]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
target/arm: Skip granule protection checks for AT instructions
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34
35 static void switch_mode(CPUARMState *env, int mode);
36
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39 assert(ri->fieldoffset);
40 if (cpreg_field_is_64bit(ri)) {
41 return CPREG_FIELD64(env, ri);
42 } else {
43 return CPREG_FIELD32(env, ri);
44 }
45 }
46
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49 assert(ri->fieldoffset);
50 if (cpreg_field_is_64bit(ri)) {
51 CPREG_FIELD64(env, ri) = value;
52 } else {
53 CPREG_FIELD32(env, ri) = value;
54 }
55 }
56
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59 return (char *)env + ri->fieldoffset;
60 }
61
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64 /* Raw read of a coprocessor register (as needed for migration, etc). */
65 if (ri->type & ARM_CP_CONST) {
66 return ri->resetvalue;
67 } else if (ri->raw_readfn) {
68 return ri->raw_readfn(env, ri);
69 } else if (ri->readfn) {
70 return ri->readfn(env, ri);
71 } else {
72 return raw_read(env, ri);
73 }
74 }
75
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77 uint64_t v)
78 {
79 /*
80 * Raw write of a coprocessor register (as needed for migration, etc).
81 * Note that constant registers are treated as write-ignored; the
82 * caller should check for success by whether a readback gives the
83 * value written.
84 */
85 if (ri->type & ARM_CP_CONST) {
86 return;
87 } else if (ri->raw_writefn) {
88 ri->raw_writefn(env, ri, v);
89 } else if (ri->writefn) {
90 ri->writefn(env, ri, v);
91 } else {
92 raw_write(env, ri, v);
93 }
94 }
95
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98 /*
99 * Return true if the regdef would cause an assertion if you called
100 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101 * program bug for it not to have the NO_RAW flag).
102 * NB that returning false here doesn't necessarily mean that calling
103 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104 * read/write access functions which are safe for raw use" from "has
105 * read/write access functions which have side effects but has forgotten
106 * to provide raw access functions".
107 * The tests here line up with the conditions in read/write_raw_cp_reg()
108 * and assertions in raw_read()/raw_write().
109 */
110 if ((ri->type & ARM_CP_CONST) ||
111 ri->fieldoffset ||
112 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113 return false;
114 }
115 return true;
116 }
117
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120 /* Write the coprocessor state from cpu->env to the (index,value) list. */
121 int i;
122 bool ok = true;
123
124 for (i = 0; i < cpu->cpreg_array_len; i++) {
125 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126 const ARMCPRegInfo *ri;
127 uint64_t newval;
128
129 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130 if (!ri) {
131 ok = false;
132 continue;
133 }
134 if (ri->type & ARM_CP_NO_RAW) {
135 continue;
136 }
137
138 newval = read_raw_cp_reg(&cpu->env, ri);
139 if (kvm_sync) {
140 /*
141 * Only sync if the previous list->cpustate sync succeeded.
142 * Rather than tracking the success/failure state for every
143 * item in the list, we just recheck "does the raw write we must
144 * have made in write_list_to_cpustate() read back OK" here.
145 */
146 uint64_t oldval = cpu->cpreg_values[i];
147
148 if (oldval == newval) {
149 continue;
150 }
151
152 write_raw_cp_reg(&cpu->env, ri, oldval);
153 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154 continue;
155 }
156
157 write_raw_cp_reg(&cpu->env, ri, newval);
158 }
159 cpu->cpreg_values[i] = newval;
160 }
161 return ok;
162 }
163
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166 int i;
167 bool ok = true;
168
169 for (i = 0; i < cpu->cpreg_array_len; i++) {
170 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171 uint64_t v = cpu->cpreg_values[i];
172 const ARMCPRegInfo *ri;
173
174 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175 if (!ri) {
176 ok = false;
177 continue;
178 }
179 if (ri->type & ARM_CP_NO_RAW) {
180 continue;
181 }
182 /*
183 * Write value and confirm it reads back as written
184 * (to catch read-only registers and partially read-only
185 * registers where the incoming migration value doesn't match)
186 */
187 write_raw_cp_reg(&cpu->env, ri, v);
188 if (read_raw_cp_reg(&cpu->env, ri) != v) {
189 ok = false;
190 }
191 }
192 return ok;
193 }
194
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197 ARMCPU *cpu = opaque;
198 uint32_t regidx = (uintptr_t)key;
199 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200
201 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203 /* The value array need not be initialized at this point */
204 cpu->cpreg_array_len++;
205 }
206 }
207
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210 ARMCPU *cpu = opaque;
211 const ARMCPRegInfo *ri;
212
213 ri = g_hash_table_lookup(cpu->cp_regs, key);
214
215 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216 cpu->cpreg_array_len++;
217 }
218 }
219
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224
225 if (aidx > bidx) {
226 return 1;
227 }
228 if (aidx < bidx) {
229 return -1;
230 }
231 return 0;
232 }
233
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236 /*
237 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238 * Note that we require cpreg_tuples[] to be sorted by key ID.
239 */
240 GList *keys;
241 int arraylen;
242
243 keys = g_hash_table_get_keys(cpu->cp_regs);
244 keys = g_list_sort(keys, cpreg_key_compare);
245
246 cpu->cpreg_array_len = 0;
247
248 g_list_foreach(keys, count_cpreg, cpu);
249
250 arraylen = cpu->cpreg_array_len;
251 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252 cpu->cpreg_values = g_new(uint64_t, arraylen);
253 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256 cpu->cpreg_array_len = 0;
257
258 g_list_foreach(keys, add_cpreg_to_list, cpu);
259
260 assert(cpu->cpreg_array_len == arraylen);
261
262 g_list_free(keys);
263 }
264
265 /*
266 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267 */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269 const ARMCPRegInfo *ri,
270 bool isread)
271 {
272 if (!is_a64(env) && arm_current_el(env) == 3 &&
273 arm_is_secure_below_el3(env)) {
274 return CP_ACCESS_TRAP_UNCATEGORIZED;
275 }
276 return CP_ACCESS_OK;
277 }
278
279 /*
280 * Some secure-only AArch32 registers trap to EL3 if used from
281 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283 * We assume that the .access field is set to PL1_RW.
284 */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286 const ARMCPRegInfo *ri,
287 bool isread)
288 {
289 if (arm_current_el(env) == 3) {
290 return CP_ACCESS_OK;
291 }
292 if (arm_is_secure_below_el3(env)) {
293 if (env->cp15.scr_el3 & SCR_EEL2) {
294 return CP_ACCESS_TRAP_EL2;
295 }
296 return CP_ACCESS_TRAP_EL3;
297 }
298 /* This will be EL1 NS and EL2 NS, which just UNDEF */
299 return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301
302 /*
303 * Check for traps to performance monitor registers, which are controlled
304 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305 */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307 bool isread)
308 {
309 int el = arm_current_el(env);
310 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311
312 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313 return CP_ACCESS_TRAP_EL2;
314 }
315 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316 return CP_ACCESS_TRAP_EL3;
317 }
318 return CP_ACCESS_OK;
319 }
320
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323 bool isread)
324 {
325 if (arm_current_el(env) == 1) {
326 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327 if (arm_hcr_el2_eff(env) & trap) {
328 return CP_ACCESS_TRAP_EL2;
329 }
330 }
331 return CP_ACCESS_OK;
332 }
333
334 /* Check for traps from EL1 due to HCR_EL2.TSW. */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
337 {
338 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339 return CP_ACCESS_TRAP_EL2;
340 }
341 return CP_ACCESS_OK;
342 }
343
344 /* Check for traps from EL1 due to HCR_EL2.TACR. */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346 bool isread)
347 {
348 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349 return CP_ACCESS_TRAP_EL2;
350 }
351 return CP_ACCESS_OK;
352 }
353
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
357 {
358 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359 return CP_ACCESS_TRAP_EL2;
360 }
361 return CP_ACCESS_OK;
362 }
363
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366 bool isread)
367 {
368 if (arm_current_el(env) == 1 &&
369 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370 return CP_ACCESS_TRAP_EL2;
371 }
372 return CP_ACCESS_OK;
373 }
374
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378 bool isread)
379 {
380 if (arm_current_el(env) == 1 &&
381 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382 return CP_ACCESS_TRAP_EL2;
383 }
384 return CP_ACCESS_OK;
385 }
386 #endif
387
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390 ARMCPU *cpu = env_archcpu(env);
391
392 raw_write(env, ri, value);
393 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398 ARMCPU *cpu = env_archcpu(env);
399
400 if (raw_read(env, ri) != value) {
401 /*
402 * Unlike real hardware the qemu TLB uses virtual addresses,
403 * not modified virtual addresses, so this causes a TLB flush.
404 */
405 tlb_flush(CPU(cpu));
406 raw_write(env, ri, value);
407 }
408 }
409
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411 uint64_t value)
412 {
413 ARMCPU *cpu = env_archcpu(env);
414
415 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416 && !extended_addresses_enabled(env)) {
417 /*
418 * For VMSA (when not using the LPAE long descriptor page table
419 * format) this register includes the ASID, so do a TLB flush.
420 * For PMSA it is purely a process ID and no action is needed.
421 */
422 tlb_flush(CPU(cpu));
423 }
424 raw_write(env, ri, value);
425 }
426
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429 /*
430 * Note that the 'ALL' scope must invalidate both stage 1 and
431 * stage 2 translations, whereas most other scopes only invalidate
432 * stage 1 translations.
433 */
434 return (ARMMMUIdxBit_E10_1 |
435 ARMMMUIdxBit_E10_1_PAN |
436 ARMMMUIdxBit_E10_0 |
437 ARMMMUIdxBit_Stage2 |
438 ARMMMUIdxBit_Stage2_S);
439 }
440
441
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444 uint64_t value)
445 {
446 CPUState *cs = env_cpu(env);
447
448 tlb_flush_all_cpus_synced(cs);
449 }
450
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452 uint64_t value)
453 {
454 CPUState *cs = env_cpu(env);
455
456 tlb_flush_all_cpus_synced(cs);
457 }
458
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 uint64_t value)
461 {
462 CPUState *cs = env_cpu(env);
463
464 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468 uint64_t value)
469 {
470 CPUState *cs = env_cpu(env);
471
472 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474
475 /*
476 * Non-IS variants of TLB operations are upgraded to
477 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478 * force broadcast of these operations.
479 */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
487 {
488 /* Invalidate all (TLBIALL) */
489 CPUState *cs = env_cpu(env);
490
491 if (tlb_force_broadcast(env)) {
492 tlb_flush_all_cpus_synced(cs);
493 } else {
494 tlb_flush(cs);
495 }
496 }
497
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
500 {
501 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502 CPUState *cs = env_cpu(env);
503
504 value &= TARGET_PAGE_MASK;
505 if (tlb_force_broadcast(env)) {
506 tlb_flush_page_all_cpus_synced(cs, value);
507 } else {
508 tlb_flush_page(cs, value);
509 }
510 }
511
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
514 {
515 /* Invalidate by ASID (TLBIASID) */
516 CPUState *cs = env_cpu(env);
517
518 if (tlb_force_broadcast(env)) {
519 tlb_flush_all_cpus_synced(cs);
520 } else {
521 tlb_flush(cs);
522 }
523 }
524
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
527 {
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 CPUState *cs = env_cpu(env);
530
531 value &= TARGET_PAGE_MASK;
532 if (tlb_force_broadcast(env)) {
533 tlb_flush_page_all_cpus_synced(cs, value);
534 } else {
535 tlb_flush_page(cs, value);
536 }
537 }
538
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540 uint64_t value)
541 {
542 CPUState *cs = env_cpu(env);
543
544 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
549 {
550 CPUState *cs = env_cpu(env);
551
552 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554
555
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
558 {
559 CPUState *cs = env_cpu(env);
560
561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
566 {
567 CPUState *cs = env_cpu(env);
568
569 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
574 {
575 CPUState *cs = env_cpu(env);
576 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577
578 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582 uint64_t value)
583 {
584 CPUState *cs = env_cpu(env);
585 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586
587 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588 ARMMMUIdxBit_E2);
589 }
590
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592 uint64_t value)
593 {
594 CPUState *cs = env_cpu(env);
595 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596
597 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
602 {
603 CPUState *cs = env_cpu(env);
604 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605
606 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608
609 static const ARMCPRegInfo cp_reginfo[] = {
610 /*
611 * Define the secure and non-secure FCSE identifier CP registers
612 * separately because there is no secure bank in V8 (no _EL3). This allows
613 * the secure register to be properly reset and migrated. There is also no
614 * v8 EL1 version of the register so the non-secure instance stands alone.
615 */
616 { .name = "FCSEIDR",
617 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621 { .name = "FCSEIDR_S",
622 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626 /*
627 * Define the secure and non-secure context identifier CP registers
628 * separately because there is no secure bank in V8 (no _EL3). This allows
629 * the secure register to be properly reset and migrated. In the
630 * non-secure case, the 32-bit register will have reset and migration
631 * disabled during registration as it is handled by the 64-bit instance.
632 */
633 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635 .access = PL1_RW, .accessfn = access_tvm_trvm,
636 .fgt = FGT_CONTEXTIDR_EL1,
637 .secure = ARM_CP_SECSTATE_NS,
638 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642 .access = PL1_RW, .accessfn = access_tvm_trvm,
643 .secure = ARM_CP_SECSTATE_S,
644 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649 /*
650 * NB: Some of these registers exist in v8 but with more precise
651 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652 */
653 /* MMU Domain access control / MPU write buffer control */
654 { .name = "DACR",
655 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657 .writefn = dacr_write, .raw_writefn = raw_write,
658 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660 /*
661 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662 * For v6 and v5, these mappings are overly broad.
663 */
664 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672 /* Cache maintenance ops; some of this space may be overridden later. */
673 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679 /*
680 * Not all pre-v6 cores implemented this WFI, so this is slightly
681 * over-broad.
682 */
683 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684 .access = PL1_W, .type = ARM_CP_WFI },
685 };
686
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688 /*
689 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690 * is UNPREDICTABLE; we choose to NOP as most implementations do).
691 */
692 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693 .access = PL1_W, .type = ARM_CP_WFI },
694 /*
695 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697 * OMAPCP will override this space.
698 */
699 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701 .resetvalue = 0 },
702 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704 .resetvalue = 0 },
705 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708 .resetvalue = 0 },
709 /*
710 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711 * implementing it as RAZ means the "debug architecture version" bits
712 * will read as a reserved value, which should cause Linux to not try
713 * to use the debug hardware.
714 */
715 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717 /*
718 * MMU TLB control. Note that the wildcarding means we cover not just
719 * the unified TLB ops but also the dside/iside/inner-shareable variants.
720 */
721 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723 .type = ARM_CP_NO_RAW },
724 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726 .type = ARM_CP_NO_RAW },
727 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729 .type = ARM_CP_NO_RAW },
730 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732 .type = ARM_CP_NO_RAW },
733 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740 uint64_t value)
741 {
742 uint32_t mask = 0;
743
744 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745 if (!arm_feature(env, ARM_FEATURE_V8)) {
746 /*
747 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750 */
751 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752 /* VFP coprocessor: cp10 & cp11 [23:20] */
753 mask |= R_CPACR_ASEDIS_MASK |
754 R_CPACR_D32DIS_MASK |
755 R_CPACR_CP11_MASK |
756 R_CPACR_CP10_MASK;
757
758 if (!arm_feature(env, ARM_FEATURE_NEON)) {
759 /* ASEDIS [31] bit is RAO/WI */
760 value |= R_CPACR_ASEDIS_MASK;
761 }
762
763 /*
764 * VFPv3 and upwards with NEON implement 32 double precision
765 * registers (D0-D31).
766 */
767 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769 value |= R_CPACR_D32DIS_MASK;
770 }
771 }
772 value &= mask;
773 }
774
775 /*
776 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778 */
779 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783 }
784
785 env->cp15.cpacr_el1 = value;
786 }
787
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790 /*
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793 */
794 uint64_t value = env->cp15.cpacr_el1;
795
796 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799 }
800 return value;
801 }
802
803
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806 /*
807 * Call cpacr_write() so that we reset with the correct RAO bits set
808 * for our CPU features.
809 */
810 cpacr_write(env, ri, 0);
811 }
812
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814 bool isread)
815 {
816 if (arm_feature(env, ARM_FEATURE_V8)) {
817 /* Check if CPACR accesses are to be trapped to EL2 */
818 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820 return CP_ACCESS_TRAP_EL2;
821 /* Check if CPACR accesses are to be trapped to EL3 */
822 } else if (arm_current_el(env) < 3 &&
823 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824 return CP_ACCESS_TRAP_EL3;
825 }
826 }
827
828 return CP_ACCESS_OK;
829 }
830
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832 bool isread)
833 {
834 /* Check if CPTR accesses are set to trap to EL3 */
835 if (arm_current_el(env) == 2 &&
836 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837 return CP_ACCESS_TRAP_EL3;
838 }
839
840 return CP_ACCESS_OK;
841 }
842
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844 /* prefetch by MVA in v6, NOP in v7 */
845 { .name = "MVA_prefetch",
846 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847 .access = PL1_W, .type = ARM_CP_NOP },
848 /*
849 * We need to break the TB after ISB to execute self-modifying code
850 * correctly and also to take any pending interrupts immediately.
851 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852 */
853 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856 .access = PL0_W, .type = ARM_CP_NOP },
857 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858 .access = PL0_W, .type = ARM_CP_NOP },
859 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860 .access = PL1_RW, .accessfn = access_tvm_trvm,
861 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862 offsetof(CPUARMState, cp15.ifar_ns) },
863 .resetvalue = 0, },
864 /*
865 * Watchpoint Fault Address Register : should actually only be present
866 * for 1136, 1176, 11MPCore.
867 */
868 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872 .fgt = FGT_CPACR_EL1,
873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876
877 typedef struct pm_event {
878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880 bool (*supported)(CPUARMState *);
881 /*
882 * Retrieve the current count of the underlying event. The programmed
883 * counters hold a difference from the return value from this function
884 */
885 uint64_t (*get_count)(CPUARMState *);
886 /*
887 * Return how many nanoseconds it will take (at a minimum) for count events
888 * to occur. A negative value indicates the counter will never overflow, or
889 * that the counter has otherwise arranged for the overflow bit to be set
890 * and the PMU interrupt to be raised on overflow.
891 */
892 int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894
895 static bool event_always_supported(CPUARMState *env)
896 {
897 return true;
898 }
899
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902 /*
903 * SW_INCR events are written directly to the pmevcntr's by writes to
904 * PMSWINC, so there is no underlying count maintained by the PMU itself
905 */
906 return 0;
907 }
908
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911 return -1;
912 }
913
914 /*
915 * Return the underlying cycle count for the PMU cycle counters. If we're in
916 * usermode, simply return 0.
917 */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924 return cpu_get_host_ticks();
925 #endif
926 }
927
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933
934 static bool instructions_supported(CPUARMState *env)
935 {
936 return icount_enabled() == 1; /* Precise instruction counting */
937 }
938
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941 return (uint64_t)icount_get_raw();
942 }
943
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946 return icount_to_ns((int64_t)icount);
947 }
948 #endif
949
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952 /* For events which are supported in any v8.1 PMU */
953 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958 /* For events which are supported in any v8.1 PMU */
959 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964 /* For events which on QEMU never fire, so their count is always zero */
965 return 0;
966 }
967
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970 /* An event which never fires can never overflow */
971 return -1;
972 }
973
974 static const pm_event pm_events[] = {
975 { .number = 0x000, /* SW_INCR */
976 .supported = event_always_supported,
977 .get_count = swinc_get_count,
978 .ns_per_count = swinc_ns_per,
979 },
980 #ifndef CONFIG_USER_ONLY
981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982 .supported = instructions_supported,
983 .get_count = instructions_get_count,
984 .ns_per_count = instructions_ns_per,
985 },
986 { .number = 0x011, /* CPU_CYCLES, Cycle */
987 .supported = event_always_supported,
988 .get_count = cycles_get_count,
989 .ns_per_count = cycles_ns_per,
990 },
991 #endif
992 { .number = 0x023, /* STALL_FRONTEND */
993 .supported = pmuv3p1_events_supported,
994 .get_count = zero_event_get_count,
995 .ns_per_count = zero_event_ns_per,
996 },
997 { .number = 0x024, /* STALL_BACKEND */
998 .supported = pmuv3p1_events_supported,
999 .get_count = zero_event_get_count,
1000 .ns_per_count = zero_event_ns_per,
1001 },
1002 { .number = 0x03c, /* STALL */
1003 .supported = pmuv3p4_events_supported,
1004 .get_count = zero_event_get_count,
1005 .ns_per_count = zero_event_ns_per,
1006 },
1007 };
1008
1009 /*
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1014 */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018
1019 /*
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
1022 *
1023 * Note: Events in the 0x40XX range are not currently supported.
1024 */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027 unsigned int i;
1028
1029 /*
1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031 * events to them
1032 */
1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034 supported_event_map[i] = UNSUPPORTED_EVENT;
1035 }
1036 cpu->pmceid0 = 0;
1037 cpu->pmceid1 = 0;
1038
1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040 const pm_event *cnt = &pm_events[i];
1041 assert(cnt->number <= MAX_EVENT_ID);
1042 /* We do not currently support events in the 0x40xx range */
1043 assert(cnt->number <= 0x3f);
1044
1045 if (cnt->supported(&cpu->env)) {
1046 supported_event_map[cnt->number] = i;
1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048 if (cnt->number & 0x20) {
1049 cpu->pmceid1 |= event_mask;
1050 } else {
1051 cpu->pmceid0 |= event_mask;
1052 }
1053 }
1054 }
1055 }
1056
1057 /*
1058 * Check at runtime whether a PMU event is supported for the current machine
1059 */
1060 static bool event_supported(uint16_t number)
1061 {
1062 if (number > MAX_EVENT_ID) {
1063 return false;
1064 }
1065 return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069 bool isread)
1070 {
1071 /*
1072 * Performance monitor registers user accessibility is controlled
1073 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074 * trapping to EL2 or EL3 for other accesses.
1075 */
1076 int el = arm_current_el(env);
1077 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078
1079 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080 return CP_ACCESS_TRAP;
1081 }
1082 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083 return CP_ACCESS_TRAP_EL2;
1084 }
1085 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086 return CP_ACCESS_TRAP_EL3;
1087 }
1088
1089 return CP_ACCESS_OK;
1090 }
1091
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093 const ARMCPRegInfo *ri,
1094 bool isread)
1095 {
1096 /* ER: event counter read trap control */
1097 if (arm_feature(env, ARM_FEATURE_V8)
1098 && arm_current_el(env) == 0
1099 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100 && isread) {
1101 return CP_ACCESS_OK;
1102 }
1103
1104 return pmreg_access(env, ri, isread);
1105 }
1106
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108 const ARMCPRegInfo *ri,
1109 bool isread)
1110 {
1111 /* SW: software increment write trap control */
1112 if (arm_feature(env, ARM_FEATURE_V8)
1113 && arm_current_el(env) == 0
1114 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115 && !isread) {
1116 return CP_ACCESS_OK;
1117 }
1118
1119 return pmreg_access(env, ri, isread);
1120 }
1121
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123 const ARMCPRegInfo *ri,
1124 bool isread)
1125 {
1126 /* ER: event counter read trap control */
1127 if (arm_feature(env, ARM_FEATURE_V8)
1128 && arm_current_el(env) == 0
1129 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130 return CP_ACCESS_OK;
1131 }
1132
1133 return pmreg_access(env, ri, isread);
1134 }
1135
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137 const ARMCPRegInfo *ri,
1138 bool isread)
1139 {
1140 /* CR: cycle counter read trap control */
1141 if (arm_feature(env, ARM_FEATURE_V8)
1142 && arm_current_el(env) == 0
1143 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144 && isread) {
1145 return CP_ACCESS_OK;
1146 }
1147
1148 return pmreg_access(env, ri, isread);
1149 }
1150
1151 /*
1152 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153 * We use these to decide whether we need to wrap a write to MDCR_EL2
1154 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155 */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159
1160 /*
1161 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162 * the current EL, security state, and register configuration.
1163 */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166 uint64_t filter;
1167 bool e, p, u, nsk, nsu, nsh, m;
1168 bool enabled, prohibited = false, filtered;
1169 bool secure = arm_is_secure(env);
1170 int el = arm_current_el(env);
1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173
1174 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175 return false;
1176 }
1177
1178 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179 (counter < hpmn || counter == 31)) {
1180 e = env->cp15.c9_pmcr & PMCRE;
1181 } else {
1182 e = mdcr_el2 & MDCR_HPME;
1183 }
1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185
1186 /* Is event counting prohibited? */
1187 if (el == 2 && (counter < hpmn || counter == 31)) {
1188 prohibited = mdcr_el2 & MDCR_HPMD;
1189 }
1190 if (secure) {
1191 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192 }
1193
1194 if (counter == 31) {
1195 /*
1196 * The cycle counter defaults to running. PMCR.DP says "disable
1197 * the cycle counter when event counting is prohibited".
1198 * Some MDCR bits disable the cycle counter specifically.
1199 */
1200 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202 if (secure) {
1203 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204 }
1205 if (el == 2) {
1206 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207 }
1208 }
1209 }
1210
1211 if (counter == 31) {
1212 filter = env->cp15.pmccfiltr_el0;
1213 } else {
1214 filter = env->cp15.c14_pmevtyper[counter];
1215 }
1216
1217 p = filter & PMXEVTYPER_P;
1218 u = filter & PMXEVTYPER_U;
1219 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222 m = arm_el_is_aa64(env, 1) &&
1223 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224
1225 if (el == 0) {
1226 filtered = secure ? u : u != nsu;
1227 } else if (el == 1) {
1228 filtered = secure ? p : p != nsk;
1229 } else if (el == 2) {
1230 filtered = !nsh;
1231 } else { /* EL3 */
1232 filtered = m != p;
1233 }
1234
1235 if (counter != 31) {
1236 /*
1237 * If not checking PMCCNTR, ensure the counter is setup to an event we
1238 * support
1239 */
1240 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241 if (!event_supported(event)) {
1242 return false;
1243 }
1244 }
1245
1246 return enabled && !prohibited && !filtered;
1247 }
1248
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251 ARMCPU *cpu = env_archcpu(env);
1252 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258 /*
1259 * Return true if the clock divider is enabled and the cycle counter
1260 * is supposed to tick only once every 64 clock cycles. This is
1261 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262 * (64-bit) cycle counter PMCR.D has no effect.
1263 */
1264 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269 /* Return true if the specified event counter is configured to be 64 bit */
1270
1271 /* This isn't intended to be used with the cycle counter */
1272 assert(counter < 31);
1273
1274 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275 return false;
1276 }
1277
1278 if (arm_feature(env, ARM_FEATURE_EL2)) {
1279 /*
1280 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281 * current security state, so we don't use arm_mdcr_el2_eff() here.
1282 */
1283 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285
1286 if (hpmn != 0 && counter >= hpmn) {
1287 return hlp;
1288 }
1289 }
1290 return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292
1293 /*
1294 * Ensure c15_ccnt is the guest-visible count so that operations such as
1295 * enabling/disabling the counter or filtering, modifying the count itself,
1296 * etc. can be done logically. This is essentially a no-op if the counter is
1297 * not enabled at the time of the call.
1298 */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301 uint64_t cycles = cycles_get_count(env);
1302
1303 if (pmu_counter_enabled(env, 31)) {
1304 uint64_t eff_cycles = cycles;
1305 if (pmccntr_clockdiv_enabled(env)) {
1306 eff_cycles /= 64;
1307 }
1308
1309 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310
1311 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312 1ull << 63 : 1ull << 31;
1313 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314 env->cp15.c9_pmovsr |= (1ULL << 31);
1315 pmu_update_irq(env);
1316 }
1317
1318 env->cp15.c15_ccnt = new_pmccntr;
1319 }
1320 env->cp15.c15_ccnt_delta = cycles;
1321 }
1322
1323 /*
1324 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326 * pmccntr_op_start.
1327 */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330 if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332 /* Calculate when the counter will next overflow */
1333 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335 remaining_cycles = (uint32_t)remaining_cycles;
1336 }
1337 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338
1339 if (overflow_in > 0) {
1340 int64_t overflow_at;
1341
1342 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343 overflow_in, &overflow_at)) {
1344 ARMCPU *cpu = env_archcpu(env);
1345 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346 }
1347 }
1348 #endif
1349
1350 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351 if (pmccntr_clockdiv_enabled(env)) {
1352 prev_cycles /= 64;
1353 }
1354 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355 }
1356 }
1357
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360
1361 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362 uint64_t count = 0;
1363 if (event_supported(event)) {
1364 uint16_t event_idx = supported_event_map[event];
1365 count = pm_events[event_idx].get_count(env);
1366 }
1367
1368 if (pmu_counter_enabled(env, counter)) {
1369 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371 1ULL << 63 : 1ULL << 31;
1372
1373 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374 env->cp15.c9_pmovsr |= (1 << counter);
1375 pmu_update_irq(env);
1376 }
1377 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378 }
1379 env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384 if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387 uint16_t event_idx = supported_event_map[event];
1388 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389 int64_t overflow_in;
1390
1391 if (!pmevcntr_is_64_bit(env, counter)) {
1392 delta = (uint32_t)delta;
1393 }
1394 overflow_in = pm_events[event_idx].ns_per_count(delta);
1395
1396 if (overflow_in > 0) {
1397 int64_t overflow_at;
1398
1399 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400 overflow_in, &overflow_at)) {
1401 ARMCPU *cpu = env_archcpu(env);
1402 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403 }
1404 }
1405 #endif
1406
1407 env->cp15.c14_pmevcntr_delta[counter] -=
1408 env->cp15.c14_pmevcntr[counter];
1409 }
1410 }
1411
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414 unsigned int i;
1415 pmccntr_op_start(env);
1416 for (i = 0; i < pmu_num_counters(env); i++) {
1417 pmevcntr_op_start(env, i);
1418 }
1419 }
1420
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423 unsigned int i;
1424 pmccntr_op_finish(env);
1425 for (i = 0; i < pmu_num_counters(env); i++) {
1426 pmevcntr_op_finish(env, i);
1427 }
1428 }
1429
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432 pmu_op_start(&cpu->env);
1433 }
1434
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437 pmu_op_finish(&cpu->env);
1438 }
1439
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442 ARMCPU *cpu = opaque;
1443
1444 /*
1445 * Update all the counter values based on the current underlying counts,
1446 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448 * counter may expire.
1449 */
1450 pmu_op_start(&cpu->env);
1451 pmu_op_finish(&cpu->env);
1452 }
1453
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 uint64_t value)
1456 {
1457 pmu_op_start(env);
1458
1459 if (value & PMCRC) {
1460 /* The counter has been reset */
1461 env->cp15.c15_ccnt = 0;
1462 }
1463
1464 if (value & PMCRP) {
1465 unsigned int i;
1466 for (i = 0; i < pmu_num_counters(env); i++) {
1467 env->cp15.c14_pmevcntr[i] = 0;
1468 }
1469 }
1470
1471 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473
1474 pmu_op_finish(env);
1475 }
1476
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 uint64_t value)
1479 {
1480 unsigned int i;
1481 uint64_t overflow_mask, new_pmswinc;
1482
1483 for (i = 0; i < pmu_num_counters(env); i++) {
1484 /* Increment a counter's count iff: */
1485 if ((value & (1 << i)) && /* counter's bit is set */
1486 /* counter is enabled and not filtered */
1487 pmu_counter_enabled(env, i) &&
1488 /* counter is SW_INCR */
1489 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490 pmevcntr_op_start(env, i);
1491
1492 /*
1493 * Detect if this write causes an overflow since we can't predict
1494 * PMSWINC overflows like we can for other events
1495 */
1496 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497
1498 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499 1ULL << 63 : 1ULL << 31;
1500
1501 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502 env->cp15.c9_pmovsr |= (1 << i);
1503 pmu_update_irq(env);
1504 }
1505
1506 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507
1508 pmevcntr_op_finish(env, i);
1509 }
1510 }
1511 }
1512
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515 uint64_t ret;
1516 pmccntr_op_start(env);
1517 ret = env->cp15.c15_ccnt;
1518 pmccntr_op_finish(env);
1519 return ret;
1520 }
1521
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1524 {
1525 /*
1526 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529 * accessed.
1530 */
1531 env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535 uint64_t value)
1536 {
1537 pmccntr_op_start(env);
1538 env->cp15.c15_ccnt = value;
1539 pmccntr_op_finish(env);
1540 }
1541
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543 uint64_t value)
1544 {
1545 uint64_t cur_val = pmccntr_read(env, NULL);
1546
1547 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551 uint64_t value)
1552 {
1553 pmccntr_op_start(env);
1554 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555 pmccntr_op_finish(env);
1556 }
1557
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559 uint64_t value)
1560 {
1561 pmccntr_op_start(env);
1562 /* M is not accessible from AArch32 */
1563 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564 (value & PMCCFILTR);
1565 pmccntr_op_finish(env);
1566 }
1567
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570 /* M is not visible in AArch32 */
1571 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575 uint64_t value)
1576 {
1577 pmu_op_start(env);
1578 value &= pmu_counter_mask(env);
1579 env->cp15.c9_pmcnten |= value;
1580 pmu_op_finish(env);
1581 }
1582
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584 uint64_t value)
1585 {
1586 pmu_op_start(env);
1587 value &= pmu_counter_mask(env);
1588 env->cp15.c9_pmcnten &= ~value;
1589 pmu_op_finish(env);
1590 }
1591
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
1594 {
1595 value &= pmu_counter_mask(env);
1596 env->cp15.c9_pmovsr &= ~value;
1597 pmu_update_irq(env);
1598 }
1599
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601 uint64_t value)
1602 {
1603 value &= pmu_counter_mask(env);
1604 env->cp15.c9_pmovsr |= value;
1605 pmu_update_irq(env);
1606 }
1607
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609 uint64_t value, const uint8_t counter)
1610 {
1611 if (counter == 31) {
1612 pmccfiltr_write(env, ri, value);
1613 } else if (counter < pmu_num_counters(env)) {
1614 pmevcntr_op_start(env, counter);
1615
1616 /*
1617 * If this counter's event type is changing, store the current
1618 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619 * pmevcntr_op_finish has the correct baseline when it converts back to
1620 * a delta.
1621 */
1622 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623 PMXEVTYPER_EVTCOUNT;
1624 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625 if (old_event != new_event) {
1626 uint64_t count = 0;
1627 if (event_supported(new_event)) {
1628 uint16_t event_idx = supported_event_map[new_event];
1629 count = pm_events[event_idx].get_count(env);
1630 }
1631 env->cp15.c14_pmevcntr_delta[counter] = count;
1632 }
1633
1634 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635 pmevcntr_op_finish(env, counter);
1636 }
1637 /*
1638 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639 * PMSELR value is equal to or greater than the number of implemented
1640 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641 */
1642 }
1643
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645 const uint8_t counter)
1646 {
1647 if (counter == 31) {
1648 return env->cp15.pmccfiltr_el0;
1649 } else if (counter < pmu_num_counters(env)) {
1650 return env->cp15.c14_pmevtyper[counter];
1651 } else {
1652 /*
1653 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655 */
1656 return 0;
1657 }
1658 }
1659
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1662 {
1663 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664 pmevtyper_write(env, ri, value, counter);
1665 }
1666
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
1669 {
1670 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671 env->cp15.c14_pmevtyper[counter] = value;
1672
1673 /*
1674 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675 * pmu_op_finish calls when loading saved state for a migration. Because
1676 * we're potentially updating the type of event here, the value written to
1677 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1678 * different counter type. Therefore, we need to set this value to the
1679 * current count for the counter type we're writing so that pmu_op_finish
1680 * has the correct count for its calculation.
1681 */
1682 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683 if (event_supported(event)) {
1684 uint16_t event_idx = supported_event_map[event];
1685 env->cp15.c14_pmevcntr_delta[counter] =
1686 pm_events[event_idx].get_count(env);
1687 }
1688 }
1689
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693 return pmevtyper_read(env, ri, counter);
1694 }
1695
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697 uint64_t value)
1698 {
1699 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value, uint8_t counter)
1709 {
1710 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712 value &= MAKE_64BIT_MASK(0, 32);
1713 }
1714 if (counter < pmu_num_counters(env)) {
1715 pmevcntr_op_start(env, counter);
1716 env->cp15.c14_pmevcntr[counter] = value;
1717 pmevcntr_op_finish(env, counter);
1718 }
1719 /*
1720 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721 * are CONSTRAINED UNPREDICTABLE.
1722 */
1723 }
1724
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint8_t counter)
1727 {
1728 if (counter < pmu_num_counters(env)) {
1729 uint64_t ret;
1730 pmevcntr_op_start(env, counter);
1731 ret = env->cp15.c14_pmevcntr[counter];
1732 pmevcntr_op_finish(env, counter);
1733 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735 ret &= MAKE_64BIT_MASK(0, 32);
1736 }
1737 return ret;
1738 } else {
1739 /*
1740 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741 * are CONSTRAINED UNPREDICTABLE.
1742 */
1743 return 0;
1744 }
1745 }
1746
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1749 {
1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751 pmevcntr_write(env, ri, value, counter);
1752 }
1753
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757 return pmevcntr_read(env, ri, counter);
1758 }
1759
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761 uint64_t value)
1762 {
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 assert(counter < pmu_num_counters(env));
1765 env->cp15.c14_pmevcntr[counter] = value;
1766 pmevcntr_write(env, ri, value, counter);
1767 }
1768
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772 assert(counter < pmu_num_counters(env));
1773 return env->cp15.c14_pmevcntr[counter];
1774 }
1775
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777 uint64_t value)
1778 {
1779 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788 uint64_t value)
1789 {
1790 if (arm_feature(env, ARM_FEATURE_V8)) {
1791 env->cp15.c9_pmuserenr = value & 0xf;
1792 } else {
1793 env->cp15.c9_pmuserenr = value & 1;
1794 }
1795 }
1796
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798 uint64_t value)
1799 {
1800 /* We have no event counters so only the C bit can be changed */
1801 value &= pmu_counter_mask(env);
1802 env->cp15.c9_pminten |= value;
1803 pmu_update_irq(env);
1804 }
1805
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1808 {
1809 value &= pmu_counter_mask(env);
1810 env->cp15.c9_pminten &= ~value;
1811 pmu_update_irq(env);
1812 }
1813
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815 uint64_t value)
1816 {
1817 /*
1818 * Note that even though the AArch64 view of this register has bits
1819 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820 * architectural requirements for bits which are RES0 only in some
1821 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823 */
1824 raw_write(env, ri, value & ~0x1FULL);
1825 }
1826
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829 /* Begin with base v8.0 state. */
1830 uint64_t valid_mask = 0x3fff;
1831 ARMCPU *cpu = env_archcpu(env);
1832 uint64_t changed;
1833
1834 /*
1835 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837 * Instead, choose the format based on the mode of EL3.
