domain;
8384 goto do_fault;
8385 }
8386 if (type == 2) {
8387 /* 1Mb section. */
8388 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8389 ap = (desc >> 10) & 3;
8390 *page_size = 1024 * 1024;
8391 } else {
8392 /* Lookup l2 entry. */
8393 if (type == 1) {
8394 /* Coarse pagetable. */
8395 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8396 } else {
8397 /* Fine pagetable. */
8398 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8399 }
8400 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8401 mmu_idx, fi);
8402 switch (desc & 3) {
8403 case 0: /* Page translation fault. */
8404 fi->type = ARMFault_Translation;
8405 goto do_fault;
8406 case 1: /* 64k page. */
8407 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8408 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8409 *page_size = 0x10000;
8410 break;
8411 case 2: /* 4k page. */
8412 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8413 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8414 *page_size = 0x1000;
8415 break;
8416 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8417 if (type == 1) {
8418 /* ARMv6/XScale extended small page format */
8419 if (arm_feature(env, ARM_FEATURE_XSCALE)
8420 || arm_feature(env, ARM_FEATURE_V6)) {
8421 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8422 *page_size = 0x1000;
8423 } else {
8424 /* UNPREDICTABLE in ARMv5; we choose to take a
8425 * page translation fault.
8426 */
8427 fi->type = ARMFault_Translation;
8428 goto do_fault;
8429 }
8430 } else {
8431 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8432 *page_size = 0x400;
8433 }
8434 ap = (desc >> 4) & 3;
8435 break;
8436 default:
8437 /* Never happens, but compiler isn't smart enough to tell. */
8438 abort();
8439 }
8440 }
8441 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8442 *prot |= *prot ? PAGE_EXEC : 0;
8443 if (!(*prot & (1 << access_type))) {
8444 /* Access permission fault. */
8445 fi->type = ARMFault_Permission;
8446 goto do_fault;
8447 }
8448 *phys_ptr = phys_addr;
8449 return false;
8450 do_fault:
8451 fi->domain = domain;
8452 fi->level = level;
8453 return true;
8454 }
8455
8456 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8457 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8458 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8459 target_ulong *page_size, ARMMMUFaultInfo *fi)
8460 {
8461 CPUState *cs = CPU(arm_env_get_cpu(env));
8462 int level = 1;
8463 uint32_t table;
8464 uint32_t desc;
8465 uint32_t xn;
8466 uint32_t pxn = 0;
8467 int type;
8468 int ap;
8469 int domain = 0;
8470 int domain_prot;
8471 hwaddr phys_addr;
8472 uint32_t dacr;
8473 bool ns;
8474
8475 /* Pagetable walk. */
8476 /* Lookup l1 descriptor. */
8477 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8478 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8479 fi->type = ARMFault_Translation;
8480 goto do_fault;
8481 }
8482 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8483 mmu_idx, fi);
8484 type = (desc & 3);
8485 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8486 /* Section translation fault, or attempt to use the encoding
8487 * which is Reserved on implementations without PXN.
8488 */
8489 fi->type = ARMFault_Translation;
8490 goto do_fault;
8491 }
8492 if ((type == 1) || !(desc & (1 << 18))) {
8493 /* Page or Section. */
8494 domain = (desc >> 5) & 0x0f;
8495 }
8496 if (regime_el(env, mmu_idx) == 1) {
8497 dacr = env->cp15.dacr_ns;
8498 } else {
8499 dacr = env->cp15.dacr_s;
8500 }
8501 if (type == 1) {
8502 level = 2;
8503 }
8504 domain_prot = (dacr >> (domain * 2)) & 3;
8505 if (domain_prot == 0 || domain_prot == 2) {
8506 /* Section or Page domain fault */
8507 fi->type = ARMFault_Domain;
8508 goto do_fault;
8509 }
8510 if (type != 1) {
8511 if (desc & (1 << 18)) {
8512 /* Supersection. */
8513 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8514 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8515 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8516 *page_size = 0x1000000;
8517 } else {
8518 /* Section. */
8519 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8520 *page_size = 0x100000;
8521 }
8522 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8523 xn = desc & (1 << 4);
8524 pxn = desc & 1;
8525 ns = extract32(desc, 19, 1);
8526 } else {
8527 if (arm_feature(env, ARM_FEATURE_PXN)) {
8528 pxn = (desc >> 2) & 1;
8529 }
8530 ns = extract32(desc, 3, 1);
8531 /* Lookup l2 entry. */
8532 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8533 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8534 mmu_idx, fi);
8535 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8536 switch (desc & 3) {
8537 case 0: /* Page translation fault. */
8538 fi->type = ARMFault_Translation;
8539 goto do_fault;
8540 case 1: /* 64k page. */
8541 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8542 xn = desc & (1 << 15);
8543 *page_size = 0x10000;
8544 break;
8545 case 2: case 3: /* 4k page. */
8546 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8547 xn = desc & 1;
8548 *page_size = 0x1000;
8549 break;
8550 default:
8551 /* Never happens, but compiler isn't smart enough to tell. */
8552 abort();
8553 }
8554 }
8555 if (domain_prot == 3) {
8556 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8557 } else {
8558 if (pxn && !regime_is_user(env, mmu_idx)) {
8559 xn = 1;
8560 }
8561 if (xn && access_type == MMU_INST_FETCH) {
8562 fi->type = ARMFault_Permission;
8563 goto do_fault;
8564 }
8565
8566 if (arm_feature(env, ARM_FEATURE_V6K) &&
8567 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8568 /* The simplified model uses AP[0] as an access control bit. */
8569 if ((ap & 1) == 0) {
8570 /* Access flag fault. */
8571 fi->type = ARMFault_AccessFlag;
8572 goto do_fault;
8573 }
8574 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8575 } else {
8576 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8577 }
8578 if (*prot && !xn) {
8579 *prot |= PAGE_EXEC;
8580 }
8581 if (!(*prot & (1 << access_type))) {
8582 /* Access permission fault. */
8583 fi->type = ARMFault_Permission;
8584 goto do_fault;
8585 }
8586 }
8587 if (ns) {
8588 /* The NS bit will (as required by the architecture) have no effect if
8589 * the CPU doesn't support TZ or this is a non-secure translation
8590 * regime, because the attribute will already be non-secure.
8591 */
8592 attrs->secure = false;
8593 }
8594 *phys_ptr = phys_addr;
8595 return false;
8596 do_fault:
8597 fi->domain = domain;
8598 fi->level = level;
8599 return true;
8600 }
8601
8602 /*
8603 * check_s2_mmu_setup
8604 * @cpu: ARMCPU
8605 * @is_aa64: True if the translation regime is in AArch64 state
8606 * @startlevel: Suggested starting level
8607 * @inputsize: Bitsize of IPAs
8608 * @stride: Page-table stride (See the ARM ARM)
8609 *
8610 * Returns true if the suggested S2 translation parameters are OK and
8611 * false otherwise.
8612 */
8613 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8614 int inputsize, int stride)
8615 {
8616 const int grainsize = stride + 3;
8617 int startsizecheck;
8618
8619 /* Negative levels are never allowed. */
8620 if (level < 0) {
8621 return false;
8622 }
8623
8624 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8625 if (startsizecheck < 1 || startsizecheck > stride + 4) {
8626 return false;
8627 }
8628
8629 if (is_aa64) {
8630 CPUARMState *env = &cpu->env;
8631 unsigned int pamax = arm_pamax(cpu);
8632
8633 switch (stride) {
8634 case 13: /* 64KB Pages. */
8635 if (level == 0 || (level == 1 && pamax <= 42)) {
8636 return false;
8637 }
8638 break;
8639 case 11: /* 16KB Pages. */
8640 if (level == 0 || (level == 1 && pamax <= 40)) {
8641 return false;
8642 }
8643 break;
8644 case 9: /* 4KB Pages. */
8645 if (level == 0 && pamax <= 42) {
8646 return false;
8647 }
8648 break;
8649 default:
8650 g_assert_not_reached();
8651 }
8652
8653 /* Inputsize checks. */
8654 if (inputsize > pamax &&
8655 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8656 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
8657 return false;
8658 }
8659 } else {
8660 /* AArch32 only supports 4KB pages. Assert on that. */
8661 assert(stride == 9);
8662
8663 if (level == 0) {
8664 return false;
8665 }
8666 }
8667 return true;
8668 }
8669
8670 /* Translate from the 4-bit stage 2 representation of
8671 * memory attributes (without cache-allocation hints) to
8672 * the 8-bit representation of the stage 1 MAIR registers
8673 * (which includes allocation hints).
8674 *
8675 * ref: shared/translation/attrs/S2AttrDecode()
8676 * .../S2ConvertAttrsHints()
8677 */
8678 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8679 {
8680 uint8_t hiattr = extract32(s2attrs, 2, 2);
8681 uint8_t loattr = extract32(s2attrs, 0, 2);
8682 uint8_t hihint = 0, lohint = 0;
8683
8684 if (hiattr != 0) { /* normal memory */
8685 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8686 hiattr = loattr = 1; /* non-cacheable */
8687 } else {
8688 if (hiattr != 1) { /* Write-through or write-back */
8689 hihint = 3; /* RW allocate */
8690 }
8691 if (loattr != 1) { /* Write-through or write-back */
8692 lohint = 3; /* RW allocate */
8693 }
8694 }
8695 }
8696
8697 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8698 }
8699
8700 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8701 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8702 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8703 target_ulong *page_size_ptr,
8704 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
8705 {
8706 ARMCPU *cpu = arm_env_get_cpu(env);
8707 CPUState *cs = CPU(cpu);
8708 /* Read an LPAE long-descriptor translation table. */
8709 ARMFaultType fault_type = ARMFault_Translation;
8710 uint32_t level;
8711 uint32_t epd = 0;
8712 int32_t t0sz, t1sz;
8713 uint32_t tg;
8714 uint64_t ttbr;
8715 int ttbr_select;
8716 hwaddr descaddr, indexmask, indexmask_grainsize;
8717 uint32_t tableattrs;
8718 target_ulong page_size;
8719 uint32_t attrs;
8720 int32_t stride = 9;
8721 int32_t addrsize;
8722 int inputsize;
8723 int32_t tbi = 0;
8724 TCR *tcr = regime_tcr(env, mmu_idx);
8725 int ap, ns, xn, pxn;
8726 uint32_t el = regime_el(env, mmu_idx);
8727 bool ttbr1_valid = true;
8728 uint64_t descaddrmask;
8729 bool aarch64 = arm_el_is_aa64(env, el);
8730
8731 /* TODO:
8732 * This code does not handle the different format TCR for VTCR_EL2.
8733 * This code also does not support shareability levels.
8734 * Attribute and permission bit handling should also be checked when adding
8735 * support for those page table walks.
8736 */
8737 if (aarch64) {
8738 level = 0;
8739 addrsize = 64;
8740 if (el > 1) {
8741 if (mmu_idx != ARMMMUIdx_S2NS) {
8742 tbi = extract64(tcr->raw_tcr, 20, 1);
8743 }
8744 } else {
8745 if (extract64(address, 55, 1)) {
8746 tbi = extract64(tcr->raw_tcr, 38, 1);
8747 } else {
8748 tbi = extract64(tcr->raw_tcr, 37, 1);
8749 }
8750 }
8751 tbi *= 8;
8752
8753 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8754 * invalid.
8755 */
8756 if (el > 1) {
8757 ttbr1_valid = false;
8758 }
8759 } else {
8760 level = 1;
8761 addrsize = 32;
8762 /* There is no TTBR1 for EL2 */
8763 if (el == 2) {
8764 ttbr1_valid = false;
8765 }
8766 }
8767
8768 /* Determine whether this address is in the region controlled by
8769 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8770 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8771 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8772 */
8773 if (aarch64) {
8774 /* AArch64 translation. */
8775 t0sz = extract32(tcr->raw_tcr, 0, 6);
8776 t0sz = MIN(t0sz, 39);
8777 t0sz = MAX(t0sz, 16);
8778 } else if (mmu_idx != ARMMMUIdx_S2NS) {
8779 /* AArch32 stage 1 translation. */
8780 t0sz = extract32(tcr->raw_tcr, 0, 3);
8781 } else {
8782 /* AArch32 stage 2 translation. */
8783 bool sext = extract32(tcr->raw_tcr, 4, 1);
8784 bool sign = extract32(tcr->raw_tcr, 3, 1);
8785 /* Address size is 40-bit for a stage 2 translation,
8786 * and t0sz can be negative (from -8 to 7),
8787 * so we need to adjust it to use the TTBR selecting logic below.