1838 */
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* RES1 */
1841 valid_mask &= ~SCR_NET; /* RES0 */
1842
1843 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845 value |= SCR_RW; /* RAO/WI */
1846 }
1847 if (cpu_isar_feature(aa64_ras, cpu)) {
1848 valid_mask |= SCR_TERR;
1849 }
1850 if (cpu_isar_feature(aa64_lor, cpu)) {
1851 valid_mask |= SCR_TLOR;
1852 }
1853 if (cpu_isar_feature(aa64_pauth, cpu)) {
1854 valid_mask |= SCR_API | SCR_APK;
1855 }
1856 if (cpu_isar_feature(aa64_sel2, cpu)) {
1857 valid_mask |= SCR_EEL2;
1858 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860 value |= SCR_NS;
1861 }
1862 if (cpu_isar_feature(aa64_mte, cpu)) {
1863 valid_mask |= SCR_ATA;
1864 }
1865 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866 valid_mask |= SCR_ENSCXT;
1867 }
1868 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869 valid_mask |= SCR_EASE | SCR_NMEA;
1870 }
1871 if (cpu_isar_feature(aa64_sme, cpu)) {
1872 valid_mask |= SCR_ENTP2;
1873 }
1874 if (cpu_isar_feature(aa64_hcx, cpu)) {
1875 valid_mask |= SCR_HXEN;
1876 }
1877 if (cpu_isar_feature(aa64_fgt, cpu)) {
1878 valid_mask |= SCR_FGTEN;
1879 }
1880 if (cpu_isar_feature(aa64_rme, cpu)) {
1881 valid_mask |= SCR_NSE | SCR_GPF;
1882 }
1883 } else {
1884 valid_mask &= ~(SCR_RW | SCR_ST);
1885 if (cpu_isar_feature(aa32_ras, cpu)) {
1886 valid_mask |= SCR_TERR;
1887 }
1888 }
1889
1890 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891 valid_mask &= ~SCR_HCE;
1892
1893 /*
1894 * On ARMv7, SMD (or SCD as it is called in v7) is only
1895 * supported if EL2 exists. The bit is UNK/SBZP when
1896 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897 * when EL2 is unavailable.
1898 * On ARMv8, this bit is always available.
1899 */
1900 if (arm_feature(env, ARM_FEATURE_V7) &&
1901 !arm_feature(env, ARM_FEATURE_V8)) {
1902 valid_mask &= ~SCR_SMD;
1903 }
1904 }
1905
1906 /* Clear all-context RES0 bits. */
1907 value &= valid_mask;
1908 changed = env->cp15.scr_el3 ^ value;
1909 env->cp15.scr_el3 = value;
1910
1911 /*
1912 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913 * we must invalidate all TLBs below EL3.
1914 */
1915 if (changed & (SCR_NS | SCR_NSE)) {
1916 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917 ARMMMUIdxBit_E20_0 |
1918 ARMMMUIdxBit_E10_1 |
1919 ARMMMUIdxBit_E20_2 |
1920 ARMMMUIdxBit_E10_1_PAN |
1921 ARMMMUIdxBit_E20_2_PAN |
1922 ARMMMUIdxBit_E2));
1923 }
1924 }
1925
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928 /*
1929 * scr_write will set the RES1 bits on an AArch64-only CPU.
1930 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931 */
1932 scr_write(env, ri, 0);
1933 }
1934
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936 const ARMCPRegInfo *ri,
1937 bool isread)
1938 {
1939 if (arm_current_el(env) == 1 &&
1940 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941 return CP_ACCESS_TRAP_EL2;
1942 }
1943
1944 return CP_ACCESS_OK;
1945 }
1946
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949 ARMCPU *cpu = env_archcpu(env);
1950
1951 /*
1952 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953 * bank
1954 */
1955 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956 ri->secure & ARM_CP_SECSTATE_S);
1957
1958 return cpu->ccsidr[index];
1959 }
1960
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962 uint64_t value)
1963 {
1964 raw_write(env, ri, value & 0xf);
1965 }
1966
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969 CPUState *cs = env_cpu(env);
1970 bool el1 = arm_current_el(env) == 1;
1971 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972 uint64_t ret = 0;
1973
1974 if (hcr_el2 & HCR_IMO) {
1975 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976 ret |= CPSR_I;
1977 }
1978 } else {
1979 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980 ret |= CPSR_I;
1981 }
1982 }
1983
1984 if (hcr_el2 & HCR_FMO) {
1985 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986 ret |= CPSR_F;
1987 }
1988 } else {
1989 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990 ret |= CPSR_F;
1991 }
1992 }
1993
1994 if (hcr_el2 & HCR_AMO) {
1995 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996 ret |= CPSR_A;
1997 }
1998 }
1999
2000 return ret;
2001 }
2002
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004 bool isread)
2005 {
2006 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007 return CP_ACCESS_TRAP_EL2;
2008 }
2009
2010 return CP_ACCESS_OK;
2011 }
2012
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014 bool isread)
2015 {
2016 if (arm_feature(env, ARM_FEATURE_V8)) {
2017 return access_aa64_tid1(env, ri, isread);
2018 }
2019
2020 return CP_ACCESS_OK;
2021 }
2022
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026 .access = PL1_W, .type = ARM_CP_NOP },
2027 /*
2028 * Performance monitors are implementation defined in v7,
2029 * but with an ARM recommended set of registers, which we
2030 * follow.
2031 *
2032 * Performance registers fall into three categories:
2033 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038 */
2039 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042 .writefn = pmcntenset_write,
2043 .accessfn = pmreg_access,
2044 .fgt = FGT_PMCNTEN,
2045 .raw_writefn = raw_write },
2046 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048 .access = PL0_RW, .accessfn = pmreg_access,
2049 .fgt = FGT_PMCNTEN,
2050 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053 .access = PL0_RW,
2054 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055 .accessfn = pmreg_access,
2056 .fgt = FGT_PMCNTEN,
2057 .writefn = pmcntenclr_write,
2058 .type = ARM_CP_ALIAS | ARM_CP_IO },
2059 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061 .access = PL0_RW, .accessfn = pmreg_access,
2062 .fgt = FGT_PMCNTEN,
2063 .type = ARM_CP_ALIAS | ARM_CP_IO,
2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065 .writefn = pmcntenclr_write },
2066 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067 .access = PL0_RW, .type = ARM_CP_IO,
2068 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069 .accessfn = pmreg_access,
2070 .fgt = FGT_PMOVS,
2071 .writefn = pmovsr_write,
2072 .raw_writefn = raw_write },
2073 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075 .access = PL0_RW, .accessfn = pmreg_access,
2076 .fgt = FGT_PMOVS,
2077 .type = ARM_CP_ALIAS | ARM_CP_IO,
2078 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079 .writefn = pmovsr_write,
2080 .raw_writefn = raw_write },
2081 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082 .access = PL0_W, .accessfn = pmreg_access_swinc,
2083 .fgt = FGT_PMSWINC_EL0,
2084 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085 .writefn = pmswinc_write },
2086 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088 .access = PL0_W, .accessfn = pmreg_access_swinc,
2089 .fgt = FGT_PMSWINC_EL0,
2090 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091 .writefn = pmswinc_write },
2092 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093 .access = PL0_RW, .type = ARM_CP_ALIAS,
2094 .fgt = FGT_PMSELR_EL0,
2095 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097 .raw_writefn = raw_write},
2098 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100 .access = PL0_RW, .accessfn = pmreg_access_selr,
2101 .fgt = FGT_PMSELR_EL0,
2102 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103 .writefn = pmselr_write, .raw_writefn = raw_write, },
2104 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106 .fgt = FGT_PMCCNTR_EL0,
2107 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108 .accessfn = pmreg_access_ccntr },
2109 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112 .fgt = FGT_PMCCNTR_EL0,
2113 .type = ARM_CP_IO,
2114 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115 .readfn = pmccntr_read, .writefn = pmccntr_write,
2116 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119 .access = PL0_RW, .accessfn = pmreg_access,
2120 .fgt = FGT_PMCCFILTR_EL0,
2121 .type = ARM_CP_ALIAS | ARM_CP_IO,
2122 .resetvalue = 0, },
2123 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126 .access = PL0_RW, .accessfn = pmreg_access,
2127 .fgt = FGT_PMCCFILTR_EL0,
2128 .type = ARM_CP_IO,
2129 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130 .resetvalue = 0, },
2131 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133 .accessfn = pmreg_access,
2134 .fgt = FGT_PMEVTYPERN_EL0,
2135 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139 .accessfn = pmreg_access,
2140 .fgt = FGT_PMEVTYPERN_EL0,
2141 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144 .accessfn = pmreg_access_xevcntr,
2145 .fgt = FGT_PMEVCNTRN_EL0,
2146 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150 .accessfn = pmreg_access_xevcntr,
2151 .fgt = FGT_PMEVCNTRN_EL0,
2152 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156 .resetvalue = 0,
2157 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162 .resetvalue = 0,
2163 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165 .access = PL1_RW, .accessfn = access_tpm,
2166 .fgt = FGT_PMINTEN,
2167 .type = ARM_CP_ALIAS | ARM_CP_IO,
2168 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169 .resetvalue = 0,
2170 .writefn = pmintenset_write, .raw_writefn = raw_write },
2171 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173 .access = PL1_RW, .accessfn = access_tpm,
2174 .fgt = FGT_PMINTEN,
2175 .type = ARM_CP_IO,
2176 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177 .writefn = pmintenset_write, .raw_writefn = raw_write,
2178 .resetvalue = 0x0 },
2179 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180 .access = PL1_RW, .accessfn = access_tpm,
2181 .fgt = FGT_PMINTEN,
2182 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184 .writefn = pmintenclr_write, },
2185 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187 .access = PL1_RW, .accessfn = access_tpm,
2188 .fgt = FGT_PMINTEN,
2189 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191 .writefn = pmintenclr_write },
2192 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194 .access = PL1_R,
2195 .accessfn = access_tid4,
2196 .fgt = FGT_CCSIDR_EL1,
2197 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200 .access = PL1_RW,
2201 .accessfn = access_tid4,
2202 .fgt = FGT_CSSELR_EL1,
2203 .writefn = csselr_write, .resetvalue = 0,
2204 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205 offsetof(CPUARMState, cp15.csselr_ns) } },
2206 /*
2207 * Auxiliary ID register: this actually has an IMPDEF value but for now
2208 * just RAZ for all cores:
2209 */
2210 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212 .access = PL1_R, .type = ARM_CP_CONST,
2213 .accessfn = access_aa64_tid1,
2214 .fgt = FGT_AIDR_EL1,
2215 .resetvalue = 0 },
2216 /*
2217 * Auxiliary fault status registers: these also are IMPDEF, and we
2218 * choose to RAZ/WI for all cores.
2219 */
2220 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222 .access = PL1_RW, .accessfn = access_tvm_trvm,
2223 .fgt = FGT_AFSR0_EL1,
2224 .type = ARM_CP_CONST, .resetvalue = 0 },
2225 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227 .access = PL1_RW, .accessfn = access_tvm_trvm,
2228 .fgt = FGT_AFSR1_EL1,
2229 .type = ARM_CP_CONST, .resetvalue = 0 },
2230 /*
2231 * MAIR can just read-as-written because we don't implement caches
2232 * and so don't need to care about memory attributes.
2233 */
2234 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236 .access = PL1_RW, .accessfn = access_tvm_trvm,
2237 .fgt = FGT_MAIR_EL1,
2238 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239 .resetvalue = 0 },
2240 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243 .resetvalue = 0 },
2244 /*
2245 * For non-long-descriptor page tables these are PRRR and NMRR;
2246 * regardless they still act as reads-as-written for QEMU.
2247 */
2248 /*
2249 * MAIR0/1 are defined separately from their 64-bit counterpart which
2250 * allows them to assign the correct fieldoffset based on the endianness
2251 * handled in the field definitions.
2252 */
2253 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255 .access = PL1_RW, .accessfn = access_tvm_trvm,
2256 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257 offsetof(CPUARMState, cp15.mair0_ns) },
2258 .resetfn = arm_cp_reset_ignore },
2259 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261 .access = PL1_RW, .accessfn = access_tvm_trvm,
2262 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263 offsetof(CPUARMState, cp15.mair1_ns) },
2264 .resetfn = arm_cp_reset_ignore },
2265 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267 .fgt = FGT_ISR_EL1,
2268 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269 /* 32 bit ITLB invalidates */
2270 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272 .writefn = tlbiall_write },
2273 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275 .writefn = tlbimva_write },
2276 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278 .writefn = tlbiasid_write },
2279 /* 32 bit DTLB invalidates */
2280 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282 .writefn = tlbiall_write },
2283 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285 .writefn = tlbimva_write },
2286 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288 .writefn = tlbiasid_write },
2289 /* 32 bit TLB invalidates */
2290 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292 .writefn = tlbiall_write },
2293 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295 .writefn = tlbimva_write },
2296 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298 .writefn = tlbiasid_write },
2299 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301 .writefn = tlbimvaa_write },
2302 };
2303
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305 /* 32 bit TLB invalidates, Inner Shareable */
2306 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308 .writefn = tlbiall_is_write },
2309 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311 .writefn = tlbimva_is_write },
2312 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314 .writefn = tlbiasid_is_write },
2315 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317 .writefn = tlbimvaa_is_write },
2318 };
2319
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321 /* PMOVSSET is not implemented in v7 before v7ve */
2322 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323 .access = PL0_RW, .accessfn = pmreg_access,
2324 .fgt = FGT_PMOVS,
2325 .type = ARM_CP_ALIAS | ARM_CP_IO,
2326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327 .writefn = pmovsset_write,
2328 .raw_writefn = raw_write },
2329 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331 .access = PL0_RW, .accessfn = pmreg_access,
2332 .fgt = FGT_PMOVS,
2333 .type = ARM_CP_ALIAS | ARM_CP_IO,
2334 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335 .writefn = pmovsset_write,
2336 .raw_writefn = raw_write },
2337 };
2338
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340 uint64_t value)
2341 {
2342 value &= 1;
2343 env->teecr = value;
2344 }
2345
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347 bool isread)
2348 {
2349 /*
2350 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351 * at all, so we don't need to check whether we're v8A.
2352 */
2353 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355 return CP_ACCESS_TRAP_EL2;
2356 }
2357 return CP_ACCESS_OK;
2358 }
2359
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361 bool isread)
2362 {
2363 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364 return CP_ACCESS_TRAP;
2365 }
2366 return teecr_access(env, ri, isread);
2367 }
2368
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372 .resetvalue = 0,
2373 .writefn = teecr_write, .accessfn = teecr_access },
2374 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376 .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382 .access = PL0_RW,
2383 .fgt = FGT_TPIDR_EL0,
2384 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386 .access = PL0_RW,
2387 .fgt = FGT_TPIDR_EL0,
2388 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390 .resetfn = arm_cp_reset_ignore },
2391 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393 .access = PL0_R | PL1_W,
2394 .fgt = FGT_TPIDRRO_EL0,
2395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396 .resetvalue = 0},
2397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398 .access = PL0_R | PL1_W,
2399 .fgt = FGT_TPIDRRO_EL0,
2400 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402 .resetfn = arm_cp_reset_ignore },
2403 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405 .access = PL1_RW,
2406 .fgt = FGT_TPIDR_EL1,
2407 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409 .access = PL1_RW,
2410 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412 .resetvalue = 0 },
2413 };
2414
2415 #ifndef CONFIG_USER_ONLY
2416
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418 bool isread)
2419 {
2420 /*
2421 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422 * Writable only at the highest implemented exception level.
2423 */
2424 int el = arm_current_el(env);
2425 uint64_t hcr;
2426 uint32_t cntkctl;
2427
2428 switch (el) {
2429 case 0:
2430 hcr = arm_hcr_el2_eff(env);
2431 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432 cntkctl = env->cp15.cnthctl_el2;
2433 } else {
2434 cntkctl = env->cp15.c14_cntkctl;
2435 }
2436 if (!extract32(cntkctl, 0, 2)) {
2437 return CP_ACCESS_TRAP;
2438 }
2439 break;
2440 case 1:
2441 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442 arm_is_secure_below_el3(env)) {
2443 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444 return CP_ACCESS_TRAP_UNCATEGORIZED;
2445 }
2446 break;
2447 case 2:
2448 case 3:
2449 break;
2450 }
2451
2452 if (!isread && el < arm_highest_el(env)) {
2453 return CP_ACCESS_TRAP_UNCATEGORIZED;
2454 }
2455
2456 return CP_ACCESS_OK;
2457 }
2458
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460 bool isread)
2461 {
2462 unsigned int cur_el = arm_current_el(env);
2463 bool has_el2 = arm_is_el2_enabled(env);
2464 uint64_t hcr = arm_hcr_el2_eff(env);
2465
2466 switch (cur_el) {
2467 case 0:
2468 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472 }
2473
2474 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476 return CP_ACCESS_TRAP;
2477 }
2478
2479 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2480 if (hcr & HCR_E2H) {
2481 if (timeridx == GTIMER_PHYS &&
2482 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2483 return CP_ACCESS_TRAP_EL2;
2484 }
2485 } else {
2486 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2487 if (has_el2 && timeridx == GTIMER_PHYS &&
2488 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2489 return CP_ACCESS_TRAP_EL2;
2490 }
2491 }
2492 break;
2493
2494 case 1:
2495 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2496 if (has_el2 && timeridx == GTIMER_PHYS &&
2497 (hcr & HCR_E2H
2498 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2499 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2500 return CP_ACCESS_TRAP_EL2;
2501 }
2502 break;
2503 }
2504 return CP_ACCESS_OK;
2505 }
2506
2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2508 bool isread)
2509 {
2510 unsigned int cur_el = arm_current_el(env);
2511 bool has_el2 = arm_is_el2_enabled(env);
2512 uint64_t hcr = arm_hcr_el2_eff(env);
2513
2514 switch (cur_el) {
2515 case 0:
2516 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2518 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2519 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520 }
2521
2522 /*
2523 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2524 * EL0 if EL0[PV]TEN is zero.
2525 */
2526 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2527 return CP_ACCESS_TRAP;
2528 }
2529 /* fall through */
2530
2531 case 1:
2532 if (has_el2 && timeridx == GTIMER_PHYS) {
2533 if (hcr & HCR_E2H) {
2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2535 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2536 return CP_ACCESS_TRAP_EL2;
2537 }
2538 } else {
2539 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2540 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2541 return CP_ACCESS_TRAP_EL2;
2542 }
2543 }
2544 }
2545 break;
2546 }
2547 return CP_ACCESS_OK;
2548 }
2549
2550 static CPAccessResult gt_pct_access(CPUARMState *env,
2551 const ARMCPRegInfo *ri,
2552 bool isread)
2553 {
2554 return gt_counter_access(env, GTIMER_PHYS, isread);
2555 }
2556
2557 static CPAccessResult gt_vct_access(CPUARMState *env,
2558 const ARMCPRegInfo *ri,
2559 bool isread)
2560 {
2561 return gt_counter_access(env, GTIMER_VIRT, isread);
2562 }
2563
2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565 bool isread)
2566 {
2567 return gt_timer_access(env, GTIMER_PHYS, isread);
2568 }
2569
2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2571 bool isread)
2572 {
2573 return gt_timer_access(env, GTIMER_VIRT, isread);
2574 }
2575
2576 static CPAccessResult gt_stimer_access(CPUARMState *env,
2577 const ARMCPRegInfo *ri,
2578 bool isread)
2579 {
2580 /*
2581 * The AArch64 register view of the secure physical timer is
2582 * always accessible from EL3, and configurably accessible from
2583 * Secure EL1.
2584 */
2585 switch (arm_current_el(env)) {
2586 case 1:
2587 if (!arm_is_secure(env)) {
2588 return CP_ACCESS_TRAP;
2589 }
2590 if (!(env->cp15.scr_el3 & SCR_ST)) {
2591 return CP_ACCESS_TRAP_EL3;
2592 }
2593 return CP_ACCESS_OK;
2594 case 0:
2595 case 2:
2596 return CP_ACCESS_TRAP;
2597 case 3:
2598 return CP_ACCESS_OK;
2599 default:
2600 g_assert_not_reached();
2601 }
2602 }
2603
2604 static uint64_t gt_get_countervalue(CPUARMState *env)
2605 {
2606 ARMCPU *cpu = env_archcpu(env);
2607
2608 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2609 }
2610
2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2612 {
2613 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2614
2615 if (gt->ctl & 1) {
2616 /*
2617 * Timer enabled: calculate and set current ISTATUS, irq, and
2618 * reset timer to when ISTATUS next has to change
2619 */
2620 uint64_t offset = timeridx == GTIMER_VIRT ?
2621 cpu->env.cp15.cntvoff_el2 : 0;
2622 uint64_t count = gt_get_countervalue(&cpu->env);
2623 /* Note that this must be unsigned 64 bit arithmetic: */
2624 int istatus = count - offset >= gt->cval;
2625 uint64_t nexttick;
2626 int irqstate;
2627
2628 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2629
2630 irqstate = (istatus && !(gt->ctl & 2));
2631 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632
2633 if (istatus) {
2634 /* Next transition is when count rolls back over to zero */
2635 nexttick = UINT64_MAX;
2636 } else {
2637 /* Next transition is when we hit cval */
2638 nexttick = gt->cval + offset;
2639 }
2640 /*
2641 * Note that the desired next expiry time might be beyond the
2642 * signed-64-bit range of a QEMUTimer -- in this case we just
2643 * set the timer for as far in the future as possible. When the
2644 * timer expires we will reset the timer for any remaining period.
2645 */
2646 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2647 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2648 } else {
2649 timer_mod(cpu->gt_timer[timeridx], nexttick);
2650 }
2651 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2652 } else {
2653 /* Timer disabled: ISTATUS and timer output always clear */
2654 gt->ctl &= ~4;
2655 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2656 timer_del(cpu->gt_timer[timeridx]);
2657 trace_arm_gt_recalc_disabled(timeridx);
2658 }
2659 }
2660
2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2662 int timeridx)
2663 {
2664 ARMCPU *cpu = env_archcpu(env);
2665
2666 timer_del(cpu->gt_timer[timeridx]);
2667 }
2668
2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2670 {
2671 return gt_get_countervalue(env);
2672 }
2673
2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2675 {
2676 uint64_t hcr;
2677
2678 switch (arm_current_el(env)) {
2679 case 2:
2680 hcr = arm_hcr_el2_eff(env);
2681 if (hcr & HCR_E2H) {
2682 return 0;
2683 }
2684 break;
2685 case 0:
2686 hcr = arm_hcr_el2_eff(env);
2687 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2688 return 0;
2689 }
2690 break;
2691 }
2692
2693 return env->cp15.cntvoff_el2;
2694 }
2695
2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2699 }
2700
2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702 int timeridx,
2703 uint64_t value)
2704 {
2705 trace_arm_gt_cval_write(timeridx, value);
2706 env->cp15.c14_timer[timeridx].cval = value;
2707 gt_recalc_timer(env_archcpu(env), timeridx);
2708 }
2709
2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2711 int timeridx)
2712 {
2713 uint64_t offset = 0;
2714
2715 switch (timeridx) {
2716 case GTIMER_VIRT:
2717 case GTIMER_HYPVIRT:
2718 offset = gt_virt_cnt_offset(env);
2719 break;
2720 }
2721
2722 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2723 (gt_get_countervalue(env) - offset));
2724 }
2725
2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727 int timeridx,
2728 uint64_t value)
2729 {
2730 uint64_t offset = 0;
2731
2732 switch (timeridx) {
2733 case GTIMER_VIRT:
2734 case GTIMER_HYPVIRT:
2735 offset = gt_virt_cnt_offset(env);
2736 break;
2737 }
2738
2739 trace_arm_gt_tval_write(timeridx, value);
2740 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2741 sextract64(value, 0, 32);
2742 gt_recalc_timer(env_archcpu(env), timeridx);
2743 }
2744
2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2746 int timeridx,
2747 uint64_t value)
2748 {
2749 ARMCPU *cpu = env_archcpu(env);
2750 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2751
2752 trace_arm_gt_ctl_write(timeridx, value);
2753 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2754 if ((oldval ^ value) & 1) {
2755 /* Enable toggled */
2756 gt_recalc_timer(cpu, timeridx);
2757 } else if ((oldval ^ value) & 2) {
2758 /*
2759 * IMASK toggled: don't need to recalculate,
2760 * just set the interrupt line based on ISTATUS
2761 */
2762 int irqstate = (oldval & 4) && !(value & 2);
2763
2764 trace_arm_gt_imask_toggle(timeridx, irqstate);
2765 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2766 }
2767 }
2768
2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2770 {
2771 gt_timer_reset(env, ri, GTIMER_PHYS);
2772 }
2773
2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775 uint64_t value)
2776 {
2777 gt_cval_write(env, ri, GTIMER_PHYS, value);
2778 }
2779
2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2781 {
2782 return gt_tval_read(env, ri, GTIMER_PHYS);
2783 }
2784
2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786 uint64_t value)
2787 {
2788 gt_tval_write(env, ri, GTIMER_PHYS, value);
2789 }
2790
2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792 uint64_t value)
2793 {
2794 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2795 }
2796
2797 static int gt_phys_redir_timeridx(CPUARMState *env)
2798 {
2799 switch (arm_mmu_idx(env)) {
2800 case ARMMMUIdx_E20_0:
2801 case ARMMMUIdx_E20_2:
2802 case ARMMMUIdx_E20_2_PAN:
2803 return GTIMER_HYP;
2804 default:
2805 return GTIMER_PHYS;
2806 }
2807 }
2808
2809 static int gt_virt_redir_timeridx(CPUARMState *env)
2810 {
2811 switch (arm_mmu_idx(env)) {
2812 case ARMMMUIdx_E20_0:
2813 case ARMMMUIdx_E20_2:
2814 case ARMMMUIdx_E20_2_PAN:
2815 return GTIMER_HYPVIRT;
2816 default:
2817 return GTIMER_VIRT;
2818 }
2819 }
2820
2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2822 const ARMCPRegInfo *ri)
2823 {
2824 int timeridx = gt_phys_redir_timeridx(env);
2825 return env->cp15.c14_timer[timeridx].cval;
2826 }
2827
2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829 uint64_t value)
2830 {
2831 int timeridx = gt_phys_redir_timeridx(env);
2832 gt_cval_write(env, ri, timeridx, value);
2833 }
2834
2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2836 const ARMCPRegInfo *ri)
2837 {
2838 int timeridx = gt_phys_redir_timeridx(env);
2839 return gt_tval_read(env, ri, timeridx);
2840 }
2841
2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843 uint64_t value)
2844 {
2845 int timeridx = gt_phys_redir_timeridx(env);
2846 gt_tval_write(env, ri, timeridx, value);
2847 }
2848
2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2850 const ARMCPRegInfo *ri)
2851 {
2852 int timeridx = gt_phys_redir_timeridx(env);
2853 return env->cp15.c14_timer[timeridx].ctl;
2854 }
2855
2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857 uint64_t value)
2858 {
2859 int timeridx = gt_phys_redir_timeridx(env);
2860 gt_ctl_write(env, ri, timeridx, value);
2861 }
2862
2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2864 {
2865 gt_timer_reset(env, ri, GTIMER_VIRT);
2866 }
2867
2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869 uint64_t value)
2870 {
2871 gt_cval_write(env, ri, GTIMER_VIRT, value);
2872 }
2873
2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876 return gt_tval_read(env, ri, GTIMER_VIRT);
2877 }
2878
2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880 uint64_t value)
2881 {
2882 gt_tval_write(env, ri, GTIMER_VIRT, value);
2883 }
2884
2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886 uint64_t value)
2887 {
2888 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2889 }
2890
2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892 uint64_t value)
2893 {
2894 ARMCPU *cpu = env_archcpu(env);
2895
2896 trace_arm_gt_cntvoff_write(value);
2897 raw_write(env, ri, value);
2898 gt_recalc_timer(cpu, GTIMER_VIRT);
2899 }
2900
2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2902 const ARMCPRegInfo *ri)
2903 {
2904 int timeridx = gt_virt_redir_timeridx(env);
2905 return env->cp15.c14_timer[timeridx].cval;
2906 }
2907
2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909 uint64_t value)
2910 {
2911 int timeridx = gt_virt_redir_timeridx(env);
2912 gt_cval_write(env, ri, timeridx, value);
2913 }
2914
2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2916 const ARMCPRegInfo *ri)
2917 {
2918 int timeridx = gt_virt_redir_timeridx(env);
2919 return gt_tval_read(env, ri, timeridx);
2920 }
2921
2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923 uint64_t value)
2924 {
2925 int timeridx = gt_virt_redir_timeridx(env);
2926 gt_tval_write(env, ri, timeridx, value);
2927 }
2928
2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2930 const ARMCPRegInfo *ri)
2931 {
2932 int timeridx = gt_virt_redir_timeridx(env);
2933 return env->cp15.c14_timer[timeridx].ctl;
2934 }
2935
2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937 uint64_t value)
2938 {
2939 int timeridx = gt_virt_redir_timeridx(env);
2940 gt_ctl_write(env, ri, timeridx, value);
2941 }
2942
2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2944 {
2945 gt_timer_reset(env, ri, GTIMER_HYP);
2946 }
2947
2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2950 {
2951 gt_cval_write(env, ri, GTIMER_HYP, value);
2952 }
2953
2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956 return gt_tval_read(env, ri, GTIMER_HYP);
2957 }
2958
2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960 uint64_t value)
2961 {
2962 gt_tval_write(env, ri, GTIMER_HYP, value);
2963 }
2964
2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966 uint64_t value)
2967 {
2968 gt_ctl_write(env, ri, GTIMER_HYP, value);
2969 }
2970
2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973 gt_timer_reset(env, ri, GTIMER_SEC);
2974 }
2975
2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2978 {
2979 gt_cval_write(env, ri, GTIMER_SEC, value);
2980 }
2981
2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984 return gt_tval_read(env, ri, GTIMER_SEC);
2985 }
2986
2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988 uint64_t value)
2989 {
2990 gt_tval_write(env, ri, GTIMER_SEC, value);
2991 }
2992
2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994 uint64_t value)
2995 {
2996 gt_ctl_write(env, ri, GTIMER_SEC, value);
2997 }
2998
2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3002 }
3003
3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005 uint64_t value)
3006 {
3007 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3008 }
3009
3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3013 }
3014
3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016 uint64_t value)
3017 {
3018 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020
3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022 uint64_t value)
3023 {
3024 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3025 }
3026
3027 void arm_gt_ptimer_cb(void *opaque)
3028 {
3029 ARMCPU *cpu = opaque;
3030
3031 gt_recalc_timer(cpu, GTIMER_PHYS);
3032 }
3033
3034 void arm_gt_vtimer_cb(void *opaque)
3035 {
3036 ARMCPU *cpu = opaque;
3037
3038 gt_recalc_timer(cpu, GTIMER_VIRT);
3039 }
3040
3041 void arm_gt_htimer_cb(void *opaque)
3042 {
3043 ARMCPU *cpu = opaque;
3044
3045 gt_recalc_timer(cpu, GTIMER_HYP);
3046 }
3047
3048 void arm_gt_stimer_cb(void *opaque)
3049 {
3050 ARMCPU *cpu = opaque;
3051
3052 gt_recalc_timer(cpu, GTIMER_SEC);
3053 }
3054
3055 void arm_gt_hvtimer_cb(void *opaque)
3056 {
3057 ARMCPU *cpu = opaque;
3058
3059 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3060 }
3061
3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3063 {
3064 ARMCPU *cpu = env_archcpu(env);
3065
3066 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3067 }
3068
3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3070 /*
3071 * Note that CNTFRQ is purely reads-as-written for the benefit
3072 * of software; writing it doesn't actually change the timer frequency.
3073 * Our reset value matches the fixed frequency we implement the timer at.
3074 */
3075 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3076 .type = ARM_CP_ALIAS,
3077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3078 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3079 },
3080 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3082 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3084 .resetfn = arm_gt_cntfrq_reset,
3085 },
3086 /* overall control: mostly access permissions */
3087 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3088 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3089 .access = PL1_RW,
3090 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3091 .resetvalue = 0,
3092 },
3093 /* per-timer control */
3094 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3095 .secure = ARM_CP_SECSTATE_NS,
3096 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3097 .accessfn = gt_ptimer_access,
3098 .fieldoffset = offsetoflow32(CPUARMState,
3099 cp15.c14_timer[GTIMER_PHYS].ctl),
3100 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3101 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3102 },
3103 { .name = "CNTP_CTL_S",
3104 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3105 .secure = ARM_CP_SECSTATE_S,
3106 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3107 .accessfn = gt_ptimer_access,
3108 .fieldoffset = offsetoflow32(CPUARMState,
3109 cp15.c14_timer[GTIMER_SEC].ctl),
3110 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3111 },
3112 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3113 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3114 .type = ARM_CP_IO, .access = PL0_RW,
3115 .accessfn = gt_ptimer_access,
3116 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3117 .resetvalue = 0,
3118 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3119 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3120 },
3121 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3122 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3123 .accessfn = gt_vtimer_access,
3124 .fieldoffset = offsetoflow32(CPUARMState,
3125 cp15.c14_timer[GTIMER_VIRT].ctl),
3126 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3127 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3128 },
3129 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3130 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3131 .type = ARM_CP_IO, .access = PL0_RW,
3132 .accessfn = gt_vtimer_access,
3133 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3134 .resetvalue = 0,
3135 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3136 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3137 },
3138 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3139 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3140 .secure = ARM_CP_SECSTATE_NS,
3141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3142 .accessfn = gt_ptimer_access,
3143 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3144 },
3145 { .name = "CNTP_TVAL_S",
3146 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3147 .secure = ARM_CP_SECSTATE_S,
3148 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149 .accessfn = gt_ptimer_access,
3150 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3151 },
3152 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3153 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3154 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3155 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3156 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3157 },
3158 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160 .accessfn = gt_vtimer_access,
3161 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162 },
3163 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3164 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3165 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3166 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3167 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3168 },
3169 /* The counter itself */
3170 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3171 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3172 .accessfn = gt_pct_access,
3173 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3174 },
3175 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3176 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3177 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3178 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3179 },
3180 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3181 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3182 .accessfn = gt_vct_access,
3183 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3184 },
3185 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3187 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3188 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3189 },
3190 /* Comparison value, indicating when the timer goes off */
3191 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3192 .secure = ARM_CP_SECSTATE_NS,
3193 .access = PL0_RW,
3194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3196 .accessfn = gt_ptimer_access,
3197 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3198 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3199 },
3200 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3201 .secure = ARM_CP_SECSTATE_S,
3202 .access = PL0_RW,
3203 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3204 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3205 .accessfn = gt_ptimer_access,
3206 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3207 },
3208 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3210 .access = PL0_RW,
3211 .type = ARM_CP_IO,
3212 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3213 .resetvalue = 0, .accessfn = gt_ptimer_access,
3214 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3215 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3216 },
3217 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3218 .access = PL0_RW,
3219 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3220 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3221 .accessfn = gt_vtimer_access,
3222 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3223 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3224 },
3225 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3226 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3227 .access = PL0_RW,
3228 .type = ARM_CP_IO,
3229 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3230 .resetvalue = 0, .accessfn = gt_vtimer_access,
3231 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3232 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3233 },
3234 /*
3235 * Secure timer -- this is actually restricted to only EL3
3236 * and configurably Secure-EL1 via the accessfn.
3237 */
3238 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3240 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3241 .accessfn = gt_stimer_access,
3242 .readfn = gt_sec_tval_read,
3243 .writefn = gt_sec_tval_write,
3244 .resetfn = gt_sec_timer_reset,
3245 },
3246 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3248 .type = ARM_CP_IO, .access = PL1_RW,
3249 .accessfn = gt_stimer_access,
3250 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3251 .resetvalue = 0,
3252 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3253 },
3254 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3255 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3256 .type = ARM_CP_IO, .access = PL1_RW,
3257 .accessfn = gt_stimer_access,
3258 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3259 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3260 },
3261 };
3262
3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3264 bool isread)
3265 {
3266 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3267 return CP_ACCESS_TRAP;
3268 }
3269 return CP_ACCESS_OK;
3270 }
3271
3272 #else
3273
3274 /*
3275 * In user-mode most of the generic timer registers are inaccessible
3276 * however modern kernels (4.12+) allow access to cntvct_el0
3277 */
3278
3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3280 {
3281 ARMCPU *cpu = env_archcpu(env);
3282
3283 /*
3284 * Currently we have no support for QEMUTimer in linux-user so we
3285 * can't call gt_get_countervalue(env), instead we directly
3286 * call the lower level functions.
3287 */
3288 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3289 }
3290
3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3292 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3294 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3295 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3296 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3297 },
3298 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3300 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3301 .readfn = gt_virt_cnt_read,
3302 },
3303 };
3304
3305 #endif
3306
3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3308 {
3309 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3310 raw_write(env, ri, value);
3311 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3312 raw_write(env, ri, value & 0xfffff6ff);
3313 } else {
3314 raw_write(env, ri, value & 0xfffff1ff);
3315 }
3316 }
3317
3318 #ifndef CONFIG_USER_ONLY
3319 /* get_phys_addr() isn't present for user-mode-only targets */
3320
3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322 bool isread)
3323 {
3324 if (ri->opc2 & 4) {
3325 /*
3326 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3327 * Secure EL1 (which can only happen if EL3 is AArch64).
3328 * They are simply UNDEF if executed from NS EL1.
3329 * They function normally from EL2 or EL3.
3330 */
3331 if (arm_current_el(env) == 1) {
3332 if (arm_is_secure_below_el3(env)) {
3333 if (env->cp15.scr_el3 & SCR_EEL2) {
3334 return CP_ACCESS_TRAP_EL2;
3335 }
3336 return CP_ACCESS_TRAP_EL3;
3337 }
3338 return CP_ACCESS_TRAP_UNCATEGORIZED;
3339 }
3340 }
3341 return CP_ACCESS_OK;
3342 }
3343
3344 #ifdef CONFIG_TCG
3345 static int par_el1_shareability(GetPhysAddrResult *res)
3346 {
3347 /*
3348 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3349 * memory -- see pseudocode PAREncodeShareability().
3350 */
3351 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3352 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3353 return 2;
3354 }
3355 return res->cacheattrs.shareability;
3356 }
3357
3358 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3359 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3360 bool is_secure)
3361 {
3362 bool ret;
3363 uint64_t par64;
3364 bool format64 = false;
3365 ARMMMUFaultInfo fi = {};
3366 GetPhysAddrResult res = {};
3367
3368 /*
3369 * I_MXTJT: Granule protection checks are not performed on the final address
3370 * of a successful translation.
3371 */
3372 ret = get_phys_addr_with_secure_nogpc(env, value, access_type, mmu_idx,
3373 is_secure, &res, &fi);
3374
3375 /*
3376 * ATS operations only do S1 or S1+S2 translations, so we never
3377 * have to deal with the ARMCacheAttrs format for S2 only.
3378 */
3379 assert(!res.cacheattrs.is_s2_format);
3380
3381 if (ret) {
3382 /*
3383 * Some kinds of translation fault must cause exceptions rather
3384 * than being reported in the PAR.
3385 */
3386 int current_el = arm_current_el(env);
3387 int target_el;
3388 uint32_t syn, fsr, fsc;
3389 bool take_exc = false;
3390
3391 if (fi.s1ptw && current_el == 1
3392 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3393 /*
3394 * Synchronous stage 2 fault on an access made as part of the
3395 * translation table walk for AT S1E0* or AT S1E1* insn
3396 * executed from NS EL1. If this is a synchronous external abort
3397 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3398 * to EL3. Otherwise the fault is taken as an exception to EL2,
3399 * and HPFAR_EL2 holds the faulting IPA.
3400 */
3401 if (fi.type == ARMFault_SyncExternalOnWalk &&
3402 (env->cp15.scr_el3 & SCR_EA)) {
3403 target_el = 3;
3404 } else {
3405 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3406 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3407 env->cp15.hpfar_el2 |= HPFAR_NS;
3408 }
3409 target_el = 2;
3410 }
3411 take_exc = true;
3412 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3413 /*
3414 * Synchronous external aborts during a translation table walk
3415 * are taken as Data Abort exceptions.
3416 */
3417 if (fi.stage2) {
3418 if (current_el == 3) {
3419 target_el = 3;
3420 } else {
3421 target_el = 2;
3422 }
3423 } else {
3424 target_el = exception_target_el(env);
3425 }
3426 take_exc = true;
3427 }
3428
3429 if (take_exc) {
3430 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3431 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3432 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3433 fsr = arm_fi_to_lfsc(&fi);
3434 fsc = extract32(fsr, 0, 6);
3435 } else {
3436 fsr = arm_fi_to_sfsc(&fi);
3437 fsc = 0x3f;
3438 }
3439 /*
3440 * Report exception with ESR indicating a fault due to a
3441 * translation table walk for a cache maintenance instruction.
3442 */
3443 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3444 fi.ea, 1, fi.s1ptw, 1, fsc);
3445 env->exception.vaddress = value;
3446 env->exception.fsr = fsr;
3447 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3448 }
3449 }
3450
3451 if (is_a64(env)) {
3452 format64 = true;
3453 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3454 /*
3455 * ATS1Cxx:
3456 * * TTBCR.EAE determines whether the result is returned using the
3457 * 32-bit or the 64-bit PAR format
3458 * * Instructions executed in Hyp mode always use the 64bit format
3459 *
3460 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3461 * * The Non-secure TTBCR.EAE bit is set to 1
3462 * * The implementation includes EL2, and the value of HCR.VM is 1
3463 *
3464 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3465 *
3466 * ATS1Hx always uses the 64bit format.
3467 */
3468 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3469
3470 if (arm_feature(env, ARM_FEATURE_EL2)) {
3471 if (mmu_idx == ARMMMUIdx_E10_0 ||
3472 mmu_idx == ARMMMUIdx_E10_1 ||
3473 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3474 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3475 } else {
3476 format64 |= arm_current_el(env) == 2;
3477 }
3478 }
3479 }
3480
3481 if (format64) {
3482 /* Create a 64-bit PAR */
3483 par64 = (1 << 11); /* LPAE bit always set */
3484 if (!ret) {
3485 par64 |= res.f.phys_addr & ~0xfffULL;
3486 if (!res.f.attrs.secure) {
3487 par64 |= (1 << 9); /* NS */
3488 }
3489 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3490 par64 |= par_el1_shareability(&res) << 7; /* SH */
3491 } else {
3492 uint32_t fsr = arm_fi_to_lfsc(&fi);
3493
3494 par64 |= 1; /* F */
3495 par64 |= (fsr & 0x3f) << 1; /* FS */
3496 if (fi.stage2) {
3497 par64 |= (1 << 9); /* S */
3498 }
3499 if (fi.s1ptw) {
3500 par64 |= (1 << 8); /* PTW */
3501 }
3502 }
3503 } else {
3504 /*
3505 * fsr is a DFSR/IFSR value for the short descriptor
3506 * translation table format (with WnR always clear).
3507 * Convert it to a 32-bit PAR.
3508 */
3509 if (!ret) {
3510 /* We do not set any attribute bits in the PAR */
3511 if (res.f.lg_page_size == 24
3512 && arm_feature(env, ARM_FEATURE_V7)) {
3513 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3514 } else {
3515 par64 = res.f.phys_addr & 0xfffff000;
3516 }
3517 if (!res.f.attrs.secure) {
3518 par64 |= (1 << 9); /* NS */
3519 }
3520 } else {
3521 uint32_t fsr = arm_fi_to_sfsc(&fi);
3522
3523 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3524 ((fsr & 0xf) << 1) | 1;
3525 }
3526 }
3527 return par64;
3528 }
3529 #endif /* CONFIG_TCG */
3530
3531 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3532 {
3533 #ifdef CONFIG_TCG
3534 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3535 uint64_t par64;
3536 ARMMMUIdx mmu_idx;
3537 int el = arm_current_el(env);
3538 bool secure = arm_is_secure_below_el3(env);
3539
3540 switch (ri->opc2 & 6) {
3541 case 0:
3542 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3543 switch (el) {
3544 case 3:
3545 mmu_idx = ARMMMUIdx_E3;
3546 secure = true;
3547 break;
3548 case 2:
3549 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3550 /* fall through */
3551 case 1:
3552 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3553 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3554 } else {
3555 mmu_idx = ARMMMUIdx_Stage1_E1;
3556 }
3557 break;
3558 default:
3559 g_assert_not_reached();
3560 }
3561 break;
3562 case 2:
3563 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3564 switch (el) {
3565 case 3:
3566 mmu_idx = ARMMMUIdx_E10_0;
3567 secure = true;
3568 break;
3569 case 2:
3570 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3571 mmu_idx = ARMMMUIdx_Stage1_E0;
3572 break;
3573 case 1:
3574 mmu_idx = ARMMMUIdx_Stage1_E0;
3575 break;
3576 default:
3577 g_assert_not_reached();
3578 }
3579 break;
3580 case 4:
3581 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3582 mmu_idx = ARMMMUIdx_E10_1;
3583 secure = false;
3584 break;
3585 case 6:
3586 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3587 mmu_idx = ARMMMUIdx_E10_0;
3588 secure = false;
3589 break;
3590 default:
3591 g_assert_not_reached();
3592 }
3593
3594 par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3595
3596 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3597 #else
3598 /* Handled by hardware accelerator. */
3599 g_assert_not_reached();
3600 #endif /* CONFIG_TCG */
3601 }
3602
3603 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3604 uint64_t value)
3605 {
3606 #ifdef CONFIG_TCG
3607 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3608 uint64_t par64;
3609
3610 /* There is no SecureEL2 for AArch32. */
3611 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3612
3613 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3614 #else
3615 /* Handled by hardware accelerator. */
3616 g_assert_not_reached();
3617 #endif /* CONFIG_TCG */
3618 }
3619
3620 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3621 bool isread)
3622 {
3623 if (arm_current_el(env) == 3 &&
3624 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3625 return CP_ACCESS_TRAP;
3626 }
3627 return CP_ACCESS_OK;
3628 }
3629
3630 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3631 uint64_t value)
3632 {
3633 #ifdef CONFIG_TCG
3634 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3635 ARMMMUIdx mmu_idx;
3636 int secure = arm_is_secure_below_el3(env);
3637 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3638 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3639
3640 switch (ri->opc2 & 6) {
3641 case 0:
3642 switch (ri->opc1) {
3643 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3644 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3645 mmu_idx = regime_e20 ?
3646 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3647 } else {
3648 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3649 }
3650 break;
3651 case 4: /* AT S1E2R, AT S1E2W */
3652 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3653 break;
3654 case 6: /* AT S1E3R, AT S1E3W */
3655 mmu_idx = ARMMMUIdx_E3;
3656 secure = true;
3657 break;
3658 default:
3659 g_assert_not_reached();
3660 }
3661 break;
3662 case 2: /* AT S1E0R, AT S1E0W */
3663 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3664 break;
3665 case 4: /* AT S12E1R, AT S12E1W */
3666 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3667 break;
3668 case 6: /* AT S12E0R, AT S12E0W */
3669 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3670 break;
3671 default:
3672 g_assert_not_reached();
3673 }
3674
3675 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3676 mmu_idx, secure);
3677 #else
3678 /* Handled by hardware accelerator. */
3679 g_assert_not_reached();
3680 #endif /* CONFIG_TCG */
3681 }
3682 #endif
3683
3684 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3685 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3686 .access = PL1_RW, .resetvalue = 0,
3687 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3688 offsetoflow32(CPUARMState, cp15.par_ns) },
3689 .writefn = par_write },
3690 #ifndef CONFIG_USER_ONLY
3691 /* This underdecoding is safe because the reginfo is NO_RAW. */
3692 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3693 .access = PL1_W, .accessfn = ats_access,
3694 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3695 #endif
3696 };
3697
3698 /* Return basic MPU access permission bits. */
3699 static uint32_t simple_mpu_ap_bits(uint32_t val)
3700 {
3701 uint32_t ret;
3702 uint32_t mask;
3703 int i;
3704 ret = 0;
3705 mask = 3;
3706 for (i = 0; i < 16; i += 2) {
3707 ret |= (val >> i) & mask;
3708 mask <<= 2;
3709 }
3710 return ret;
3711 }
3712
3713 /* Pad basic MPU access permission bits to extended format. */
3714 static uint32_t extended_mpu_ap_bits(uint32_t val)
3715 {
3716 uint32_t ret;
3717 uint32_t mask;
3718 int i;
3719 ret = 0;
3720 mask = 3;
3721 for (i = 0; i < 16; i += 2) {
3722 ret |= (val & mask) << i;
3723 mask <<= 2;
3724 }
3725 return ret;
3726 }
3727
3728 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3729 uint64_t value)
3730 {
3731 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3732 }
3733
3734 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3735 {
3736 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3737 }
3738
3739 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740 uint64_t value)
3741 {
3742 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3743 }
3744
3745 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3746 {
3747 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3748 }
3749
3750 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3751 {
3752 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3753
3754 if (!u32p) {
3755 return 0;
3756 }
3757
3758 u32p += env->pmsav7.rnr[M_REG_NS];
3759 return *u32p;
3760 }
3761
3762 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3763 uint64_t value)
3764 {
3765 ARMCPU *cpu = env_archcpu(env);
3766 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3767
3768 if (!u32p) {
3769 return;
3770 }
3771
3772 u32p += env->pmsav7.rnr[M_REG_NS];
3773 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3774 *u32p = value;
3775 }
3776
3777 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3778 uint64_t value)
3779 {
3780 ARMCPU *cpu = env_archcpu(env);
3781 uint32_t nrgs = cpu->pmsav7_dregion;
3782
3783 if (value >= nrgs) {
3784 qemu_log_mask(LOG_GUEST_ERROR,
3785 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3786 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3787 return;
3788 }
3789
3790 raw_write(env, ri, value);
3791 }
3792
3793 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3794 uint64_t value)
3795 {
3796 ARMCPU *cpu = env_archcpu(env);
3797
3798 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3799 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3800 }
3801
3802 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3803 {
3804 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3805 }
3806
3807 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3808 uint64_t value)
3809 {
3810 ARMCPU *cpu = env_archcpu(env);
3811
3812 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3813 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3814 }
3815
3816 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3817 {
3818 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3819 }
3820
3821 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3822 uint64_t value)
3823 {
3824 ARMCPU *cpu = env_archcpu(env);
3825
3826 /*
3827 * Ignore writes that would select not implemented region.
3828 * This is architecturally UNPREDICTABLE.
3829 */
3830 if (value >= cpu->pmsav7_dregion) {
3831 return;
3832 }
3833
3834 env->pmsav7.rnr[M_REG_NS] = value;
3835 }
3836
3837 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3838 uint64_t value)
3839 {
3840 ARMCPU *cpu = env_archcpu(env);
3841
3842 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3843 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3844 }
3845
3846 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3847 {
3848 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3849 }
3850
3851 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3852 uint64_t value)
3853 {
3854 ARMCPU *cpu = env_archcpu(env);
3855
3856 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3857 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3858 }
3859
3860 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3861 {
3862 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3863 }
3864
3865 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3866 uint64_t value)
3867 {
3868 uint32_t n;
3869 uint32_t bit;
3870 ARMCPU *cpu = env_archcpu(env);
3871
3872 /* Ignore writes to unimplemented regions */
3873 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3874 value &= MAKE_64BIT_MASK(0, rmax);
3875
3876 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3877
3878 /* Register alias is only valid for first 32 indexes */
3879 for (n = 0; n < rmax; ++n) {
3880 bit = extract32(value, n, 1);
3881 env->pmsav8.hprlar[n] = deposit32(
3882 env->pmsav8.hprlar[n], 0, 1, bit);
3883 }
3884 }
3885
3886 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3887 {
3888 uint32_t n;
3889 uint32_t result = 0x0;
3890 ARMCPU *cpu = env_archcpu(env);
3891
3892 /* Register alias is only valid for first 32 indexes */
3893 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3894 if (env->pmsav8.hprlar[n] & 0x1) {
3895 result |= (0x1 << n);
3896 }
3897 }
3898 return result;
3899 }
3900
3901 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3902 uint64_t value)
3903 {
3904 ARMCPU *cpu = env_archcpu(env);
3905
3906 /*
3907 * Ignore writes that would select not implemented region.
3908 * This is architecturally UNPREDICTABLE.
3909 */
3910 if (value >= cpu->pmsav8r_hdregion) {
3911 return;
3912 }
3913
3914 env->pmsav8.hprselr = value;
3915 }
3916
3917 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3918 uint64_t value)
3919 {
3920 ARMCPU *cpu = env_archcpu(env);
3921 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3922 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3923
3924 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3925
3926 if (ri->opc1 & 4) {
3927 if (index >= cpu->pmsav8r_hdregion) {
3928 return;
3929 }
3930 if (ri->opc2 & 0x1) {
3931 env->pmsav8.hprlar[index] = value;
3932 } else {
3933 env->pmsav8.hprbar[index] = value;
3934 }
3935 } else {
3936 if (index >= cpu->pmsav7_dregion) {
3937 return;
3938 }
3939 if (ri->opc2 & 0x1) {
3940 env->pmsav8.rlar[M_REG_NS][index] = value;
3941 } else {
3942 env->pmsav8.rbar[M_REG_NS][index] = value;
3943 }
3944 }
3945 }
3946
3947 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3948 {
3949 ARMCPU *cpu = env_archcpu(env);
3950 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3951 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3952
3953 if (ri->opc1 & 4) {
3954 if (index >= cpu->pmsav8r_hdregion) {
3955 return 0x0;
3956 }
3957 if (ri->opc2 & 0x1) {
3958 return env->pmsav8.hprlar[index];
3959 } else {
3960 return env->pmsav8.hprbar[index];
3961 }
3962 } else {
3963 if (index >= cpu->pmsav7_dregion) {
3964 return 0x0;
3965 }
3966 if (ri->opc2 & 0x1) {
3967 return env->pmsav8.rlar[M_REG_NS][index];
3968 } else {
3969 return env->pmsav8.rbar[M_REG_NS][index];
3970 }
3971 }
3972 }
3973
3974 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3975 { .name = "PRBAR",
3976 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3977 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3978 .accessfn = access_tvm_trvm,
3979 .readfn = prbar_read, .writefn = prbar_write },
3980 { .name = "PRLAR",
3981 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3982 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3983 .accessfn = access_tvm_trvm,
3984 .readfn = prlar_read, .writefn = prlar_write },
3985 { .name = "PRSELR", .resetvalue = 0,
3986 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3987 .access = PL1_RW, .accessfn = access_tvm_trvm,
3988 .writefn = prselr_write,
3989 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3990 { .name = "HPRBAR", .resetvalue = 0,
3991 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3992 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3993 .readfn = hprbar_read, .writefn = hprbar_write },
3994 { .name = "HPRLAR",
3995 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3996 .access = PL2_RW, .type = ARM_CP_NO_RAW,
3997 .readfn = hprlar_read, .writefn = hprlar_write },
3998 { .name = "HPRSELR", .resetvalue = 0,
3999 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4000 .access = PL2_RW,
4001 .writefn = hprselr_write,
4002 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4003 { .name = "HPRENR",
4004 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4005 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4006 .readfn = hprenr_read, .writefn = hprenr_write },
4007 };
4008
4009 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4010 /*
4011 * Reset for all these registers is handled in arm_cpu_reset(),
4012 * because the PMSAv7 is also used by M-profile CPUs, which do
4013 * not register cpregs but still need the state to be reset.
4014 */
4015 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4016 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4017 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4018 .readfn = pmsav7_read, .writefn = pmsav7_write,
4019 .resetfn = arm_cp_reset_ignore },
4020 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4021 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4022 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4023 .readfn = pmsav7_read, .writefn = pmsav7_write,
4024 .resetfn = arm_cp_reset_ignore },
4025 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4026 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4027 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4028 .readfn = pmsav7_read, .writefn = pmsav7_write,
4029 .resetfn = arm_cp_reset_ignore },
4030 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4031 .access = PL1_RW,
4032 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4033 .writefn = pmsav7_rgnr_write,
4034 .resetfn = arm_cp_reset_ignore },
4035 };
4036
4037 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4038 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4039 .access = PL1_RW, .type = ARM_CP_ALIAS,
4040 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4041 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4042 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4043 .access = PL1_RW, .type = ARM_CP_ALIAS,
4044 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4045 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4046 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4047 .access = PL1_RW,
4048 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4049 .resetvalue = 0, },
4050 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4051 .access = PL1_RW,
4052 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4053 .resetvalue = 0, },
4054 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4055 .access = PL1_RW,
4056 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4057 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4058 .access = PL1_RW,
4059 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4060 /* Protection region base and size registers */
4061 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4062 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4063 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4064 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4065 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4066 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4067 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4068 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4069 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4070 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4071 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4072 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4073 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4074 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4075 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4076 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4077 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4078 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4079 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4080 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4081 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4082 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4083 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4084 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4085 };
4086
4087 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4088 uint64_t value)
4089 {
4090 ARMCPU *cpu = env_archcpu(env);
4091
4092 if (!arm_feature(env, ARM_FEATURE_V8)) {
4093 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4094 /*
4095 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4096 * using Long-descriptor translation table format
4097 */
4098 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4099 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4100 /*
4101 * In an implementation that includes the Security Extensions
4102 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4103 * Short-descriptor translation table format.
4104 */
4105 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4106 } else {
4107 value &= TTBCR_N;
4108 }
4109 }
4110
4111 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4112 /*
4113 * With LPAE the TTBCR could result in a change of ASID
4114 * via the TTBCR.A1 bit, so do a TLB flush.
4115 */
4116 tlb_flush(CPU(cpu));
4117 }
4118 raw_write(env, ri, value);
4119 }
4120
4121 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4122 uint64_t value)
4123 {
4124 ARMCPU *cpu = env_archcpu(env);
4125
4126 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4127 tlb_flush(CPU(cpu));
4128 raw_write(env, ri, value);
4129 }
4130
4131 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4132 uint64_t value)
4133 {
4134 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4135 if (cpreg_field_is_64bit(ri) &&
4136 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4137 ARMCPU *cpu = env_archcpu(env);
4138 tlb_flush(CPU(cpu));
4139 }
4140 raw_write(env, ri, value);
4141 }
4142
4143 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144 uint64_t value)
4145 {
4146 /*
4147 * If we are running with E2&0 regime, then an ASID is active.
4148 * Flush if that might be changing. Note we're not checking
4149 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4150 * holds the active ASID, only checking the field that might.
4151 */
4152 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4153 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4154 uint16_t mask = ARMMMUIdxBit_E20_2 |
4155 ARMMMUIdxBit_E20_2_PAN |
4156 ARMMMUIdxBit_E20_0;
4157 tlb_flush_by_mmuidx(env_cpu(env), mask);
4158 }
4159 raw_write(env, ri, value);
4160 }
4161
4162 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4163 uint64_t value)
4164 {
4165 ARMCPU *cpu = env_archcpu(env);
4166 CPUState *cs = CPU(cpu);
4167
4168 /*
4169 * A change in VMID to the stage2 page table (Stage2) invalidates
4170 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4171 */
4172 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4173 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4174 }
4175 raw_write(env, ri, value);
4176 }
4177
4178 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4179 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4180 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4181 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4182 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4183 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4184 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4185 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4186 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4187 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4188 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4189 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4190 offsetof(CPUARMState, cp15.dfar_ns) } },
4191 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4192 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4193 .access = PL1_RW, .accessfn = access_tvm_trvm,
4194 .fgt = FGT_FAR_EL1,
4195 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4196 .resetvalue = 0, },
4197 };
4198
4199 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4200 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4201 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4202 .access = PL1_RW, .accessfn = access_tvm_trvm,
4203 .fgt = FGT_ESR_EL1,
4204 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4205 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4206 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4207 .access = PL1_RW, .accessfn = access_tvm_trvm,
4208 .fgt = FGT_TTBR0_EL1,
4209 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4210 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4211 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4212 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4213 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4214 .access = PL1_RW, .accessfn = access_tvm_trvm,
4215 .fgt = FGT_TTBR1_EL1,
4216 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4217 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4218 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4219 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4220 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4221 .access = PL1_RW, .accessfn = access_tvm_trvm,
4222 .fgt = FGT_TCR_EL1,
4223 .writefn = vmsa_tcr_el12_write,
4224 .raw_writefn = raw_write,
4225 .resetvalue = 0,
4226 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4227 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4228 .access = PL1_RW, .accessfn = access_tvm_trvm,
4229 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4230 .raw_writefn = raw_write,
4231 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4232 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4233 };
4234
4235 /*
4236 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4237 * qemu tlbs nor adjusting cached masks.
4238 */
4239 static const ARMCPRegInfo ttbcr2_reginfo = {
4240 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4241 .access = PL1_RW, .accessfn = access_tvm_trvm,
4242 .type = ARM_CP_ALIAS,
4243 .bank_fieldoffsets = {
4244 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4245 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4246 },
4247 };
4248
4249 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4250 uint64_t value)
4251 {
4252 env->cp15.c15_ticonfig = value & 0xe7;
4253 /* The OS_TYPE bit in this register changes the reported CPUID! */
4254 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4255 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4256 }
4257
4258 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4259 uint64_t value)
4260 {
4261 env->cp15.c15_threadid = value & 0xffff;
4262 }
4263
4264 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4265 uint64_t value)
4266 {
4267 /* Wait-for-interrupt (deprecated) */
4268 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4269 }
4270
4271 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4272 uint64_t value)
4273 {
4274 /*
4275 * On OMAP there are registers indicating the max/min index of dcache lines
4276 * containing a dirty line; cache flush operations have to reset these.
4277 */
4278 env->cp15.c15_i_max = 0x000;
4279 env->cp15.c15_i_min = 0xff0;
4280 }
4281
4282 static const ARMCPRegInfo omap_cp_reginfo[] = {
4283 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4284 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4285 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4286 .resetvalue = 0, },
4287 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4288 .access = PL1_RW, .type = ARM_CP_NOP },
4289 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4290 .access = PL1_RW,
4291 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4292 .writefn = omap_ticonfig_write },
4293 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4294 .access = PL1_RW,
4295 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4296 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4297 .access = PL1_RW, .resetvalue = 0xff0,
4298 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4299 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4300 .access = PL1_RW,
4301 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4302 .writefn = omap_threadid_write },
4303 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4304 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4305 .type = ARM_CP_NO_RAW,
4306 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4307 /*
4308 * TODO: Peripheral port remap register:
4309 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4310 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4311 * when MMU is off.
4312 */
4313 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4314 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4315 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4316 .writefn = omap_cachemaint_write },
4317 { .name = "C9", .cp = 15, .crn = 9,
4318 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4319 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4320 };
4321
4322 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4323 uint64_t value)
4324 {
4325 env->cp15.c15_cpar = value & 0x3fff;
4326 }
4327
4328 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4329 { .name = "XSCALE_CPAR",
4330 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4331 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4332 .writefn = xscale_cpar_write, },
4333 { .name = "XSCALE_AUXCR",
4334 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4335 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4336 .resetvalue = 0, },
4337 /*
4338 * XScale specific cache-lockdown: since we have no cache we NOP these
4339 * and hope the guest does not really rely on cache behaviour.
4340 */
4341 { .name = "XSCALE_LOCK_ICACHE_LINE",
4342 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4343 .access = PL1_W, .type = ARM_CP_NOP },
4344 { .name = "XSCALE_UNLOCK_ICACHE",
4345 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4346 .access = PL1_W, .type = ARM_CP_NOP },
4347 { .name = "XSCALE_DCACHE_LOCK",
4348 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4349 .access = PL1_RW, .type = ARM_CP_NOP },
4350 { .name = "XSCALE_UNLOCK_DCACHE",
4351 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4352 .access = PL1_W, .type = ARM_CP_NOP },
4353 };
4354
4355 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4356 /*
4357 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4358 * implementation of this implementation-defined space.
4359 * Ideally this should eventually disappear in favour of actually
4360 * implementing the correct behaviour for all cores.
4361 */
4362 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4363 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4364 .access = PL1_RW,
4365 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4366 .resetvalue = 0 },
4367 };
4368
4369 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4370 /* Cache status: RAZ because we have no cache so it's always clean */
4371 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4372 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4373 .resetvalue = 0 },
4374 };
4375
4376 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4377 /* We never have a block transfer operation in progress */
4378 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4379 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4380 .resetvalue = 0 },
4381 /* The cache ops themselves: these all NOP for QEMU */
4382 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4383 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4384 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4385 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4386 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4387 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4388 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4389 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4390 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4391 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4392 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4393 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4394 };
4395
4396 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4397 /*
4398 * The cache test-and-clean instructions always return (1 << 30)
4399 * to indicate that there are no dirty cache lines.
4400 */
4401 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4402 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4403 .resetvalue = (1 << 30) },
4404 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4405 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4406 .resetvalue = (1 << 30) },
4407 };
4408
4409 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4410 /* Ignore ReadBuffer accesses */
4411 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4412 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4413 .access = PL1_RW, .resetvalue = 0,
4414 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4415 };
4416
4417 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4418 {
4419 unsigned int cur_el = arm_current_el(env);
4420
4421 if (arm_is_el2_enabled(env) && cur_el == 1) {
4422 return env->cp15.vpidr_el2;
4423 }
4424 return raw_read(env, ri);
4425 }
4426
4427 static uint64_t mpidr_read_val(CPUARMState *env)
4428 {
4429 ARMCPU *cpu = env_archcpu(env);
4430 uint64_t mpidr = cpu->mp_affinity;
4431
4432 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4433 mpidr |= (1U << 31);
4434 /*
4435 * Cores which are uniprocessor (non-coherent)
4436 * but still implement the MP extensions set
4437 * bit 30. (For instance, Cortex-R5).
4438 */
4439 if (cpu->mp_is_up) {
4440 mpidr |= (1u << 30);
4441 }
4442 }
4443 return mpidr;
4444 }
4445
4446 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4447 {
4448 unsigned int cur_el = arm_current_el(env);
4449
4450 if (arm_is_el2_enabled(env) && cur_el == 1) {
4451 return env->cp15.vmpidr_el2;
4452 }
4453 return mpidr_read_val(env);
4454 }
4455
4456 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4457 /* NOP AMAIR0/1 */
4458 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4459 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4460 .access = PL1_RW, .accessfn = access_tvm_trvm,
4461 .fgt = FGT_AMAIR_EL1,
4462 .type = ARM_CP_CONST, .resetvalue = 0 },
4463 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4464 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4465 .access = PL1_RW, .accessfn = access_tvm_trvm,
4466 .type = ARM_CP_CONST, .resetvalue = 0 },
4467 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4468 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4469 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4470 offsetof(CPUARMState, cp15.par_ns)} },
4471 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4472 .access = PL1_RW, .accessfn = access_tvm_trvm,
4473 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4474 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4475 offsetof(CPUARMState, cp15.ttbr0_ns) },
4476 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4477 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4478 .access = PL1_RW, .accessfn = access_tvm_trvm,
4479 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4480 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4481 offsetof(CPUARMState, cp15.ttbr1_ns) },
4482 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4483 };
4484
4485 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4486 {
4487 return vfp_get_fpcr(env);
4488 }
4489
4490 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4491 uint64_t value)
4492 {
4493 vfp_set_fpcr(env, value);
4494 }
4495
4496 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4497 {
4498 return vfp_get_fpsr(env);
4499 }
4500
4501 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4502 uint64_t value)
4503 {
4504 vfp_set_fpsr(env, value);
4505 }
4506
4507 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4508 bool isread)
4509 {
4510 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4511 return CP_ACCESS_TRAP;
4512 }
4513 return CP_ACCESS_OK;
4514 }
4515
4516 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4517 uint64_t value)
4518 {
4519 env->daif = value & PSTATE_DAIF;
4520 }
4521
4522 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4523 {
4524 return env->pstate & PSTATE_PAN;
4525 }
4526
4527 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4528 uint64_t value)
4529 {
4530 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4531 }
4532
4533 static const ARMCPRegInfo pan_reginfo = {
4534 .name = "PAN", .state = ARM_CP_STATE_AA64,
4535 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4536 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4537 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4538 };
4539
4540 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4541 {
4542 return env->pstate & PSTATE_UAO;
4543 }
4544
4545 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546 uint64_t value)
4547 {
4548 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4549 }
4550
4551 static const ARMCPRegInfo uao_reginfo = {
4552 .name = "UAO", .state = ARM_CP_STATE_AA64,
4553 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4554 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4555 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4556 };
4557
4558 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4559 {
4560 return env->pstate & PSTATE_DIT;
4561 }
4562
4563 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4564 uint64_t value)
4565 {
4566 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4567 }
4568
4569 static const ARMCPRegInfo dit_reginfo = {
4570 .name = "DIT", .state = ARM_CP_STATE_AA64,
4571 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4572 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4573 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4574 };
4575
4576 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4577 {
4578 return env->pstate & PSTATE_SSBS;
4579 }
4580
4581 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4582 uint64_t value)
4583 {
4584 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4585 }
4586
4587 static const ARMCPRegInfo ssbs_reginfo = {
4588 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4589 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4590 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4591 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4592 };
4593
4594 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4595 const ARMCPRegInfo *ri,
4596 bool isread)
4597 {
4598 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4599 switch (arm_current_el(env)) {
4600 case 0:
4601 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4602 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4603 return CP_ACCESS_TRAP;
4604 }
4605 /* fall through */
4606 case 1:
4607 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4608 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4609 return CP_ACCESS_TRAP_EL2;
4610 }
4611 break;
4612 }
4613 return CP_ACCESS_OK;
4614 }
4615
4616 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4617 {
4618 /* Cache invalidate/clean to Point of Unification... */
4619 switch (arm_current_el(env)) {
4620 case 0:
4621 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4622 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4623 return CP_ACCESS_TRAP;
4624 }
4625 /* fall through */
4626 case 1:
4627 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4628 if (arm_hcr_el2_eff(env) & hcrflags) {
4629 return CP_ACCESS_TRAP_EL2;
4630 }
4631 break;
4632 }
4633 return CP_ACCESS_OK;
4634 }
4635
4636 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4637 bool isread)
4638 {
4639 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4640 }
4641
4642 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4643 bool isread)
4644 {
4645 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4646 }
4647
4648 /*
4649 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4650 * Page D4-1736 (DDI0487A.b)
4651 */
4652
4653 static int vae1_tlbmask(CPUARMState *env)
4654 {
4655 uint64_t hcr = arm_hcr_el2_eff(env);
4656 uint16_t mask;
4657
4658 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4659 mask = ARMMMUIdxBit_E20_2 |
4660 ARMMMUIdxBit_E20_2_PAN |
4661 ARMMMUIdxBit_E20_0;
4662 } else {
4663 mask = ARMMMUIdxBit_E10_1 |
4664 ARMMMUIdxBit_E10_1_PAN |
4665 ARMMMUIdxBit_E10_0;
4666 }
4667 return mask;
4668 }
4669
4670 static int vae2_tlbmask(CPUARMState *env)
4671 {
4672 uint64_t hcr = arm_hcr_el2_eff(env);
4673 uint16_t mask;
4674
4675 if (hcr & HCR_E2H) {
4676 mask = ARMMMUIdxBit_E20_2 |
4677 ARMMMUIdxBit_E20_2_PAN |
4678 ARMMMUIdxBit_E20_0;
4679 } else {
4680 mask = ARMMMUIdxBit_E2;
4681 }
4682 return mask;
4683 }
4684
4685 /* Return 56 if TBI is enabled, 64 otherwise. */
4686 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4687 uint64_t addr)
4688 {
4689 uint64_t tcr = regime_tcr(env, mmu_idx);
4690 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4691 int select = extract64(addr, 55, 1);
4692
4693 return (tbi >> select) & 1 ? 56 : 64;
4694 }
4695
4696 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4697 {
4698 uint64_t hcr = arm_hcr_el2_eff(env);
4699 ARMMMUIdx mmu_idx;
4700
4701 /* Only the regime of the mmu_idx below is significant. */
4702 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4703 mmu_idx = ARMMMUIdx_E20_0;
4704 } else {
4705 mmu_idx = ARMMMUIdx_E10_0;
4706 }
4707
4708 return tlbbits_for_regime(env, mmu_idx, addr);
4709 }
4710
4711 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4712 {
4713 uint64_t hcr = arm_hcr_el2_eff(env);
4714 ARMMMUIdx mmu_idx;
4715
4716 /*
4717 * Only the regime of the mmu_idx below is significant.
4718 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4719 * only has one.
4720 */
4721 if (hcr & HCR_E2H) {
4722 mmu_idx = ARMMMUIdx_E20_2;
4723 } else {
4724 mmu_idx = ARMMMUIdx_E2;
4725 }
4726
4727 return tlbbits_for_regime(env, mmu_idx, addr);
4728 }
4729
4730 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4731 uint64_t value)
4732 {
4733 CPUState *cs = env_cpu(env);
4734 int mask = vae1_tlbmask(env);
4735
4736 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4737 }
4738
4739 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740 uint64_t value)
4741 {
4742 CPUState *cs = env_cpu(env);
4743 int mask = vae1_tlbmask(env);
4744
4745 if (tlb_force_broadcast(env)) {
4746 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4747 } else {
4748 tlb_flush_by_mmuidx(cs, mask);
4749 }
4750 }
4751
4752 static int e2_tlbmask(CPUARMState *env)
4753 {
4754 return (ARMMMUIdxBit_E20_0 |
4755 ARMMMUIdxBit_E20_2 |
4756 ARMMMUIdxBit_E20_2_PAN |
4757 ARMMMUIdxBit_E2);
4758 }
4759
4760 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4761 uint64_t value)
4762 {
4763 CPUState *cs = env_cpu(env);
4764 int mask = alle1_tlbmask(env);
4765
4766 tlb_flush_by_mmuidx(cs, mask);
4767 }
4768
4769 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4770 uint64_t value)
4771 {
4772 CPUState *cs = env_cpu(env);
4773 int mask = e2_tlbmask(env);
4774
4775 tlb_flush_by_mmuidx(cs, mask);
4776 }
4777
4778 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4779 uint64_t value)
4780 {
4781 ARMCPU *cpu = env_archcpu(env);
4782 CPUState *cs = CPU(cpu);
4783
4784 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4785 }
4786
4787 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4788 uint64_t value)
4789 {
4790 CPUState *cs = env_cpu(env);
4791 int mask = alle1_tlbmask(env);
4792
4793 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4794 }
4795
4796 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4797 uint64_t value)
4798 {
4799 CPUState *cs = env_cpu(env);
4800 int mask = e2_tlbmask(env);
4801
4802 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4803 }
4804
4805 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4806 uint64_t value)
4807 {
4808 CPUState *cs = env_cpu(env);
4809
4810 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4811 }
4812
4813 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4814 uint64_t value)
4815 {
4816 /*
4817 * Invalidate by VA, EL2
4818 * Currently handles both VAE2 and VALE2, since we don't support
4819 * flush-last-level-only.
4820 */
4821 CPUState *cs = env_cpu(env);
4822 int mask = vae2_tlbmask(env);
4823 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4824 int bits = vae2_tlbbits(env, pageaddr);
4825
4826 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4827 }
4828
4829 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830 uint64_t value)
4831 {
4832 /*
4833 * Invalidate by VA, EL3
4834 * Currently handles both VAE3 and VALE3, since we don't support
4835 * flush-last-level-only.
4836 */
4837 ARMCPU *cpu = env_archcpu(env);
4838 CPUState *cs = CPU(cpu);
4839 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4840
4841 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4842 }
4843
4844 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4845 uint64_t value)
4846 {
4847 CPUState *cs = env_cpu(env);
4848 int mask = vae1_tlbmask(env);
4849 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4850 int bits = vae1_tlbbits(env, pageaddr);
4851
4852 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4853 }
4854
4855 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4856 uint64_t value)
4857 {
4858 /*
4859 * Invalidate by VA, EL1&0 (AArch64 version).
4860 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4861 * since we don't support flush-for-specific-ASID-only or
4862 * flush-last-level-only.