8788 */
8789 addrsize = 40;
8790 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8791
8792 /* If the sign-extend bit is not the same as t0sz[3], the result
8793 * is unpredictable. Flag this as a guest error. */
8794 if (sign != sext) {
8795 qemu_log_mask(LOG_GUEST_ERROR,
8796 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8797 }
8798 }
8799 t1sz = extract32(tcr->raw_tcr, 16, 6);
8800 if (aarch64) {
8801 t1sz = MIN(t1sz, 39);
8802 t1sz = MAX(t1sz, 16);
8803 }
8804 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8805 /* there is a ttbr0 region and we are in it (high bits all zero) */
8806 ttbr_select = 0;
8807 } else if (ttbr1_valid && t1sz &&
8808 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8809 /* there is a ttbr1 region and we are in it (high bits all one) */
8810 ttbr_select = 1;
8811 } else if (!t0sz) {
8812 /* ttbr0 region is "everything not in the ttbr1 region" */
8813 ttbr_select = 0;
8814 } else if (!t1sz && ttbr1_valid) {
8815 /* ttbr1 region is "everything not in the ttbr0 region" */
8816 ttbr_select = 1;
8817 } else {
8818 /* in the gap between the two regions, this is a Translation fault */
8819 fault_type = ARMFault_Translation;
8820 goto do_fault;
8821 }
8822
8823 /* Note that QEMU ignores shareability and cacheability attributes,
8824 * so we don't need to do anything with the SH, ORGN, IRGN fields
8825 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
8826 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8827 * implement any ASID-like capability so we can ignore it (instead
8828 * we will always flush the TLB any time the ASID is changed).
8829 */
8830 if (ttbr_select == 0) {
8831 ttbr = regime_ttbr(env, mmu_idx, 0);
8832 if (el < 2) {
8833 epd = extract32(tcr->raw_tcr, 7, 1);
8834 }
8835 inputsize = addrsize - t0sz;
8836
8837 tg = extract32(tcr->raw_tcr, 14, 2);
8838 if (tg == 1) { /* 64KB pages */
8839 stride = 13;
8840 }
8841 if (tg == 2) { /* 16KB pages */
8842 stride = 11;
8843 }
8844 } else {
8845 /* We should only be here if TTBR1 is valid */
8846 assert(ttbr1_valid);
8847
8848 ttbr = regime_ttbr(env, mmu_idx, 1);
8849 epd = extract32(tcr->raw_tcr, 23, 1);
8850 inputsize = addrsize - t1sz;
8851
8852 tg = extract32(tcr->raw_tcr, 30, 2);
8853 if (tg == 3) { /* 64KB pages */
8854 stride = 13;
8855 }
8856 if (tg == 1) { /* 16KB pages */
8857 stride = 11;
8858 }
8859 }
8860
8861 /* Here we should have set up all the parameters for the translation:
8862 * inputsize, ttbr, epd, stride, tbi
8863 */
8864
8865 if (epd) {
8866 /* Translation table walk disabled => Translation fault on TLB miss
8867 * Note: This is always 0 on 64-bit EL2 and EL3.
8868 */
8869 goto do_fault;
8870 }
8871
8872 if (mmu_idx != ARMMMUIdx_S2NS) {
8873 /* The starting level depends on the virtual address size (which can
8874 * be up to 48 bits) and the translation granule size. It indicates
8875 * the number of strides (stride bits at a time) needed to
8876 * consume the bits of the input address. In the pseudocode this is:
8877 * level = 4 - RoundUp((inputsize - grainsize) / stride)
8878 * where their 'inputsize' is our 'inputsize', 'grainsize' is
8879 * our 'stride + 3' and 'stride' is our 'stride'.
8880 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8881 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8882 * = 4 - (inputsize - 4) / stride;
8883 */
8884 level = 4 - (inputsize - 4) / stride;
8885 } else {
8886 /* For stage 2 translations the starting level is specified by the
8887 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8888 */
8889 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8890 uint32_t startlevel;
8891 bool ok;
8892
8893 if (!aarch64 || stride == 9) {
8894 /* AArch32 or 4KB pages */
8895 startlevel = 2 - sl0;
8896 } else {
8897 /* 16KB or 64KB pages */
8898 startlevel = 3 - sl0;
8899 }
8900
8901 /* Check that the starting level is valid. */
8902 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8903 inputsize, stride);
8904 if (!ok) {
8905 fault_type = ARMFault_Translation;
8906 goto do_fault;
8907 }
8908 level = startlevel;
8909 }
8910
8911 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8912 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8913
8914 /* Now we can extract the actual base address from the TTBR */
8915 descaddr = extract64(ttbr, 0, 48);
8916 descaddr &= ~indexmask;
8917
8918 /* The address field in the descriptor goes up to bit 39 for ARMv7
8919 * but up to bit 47 for ARMv8, but we use the descaddrmask
8920 * up to bit 39 for AArch32, because we don't need other bits in that case
8921 * to construct next descriptor address (anyway they should be all zeroes).
8922 */
8923 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8924 ~indexmask_grainsize;
8925
8926 /* Secure accesses start with the page table in secure memory and
8927 * can be downgraded to non-secure at any step. Non-secure accesses
8928 * remain non-secure. We implement this by just ORing in the NSTable/NS
8929 * bits at each step.
8930 */
8931 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8932 for (;;) {
8933 uint64_t descriptor;
8934 bool nstable;
8935
8936 descaddr |= (address >> (stride * (4 - level))) & indexmask;
8937 descaddr &= ~7ULL;
8938 nstable = extract32(tableattrs, 4, 1);
8939 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
8940 if (fi->s1ptw) {
8941 goto do_fault;
8942 }
8943
8944 if (!(descriptor & 1) ||
8945 (!(descriptor & 2) && (level == 3))) {
8946 /* Invalid, or the Reserved level 3 encoding */
8947 goto do_fault;
8948 }
8949 descaddr = descriptor & descaddrmask;
8950
8951 if ((descriptor & 2) && (level < 3)) {
8952 /* Table entry. The top five bits are attributes which may
8953 * propagate down through lower levels of the table (and
8954 * which are all arranged so that 0 means "no effect", so
8955 * we can gather them up by ORing in the bits at each level).
8956 */
8957 tableattrs |= extract64(descriptor, 59, 5);
8958 level++;
8959 indexmask = indexmask_grainsize;
8960 continue;
8961 }
8962 /* Block entry at level 1 or 2, or page entry at level 3.
8963 * These are basically the same thing, although the number
8964 * of bits we pull in from the vaddr varies.
8965 */
8966 page_size = (1ULL << ((stride * (4 - level)) + 3));
8967 descaddr |= (address & (page_size - 1));
8968 /* Extract attributes from the descriptor */
8969 attrs = extract64(descriptor, 2, 10)
8970 | (extract64(descriptor, 52, 12) << 10);
8971
8972 if (mmu_idx == ARMMMUIdx_S2NS) {
8973 /* Stage 2 table descriptors do not include any attribute fields */
8974 break;
8975 }
8976 /* Merge in attributes from table descriptors */
8977 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8978 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8979 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8980 * means "force PL1 access only", which means forcing AP[1] to 0.
8981 */
8982 if (extract32(tableattrs, 2, 1)) {
8983 attrs &= ~(1 << 4);
8984 }
8985 attrs |= nstable << 3; /* NS */
8986 break;
8987 }
8988 /* Here descaddr is the final physical address, and attributes
8989 * are all in attrs.
8990 */
8991 fault_type = ARMFault_AccessFlag;
8992 if ((attrs & (1 << 8)) == 0) {
8993 /* Access flag */
8994 goto do_fault;
8995 }
8996
8997 ap = extract32(attrs, 4, 2);
8998 xn = extract32(attrs, 12, 1);
8999
9000 if (mmu_idx == ARMMMUIdx_S2NS) {
9001 ns = true;
9002 *prot = get_S2prot(env, ap, xn);
9003 } else {
9004 ns = extract32(attrs, 3, 1);
9005 pxn = extract32(attrs, 11, 1);
9006 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9007 }
9008
9009 fault_type = ARMFault_Permission;
9010 if (!(*prot & (1 << access_type))) {
9011 goto do_fault;
9012 }
9013
9014 if (ns) {
9015 /* The NS bit will (as required by the architecture) have no effect if
9016 * the CPU doesn't support TZ or this is a non-secure translation
9017 * regime, because the attribute will already be non-secure.
9018 */
9019 txattrs->secure = false;
9020 }
9021
9022 if (cacheattrs != NULL) {
9023 if (mmu_idx == ARMMMUIdx_S2NS) {
9024 cacheattrs->attrs = convert_stage2_attrs(env,
9025 extract32(attrs, 0, 4));
9026 } else {
9027 /* Index into MAIR registers for cache attributes */
9028 uint8_t attrindx = extract32(attrs, 0, 3);
9029 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9030 assert(attrindx <= 7);
9031 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9032 }
9033 cacheattrs->shareability = extract32(attrs, 6, 2);
9034 }
9035
9036 *phys_ptr = descaddr;
9037 *page_size_ptr = page_size;
9038 return false;
9039
9040 do_fault:
9041 fi->type = fault_type;
9042 fi->level = level;
9043 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9044 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9045 return true;
9046 }
9047
9048 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9049 ARMMMUIdx mmu_idx,
9050 int32_t address, int *prot)
9051 {
9052 if (!arm_feature(env, ARM_FEATURE_M)) {
9053 *prot = PAGE_READ | PAGE_WRITE;
9054 switch (address) {
9055 case 0xF0000000 ... 0xFFFFFFFF:
9056 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9057 /* hivecs execing is ok */
9058 *prot |= PAGE_EXEC;
9059 }
9060 break;
9061 case 0x00000000 ... 0x7FFFFFFF:
9062 *prot |= PAGE_EXEC;
9063 break;
9064 }
9065 } else {
9066 /* Default system address map for M profile cores.
9067 * The architecture specifies which regions are execute-never;
9068 * at the MPU level no other checks are defined.
9069 */
9070 switch (address) {
9071 case 0x00000000 ... 0x1fffffff: /* ROM */
9072 case 0x20000000 ... 0x3fffffff: /* SRAM */
9073 case 0x60000000 ... 0x7fffffff: /* RAM */
9074 case 0x80000000 ... 0x9fffffff: /* RAM */
9075 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9076 break;
9077 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9078 case 0xa0000000 ... 0xbfffffff: /* Device */
9079 case 0xc0000000 ... 0xdfffffff: /* Device */
9080 case 0xe0000000 ... 0xffffffff: /* System */
9081 *prot = PAGE_READ | PAGE_WRITE;
9082 break;
9083 default:
9084 g_assert_not_reached();
9085 }
9086 }
9087 }
9088
9089 static bool pmsav7_use_background_region(ARMCPU *cpu,
9090 ARMMMUIdx mmu_idx, bool is_user)
9091 {
9092 /* Return true if we should use the default memory map as a
9093 * "background" region if there are no hits against any MPU regions.
9094 */
9095 CPUARMState *env = &cpu->env;
9096
9097 if (is_user) {
9098 return false;
9099 }
9100
9101 if (arm_feature(env, ARM_FEATURE_M)) {
9102 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9103 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9104 } else {
9105 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9106 }
9107 }
9108
9109 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9110 {
9111 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9112 return arm_feature(env, ARM_FEATURE_M) &&
9113 extract32(address, 20, 12) == 0xe00;
9114 }
9115
9116 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9117 {
9118 /* True if address is in the M profile system region
9119 * 0xe0000000 - 0xffffffff
9120 */
9121 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9122 }
9123
9124 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9125 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9126 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9127 {
9128 ARMCPU *cpu = arm_env_get_cpu(env);
9129 int n;
9130 bool is_user = regime_is_user(env, mmu_idx);
9131
9132 *phys_ptr = address;
9133 *prot = 0;
9134
9135 if (regime_translation_disabled(env, mmu_idx) ||
9136 m_is_ppb_region(env, address)) {
9137 /* MPU disabled or M profile PPB access: use default memory map.
9138 * The other case which uses the default memory map in the
9139 * v7M ARM ARM pseudocode is exception vector reads from the vector
9140 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9141 * which always does a direct read using address_space_ldl(), rather
9142 * than going via this function, so we don't need to check that here.
9143 */
9144 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9145 } else { /* MPU enabled */
9146 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9147 /* region search */
9148 uint32_t base = env->pmsav7.drbar[n];
9149 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9150 uint32_t rmask;
9151 bool srdis = false;
9152
9153 if (!(env->pmsav7.drsr[n] & 0x1)) {
9154 continue;
9155 }
9156
9157 if (!rsize) {
9158 qemu_log_mask(LOG_GUEST_ERROR,
9159 "DRSR[%d]: Rsize field cannot be 0\n", n);
9160 continue;
9161 }
9162 rsize++;
9163 rmask = (1ull << rsize) - 1;
9164
9165 if (base & rmask) {
9166 qemu_log_mask(LOG_GUEST_ERROR,
9167 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9168 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9169 n, base, rmask);
9170 continue;
9171 }
9172
9173 if (address < base || address > base + rmask) {
9174 continue;
9175 }
9176
9177 /* Region matched */
9178
9179 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9180 int i, snd;
9181 uint32_t srdis_mask;
9182
9183 rsize -= 3; /* sub region size (power of 2) */
9184 snd = ((address - base) >> rsize) & 0x7;
9185 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9186
9187 srdis_mask = srdis ? 0x3 : 0x0;
9188 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9189 /* This will check in groups of 2, 4 and then 8, whether
9190 * the subregion bits are consistent. rsize is incremented
9191 * back up to give the region size, considering consistent
9192 * adjacent subregions as one region. Stop testing if rsize
9193 * is already big enough for an entire QEMU page.
9194 */
9195 int snd_rounded = snd & ~(i - 1);
9196 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9197 snd_rounded + 8, i);
9198 if (srdis_mask ^ srdis_multi) {
9199 break;
9200 }
9201 srdis_mask = (srdis_mask << i) | srdis_mask;
9202 rsize++;
9203 }
9204 }
9205 if (rsize < TARGET_PAGE_BITS) {
9206 qemu_log_mask(LOG_UNIMP,
9207 "DRSR[%d]: No support for MPU (sub)region "
9208 "alignment of %" PRIu32 " bits. Minimum is %d\n",
9209 n, rsize, TARGET_PAGE_BITS);
9210 continue;
9211 }
9212 if (srdis) {
9213 continue;
9214 }
9215 break;
9216 }
9217
9218 if (n == -1) { /* no hits */
9219 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9220 /* background fault */
9221 *fsr = 0;
9222 return true;
9223 }
9224 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9225 } else { /* a MPU hit! */
9226 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9227 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9228
9229 if (m_is_system_region(env, address)) {
9230 /* System space is always execute never */
9231 xn = 1;
9232 }
9233
9234 if (is_user) { /* User mode AP bit decoding */
9235 switch (ap) {
9236 case 0:
9237 case 1:
9238 case 5:
9239 break; /* no access */
9240 case 3:
9241 *prot |= PAGE_WRITE;
9242 /* fall through */
9243 case 2:
9244 case 6:
9245 *prot |= PAGE_READ | PAGE_EXEC;
9246 break;
9247 default:
9248 qemu_log_mask(LOG_GUEST_ERROR,
9249 "DRACR[%d]: Bad value for AP bits: 0x%"
9250 PRIx32 "\n", n, ap);
9251 }
9252 } else { /* Priv. mode AP bits decoding */
9253 switch (ap) {
9254 case 0:
9255 break; /* no access */
9256 case 1:
9257 case 2:
9258 case 3:
9259 *prot |= PAGE_WRITE;
9260 /* fall through */
9261 case 5:
9262 case 6:
9263 *prot |= PAGE_READ | PAGE_EXEC;
9264 break;
9265 default:
9266 qemu_log_mask(LOG_GUEST_ERROR,
9267 "DRACR[%d]: Bad value for AP bits: 0x%"
9268 PRIx32 "\n", n, ap);
9269 }
9270 }
9271
9272 /* execute never */
9273 if (xn) {
9274 *prot &= ~PAGE_EXEC;
9275 }
9276 }
9277 }
9278
9279 *fsr = 0x00d; /* Permission fault */
9280 return !(*prot & (1 << access_type));
9281 }
9282
9283 static bool v8m_is_sau_exempt(CPUARMState *env,
9284 uint32_t address, MMUAccessType access_type)
9285 {
9286 /* The architecture specifies that certain address ranges are
9287 * exempt from v8M SAU/IDAU checks.
9288 */
9289 return
9290 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9291 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9292 (address >= 0xe000e000 && address <= 0xe000efff) ||
9293 (address >= 0xe002e000 && address <= 0xe002efff) ||
9294 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9295 (address >= 0xe00ff000 && address <= 0xe00fffff);
9296 }
9297
9298 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9299 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9300 V8M_SAttributes *sattrs)
9301 {
9302 /* Look up the security attributes for this address. Compare the
9303 * pseudocode SecurityCheck() function.
9304 * We assume the caller has zero-initialized *sattrs.
9305 */
9306 ARMCPU *cpu = arm_env_get_cpu(env);
9307 int r;
9308
9309 /* TODO: implement IDAU */
9310
9311 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9312 /* 0xf0000000..0xffffffff is always S for insn fetches */
9313 return;
9314 }
9315
9316 if (v8m_is_sau_exempt(env, address, access_type)) {
9317 sattrs->ns = !regime_is_secure(env, mmu_idx);
9318 return;
9319 }
9320
9321 switch (env->sau.ctrl & 3) {
9322 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9323 break;
9324 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9325 sattrs->ns = true;
9326 break;
9327 default: /* SAU.ENABLE == 1 */
9328 for (r = 0; r < cpu->sau_sregion; r++) {
9329 if (env->sau.rlar[r] & 1) {
9330 uint32_t base = env->sau.rbar[r] & ~0x1f;
9331 uint32_t limit = env->sau.rlar[r] | 0x1f;
9332
9333 if (base <= address && limit >= address) {
9334 if (sattrs->srvalid) {
9335 /* If we hit in more than one region then we must report
9336 * as Secure, not NS-Callable, with no valid region
9337 * number info.
9338 */
9339 sattrs->ns = false;
9340 sattrs->nsc = false;
9341 sattrs->sregion = 0;
9342 sattrs->srvalid = false;
9343 break;
9344 } else {
9345 if (env->sau.rlar[r] & 2) {
9346 sattrs->nsc = true;
9347 } else {
9348 sattrs->ns = true;
9349 }
9350 sattrs->srvalid = true;
9351 sattrs->sregion = r;
9352 }
9353 }
9354 }
9355 }
9356
9357 /* TODO when we support the IDAU then it may override the result here */
9358 break;
9359 }
9360 }
9361
9362 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9363 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9364 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9365 int *prot, uint32_t *fsr, uint32_t *mregion)
9366 {
9367 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9368 * that a full phys-to-virt translation does).
9369 * mregion is (if not NULL) set to the region number which matched,
9370 * or -1 if no region number is returned (MPU off, address did not
9371 * hit a region, address hit in multiple regions).
9372 */
9373 ARMCPU *cpu = arm_env_get_cpu(env);
9374 bool is_user = regime_is_user(env, mmu_idx);
9375 uint32_t secure = regime_is_secure(env, mmu_idx);
9376 int n;
9377 int matchregion = -1;
9378 bool hit = false;
9379
9380 *phys_ptr = address;
9381 *prot = 0;
9382 if (mregion) {
9383 *mregion = -1;
9384 }
9385
9386 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9387 * was an exception vector read from the vector table (which is always
9388 * done using the default system address map), because those accesses
9389 * are done in arm_v7m_load_vector(), which always does a direct
9390 * read using address_space_ldl(), rather than going via this function.
9391 */
9392 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9393 hit = true;
9394 } else if (m_is_ppb_region(env, address)) {
9395 hit = true;
9396 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9397 hit = true;
9398 } else {
9399 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9400 /* region search */
9401 /* Note that the base address is bits [31:5] from the register
9402 * with bits [4:0] all zeroes, but the limit address is bits
9403 * [31:5] from the register with bits [4:0] all ones.
9404 */
9405 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9406 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9407
9408 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9409 /* Region disabled */
9410 continue;
9411 }
9412
9413 if (address < base || address > limit) {
9414 continue;
9415 }
9416
9417 if (hit) {
9418 /* Multiple regions match -- always a failure (unlike
9419 * PMSAv7 where highest-numbered-region wins)
9420 */
9421 *fsr = 0x00d; /* permission fault */
9422 return true;
9423 }
9424
9425 matchregion = n;
9426 hit = true;
9427
9428 if (base & ~TARGET_PAGE_MASK) {
9429 qemu_log_mask(LOG_UNIMP,
9430 "MPU_RBAR[%d]: No support for MPU region base"
9431 "address of 0x%" PRIx32 ". Minimum alignment is "
9432 "%d\n",
9433 n, base, TARGET_PAGE_BITS);
9434 continue;
9435 }
9436 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9437 qemu_log_mask(LOG_UNIMP,
9438 "MPU_RBAR[%d]: No support for MPU region limit"
9439 "address of 0x%" PRIx32 ". Minimum alignment is "
9440 "%d\n",
9441 n, limit, TARGET_PAGE_BITS);
9442 continue;
9443 }
9444 }
9445 }
9446
9447 if (!hit) {
9448 /* background fault */
9449 *fsr = 0;
9450 return true;
9451 }
9452
9453 if (matchregion == -1) {
9454 /* hit using the background region */
9455 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9456 } else {
9457 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9458 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9459
9460 if (m_is_system_region(env, address)) {
9461 /* System space is always execute never */
9462 xn = 1;
9463 }
9464
9465 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9466 if (*prot && !xn) {
9467 *prot |= PAGE_EXEC;
9468 }
9469 /* We don't need to look the attribute up in the MAIR0/MAIR1
9470 * registers because that only tells us about cacheability.
9471 */
9472 if (mregion) {
9473 *mregion = matchregion;
9474 }
9475 }
9476
9477 *fsr = 0x00d; /* Permission fault */
9478 return !(*prot & (1 << access_type));
9479 }
9480
9481
9482 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9483 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9484 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9485 int *prot, uint32_t *fsr)
9486 {
9487 uint32_t secure = regime_is_secure(env, mmu_idx);
9488 V8M_SAttributes sattrs = {};
9489
9490 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9491 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9492 if (access_type == MMU_INST_FETCH) {
9493 /* Instruction fetches always use the MMU bank and the
9494 * transaction attribute determined by the fetch address,
9495 * regardless of CPU state. This is painful for QEMU
9496 * to handle, because it would mean we need to encode
9497 * into the mmu_idx not just the (user, negpri) information
9498 * for the current security state but also that for the
9499 * other security state, which would balloon the number
9500 * of mmu_idx values needed alarmingly.
9501 * Fortunately we can avoid this because it's not actually
9502 * possible to arbitrarily execute code from memory with
9503 * the wrong security attribute: it will always generate
9504 * an exception of some kind or another, apart from the
9505 * special case of an NS CPU executing an SG instruction
9506 * in S&NSC memory. So we always just fail the translation
9507 * here and sort things out in the exception handler
9508 * (including possibly emulating an SG instruction).
9509 */
9510 if (sattrs.ns != !secure) {
9511 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
9512 *phys_ptr = address;
9513 *prot = 0;
9514 return true;
9515 }
9516 } else {
9517 /* For data accesses we always use the MMU bank indicated
9518 * by the current CPU state, but the security attributes
9519 * might downgrade a secure access to nonsecure.
9520 */
9521 if (sattrs.ns) {
9522 txattrs->secure = false;
9523 } else if (!secure) {
9524 /* NS access to S memory must fault.
9525 * Architecturally we should first check whether the
9526 * MPU information for this address indicates that we
9527 * are doing an unaligned access to Device memory, which
9528 * should generate a UsageFault instead. QEMU does not
9529 * currently check for that kind of unaligned access though.