4863 */
4864 CPUState *cs = env_cpu(env);
4865 int mask = vae1_tlbmask(env);
4866 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4867 int bits = vae1_tlbbits(env, pageaddr);
4868
4869 if (tlb_force_broadcast(env)) {
4870 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4871 } else {
4872 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4873 }
4874 }
4875
4876 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4877 uint64_t value)
4878 {
4879 CPUState *cs = env_cpu(env);
4880 int mask = vae2_tlbmask(env);
4881 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4882 int bits = vae2_tlbbits(env, pageaddr);
4883
4884 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4885 }
4886
4887 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4888 uint64_t value)
4889 {
4890 CPUState *cs = env_cpu(env);
4891 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4892 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4893
4894 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4895 ARMMMUIdxBit_E3, bits);
4896 }
4897
4898 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4899 {
4900 /*
4901 * The MSB of value is the NS field, which only applies if SEL2
4902 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4903 */
4904 return (value >= 0
4905 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4906 && arm_is_secure_below_el3(env)
4907 ? ARMMMUIdxBit_Stage2_S
4908 : ARMMMUIdxBit_Stage2);
4909 }
4910
4911 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4912 uint64_t value)
4913 {
4914 CPUState *cs = env_cpu(env);
4915 int mask = ipas2e1_tlbmask(env, value);
4916 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4917
4918 if (tlb_force_broadcast(env)) {
4919 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4920 } else {
4921 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4922 }
4923 }
4924
4925 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4926 uint64_t value)
4927 {
4928 CPUState *cs = env_cpu(env);
4929 int mask = ipas2e1_tlbmask(env, value);
4930 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4931
4932 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4933 }
4934
4935 #ifdef TARGET_AARCH64
4936 typedef struct {
4937 uint64_t base;
4938 uint64_t length;
4939 } TLBIRange;
4940
4941 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4942 {
4943 /*
4944 * Note that the TLBI range TG field encoding differs from both
4945 * TG0 and TG1 encodings.
4946 */
4947 switch (tg) {
4948 case 1:
4949 return Gran4K;
4950 case 2:
4951 return Gran16K;
4952 case 3:
4953 return Gran64K;
4954 default:
4955 return GranInvalid;
4956 }
4957 }
4958
4959 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4960 uint64_t value)
4961 {
4962 unsigned int page_size_granule, page_shift, num, scale, exponent;
4963 /* Extract one bit to represent the va selector in use. */
4964 uint64_t select = sextract64(value, 36, 1);
4965 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4966 TLBIRange ret = { };
4967 ARMGranuleSize gran;
4968
4969 page_size_granule = extract64(value, 46, 2);
4970 gran = tlbi_range_tg_to_gran_size(page_size_granule);
4971
4972 /* The granule encoded in value must match the granule in use. */
4973 if (gran != param.gran) {
4974 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4975 page_size_granule);
4976 return ret;
4977 }
4978
4979 page_shift = arm_granule_bits(gran);
4980 num = extract64(value, 39, 5);
4981 scale = extract64(value, 44, 2);
4982 exponent = (5 * scale) + 1;
4983
4984 ret.length = (num + 1) << (exponent + page_shift);
4985
4986 if (param.select) {
4987 ret.base = sextract64(value, 0, 37);
4988 } else {
4989 ret.base = extract64(value, 0, 37);
4990 }
4991 if (param.ds) {
4992 /*
4993 * With DS=1, BaseADDR is always shifted 16 so that it is able
4994 * to address all 52 va bits. The input address is perforce
4995 * aligned on a 64k boundary regardless of translation granule.
4996 */
4997 page_shift = 16;
4998 }
4999 ret.base <<= page_shift;
5000
5001 return ret;
5002 }
5003
5004 static void do_rvae_write(CPUARMState *env, uint64_t value,
5005 int idxmap, bool synced)
5006 {
5007 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5008 TLBIRange range;
5009 int bits;
5010
5011 range = tlbi_aa64_get_range(env, one_idx, value);
5012 bits = tlbbits_for_regime(env, one_idx, range.base);
5013
5014 if (synced) {
5015 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5016 range.base,
5017 range.length,
5018 idxmap,
5019 bits);
5020 } else {
5021 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5022 range.length, idxmap, bits);
5023 }
5024 }
5025
5026 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5027 const ARMCPRegInfo *ri,
5028 uint64_t value)
5029 {
5030 /*
5031 * Invalidate by VA range, EL1&0.
5032 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5033 * since we don't support flush-for-specific-ASID-only or
5034 * flush-last-level-only.
5035 */
5036
5037 do_rvae_write(env, value, vae1_tlbmask(env),
5038 tlb_force_broadcast(env));
5039 }
5040
5041 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5042 const ARMCPRegInfo *ri,
5043 uint64_t value)
5044 {
5045 /*
5046 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5047 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5048 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5049 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5050 * shareable specific flushes.
5051 */
5052
5053 do_rvae_write(env, value, vae1_tlbmask(env), true);
5054 }
5055
5056 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5057 const ARMCPRegInfo *ri,
5058 uint64_t value)
5059 {
5060 /*
5061 * Invalidate by VA range, EL2.
5062 * Currently handles all of RVAE2 and RVALE2,
5063 * since we don't support flush-for-specific-ASID-only or
5064 * flush-last-level-only.
5065 */
5066
5067 do_rvae_write(env, value, vae2_tlbmask(env),
5068 tlb_force_broadcast(env));
5069
5070
5071 }
5072
5073 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5074 const ARMCPRegInfo *ri,
5075 uint64_t value)
5076 {
5077 /*
5078 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5079 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5080 * since we don't support flush-for-specific-ASID-only,
5081 * flush-last-level-only or inner/outer shareable specific flushes.
5082 */
5083
5084 do_rvae_write(env, value, vae2_tlbmask(env), true);
5085
5086 }
5087
5088 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5089 const ARMCPRegInfo *ri,
5090 uint64_t value)
5091 {
5092 /*
5093 * Invalidate by VA range, EL3.
5094 * Currently handles all of RVAE3 and RVALE3,
5095 * since we don't support flush-for-specific-ASID-only or
5096 * flush-last-level-only.
5097 */
5098
5099 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5100 }
5101
5102 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5103 const ARMCPRegInfo *ri,
5104 uint64_t value)
5105 {
5106 /*
5107 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5108 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5109 * since we don't support flush-for-specific-ASID-only,
5110 * flush-last-level-only or inner/outer specific flushes.
5111 */
5112
5113 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5114 }
5115
5116 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5117 uint64_t value)
5118 {
5119 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5120 tlb_force_broadcast(env));
5121 }
5122
5123 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5124 const ARMCPRegInfo *ri,
5125 uint64_t value)
5126 {
5127 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5128 }
5129 #endif
5130
5131 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5132 bool isread)
5133 {
5134 int cur_el = arm_current_el(env);
5135
5136 if (cur_el < 2) {
5137 uint64_t hcr = arm_hcr_el2_eff(env);
5138
5139 if (cur_el == 0) {
5140 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5141 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5142 return CP_ACCESS_TRAP_EL2;
5143 }
5144 } else {
5145 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5146 return CP_ACCESS_TRAP;
5147 }
5148 if (hcr & HCR_TDZ) {
5149 return CP_ACCESS_TRAP_EL2;
5150 }
5151 }
5152 } else if (hcr & HCR_TDZ) {
5153 return CP_ACCESS_TRAP_EL2;
5154 }
5155 }
5156 return CP_ACCESS_OK;
5157 }
5158
5159 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5160 {
5161 ARMCPU *cpu = env_archcpu(env);
5162 int dzp_bit = 1 << 4;
5163
5164 /* DZP indicates whether DC ZVA access is allowed */
5165 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5166 dzp_bit = 0;
5167 }
5168 return cpu->dcz_blocksize | dzp_bit;
5169 }
5170
5171 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5172 bool isread)
5173 {
5174 if (!(env->pstate & PSTATE_SP)) {
5175 /*
5176 * Access to SP_EL0 is undefined if it's being used as
5177 * the stack pointer.
5178 */
5179 return CP_ACCESS_TRAP_UNCATEGORIZED;
5180 }
5181 return CP_ACCESS_OK;
5182 }
5183
5184 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5185 {
5186 return env->pstate & PSTATE_SP;
5187 }
5188
5189 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5190 {
5191 update_spsel(env, val);
5192 }
5193
5194 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5195 uint64_t value)
5196 {
5197 ARMCPU *cpu = env_archcpu(env);
5198
5199 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5200 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5201 value &= ~SCTLR_M;
5202 }
5203
5204 /* ??? Lots of these bits are not implemented. */
5205
5206 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5207 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5208 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5209 } else {
5210 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5211 SCTLR_ATA0 | SCTLR_ATA);
5212 }
5213 }
5214
5215 if (raw_read(env, ri) == value) {
5216 /*
5217 * Skip the TLB flush if nothing actually changed; Linux likes
5218 * to do a lot of pointless SCTLR writes.
5219 */
5220 return;
5221 }
5222
5223 raw_write(env, ri, value);
5224
5225 /* This may enable/disable the MMU, so do a TLB flush. */
5226 tlb_flush(CPU(cpu));
5227
5228 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5229 /*
5230 * Normally we would always end the TB on an SCTLR write; see the
5231 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5232 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5233 * of hflags from the translator, so do it here.
5234 */
5235 arm_rebuild_hflags(env);
5236 }
5237 }
5238
5239 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5240 uint64_t value)
5241 {
5242 /*
5243 * Some MDCR_EL3 bits affect whether PMU counters are running:
5244 * if we are trying to change any of those then we must
5245 * bracket this update with PMU start/finish calls.
5246 */
5247 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5248
5249 if (pmu_op) {
5250 pmu_op_start(env);
5251 }
5252 env->cp15.mdcr_el3 = value;
5253 if (pmu_op) {
5254 pmu_op_finish(env);
5255 }
5256 }
5257
5258 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5259 uint64_t value)
5260 {
5261 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5262 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5263 }
5264
5265 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5266 uint64_t value)
5267 {
5268 /*
5269 * Some MDCR_EL2 bits affect whether PMU counters are running:
5270 * if we are trying to change any of those then we must
5271 * bracket this update with PMU start/finish calls.
5272 */
5273 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5274
5275 if (pmu_op) {
5276 pmu_op_start(env);
5277 }
5278 env->cp15.mdcr_el2 = value;
5279 if (pmu_op) {
5280 pmu_op_finish(env);
5281 }
5282 }
5283
5284 #ifdef CONFIG_USER_ONLY
5285 /*
5286 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5287 * code to get around W^X restrictions, where one region is writable and the
5288 * other is executable.
5289 *
5290 * Since the executable region is never written to we cannot detect code
5291 * changes when running in user mode, and rely on the emulated JIT telling us
5292 * that the code has changed by executing this instruction.
5293 */
5294 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5295 uint64_t value)
5296 {
5297 uint64_t icache_line_mask, start_address, end_address;
5298 const ARMCPU *cpu;
5299
5300 cpu = env_archcpu(env);
5301
5302 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5303 start_address = value & ~icache_line_mask;
5304 end_address = value | icache_line_mask;
5305
5306 mmap_lock();
5307
5308 tb_invalidate_phys_range(start_address, end_address);
5309
5310 mmap_unlock();
5311 }
5312 #endif
5313
5314 static const ARMCPRegInfo v8_cp_reginfo[] = {
5315 /*
5316 * Minimal set of EL0-visible registers. This will need to be expanded
5317 * significantly for system emulation of AArch64 CPUs.
5318 */
5319 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5320 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5321 .access = PL0_RW, .type = ARM_CP_NZCV },
5322 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5323 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5324 .type = ARM_CP_NO_RAW,
5325 .access = PL0_RW, .accessfn = aa64_daif_access,
5326 .fieldoffset = offsetof(CPUARMState, daif),
5327 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5328 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5329 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5330 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5331 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5332 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5333 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5334 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5335 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5336 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5337 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5338 .access = PL0_R, .type = ARM_CP_NO_RAW,
5339 .fgt = FGT_DCZID_EL0,
5340 .readfn = aa64_dczid_read },
5341 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5342 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5343 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5344 #ifndef CONFIG_USER_ONLY
5345 /* Avoid overhead of an access check that always passes in user-mode */
5346 .accessfn = aa64_zva_access,
5347 .fgt = FGT_DCZVA,
5348 #endif
5349 },
5350 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5351 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5352 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5353 /*
5354 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5355 * don't emulate caches.
5356 */
5357 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5358 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5359 .access = PL1_W, .type = ARM_CP_NOP,
5360 .fgt = FGT_ICIALLUIS,
5361 .accessfn = access_ticab },
5362 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5363 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5364 .access = PL1_W, .type = ARM_CP_NOP,
5365 .fgt = FGT_ICIALLU,
5366 .accessfn = access_tocu },
5367 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5368 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5369 .access = PL0_W,
5370 .fgt = FGT_ICIVAU,
5371 .accessfn = access_tocu,
5372 #ifdef CONFIG_USER_ONLY
5373 .type = ARM_CP_NO_RAW,
5374 .writefn = ic_ivau_write
5375 #else
5376 .type = ARM_CP_NOP
5377 #endif
5378 },
5379 /* Cache ops: all NOPs since we don't emulate caches */
5380 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5381 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5382 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5383 .fgt = FGT_DCIVAC,
5384 .type = ARM_CP_NOP },
5385 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5386 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5387 .fgt = FGT_DCISW,
5388 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5389 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5390 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5391 .access = PL0_W, .type = ARM_CP_NOP,
5392 .fgt = FGT_DCCVAC,
5393 .accessfn = aa64_cacheop_poc_access },
5394 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5395 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5396 .fgt = FGT_DCCSW,
5397 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5398 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5399 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5400 .access = PL0_W, .type = ARM_CP_NOP,
5401 .fgt = FGT_DCCVAU,
5402 .accessfn = access_tocu },
5403 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5404 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5405 .access = PL0_W, .type = ARM_CP_NOP,
5406 .fgt = FGT_DCCIVAC,
5407 .accessfn = aa64_cacheop_poc_access },
5408 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5409 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5410 .fgt = FGT_DCCISW,
5411 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5412 /* TLBI operations */
5413 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5414 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5415 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5416 .fgt = FGT_TLBIVMALLE1IS,
5417 .writefn = tlbi_aa64_vmalle1is_write },
5418 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5420 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5421 .fgt = FGT_TLBIVAE1IS,
5422 .writefn = tlbi_aa64_vae1is_write },
5423 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5424 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5425 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5426 .fgt = FGT_TLBIASIDE1IS,
5427 .writefn = tlbi_aa64_vmalle1is_write },
5428 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5429 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5430 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5431 .fgt = FGT_TLBIVAAE1IS,
5432 .writefn = tlbi_aa64_vae1is_write },
5433 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5434 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5435 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5436 .fgt = FGT_TLBIVALE1IS,
5437 .writefn = tlbi_aa64_vae1is_write },
5438 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5439 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5440 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5441 .fgt = FGT_TLBIVAALE1IS,
5442 .writefn = tlbi_aa64_vae1is_write },
5443 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5444 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5445 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5446 .fgt = FGT_TLBIVMALLE1,
5447 .writefn = tlbi_aa64_vmalle1_write },
5448 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5449 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5450 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5451 .fgt = FGT_TLBIVAE1,
5452 .writefn = tlbi_aa64_vae1_write },
5453 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5454 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5455 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5456 .fgt = FGT_TLBIASIDE1,
5457 .writefn = tlbi_aa64_vmalle1_write },
5458 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5459 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5460 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5461 .fgt = FGT_TLBIVAAE1,
5462 .writefn = tlbi_aa64_vae1_write },
5463 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5465 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5466 .fgt = FGT_TLBIVALE1,
5467 .writefn = tlbi_aa64_vae1_write },
5468 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5469 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5470 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5471 .fgt = FGT_TLBIVAALE1,
5472 .writefn = tlbi_aa64_vae1_write },
5473 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5475 .access = PL2_W, .type = ARM_CP_NO_RAW,
5476 .writefn = tlbi_aa64_ipas2e1is_write },
5477 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5478 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5479 .access = PL2_W, .type = ARM_CP_NO_RAW,
5480 .writefn = tlbi_aa64_ipas2e1is_write },
5481 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5482 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5483 .access = PL2_W, .type = ARM_CP_NO_RAW,
5484 .writefn = tlbi_aa64_alle1is_write },
5485 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5486 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5487 .access = PL2_W, .type = ARM_CP_NO_RAW,
5488 .writefn = tlbi_aa64_alle1is_write },
5489 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5490 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5491 .access = PL2_W, .type = ARM_CP_NO_RAW,
5492 .writefn = tlbi_aa64_ipas2e1_write },
5493 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5494 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5495 .access = PL2_W, .type = ARM_CP_NO_RAW,
5496 .writefn = tlbi_aa64_ipas2e1_write },
5497 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5498 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5499 .access = PL2_W, .type = ARM_CP_NO_RAW,
5500 .writefn = tlbi_aa64_alle1_write },
5501 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5502 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5503 .access = PL2_W, .type = ARM_CP_NO_RAW,
5504 .writefn = tlbi_aa64_alle1is_write },
5505 #ifndef CONFIG_USER_ONLY
5506 /* 64 bit address translation operations */
5507 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5509 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5510 .fgt = FGT_ATS1E1R,
5511 .writefn = ats_write64 },
5512 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5514 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5515 .fgt = FGT_ATS1E1W,
5516 .writefn = ats_write64 },
5517 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5519 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5520 .fgt = FGT_ATS1E0R,
5521 .writefn = ats_write64 },
5522 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5524 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5525 .fgt = FGT_ATS1E0W,
5526 .writefn = ats_write64 },
5527 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5528 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5529 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5530 .writefn = ats_write64 },
5531 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5532 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5533 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5534 .writefn = ats_write64 },
5535 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5536 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5537 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5538 .writefn = ats_write64 },
5539 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5540 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5541 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5542 .writefn = ats_write64 },
5543 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5544 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5545 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5546 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5547 .writefn = ats_write64 },
5548 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5549 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5550 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5551 .writefn = ats_write64 },
5552 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5553 .type = ARM_CP_ALIAS,
5554 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5555 .access = PL1_RW, .resetvalue = 0,
5556 .fgt = FGT_PAR_EL1,
5557 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5558 .writefn = par_write },
5559 #endif
5560 /* TLB invalidate last level of translation table walk */
5561 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5562 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5563 .writefn = tlbimva_is_write },
5564 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5565 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5566 .writefn = tlbimvaa_is_write },
5567 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5568 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5569 .writefn = tlbimva_write },
5570 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5571 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5572 .writefn = tlbimvaa_write },
5573 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5574 .type = ARM_CP_NO_RAW, .access = PL2_W,
5575 .writefn = tlbimva_hyp_write },
5576 { .name = "TLBIMVALHIS",
5577 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5578 .type = ARM_CP_NO_RAW, .access = PL2_W,
5579 .writefn = tlbimva_hyp_is_write },
5580 { .name = "TLBIIPAS2",
5581 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5582 .type = ARM_CP_NO_RAW, .access = PL2_W,
5583 .writefn = tlbiipas2_hyp_write },
5584 { .name = "TLBIIPAS2IS",
5585 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5586 .type = ARM_CP_NO_RAW, .access = PL2_W,
5587 .writefn = tlbiipas2is_hyp_write },
5588 { .name = "TLBIIPAS2L",
5589 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5590 .type = ARM_CP_NO_RAW, .access = PL2_W,
5591 .writefn = tlbiipas2_hyp_write },
5592 { .name = "TLBIIPAS2LIS",
5593 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5594 .type = ARM_CP_NO_RAW, .access = PL2_W,
5595 .writefn = tlbiipas2is_hyp_write },
5596 /* 32 bit cache operations */
5597 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5598 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5599 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5600 .type = ARM_CP_NOP, .access = PL1_W },
5601 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5602 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5603 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5604 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5605 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5606 .type = ARM_CP_NOP, .access = PL1_W },
5607 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5608 .type = ARM_CP_NOP, .access = PL1_W },
5609 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5610 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5611 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5612 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5613 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5614 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5615 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5616 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5617 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5618 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5619 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5620 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5621 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5622 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5623 /* MMU Domain access control / MPU write buffer control */
5624 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5625 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5626 .writefn = dacr_write, .raw_writefn = raw_write,
5627 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5628 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5629 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5630 .type = ARM_CP_ALIAS,
5631 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5632 .access = PL1_RW,
5633 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5634 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5635 .type = ARM_CP_ALIAS,
5636 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5637 .access = PL1_RW,
5638 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5639 /*
5640 * We rely on the access checks not allowing the guest to write to the
5641 * state field when SPSel indicates that it's being used as the stack
5642 * pointer.
5643 */
5644 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5645 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5646 .access = PL1_RW, .accessfn = sp_el0_access,
5647 .type = ARM_CP_ALIAS,
5648 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5649 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5650 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5651 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5652 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5653 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5654 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5655 .type = ARM_CP_NO_RAW,
5656 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5657 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5658 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5659 .access = PL2_RW,
5660 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5661 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5662 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5663 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5664 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5665 .writefn = dacr_write, .raw_writefn = raw_write,
5666 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5667 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5668 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5669 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5670 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5671 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5672 .type = ARM_CP_ALIAS,
5673 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5674 .access = PL2_RW,
5675 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5676 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5677 .type = ARM_CP_ALIAS,
5678 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5679 .access = PL2_RW,
5680 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5681 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5682 .type = ARM_CP_ALIAS,
5683 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5684 .access = PL2_RW,
5685 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5686 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5687 .type = ARM_CP_ALIAS,
5688 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5689 .access = PL2_RW,
5690 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5691 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5692 .type = ARM_CP_IO,
5693 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5694 .resetvalue = 0,
5695 .access = PL3_RW,
5696 .writefn = mdcr_el3_write,
5697 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5698 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5699 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5700 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5701 .writefn = sdcr_write,
5702 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5703 };
5704
5705 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5706 {
5707 ARMCPU *cpu = env_archcpu(env);
5708
5709 if (arm_feature(env, ARM_FEATURE_V8)) {
5710 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5711 } else {
5712 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5713 }
5714
5715 if (arm_feature(env, ARM_FEATURE_EL3)) {
5716 valid_mask &= ~HCR_HCD;
5717 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5718 /*
5719 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5720 * However, if we're using the SMC PSCI conduit then QEMU is
5721 * effectively acting like EL3 firmware and so the guest at
5722 * EL2 should retain the ability to prevent EL1 from being
5723 * able to make SMC calls into the ersatz firmware, so in
5724 * that case HCR.TSC should be read/write.
5725 */
5726 valid_mask &= ~HCR_TSC;
5727 }
5728
5729 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5730 if (cpu_isar_feature(aa64_vh, cpu)) {
5731 valid_mask |= HCR_E2H;
5732 }
5733 if (cpu_isar_feature(aa64_ras, cpu)) {
5734 valid_mask |= HCR_TERR | HCR_TEA;
5735 }
5736 if (cpu_isar_feature(aa64_lor, cpu)) {
5737 valid_mask |= HCR_TLOR;
5738 }
5739 if (cpu_isar_feature(aa64_pauth, cpu)) {
5740 valid_mask |= HCR_API | HCR_APK;
5741 }
5742 if (cpu_isar_feature(aa64_mte, cpu)) {
5743 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5744 }
5745 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5746 valid_mask |= HCR_ENSCXT;
5747 }
5748 if (cpu_isar_feature(aa64_fwb, cpu)) {
5749 valid_mask |= HCR_FWB;
5750 }
5751 if (cpu_isar_feature(aa64_rme, cpu)) {
5752 valid_mask |= HCR_GPF;
5753 }
5754 }
5755
5756 if (cpu_isar_feature(any_evt, cpu)) {
5757 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5758 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5759 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5760 }
5761
5762 /* Clear RES0 bits. */
5763 value &= valid_mask;
5764
5765 /*
5766 * These bits change the MMU setup:
5767 * HCR_VM enables stage 2 translation
5768 * HCR_PTW forbids certain page-table setups
5769 * HCR_DC disables stage1 and enables stage2 translation
5770 * HCR_DCT enables tagging on (disabled) stage1 translation
5771 * HCR_FWB changes the interpretation of stage2 descriptor bits
5772 */
5773 if ((env->cp15.hcr_el2 ^ value) &
5774 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5775 tlb_flush(CPU(cpu));
5776 }
5777 env->cp15.hcr_el2 = value;
5778
5779 /*
5780 * Updates to VI and VF require us to update the status of
5781 * virtual interrupts, which are the logical OR of these bits
5782 * and the state of the input lines from the GIC. (This requires
5783 * that we have the iothread lock, which is done by marking the
5784 * reginfo structs as ARM_CP_IO.)
5785 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5786 * possible for it to be taken immediately, because VIRQ and
5787 * VFIQ are masked unless running at EL0 or EL1, and HCR
5788 * can only be written at EL2.
5789 */
5790 g_assert(qemu_mutex_iothread_locked());
5791 arm_cpu_update_virq(cpu);
5792 arm_cpu_update_vfiq(cpu);
5793 arm_cpu_update_vserr(cpu);
5794 }
5795
5796 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5797 {
5798 do_hcr_write(env, value, 0);
5799 }
5800
5801 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5802 uint64_t value)
5803 {
5804 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5805 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5806 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5807 }
5808
5809 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5810 uint64_t value)
5811 {
5812 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5813 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5814 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5815 }
5816
5817 /*
5818 * Return the effective value of HCR_EL2, at the given security state.
5819 * Bits that are not included here:
5820 * RW (read from SCR_EL3.RW as needed)
5821 */
5822 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5823 {
5824 uint64_t ret = env->cp15.hcr_el2;
5825
5826 assert(space != ARMSS_Root);
5827
5828 if (!arm_is_el2_enabled_secstate(env, space)) {
5829 /*
5830 * "This register has no effect if EL2 is not enabled in the
5831 * current Security state". This is ARMv8.4-SecEL2 speak for
5832 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5833 *
5834 * Prior to that, the language was "In an implementation that
5835 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5836 * as if this field is 0 for all purposes other than a direct
5837 * read or write access of HCR_EL2". With lots of enumeration
5838 * on a per-field basis. In current QEMU, this is condition
5839 * is arm_is_secure_below_el3.
5840 *
5841 * Since the v8.4 language applies to the entire register, and
5842 * appears to be backward compatible, use that.
5843 */
5844 return 0;
5845 }
5846
5847 /*
5848 * For a cpu that supports both aarch64 and aarch32, we can set bits
5849 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5850 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5851 */
5852 if (!arm_el_is_aa64(env, 2)) {
5853 uint64_t aa32_valid;
5854
5855 /*
5856 * These bits are up-to-date as of ARMv8.6.
5857 * For HCR, it's easiest to list just the 2 bits that are invalid.
5858 * For HCR2, list those that are valid.
5859 */
5860 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5861 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5862 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5863 ret &= aa32_valid;
5864 }
5865
5866 if (ret & HCR_TGE) {
5867 /* These bits are up-to-date as of ARMv8.6. */
5868 if (ret & HCR_E2H) {
5869 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5870 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5871 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5872 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5873 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5874 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5875 } else {
5876 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5877 }
5878 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5879 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5880 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5881 HCR_TLOR);
5882 }
5883
5884 return ret;
5885 }
5886
5887 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5888 {
5889 if (arm_feature(env, ARM_FEATURE_M)) {
5890 return 0;
5891 }
5892 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5893 }
5894
5895 /*
5896 * Corresponds to ARM pseudocode function ELIsInHost().
5897 */
5898 bool el_is_in_host(CPUARMState *env, int el)
5899 {
5900 uint64_t mask;
5901
5902 /*
5903 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5904 * Perform the simplest bit tests first, and validate EL2 afterward.
5905 */
5906 if (el & 1) {
5907 return false; /* EL1 or EL3 */
5908 }
5909
5910 /*
5911 * Note that hcr_write() checks isar_feature_aa64_vh(),
5912 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5913 */
5914 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5915 if ((env->cp15.hcr_el2 & mask) != mask) {
5916 return false;
5917 }
5918
5919 /* TGE and/or E2H set: double check those bits are currently legal. */
5920 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5921 }
5922
5923 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5924 uint64_t value)
5925 {
5926 uint64_t valid_mask = 0;
5927
5928 /* No features adding bits to HCRX are implemented. */
5929
5930 /* Clear RES0 bits. */
5931 env->cp15.hcrx_el2 = value & valid_mask;
5932 }
5933
5934 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5935 bool isread)
5936 {
5937 if (arm_current_el(env) < 3
5938 && arm_feature(env, ARM_FEATURE_EL3)
5939 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5940 return CP_ACCESS_TRAP_EL3;
5941 }
5942 return CP_ACCESS_OK;
5943 }
5944
5945 static const ARMCPRegInfo hcrx_el2_reginfo = {
5946 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5947 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5948 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5949 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5950 };
5951
5952 /* Return the effective value of HCRX_EL2. */
5953 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5954 {
5955 /*
5956 * The bits in this register behave as 0 for all purposes other than
5957 * direct reads of the register if:
5958 * - EL2 is not enabled in the current security state,
5959 * - SCR_EL3.HXEn is 0.
5960 */
5961 if (!arm_is_el2_enabled(env)
5962 || (arm_feature(env, ARM_FEATURE_EL3)
5963 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5964 return 0;
5965 }
5966 return env->cp15.hcrx_el2;
5967 }
5968
5969 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5970 uint64_t value)
5971 {
5972 /*
5973 * For A-profile AArch32 EL3, if NSACR.CP10
5974 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5975 */
5976 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5977 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5978 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5979 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5980 }
5981 env->cp15.cptr_el[2] = value;
5982 }
5983
5984 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5985 {
5986 /*
5987 * For A-profile AArch32 EL3, if NSACR.CP10
5988 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5989 */
5990 uint64_t value = env->cp15.cptr_el[2];
5991
5992 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5993 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5994 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5995 }
5996 return value;
5997 }
5998
5999 static const ARMCPRegInfo el2_cp_reginfo[] = {
6000 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6001 .type = ARM_CP_IO,
6002 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6003 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6004 .writefn = hcr_write, .raw_writefn = raw_write },
6005 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6006 .type = ARM_CP_ALIAS | ARM_CP_IO,
6007 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6008 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6009 .writefn = hcr_writelow },
6010 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6011 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6012 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6013 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6014 .type = ARM_CP_ALIAS,
6015 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6016 .access = PL2_RW,
6017 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6018 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6019 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6020 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6021 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6022 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6023 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6024 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6025 .type = ARM_CP_ALIAS,
6026 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6027 .access = PL2_RW,
6028 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6029 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6030 .type = ARM_CP_ALIAS,
6031 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6032 .access = PL2_RW,
6033 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6034 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6035 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6036 .access = PL2_RW, .writefn = vbar_write,
6037 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6038 .resetvalue = 0 },
6039 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6040 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6041 .access = PL3_RW, .type = ARM_CP_ALIAS,
6042 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6043 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6044 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6045 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6046 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6047 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6048 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6049 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6050 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6051 .resetvalue = 0 },
6052 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6053 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6054 .access = PL2_RW, .type = ARM_CP_ALIAS,
6055 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6056 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6057 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6058 .access = PL2_RW, .type = ARM_CP_CONST,
6059 .resetvalue = 0 },
6060 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6061 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6062 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6063 .access = PL2_RW, .type = ARM_CP_CONST,
6064 .resetvalue = 0 },
6065 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6066 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6067 .access = PL2_RW, .type = ARM_CP_CONST,
6068 .resetvalue = 0 },
6069 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6070 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6071 .access = PL2_RW, .type = ARM_CP_CONST,
6072 .resetvalue = 0 },
6073 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6074 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6075 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6076 .raw_writefn = raw_write,
6077 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6078 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6079 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6080 .type = ARM_CP_ALIAS,
6081 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6082 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6083 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6084 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6085 .access = PL2_RW,
6086 /* no .writefn needed as this can't cause an ASID change */
6087 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6088 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6089 .cp = 15, .opc1 = 6, .crm = 2,
6090 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6091 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6092 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6093 .writefn = vttbr_write, .raw_writefn = raw_write },
6094 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6095 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6096 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6097 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6098 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6099 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6100 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6101 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6102 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6103 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6104 .access = PL2_RW, .resetvalue = 0,
6105 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6106 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6107 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6108 .access = PL2_RW, .resetvalue = 0,
6109 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6110 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6111 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6112 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6113 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6114 { .name = "TLBIALLNSNH",
6115 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6116 .type = ARM_CP_NO_RAW, .access = PL2_W,
6117 .writefn = tlbiall_nsnh_write },
6118 { .name = "TLBIALLNSNHIS",
6119 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6120 .type = ARM_CP_NO_RAW, .access = PL2_W,
6121 .writefn = tlbiall_nsnh_is_write },
6122 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6123 .type = ARM_CP_NO_RAW, .access = PL2_W,
6124 .writefn = tlbiall_hyp_write },
6125 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6126 .type = ARM_CP_NO_RAW, .access = PL2_W,
6127 .writefn = tlbiall_hyp_is_write },
6128 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6129 .type = ARM_CP_NO_RAW, .access = PL2_W,
6130 .writefn = tlbimva_hyp_write },
6131 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6132 .type = ARM_CP_NO_RAW, .access = PL2_W,
6133 .writefn = tlbimva_hyp_is_write },
6134 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6135 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6136 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6137 .writefn = tlbi_aa64_alle2_write },
6138 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6139 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6140 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6141 .writefn = tlbi_aa64_vae2_write },
6142 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6143 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6144 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6145 .writefn = tlbi_aa64_vae2_write },
6146 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6147 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6148 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6149 .writefn = tlbi_aa64_alle2is_write },
6150 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6151 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6152 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6153 .writefn = tlbi_aa64_vae2is_write },
6154 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6155 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6156 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6157 .writefn = tlbi_aa64_vae2is_write },
6158 #ifndef CONFIG_USER_ONLY
6159 /*
6160 * Unlike the other EL2-related AT operations, these must
6161 * UNDEF from EL3 if EL2 is not implemented, which is why we
6162 * define them here rather than with the rest of the AT ops.
6163 */
6164 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6165 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6166 .access = PL2_W, .accessfn = at_s1e2_access,
6167 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6168 .writefn = ats_write64 },
6169 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6170 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6171 .access = PL2_W, .accessfn = at_s1e2_access,
6172 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6173 .writefn = ats_write64 },
6174 /*
6175 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6176 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6177 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6178 * to behave as if SCR.NS was 1.
6179 */
6180 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6181 .access = PL2_W,
6182 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6183 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6184 .access = PL2_W,
6185 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6186 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6187 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6188 /*
6189 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6190 * reset values as IMPDEF. We choose to reset to 3 to comply with
6191 * both ARMv7 and ARMv8.
6192 */
6193 .access = PL2_RW, .resetvalue = 3,
6194 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6195 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6196 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6197 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6198 .writefn = gt_cntvoff_write,
6199 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6200 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6201 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6202 .writefn = gt_cntvoff_write,
6203 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6204 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6205 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6206 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6207 .type = ARM_CP_IO, .access = PL2_RW,
6208 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6209 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6210 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6211 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6212 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6213 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6214 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6215 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6216 .resetfn = gt_hyp_timer_reset,
6217 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6218 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6219 .type = ARM_CP_IO,
6220 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6221 .access = PL2_RW,
6222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6223 .resetvalue = 0,
6224 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6225 #endif
6226 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6227 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6228 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6229 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6230 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6231 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6232 .access = PL2_RW,
6233 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6234 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6235 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6236 .access = PL2_RW,
6237 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6238 };
6239
6240 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6241 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6242 .type = ARM_CP_ALIAS | ARM_CP_IO,
6243 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6244 .access = PL2_RW,
6245 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6246 .writefn = hcr_writehigh },
6247 };
6248
6249 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6250 bool isread)
6251 {
6252 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6253 return CP_ACCESS_OK;
6254 }
6255 return CP_ACCESS_TRAP_UNCATEGORIZED;
6256 }
6257
6258 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6259 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6260 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6261 .access = PL2_RW, .accessfn = sel2_access,
6262 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6263 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6264 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6265 .access = PL2_RW, .accessfn = sel2_access,
6266 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6267 };
6268
6269 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6270 bool isread)
6271 {
6272 /*
6273 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6274 * At Secure EL1 it traps to EL3 or EL2.
6275 */
6276 if (arm_current_el(env) == 3) {
6277 return CP_ACCESS_OK;
6278 }
6279 if (arm_is_secure_below_el3(env)) {
6280 if (env->cp15.scr_el3 & SCR_EEL2) {
6281 return CP_ACCESS_TRAP_EL2;
6282 }
6283 return CP_ACCESS_TRAP_EL3;
6284 }
6285 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6286 if (isread) {
6287 return CP_ACCESS_OK;
6288 }
6289 return CP_ACCESS_TRAP_UNCATEGORIZED;
6290 }
6291
6292 static const ARMCPRegInfo el3_cp_reginfo[] = {
6293 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6294 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6295 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6296 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6297 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6298 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6299 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6300 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6301 .writefn = scr_write, .raw_writefn = raw_write },
6302 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6303 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6304 .access = PL3_RW, .resetvalue = 0,
6305 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6306 { .name = "SDER",
6307 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6308 .access = PL3_RW, .resetvalue = 0,
6309 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6310 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6311 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6312 .writefn = vbar_write, .resetvalue = 0,
6313 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6314 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6315 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6316 .access = PL3_RW, .resetvalue = 0,
6317 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6318 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6319 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6320 .access = PL3_RW,
6321 /* no .writefn needed as this can't cause an ASID change */
6322 .resetvalue = 0,
6323 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6324 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6325 .type = ARM_CP_ALIAS,
6326 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6327 .access = PL3_RW,
6328 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6329 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6330 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6331 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6332 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6333 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6334 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6335 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6336 .type = ARM_CP_ALIAS,
6337 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6338 .access = PL3_RW,
6339 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6340 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6341 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6342 .access = PL3_RW, .writefn = vbar_write,
6343 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6344 .resetvalue = 0 },
6345 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6346 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6347 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6348 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6349 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6350 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6351 .access = PL3_RW, .resetvalue = 0,
6352 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6353 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6354 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6355 .access = PL3_RW, .type = ARM_CP_CONST,
6356 .resetvalue = 0 },
6357 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6358 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6359 .access = PL3_RW, .type = ARM_CP_CONST,
6360 .resetvalue = 0 },
6361 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6362 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6363 .access = PL3_RW, .type = ARM_CP_CONST,
6364 .resetvalue = 0 },
6365 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6366 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6367 .access = PL3_W, .type = ARM_CP_NO_RAW,
6368 .writefn = tlbi_aa64_alle3is_write },
6369 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6370 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6371 .access = PL3_W, .type = ARM_CP_NO_RAW,
6372 .writefn = tlbi_aa64_vae3is_write },
6373 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6374 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6375 .access = PL3_W, .type = ARM_CP_NO_RAW,
6376 .writefn = tlbi_aa64_vae3is_write },
6377 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6378 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6379 .access = PL3_W, .type = ARM_CP_NO_RAW,
6380 .writefn = tlbi_aa64_alle3_write },
6381 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6382 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6383 .access = PL3_W, .type = ARM_CP_NO_RAW,
6384 .writefn = tlbi_aa64_vae3_write },
6385 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6386 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6387 .access = PL3_W, .type = ARM_CP_NO_RAW,
6388 .writefn = tlbi_aa64_vae3_write },
6389 };
6390
6391 #ifndef CONFIG_USER_ONLY
6392 /* Test if system register redirection is to occur in the current state. */
6393 static bool redirect_for_e2h(CPUARMState *env)
6394 {
6395 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6396 }
6397
6398 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6399 {
6400 CPReadFn *readfn;
6401
6402 if (redirect_for_e2h(env)) {
6403 /* Switch to the saved EL2 version of the register. */
6404 ri = ri->opaque;
6405 readfn = ri->readfn;
6406 } else {
6407 readfn = ri->orig_readfn;
6408 }
6409 if (readfn == NULL) {
6410 readfn = raw_read;
6411 }
6412 return readfn(env, ri);
6413 }
6414
6415 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6416 uint64_t value)
6417 {
6418 CPWriteFn *writefn;
6419
6420 if (redirect_for_e2h(env)) {
6421 /* Switch to the saved EL2 version of the register. */
6422 ri = ri->opaque;
6423 writefn = ri->writefn;
6424 } else {
6425 writefn = ri->orig_writefn;
6426 }
6427 if (writefn == NULL) {
6428 writefn = raw_write;
6429 }
6430 writefn(env, ri, value);
6431 }
6432
6433 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6434 {
6435 struct E2HAlias {
6436 uint32_t src_key, dst_key, new_key;
6437 const char *src_name, *dst_name, *new_name;
6438 bool (*feature)(const ARMISARegisters *id);
6439 };
6440
6441 #define K(op0, op1, crn, crm, op2) \
6442 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6443
6444 static const struct E2HAlias aliases[] = {
6445 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6446 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6447 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6448 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6449 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6450 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6451 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6452 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6453 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6454 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6455 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6456 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6457 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6458 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6459 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6460 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6461 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6462 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6463 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6464 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6465 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6466 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6467 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6468 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6469 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6470 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6471 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6472 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6473 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6474 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6475 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6476 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6477
6478 /*
6479 * Note that redirection of ZCR is mentioned in the description
6480 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6481 * not in the summary table.
6482 */
6483 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6484 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6485 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6486 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6487
6488 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6489 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6490
6491 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6492 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6493 isar_feature_aa64_scxtnum },
6494
6495 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6496 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6497 };
6498 #undef K
6499
6500 size_t i;
6501
6502 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6503 const struct E2HAlias *a = &aliases[i];
6504 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6505 bool ok;
6506
6507 if (a->feature && !a->feature(&cpu->isar)) {
6508 continue;
6509 }
6510
6511 src_reg = g_hash_table_lookup(cpu->cp_regs,
6512 (gpointer)(uintptr_t)a->src_key);
6513 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6514 (gpointer)(uintptr_t)a->dst_key);
6515 g_assert(src_reg != NULL);
6516 g_assert(dst_reg != NULL);
6517
6518 /* Cross-compare names to detect typos in the keys. */
6519 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6520 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6521
6522 /* None of the core system registers use opaque; we will. */
6523 g_assert(src_reg->opaque == NULL);
6524
6525 /* Create alias before redirection so we dup the right data. */
6526 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6527
6528 new_reg->name = a->new_name;
6529 new_reg->type |= ARM_CP_ALIAS;
6530 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6531 new_reg->access &= PL2_RW | PL3_RW;
6532
6533 ok = g_hash_table_insert(cpu->cp_regs,
6534 (gpointer)(uintptr_t)a->new_key, new_reg);
6535 g_assert(ok);
6536
6537 src_reg->opaque = dst_reg;
6538 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6539 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6540 if (!src_reg->raw_readfn) {
6541 src_reg->raw_readfn = raw_read;
6542 }
6543 if (!src_reg->raw_writefn) {
6544 src_reg->raw_writefn = raw_write;
6545 }
6546 src_reg->readfn = el2_e2h_read;
6547 src_reg->writefn = el2_e2h_write;
6548 }
6549 }
6550 #endif
6551
6552 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6553 bool isread)
6554 {
6555 int cur_el = arm_current_el(env);
6556
6557 if (cur_el < 2) {
6558 uint64_t hcr = arm_hcr_el2_eff(env);
6559
6560 if (cur_el == 0) {
6561 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6562 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6563 return CP_ACCESS_TRAP_EL2;
6564 }
6565 } else {
6566 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6567 return CP_ACCESS_TRAP;
6568 }
6569 if (hcr & HCR_TID2) {
6570 return CP_ACCESS_TRAP_EL2;
6571 }
6572 }
6573 } else if (hcr & HCR_TID2) {
6574 return CP_ACCESS_TRAP_EL2;
6575 }
6576 }
6577
6578 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6579 return CP_ACCESS_TRAP_EL2;
6580 }
6581
6582 return CP_ACCESS_OK;
6583 }
6584
6585 /*
6586 * Check for traps to RAS registers, which are controlled
6587 * by HCR_EL2.TERR and SCR_EL3.TERR.
6588 */
6589 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6590 bool isread)
6591 {
6592 int el = arm_current_el(env);
6593
6594 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6595 return CP_ACCESS_TRAP_EL2;
6596 }
6597 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6598 return CP_ACCESS_TRAP_EL3;
6599 }
6600 return CP_ACCESS_OK;
6601 }
6602
6603 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6604 {
6605 int el = arm_current_el(env);
6606
6607 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6608 return env->cp15.vdisr_el2;
6609 }
6610 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6611 return 0; /* RAZ/WI */
6612 }
6613 return env->cp15.disr_el1;
6614 }
6615
6616 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6617 {
6618 int el = arm_current_el(env);
6619
6620 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6621 env->cp15.vdisr_el2 = val;
6622 return;
6623 }
6624 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6625 return; /* RAZ/WI */
6626 }
6627 env->cp15.disr_el1 = val;
6628 }
6629
6630 /*
6631 * Minimal RAS implementation with no Error Records.
6632 * Which means that all of the Error Record registers:
6633 * ERXADDR_EL1
6634 * ERXCTLR_EL1
6635 * ERXFR_EL1
6636 * ERXMISC0_EL1
6637 * ERXMISC1_EL1
6638 * ERXMISC2_EL1
6639 * ERXMISC3_EL1
6640 * ERXPFGCDN_EL1 (RASv1p1)
6641 * ERXPFGCTL_EL1 (RASv1p1)
6642 * ERXPFGF_EL1 (RASv1p1)
6643 * ERXSTATUS_EL1
6644 * and
6645 * ERRSELR_EL1
6646 * may generate UNDEFINED, which is the effect we get by not
6647 * listing them at all.
6648 *
6649 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6650 * is higher priority than FGT-to-EL2 so we do not need to list them
6651 * in order to check for an FGT.
6652 */
6653 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6654 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6655 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6656 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6657 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6658 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6659 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6660 .access = PL1_R, .accessfn = access_terr,
6661 .fgt = FGT_ERRIDR_EL1,
6662 .type = ARM_CP_CONST, .resetvalue = 0 },
6663 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6664 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6665 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6666 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6667 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6668 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6669 };
6670
6671 /*
6672 * Return the exception level to which exceptions should be taken
6673 * via SVEAccessTrap. This excludes the check for whether the exception
6674 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6675 * be found by testing 0 < fp_exception_el < sve_exception_el.
6676 *
6677 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6678 * pseudocode does *not* separate out the FP trap checks, but has them
6679 * all in one function.
6680 */
6681 int sve_exception_el(CPUARMState *env, int el)
6682 {
6683 #ifndef CONFIG_USER_ONLY
6684 if (el <= 1 && !el_is_in_host(env, el)) {
6685 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6686 case 1:
6687 if (el != 0) {
6688 break;
6689 }
6690 /* fall through */
6691 case 0:
6692 case 2:
6693 return 1;
6694 }
6695 }
6696
6697 if (el <= 2 && arm_is_el2_enabled(env)) {
6698 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6699 if (env->cp15.hcr_el2 & HCR_E2H) {
6700 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6701 case 1:
6702 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6703 break;
6704 }
6705 /* fall through */
6706 case 0:
6707 case 2:
6708 return 2;
6709 }
6710 } else {
6711 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6712 return 2;
6713 }
6714 }
6715 }
6716
6717 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6718 if (arm_feature(env, ARM_FEATURE_EL3)
6719 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6720 return 3;
6721 }
6722 #endif
6723 return 0;
6724 }
6725
6726 /*
6727 * Return the exception level to which exceptions should be taken for SME.
6728 * C.f. the ARM pseudocode function CheckSMEAccess.
6729 */
6730 int sme_exception_el(CPUARMState *env, int el)
6731 {
6732 #ifndef CONFIG_USER_ONLY
6733 if (el <= 1 && !el_is_in_host(env, el)) {
6734 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6735 case 1:
6736 if (el != 0) {
6737 break;
6738 }
6739 /* fall through */
6740 case 0:
6741 case 2:
6742 return 1;
6743 }
6744 }
6745
6746 if (el <= 2 && arm_is_el2_enabled(env)) {
6747 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6748 if (env->cp15.hcr_el2 & HCR_E2H) {
6749 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6750 case 1:
6751 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6752 break;
6753 }
6754 /* fall through */
6755 case 0:
6756 case 2:
6757 return 2;
6758 }
6759 } else {
6760 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6761 return 2;
6762 }
6763 }
6764 }
6765
6766 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6767 if (arm_feature(env, ARM_FEATURE_EL3)
6768 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6769 return 3;
6770 }
6771 #endif
6772 return 0;
6773 }
6774
6775 /*
6776 * Given that SVE is enabled, return the vector length for EL.
6777 */
6778 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6779 {
6780 ARMCPU *cpu = env_archcpu(env);
6781 uint64_t *cr = env->vfp.zcr_el;
6782 uint32_t map = cpu->sve_vq.map;
6783 uint32_t len = ARM_MAX_VQ - 1;
6784
6785 if (sm) {
6786 cr = env->vfp.smcr_el;
6787 map = cpu->sme_vq.map;
6788 }
6789
6790 if (el <= 1 && !el_is_in_host(env, el)) {
6791 len = MIN(len, 0xf & (uint32_t)cr[1]);
6792 }
6793 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6794 len = MIN(len, 0xf & (uint32_t)cr[2]);
6795 }
6796 if (arm_feature(env, ARM_FEATURE_EL3)) {
6797 len = MIN(len, 0xf & (uint32_t)cr[3]);
6798 }
6799
6800 map &= MAKE_64BIT_MASK(0, len + 1);
6801 if (map != 0) {
6802 return 31 - clz32(map);
6803 }
6804
6805 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6806 assert(sm);
6807 return ctz32(cpu->sme_vq.map);
6808 }
6809
6810 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6811 {
6812 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6813 }
6814
6815 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6816 uint64_t value)
6817 {
6818 int cur_el = arm_current_el(env);
6819 int old_len = sve_vqm1_for_el(env, cur_el);
6820 int new_len;
6821
6822 /* Bits other than [3:0] are RAZ/WI. */
6823 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6824 raw_write(env, ri, value & 0xf);
6825
6826 /*
6827 * Because we arrived here, we know both FP and SVE are enabled;
6828 * otherwise we would have trapped access to the ZCR_ELn register.
6829 */
6830 new_len = sve_vqm1_for_el(env, cur_el);
6831 if (new_len < old_len) {
6832 aarch64_sve_narrow_vq(env, new_len + 1);
6833 }
6834 }
6835
6836 static const ARMCPRegInfo zcr_reginfo[] = {
6837 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6838 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6839 .access = PL1_RW, .type = ARM_CP_SVE,
6840 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6841 .writefn = zcr_write, .raw_writefn = raw_write },
6842 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6843 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6844 .access = PL2_RW, .type = ARM_CP_SVE,
6845 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6846 .writefn = zcr_write, .raw_writefn = raw_write },
6847 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6848 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6849 .access = PL3_RW, .type = ARM_CP_SVE,
6850 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6851 .writefn = zcr_write, .raw_writefn = raw_write },
6852 };
6853
6854 #ifdef TARGET_AARCH64
6855 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6856 bool isread)
6857 {
6858 int el = arm_current_el(env);
6859
6860 if (el == 0) {
6861 uint64_t sctlr = arm_sctlr(env, el);
6862 if (!(sctlr & SCTLR_EnTP2)) {
6863 return CP_ACCESS_TRAP;
6864 }
6865 }
6866 /* TODO: FEAT_FGT */
6867 if (el < 3
6868 && arm_feature(env, ARM_FEATURE_EL3)
6869 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6870 return CP_ACCESS_TRAP_EL3;
6871 }
6872 return CP_ACCESS_OK;
6873 }
6874
6875 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6876 bool isread)
6877 {
6878 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6879 if (arm_current_el(env) < 3
6880 && arm_feature(env, ARM_FEATURE_EL3)
6881 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6882 return CP_ACCESS_TRAP_EL3;
6883 }
6884 return CP_ACCESS_OK;
6885 }
6886
6887 /* ResetSVEState */
6888 static void arm_reset_sve_state(CPUARMState *env)
6889 {
6890 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6891 /* Recall that FFR is stored as pregs[16]. */
6892 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6893 vfp_set_fpcr(env, 0x0800009f);
6894 }
6895
6896 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6897 {
6898 uint64_t change = (env->svcr ^ new) & mask;
6899
6900 if (change == 0) {
6901 return;
6902 }
6903 env->svcr ^= change;
6904
6905 if (change & R_SVCR_SM_MASK) {
6906 arm_reset_sve_state(env);
6907 }
6908
6909 /*
6910 * ResetSMEState.
6911 *
6912 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
6913 * on enable: while disabled, the storage is inaccessible and the
6914 * value does not matter. We're not saving the storage in vmstate
6915 * when disabled either.
6916 */
6917 if (change & new & R_SVCR_ZA_MASK) {
6918 memset(env->zarray, 0, sizeof(env->zarray));
6919 }
6920
6921 if (tcg_enabled()) {
6922 arm_rebuild_hflags(env);
6923 }
6924 }
6925
6926 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6927 uint64_t value)
6928 {
6929 aarch64_set_svcr(env, value, -1);
6930 }
6931
6932 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6933 uint64_t value)
6934 {
6935 int cur_el = arm_current_el(env);
6936 int old_len = sve_vqm1_for_el(env, cur_el);
6937 int new_len;
6938
6939 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6940 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6941 raw_write(env, ri, value);
6942
6943 /*
6944 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6945 * when SVL is widened (old values kept, or zeros). Choose to keep the
6946 * current values for simplicity. But for QEMU internals, we must still
6947 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6948 * above aarch64_sve_narrow_vq.
6949 */
6950 new_len = sve_vqm1_for_el(env, cur_el);
6951 if (new_len < old_len) {
6952 aarch64_sve_narrow_vq(env, new_len + 1);
6953 }
6954 }
6955
6956 static const ARMCPRegInfo sme_reginfo[] = {
6957 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6958 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6959 .access = PL0_RW, .accessfn = access_tpidr2,
6960 .fgt = FGT_NTPIDR2_EL0,
6961 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6962 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6964 .access = PL0_RW, .type = ARM_CP_SME,
6965 .fieldoffset = offsetof(CPUARMState, svcr),
6966 .writefn = svcr_write, .raw_writefn = raw_write },
6967 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6968 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6969 .access = PL1_RW, .type = ARM_CP_SME,
6970 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6971 .writefn = smcr_write, .raw_writefn = raw_write },
6972 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6973 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6974 .access = PL2_RW, .type = ARM_CP_SME,
6975 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6976 .writefn = smcr_write, .raw_writefn = raw_write },
6977 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6978 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6979 .access = PL3_RW, .type = ARM_CP_SME,
6980 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6981 .writefn = smcr_write, .raw_writefn = raw_write },
6982 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6983 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6984 .access = PL1_R, .accessfn = access_aa64_tid1,
6985 /*
6986 * IMPLEMENTOR = 0 (software)
6987 * REVISION = 0 (implementation defined)
6988 * SMPS = 0 (no streaming execution priority in QEMU)
6989 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6990 */
6991 .type = ARM_CP_CONST, .resetvalue = 0, },
6992 /*
6993 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6994 */
6995 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6996 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6997 .access = PL1_RW, .accessfn = access_esm,
6998 .fgt = FGT_NSMPRI_EL1,
6999 .type = ARM_CP_CONST, .resetvalue = 0 },
7000 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7001 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7002 .access = PL2_RW, .accessfn = access_esm,
7003 .type = ARM_CP_CONST, .resetvalue = 0 },
7004 };
7005
7006 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7007 uint64_t value)
7008 {
7009 CPUState *cs = env_cpu(env);
7010
7011 tlb_flush(cs);
7012 }
7013
7014 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7015 uint64_t value)
7016 {
7017 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7018 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7019 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7020 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7021
7022 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7023 }
7024
7025 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7026 {
7027 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7028 env_archcpu(env)->reset_l0gptsz);
7029 }
7030
7031 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7032 uint64_t value)
7033 {
7034 CPUState *cs = env_cpu(env);
7035
7036 tlb_flush_all_cpus_synced(cs);
7037 }
7038
7039 static const ARMCPRegInfo rme_reginfo[] = {
7040 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7041 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7042 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7043 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7044 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7045 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7046 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7047 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7048 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7049 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7050 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7051 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7052 .access = PL3_W, .type = ARM_CP_NO_RAW,
7053 .writefn = tlbi_aa64_paall_write },
7054 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7055 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7056 .access = PL3_W, .type = ARM_CP_NO_RAW,
7057 .writefn = tlbi_aa64_paallos_write },
7058 /*
7059 * QEMU does not have a way to invalidate by physical address, thus
7060 * invalidating a range of physical addresses is accomplished by
7061 * flushing all tlb entries in the outer shareable domain,
7062 * just like PAALLOS.
7063 */
7064 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7065 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7066 .access = PL3_W, .type = ARM_CP_NO_RAW,
7067 .writefn = tlbi_aa64_paallos_write },
7068 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7069 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7070 .access = PL3_W, .type = ARM_CP_NO_RAW,
7071 .writefn = tlbi_aa64_paallos_write },
7072 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7073 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7074 .access = PL3_W, .type = ARM_CP_NOP },
7075 };
7076
7077 static const ARMCPRegInfo rme_mte_reginfo[] = {
7078 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7079 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7080 .access = PL3_W, .type = ARM_CP_NOP },
7081 };
7082 #endif /* TARGET_AARCH64 */
7083
7084 static void define_pmu_regs(ARMCPU *cpu)
7085 {
7086 /*
7087 * v7 performance monitor control register: same implementor
7088 * field as main ID register, and we implement four counters in
7089 * addition to the cycle count register.
7090 */
7091 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7092 ARMCPRegInfo pmcr = {
7093 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7094 .access = PL0_RW,
7095 .fgt = FGT_PMCR_EL0,
7096 .type = ARM_CP_IO | ARM_CP_ALIAS,
7097 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7098 .accessfn = pmreg_access, .writefn = pmcr_write,
7099 .raw_writefn = raw_write,
7100 };
7101 ARMCPRegInfo pmcr64 = {
7102 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7104 .access = PL0_RW, .accessfn = pmreg_access,
7105 .fgt = FGT_PMCR_EL0,
7106 .type = ARM_CP_IO,
7107 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7108 .resetvalue = cpu->isar.reset_pmcr_el0,
7109 .writefn = pmcr_write, .raw_writefn = raw_write,
7110 };
7111
7112 define_one_arm_cp_reg(cpu, &pmcr);
7113 define_one_arm_cp_reg(cpu, &pmcr64);
7114 for (i = 0; i < pmcrn; i++) {
7115 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7116 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7117 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7118 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7119 ARMCPRegInfo pmev_regs[] = {
7120 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7121 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7122 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7123 .fgt = FGT_PMEVCNTRN_EL0,
7124 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7125 .accessfn = pmreg_access_xevcntr },
7126 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7127 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7128 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7129 .type = ARM_CP_IO,
7130 .fgt = FGT_PMEVCNTRN_EL0,
7131 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7132 .raw_readfn = pmevcntr_rawread,
7133 .raw_writefn = pmevcntr_rawwrite },
7134 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7135 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7136 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7137 .fgt = FGT_PMEVTYPERN_EL0,
7138 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7139 .accessfn = pmreg_access },
7140 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7142 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7143 .fgt = FGT_PMEVTYPERN_EL0,
7144 .type = ARM_CP_IO,
7145 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7146 .raw_writefn = pmevtyper_rawwrite },
7147 };
7148 define_arm_cp_regs(cpu, pmev_regs);
7149 g_free(pmevcntr_name);
7150 g_free(pmevcntr_el0_name);
7151 g_free(pmevtyper_name);
7152 g_free(pmevtyper_el0_name);
7153 }
7154 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7155 ARMCPRegInfo v81_pmu_regs[] = {
7156 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7157 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7158 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7159 .fgt = FGT_PMCEIDN_EL0,
7160 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7161 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7162 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7163 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7164 .fgt = FGT_PMCEIDN_EL0,
7165 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7166 };
7167 define_arm_cp_regs(cpu, v81_pmu_regs);
7168 }
7169 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7170 static const ARMCPRegInfo v84_pmmir = {
7171 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7172 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7173 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7174 .fgt = FGT_PMMIR_EL1,
7175 .resetvalue = 0
7176 };
7177 define_one_arm_cp_reg(cpu, &v84_pmmir);
7178 }
7179 }
7180
7181 #ifndef CONFIG_USER_ONLY
7182 /*
7183 * We don't know until after realize whether there's a GICv3
7184 * attached, and that is what registers the gicv3 sysregs.
7185 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7186 * at runtime.
7187 */
7188 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7189 {
7190 ARMCPU *cpu = env_archcpu(env);
7191 uint64_t pfr1 = cpu->isar.id_pfr1;
7192
7193 if (env->gicv3state) {
7194 pfr1 |= 1 << 28;
7195 }
7196 return pfr1;
7197 }
7198
7199 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7200 {
7201 ARMCPU *cpu = env_archcpu(env);
7202 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7203
7204 if (env->gicv3state) {
7205 pfr0 |= 1 << 24;
7206 }
7207 return pfr0;
7208 }
7209 #endif
7210
7211 /*
7212 * Shared logic between LORID and the rest of the LOR* registers.
7213 * Secure state exclusion has already been dealt with.
7214 */
7215 static CPAccessResult access_lor_ns(CPUARMState *env,
7216 const ARMCPRegInfo *ri, bool isread)
7217 {
7218 int el = arm_current_el(env);
7219
7220 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7221 return CP_ACCESS_TRAP_EL2;
7222 }
7223 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7224 return CP_ACCESS_TRAP_EL3;
7225 }
7226 return CP_ACCESS_OK;
7227 }
7228
7229 static CPAccessResult access_lor_other(CPUARMState *env,
7230 const ARMCPRegInfo *ri, bool isread)
7231 {
7232 if (arm_is_secure_below_el3(env)) {
7233 /* Access denied in secure mode. */
7234 return CP_ACCESS_TRAP;
7235 }
7236 return access_lor_ns(env, ri, isread);
7237 }
7238
7239 /*
7240 * A trivial implementation of ARMv8.1-LOR leaves all of these
7241 * registers fixed at 0, which indicates that there are zero
7242 * supported Limited Ordering regions.
7243 */
7244 static const ARMCPRegInfo lor_reginfo[] = {
7245 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7246 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7247 .access = PL1_RW, .accessfn = access_lor_other,
7248 .fgt = FGT_LORSA_EL1,
7249 .type = ARM_CP_CONST, .resetvalue = 0 },
7250 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7251 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7252 .access = PL1_RW, .accessfn = access_lor_other,
7253 .fgt = FGT_LOREA_EL1,
7254 .type = ARM_CP_CONST, .resetvalue = 0 },
7255 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7256 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7257 .access = PL1_RW, .accessfn = access_lor_other,
7258 .fgt = FGT_LORN_EL1,
7259 .type = ARM_CP_CONST, .resetvalue = 0 },
7260 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7261 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7262 .access = PL1_RW, .accessfn = access_lor_other,
7263 .fgt = FGT_LORC_EL1,
7264 .type = ARM_CP_CONST, .resetvalue = 0 },
7265 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7266 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7267 .access = PL1_R, .accessfn = access_lor_ns,
7268 .fgt = FGT_LORID_EL1,
7269 .type = ARM_CP_CONST, .resetvalue = 0 },
7270 };
7271
7272 #ifdef TARGET_AARCH64
7273 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7274 bool isread)
7275 {
7276 int el = arm_current_el(env);
7277
7278 if (el < 2 &&
7279 arm_is_el2_enabled(env) &&
7280 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7281 return CP_ACCESS_TRAP_EL2;
7282 }
7283 if (el < 3 &&
7284 arm_feature(env, ARM_FEATURE_EL3) &&
7285 !(env->cp15.scr_el3 & SCR_APK)) {
7286 return CP_ACCESS_TRAP_EL3;
7287 }
7288 return CP_ACCESS_OK;
7289 }
7290
7291 static const ARMCPRegInfo pauth_reginfo[] = {
7292 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7293 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7294 .access = PL1_RW, .accessfn = access_pauth,
7295 .fgt = FGT_APDAKEY,
7296 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7297 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7298 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7299 .access = PL1_RW, .accessfn = access_pauth,
7300 .fgt = FGT_APDAKEY,
7301 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7302 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7303 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7304 .access = PL1_RW, .accessfn = access_pauth,
7305 .fgt = FGT_APDBKEY,
7306 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7307 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7308 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7309 .access = PL1_RW, .accessfn = access_pauth,
7310 .fgt = FGT_APDBKEY,
7311 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7312 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7313 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7314 .access = PL1_RW, .accessfn = access_pauth,
7315 .fgt = FGT_APGAKEY,
7316 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7317 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7319 .access = PL1_RW, .accessfn = access_pauth,
7320 .fgt = FGT_APGAKEY,
7321 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7322 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7323 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7324 .access = PL1_RW, .accessfn = access_pauth,
7325 .fgt = FGT_APIAKEY,
7326 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7327 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7328 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7329 .access = PL1_RW, .accessfn = access_pauth,
7330 .fgt = FGT_APIAKEY,
7331 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7332 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7334 .access = PL1_RW, .accessfn = access_pauth,
7335 .fgt = FGT_APIBKEY,
7336 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7337 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7338 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7339 .access = PL1_RW, .accessfn = access_pauth,
7340 .fgt = FGT_APIBKEY,
7341 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7342 };
7343
7344 static const ARMCPRegInfo tlbirange_reginfo[] = {
7345 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7346 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7347 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7348 .fgt = FGT_TLBIRVAE1IS,
7349 .writefn = tlbi_aa64_rvae1is_write },
7350 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7351 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7352 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7353 .fgt = FGT_TLBIRVAAE1IS,
7354 .writefn = tlbi_aa64_rvae1is_write },
7355 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7357 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7358 .fgt = FGT_TLBIRVALE1IS,
7359 .writefn = tlbi_aa64_rvae1is_write },
7360 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7362 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7363 .fgt = FGT_TLBIRVAALE1IS,
7364 .writefn = tlbi_aa64_rvae1is_write },
7365 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7366 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7367 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7368 .fgt = FGT_TLBIRVAE1OS,
7369 .writefn = tlbi_aa64_rvae1is_write },
7370 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7372 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7373 .fgt = FGT_TLBIRVAAE1OS,
7374 .writefn = tlbi_aa64_rvae1is_write },
7375 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7377 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7378 .fgt = FGT_TLBIRVALE1OS,
7379 .writefn = tlbi_aa64_rvae1is_write },
7380 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7381 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7382 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7383 .fgt = FGT_TLBIRVAALE1OS,
7384 .writefn = tlbi_aa64_rvae1is_write },
7385 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7387 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7388 .fgt = FGT_TLBIRVAE1,
7389 .writefn = tlbi_aa64_rvae1_write },
7390 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7392 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7393 .fgt = FGT_TLBIRVAAE1,
7394 .writefn = tlbi_aa64_rvae1_write },
7395 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7396 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7397 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7398 .fgt = FGT_TLBIRVALE1,
7399 .writefn = tlbi_aa64_rvae1_write },
7400 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7401 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7402 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7403 .fgt = FGT_TLBIRVAALE1,
7404 .writefn = tlbi_aa64_rvae1_write },
7405 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7406 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7407 .access = PL2_W, .type = ARM_CP_NO_RAW,
7408 .writefn = tlbi_aa64_ripas2e1is_write },
7409 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7410 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7411 .access = PL2_W, .type = ARM_CP_NO_RAW,
7412 .writefn = tlbi_aa64_ripas2e1is_write },
7413 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7414 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7415 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7416 .writefn = tlbi_aa64_rvae2is_write },
7417 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7418 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7419 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7420 .writefn = tlbi_aa64_rvae2is_write },
7421 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7422 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7423 .access = PL2_W, .type = ARM_CP_NO_RAW,
7424 .writefn = tlbi_aa64_ripas2e1_write },
7425 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7426 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7427 .access = PL2_W, .type = ARM_CP_NO_RAW,
7428 .writefn = tlbi_aa64_ripas2e1_write },
7429 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7430 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7431 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7432 .writefn = tlbi_aa64_rvae2is_write },
7433 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7434 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7436 .writefn = tlbi_aa64_rvae2is_write },
7437 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7438 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7440 .writefn = tlbi_aa64_rvae2_write },
7441 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7442 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7444 .writefn = tlbi_aa64_rvae2_write },
7445 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7446 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7447 .access = PL3_W, .type = ARM_CP_NO_RAW,
7448 .writefn = tlbi_aa64_rvae3is_write },
7449 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7450 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7451 .access = PL3_W, .type = ARM_CP_NO_RAW,
7452 .writefn = tlbi_aa64_rvae3is_write },
7453 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7454 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7455 .access = PL3_W, .type = ARM_CP_NO_RAW,
7456 .writefn = tlbi_aa64_rvae3is_write },
7457 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7458 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7459 .access = PL3_W, .type = ARM_CP_NO_RAW,
7460 .writefn = tlbi_aa64_rvae3is_write },
7461 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7462 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7463 .access = PL3_W, .type = ARM_CP_NO_RAW,
7464 .writefn = tlbi_aa64_rvae3_write },
7465 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7466 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7467 .access = PL3_W, .type = ARM_CP_NO_RAW,
7468 .writefn = tlbi_aa64_rvae3_write },
7469 };
7470
7471 static const ARMCPRegInfo tlbios_reginfo[] = {
7472 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7473 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7474 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7475 .fgt = FGT_TLBIVMALLE1OS,
7476 .writefn = tlbi_aa64_vmalle1is_write },
7477 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7478 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7479 .fgt = FGT_TLBIVAE1OS,
7480 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7481 .writefn = tlbi_aa64_vae1is_write },
7482 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7483 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7484 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7485 .fgt = FGT_TLBIASIDE1OS,
7486 .writefn = tlbi_aa64_vmalle1is_write },
7487 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7489 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7490 .fgt = FGT_TLBIVAAE1OS,
7491 .writefn = tlbi_aa64_vae1is_write },
7492 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7494 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7495 .fgt = FGT_TLBIVALE1OS,
7496 .writefn = tlbi_aa64_vae1is_write },
7497 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7498 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7499 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7500 .fgt = FGT_TLBIVAALE1OS,
7501 .writefn = tlbi_aa64_vae1is_write },
7502 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7503 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7504 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7505 .writefn = tlbi_aa64_alle2is_write },
7506 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7507 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7508 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7509 .writefn = tlbi_aa64_vae2is_write },
7510 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7511 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7512 .access = PL2_W, .type = ARM_CP_NO_RAW,
7513 .writefn = tlbi_aa64_alle1is_write },
7514 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7516 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7517 .writefn = tlbi_aa64_vae2is_write },
7518 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7520 .access = PL2_W, .type = ARM_CP_NO_RAW,
7521 .writefn = tlbi_aa64_alle1is_write },
7522 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7523 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7524 .access = PL2_W, .type = ARM_CP_NOP },
7525 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7527 .access = PL2_W, .type = ARM_CP_NOP },
7528 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7530 .access = PL2_W, .type = ARM_CP_NOP },
7531 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7532 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7533 .access = PL2_W, .type = ARM_CP_NOP },
7534 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7536 .access = PL3_W, .type = ARM_CP_NO_RAW,
7537 .writefn = tlbi_aa64_alle3is_write },
7538 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7540 .access = PL3_W, .type = ARM_CP_NO_RAW,
7541 .writefn = tlbi_aa64_vae3is_write },
7542 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7543 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7544 .access = PL3_W, .type = ARM_CP_NO_RAW,
7545 .writefn = tlbi_aa64_vae3is_write },
7546 };
7547
7548 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7549 {
7550 Error *err = NULL;
7551 uint64_t ret;
7552
7553 /* Success sets NZCV = 0000. */
7554 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7555
7556 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7557 /*
7558 * ??? Failed, for unknown reasons in the crypto subsystem.
7559 * The best we can do is log the reason and return the
7560 * timed-out indication to the guest. There is no reason
7561 * we know to expect this failure to be transitory, so the
7562 * guest may well hang retrying the operation.
7563 */
7564 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7565 ri->name, error_get_pretty(err));
7566 error_free(err);
7567
7568 env->ZF = 0; /* NZCF = 0100 */
7569 return 0;
7570 }
7571 return ret;
7572 }
7573
7574 /* We do not support re-seeding, so the two registers operate the same. */
7575 static const ARMCPRegInfo rndr_reginfo[] = {
7576 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7577 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7578 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7579 .access = PL0_R, .readfn = rndr_readfn },
7580 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7581 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7582 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7583 .access = PL0_R, .readfn = rndr_readfn },
7584 };
7585
7586 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7587 uint64_t value)
7588 {
7589 ARMCPU *cpu = env_archcpu(env);
7590 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7591 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7592 uint64_t vaddr_in = (uint64_t) value;
7593 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7594 void *haddr;
7595 int mem_idx = cpu_mmu_index(env, false);
7596
7597 /* This won't be crossing page boundaries */
7598 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7599 if (haddr) {
7600 #ifndef CONFIG_USER_ONLY
7601
7602 ram_addr_t offset;
7603 MemoryRegion *mr;
7604
7605 /* RCU lock is already being held */
7606 mr = memory_region_from_host(haddr, &offset);
7607
7608 if (mr) {
7609 memory_region_writeback(mr, offset, dline_size);
7610 }
7611 #endif /*CONFIG_USER_ONLY*/
7612 }
7613 }
7614
7615 static const ARMCPRegInfo dcpop_reg[] = {
7616 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7617 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7618 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7619 .fgt = FGT_DCCVAP,
7620 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7621 };
7622
7623 static const ARMCPRegInfo dcpodp_reg[] = {
7624 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7625 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7626 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7627 .fgt = FGT_DCCVADP,
7628 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7629 };
7630
7631 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7632 bool isread)
7633 {
7634 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7635 return CP_ACCESS_TRAP_EL2;
7636 }
7637
7638 return CP_ACCESS_OK;
7639 }
7640
7641 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7642 bool isread)
7643 {
7644 int el = arm_current_el(env);
7645
7646 if (el < 2 && arm_is_el2_enabled(env)) {
7647 uint64_t hcr = arm_hcr_el2_eff(env);
7648 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7649 return CP_ACCESS_TRAP_EL2;
7650 }
7651 }
7652 if (el < 3 &&
7653 arm_feature(env, ARM_FEATURE_EL3) &&
7654 !(env->cp15.scr_el3 & SCR_ATA)) {
7655 return CP_ACCESS_TRAP_EL3;
7656 }
7657 return CP_ACCESS_OK;
7658 }
7659
7660 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7661 {
7662 return env->pstate & PSTATE_TCO;
7663 }
7664
7665 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7666 {
7667 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7668 }
7669
7670 static const ARMCPRegInfo mte_reginfo[] = {
7671 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7672 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7673 .access = PL1_RW, .accessfn = access_mte,
7674 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7675 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7676 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7677 .access = PL1_RW, .accessfn = access_mte,
7678 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7679 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7680 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7681 .access = PL2_RW, .accessfn = access_mte,
7682 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7683 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7684 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7685 .access = PL3_RW,
7686 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7687 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7688 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7689 .access = PL1_RW, .accessfn = access_mte,
7690 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7691 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7692 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7693 .access = PL1_RW, .accessfn = access_mte,
7694 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7695 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7696 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7697 .access = PL1_R, .accessfn = access_aa64_tid5,
7698 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7699 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7700 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7701 .type = ARM_CP_NO_RAW,
7702 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7703 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7704 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7705 .type = ARM_CP_NOP, .access = PL1_W,
7706 .fgt = FGT_DCIVAC,
7707 .accessfn = aa64_cacheop_poc_access },
7708 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7709 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7710 .fgt = FGT_DCISW,
7711 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7712 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7713 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7714 .type = ARM_CP_NOP, .access = PL1_W,
7715 .fgt = FGT_DCIVAC,
7716 .accessfn = aa64_cacheop_poc_access },
7717 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7718 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7719 .fgt = FGT_DCISW,
7720 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7721 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7722 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7723 .fgt = FGT_DCCSW,
7724 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7725 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7726 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7727 .fgt = FGT_DCCSW,
7728 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7729 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7730 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7731 .fgt = FGT_DCCISW,
7732 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7733 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7734 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7735 .fgt = FGT_DCCISW,
7736 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7737 };
7738
7739 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7740 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7741 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7742 .type = ARM_CP_CONST, .access = PL0_RW, },
7743 };
7744
7745 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7746 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7747 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7748 .type = ARM_CP_NOP, .access = PL0_W,
7749 .fgt = FGT_DCCVAC,
7750 .accessfn = aa64_cacheop_poc_access },
7751 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7752 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7753 .type = ARM_CP_NOP, .access = PL0_W,
7754 .fgt = FGT_DCCVAC,
7755 .accessfn = aa64_cacheop_poc_access },
7756 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7757 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7758 .type = ARM_CP_NOP, .access = PL0_W,
7759 .fgt = FGT_DCCVAP,
7760 .accessfn = aa64_cacheop_poc_access },
7761 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7762 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7763 .type = ARM_CP_NOP, .access = PL0_W,
7764 .fgt = FGT_DCCVAP,
7765 .accessfn = aa64_cacheop_poc_access },
7766 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7767 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7768 .type = ARM_CP_NOP, .access = PL0_W,
7769 .fgt = FGT_DCCVADP,
7770 .accessfn = aa64_cacheop_poc_access },
7771 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7773 .type = ARM_CP_NOP, .access = PL0_W,
7774 .fgt = FGT_DCCVADP,
7775 .accessfn = aa64_cacheop_poc_access },
7776 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7777 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7778 .type = ARM_CP_NOP, .access = PL0_W,
7779 .fgt = FGT_DCCIVAC,
7780 .accessfn = aa64_cacheop_poc_access },
7781 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7783 .type = ARM_CP_NOP, .access = PL0_W,
7784 .fgt = FGT_DCCIVAC,
7785 .accessfn = aa64_cacheop_poc_access },
7786 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7787 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7788 .access = PL0_W, .type = ARM_CP_DC_GVA,
7789 #ifndef CONFIG_USER_ONLY
7790 /* Avoid overhead of an access check that always passes in user-mode */
7791 .accessfn = aa64_zva_access,
7792 .fgt = FGT_DCZVA,
7793 #endif
7794 },
7795 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7796 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7797 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7798 #ifndef CONFIG_USER_ONLY
7799 /* Avoid overhead of an access check that always passes in user-mode */
7800 .accessfn = aa64_zva_access,
7801 .fgt = FGT_DCZVA,
7802 #endif
7803 },
7804 };
7805
7806 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7807 bool isread)
7808 {
7809 uint64_t hcr = arm_hcr_el2_eff(env);
7810 int el = arm_current_el(env);
7811
7812 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7813 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7814 if (hcr & HCR_TGE) {
7815 return CP_ACCESS_TRAP_EL2;
7816 }
7817 return CP_ACCESS_TRAP;
7818 }
7819 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7820 return CP_ACCESS_TRAP_EL2;
7821 }
7822 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7823 return CP_ACCESS_TRAP_EL2;
7824 }
7825 if (el < 3
7826 && arm_feature(env, ARM_FEATURE_EL3)
7827 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7828 return CP_ACCESS_TRAP_EL3;
7829 }
7830 return CP_ACCESS_OK;
7831 }
7832
7833 static const ARMCPRegInfo scxtnum_reginfo[] = {
7834 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7835 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7836 .access = PL0_RW, .accessfn = access_scxtnum,
7837 .fgt = FGT_SCXTNUM_EL0,
7838 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7839 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7840 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7841 .access = PL1_RW, .accessfn = access_scxtnum,
7842 .fgt = FGT_SCXTNUM_EL1,
7843 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7844 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7845 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7846 .access = PL2_RW, .accessfn = access_scxtnum,
7847 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7848 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7849 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7850 .access = PL3_RW,
7851 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7852 };
7853
7854 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7855 bool isread)
7856 {
7857 if (arm_current_el(env) == 2 &&
7858 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7859 return CP_ACCESS_TRAP_EL3;
7860 }
7861 return CP_ACCESS_OK;
7862 }
7863
7864 static const ARMCPRegInfo fgt_reginfo[] = {
7865 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7866 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7867 .access = PL2_RW, .accessfn = access_fgt,
7868 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7869 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7870 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7871 .access = PL2_RW, .accessfn = access_fgt,
7872 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7873 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7874 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7875 .access = PL2_RW, .accessfn = access_fgt,
7876 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7877 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7878 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7879 .access = PL2_RW, .accessfn = access_fgt,
7880 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7881 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7882 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7883 .access = PL2_RW, .accessfn = access_fgt,
7884 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7885 };
7886 #endif /* TARGET_AARCH64 */
7887
7888 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7889 bool isread)
7890 {
7891 int el = arm_current_el(env);
7892
7893 if (el == 0) {
7894 uint64_t sctlr = arm_sctlr(env, el);
7895 if (!(sctlr & SCTLR_EnRCTX)) {
7896 return CP_ACCESS_TRAP;
7897 }
7898 } else if (el == 1) {
7899 uint64_t hcr = arm_hcr_el2_eff(env);
7900 if (hcr & HCR_NV) {
7901 return CP_ACCESS_TRAP_EL2;
7902 }
7903 }
7904 return CP_ACCESS_OK;
7905 }
7906
7907 static const ARMCPRegInfo predinv_reginfo[] = {
7908 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7909 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7910 .fgt = FGT_CFPRCTX,
7911 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7912 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7913 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7914 .fgt = FGT_DVPRCTX,
7915 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7916 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7918 .fgt = FGT_CPPRCTX,
7919 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7920 /*
7921 * Note the AArch32 opcodes have a different OPC1.