9530 * If we added it we would need to do so as a special case
9531 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9532 */
9533 *fsr = M_FAKE_FSR_SFAULT;
9534 *phys_ptr = address;
9535 *prot = 0;
9536 return true;
9537 }
9538 }
9539 }
9540
9541 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
9542 txattrs, prot, fsr, NULL);
9543 }
9544
9545 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9546 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9547 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9548 {
9549 int n;
9550 uint32_t mask;
9551 uint32_t base;
9552 bool is_user = regime_is_user(env, mmu_idx);
9553
9554 if (regime_translation_disabled(env, mmu_idx)) {
9555 /* MPU disabled. */
9556 *phys_ptr = address;
9557 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9558 return false;
9559 }
9560
9561 *phys_ptr = address;
9562 for (n = 7; n >= 0; n--) {
9563 base = env->cp15.c6_region[n];
9564 if ((base & 1) == 0) {
9565 continue;
9566 }
9567 mask = 1 << ((base >> 1) & 0x1f);
9568 /* Keep this shift separate from the above to avoid an
9569 (undefined) << 32. */
9570 mask = (mask << 1) - 1;
9571 if (((base ^ address) & ~mask) == 0) {
9572 break;
9573 }
9574 }
9575 if (n < 0) {
9576 *fsr = 2;
9577 return true;
9578 }
9579
9580 if (access_type == MMU_INST_FETCH) {
9581 mask = env->cp15.pmsav5_insn_ap;
9582 } else {
9583 mask = env->cp15.pmsav5_data_ap;
9584 }
9585 mask = (mask >> (n * 4)) & 0xf;
9586 switch (mask) {
9587 case 0:
9588 *fsr = 1;
9589 return true;
9590 case 1:
9591 if (is_user) {
9592 *fsr = 1;
9593 return true;
9594 }
9595 *prot = PAGE_READ | PAGE_WRITE;
9596 break;
9597 case 2:
9598 *prot = PAGE_READ;
9599 if (!is_user) {
9600 *prot |= PAGE_WRITE;
9601 }
9602 break;
9603 case 3:
9604 *prot = PAGE_READ | PAGE_WRITE;
9605 break;
9606 case 5:
9607 if (is_user) {
9608 *fsr = 1;
9609 return true;
9610 }
9611 *prot = PAGE_READ;
9612 break;
9613 case 6:
9614 *prot = PAGE_READ;
9615 break;
9616 default:
9617 /* Bad permission. */
9618 *fsr = 1;
9619 return true;
9620 }
9621 *prot |= PAGE_EXEC;
9622 return false;
9623 }
9624
9625 /* Combine either inner or outer cacheability attributes for normal
9626 * memory, according to table D4-42 and pseudocode procedure
9627 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9628 *
9629 * NB: only stage 1 includes allocation hints (RW bits), leading to
9630 * some asymmetry.
9631 */
9632 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9633 {
9634 if (s1 == 4 || s2 == 4) {
9635 /* non-cacheable has precedence */
9636 return 4;
9637 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9638 /* stage 1 write-through takes precedence */
9639 return s1;
9640 } else if (extract32(s2, 2, 2) == 2) {
9641 /* stage 2 write-through takes precedence, but the allocation hint
9642 * is still taken from stage 1
9643 */
9644 return (2 << 2) | extract32(s1, 0, 2);
9645 } else { /* write-back */
9646 return s1;
9647 }
9648 }
9649
9650 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9651 * and CombineS1S2Desc()
9652 *
9653 * @s1: Attributes from stage 1 walk
9654 * @s2: Attributes from stage 2 walk
9655 */
9656 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9657 {
9658 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9659 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9660 ARMCacheAttrs ret;
9661
9662 /* Combine shareability attributes (table D4-43) */
9663 if (s1.shareability == 2 || s2.shareability == 2) {
9664 /* if either are outer-shareable, the result is outer-shareable */
9665 ret.shareability = 2;
9666 } else if (s1.shareability == 3 || s2.shareability == 3) {
9667 /* if either are inner-shareable, the result is inner-shareable */
9668 ret.shareability = 3;
9669 } else {
9670 /* both non-shareable */
9671 ret.shareability = 0;
9672 }
9673
9674 /* Combine memory type and cacheability attributes */
9675 if (s1hi == 0 || s2hi == 0) {
9676 /* Device has precedence over normal */
9677 if (s1lo == 0 || s2lo == 0) {
9678 /* nGnRnE has precedence over anything */
9679 ret.attrs = 0;
9680 } else if (s1lo == 4 || s2lo == 4) {
9681 /* non-Reordering has precedence over Reordering */
9682 ret.attrs = 4; /* nGnRE */
9683 } else if (s1lo == 8 || s2lo == 8) {
9684 /* non-Gathering has precedence over Gathering */
9685 ret.attrs = 8; /* nGRE */
9686 } else {
9687 ret.attrs = 0xc; /* GRE */
9688 }
9689
9690 /* Any location for which the resultant memory type is any
9691 * type of Device memory is always treated as Outer Shareable.
9692 */
9693 ret.shareability = 2;
9694 } else { /* Normal memory */
9695 /* Outer/inner cacheability combine independently */
9696 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9697 | combine_cacheattr_nibble(s1lo, s2lo);
9698
9699 if (ret.attrs == 0x44) {
9700 /* Any location for which the resultant memory type is Normal
9701 * Inner Non-cacheable, Outer Non-cacheable is always treated
9702 * as Outer Shareable.
9703 */
9704 ret.shareability = 2;
9705 }
9706 }
9707
9708 return ret;
9709 }
9710
9711
9712 /* get_phys_addr - get the physical address for this virtual address
9713 *
9714 * Find the physical address corresponding to the given virtual address,
9715 * by doing a translation table walk on MMU based systems or using the
9716 * MPU state on MPU based systems.
9717 *
9718 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9719 * prot and page_size may not be filled in, and the populated fsr value provides
9720 * information on why the translation aborted, in the format of a
9721 * DFSR/IFSR fault register, with the following caveats:
9722 * * we honour the short vs long DFSR format differences.
9723 * * the WnR bit is never set (the caller must do this).
9724 * * for PSMAv5 based systems we don't bother to return a full FSR format
9725 * value.
9726 *
9727 * @env: CPUARMState
9728 * @address: virtual address to get physical address for
9729 * @access_type: 0 for read, 1 for write, 2 for execute
9730 * @mmu_idx: MMU index indicating required translation regime
9731 * @phys_ptr: set to the physical address corresponding to the virtual address
9732 * @attrs: set to the memory transaction attributes to use
9733 * @prot: set to the permissions for the page containing phys_ptr
9734 * @page_size: set to the size of the page containing phys_ptr
9735 * @fsr: set to the DFSR/IFSR value on failure
9736 * @fi: set to fault info if the translation fails
9737 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
9738 */
9739 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9740 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9741 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9742 target_ulong *page_size, uint32_t *fsr,
9743 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9744 {
9745 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9746 /* Call ourselves recursively to do the stage 1 and then stage 2
9747 * translations.
9748 */
9749 if (arm_feature(env, ARM_FEATURE_EL2)) {
9750 hwaddr ipa;
9751 int s2_prot;
9752 int ret;
9753 ARMCacheAttrs cacheattrs2 = {};
9754
9755 ret = get_phys_addr(env, address, access_type,
9756 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9757 prot, page_size, fsr, fi, cacheattrs);
9758
9759 /* If S1 fails or S2 is disabled, return early. */
9760 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9761 *phys_ptr = ipa;
9762 return ret;
9763 }
9764
9765 /* S1 is done. Now do S2 translation. */
9766 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9767 phys_ptr, attrs, &s2_prot,
9768 page_size, fi,
9769 cacheattrs != NULL ? &cacheattrs2 : NULL);
9770 *fsr = arm_fi_to_lfsc(fi);
9771 fi->s2addr = ipa;
9772 /* Combine the S1 and S2 perms. */
9773 *prot &= s2_prot;
9774
9775 /* Combine the S1 and S2 cache attributes, if needed */
9776 if (!ret && cacheattrs != NULL) {
9777 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9778 }
9779
9780 return ret;
9781 } else {
9782 /*
9783 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9784 */
9785 mmu_idx = stage_1_mmu_idx(mmu_idx);
9786 }
9787 }
9788
9789 /* The page table entries may downgrade secure to non-secure, but
9790 * cannot upgrade an non-secure translation regime's attributes
9791 * to secure.
9792 */
9793 attrs->secure = regime_is_secure(env, mmu_idx);
9794 attrs->user = regime_is_user(env, mmu_idx);
9795
9796 /* Fast Context Switch Extension. This doesn't exist at all in v8.
9797 * In v7 and earlier it affects all stage 1 translations.
9798 */
9799 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9800 && !arm_feature(env, ARM_FEATURE_V8)) {
9801 if (regime_el(env, mmu_idx) == 3) {
9802 address += env->cp15.fcseidr_s;
9803 } else {
9804 address += env->cp15.fcseidr_ns;
9805 }
9806 }
9807
9808 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9809 bool ret;
9810 *page_size = TARGET_PAGE_SIZE;
9811
9812 if (arm_feature(env, ARM_FEATURE_V8)) {
9813 /* PMSAv8 */
9814 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9815 phys_ptr, attrs, prot, fsr);
9816 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9817 /* PMSAv7 */
9818 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9819 phys_ptr, prot, fsr);
9820 } else {
9821 /* Pre-v7 MPU */
9822 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9823 phys_ptr, prot, fsr);
9824 }
9825 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9826 " mmu_idx %u -> %s (prot %c%c%c)\n",
9827 access_type == MMU_DATA_LOAD ? "reading" :
9828 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9829 (uint32_t)address, mmu_idx,
9830 ret ? "Miss" : "Hit",
9831 *prot & PAGE_READ ? 'r' : '-',
9832 *prot & PAGE_WRITE ? 'w' : '-',
9833 *prot & PAGE_EXEC ? 'x' : '-');
9834
9835 return ret;
9836 }
9837
9838 /* Definitely a real MMU, not an MPU */
9839
9840 if (regime_translation_disabled(env, mmu_idx)) {
9841 /* MMU disabled. */
9842 *phys_ptr = address;
9843 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9844 *page_size = TARGET_PAGE_SIZE;
9845 return 0;
9846 }
9847
9848 if (regime_using_lpae_format(env, mmu_idx)) {
9849 bool ret = get_phys_addr_lpae(env, address, access_type, mmu_idx,
9850 phys_ptr, attrs, prot, page_size,
9851 fi, cacheattrs);
9852
9853 *fsr = arm_fi_to_lfsc(fi);
9854 return ret;
9855 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9856 bool ret = get_phys_addr_v6(env, address, access_type, mmu_idx,
9857 phys_ptr, attrs, prot, page_size, fi);
9858
9859 *fsr = arm_fi_to_sfsc(fi);
9860 return ret;
9861 } else {
9862 bool ret = get_phys_addr_v5(env, address, access_type, mmu_idx,
9863 phys_ptr, prot, page_size, fi);
9864
9865 *fsr = arm_fi_to_sfsc(fi);
9866 return ret;
9867 }
9868 }
9869
9870 /* Walk the page table and (if the mapping exists) add the page
9871 * to the TLB. Return false on success, or true on failure. Populate
9872 * fsr with ARM DFSR/IFSR fault register format value on failure.
9873 */
9874 bool arm_tlb_fill(CPUState *cs, vaddr address,
9875 MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
9876 ARMMMUFaultInfo *fi)
9877 {
9878 ARMCPU *cpu = ARM_CPU(cs);
9879 CPUARMState *env = &cpu->env;
9880 hwaddr phys_addr;
9881 target_ulong page_size;
9882 int prot;
9883 int ret;
9884 MemTxAttrs attrs = {};
9885
9886 ret = get_phys_addr(env, address, access_type,
9887 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9888 &attrs, &prot, &page_size, fsr, fi, NULL);
9889 if (!ret) {
9890 /* Map a single [sub]page. */
9891 phys_addr &= TARGET_PAGE_MASK;
9892 address &= TARGET_PAGE_MASK;
9893 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9894 prot, mmu_idx, page_size);
9895 return 0;
9896 }
9897
9898 return ret;
9899 }
9900
9901 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9902 MemTxAttrs *attrs)
9903 {
9904 ARMCPU *cpu = ARM_CPU(cs);
9905 CPUARMState *env = &cpu->env;
9906 hwaddr phys_addr;
9907 target_ulong page_size;
9908 int prot;
9909 bool ret;
9910 uint32_t fsr;
9911 ARMMMUFaultInfo fi = {};
9912 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9913
9914 *attrs = (MemTxAttrs) {};
9915
9916 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9917 attrs, &prot, &page_size, &fsr, &fi, NULL);
9918
9919 if (ret) {
9920 return -1;
9921 }
9922 return phys_addr;
9923 }
9924
9925 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9926 {
9927 uint32_t mask;
9928 unsigned el = arm_current_el(env);
9929
9930 /* First handle registers which unprivileged can read */
9931
9932 switch (reg) {
9933 case 0 ... 7: /* xPSR sub-fields */
9934 mask = 0;
9935 if ((reg & 1) && el) {
9936 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9937 }
9938 if (!(reg & 4)) {
9939 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9940 }
9941 /* EPSR reads as zero */
9942 return xpsr_read(env) & mask;
9943 break;
9944 case 20: /* CONTROL */
9945 return env->v7m.control[env->v7m.secure];
9946 case 0x94: /* CONTROL_NS */
9947 /* We have to handle this here because unprivileged Secure code
9948 * can read the NS CONTROL register.