7922 */
7923 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7924 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7925 .fgt = FGT_CFPRCTX,
7926 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7927 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7928 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7929 .fgt = FGT_DVPRCTX,
7930 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7931 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7932 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7933 .fgt = FGT_CPPRCTX,
7934 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7935 };
7936
7937 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7938 {
7939 /* Read the high 32 bits of the current CCSIDR */
7940 return extract64(ccsidr_read(env, ri), 32, 32);
7941 }
7942
7943 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7944 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7945 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7946 .access = PL1_R,
7947 .accessfn = access_tid4,
7948 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7949 };
7950
7951 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7952 bool isread)
7953 {
7954 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7955 return CP_ACCESS_TRAP_EL2;
7956 }
7957
7958 return CP_ACCESS_OK;
7959 }
7960
7961 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7962 bool isread)
7963 {
7964 if (arm_feature(env, ARM_FEATURE_V8)) {
7965 return access_aa64_tid3(env, ri, isread);
7966 }
7967
7968 return CP_ACCESS_OK;
7969 }
7970
7971 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7972 bool isread)
7973 {
7974 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7975 return CP_ACCESS_TRAP_EL2;
7976 }
7977
7978 return CP_ACCESS_OK;
7979 }
7980
7981 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7982 const ARMCPRegInfo *ri, bool isread)
7983 {
7984 /*
7985 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7986 * in v7A, not in v8A.
7987 */
7988 if (!arm_feature(env, ARM_FEATURE_V8) &&
7989 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7990 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7991 return CP_ACCESS_TRAP_EL2;
7992 }
7993 return CP_ACCESS_OK;
7994 }
7995
7996 static const ARMCPRegInfo jazelle_regs[] = {
7997 { .name = "JIDR",
7998 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7999 .access = PL1_R, .accessfn = access_jazelle,
8000 .type = ARM_CP_CONST, .resetvalue = 0 },
8001 { .name = "JOSCR",
8002 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8003 .accessfn = access_joscr_jmcr,
8004 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8005 { .name = "JMCR",
8006 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8007 .accessfn = access_joscr_jmcr,
8008 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8009 };
8010
8011 static const ARMCPRegInfo contextidr_el2 = {
8012 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8013 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8014 .access = PL2_RW,
8015 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8016 };
8017
8018 static const ARMCPRegInfo vhe_reginfo[] = {
8019 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8020 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8021 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8022 .raw_writefn = raw_write,
8023 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8024 #ifndef CONFIG_USER_ONLY
8025 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8026 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8027 .fieldoffset =
8028 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8029 .type = ARM_CP_IO, .access = PL2_RW,
8030 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8031 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8032 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8033 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8034 .resetfn = gt_hv_timer_reset,
8035 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8036 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8037 .type = ARM_CP_IO,
8038 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8039 .access = PL2_RW,
8040 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8041 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8042 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8043 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8044 .type = ARM_CP_IO | ARM_CP_ALIAS,
8045 .access = PL2_RW, .accessfn = e2h_access,
8046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8047 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8048 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8049 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8050 .type = ARM_CP_IO | ARM_CP_ALIAS,
8051 .access = PL2_RW, .accessfn = e2h_access,
8052 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8053 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8054 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8055 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8056 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8057 .access = PL2_RW, .accessfn = e2h_access,
8058 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8059 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8060 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8061 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8062 .access = PL2_RW, .accessfn = e2h_access,
8063 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8064 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8065 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8066 .type = ARM_CP_IO | ARM_CP_ALIAS,
8067 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8068 .access = PL2_RW, .accessfn = e2h_access,
8069 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8070 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8071 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8072 .type = ARM_CP_IO | ARM_CP_ALIAS,
8073 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8074 .access = PL2_RW, .accessfn = e2h_access,
8075 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8076 #endif
8077 };
8078
8079 #ifndef CONFIG_USER_ONLY
8080 static const ARMCPRegInfo ats1e1_reginfo[] = {
8081 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8082 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8083 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8084 .fgt = FGT_ATS1E1RP,
8085 .writefn = ats_write64 },
8086 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8087 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8088 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8089 .fgt = FGT_ATS1E1WP,
8090 .writefn = ats_write64 },
8091 };
8092
8093 static const ARMCPRegInfo ats1cp_reginfo[] = {
8094 { .name = "ATS1CPRP",
8095 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8096 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8097 .writefn = ats_write },
8098 { .name = "ATS1CPWP",
8099 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8100 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8101 .writefn = ats_write },
8102 };
8103 #endif
8104
8105 /*
8106 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8107 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8108 * is non-zero, which is never for ARMv7, optionally in ARMv8
8109 * and mandatorily for ARMv8.2 and up.
8110 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8111 * implementation is RAZ/WI we can ignore this detail, as we
8112 * do for ACTLR.
8113 */
8114 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8115 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8116 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8117 .access = PL1_RW, .accessfn = access_tacr,
8118 .type = ARM_CP_CONST, .resetvalue = 0 },
8119 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8120 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8121 .access = PL2_RW, .type = ARM_CP_CONST,
8122 .resetvalue = 0 },
8123 };
8124
8125 void register_cp_regs_for_features(ARMCPU *cpu)
8126 {
8127 /* Register all the coprocessor registers based on feature bits */
8128 CPUARMState *env = &cpu->env;
8129 if (arm_feature(env, ARM_FEATURE_M)) {
8130 /* M profile has no coprocessor registers */
8131 return;
8132 }
8133
8134 define_arm_cp_regs(cpu, cp_reginfo);
8135 if (!arm_feature(env, ARM_FEATURE_V8)) {
8136 /*
8137 * Must go early as it is full of wildcards that may be
8138 * overridden by later definitions.
8139 */
8140 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8141 }
8142
8143 if (arm_feature(env, ARM_FEATURE_V6)) {
8144 /* The ID registers all have impdef reset values */
8145 ARMCPRegInfo v6_idregs[] = {
8146 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8148 .access = PL1_R, .type = ARM_CP_CONST,
8149 .accessfn = access_aa32_tid3,
8150 .resetvalue = cpu->isar.id_pfr0 },
8151 /*
8152 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8153 * the value of the GIC field until after we define these regs.
8154 */
8155 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8156 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8157 .access = PL1_R, .type = ARM_CP_NO_RAW,
8158 .accessfn = access_aa32_tid3,
8159 #ifdef CONFIG_USER_ONLY
8160 .type = ARM_CP_CONST,
8161 .resetvalue = cpu->isar.id_pfr1,
8162 #else
8163 .type = ARM_CP_NO_RAW,
8164 .accessfn = access_aa32_tid3,
8165 .readfn = id_pfr1_read,
8166 .writefn = arm_cp_write_ignore
8167 #endif
8168 },
8169 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8171 .access = PL1_R, .type = ARM_CP_CONST,
8172 .accessfn = access_aa32_tid3,
8173 .resetvalue = cpu->isar.id_dfr0 },
8174 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8176 .access = PL1_R, .type = ARM_CP_CONST,
8177 .accessfn = access_aa32_tid3,
8178 .resetvalue = cpu->id_afr0 },
8179 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8180 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8181 .access = PL1_R, .type = ARM_CP_CONST,
8182 .accessfn = access_aa32_tid3,
8183 .resetvalue = cpu->isar.id_mmfr0 },
8184 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8186 .access = PL1_R, .type = ARM_CP_CONST,
8187 .accessfn = access_aa32_tid3,
8188 .resetvalue = cpu->isar.id_mmfr1 },
8189 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8191 .access = PL1_R, .type = ARM_CP_CONST,
8192 .accessfn = access_aa32_tid3,
8193 .resetvalue = cpu->isar.id_mmfr2 },
8194 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8196 .access = PL1_R, .type = ARM_CP_CONST,
8197 .accessfn = access_aa32_tid3,
8198 .resetvalue = cpu->isar.id_mmfr3 },
8199 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8201 .access = PL1_R, .type = ARM_CP_CONST,
8202 .accessfn = access_aa32_tid3,
8203 .resetvalue = cpu->isar.id_isar0 },
8204 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8205 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8206 .access = PL1_R, .type = ARM_CP_CONST,
8207 .accessfn = access_aa32_tid3,
8208 .resetvalue = cpu->isar.id_isar1 },
8209 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8211 .access = PL1_R, .type = ARM_CP_CONST,
8212 .accessfn = access_aa32_tid3,
8213 .resetvalue = cpu->isar.id_isar2 },
8214 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8216 .access = PL1_R, .type = ARM_CP_CONST,
8217 .accessfn = access_aa32_tid3,
8218 .resetvalue = cpu->isar.id_isar3 },
8219 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8221 .access = PL1_R, .type = ARM_CP_CONST,
8222 .accessfn = access_aa32_tid3,
8223 .resetvalue = cpu->isar.id_isar4 },
8224 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8226 .access = PL1_R, .type = ARM_CP_CONST,
8227 .accessfn = access_aa32_tid3,
8228 .resetvalue = cpu->isar.id_isar5 },
8229 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8231 .access = PL1_R, .type = ARM_CP_CONST,
8232 .accessfn = access_aa32_tid3,
8233 .resetvalue = cpu->isar.id_mmfr4 },
8234 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8235 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8236 .access = PL1_R, .type = ARM_CP_CONST,
8237 .accessfn = access_aa32_tid3,
8238 .resetvalue = cpu->isar.id_isar6 },
8239 };
8240 define_arm_cp_regs(cpu, v6_idregs);
8241 define_arm_cp_regs(cpu, v6_cp_reginfo);
8242 } else {
8243 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8244 }
8245 if (arm_feature(env, ARM_FEATURE_V6K)) {
8246 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8247 }
8248 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8249 !arm_feature(env, ARM_FEATURE_PMSA)) {
8250 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8251 }
8252 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8253 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8254 }
8255 if (arm_feature(env, ARM_FEATURE_V7)) {
8256 ARMCPRegInfo clidr = {
8257 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8258 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8259 .access = PL1_R, .type = ARM_CP_CONST,
8260 .accessfn = access_tid4,
8261 .fgt = FGT_CLIDR_EL1,
8262 .resetvalue = cpu->clidr
8263 };
8264 define_one_arm_cp_reg(cpu, &clidr);
8265 define_arm_cp_regs(cpu, v7_cp_reginfo);
8266 define_debug_regs(cpu);
8267 define_pmu_regs(cpu);
8268 } else {
8269 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8270 }
8271 if (arm_feature(env, ARM_FEATURE_V8)) {
8272 /*
8273 * v8 ID registers, which all have impdef reset values.
8274 * Note that within the ID register ranges the unused slots
8275 * must all RAZ, not UNDEF; future architecture versions may
8276 * define new registers here.
8277 * ID registers which are AArch64 views of the AArch32 ID registers
8278 * which already existed in v6 and v7 are handled elsewhere,
8279 * in v6_idregs[].
8280 */
8281 int i;
8282 ARMCPRegInfo v8_idregs[] = {
8283 /*
8284 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8285 * emulation because we don't know the right value for the
8286 * GIC field until after we define these regs.
8287 */
8288 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8290 .access = PL1_R,
8291 #ifdef CONFIG_USER_ONLY
8292 .type = ARM_CP_CONST,
8293 .resetvalue = cpu->isar.id_aa64pfr0
8294 #else
8295 .type = ARM_CP_NO_RAW,
8296 .accessfn = access_aa64_tid3,
8297 .readfn = id_aa64pfr0_read,
8298 .writefn = arm_cp_write_ignore
8299 #endif
8300 },
8301 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8303 .access = PL1_R, .type = ARM_CP_CONST,
8304 .accessfn = access_aa64_tid3,
8305 .resetvalue = cpu->isar.id_aa64pfr1},
8306 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8308 .access = PL1_R, .type = ARM_CP_CONST,
8309 .accessfn = access_aa64_tid3,
8310 .resetvalue = 0 },
8311 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8313 .access = PL1_R, .type = ARM_CP_CONST,
8314 .accessfn = access_aa64_tid3,
8315 .resetvalue = 0 },
8316 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8318 .access = PL1_R, .type = ARM_CP_CONST,
8319 .accessfn = access_aa64_tid3,
8320 .resetvalue = cpu->isar.id_aa64zfr0 },
8321 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8323 .access = PL1_R, .type = ARM_CP_CONST,
8324 .accessfn = access_aa64_tid3,
8325 .resetvalue = cpu->isar.id_aa64smfr0 },
8326 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8328 .access = PL1_R, .type = ARM_CP_CONST,
8329 .accessfn = access_aa64_tid3,
8330 .resetvalue = 0 },
8331 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8333 .access = PL1_R, .type = ARM_CP_CONST,
8334 .accessfn = access_aa64_tid3,
8335 .resetvalue = 0 },
8336 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8338 .access = PL1_R, .type = ARM_CP_CONST,
8339 .accessfn = access_aa64_tid3,
8340 .resetvalue = cpu->isar.id_aa64dfr0 },
8341 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8342 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8343 .access = PL1_R, .type = ARM_CP_CONST,
8344 .accessfn = access_aa64_tid3,
8345 .resetvalue = cpu->isar.id_aa64dfr1 },
8346 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8347 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8348 .access = PL1_R, .type = ARM_CP_CONST,
8349 .accessfn = access_aa64_tid3,
8350 .resetvalue = 0 },
8351 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8352 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8353 .access = PL1_R, .type = ARM_CP_CONST,
8354 .accessfn = access_aa64_tid3,
8355 .resetvalue = 0 },
8356 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8358 .access = PL1_R, .type = ARM_CP_CONST,
8359 .accessfn = access_aa64_tid3,
8360 .resetvalue = cpu->id_aa64afr0 },
8361 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8363 .access = PL1_R, .type = ARM_CP_CONST,
8364 .accessfn = access_aa64_tid3,
8365 .resetvalue = cpu->id_aa64afr1 },
8366 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8367 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8368 .access = PL1_R, .type = ARM_CP_CONST,
8369 .accessfn = access_aa64_tid3,
8370 .resetvalue = 0 },
8371 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8373 .access = PL1_R, .type = ARM_CP_CONST,
8374 .accessfn = access_aa64_tid3,
8375 .resetvalue = 0 },
8376 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8378 .access = PL1_R, .type = ARM_CP_CONST,
8379 .accessfn = access_aa64_tid3,
8380 .resetvalue = cpu->isar.id_aa64isar0 },
8381 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8383 .access = PL1_R, .type = ARM_CP_CONST,
8384 .accessfn = access_aa64_tid3,
8385 .resetvalue = cpu->isar.id_aa64isar1 },
8386 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8388 .access = PL1_R, .type = ARM_CP_CONST,
8389 .accessfn = access_aa64_tid3,
8390 .resetvalue = 0 },
8391 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8393 .access = PL1_R, .type = ARM_CP_CONST,
8394 .accessfn = access_aa64_tid3,
8395 .resetvalue = 0 },
8396 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8398 .access = PL1_R, .type = ARM_CP_CONST,
8399 .accessfn = access_aa64_tid3,
8400 .resetvalue = 0 },
8401 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8403 .access = PL1_R, .type = ARM_CP_CONST,
8404 .accessfn = access_aa64_tid3,
8405 .resetvalue = 0 },
8406 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8408 .access = PL1_R, .type = ARM_CP_CONST,
8409 .accessfn = access_aa64_tid3,
8410 .resetvalue = 0 },
8411 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8413 .access = PL1_R, .type = ARM_CP_CONST,
8414 .accessfn = access_aa64_tid3,
8415 .resetvalue = 0 },
8416 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8418 .access = PL1_R, .type = ARM_CP_CONST,
8419 .accessfn = access_aa64_tid3,
8420 .resetvalue = cpu->isar.id_aa64mmfr0 },
8421 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8423 .access = PL1_R, .type = ARM_CP_CONST,
8424 .accessfn = access_aa64_tid3,
8425 .resetvalue = cpu->isar.id_aa64mmfr1 },
8426 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8428 .access = PL1_R, .type = ARM_CP_CONST,
8429 .accessfn = access_aa64_tid3,
8430 .resetvalue = cpu->isar.id_aa64mmfr2 },
8431 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8432 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8433 .access = PL1_R, .type = ARM_CP_CONST,
8434 .accessfn = access_aa64_tid3,
8435 .resetvalue = 0 },
8436 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8438 .access = PL1_R, .type = ARM_CP_CONST,
8439 .accessfn = access_aa64_tid3,
8440 .resetvalue = 0 },
8441 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8442 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8443 .access = PL1_R, .type = ARM_CP_CONST,
8444 .accessfn = access_aa64_tid3,
8445 .resetvalue = 0 },
8446 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8448 .access = PL1_R, .type = ARM_CP_CONST,
8449 .accessfn = access_aa64_tid3,
8450 .resetvalue = 0 },
8451 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8453 .access = PL1_R, .type = ARM_CP_CONST,
8454 .accessfn = access_aa64_tid3,
8455 .resetvalue = 0 },
8456 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8457 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8458 .access = PL1_R, .type = ARM_CP_CONST,
8459 .accessfn = access_aa64_tid3,
8460 .resetvalue = cpu->isar.mvfr0 },
8461 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8462 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8463 .access = PL1_R, .type = ARM_CP_CONST,
8464 .accessfn = access_aa64_tid3,
8465 .resetvalue = cpu->isar.mvfr1 },
8466 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8468 .access = PL1_R, .type = ARM_CP_CONST,
8469 .accessfn = access_aa64_tid3,
8470 .resetvalue = cpu->isar.mvfr2 },
8471 /*
8472 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8473 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8474 * as RAZ, since it is in the "reserved for future ID
8475 * registers, RAZ" part of the AArch32 encoding space.
8476 */
8477 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8478 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8479 .access = PL1_R, .type = ARM_CP_CONST,
8480 .accessfn = access_aa64_tid3,
8481 .resetvalue = 0 },
8482 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8483 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8484 .access = PL1_R, .type = ARM_CP_CONST,
8485 .accessfn = access_aa64_tid3,
8486 .resetvalue = 0 },
8487 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8488 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8489 .access = PL1_R, .type = ARM_CP_CONST,
8490 .accessfn = access_aa64_tid3,
8491 .resetvalue = 0 },
8492 /*
8493 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8494 * they're also RAZ for AArch64, and in v8 are gradually
8495 * being filled with AArch64-view-of-AArch32-ID-register
8496 * for new ID registers.
8497 */
8498 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8500 .access = PL1_R, .type = ARM_CP_CONST,
8501 .accessfn = access_aa64_tid3,
8502 .resetvalue = 0 },
8503 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8505 .access = PL1_R, .type = ARM_CP_CONST,
8506 .accessfn = access_aa64_tid3,
8507 .resetvalue = cpu->isar.id_pfr2 },
8508 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8510 .access = PL1_R, .type = ARM_CP_CONST,
8511 .accessfn = access_aa64_tid3,
8512 .resetvalue = cpu->isar.id_dfr1 },
8513 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8515 .access = PL1_R, .type = ARM_CP_CONST,
8516 .accessfn = access_aa64_tid3,
8517 .resetvalue = cpu->isar.id_mmfr5 },
8518 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8520 .access = PL1_R, .type = ARM_CP_CONST,
8521 .accessfn = access_aa64_tid3,
8522 .resetvalue = 0 },
8523 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8524 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8525 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8526 .fgt = FGT_PMCEIDN_EL0,
8527 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8528 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8529 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8530 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8531 .fgt = FGT_PMCEIDN_EL0,
8532 .resetvalue = cpu->pmceid0 },
8533 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8534 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8535 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8536 .fgt = FGT_PMCEIDN_EL0,
8537 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8538 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8539 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8540 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8541 .fgt = FGT_PMCEIDN_EL0,
8542 .resetvalue = cpu->pmceid1 },
8543 };
8544 #ifdef CONFIG_USER_ONLY
8545 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8546 { .name = "ID_AA64PFR0_EL1",
8547 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8548 R_ID_AA64PFR0_ADVSIMD_MASK |
8549 R_ID_AA64PFR0_SVE_MASK |
8550 R_ID_AA64PFR0_DIT_MASK,
8551 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8552 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8553 { .name = "ID_AA64PFR1_EL1",
8554 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8555 R_ID_AA64PFR1_SSBS_MASK |
8556 R_ID_AA64PFR1_MTE_MASK |
8557 R_ID_AA64PFR1_SME_MASK },
8558 { .name = "ID_AA64PFR*_EL1_RESERVED",
8559 .is_glob = true },
8560 { .name = "ID_AA64ZFR0_EL1",
8561 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8562 R_ID_AA64ZFR0_AES_MASK |
8563 R_ID_AA64ZFR0_BITPERM_MASK |
8564 R_ID_AA64ZFR0_BFLOAT16_MASK |
8565 R_ID_AA64ZFR0_SHA3_MASK |
8566 R_ID_AA64ZFR0_SM4_MASK |
8567 R_ID_AA64ZFR0_I8MM_MASK |
8568 R_ID_AA64ZFR0_F32MM_MASK |
8569 R_ID_AA64ZFR0_F64MM_MASK },
8570 { .name = "ID_AA64SMFR0_EL1",
8571 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8572 R_ID_AA64SMFR0_B16F32_MASK |
8573 R_ID_AA64SMFR0_F16F32_MASK |
8574 R_ID_AA64SMFR0_I8I32_MASK |
8575 R_ID_AA64SMFR0_F64F64_MASK |
8576 R_ID_AA64SMFR0_I16I64_MASK |
8577 R_ID_AA64SMFR0_FA64_MASK },
8578 { .name = "ID_AA64MMFR0_EL1",
8579 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8580 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8581 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8582 { .name = "ID_AA64MMFR1_EL1",
8583 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8584 { .name = "ID_AA64MMFR2_EL1",
8585 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8586 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8587 .is_glob = true },
8588 { .name = "ID_AA64DFR0_EL1",
8589 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8590 { .name = "ID_AA64DFR1_EL1" },
8591 { .name = "ID_AA64DFR*_EL1_RESERVED",
8592 .is_glob = true },
8593 { .name = "ID_AA64AFR*",
8594 .is_glob = true },
8595 { .name = "ID_AA64ISAR0_EL1",
8596 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8597 R_ID_AA64ISAR0_SHA1_MASK |
8598 R_ID_AA64ISAR0_SHA2_MASK |
8599 R_ID_AA64ISAR0_CRC32_MASK |
8600 R_ID_AA64ISAR0_ATOMIC_MASK |
8601 R_ID_AA64ISAR0_RDM_MASK |
8602 R_ID_AA64ISAR0_SHA3_MASK |
8603 R_ID_AA64ISAR0_SM3_MASK |
8604 R_ID_AA64ISAR0_SM4_MASK |
8605 R_ID_AA64ISAR0_DP_MASK |
8606 R_ID_AA64ISAR0_FHM_MASK |
8607 R_ID_AA64ISAR0_TS_MASK |
8608 R_ID_AA64ISAR0_RNDR_MASK },
8609 { .name = "ID_AA64ISAR1_EL1",
8610 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8611 R_ID_AA64ISAR1_APA_MASK |
8612 R_ID_AA64ISAR1_API_MASK |
8613 R_ID_AA64ISAR1_JSCVT_MASK |
8614 R_ID_AA64ISAR1_FCMA_MASK |
8615 R_ID_AA64ISAR1_LRCPC_MASK |
8616 R_ID_AA64ISAR1_GPA_MASK |
8617 R_ID_AA64ISAR1_GPI_MASK |
8618 R_ID_AA64ISAR1_FRINTTS_MASK |
8619 R_ID_AA64ISAR1_SB_MASK |
8620 R_ID_AA64ISAR1_BF16_MASK |
8621 R_ID_AA64ISAR1_DGH_MASK |
8622 R_ID_AA64ISAR1_I8MM_MASK },
8623 { .name = "ID_AA64ISAR2_EL1",
8624 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8625 R_ID_AA64ISAR2_RPRES_MASK |
8626 R_ID_AA64ISAR2_GPA3_MASK |
8627 R_ID_AA64ISAR2_APA3_MASK },
8628 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8629 .is_glob = true },
8630 };
8631 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8632 #endif
8633 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8634 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8635 !arm_feature(env, ARM_FEATURE_EL2)) {
8636 ARMCPRegInfo rvbar = {
8637 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8638 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8639 .access = PL1_R,
8640 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8641 };
8642 define_one_arm_cp_reg(cpu, &rvbar);
8643 }
8644 define_arm_cp_regs(cpu, v8_idregs);
8645 define_arm_cp_regs(cpu, v8_cp_reginfo);
8646
8647 for (i = 4; i < 16; i++) {
8648 /*
8649 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8650 * For pre-v8 cores there are RAZ patterns for these in
8651 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8652 * v8 extends the "must RAZ" part of the ID register space
8653 * to also cover c0, 0, c{8-15}, {0-7}.
8654 * These are STATE_AA32 because in the AArch64 sysreg space
8655 * c4-c7 is where the AArch64 ID registers live (and we've
8656 * already defined those in v8_idregs[]), and c8-c15 are not
8657 * "must RAZ" for AArch64.
8658 */
8659 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8660 ARMCPRegInfo v8_aa32_raz_idregs = {
8661 .name = name,
8662 .state = ARM_CP_STATE_AA32,
8663 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8664 .access = PL1_R, .type = ARM_CP_CONST,
8665 .accessfn = access_aa64_tid3,
8666 .resetvalue = 0 };
8667 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8668 }
8669 }
8670
8671 /*
8672 * Register the base EL2 cpregs.
8673 * Pre v8, these registers are implemented only as part of the
8674 * Virtualization Extensions (EL2 present). Beginning with v8,
8675 * if EL2 is missing but EL3 is enabled, mostly these become
8676 * RES0 from EL3, with some specific exceptions.
8677 */
8678 if (arm_feature(env, ARM_FEATURE_EL2)
8679 || (arm_feature(env, ARM_FEATURE_EL3)
8680 && arm_feature(env, ARM_FEATURE_V8))) {
8681 uint64_t vmpidr_def = mpidr_read_val(env);
8682 ARMCPRegInfo vpidr_regs[] = {
8683 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8684 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8685 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8686 .resetvalue = cpu->midr,
8687 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8688 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8689 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8690 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8691 .access = PL2_RW, .resetvalue = cpu->midr,
8692 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8693 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8694 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8695 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8696 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8697 .resetvalue = vmpidr_def,
8698 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8699 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8700 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8701 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8702 .access = PL2_RW, .resetvalue = vmpidr_def,
8703 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8704 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8705 };
8706 /*
8707 * The only field of MDCR_EL2 that has a defined architectural reset
8708 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8709 */
8710 ARMCPRegInfo mdcr_el2 = {
8711 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8712 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8713 .writefn = mdcr_el2_write,
8714 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8715 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8716 };
8717 define_one_arm_cp_reg(cpu, &mdcr_el2);
8718 define_arm_cp_regs(cpu, vpidr_regs);
8719 define_arm_cp_regs(cpu, el2_cp_reginfo);
8720 if (arm_feature(env, ARM_FEATURE_V8)) {
8721 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8722 }
8723 if (cpu_isar_feature(aa64_sel2, cpu)) {
8724 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8725 }
8726 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8727 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8728 ARMCPRegInfo rvbar[] = {
8729 {
8730 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8731 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8732 .access = PL2_R,
8733 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8734 },
8735 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8736 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8737 .access = PL2_R,
8738 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8739 },
8740 };
8741 define_arm_cp_regs(cpu, rvbar);
8742 }
8743 }
8744
8745 /* Register the base EL3 cpregs. */
8746 if (arm_feature(env, ARM_FEATURE_EL3)) {
8747 define_arm_cp_regs(cpu, el3_cp_reginfo);
8748 ARMCPRegInfo el3_regs[] = {
8749 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8750 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8751 .access = PL3_R,
8752 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8753 },
8754 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8755 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8756 .access = PL3_RW,
8757 .raw_writefn = raw_write, .writefn = sctlr_write,
8758 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8759 .resetvalue = cpu->reset_sctlr },
8760 };
8761
8762 define_arm_cp_regs(cpu, el3_regs);
8763 }
8764 /*
8765 * The behaviour of NSACR is sufficiently various that we don't
8766 * try to describe it in a single reginfo:
8767 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8768 * reads as constant 0xc00 from NS EL1 and NS EL2
8769 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8770 * if v7 without EL3, register doesn't exist
8771 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8772 */
8773 if (arm_feature(env, ARM_FEATURE_EL3)) {
8774 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8775 static const ARMCPRegInfo nsacr = {
8776 .name = "NSACR", .type = ARM_CP_CONST,
8777 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8778 .access = PL1_RW, .accessfn = nsacr_access,
8779 .resetvalue = 0xc00
8780 };
8781 define_one_arm_cp_reg(cpu, &nsacr);
8782 } else {
8783 static const ARMCPRegInfo nsacr = {
8784 .name = "NSACR",
8785 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8786 .access = PL3_RW | PL1_R,
8787 .resetvalue = 0,
8788 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8789 };
8790 define_one_arm_cp_reg(cpu, &nsacr);
8791 }
8792 } else {
8793 if (arm_feature(env, ARM_FEATURE_V8)) {
8794 static const ARMCPRegInfo nsacr = {
8795 .name = "NSACR", .type = ARM_CP_CONST,
8796 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8797 .access = PL1_R,
8798 .resetvalue = 0xc00
8799 };
8800 define_one_arm_cp_reg(cpu, &nsacr);
8801 }
8802 }
8803
8804 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8805 if (arm_feature(env, ARM_FEATURE_V6)) {
8806 /* PMSAv6 not implemented */
8807 assert(arm_feature(env, ARM_FEATURE_V7));
8808 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8809 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8810 } else {
8811 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8812 }
8813 } else {
8814 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8815 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8816 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8817 if (cpu_isar_feature(aa32_hpd, cpu)) {
8818 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8819 }
8820 }
8821 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8822 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8823 }
8824 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8825 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8826 }
8827 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8828 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8829 }
8830 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8831 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8832 }
8833 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8834 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8835 }
8836 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8837 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8838 }
8839 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8840 define_arm_cp_regs(cpu, omap_cp_reginfo);
8841 }
8842 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8843 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8844 }
8845 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8846 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8847 }
8848 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8849 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8850 }
8851 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8852 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8853 }
8854 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8855 define_arm_cp_regs(cpu, jazelle_regs);
8856 }
8857 /*
8858 * Slightly awkwardly, the OMAP and StrongARM cores need all of
8859 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8860 * be read-only (ie write causes UNDEF exception).
8861 */
8862 {
8863 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8864 /*
8865 * Pre-v8 MIDR space.
8866 * Note that the MIDR isn't a simple constant register because
8867 * of the TI925 behaviour where writes to another register can
8868 * cause the MIDR value to change.
8869 *
8870 * Unimplemented registers in the c15 0 0 0 space default to
8871 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8872 * and friends override accordingly.
8873 */
8874 { .name = "MIDR",
8875 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8876 .access = PL1_R, .resetvalue = cpu->midr,
8877 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8878 .readfn = midr_read,
8879 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8880 .type = ARM_CP_OVERRIDE },
8881 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8882 { .name = "DUMMY",
8883 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8884 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8885 { .name = "DUMMY",
8886 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8887 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8888 { .name = "DUMMY",
8889 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8890 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8891 { .name = "DUMMY",
8892 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8893 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8894 { .name = "DUMMY",
8895 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8896 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8897 };
8898 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8899 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8901 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8902 .fgt = FGT_MIDR_EL1,
8903 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8904 .readfn = midr_read },
8905 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8906 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8907 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8908 .access = PL1_R, .resetvalue = cpu->midr },
8909 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8911 .access = PL1_R,
8912 .accessfn = access_aa64_tid1,
8913 .fgt = FGT_REVIDR_EL1,
8914 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8915 };
8916 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8917 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8918 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8919 .access = PL1_R, .resetvalue = cpu->midr
8920 };
8921 ARMCPRegInfo id_cp_reginfo[] = {
8922 /* These are common to v8 and pre-v8 */
8923 { .name = "CTR",
8924 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8925 .access = PL1_R, .accessfn = ctr_el0_access,
8926 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8927 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8928 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8929 .access = PL0_R, .accessfn = ctr_el0_access,
8930 .fgt = FGT_CTR_EL0,
8931 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8932 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8933 { .name = "TCMTR",
8934 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8935 .access = PL1_R,
8936 .accessfn = access_aa32_tid1,
8937 .type = ARM_CP_CONST, .resetvalue = 0 },
8938 };
8939 /* TLBTR is specific to VMSA */
8940 ARMCPRegInfo id_tlbtr_reginfo = {
8941 .name = "TLBTR",
8942 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8943 .access = PL1_R,
8944 .accessfn = access_aa32_tid1,
8945 .type = ARM_CP_CONST, .resetvalue = 0,
8946 };
8947 /* MPUIR is specific to PMSA V6+ */
8948 ARMCPRegInfo id_mpuir_reginfo = {
8949 .name = "MPUIR",
8950 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8951 .access = PL1_R, .type = ARM_CP_CONST,
8952 .resetvalue = cpu->pmsav7_dregion << 8
8953 };
8954 /* HMPUIR is specific to PMSA V8 */
8955 ARMCPRegInfo id_hmpuir_reginfo = {
8956 .name = "HMPUIR",
8957 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8958 .access = PL2_R, .type = ARM_CP_CONST,
8959 .resetvalue = cpu->pmsav8r_hdregion
8960 };
8961 static const ARMCPRegInfo crn0_wi_reginfo = {
8962 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8963 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8964 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8965 };
8966 #ifdef CONFIG_USER_ONLY
8967 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8968 { .name = "MIDR_EL1",
8969 .exported_bits = R_MIDR_EL1_REVISION_MASK |
8970 R_MIDR_EL1_PARTNUM_MASK |
8971 R_MIDR_EL1_ARCHITECTURE_MASK |
8972 R_MIDR_EL1_VARIANT_MASK |
8973 R_MIDR_EL1_IMPLEMENTER_MASK },
8974 { .name = "REVIDR_EL1" },
8975 };
8976 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8977 #endif
8978 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8979 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8980 size_t i;
8981 /*
8982 * Register the blanket "writes ignored" value first to cover the
8983 * whole space. Then update the specific ID registers to allow write
8984 * access, so that they ignore writes rather than causing them to
8985 * UNDEF.