9949 */
9950 if (!env->v7m.secure) {
9951 return 0;
9952 }
9953 return env->v7m.control[M_REG_NS];
9954 }
9955
9956 if (el == 0) {
9957 return 0; /* unprivileged reads others as zero */
9958 }
9959
9960 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9961 switch (reg) {
9962 case 0x88: /* MSP_NS */
9963 if (!env->v7m.secure) {
9964 return 0;
9965 }
9966 return env->v7m.other_ss_msp;
9967 case 0x89: /* PSP_NS */
9968 if (!env->v7m.secure) {
9969 return 0;
9970 }
9971 return env->v7m.other_ss_psp;
9972 case 0x90: /* PRIMASK_NS */
9973 if (!env->v7m.secure) {
9974 return 0;
9975 }
9976 return env->v7m.primask[M_REG_NS];
9977 case 0x91: /* BASEPRI_NS */
9978 if (!env->v7m.secure) {
9979 return 0;
9980 }
9981 return env->v7m.basepri[M_REG_NS];
9982 case 0x93: /* FAULTMASK_NS */
9983 if (!env->v7m.secure) {
9984 return 0;
9985 }
9986 return env->v7m.faultmask[M_REG_NS];
9987 case 0x98: /* SP_NS */
9988 {
9989 /* This gives the non-secure SP selected based on whether we're
9990 * currently in handler mode or not, using the NS CONTROL.SPSEL.
9991 */
9992 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9993
9994 if (!env->v7m.secure) {
9995 return 0;
9996 }
9997 if (!arm_v7m_is_handler_mode(env) && spsel) {
9998 return env->v7m.other_ss_psp;
9999 } else {
10000 return env->v7m.other_ss_msp;
10001 }
10002 }
10003 default:
10004 break;
10005 }
10006 }
10007
10008 switch (reg) {
10009 case 8: /* MSP */
10010 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10011 case 9: /* PSP */
10012 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10013 case 16: /* PRIMASK */
10014 return env->v7m.primask[env->v7m.secure];
10015 case 17: /* BASEPRI */
10016 case 18: /* BASEPRI_MAX */
10017 return env->v7m.basepri[env->v7m.secure];
10018 case 19: /* FAULTMASK */
10019 return env->v7m.faultmask[env->v7m.secure];
10020 default:
10021 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10022 " register %d\n", reg);
10023 return 0;
10024 }
10025 }
10026
10027 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10028 {
10029 /* We're passed bits [11..0] of the instruction; extract
10030 * SYSm and the mask bits.
10031 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10032 * we choose to treat them as if the mask bits were valid.
10033 * NB that the pseudocode 'mask' variable is bits [11..10],
10034 * whereas ours is [11..8].
10035 */
10036 uint32_t mask = extract32(maskreg, 8, 4);
10037 uint32_t reg = extract32(maskreg, 0, 8);
10038
10039 if (arm_current_el(env) == 0 && reg > 7) {
10040 /* only xPSR sub-fields may be written by unprivileged */
10041 return;
10042 }
10043
10044 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10045 switch (reg) {
10046 case 0x88: /* MSP_NS */
10047 if (!env->v7m.secure) {
10048 return;
10049 }
10050 env->v7m.other_ss_msp = val;
10051 return;
10052 case 0x89: /* PSP_NS */
10053 if (!env->v7m.secure) {
10054 return;
10055 }
10056 env->v7m.other_ss_psp = val;
10057 return;
10058 case 0x90: /* PRIMASK_NS */
10059 if (!env->v7m.secure) {
10060 return;
10061 }
10062 env->v7m.primask[M_REG_NS] = val & 1;
10063 return;
10064 case 0x91: /* BASEPRI_NS */
10065 if (!env->v7m.secure) {
10066 return;
10067 }
10068 env->v7m.basepri[M_REG_NS] = val & 0xff;
10069 return;
10070 case 0x93: /* FAULTMASK_NS */
10071 if (!env->v7m.secure) {
10072 return;
10073 }
10074 env->v7m.faultmask[M_REG_NS] = val & 1;
10075 return;
10076 case 0x98: /* SP_NS */
10077 {
10078 /* This gives the non-secure SP selected based on whether we're
10079 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10080 */
10081 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10082
10083 if (!env->v7m.secure) {
10084 return;
10085 }
10086 if (!arm_v7m_is_handler_mode(env) && spsel) {
10087 env->v7m.other_ss_psp = val;
10088 } else {
10089 env->v7m.other_ss_msp = val;
10090 }
10091 return;
10092 }
10093 default:
10094 break;
10095 }
10096 }
10097
10098 switch (reg) {
10099 case 0 ... 7: /* xPSR sub-fields */
10100 /* only APSR is actually writable */
10101 if (!(reg & 4)) {
10102 uint32_t apsrmask = 0;
10103
10104 if (mask & 8) {
10105 apsrmask |= XPSR_NZCV | XPSR_Q;
10106 }
10107 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10108 apsrmask |= XPSR_GE;
10109 }
10110 xpsr_write(env, val, apsrmask);
10111 }
10112 break;
10113 case 8: /* MSP */
10114 if (v7m_using_psp(env)) {
10115 env->v7m.other_sp = val;
10116 } else {
10117 env->regs[13] = val;
10118 }
10119 break;
10120 case 9: /* PSP */
10121 if (v7m_using_psp(env)) {
10122 env->regs[13] = val;
10123 } else {
10124 env->v7m.other_sp = val;
10125 }
10126 break;
10127 case 16: /* PRIMASK */
10128 env->v7m.primask[env->v7m.secure] = val & 1;
10129 break;
10130 case 17: /* BASEPRI */
10131 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10132 break;
10133 case 18: /* BASEPRI_MAX */
10134 val &= 0xff;
10135 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10136 || env->v7m.basepri[env->v7m.secure] == 0)) {
10137 env->v7m.basepri[env->v7m.secure] = val;
10138 }
10139 break;
10140 case 19: /* FAULTMASK */
10141 env->v7m.faultmask[env->v7m.secure] = val & 1;
10142 break;
10143 case 20: /* CONTROL */
10144 /* Writing to the SPSEL bit only has an effect if we are in
10145 * thread mode; other bits can be updated by any privileged code.
10146 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10147 * env->v7m.control, so we only need update the others.
10148 * For v7M, we must just ignore explicit writes to SPSEL in handler
10149 * mode; for v8M the write is permitted but will have no effect.
10150 */
10151 if (arm_feature(env, ARM_FEATURE_V8) ||
10152 !arm_v7m_is_handler_mode(env)) {
10153 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10154 }
10155 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10156 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10157 break;
10158 default:
10159 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10160 " register %d\n", reg);
10161 return;
10162 }
10163 }
10164
10165 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10166 {
10167 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10168 bool forceunpriv = op & 1;
10169 bool alt = op & 2;
10170 V8M_SAttributes sattrs = {};
10171 uint32_t tt_resp;
10172 bool r, rw, nsr, nsrw, mrvalid;
10173 int prot;
10174 MemTxAttrs attrs = {};
10175 hwaddr phys_addr;
10176 uint32_t fsr;
10177 ARMMMUIdx mmu_idx;
10178 uint32_t mregion;
10179 bool targetpriv;
10180 bool targetsec = env->v7m.secure;
10181
10182 /* Work out what the security state and privilege level we're
10183 * interested in is...
10184 */
10185 if (alt) {
10186 targetsec = !targetsec;
10187 }
10188
10189 if (forceunpriv) {
10190 targetpriv = false;
10191 } else {
10192 targetpriv = arm_v7m_is_handler_mode(env) ||
10193 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10194 }
10195
10196 /* ...and then figure out which MMU index this is */
10197 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10198
10199 /* We know that the MPU and SAU don't care about the access type
10200 * for our purposes beyond that we don't want to claim to be
10201 * an insn fetch, so we arbitrarily call this a read.
10202 */
10203
10204 /* MPU region info only available for privileged or if
10205 * inspecting the other MPU state.
10206 */
10207 if (arm_current_el(env) != 0 || alt) {
10208 /* We can ignore the return value as prot is always set */
10209 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10210 &phys_addr, &attrs, &prot, &fsr, &mregion);
10211 if (mregion == -1) {
10212 mrvalid = false;
10213 mregion = 0;
10214 } else {
10215 mrvalid = true;
10216 }
10217 r = prot & PAGE_READ;
10218 rw = prot & PAGE_WRITE;
10219 } else {
10220 r = false;
10221 rw = false;
10222 mrvalid = false;
10223 mregion = 0;
10224 }
10225
10226 if (env->v7m.secure) {
10227 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10228 nsr = sattrs.ns && r;
10229 nsrw = sattrs.ns && rw;
10230 } else {
10231 sattrs.ns = true;
10232 nsr = false;
10233 nsrw = false;
10234 }
10235
10236 tt_resp = (sattrs.iregion << 24) |
10237 (sattrs.irvalid << 23) |
10238 ((!sattrs.ns) << 22) |
10239 (nsrw << 21) |
10240 (nsr << 20) |
10241 (rw << 19) |
10242 (r << 18) |
10243 (sattrs.srvalid << 17) |
10244 (mrvalid << 16) |
10245 (sattrs.sregion << 8) |
10246 mregion;
10247
10248 return tt_resp;
10249 }
10250
10251 #endif
10252
10253 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10254 {
10255 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10256 * Note that we do not implement the (architecturally mandated)
10257 * alignment fault for attempts to use this on Device memory
10258 * (which matches the usual QEMU behaviour of not implementing either
10259 * alignment faults or any memory attribute handling).
10260 */
10261
10262 ARMCPU *cpu = arm_env_get_cpu(env);
10263 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10264 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10265
10266 #ifndef CONFIG_USER_ONLY
10267 {
10268 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10269 * the block size so we might have to do more than one TLB lookup.
10270 * We know that in fact for any v8 CPU the page size is at least 4K
10271 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10272 * 1K as an artefact of legacy v5 subpage support being present in the
10273 * same QEMU executable.
10274 */
10275 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10276 void *hostaddr[maxidx];
10277 int try, i;
10278 unsigned mmu_idx = cpu_mmu_index(env, false);
10279 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10280
10281 for (try = 0; try < 2; try++) {
10282
10283 for (i = 0; i < maxidx; i++) {
10284 hostaddr[i] = tlb_vaddr_to_host(env,
10285 vaddr + TARGET_PAGE_SIZE * i,
10286 1, mmu_idx);
10287 if (!hostaddr[i]) {
10288 break;
10289 }
10290 }
10291 if (i == maxidx) {
10292 /* If it's all in the TLB it's fair game for just writing to;
10293 * we know we don't need to update dirty status, etc.
10294 */
10295 for (i = 0; i < maxidx - 1; i++) {
10296 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10297 }
10298 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10299 return;
10300 }
10301 /* OK, try a store and see if we can populate the tlb. This
10302 * might cause an exception if the memory isn't writable,
10303 * in which case we will longjmp out of here. We must for
10304 * this purpose use the actual register value passed to us
10305 * so that we get the fault address right.
10306 */
10307 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10308 /* Now we can populate the other TLB entries, if any */
10309 for (i = 0; i < maxidx; i++) {
10310 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10311 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10312 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10313 }
10314 }
10315 }
10316
10317 /* Slow path (probably attempt to do this to an I/O device or
10318 * similar, or clearing of a block of code we have translations
10319 * cached for). Just do a series of byte writes as the architecture
10320 * demands. It's not worth trying to use a cpu_physical_memory_map(),
10321 * memset(), unmap() sequence here because:
10322 * + we'd need to account for the blocksize being larger than a page
10323 * + the direct-RAM access case is almost always going to be dealt
10324 * with in the fastpath code above, so there's no speed benefit
10325 * + we would have to deal with the map returning NULL because the
10326 * bounce buffer was in use
10327 */
10328 for (i = 0; i < blocklen; i++) {
10329 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10330 }
10331 }
10332 #else
10333 memset(g2h(vaddr), 0, blocklen);
10334 #endif
10335 }
10336
10337 /* Note that signed overflow is undefined in C. The following routines are
10338 careful to use unsigned types where modulo arithmetic is required.
10339 Failure to do so _will_ break on newer gcc. */
10340
10341 /* Signed saturating arithmetic. */
10342
10343 /* Perform 16-bit signed saturating addition. */
10344 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10345 {
10346 uint16_t res;
10347
10348 res = a + b;
10349 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10350 if (a & 0x8000)
10351 res = 0x8000;
10352 else
10353 res = 0x7fff;
10354 }
10355 return res;
10356 }
10357
10358 /* Perform 8-bit signed saturating addition. */
10359 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10360 {
10361 uint8_t res;
10362
10363 res = a + b;
10364 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10365 if (a & 0x80)
10366 res = 0x80;
10367 else
10368 res = 0x7f;
10369 }
10370 return res;
10371 }
10372
10373 /* Perform 16-bit signed saturating subtraction. */
10374 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10375 {
10376 uint16_t res;
10377
10378 res = a - b;
10379 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10380 if (a & 0x8000)
10381 res = 0x8000;
10382 else
10383 res = 0x7fff;
10384 }
10385 return res;
10386 }
10387
10388 /* Perform 8-bit signed saturating subtraction. */
10389 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10390 {
10391 uint8_t res;
10392
10393 res = a - b;
10394 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10395 if (a & 0x80)
10396 res = 0x80;
10397 else
10398 res = 0x7f;
10399 }
10400 return res;
10401 }
10402
10403 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10404 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10405 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10406 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10407 #define PFX q
10408
10409 #include "op_addsub.h"
10410
10411 /* Unsigned saturating arithmetic. */
10412 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10413 {
10414 uint16_t res;
10415 res = a + b;
10416 if (res < a)
10417 res = 0xffff;
10418 return res;
10419 }
10420
10421 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10422 {
10423 if (a > b)
10424 return a - b;
10425 else
10426 return 0;
10427 }
10428
10429 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10430 {
10431 uint8_t res;
10432 res = a + b;
10433 if (res < a)
10434 res = 0xff;
10435 return res;
10436 }
10437
10438 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10439 {
10440 if (a > b)
10441 return a - b;
10442 else
10443 return 0;
10444 }
10445
10446 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10447 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10448 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10449 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10450 #define PFX uq
10451
10452 #include "op_addsub.h"
10453
10454 /* Signed modulo arithmetic. */
10455 #define SARITH16(a, b, n, op) do { \
10456 int32_t sum; \
10457 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10458 RESULT(sum, n, 16); \
10459 if (sum >= 0) \
10460 ge |= 3 << (n * 2); \
10461 } while(0)
10462
10463 #define SARITH8(a, b, n, op) do { \
10464 int32_t sum; \
10465 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10466 RESULT(sum, n, 8); \
10467 if (sum >= 0) \
10468 ge |= 1 << n; \
10469 } while(0)
10470
10471
10472 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10473 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10474 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10475 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10476 #define PFX s
10477 #define ARITH_GE
10478
10479 #include "op_addsub.h"
10480
10481 /* Unsigned modulo arithmetic. */
10482 #define ADD16(a, b, n) do { \
10483 uint32_t sum; \
10484 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10485 RESULT(sum, n, 16); \
10486 if ((sum >> 16) == 1) \
10487 ge |= 3 << (n * 2); \
10488 } while(0)
10489
10490 #define ADD8(a, b, n) do { \
10491 uint32_t sum; \
10492 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10493 RESULT(sum, n, 8); \
10494 if ((sum >> 8) == 1) \
10495 ge |= 1 << n; \
10496 } while(0)
10497
10498 #define SUB16(a, b, n) do { \
10499 uint32_t sum; \
10500 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10501 RESULT(sum, n, 16); \
10502 if ((sum >> 16) == 0) \
10503 ge |= 3 << (n * 2); \
10504 } while(0)
10505
10506 #define SUB8(a, b, n) do { \
10507 uint32_t sum; \
10508 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10509 RESULT(sum, n, 8); \
10510 if ((sum >> 8) == 0) \
10511 ge |= 1 << n; \
10512 } while(0)
10513
10514 #define PFX u
10515 #define ARITH_GE
10516
10517 #include "op_addsub.h"
10518
10519 /* Halved signed arithmetic. */
10520 #define ADD16(a, b, n) \
10521 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10522 #define SUB16(a, b, n) \
10523 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10524 #define ADD8(a, b, n) \
10525 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10526 #define SUB8(a, b, n) \
10527 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10528 #define PFX sh
10529
10530 #include "op_addsub.h"
10531
10532 /* Halved unsigned arithmetic. */
10533 #define ADD16(a, b, n) \
10534 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10535 #define SUB16(a, b, n) \
10536 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10537 #define ADD8(a, b, n) \
10538 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10539 #define SUB8(a, b, n) \
10540 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10541 #define PFX uh
10542
10543 #include "op_addsub.h"
10544
10545 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10546 {
10547 if (a > b)
10548 return a - b;
10549 else
10550 return b - a;
10551 }
10552
10553 /* Unsigned sum of absolute byte differences. */
10554 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10555 {
10556 uint32_t sum;
10557 sum = do_usad(a, b);
10558 sum += do_usad(a >> 8, b >> 8);
10559 sum += do_usad(a >> 16, b >>16);
10560 sum += do_usad(a >> 24, b >> 24);
10561 return sum;
10562 }
10563
10564 /* For ARMv6 SEL instruction. */
10565 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10566 {
10567 uint32_t mask;
10568
10569 mask = 0;
10570 if (flags & 1)
10571 mask |= 0xff;
10572 if (flags & 2)
10573 mask |= 0xff00;
10574 if (flags & 4)
10575 mask |= 0xff0000;
10576 if (flags & 8)
10577 mask |= 0xff000000;
10578 return (a & mask) | (b & ~mask);
10579 }
10580
10581 /* VFP support. We follow the convention used for VFP instructions:
10582 Single precision routines have a "s" suffix, double precision a
10583 "d" suffix. */
10584
10585 /* Convert host exception flags to vfp form. */
10586 static inline int vfp_exceptbits_from_host(int host_bits)
10587 {
10588 int target_bits = 0;
10589
10590 if (host_bits & float_flag_invalid)
10591 target_bits |= 1;
10592 if (host_bits & float_flag_divbyzero)
10593 target_bits |= 2;
10594 if (host_bits & float_flag_overflow)
10595 target_bits |= 4;
10596 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10597 target_bits |= 8;
10598 if (host_bits & float_flag_inexact)
10599 target_bits |= 0x10;
10600 if (host_bits & float_flag_input_denormal)
10601 target_bits |= 0x80;
10602 return target_bits;
10603 }
10604
10605 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10606 {
10607 int i;
10608 uint32_t fpscr;
10609
10610 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10611 | (env->vfp.vec_len << 16)
10612 | (env->vfp.vec_stride << 20);
10613 i = get_float_exception_flags(&env->vfp.fp_status);
10614 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10615 fpscr |= vfp_exceptbits_from_host(i);
10616 return fpscr;
10617 }
10618
10619 uint32_t vfp_get_fpscr(CPUARMState *env)
10620 {
10621 return HELPER(vfp_get_fpscr)(env);
10622 }
10623
10624 /* Convert vfp exception flags to target form. */
10625 static inline int vfp_exceptbits_to_host(int target_bits)
10626 {
10627 int host_bits = 0;
10628
10629 if (target_bits & 1)
10630 host_bits |= float_flag_invalid;
10631 if (target_bits & 2)
10632 host_bits |= float_flag_divbyzero;
10633 if (target_bits & 4)
10634 host_bits |= float_flag_overflow;
10635 if (target_bits & 8)
10636 host_bits |= float_flag_underflow;
10637 if (target_bits & 0x10)
10638 host_bits |= float_flag_inexact;
10639 if (target_bits & 0x80)
10640 host_bits |= float_flag_input_denormal;
10641 return host_bits;
10642 }
10643
10644 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10645 {
10646 int i;
10647 uint32_t changed;
10648
10649 changed = env->vfp.xregs[ARM_VFP_FPSCR];
10650 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10651 env->vfp.vec_len = (val >> 16) & 7;
10652 env->vfp.vec_stride = (val >> 20) & 3;
10653
10654 changed ^= val;
10655 if (changed & (3 << 22)) {
10656 i = (val >> 22) & 3;
10657 switch (i) {
10658 case FPROUNDING_TIEEVEN:
10659 i = float_round_nearest_even;
10660 break;
10661 case FPROUNDING_POSINF:
10662 i = float_round_up;
10663 break;
10664 case FPROUNDING_NEGINF:
10665 i = float_round_down;
10666 break;
10667 case FPROUNDING_ZERO:
10668 i = float_round_to_zero;
10669 break;
10670 }
10671 set_float_rounding_mode(i, &env->vfp.fp_status);
10672 }
10673 if (changed & (1 << 24)) {
10674 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10675 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10676 }
10677 if (changed & (1 << 25))
10678 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10679
10680 i = vfp_exceptbits_to_host(val);
10681 set_float_exception_flags(i, &env->vfp.fp_status);
10682 set_float_exception_flags(0, &env->vfp.standard_fp_status);
10683 }
10684
10685 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10686 {
10687 HELPER(vfp_set_fpscr)(env, val);
10688 }
10689
10690 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10691
10692 #define VFP_BINOP(name) \
10693 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10694 { \
10695 float_status *fpst = fpstp; \
10696 return float32_ ## name(a, b, fpst); \
10697 } \
10698 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10699 { \
10700 float_status *fpst = fpstp; \
10701 return float64_ ## name(a, b, fpst); \
10702 }
10703 VFP_BINOP(add)
10704 VFP_BINOP(sub)
10705 VFP_BINOP(mul)
10706 VFP_BINOP(div)
10707 VFP_BINOP(min)
10708 VFP_BINOP(max)
10709 VFP_BINOP(minnum)
10710 VFP_BINOP(maxnum)
10711 #undef VFP_BINOP
10712
10713 float32 VFP_HELPER(neg, s)(float32 a)
10714 {
10715 return float32_chs(a);
10716 }
10717
10718 float64 VFP_HELPER(neg, d)(float64 a)
10719 {
10720 return float64_chs(a);
10721 }
10722
10723 float32 VFP_HELPER(abs, s)(float32 a)
10724 {
10725 return float32_abs(a);
10726 }
10727
10728 float64 VFP_HELPER(abs, d)(float64 a)
10729 {
10730 return float64_abs(a);
10731 }
10732
10733 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10734 {
10735 return float32_sqrt(a, &env->vfp.fp_status);
10736 }
10737
10738 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10739 {
10740 return float64_sqrt(a, &env->vfp.fp_status);
10741 }
10742
10743 /* XXX: check quiet/signaling case */
10744 #define DO_VFP_cmp(p, type) \
10745 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
10746 { \
10747 uint32_t flags; \
10748 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10749 case 0: flags = 0x6; break; \
10750 case -1: flags = 0x8; break; \
10751 case 1: flags = 0x2; break; \
10752 default: case 2: flags = 0x3; break; \
10753 } \
10754 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10755 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10756 } \
10757 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10758 { \
10759 uint32_t flags; \
10760 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10761 case 0: flags = 0x6; break; \
10762 case -1: flags = 0x8; break; \
10763 case 1: flags = 0x2; break; \
10764 default: case 2: flags = 0x3; break; \
10765 } \
10766 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10767 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10768 }
10769 DO_VFP_cmp(s, float32)
10770 DO_VFP_cmp(d, float64)
10771 #undef DO_VFP_cmp
10772
10773 /* Integer to float and float to integer conversions */
10774
10775 #define CONV_ITOF(name, fsz, sign) \
10776 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10777 { \
10778 float_status *fpst = fpstp; \
10779 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10780 }
10781
10782 #define CONV_FTOI(name, fsz, sign, round) \
10783 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10784 { \
10785 float_status *fpst = fpstp; \
10786 if (float##fsz##_is_any_nan(x)) { \
10787 float_raise(float_flag_invalid, fpst); \
10788 return 0; \
10789 } \
10790 return float##fsz##_to_##sign##int32##round(x, fpst); \
10791 }
10792
10793 #define FLOAT_CONVS(name, p, fsz, sign) \
10794 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10795 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10796 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10797
10798 FLOAT_CONVS(si, s, 32, )
10799 FLOAT_CONVS(si, d, 64, )
10800 FLOAT_CONVS(ui, s, 32, u)
10801 FLOAT_CONVS(ui, d, 64, u)
10802
10803 #undef CONV_ITOF
10804 #undef CONV_FTOI
10805 #undef FLOAT_CONVS
10806
10807 /* floating point conversion */
10808 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10809 {
10810 float64 r = float32_to_float64(x, &env->vfp.fp_status);
10811 /* ARM requires that S<->D conversion of any kind of NaN generates
10812 * a quiet NaN by forcing the most significant frac bit to 1.