8986 */
8987 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8988 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8989 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8990 }
8991 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8992 id_cp_reginfo[i].access = PL1_RW;
8993 }
8994 id_mpuir_reginfo.access = PL1_RW;
8995 id_tlbtr_reginfo.access = PL1_RW;
8996 }
8997 if (arm_feature(env, ARM_FEATURE_V8)) {
8998 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8999 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9000 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9001 }
9002 } else {
9003 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9004 }
9005 define_arm_cp_regs(cpu, id_cp_reginfo);
9006 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9007 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9008 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9009 arm_feature(env, ARM_FEATURE_V8)) {
9010 uint32_t i = 0;
9011 char *tmp_string;
9012
9013 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9014 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9015 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9016
9017 /* Register alias is only valid for first 32 indexes */
9018 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9019 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9020 uint8_t opc1 = extract32(i, 4, 1);
9021 uint8_t opc2 = extract32(i, 0, 1) << 2;
9022
9023 tmp_string = g_strdup_printf("PRBAR%u", i);
9024 ARMCPRegInfo tmp_prbarn_reginfo = {
9025 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9026 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9027 .access = PL1_RW, .resetvalue = 0,
9028 .accessfn = access_tvm_trvm,
9029 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9030 };
9031 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9032 g_free(tmp_string);
9033
9034 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9035 tmp_string = g_strdup_printf("PRLAR%u", i);
9036 ARMCPRegInfo tmp_prlarn_reginfo = {
9037 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9038 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9039 .access = PL1_RW, .resetvalue = 0,
9040 .accessfn = access_tvm_trvm,
9041 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9042 };
9043 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9044 g_free(tmp_string);
9045 }
9046
9047 /* Register alias is only valid for first 32 indexes */
9048 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9049 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9050 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9051 uint8_t opc2 = extract32(i, 0, 1) << 2;
9052
9053 tmp_string = g_strdup_printf("HPRBAR%u", i);
9054 ARMCPRegInfo tmp_hprbarn_reginfo = {
9055 .name = tmp_string,
9056 .type = ARM_CP_NO_RAW,
9057 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9058 .access = PL2_RW, .resetvalue = 0,
9059 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9060 };
9061 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9062 g_free(tmp_string);
9063
9064 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9065 tmp_string = g_strdup_printf("HPRLAR%u", i);
9066 ARMCPRegInfo tmp_hprlarn_reginfo = {
9067 .name = tmp_string,
9068 .type = ARM_CP_NO_RAW,
9069 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9070 .access = PL2_RW, .resetvalue = 0,
9071 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9072 };
9073 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9074 g_free(tmp_string);
9075 }
9076 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9077 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9078 }
9079 }
9080
9081 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9082 ARMCPRegInfo mpidr_cp_reginfo[] = {
9083 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9084 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9085 .fgt = FGT_MPIDR_EL1,
9086 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9087 };
9088 #ifdef CONFIG_USER_ONLY
9089 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9090 { .name = "MPIDR_EL1",
9091 .fixed_bits = 0x0000000080000000 },
9092 };
9093 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9094 #endif
9095 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9096 }
9097
9098 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9099 ARMCPRegInfo auxcr_reginfo[] = {
9100 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9101 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9102 .access = PL1_RW, .accessfn = access_tacr,
9103 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9104 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9105 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9106 .access = PL2_RW, .type = ARM_CP_CONST,
9107 .resetvalue = 0 },
9108 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9109 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9110 .access = PL3_RW, .type = ARM_CP_CONST,
9111 .resetvalue = 0 },
9112 };
9113 define_arm_cp_regs(cpu, auxcr_reginfo);
9114 if (cpu_isar_feature(aa32_ac2, cpu)) {
9115 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9116 }
9117 }
9118
9119 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9120 /*
9121 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9122 * There are two flavours:
9123 * (1) older 32-bit only cores have a simple 32-bit CBAR
9124 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9125 * 32-bit register visible to AArch32 at a different encoding
9126 * to the "flavour 1" register and with the bits rearranged to
9127 * be able to squash a 64-bit address into the 32-bit view.
9128 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9129 * in future if we support AArch32-only configs of some of the
9130 * AArch64 cores we might need to add a specific feature flag
9131 * to indicate cores with "flavour 2" CBAR.
9132 */
9133 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9134 /* 32 bit view is [31:18] 0...0 [43:32]. */
9135 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9136 | extract64(cpu->reset_cbar, 32, 12);
9137 ARMCPRegInfo cbar_reginfo[] = {
9138 { .name = "CBAR",
9139 .type = ARM_CP_CONST,
9140 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9141 .access = PL1_R, .resetvalue = cbar32 },
9142 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9143 .type = ARM_CP_CONST,
9144 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9145 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9146 };
9147 /* We don't implement a r/w 64 bit CBAR currently */
9148 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9149 define_arm_cp_regs(cpu, cbar_reginfo);
9150 } else {
9151 ARMCPRegInfo cbar = {
9152 .name = "CBAR",
9153 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9154 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9155 .fieldoffset = offsetof(CPUARMState,
9156 cp15.c15_config_base_address)
9157 };
9158 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9159 cbar.access = PL1_R;
9160 cbar.fieldoffset = 0;
9161 cbar.type = ARM_CP_CONST;
9162 }
9163 define_one_arm_cp_reg(cpu, &cbar);
9164 }
9165 }
9166
9167 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9168 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9169 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9170 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9171 .access = PL1_RW, .writefn = vbar_write,
9172 .fgt = FGT_VBAR_EL1,
9173 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9174 offsetof(CPUARMState, cp15.vbar_ns) },
9175 .resetvalue = 0 },
9176 };
9177 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9178 }
9179
9180 /* Generic registers whose values depend on the implementation */
9181 {
9182 ARMCPRegInfo sctlr = {
9183 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9184 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9185 .access = PL1_RW, .accessfn = access_tvm_trvm,
9186 .fgt = FGT_SCTLR_EL1,
9187 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9188 offsetof(CPUARMState, cp15.sctlr_ns) },
9189 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9190 .raw_writefn = raw_write,
9191 };
9192 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9193 /*
9194 * Normally we would always end the TB on an SCTLR write, but Linux
9195 * arch/arm/mach-pxa/sleep.S expects two instructions following
9196 * an MMU enable to execute from cache. Imitate this behaviour.
9197 */
9198 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9199 }
9200 define_one_arm_cp_reg(cpu, &sctlr);
9201
9202 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9203 arm_feature(env, ARM_FEATURE_V8)) {
9204 ARMCPRegInfo vsctlr = {
9205 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9206 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9207 .access = PL2_RW, .resetvalue = 0x0,
9208 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9209 };
9210 define_one_arm_cp_reg(cpu, &vsctlr);
9211 }
9212 }
9213
9214 if (cpu_isar_feature(aa64_lor, cpu)) {
9215 define_arm_cp_regs(cpu, lor_reginfo);
9216 }
9217 if (cpu_isar_feature(aa64_pan, cpu)) {
9218 define_one_arm_cp_reg(cpu, &pan_reginfo);
9219 }
9220 #ifndef CONFIG_USER_ONLY
9221 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9222 define_arm_cp_regs(cpu, ats1e1_reginfo);
9223 }
9224 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9225 define_arm_cp_regs(cpu, ats1cp_reginfo);
9226 }
9227 #endif
9228 if (cpu_isar_feature(aa64_uao, cpu)) {
9229 define_one_arm_cp_reg(cpu, &uao_reginfo);
9230 }
9231
9232 if (cpu_isar_feature(aa64_dit, cpu)) {
9233 define_one_arm_cp_reg(cpu, &dit_reginfo);
9234 }
9235 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9236 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9237 }
9238 if (cpu_isar_feature(any_ras, cpu)) {
9239 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9240 }
9241
9242 if (cpu_isar_feature(aa64_vh, cpu) ||
9243 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9244 define_one_arm_cp_reg(cpu, &contextidr_el2);
9245 }
9246 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9247 define_arm_cp_regs(cpu, vhe_reginfo);
9248 }
9249
9250 if (cpu_isar_feature(aa64_sve, cpu)) {
9251 define_arm_cp_regs(cpu, zcr_reginfo);
9252 }
9253
9254 if (cpu_isar_feature(aa64_hcx, cpu)) {
9255 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9256 }
9257
9258 #ifdef TARGET_AARCH64
9259 if (cpu_isar_feature(aa64_sme, cpu)) {
9260 define_arm_cp_regs(cpu, sme_reginfo);
9261 }
9262 if (cpu_isar_feature(aa64_pauth, cpu)) {
9263 define_arm_cp_regs(cpu, pauth_reginfo);
9264 }
9265 if (cpu_isar_feature(aa64_rndr, cpu)) {
9266 define_arm_cp_regs(cpu, rndr_reginfo);
9267 }
9268 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9269 define_arm_cp_regs(cpu, tlbirange_reginfo);
9270 }
9271 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9272 define_arm_cp_regs(cpu, tlbios_reginfo);
9273 }
9274 /* Data Cache clean instructions up to PoP */
9275 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9276 define_one_arm_cp_reg(cpu, dcpop_reg);
9277
9278 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9279 define_one_arm_cp_reg(cpu, dcpodp_reg);
9280 }
9281 }
9282
9283 /*
9284 * If full MTE is enabled, add all of the system registers.
9285 * If only "instructions available at EL0" are enabled,
9286 * then define only a RAZ/WI version of PSTATE.TCO.
9287 */
9288 if (cpu_isar_feature(aa64_mte, cpu)) {
9289 define_arm_cp_regs(cpu, mte_reginfo);
9290 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9291 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9292 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9293 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9294 }
9295
9296 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9297 define_arm_cp_regs(cpu, scxtnum_reginfo);
9298 }
9299
9300 if (cpu_isar_feature(aa64_fgt, cpu)) {
9301 define_arm_cp_regs(cpu, fgt_reginfo);
9302 }
9303
9304 if (cpu_isar_feature(aa64_rme, cpu)) {
9305 define_arm_cp_regs(cpu, rme_reginfo);
9306 if (cpu_isar_feature(aa64_mte, cpu)) {
9307 define_arm_cp_regs(cpu, rme_mte_reginfo);
9308 }
9309 }
9310 #endif
9311
9312 if (cpu_isar_feature(any_predinv, cpu)) {
9313 define_arm_cp_regs(cpu, predinv_reginfo);
9314 }
9315
9316 if (cpu_isar_feature(any_ccidx, cpu)) {
9317 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9318 }
9319
9320 #ifndef CONFIG_USER_ONLY
9321 /*
9322 * Register redirections and aliases must be done last,
9323 * after the registers from the other extensions have been defined.
9324 */
9325 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9326 define_arm_vh_e2h_redirects_aliases(cpu);
9327 }
9328 #endif
9329 }
9330
9331 /* Sort alphabetically by type name, except for "any". */
9332 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9333 {
9334 ObjectClass *class_a = (ObjectClass *)a;
9335 ObjectClass *class_b = (ObjectClass *)b;
9336 const char *name_a, *name_b;
9337
9338 name_a = object_class_get_name(class_a);
9339 name_b = object_class_get_name(class_b);
9340 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9341 return 1;
9342 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9343 return -1;
9344 } else {
9345 return strcmp(name_a, name_b);
9346 }
9347 }
9348
9349 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9350 {
9351 ObjectClass *oc = data;
9352 CPUClass *cc = CPU_CLASS(oc);
9353 const char *typename;
9354 char *name;
9355
9356 typename = object_class_get_name(oc);
9357 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9358 if (cc->deprecation_note) {
9359 qemu_printf(" %s (deprecated)\n", name);
9360 } else {
9361 qemu_printf(" %s\n", name);
9362 }
9363 g_free(name);
9364 }
9365
9366 void arm_cpu_list(void)
9367 {
9368 GSList *list;
9369
9370 list = object_class_get_list(TYPE_ARM_CPU, false);
9371 list = g_slist_sort(list, arm_cpu_list_compare);
9372 qemu_printf("Available CPUs:\n");
9373 g_slist_foreach(list, arm_cpu_list_entry, NULL);
9374 g_slist_free(list);
9375 }
9376
9377 /*
9378 * Private utility function for define_one_arm_cp_reg_with_opaque():
9379 * add a single reginfo struct to the hash table.
9380 */
9381 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9382 void *opaque, CPState state,
9383 CPSecureState secstate,
9384 int crm, int opc1, int opc2,
9385 const char *name)
9386 {
9387 CPUARMState *env = &cpu->env;
9388 uint32_t key;
9389 ARMCPRegInfo *r2;
9390 bool is64 = r->type & ARM_CP_64BIT;
9391 bool ns = secstate & ARM_CP_SECSTATE_NS;
9392 int cp = r->cp;
9393 size_t name_len;
9394 bool make_const;
9395
9396 switch (state) {
9397 case ARM_CP_STATE_AA32:
9398 /* We assume it is a cp15 register if the .cp field is left unset. */
9399 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9400 cp = 15;
9401 }
9402 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9403 break;
9404 case ARM_CP_STATE_AA64:
9405 /*
9406 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9407 * cp == 0 as equivalent to the value for "standard guest-visible
9408 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9409 * in their AArch64 view (the .cp value may be non-zero for the
9410 * benefit of the AArch32 view).
9411 */
9412 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9413 cp = CP_REG_ARM64_SYSREG_CP;
9414 }
9415 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9416 break;
9417 default:
9418 g_assert_not_reached();
9419 }
9420
9421 /* Overriding of an existing definition must be explicitly requested. */
9422 if (!(r->type & ARM_CP_OVERRIDE)) {
9423 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9424 if (oldreg) {
9425 assert(oldreg->type & ARM_CP_OVERRIDE);
9426 }
9427 }
9428
9429 /*
9430 * Eliminate registers that are not present because the EL is missing.
9431 * Doing this here makes it easier to put all registers for a given
9432 * feature into the same ARMCPRegInfo array and define them all at once.
9433 */
9434 make_const = false;
9435 if (arm_feature(env, ARM_FEATURE_EL3)) {
9436 /*
9437 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9438 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9439 */
9440 int min_el = ctz32(r->access) / 2;
9441 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9442 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9443 return;
9444 }
9445 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9446 }
9447 } else {
9448 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9449 ? PL2_RW : PL1_RW);
9450 if ((r->access & max_el) == 0) {
9451 return;
9452 }
9453 }
9454
9455 /* Combine cpreg and name into one allocation. */
9456 name_len = strlen(name) + 1;
9457 r2 = g_malloc(sizeof(*r2) + name_len);
9458 *r2 = *r;
9459 r2->name = memcpy(r2 + 1, name, name_len);
9460
9461 /*
9462 * Update fields to match the instantiation, overwiting wildcards
9463 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9464 */
9465 r2->cp = cp;
9466 r2->crm = crm;
9467 r2->opc1 = opc1;
9468 r2->opc2 = opc2;
9469 r2->state = state;
9470 r2->secure = secstate;
9471 if (opaque) {
9472 r2->opaque = opaque;
9473 }
9474
9475 if (make_const) {
9476 /* This should not have been a very special register to begin. */
9477 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9478 assert(old_special == 0 || old_special == ARM_CP_NOP);
9479 /*
9480 * Set the special function to CONST, retaining the other flags.
9481 * This is important for e.g. ARM_CP_SVE so that we still
9482 * take the SVE trap if CPTR_EL3.EZ == 0.
9483 */
9484 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9485 /*
9486 * Usually, these registers become RES0, but there are a few
9487 * special cases like VPIDR_EL2 which have a constant non-zero
9488 * value with writes ignored.
9489 */
9490 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9491 r2->resetvalue = 0;
9492 }
9493 /*
9494 * ARM_CP_CONST has precedence, so removing the callbacks and
9495 * offsets are not strictly necessary, but it is potentially
9496 * less confusing to debug later.
9497 */
9498 r2->readfn = NULL;
9499 r2->writefn = NULL;
9500 r2->raw_readfn = NULL;
9501 r2->raw_writefn = NULL;
9502 r2->resetfn = NULL;
9503 r2->fieldoffset = 0;
9504 r2->bank_fieldoffsets[0] = 0;
9505 r2->bank_fieldoffsets[1] = 0;
9506 } else {
9507 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9508
9509 if (isbanked) {
9510 /*
9511 * Register is banked (using both entries in array).
9512 * Overwriting fieldoffset as the array is only used to define
9513 * banked registers but later only fieldoffset is used.
9514 */
9515 r2->fieldoffset = r->bank_fieldoffsets[ns];
9516 }
9517 if (state == ARM_CP_STATE_AA32) {
9518 if (isbanked) {
9519 /*
9520 * If the register is banked then we don't need to migrate or
9521 * reset the 32-bit instance in certain cases:
9522 *
9523 * 1) If the register has both 32-bit and 64-bit instances
9524 * then we can count on the 64-bit instance taking care
9525 * of the non-secure bank.
9526 * 2) If ARMv8 is enabled then we can count on a 64-bit
9527 * version taking care of the secure bank. This requires
9528 * that separate 32 and 64-bit definitions are provided.
9529 */
9530 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9531 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9532 r2->type |= ARM_CP_ALIAS;
9533 }
9534 } else if ((secstate != r->secure) && !ns) {
9535 /*
9536 * The register is not banked so we only want to allow
9537 * migration of the non-secure instance.
9538 */
9539 r2->type |= ARM_CP_ALIAS;
9540 }
9541
9542 if (HOST_BIG_ENDIAN &&
9543 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9544 r2->fieldoffset += sizeof(uint32_t);
9545 }
9546 }
9547 }
9548
9549 /*
9550 * By convention, for wildcarded registers only the first
9551 * entry is used for migration; the others are marked as
9552 * ALIAS so we don't try to transfer the register
9553 * multiple times. Special registers (ie NOP/WFI) are
9554 * never migratable and not even raw-accessible.
9555 */
9556 if (r2->type & ARM_CP_SPECIAL_MASK) {
9557 r2->type |= ARM_CP_NO_RAW;
9558 }
9559 if (((r->crm == CP_ANY) && crm != 0) ||
9560 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9561 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9562 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9563 }
9564
9565 /*
9566 * Check that raw accesses are either forbidden or handled. Note that
9567 * we can't assert this earlier because the setup of fieldoffset for
9568 * banked registers has to be done first.
9569 */
9570 if (!(r2->type & ARM_CP_NO_RAW)) {
9571 assert(!raw_accessors_invalid(r2));
9572 }
9573
9574 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9575 }
9576
9577
9578 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9579 const ARMCPRegInfo *r, void *opaque)
9580 {
9581 /*
9582 * Define implementations of coprocessor registers.
9583 * We store these in a hashtable because typically
9584 * there are less than 150 registers in a space which
9585 * is 16*16*16*8*8 = 262144 in size.
9586 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9587 * If a register is defined twice then the second definition is
9588 * used, so this can be used to define some generic registers and
9589 * then override them with implementation specific variations.
9590 * At least one of the original and the second definition should
9591 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9592 * against accidental use.
9593 *
9594 * The state field defines whether the register is to be
9595 * visible in the AArch32 or AArch64 execution state. If the
9596 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9597 * reginfo structure for the AArch32 view, which sees the lower
9598 * 32 bits of the 64 bit register.
9599 *
9600 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9601 * be wildcarded. AArch64 registers are always considered to be 64
9602 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9603 * the register, if any.
9604 */
9605 int crm, opc1, opc2;
9606 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9607 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9608 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9609 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9610 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9611 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9612 CPState state;
9613
9614 /* 64 bit registers have only CRm and Opc1 fields */
9615 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9616 /* op0 only exists in the AArch64 encodings */
9617 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9618 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9619 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9620 /*
9621 * This API is only for Arm's system coprocessors (14 and 15) or
9622 * (M-profile or v7A-and-earlier only) for implementation defined
9623 * coprocessors in the range 0..7. Our decode assumes this, since
9624 * 8..13 can be used for other insns including VFP and Neon. See
9625 * valid_cp() in translate.c. Assert here that we haven't tried
9626 * to use an invalid coprocessor number.
9627 */
9628 switch (r->state) {
9629 case ARM_CP_STATE_BOTH:
9630 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9631 if (r->cp == 0) {
9632 break;
9633 }
9634 /* fall through */
9635 case ARM_CP_STATE_AA32:
9636 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9637 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9638 assert(r->cp >= 14 && r->cp <= 15);
9639 } else {
9640 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9641 }
9642 break;
9643 case ARM_CP_STATE_AA64:
9644 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9645 break;
9646 default:
9647 g_assert_not_reached();
9648 }
9649 /*
9650 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9651 * encodes a minimum access level for the register. We roll this
9652 * runtime check into our general permission check code, so check
9653 * here that the reginfo's specified permissions are strict enough
9654 * to encompass the generic architectural permission check.
9655 */
9656 if (r->state != ARM_CP_STATE_AA32) {
9657 CPAccessRights mask;
9658 switch (r->opc1) {
9659 case 0:
9660 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9661 mask = PL0U_R | PL1_RW;
9662 break;
9663 case 1: case 2:
9664 /* min_EL EL1 */
9665 mask = PL1_RW;
9666 break;
9667 case 3:
9668 /* min_EL EL0 */
9669 mask = PL0_RW;
9670 break;
9671 case 4:
9672 case 5:
9673 /* min_EL EL2 */
9674 mask = PL2_RW;
9675 break;
9676 case 6:
9677 /* min_EL EL3 */
9678 mask = PL3_RW;
9679 break;
9680 case 7:
9681 /* min_EL EL1, secure mode only (we don't check the latter) */
9682 mask = PL1_RW;
9683 break;
9684 default:
9685 /* broken reginfo with out-of-range opc1 */
9686 g_assert_not_reached();
9687 }
9688 /* assert our permissions are not too lax (stricter is fine) */
9689 assert((r->access & ~mask) == 0);
9690 }
9691
9692 /*
9693 * Check that the register definition has enough info to handle
9694 * reads and writes if they are permitted.
9695 */
9696 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9697 if (r->access & PL3_R) {
9698 assert((r->fieldoffset ||
9699 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9700 r->readfn);
9701 }
9702 if (r->access & PL3_W) {
9703 assert((r->fieldoffset ||
9704 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9705 r->writefn);
9706 }
9707 }
9708
9709 for (crm = crmmin; crm <= crmmax; crm++) {
9710 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9711 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9712 for (state = ARM_CP_STATE_AA32;
9713 state <= ARM_CP_STATE_AA64; state++) {
9714 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9715 continue;
9716 }
9717 if (state == ARM_CP_STATE_AA32) {
9718 /*
9719 * Under AArch32 CP registers can be common
9720 * (same for secure and non-secure world) or banked.
9721 */
9722 char *name;
9723
9724 switch (r->secure) {
9725 case ARM_CP_SECSTATE_S:
9726 case ARM_CP_SECSTATE_NS:
9727 add_cpreg_to_hashtable(cpu, r, opaque, state,
9728 r->secure, crm, opc1, opc2,
9729 r->name);
9730 break;
9731 case ARM_CP_SECSTATE_BOTH:
9732 name = g_strdup_printf("%s_S", r->name);
9733 add_cpreg_to_hashtable(cpu, r, opaque, state,
9734 ARM_CP_SECSTATE_S,
9735 crm, opc1, opc2, name);
9736 g_free(name);
9737 add_cpreg_to_hashtable(cpu, r, opaque, state,
9738 ARM_CP_SECSTATE_NS,
9739 crm, opc1, opc2, r->name);
9740 break;
9741 default:
9742 g_assert_not_reached();
9743 }
9744 } else {
9745 /*
9746 * AArch64 registers get mapped to non-secure instance
9747 * of AArch32
9748 */
9749 add_cpreg_to_hashtable(cpu, r, opaque, state,
9750 ARM_CP_SECSTATE_NS,
9751 crm, opc1, opc2, r->name);
9752 }
9753 }
9754 }
9755 }
9756 }
9757 }
9758
9759 /* Define a whole list of registers */
9760 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9761 void *opaque, size_t len)
9762 {
9763 size_t i;
9764 for (i = 0; i < len; ++i) {
9765 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9766 }
9767 }
9768
9769 /*
9770 * Modify ARMCPRegInfo for access from userspace.
9771 *
9772 * This is a data driven modification directed by
9773 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9774 * user-space cannot alter any values and dynamic values pertaining to
9775 * execution state are hidden from user space view anyway.
9776 */
9777 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9778 const ARMCPRegUserSpaceInfo *mods,
9779 size_t mods_len)
9780 {
9781 for (size_t mi = 0; mi < mods_len; ++mi) {
9782 const ARMCPRegUserSpaceInfo *m = mods + mi;
9783 GPatternSpec *pat = NULL;
9784
9785 if (m->is_glob) {
9786 pat = g_pattern_spec_new(m->name);
9787 }
9788 for (size_t ri = 0; ri < regs_len; ++ri) {
9789 ARMCPRegInfo *r = regs + ri;
9790
9791 if (pat && g_pattern_match_string(pat, r->name)) {
9792 r->type = ARM_CP_CONST;
9793 r->access = PL0U_R;
9794 r->resetvalue = 0;
9795 /* continue */
9796 } else if (strcmp(r->name, m->name) == 0) {
9797 r->type = ARM_CP_CONST;
9798 r->access = PL0U_R;
9799 r->resetvalue &= m->exported_bits;
9800 r->resetvalue |= m->fixed_bits;
9801 break;
9802 }
9803 }
9804 if (pat) {
9805 g_pattern_spec_free(pat);
9806 }
9807 }
9808 }
9809
9810 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9811 {
9812 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9813 }
9814
9815 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9816 uint64_t value)
9817 {
9818 /* Helper coprocessor write function for write-ignore registers */
9819 }
9820
9821 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9822 {
9823 /* Helper coprocessor write function for read-as-zero registers */
9824 return 0;
9825 }
9826
9827 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9828 {
9829 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9830 }
9831
9832 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9833 {
9834 /*
9835 * Return true if it is not valid for us to switch to
9836 * this CPU mode (ie all the UNPREDICTABLE cases in
9837 * the ARM ARM CPSRWriteByInstr pseudocode).
9838 */
9839
9840 /* Changes to or from Hyp via MSR and CPS are illegal. */
9841 if (write_type == CPSRWriteByInstr &&
9842 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9843 mode == ARM_CPU_MODE_HYP)) {
9844 return 1;
9845 }
9846
9847 switch (mode) {
9848 case ARM_CPU_MODE_USR:
9849 return 0;
9850 case ARM_CPU_MODE_SYS:
9851 case ARM_CPU_MODE_SVC:
9852 case ARM_CPU_MODE_ABT:
9853 case ARM_CPU_MODE_UND:
9854 case ARM_CPU_MODE_IRQ:
9855 case ARM_CPU_MODE_FIQ:
9856 /*
9857 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9858 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9859 */
9860 /*
9861 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9862 * and CPS are treated as illegal mode changes.
9863 */
9864 if (write_type == CPSRWriteByInstr &&
9865 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9866 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9867 return 1;
9868 }
9869 return 0;
9870 case ARM_CPU_MODE_HYP:
9871 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9872 case ARM_CPU_MODE_MON:
9873 return arm_current_el(env) < 3;
9874 default:
9875 return 1;
9876 }
9877 }
9878
9879 uint32_t cpsr_read(CPUARMState *env)
9880 {
9881 int ZF;
9882 ZF = (env->ZF == 0);
9883 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9884 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9885 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9886 | ((env->condexec_bits & 0xfc) << 8)
9887 | (env->GE << 16) | (env->daif & CPSR_AIF);
9888 }
9889
9890 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9891 CPSRWriteType write_type)
9892 {
9893 uint32_t changed_daif;
9894 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9895 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9896
9897 if (mask & CPSR_NZCV) {
9898 env->ZF = (~val) & CPSR_Z;
9899 env->NF = val;
9900 env->CF = (val >> 29) & 1;
9901 env->VF = (val << 3) & 0x80000000;
9902 }
9903 if (mask & CPSR_Q) {
9904 env->QF = ((val & CPSR_Q) != 0);
9905 }
9906 if (mask & CPSR_T) {
9907 env->thumb = ((val & CPSR_T) != 0);
9908 }
9909 if (mask & CPSR_IT_0_1) {
9910 env->condexec_bits &= ~3;
9911 env->condexec_bits |= (val >> 25) & 3;
9912 }
9913 if (mask & CPSR_IT_2_7) {
9914 env->condexec_bits &= 3;
9915 env->condexec_bits |= (val >> 8) & 0xfc;
9916 }
9917 if (mask & CPSR_GE) {
9918 env->GE = (val >> 16) & 0xf;
9919 }
9920
9921 /*
9922 * In a V7 implementation that includes the security extensions but does
9923 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9924 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9925 * bits respectively.
9926 *
9927 * In a V8 implementation, it is permitted for privileged software to
9928 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9929 */
9930 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9931 arm_feature(env, ARM_FEATURE_EL3) &&
9932 !arm_feature(env, ARM_FEATURE_EL2) &&
9933 !arm_is_secure(env)) {
9934
9935 changed_daif = (env->daif ^ val) & mask;
9936
9937 if (changed_daif & CPSR_A) {
9938 /*
9939 * Check to see if we are allowed to change the masking of async
9940 * abort exceptions from a non-secure state.
9941 */
9942 if (!(env->cp15.scr_el3 & SCR_AW)) {
9943 qemu_log_mask(LOG_GUEST_ERROR,
9944 "Ignoring attempt to switch CPSR_A flag from "
9945 "non-secure world with SCR.AW bit clear\n");
9946 mask &= ~CPSR_A;
9947 }
9948 }
9949
9950 if (changed_daif & CPSR_F) {
9951 /*
9952 * Check to see if we are allowed to change the masking of FIQ
9953 * exceptions from a non-secure state.
9954 */
9955 if (!(env->cp15.scr_el3 & SCR_FW)) {
9956 qemu_log_mask(LOG_GUEST_ERROR,
9957 "Ignoring attempt to switch CPSR_F flag from "
9958 "non-secure world with SCR.FW bit clear\n");
9959 mask &= ~CPSR_F;
9960 }
9961
9962 /*
9963 * Check whether non-maskable FIQ (NMFI) support is enabled.
9964 * If this bit is set software is not allowed to mask
9965 * FIQs, but is allowed to set CPSR_F to 0.
9966 */
9967 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9968 (val & CPSR_F)) {
9969 qemu_log_mask(LOG_GUEST_ERROR,
9970 "Ignoring attempt to enable CPSR_F flag "
9971 "(non-maskable FIQ [NMFI] support enabled)\n");
9972 mask &= ~CPSR_F;
9973 }
9974 }
9975 }
9976
9977 env->daif &= ~(CPSR_AIF & mask);
9978 env->daif |= val & CPSR_AIF & mask;
9979
9980 if (write_type != CPSRWriteRaw &&
9981 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9982 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9983 /*
9984 * Note that we can only get here in USR mode if this is a
9985 * gdb stub write; for this case we follow the architectural
9986 * behaviour for guest writes in USR mode of ignoring an attempt
9987 * to switch mode. (Those are caught by translate.c for writes
9988 * triggered by guest instructions.)
9989 */
9990 mask &= ~CPSR_M;
9991 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9992 /*
9993 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9994 * v7, and has defined behaviour in v8:
9995 * + leave CPSR.M untouched
9996 * + allow changes to the other CPSR fields
9997 * + set PSTATE.IL
9998 * For user changes via the GDB stub, we don't set PSTATE.IL,
9999 * as this would be unnecessarily harsh for a user error.
10000 */
10001 mask &= ~CPSR_M;
10002 if (write_type != CPSRWriteByGDBStub &&
10003 arm_feature(env, ARM_FEATURE_V8)) {
10004 mask |= CPSR_IL;
10005 val |= CPSR_IL;
10006 }
10007 qemu_log_mask(LOG_GUEST_ERROR,
10008 "Illegal AArch32 mode switch attempt from %s to %s\n",
10009 aarch32_mode_name(env->uncached_cpsr),
10010 aarch32_mode_name(val));
10011 } else {
10012 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10013 write_type == CPSRWriteExceptionReturn ?
10014 "Exception return from AArch32" :
10015 "AArch32 mode switch from",
10016 aarch32_mode_name(env->uncached_cpsr),
10017 aarch32_mode_name(val), env->regs[15]);
10018 switch_mode(env, val & CPSR_M);
10019 }
10020 }
10021 mask &= ~CACHED_CPSR_BITS;
10022 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10023 if (tcg_enabled() && rebuild_hflags) {
10024 arm_rebuild_hflags(env);
10025 }
10026 }
10027
10028 /* Sign/zero extend */
10029 uint32_t HELPER(sxtb16)(uint32_t x)
10030 {
10031 uint32_t res;
10032 res = (uint16_t)(int8_t)x;
10033 res |= (uint32_t)(int8_t)(x >> 16) << 16;
10034 return res;
10035 }
10036
10037 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10038 {
10039 /*
10040 * Take a division-by-zero exception if necessary; otherwise return
10041 * to get the usual non-trapping division behaviour (result of 0)
10042 */
10043 if (arm_feature(env, ARM_FEATURE_M)
10044 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10045 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10046 }
10047 }
10048
10049 uint32_t HELPER(uxtb16)(uint32_t x)
10050 {
10051 uint32_t res;
10052 res = (uint16_t)(uint8_t)x;
10053 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10054 return res;
10055 }
10056
10057 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10058 {
10059 if (den == 0) {
10060 handle_possible_div0_trap(env, GETPC());
10061 return 0;
10062 }
10063 if (num == INT_MIN && den == -1) {
10064 return INT_MIN;
10065 }
10066 return num / den;
10067 }
10068
10069 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10070 {
10071 if (den == 0) {
10072 handle_possible_div0_trap(env, GETPC());
10073 return 0;
10074 }
10075 return num / den;
10076 }
10077
10078 uint32_t HELPER(rbit)(uint32_t x)
10079 {
10080 return revbit32(x);
10081 }
10082
10083 #ifdef CONFIG_USER_ONLY
10084
10085 static void switch_mode(CPUARMState *env, int mode)
10086 {
10087 ARMCPU *cpu = env_archcpu(env);
10088
10089 if (mode != ARM_CPU_MODE_USR) {
10090 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10091 }
10092 }
10093
10094 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10095 uint32_t cur_el, bool secure)
10096 {
10097 return 1;
10098 }
10099
10100 void aarch64_sync_64_to_32(CPUARMState *env)
10101 {
10102 g_assert_not_reached();
10103 }
10104
10105 #else
10106
10107 static void switch_mode(CPUARMState *env, int mode)
10108 {
10109 int old_mode;
10110 int i;
10111
10112 old_mode = env->uncached_cpsr & CPSR_M;
10113 if (mode == old_mode) {
10114 return;
10115 }
10116
10117 if (old_mode == ARM_CPU_MODE_FIQ) {
10118 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10119 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10120 } else if (mode == ARM_CPU_MODE_FIQ) {
10121 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10122 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10123 }
10124
10125 i = bank_number(old_mode);
10126 env->banked_r13[i] = env->regs[13];
10127 env->banked_spsr[i] = env->spsr;
10128
10129 i = bank_number(mode);
10130 env->regs[13] = env->banked_r13[i];
10131 env->spsr = env->banked_spsr[i];
10132
10133 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10134 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10135 }
10136
10137 /*
10138 * Physical Interrupt Target EL Lookup Table
10139 *
10140 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10141 *
10142 * The below multi-dimensional table is used for looking up the target
10143 * exception level given numerous condition criteria. Specifically, the
10144 * target EL is based on SCR and HCR routing controls as well as the
10145 * currently executing EL and secure state.
10146 *
10147 * Dimensions:
10148 * target_el_table[2][2][2][2][2][4]
10149 * | | | | | +--- Current EL
10150 * | | | | +------ Non-secure(0)/Secure(1)
10151 * | | | +--------- HCR mask override
10152 * | | +------------ SCR exec state control
10153 * | +--------------- SCR mask override
10154 * +------------------ 32-bit(0)/64-bit(1) EL3
10155 *
10156 * The table values are as such:
10157 * 0-3 = EL0-EL3
10158 * -1 = Cannot occur
10159 *
10160 * The ARM ARM target EL table includes entries indicating that an "exception
10161 * is not taken". The two cases where this is applicable are:
10162 * 1) An exception is taken from EL3 but the SCR does not have the exception
10163 * routed to EL3.
10164 * 2) An exception is taken from EL2 but the HCR does not have the exception
10165 * routed to EL2.
10166 * In these two cases, the below table contain a target of EL1. This value is
10167 * returned as it is expected that the consumer of the table data will check
10168 * for "target EL >= current EL" to ensure the exception is not taken.
10169 *
10170 * SCR HCR
10171 * 64 EA AMO From
10172 * BIT IRQ IMO Non-secure Secure
10173 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10174 */
10175 static const int8_t target_el_table[2][2][2][2][2][4] = {
10176 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10177 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10178 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10179 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10180 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10181 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10182 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10183 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10184 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10185 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10186 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10187 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10188 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10189 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10190 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10191 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10192 };
10193
10194 /*
10195 * Determine the target EL for physical exceptions
10196 */
10197 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10198 uint32_t cur_el, bool secure)
10199 {
10200 CPUARMState *env = cs->env_ptr;
10201 bool rw;
10202 bool scr;
10203 bool hcr;
10204 int target_el;
10205 /* Is the highest EL AArch64? */
10206 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10207 uint64_t hcr_el2;
10208
10209 if (arm_feature(env, ARM_FEATURE_EL3)) {
10210 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10211 } else {
10212 /*
10213 * Either EL2 is the highest EL (and so the EL2 register width
10214 * is given by is64); or there is no EL2 or EL3, in which case
10215 * the value of 'rw' does not affect the table lookup anyway.
10216 */
10217 rw = is64;
10218 }
10219
10220 hcr_el2 = arm_hcr_el2_eff(env);
10221 switch (excp_idx) {
10222 case EXCP_IRQ:
10223 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10224 hcr = hcr_el2 & HCR_IMO;
10225 break;
10226 case EXCP_FIQ:
10227 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10228 hcr = hcr_el2 & HCR_FMO;
10229 break;
10230 default:
10231 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10232 hcr = hcr_el2 & HCR_AMO;
10233 break;
10234 };
10235
10236 /*
10237 * For these purposes, TGE and AMO/IMO/FMO both force the
10238 * interrupt to EL2. Fold TGE into the bit extracted above.