10813 */
10814 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10815 }
10816
10817 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10818 {
10819 float32 r = float64_to_float32(x, &env->vfp.fp_status);
10820 /* ARM requires that S<->D conversion of any kind of NaN generates
10821 * a quiet NaN by forcing the most significant frac bit to 1.
10822 */
10823 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10824 }
10825
10826 /* VFP3 fixed point conversion. */
10827 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10828 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
10829 void *fpstp) \
10830 { \
10831 float_status *fpst = fpstp; \
10832 float##fsz tmp; \
10833 tmp = itype##_to_##float##fsz(x, fpst); \
10834 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10835 }
10836
10837 /* Notice that we want only input-denormal exception flags from the
10838 * scalbn operation: the other possible flags (overflow+inexact if
10839 * we overflow to infinity, output-denormal) aren't correct for the
10840 * complete scale-and-convert operation.
10841 */
10842 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10843 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10844 uint32_t shift, \
10845 void *fpstp) \
10846 { \
10847 float_status *fpst = fpstp; \
10848 int old_exc_flags = get_float_exception_flags(fpst); \
10849 float##fsz tmp; \
10850 if (float##fsz##_is_any_nan(x)) { \
10851 float_raise(float_flag_invalid, fpst); \
10852 return 0; \
10853 } \
10854 tmp = float##fsz##_scalbn(x, shift, fpst); \
10855 old_exc_flags |= get_float_exception_flags(fpst) \
10856 & float_flag_input_denormal; \
10857 set_float_exception_flags(old_exc_flags, fpst); \
10858 return float##fsz##_to_##itype##round(tmp, fpst); \
10859 }
10860
10861 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
10862 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10863 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10864 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10865
10866 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
10867 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10868 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10869
10870 VFP_CONV_FIX(sh, d, 64, 64, int16)
10871 VFP_CONV_FIX(sl, d, 64, 64, int32)
10872 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10873 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10874 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10875 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10876 VFP_CONV_FIX(sh, s, 32, 32, int16)
10877 VFP_CONV_FIX(sl, s, 32, 32, int32)
10878 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10879 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10880 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10881 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10882 #undef VFP_CONV_FIX
10883 #undef VFP_CONV_FIX_FLOAT
10884 #undef VFP_CONV_FLOAT_FIX_ROUND
10885
10886 /* Set the current fp rounding mode and return the old one.
10887 * The argument is a softfloat float_round_ value.
10888 */
10889 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10890 {
10891 float_status *fp_status = &env->vfp.fp_status;
10892
10893 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10894 set_float_rounding_mode(rmode, fp_status);
10895
10896 return prev_rmode;
10897 }
10898
10899 /* Set the current fp rounding mode in the standard fp status and return
10900 * the old one. This is for NEON instructions that need to change the
10901 * rounding mode but wish to use the standard FPSCR values for everything
10902 * else. Always set the rounding mode back to the correct value after
10903 * modifying it.
10904 * The argument is a softfloat float_round_ value.
10905 */
10906 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10907 {
10908 float_status *fp_status = &env->vfp.standard_fp_status;
10909
10910 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10911 set_float_rounding_mode(rmode, fp_status);
10912
10913 return prev_rmode;
10914 }
10915
10916 /* Half precision conversions. */
10917 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10918 {
10919 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10920 float32 r = float16_to_float32(make_float16(a), ieee, s);
10921 if (ieee) {
10922 return float32_maybe_silence_nan(r, s);
10923 }
10924 return r;
10925 }
10926
10927 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10928 {
10929 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10930 float16 r = float32_to_float16(a, ieee, s);
10931 if (ieee) {
10932 r = float16_maybe_silence_nan(r, s);
10933 }
10934 return float16_val(r);
10935 }
10936
10937 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10938 {
10939 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10940 }
10941
10942 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10943 {
10944 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10945 }
10946
10947 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10948 {
10949 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10950 }
10951
10952 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10953 {
10954 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10955 }
10956
10957 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10958 {
10959 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10960 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10961 if (ieee) {
10962 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10963 }
10964 return r;
10965 }
10966
10967 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10968 {
10969 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10970 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10971 if (ieee) {
10972 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
10973 }
10974 return float16_val(r);
10975 }
10976
10977 #define float32_two make_float32(0x40000000)
10978 #define float32_three make_float32(0x40400000)
10979 #define float32_one_point_five make_float32(0x3fc00000)
10980
10981 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
10982 {
10983 float_status *s = &env->vfp.standard_fp_status;
10984 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10985 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10986 if (!(float32_is_zero(a) || float32_is_zero(b))) {
10987 float_raise(float_flag_input_denormal, s);
10988 }
10989 return float32_two;
10990 }
10991 return float32_sub(float32_two, float32_mul(a, b, s), s);
10992 }
10993
10994 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
10995 {
10996 float_status *s = &env->vfp.standard_fp_status;
10997 float32 product;
10998 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10999 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11000 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11001 float_raise(float_flag_input_denormal, s);
11002 }
11003 return float32_one_point_five;
11004 }
11005 product = float32_mul(a, b, s);
11006 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11007 }
11008
11009 /* NEON helpers. */
11010
11011 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11012 * int->float conversions at run-time. */
11013 #define float64_256 make_float64(0x4070000000000000LL)
11014 #define float64_512 make_float64(0x4080000000000000LL)
11015 #define float32_maxnorm make_float32(0x7f7fffff)
11016 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11017
11018 /* Reciprocal functions
11019 *
11020 * The algorithm that must be used to calculate the estimate
11021 * is specified by the ARM ARM, see FPRecipEstimate()
11022 */
11023
11024 static float64 recip_estimate(float64 a, float_status *real_fp_status)
11025 {
11026 /* These calculations mustn't set any fp exception flags,
11027 * so we use a local copy of the fp_status.
11028 */
11029 float_status dummy_status = *real_fp_status;
11030 float_status *s = &dummy_status;
11031 /* q = (int)(a * 512.0) */
11032 float64 q = float64_mul(float64_512, a, s);
11033 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11034
11035 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
11036 q = int64_to_float64(q_int, s);
11037 q = float64_add(q, float64_half, s);
11038 q = float64_div(q, float64_512, s);
11039 q = float64_div(float64_one, q, s);
11040
11041 /* s = (int)(256.0 * r + 0.5) */
11042 q = float64_mul(q, float64_256, s);
11043 q = float64_add(q, float64_half, s);
11044 q_int = float64_to_int64_round_to_zero(q, s);
11045
11046 /* return (double)s / 256.0 */
11047 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11048 }
11049
11050 /* Common wrapper to call recip_estimate */
11051 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
11052 {
11053 uint64_t val64 = float64_val(num);
11054 uint64_t frac = extract64(val64, 0, 52);
11055 int64_t exp = extract64(val64, 52, 11);
11056 uint64_t sbit;
11057 float64 scaled, estimate;
11058
11059 /* Generate the scaled number for the estimate function */
11060 if (exp == 0) {
11061 if (extract64(frac, 51, 1) == 0) {
11062 exp = -1;
11063 frac = extract64(frac, 0, 50) << 2;
11064 } else {
11065 frac = extract64(frac, 0, 51) << 1;
11066 }
11067 }
11068
11069 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
11070 scaled = make_float64((0x3feULL << 52)
11071 | extract64(frac, 44, 8) << 44);
11072
11073 estimate = recip_estimate(scaled, fpst);
11074
11075 /* Build new result */
11076 val64 = float64_val(estimate);
11077 sbit = 0x8000000000000000ULL & val64;
11078 exp = off - exp;
11079 frac = extract64(val64, 0, 52);
11080
11081 if (exp == 0) {
11082 frac = 1ULL << 51 | extract64(frac, 1, 51);
11083 } else if (exp == -1) {
11084 frac = 1ULL << 50 | extract64(frac, 2, 50);
11085 exp = 0;
11086 }
11087
11088 return make_float64(sbit | (exp << 52) | frac);
11089 }
11090
11091 static bool round_to_inf(float_status *fpst, bool sign_bit)
11092 {
11093 switch (fpst->float_rounding_mode) {
11094 case float_round_nearest_even: /* Round to Nearest */
11095 return true;
11096 case float_round_up: /* Round to +Inf */
11097 return !sign_bit;
11098 case float_round_down: /* Round to -Inf */
11099 return sign_bit;
11100 case float_round_to_zero: /* Round to Zero */
11101 return false;
11102 }
11103
11104 g_assert_not_reached();
11105 }
11106
11107 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11108 {
11109 float_status *fpst = fpstp;
11110 float32 f32 = float32_squash_input_denormal(input, fpst);
11111 uint32_t f32_val = float32_val(f32);
11112 uint32_t f32_sbit = 0x80000000ULL & f32_val;
11113 int32_t f32_exp = extract32(f32_val, 23, 8);
11114 uint32_t f32_frac = extract32(f32_val, 0, 23);
11115 float64 f64, r64;
11116 uint64_t r64_val;
11117 int64_t r64_exp;
11118 uint64_t r64_frac;
11119
11120 if (float32_is_any_nan(f32)) {
11121 float32 nan = f32;
11122 if (float32_is_signaling_nan(f32, fpst)) {
11123 float_raise(float_flag_invalid, fpst);
11124 nan = float32_maybe_silence_nan(f32, fpst);
11125 }
11126 if (fpst->default_nan_mode) {
11127 nan = float32_default_nan(fpst);
11128 }
11129 return nan;
11130 } else if (float32_is_infinity(f32)) {
11131 return float32_set_sign(float32_zero, float32_is_neg(f32));
11132 } else if (float32_is_zero(f32)) {
11133 float_raise(float_flag_divbyzero, fpst);
11134 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11135 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
11136 /* Abs(value) < 2.0^-128 */
11137 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11138 if (round_to_inf(fpst, f32_sbit)) {
11139 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11140 } else {
11141 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11142 }
11143 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11144 float_raise(float_flag_underflow, fpst);
11145 return float32_set_sign(float32_zero, float32_is_neg(f32));
11146 }
11147
11148
11149 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11150 r64 = call_recip_estimate(f64, 253, fpst);
11151 r64_val = float64_val(r64);
11152 r64_exp = extract64(r64_val, 52, 11);
11153 r64_frac = extract64(r64_val, 0, 52);
11154
11155 /* result = sign : result_exp<7:0> : fraction<51:29>; */
11156 return make_float32(f32_sbit |
11157 (r64_exp & 0xff) << 23 |
11158 extract64(r64_frac, 29, 24));
11159 }
11160
11161 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11162 {
11163 float_status *fpst = fpstp;
11164 float64 f64 = float64_squash_input_denormal(input, fpst);
11165 uint64_t f64_val = float64_val(f64);
11166 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11167 int64_t f64_exp = extract64(f64_val, 52, 11);
11168 float64 r64;
11169 uint64_t r64_val;
11170 int64_t r64_exp;
11171 uint64_t r64_frac;
11172
11173 /* Deal with any special cases */
11174 if (float64_is_any_nan(f64)) {
11175 float64 nan = f64;
11176 if (float64_is_signaling_nan(f64, fpst)) {
11177 float_raise(float_flag_invalid, fpst);
11178 nan = float64_maybe_silence_nan(f64, fpst);
11179 }
11180 if (fpst->default_nan_mode) {
11181 nan = float64_default_nan(fpst);
11182 }
11183 return nan;
11184 } else if (float64_is_infinity(f64)) {
11185 return float64_set_sign(float64_zero, float64_is_neg(f64));
11186 } else if (float64_is_zero(f64)) {
11187 float_raise(float_flag_divbyzero, fpst);
11188 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11189 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11190 /* Abs(value) < 2.0^-1024 */
11191 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11192 if (round_to_inf(fpst, f64_sbit)) {
11193 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11194 } else {
11195 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11196 }
11197 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11198 float_raise(float_flag_underflow, fpst);
11199 return float64_set_sign(float64_zero, float64_is_neg(f64));
11200 }
11201
11202 r64 = call_recip_estimate(f64, 2045, fpst);
11203 r64_val = float64_val(r64);
11204 r64_exp = extract64(r64_val, 52, 11);
11205 r64_frac = extract64(r64_val, 0, 52);
11206
11207 /* result = sign : result_exp<10:0> : fraction<51:0> */
11208 return make_float64(f64_sbit |
11209 ((r64_exp & 0x7ff) << 52) |
11210 r64_frac);
11211 }
11212
11213 /* The algorithm that must be used to calculate the estimate
11214 * is specified by the ARM ARM.
11215 */
11216 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11217 {
11218 /* These calculations mustn't set any fp exception flags,
11219 * so we use a local copy of the fp_status.
11220 */
11221 float_status dummy_status = *real_fp_status;
11222 float_status *s = &dummy_status;
11223 float64 q;
11224 int64_t q_int;
11225
11226 if (float64_lt(a, float64_half, s)) {
11227 /* range 0.25 <= a < 0.5 */
11228
11229 /* a in units of 1/512 rounded down */
11230 /* q0 = (int)(a * 512.0); */
11231 q = float64_mul(float64_512, a, s);
11232 q_int = float64_to_int64_round_to_zero(q, s);
11233
11234 /* reciprocal root r */
11235 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
11236 q = int64_to_float64(q_int, s);
11237 q = float64_add(q, float64_half, s);
11238 q = float64_div(q, float64_512, s);
11239 q = float64_sqrt(q, s);
11240 q = float64_div(float64_one, q, s);
11241 } else {
11242 /* range 0.5 <= a < 1.0 */
11243
11244 /* a in units of 1/256 rounded down */
11245 /* q1 = (int)(a * 256.0); */
11246 q = float64_mul(float64_256, a, s);
11247 int64_t q_int = float64_to_int64_round_to_zero(q, s);
11248
11249 /* reciprocal root r */
11250 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11251 q = int64_to_float64(q_int, s);
11252 q = float64_add(q, float64_half, s);
11253 q = float64_div(q, float64_256, s);
11254 q = float64_sqrt(q, s);
11255 q = float64_div(float64_one, q, s);
11256 }
11257 /* r in units of 1/256 rounded to nearest */
11258 /* s = (int)(256.0 * r + 0.5); */
11259
11260 q = float64_mul(q, float64_256,s );
11261 q = float64_add(q, float64_half, s);
11262 q_int = float64_to_int64_round_to_zero(q, s);
11263
11264 /* return (double)s / 256.0;*/
11265 return float64_div(int64_to_float64(q_int, s), float64_256, s);
11266 }
11267
11268 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11269 {
11270 float_status *s = fpstp;
11271 float32 f32 = float32_squash_input_denormal(input, s);
11272 uint32_t val = float32_val(f32);
11273 uint32_t f32_sbit = 0x80000000 & val;
11274 int32_t f32_exp = extract32(val, 23, 8);
11275 uint32_t f32_frac = extract32(val, 0, 23);
11276 uint64_t f64_frac;
11277 uint64_t val64;
11278 int result_exp;
11279 float64 f64;
11280
11281 if (float32_is_any_nan(f32)) {
11282 float32 nan = f32;
11283 if (float32_is_signaling_nan(f32, s)) {
11284 float_raise(float_flag_invalid, s);
11285 nan = float32_maybe_silence_nan(f32, s);
11286 }
11287 if (s->default_nan_mode) {
11288 nan = float32_default_nan(s);
11289 }
11290 return nan;
11291 } else if (float32_is_zero(f32)) {
11292 float_raise(float_flag_divbyzero, s);
11293 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11294 } else if (float32_is_neg(f32)) {
11295 float_raise(float_flag_invalid, s);
11296 return float32_default_nan(s);
11297 } else if (float32_is_infinity(f32)) {
11298 return float32_zero;
11299 }
11300
11301 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11302 * preserving the parity of the exponent. */
11303
11304 f64_frac = ((uint64_t) f32_frac) << 29;
11305 if (f32_exp == 0) {
11306 while (extract64(f64_frac, 51, 1) == 0) {
11307 f64_frac = f64_frac << 1;
11308 f32_exp = f32_exp-1;
11309 }
11310 f64_frac = extract64(f64_frac, 0, 51) << 1;
11311 }
11312
11313 if (extract64(f32_exp, 0, 1) == 0) {
11314 f64 = make_float64(((uint64_t) f32_sbit) << 32
11315 | (0x3feULL << 52)
11316 | f64_frac);
11317 } else {
11318 f64 = make_float64(((uint64_t) f32_sbit) << 32
11319 | (0x3fdULL << 52)
11320 | f64_frac);
11321 }
11322
11323 result_exp = (380 - f32_exp) / 2;
11324
11325 f64 = recip_sqrt_estimate(f64, s);
11326
11327 val64 = float64_val(f64);
11328
11329 val = ((result_exp & 0xff) << 23)
11330 | ((val64 >> 29) & 0x7fffff);
11331 return make_float32(val);
11332 }
11333
11334 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11335 {
11336 float_status *s = fpstp;
11337 float64 f64 = float64_squash_input_denormal(input, s);
11338 uint64_t val = float64_val(f64);
11339 uint64_t f64_sbit = 0x8000000000000000ULL & val;
11340 int64_t f64_exp = extract64(val, 52, 11);
11341 uint64_t f64_frac = extract64(val, 0, 52);
11342 int64_t result_exp;
11343 uint64_t result_frac;
11344
11345 if (float64_is_any_nan(f64)) {
11346 float64 nan = f64;
11347 if (float64_is_signaling_nan(f64, s)) {
11348 float_raise(float_flag_invalid, s);
11349 nan = float64_maybe_silence_nan(f64, s);
11350 }
11351 if (s->default_nan_mode) {
11352 nan = float64_default_nan(s);
11353 }
11354 return nan;
11355 } else if (float64_is_zero(f64)) {
11356 float_raise(float_flag_divbyzero, s);
11357 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11358 } else if (float64_is_neg(f64)) {
11359 float_raise(float_flag_invalid, s);
11360 return float64_default_nan(s);
11361 } else if (float64_is_infinity(f64)) {
11362 return float64_zero;
11363 }
11364
11365 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11366 * preserving the parity of the exponent. */
11367
11368 if (f64_exp == 0) {
11369 while (extract64(f64_frac, 51, 1) == 0) {
11370 f64_frac = f64_frac << 1;
11371 f64_exp = f64_exp - 1;
11372 }
11373 f64_frac = extract64(f64_frac, 0, 51) << 1;
11374 }
11375
11376 if (extract64(f64_exp, 0, 1) == 0) {
11377 f64 = make_float64(f64_sbit
11378 | (0x3feULL << 52)
11379 | f64_frac);
11380 } else {
11381 f64 = make_float64(f64_sbit
11382 | (0x3fdULL << 52)
11383 | f64_frac);
11384 }
11385
11386 result_exp = (3068 - f64_exp) / 2;
11387
11388 f64 = recip_sqrt_estimate(f64, s);
11389
11390 result_frac = extract64(float64_val(f64), 0, 52);
11391
11392 return make_float64(f64_sbit |
11393 ((result_exp & 0x7ff) << 52) |
11394 result_frac);
11395 }
11396
11397 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11398 {
11399 float_status *s = fpstp;
11400 float64 f64;
11401
11402 if ((a & 0x80000000) == 0) {
11403 return 0xffffffff;
11404 }
11405
11406 f64 = make_float64((0x3feULL << 52)
11407 | ((int64_t)(a & 0x7fffffff) << 21));
11408
11409 f64 = recip_estimate(f64, s);
11410
11411 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11412 }
11413
11414 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11415 {
11416 float_status *fpst = fpstp;
11417 float64 f64;
11418
11419 if ((a & 0xc0000000) == 0) {
11420 return 0xffffffff;
11421 }
11422
11423 if (a & 0x80000000) {
11424 f64 = make_float64((0x3feULL << 52)
11425 | ((uint64_t)(a & 0x7fffffff) << 21));
11426 } else { /* bits 31-30 == '01' */
11427 f64 = make_float64((0x3fdULL << 52)
11428 | ((uint64_t)(a & 0x3fffffff) << 22));
11429 }
11430
11431 f64 = recip_sqrt_estimate(f64, fpst);
11432
11433 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11434 }
11435
11436 /* VFPv4 fused multiply-accumulate */
11437 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11438 {
11439 float_status *fpst = fpstp;
11440 return float32_muladd(a, b, c, 0, fpst);
11441 }
11442
11443 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11444 {
11445 float_status *fpst = fpstp;
11446 return float64_muladd(a, b, c, 0, fpst);
11447 }
11448
11449 /* ARMv8 round to integral */
11450 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11451 {
11452 return float32_round_to_int(x, fp_status);
11453 }
11454
11455 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11456 {
11457 return float64_round_to_int(x, fp_status);
11458 }
11459
11460 float32 HELPER(rints)(float32 x, void *fp_status)
11461 {
11462 int old_flags = get_float_exception_flags(fp_status), new_flags;
11463 float32 ret;
11464
11465 ret = float32_round_to_int(x, fp_status);
11466
11467 /* Suppress any inexact exceptions the conversion produced */
11468 if (!(old_flags & float_flag_inexact)) {
11469 new_flags = get_float_exception_flags(fp_status);
11470 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11471 }
11472
11473 return ret;
11474 }
11475
11476 float64 HELPER(rintd)(float64 x, void *fp_status)
11477 {
11478 int old_flags = get_float_exception_flags(fp_status), new_flags;
11479 float64 ret;
11480
11481 ret = float64_round_to_int(x, fp_status);
11482
11483 new_flags = get_float_exception_flags(fp_status);
11484
11485 /* Suppress any inexact exceptions the conversion produced */
11486 if (!(old_flags & float_flag_inexact)) {
11487 new_flags = get_float_exception_flags(fp_status);
11488 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11489 }
11490
11491 return ret;
11492 }
11493
11494 /* Convert ARM rounding mode to softfloat */
11495 int arm_rmode_to_sf(int rmode)
11496 {
11497 switch (rmode) {
11498 case FPROUNDING_TIEAWAY:
11499 rmode = float_round_ties_away;
11500 break;
11501 case FPROUNDING_ODD:
11502 /* FIXME: add support for TIEAWAY and ODD */
11503 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11504 rmode);
11505 case FPROUNDING_TIEEVEN:
11506 default:
11507 rmode = float_round_nearest_even;
11508 break;
11509 case FPROUNDING_POSINF:
11510 rmode = float_round_up;
11511 break;
11512 case FPROUNDING_NEGINF:
11513 rmode = float_round_down;
11514 break;
11515 case FPROUNDING_ZERO:
11516 rmode = float_round_to_zero;
11517 break;
11518 }
11519 return rmode;
11520 }
11521
11522 /* CRC helpers.
11523 * The upper bytes of val (above the number specified by 'bytes') must have
11524 * been zeroed out by the caller.
11525 */
11526 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11527 {
11528 uint8_t buf[4];
11529
11530 stl_le_p(buf, val);
11531
11532 /* zlib crc32 converts the accumulator and output to one's complement. */
11533 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11534 }
11535
11536 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11537 {
11538 uint8_t buf[4];
11539
11540 stl_le_p(buf, val);
11541
11542 /* Linux crc32c converts the output to one's complement. */
11543 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11544 }