10239 */
10240 hcr |= (hcr_el2 & HCR_TGE) != 0;
10241
10242 /* Perform a table-lookup for the target EL given the current state */
10243 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10244
10245 assert(target_el > 0);
10246
10247 return target_el;
10248 }
10249
10250 void arm_log_exception(CPUState *cs)
10251 {
10252 int idx = cs->exception_index;
10253
10254 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10255 const char *exc = NULL;
10256 static const char * const excnames[] = {
10257 [EXCP_UDEF] = "Undefined Instruction",
10258 [EXCP_SWI] = "SVC",
10259 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10260 [EXCP_DATA_ABORT] = "Data Abort",
10261 [EXCP_IRQ] = "IRQ",
10262 [EXCP_FIQ] = "FIQ",
10263 [EXCP_BKPT] = "Breakpoint",
10264 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10265 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10266 [EXCP_HVC] = "Hypervisor Call",
10267 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10268 [EXCP_SMC] = "Secure Monitor Call",
10269 [EXCP_VIRQ] = "Virtual IRQ",
10270 [EXCP_VFIQ] = "Virtual FIQ",
10271 [EXCP_SEMIHOST] = "Semihosting call",
10272 [EXCP_NOCP] = "v7M NOCP UsageFault",
10273 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10274 [EXCP_STKOF] = "v8M STKOF UsageFault",
10275 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10276 [EXCP_LSERR] = "v8M LSERR UsageFault",
10277 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10278 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10279 [EXCP_VSERR] = "Virtual SERR",
10280 [EXCP_GPC] = "Granule Protection Check",
10281 };
10282
10283 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10284 exc = excnames[idx];
10285 }
10286 if (!exc) {
10287 exc = "unknown";
10288 }
10289 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10290 idx, exc, cs->cpu_index);
10291 }
10292 }
10293
10294 /*
10295 * Function used to synchronize QEMU's AArch64 register set with AArch32
10296 * register set. This is necessary when switching between AArch32 and AArch64
10297 * execution state.
10298 */
10299 void aarch64_sync_32_to_64(CPUARMState *env)
10300 {
10301 int i;
10302 uint32_t mode = env->uncached_cpsr & CPSR_M;
10303
10304 /* We can blanket copy R[0:7] to X[0:7] */
10305 for (i = 0; i < 8; i++) {
10306 env->xregs[i] = env->regs[i];
10307 }
10308
10309 /*
10310 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10311 * Otherwise, they come from the banked user regs.
10312 */
10313 if (mode == ARM_CPU_MODE_FIQ) {
10314 for (i = 8; i < 13; i++) {
10315 env->xregs[i] = env->usr_regs[i - 8];
10316 }
10317 } else {
10318 for (i = 8; i < 13; i++) {
10319 env->xregs[i] = env->regs[i];
10320 }
10321 }
10322
10323 /*
10324 * Registers x13-x23 are the various mode SP and FP registers. Registers
10325 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10326 * from the mode banked register.
10327 */
10328 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10329 env->xregs[13] = env->regs[13];
10330 env->xregs[14] = env->regs[14];
10331 } else {
10332 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10333 /* HYP is an exception in that it is copied from r14 */
10334 if (mode == ARM_CPU_MODE_HYP) {
10335 env->xregs[14] = env->regs[14];
10336 } else {
10337 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10338 }
10339 }
10340
10341 if (mode == ARM_CPU_MODE_HYP) {
10342 env->xregs[15] = env->regs[13];
10343 } else {
10344 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10345 }
10346
10347 if (mode == ARM_CPU_MODE_IRQ) {
10348 env->xregs[16] = env->regs[14];
10349 env->xregs[17] = env->regs[13];
10350 } else {
10351 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10352 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10353 }
10354
10355 if (mode == ARM_CPU_MODE_SVC) {
10356 env->xregs[18] = env->regs[14];
10357 env->xregs[19] = env->regs[13];
10358 } else {
10359 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10360 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10361 }
10362
10363 if (mode == ARM_CPU_MODE_ABT) {
10364 env->xregs[20] = env->regs[14];
10365 env->xregs[21] = env->regs[13];
10366 } else {
10367 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10368 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10369 }
10370
10371 if (mode == ARM_CPU_MODE_UND) {
10372 env->xregs[22] = env->regs[14];
10373 env->xregs[23] = env->regs[13];
10374 } else {
10375 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10376 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10377 }
10378
10379 /*
10380 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10381 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10382 * FIQ bank for r8-r14.
10383 */
10384 if (mode == ARM_CPU_MODE_FIQ) {
10385 for (i = 24; i < 31; i++) {
10386 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10387 }
10388 } else {
10389 for (i = 24; i < 29; i++) {
10390 env->xregs[i] = env->fiq_regs[i - 24];
10391 }
10392 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10393 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10394 }
10395
10396 env->pc = env->regs[15];
10397 }
10398
10399 /*
10400 * Function used to synchronize QEMU's AArch32 register set with AArch64
10401 * register set. This is necessary when switching between AArch32 and AArch64
10402 * execution state.
10403 */
10404 void aarch64_sync_64_to_32(CPUARMState *env)
10405 {
10406 int i;
10407 uint32_t mode = env->uncached_cpsr & CPSR_M;
10408
10409 /* We can blanket copy X[0:7] to R[0:7] */
10410 for (i = 0; i < 8; i++) {
10411 env->regs[i] = env->xregs[i];
10412 }
10413
10414 /*
10415 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10416 * Otherwise, we copy x8-x12 into the banked user regs.
10417 */
10418 if (mode == ARM_CPU_MODE_FIQ) {
10419 for (i = 8; i < 13; i++) {
10420 env->usr_regs[i - 8] = env->xregs[i];
10421 }
10422 } else {
10423 for (i = 8; i < 13; i++) {
10424 env->regs[i] = env->xregs[i];
10425 }
10426 }
10427
10428 /*
10429 * Registers r13 & r14 depend on the current mode.
10430 * If we are in a given mode, we copy the corresponding x registers to r13
10431 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10432 * for the mode.
10433 */
10434 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10435 env->regs[13] = env->xregs[13];
10436 env->regs[14] = env->xregs[14];
10437 } else {
10438 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10439
10440 /*
10441 * HYP is an exception in that it does not have its own banked r14 but
10442 * shares the USR r14
10443 */
10444 if (mode == ARM_CPU_MODE_HYP) {
10445 env->regs[14] = env->xregs[14];
10446 } else {
10447 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10448 }
10449 }
10450
10451 if (mode == ARM_CPU_MODE_HYP) {
10452 env->regs[13] = env->xregs[15];
10453 } else {
10454 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10455 }
10456
10457 if (mode == ARM_CPU_MODE_IRQ) {
10458 env->regs[14] = env->xregs[16];
10459 env->regs[13] = env->xregs[17];
10460 } else {
10461 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10462 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10463 }
10464
10465 if (mode == ARM_CPU_MODE_SVC) {
10466 env->regs[14] = env->xregs[18];
10467 env->regs[13] = env->xregs[19];
10468 } else {
10469 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10470 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10471 }
10472
10473 if (mode == ARM_CPU_MODE_ABT) {
10474 env->regs[14] = env->xregs[20];
10475 env->regs[13] = env->xregs[21];
10476 } else {
10477 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10478 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10479 }
10480
10481 if (mode == ARM_CPU_MODE_UND) {
10482 env->regs[14] = env->xregs[22];
10483 env->regs[13] = env->xregs[23];
10484 } else {
10485 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10486 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10487 }
10488
10489 /*
10490 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10491 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10492 * FIQ bank for r8-r14.
10493 */
10494 if (mode == ARM_CPU_MODE_FIQ) {
10495 for (i = 24; i < 31; i++) {
10496 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10497 }
10498 } else {
10499 for (i = 24; i < 29; i++) {
10500 env->fiq_regs[i - 24] = env->xregs[i];
10501 }
10502 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10503 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10504 }
10505
10506 env->regs[15] = env->pc;
10507 }
10508
10509 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10510 uint32_t mask, uint32_t offset,
10511 uint32_t newpc)
10512 {
10513 int new_el;
10514
10515 /* Change the CPU state so as to actually take the exception. */
10516 switch_mode(env, new_mode);
10517
10518 /*
10519 * For exceptions taken to AArch32 we must clear the SS bit in both
10520 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10521 */
10522 env->pstate &= ~PSTATE_SS;
10523 env->spsr = cpsr_read(env);
10524 /* Clear IT bits. */
10525 env->condexec_bits = 0;
10526 /* Switch to the new mode, and to the correct instruction set. */
10527 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10528
10529 /* This must be after mode switching. */
10530 new_el = arm_current_el(env);
10531
10532 /* Set new mode endianness */
10533 env->uncached_cpsr &= ~CPSR_E;
10534 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10535 env->uncached_cpsr |= CPSR_E;
10536 }
10537 /* J and IL must always be cleared for exception entry */
10538 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10539 env->daif |= mask;
10540
10541 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10542 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10543 env->uncached_cpsr |= CPSR_SSBS;
10544 } else {
10545 env->uncached_cpsr &= ~CPSR_SSBS;
10546 }
10547 }
10548
10549 if (new_mode == ARM_CPU_MODE_HYP) {
10550 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10551 env->elr_el[2] = env->regs[15];
10552 } else {
10553 /* CPSR.PAN is normally preserved preserved unless... */
10554 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10555 switch (new_el) {
10556 case 3:
10557 if (!arm_is_secure_below_el3(env)) {
10558 /* ... the target is EL3, from non-secure state. */
10559 env->uncached_cpsr &= ~CPSR_PAN;
10560 break;
10561 }
10562 /* ... the target is EL3, from secure state ... */
10563 /* fall through */
10564 case 1:
10565 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10566 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10567 env->uncached_cpsr |= CPSR_PAN;
10568 }
10569 break;
10570 }
10571 }
10572 /*
10573 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10574 * and we should just guard the thumb mode on V4
10575 */
10576 if (arm_feature(env, ARM_FEATURE_V4T)) {
10577 env->thumb =
10578 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10579 }
10580 env->regs[14] = env->regs[15] + offset;
10581 }
10582 env->regs[15] = newpc;
10583
10584 if (tcg_enabled()) {
10585 arm_rebuild_hflags(env);
10586 }
10587 }
10588
10589 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10590 {
10591 /*
10592 * Handle exception entry to Hyp mode; this is sufficiently
10593 * different to entry to other AArch32 modes that we handle it
10594 * separately here.
10595 *
10596 * The vector table entry used is always the 0x14 Hyp mode entry point,
10597 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10598 * The offset applied to the preferred return address is always zero
10599 * (see DDI0487C.a section G1.12.3).
10600 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10601 */
10602 uint32_t addr, mask;
10603 ARMCPU *cpu = ARM_CPU(cs);
10604 CPUARMState *env = &cpu->env;
10605
10606 switch (cs->exception_index) {
10607 case EXCP_UDEF:
10608 addr = 0x04;
10609 break;
10610 case EXCP_SWI:
10611 addr = 0x08;
10612 break;
10613 case EXCP_BKPT:
10614 /* Fall through to prefetch abort. */
10615 case EXCP_PREFETCH_ABORT:
10616 env->cp15.ifar_s = env->exception.vaddress;
10617 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10618 (uint32_t)env->exception.vaddress);
10619 addr = 0x0c;
10620 break;
10621 case EXCP_DATA_ABORT:
10622 env->cp15.dfar_s = env->exception.vaddress;
10623 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10624 (uint32_t)env->exception.vaddress);
10625 addr = 0x10;
10626 break;
10627 case EXCP_IRQ:
10628 addr = 0x18;
10629 break;
10630 case EXCP_FIQ:
10631 addr = 0x1c;
10632 break;
10633 case EXCP_HVC:
10634 addr = 0x08;
10635 break;
10636 case EXCP_HYP_TRAP:
10637 addr = 0x14;
10638 break;
10639 default:
10640 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10641 }
10642
10643 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10644 if (!arm_feature(env, ARM_FEATURE_V8)) {
10645 /*
10646 * QEMU syndrome values are v8-style. v7 has the IL bit
10647 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10648 * If this is a v7 CPU, squash the IL bit in those cases.
10649 */
10650 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10651 (cs->exception_index == EXCP_DATA_ABORT &&
10652 !(env->exception.syndrome & ARM_EL_ISV)) ||
10653 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10654 env->exception.syndrome &= ~ARM_EL_IL;
10655 }
10656 }
10657 env->cp15.esr_el[2] = env->exception.syndrome;
10658 }
10659
10660 if (arm_current_el(env) != 2 && addr < 0x14) {
10661 addr = 0x14;
10662 }
10663
10664 mask = 0;
10665 if (!(env->cp15.scr_el3 & SCR_EA)) {
10666 mask |= CPSR_A;
10667 }
10668 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10669 mask |= CPSR_I;
10670 }
10671 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10672 mask |= CPSR_F;
10673 }
10674
10675 addr += env->cp15.hvbar;
10676
10677 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10678 }
10679
10680 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10681 {
10682 ARMCPU *cpu = ARM_CPU(cs);
10683 CPUARMState *env = &cpu->env;
10684 uint32_t addr;
10685 uint32_t mask;
10686 int new_mode;
10687 uint32_t offset;
10688 uint32_t moe;
10689
10690 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10691 switch (syn_get_ec(env->exception.syndrome)) {
10692 case EC_BREAKPOINT:
10693 case EC_BREAKPOINT_SAME_EL:
10694 moe = 1;
10695 break;
10696 case EC_WATCHPOINT:
10697 case EC_WATCHPOINT_SAME_EL:
10698 moe = 10;
10699 break;
10700 case EC_AA32_BKPT:
10701 moe = 3;
10702 break;
10703 case EC_VECTORCATCH:
10704 moe = 5;
10705 break;
10706 default:
10707 moe = 0;
10708 break;
10709 }
10710
10711 if (moe) {
10712 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10713 }
10714
10715 if (env->exception.target_el == 2) {
10716 arm_cpu_do_interrupt_aarch32_hyp(cs);
10717 return;
10718 }
10719
10720 switch (cs->exception_index) {
10721 case EXCP_UDEF:
10722 new_mode = ARM_CPU_MODE_UND;
10723 addr = 0x04;
10724 mask = CPSR_I;
10725 if (env->thumb) {
10726 offset = 2;
10727 } else {
10728 offset = 4;
10729 }
10730 break;
10731 case EXCP_SWI:
10732 new_mode = ARM_CPU_MODE_SVC;
10733 addr = 0x08;
10734 mask = CPSR_I;
10735 /* The PC already points to the next instruction. */
10736 offset = 0;
10737 break;
10738 case EXCP_BKPT:
10739 /* Fall through to prefetch abort. */
10740 case EXCP_PREFETCH_ABORT:
10741 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10742 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10743 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10744 env->exception.fsr, (uint32_t)env->exception.vaddress);
10745 new_mode = ARM_CPU_MODE_ABT;
10746 addr = 0x0c;
10747 mask = CPSR_A | CPSR_I;
10748 offset = 4;
10749 break;
10750 case EXCP_DATA_ABORT:
10751 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10752 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10753 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10754 env->exception.fsr,
10755 (uint32_t)env->exception.vaddress);
10756 new_mode = ARM_CPU_MODE_ABT;
10757 addr = 0x10;
10758 mask = CPSR_A | CPSR_I;
10759 offset = 8;
10760 break;
10761 case EXCP_IRQ:
10762 new_mode = ARM_CPU_MODE_IRQ;
10763 addr = 0x18;
10764 /* Disable IRQ and imprecise data aborts. */
10765 mask = CPSR_A | CPSR_I;
10766 offset = 4;
10767 if (env->cp15.scr_el3 & SCR_IRQ) {
10768 /* IRQ routed to monitor mode */
10769 new_mode = ARM_CPU_MODE_MON;
10770 mask |= CPSR_F;
10771 }
10772 break;
10773 case EXCP_FIQ:
10774 new_mode = ARM_CPU_MODE_FIQ;
10775 addr = 0x1c;
10776 /* Disable FIQ, IRQ and imprecise data aborts. */
10777 mask = CPSR_A | CPSR_I | CPSR_F;
10778 if (env->cp15.scr_el3 & SCR_FIQ) {
10779 /* FIQ routed to monitor mode */
10780 new_mode = ARM_CPU_MODE_MON;
10781 }
10782 offset = 4;
10783 break;
10784 case EXCP_VIRQ:
10785 new_mode = ARM_CPU_MODE_IRQ;
10786 addr = 0x18;
10787 /* Disable IRQ and imprecise data aborts. */
10788 mask = CPSR_A | CPSR_I;
10789 offset = 4;
10790 break;
10791 case EXCP_VFIQ:
10792 new_mode = ARM_CPU_MODE_FIQ;
10793 addr = 0x1c;
10794 /* Disable FIQ, IRQ and imprecise data aborts. */
10795 mask = CPSR_A | CPSR_I | CPSR_F;
10796 offset = 4;
10797 break;
10798 case EXCP_VSERR:
10799 {
10800 /*
10801 * Note that this is reported as a data abort, but the DFAR
10802 * has an UNKNOWN value. Construct the SError syndrome from
10803 * AET and ExT fields.
10804 */
10805 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10806
10807 if (extended_addresses_enabled(env)) {
10808 env->exception.fsr = arm_fi_to_lfsc(&fi);
10809 } else {
10810 env->exception.fsr = arm_fi_to_sfsc(&fi);
10811 }
10812 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10813 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10814 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10815 env->exception.fsr);
10816
10817 new_mode = ARM_CPU_MODE_ABT;
10818 addr = 0x10;
10819 mask = CPSR_A | CPSR_I;
10820 offset = 8;
10821 }
10822 break;
10823 case EXCP_SMC:
10824 new_mode = ARM_CPU_MODE_MON;
10825 addr = 0x08;
10826 mask = CPSR_A | CPSR_I | CPSR_F;
10827 offset = 0;
10828 break;
10829 default:
10830 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10831 return; /* Never happens. Keep compiler happy. */
10832 }
10833
10834 if (new_mode == ARM_CPU_MODE_MON) {
10835 addr += env->cp15.mvbar;
10836 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10837 /* High vectors. When enabled, base address cannot be remapped. */
10838 addr += 0xffff0000;
10839 } else {
10840 /*
10841 * ARM v7 architectures provide a vector base address register to remap
10842 * the interrupt vector table.
10843 * This register is only followed in non-monitor mode, and is banked.
10844 * Note: only bits 31:5 are valid.
10845 */
10846 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10847 }
10848
10849 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10850 env->cp15.scr_el3 &= ~SCR_NS;
10851 }
10852
10853 take_aarch32_exception(env, new_mode, mask, offset, addr);
10854 }
10855
10856 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10857 {
10858 /*
10859 * Return the register number of the AArch64 view of the AArch32
10860 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10861 * be that of the AArch32 mode the exception came from.
10862 */
10863 int mode = env->uncached_cpsr & CPSR_M;
10864
10865 switch (aarch32_reg) {
10866 case 0 ... 7:
10867 return aarch32_reg;
10868 case 8 ... 12:
10869 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10870 case 13:
10871 switch (mode) {
10872 case ARM_CPU_MODE_USR:
10873 case ARM_CPU_MODE_SYS:
10874 return 13;
10875 case ARM_CPU_MODE_HYP:
10876 return 15;
10877 case ARM_CPU_MODE_IRQ:
10878 return 17;
10879 case ARM_CPU_MODE_SVC:
10880 return 19;
10881 case ARM_CPU_MODE_ABT:
10882 return 21;
10883 case ARM_CPU_MODE_UND:
10884 return 23;
10885 case ARM_CPU_MODE_FIQ:
10886 return 29;
10887 default:
10888 g_assert_not_reached();
10889 }
10890 case 14:
10891 switch (mode) {
10892 case ARM_CPU_MODE_USR:
10893 case ARM_CPU_MODE_SYS:
10894 case ARM_CPU_MODE_HYP:
10895 return 14;
10896 case ARM_CPU_MODE_IRQ:
10897 return 16;
10898 case ARM_CPU_MODE_SVC:
10899 return 18;
10900 case ARM_CPU_MODE_ABT:
10901 return 20;
10902 case ARM_CPU_MODE_UND:
10903 return 22;
10904 case ARM_CPU_MODE_FIQ:
10905 return 30;
10906 default:
10907 g_assert_not_reached();
10908 }
10909 case 15:
10910 return 31;
10911 default:
10912 g_assert_not_reached();
10913 }
10914 }
10915
10916 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10917 {
10918 uint32_t ret = cpsr_read(env);
10919
10920 /* Move DIT to the correct location for SPSR_ELx */
10921 if (ret & CPSR_DIT) {
10922 ret &= ~CPSR_DIT;
10923 ret |= PSTATE_DIT;
10924 }
10925 /* Merge PSTATE.SS into SPSR_ELx */
10926 ret |= env->pstate & PSTATE_SS;
10927
10928 return ret;
10929 }
10930
10931 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10932 {
10933 /* Return true if this syndrome value is a synchronous external abort */
10934 switch (syn_get_ec(syndrome)) {
10935 case EC_INSNABORT:
10936 case EC_INSNABORT_SAME_EL:
10937 case EC_DATAABORT:
10938 case EC_DATAABORT_SAME_EL:
10939 /* Look at fault status code for all the synchronous ext abort cases */
10940 switch (syndrome & 0x3f) {
10941 case 0x10:
10942 case 0x13:
10943 case 0x14:
10944 case 0x15:
10945 case 0x16:
10946 case 0x17:
10947 return true;
10948 default:
10949 return false;
10950 }
10951 default:
10952 return false;
10953 }
10954 }
10955
10956 /* Handle exception entry to a target EL which is using AArch64 */
10957 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10958 {
10959 ARMCPU *cpu = ARM_CPU(cs);
10960 CPUARMState *env = &cpu->env;
10961 unsigned int new_el = env->exception.target_el;
10962 target_ulong addr = env->cp15.vbar_el[new_el];
10963 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10964 unsigned int old_mode;
10965 unsigned int cur_el = arm_current_el(env);
10966 int rt;
10967
10968 if (tcg_enabled()) {
10969 /*
10970 * Note that new_el can never be 0. If cur_el is 0, then
10971 * el0_a64 is is_a64(), else el0_a64 is ignored.
10972 */
10973 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10974 }
10975
10976 if (cur_el < new_el) {
10977 /*
10978 * Entry vector offset depends on whether the implemented EL
10979 * immediately lower than the target level is using AArch32 or AArch64
10980 */
10981 bool is_aa64;
10982 uint64_t hcr;
10983
10984 switch (new_el) {
10985 case 3:
10986 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10987 break;
10988 case 2:
10989 hcr = arm_hcr_el2_eff(env);
10990 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10991 is_aa64 = (hcr & HCR_RW) != 0;
10992 break;
10993 }
10994 /* fall through */
10995 case 1:
10996 is_aa64 = is_a64(env);
10997 break;
10998 default:
10999 g_assert_not_reached();
11000 }
11001
11002 if (is_aa64) {
11003 addr += 0x400;
11004 } else {
11005 addr += 0x600;
11006 }
11007 } else if (pstate_read(env) & PSTATE_SP) {
11008 addr += 0x200;
11009 }
11010
11011 switch (cs->exception_index) {
11012 case EXCP_GPC:
11013 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11014 env->cp15.mfar_el3);
11015 /* fall through */
11016 case EXCP_PREFETCH_ABORT:
11017 case EXCP_DATA_ABORT:
11018 /*
11019 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11020 * to be taken to the SError vector entrypoint.
11021 */
11022 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11023 syndrome_is_sync_extabt(env->exception.syndrome)) {
11024 addr += 0x180;
11025 }
11026 env->cp15.far_el[new_el] = env->exception.vaddress;
11027 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11028 env->cp15.far_el[new_el]);
11029 /* fall through */
11030 case EXCP_BKPT:
11031 case EXCP_UDEF:
11032 case EXCP_SWI:
11033 case EXCP_HVC:
11034 case EXCP_HYP_TRAP:
11035 case EXCP_SMC:
11036 switch (syn_get_ec(env->exception.syndrome)) {
11037 case EC_ADVSIMDFPACCESSTRAP:
11038 /*
11039 * QEMU internal FP/SIMD syndromes from AArch32 include the
11040 * TA and coproc fields which are only exposed if the exception
11041 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11042 * AArch64 format syndrome.
11043 */
11044 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11045 break;
11046 case EC_CP14RTTRAP:
11047 case EC_CP15RTTRAP:
11048 case EC_CP14DTTRAP:
11049 /*
11050 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11051 * the raw register field from the insn; when taking this to
11052 * AArch64 we must convert it to the AArch64 view of the register
11053 * number. Notice that we read a 4-bit AArch32 register number and
11054 * write back a 5-bit AArch64 one.
11055 */
11056 rt = extract32(env->exception.syndrome, 5, 4);
11057 rt = aarch64_regnum(env, rt);
11058 env->exception.syndrome = deposit32(env->exception.syndrome,
11059 5, 5, rt);
11060 break;
11061 case EC_CP15RRTTRAP:
11062 case EC_CP14RRTTRAP:
11063 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11064 rt = extract32(env->exception.syndrome, 5, 4);
11065 rt = aarch64_regnum(env, rt);
11066 env->exception.syndrome = deposit32(env->exception.syndrome,
11067 5, 5, rt);
11068 rt = extract32(env->exception.syndrome, 10, 4);
11069 rt = aarch64_regnum(env, rt);
11070 env->exception.syndrome = deposit32(env->exception.syndrome,
11071 10, 5, rt);
11072 break;
11073 }
11074 env->cp15.esr_el[new_el] = env->exception.syndrome;
11075 break;
11076 case EXCP_IRQ:
11077 case EXCP_VIRQ:
11078 addr += 0x80;
11079 break;
11080 case EXCP_FIQ:
11081 case EXCP_VFIQ:
11082 addr += 0x100;
11083 break;
11084 case EXCP_VSERR:
11085 addr += 0x180;
11086 /* Construct the SError syndrome from IDS and ISS fields. */
11087 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11088 env->cp15.esr_el[new_el] = env->exception.syndrome;
11089 break;
11090 default:
11091 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11092 }
11093
11094 if (is_a64(env)) {
11095 old_mode = pstate_read(env);
11096 aarch64_save_sp(env, arm_current_el(env));
11097 env->elr_el[new_el] = env->pc;
11098 } else {
11099 old_mode = cpsr_read_for_spsr_elx(env);
11100 env->elr_el[new_el] = env->regs[15];
11101
11102 aarch64_sync_32_to_64(env);
11103
11104 env->condexec_bits = 0;
11105 }
11106 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11107
11108 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11109 env->elr_el[new_el]);
11110
11111 if (cpu_isar_feature(aa64_pan, cpu)) {
11112 /* The value of PSTATE.PAN is normally preserved, except when ... */
11113 new_mode |= old_mode & PSTATE_PAN;
11114 switch (new_el) {
11115 case 2:
11116 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11117 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11118 != (HCR_E2H | HCR_TGE)) {
11119 break;
11120 }
11121 /* fall through */
11122 case 1:
11123 /* ... the target is EL1 ... */
11124 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11125 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11126 new_mode |= PSTATE_PAN;
11127 }
11128 break;
11129 }
11130 }
11131 if (cpu_isar_feature(aa64_mte, cpu)) {
11132 new_mode |= PSTATE_TCO;
11133 }
11134
11135 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11136 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11137 new_mode |= PSTATE_SSBS;
11138 } else {
11139 new_mode &= ~PSTATE_SSBS;
11140 }
11141 }
11142
11143 pstate_write(env, PSTATE_DAIF | new_mode);
11144 env->aarch64 = true;
11145 aarch64_restore_sp(env, new_el);
11146
11147 if (tcg_enabled()) {
11148 helper_rebuild_hflags_a64(env, new_el);
11149 }
11150
11151 env->pc = addr;
11152
11153 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11154 new_el, env->pc, pstate_read(env));
11155 }
11156
11157 /*
11158 * Do semihosting call and set the appropriate return value. All the
11159 * permission and validity checks have been done at translate time.
11160 *
11161 * We only see semihosting exceptions in TCG only as they are not
11162 * trapped to the hypervisor in KVM.
11163 */
11164 #ifdef CONFIG_TCG
11165 static void tcg_handle_semihosting(CPUState *cs)
11166 {
11167 ARMCPU *cpu = ARM_CPU(cs);
11168 CPUARMState *env = &cpu->env;
11169
11170 if (is_a64(env)) {
11171 qemu_log_mask(CPU_LOG_INT,
11172 "...handling as semihosting call 0x%" PRIx64 "\n",
11173 env->xregs[0]);
11174 do_common_semihosting(cs);
11175 env->pc += 4;
11176 } else {
11177 qemu_log_mask(CPU_LOG_INT,
11178 "...handling as semihosting call 0x%x\n",
11179 env->regs[0]);
11180 do_common_semihosting(cs);
11181 env->regs[15] += env->thumb ? 2 : 4;
11182 }
11183 }
11184 #endif
11185
11186 /*
11187 * Handle a CPU exception for A and R profile CPUs.
11188 * Do any appropriate logging, handle PSCI calls, and then hand off
11189 * to the AArch64-entry or AArch32-entry function depending on the
11190 * target exception level's register width.
11191 *
11192 * Note: this is used for both TCG (as the do_interrupt tcg op),
11193 * and KVM to re-inject guest debug exceptions, and to
11194 * inject a Synchronous-External-Abort.
11195 */
11196 void arm_cpu_do_interrupt(CPUState *cs)
11197 {
11198 ARMCPU *cpu = ARM_CPU(cs);
11199 CPUARMState *env = &cpu->env;
11200 unsigned int new_el = env->exception.target_el;
11201
11202 assert(!arm_feature(env, ARM_FEATURE_M));
11203
11204 arm_log_exception(cs);
11205 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11206 new_el);
11207 if (qemu_loglevel_mask(CPU_LOG_INT)
11208 && !excp_is_internal(cs->exception_index)) {
11209 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11210 syn_get_ec(env->exception.syndrome),
11211 env->exception.syndrome);
11212 }
11213
11214 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11215 arm_handle_psci_call(cpu);
11216 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11217 return;
11218 }
11219
11220 /*
11221 * Semihosting semantics depend on the register width of the code
11222 * that caused the exception, not the target exception level, so
11223 * must be handled here.
11224 */
11225 #ifdef CONFIG_TCG
11226 if (cs->exception_index == EXCP_SEMIHOST) {
11227 tcg_handle_semihosting(cs);
11228 return;
11229 }
11230 #endif
11231
11232 /*
11233 * Hooks may change global state so BQL should be held, also the
11234 * BQL needs to be held for any modification of
11235 * cs->interrupt_request.
11236 */
11237 g_assert(qemu_mutex_iothread_locked());
11238
11239 arm_call_pre_el_change_hook(cpu);
11240
11241 assert(!excp_is_internal(cs->exception_index));
11242 if (arm_el_is_aa64(env, new_el)) {
11243 arm_cpu_do_interrupt_aarch64(cs);
11244 } else {
11245 arm_cpu_do_interrupt_aarch32(cs);
11246 }
11247
11248 arm_call_el_change_hook(cpu);
11249
11250 if (!kvm_enabled()) {
11251 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11252 }
11253 }
11254 #endif /* !CONFIG_USER_ONLY */
11255
11256 uint64_t arm_sctlr(CPUARMState *env, int el)
11257 {
11258 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11259 if (el == 0) {
11260 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11261 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11262 }
11263 return env->cp15.sctlr_el[el];
11264 }
11265
11266 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11267 {
11268 if (regime_has_2_ranges(mmu_idx)) {
11269 return extract64(tcr, 37, 2);
11270 } else if (regime_is_stage2(mmu_idx)) {
11271 return 0; /* VTCR_EL2 */
11272 } else {
11273 /* Replicate the single TBI bit so we always have 2 bits. */
11274 return extract32(tcr, 20, 1) * 3;
11275 }
11276 }
11277
11278 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11279 {
11280 if (regime_has_2_ranges(mmu_idx)) {
11281 return extract64(tcr, 51, 2);
11282 } else if (regime_is_stage2(mmu_idx)) {
11283 return 0; /* VTCR_EL2 */
11284 } else {
11285 /* Replicate the single TBID bit so we always have 2 bits. */
11286 return extract32(tcr, 29, 1) * 3;
11287 }
11288 }
11289
11290 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11291 {
11292 if (regime_has_2_ranges(mmu_idx)) {
11293 return extract64(tcr, 57, 2);
11294 } else {
11295 /* Replicate the single TCMA bit so we always have 2 bits. */
11296 return extract32(tcr, 30, 1) * 3;
11297 }
11298 }
11299
11300 static ARMGranuleSize tg0_to_gran_size(int tg)
11301 {
11302 switch (tg) {
11303 case 0:
11304 return Gran4K;
11305 case 1:
11306 return Gran64K;
11307 case 2:
11308 return Gran16K;
11309 default:
11310 return GranInvalid;
11311 }
11312 }
11313
11314 static ARMGranuleSize tg1_to_gran_size(int tg)
11315 {
11316 switch (tg) {
11317 case 1:
11318 return Gran16K;
11319 case 2:
11320 return Gran4K;
11321 case 3:
11322 return Gran64K;
11323 default:
11324 return GranInvalid;
11325 }
11326 }
11327
11328 static inline bool have4k(ARMCPU *cpu, bool stage2)
11329 {
11330 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11331 : cpu_isar_feature(aa64_tgran4, cpu);
11332 }
11333
11334 static inline bool have16k(ARMCPU *cpu, bool stage2)
11335 {
11336 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11337 : cpu_isar_feature(aa64_tgran16, cpu);
11338 }
11339
11340 static inline bool have64k(ARMCPU *cpu, bool stage2)
11341 {
11342 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11343 : cpu_isar_feature(aa64_tgran64, cpu);
11344 }
11345
11346 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11347 bool stage2)
11348 {
11349 switch (gran) {
11350 case Gran4K:
11351 if (have4k(cpu, stage2)) {
11352 return gran;
11353 }
11354 break;
11355 case Gran16K:
11356 if (have16k(cpu, stage2)) {
11357 return gran;
11358 }
11359 break;
11360 case Gran64K:
11361 if (have64k(cpu, stage2)) {
11362 return gran;
11363 }
11364 break;
11365 case GranInvalid:
11366 break;
11367 }
11368 /*
11369 * If the guest selects a granule size that isn't implemented,
11370 * the architecture requires that we behave as if it selected one
11371 * that is (with an IMPDEF choice of which one to pick). We choose
11372 * to implement the smallest supported granule size.
11373 */
11374 if (have4k(cpu, stage2)) {
11375 return Gran4K;
11376 }
11377 if (have16k(cpu, stage2)) {
11378 return Gran16K;
11379 }
11380 assert(have64k(cpu, stage2));
11381 return Gran64K;
11382 }
11383
11384 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11385 ARMMMUIdx mmu_idx, bool data,
11386 bool el1_is_aa32)
11387 {
11388 uint64_t tcr = regime_tcr(env, mmu_idx);
11389 bool epd, hpd, tsz_oob, ds, ha, hd;
11390 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11391 ARMGranuleSize gran;
11392 ARMCPU *cpu = env_archcpu(env);
11393 bool stage2 = regime_is_stage2(mmu_idx);
11394
11395 if (!regime_has_2_ranges(mmu_idx)) {
11396 select = 0;
11397 tsz = extract32(tcr, 0, 6);
11398 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11399 if (stage2) {
11400 /* VTCR_EL2 */
11401 hpd = false;
11402 } else {
11403 hpd = extract32(tcr, 24, 1);
11404 }
11405 epd = false;
11406 sh = extract32(tcr, 12, 2);
11407 ps = extract32(tcr, 16, 3);
11408 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11409 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11410 ds = extract64(tcr, 32, 1);
11411 } else {
11412 bool e0pd;
11413
11414 /*
11415 * Bit 55 is always between the two regions, and is canonical for
11416 * determining if address tagging is enabled.
11417 */
11418 select = extract64(va, 55, 1);
11419 if (!select) {
11420 tsz = extract32(tcr, 0, 6);
11421 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11422 epd = extract32(tcr, 7, 1);
11423 sh = extract32(tcr, 12, 2);
11424 hpd = extract64(tcr, 41, 1);
11425 e0pd = extract64(tcr, 55, 1);
11426 } else {
11427 tsz = extract32(tcr, 16, 6);
11428 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11429 epd = extract32(tcr, 23, 1);
11430 sh = extract32(tcr, 28, 2);
11431 hpd = extract64(tcr, 42, 1);
11432 e0pd = extract64(tcr, 56, 1);
11433 }
11434 ps = extract64(tcr, 32, 3);
11435 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11436 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11437 ds = extract64(tcr, 59, 1);
11438
11439 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11440 regime_is_user(env, mmu_idx)) {
11441 epd = true;
11442 }
11443 }
11444
11445 gran = sanitize_gran_size(cpu, gran, stage2);
11446
11447 if (cpu_isar_feature(aa64_st, cpu)) {
11448 max_tsz = 48 - (gran == Gran64K);
11449 } else {
11450 max_tsz = 39;
11451 }
11452
11453 /*
11454 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11455 * adjust the effective value of DS, as documented.
11456 */
11457 min_tsz = 16;
11458 if (gran == Gran64K) {
11459 if (cpu_isar_feature(aa64_lva, cpu)) {
11460 min_tsz = 12;
11461 }
11462 ds = false;
11463 } else if (ds) {
11464 if (regime_is_stage2(mmu_idx)) {
11465 if (gran == Gran16K) {
11466 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11467 } else {
11468 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11469 }
11470 } else {
11471 if (gran == Gran16K) {
11472 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11473 } else {
11474 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11475 }
11476 }
11477 if (ds) {
11478 min_tsz = 12;
11479 }
11480 }
11481
11482 if (stage2 && el1_is_aa32) {
11483 /*
11484 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11485 * are loosened: a configured IPA of 40 bits is permitted even if
11486 * the implemented PA is less than that (and so a 40 bit IPA would
11487 * fault for an AArch64 EL1). See R_DTLMN.
11488 */
11489 min_tsz = MIN(min_tsz, 24);
11490 }
11491
11492 if (tsz > max_tsz) {
11493 tsz = max_tsz;
11494 tsz_oob = true;
11495 } else if (tsz < min_tsz) {
11496 tsz = min_tsz;
11497 tsz_oob = true;
11498 } else {
11499 tsz_oob = false;
11500 }
11501
11502 /* Present TBI as a composite with TBID. */
11503 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11504 if (!data) {
11505 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11506 }
11507 tbi = (tbi >> select) & 1;
11508
11509 return (ARMVAParameters) {
11510 .tsz = tsz,
11511 .ps = ps,
11512 .sh = sh,
11513 .select = select,
11514 .tbi = tbi,
11515 .epd = epd,
11516 .hpd = hpd,
11517 .tsz_oob = tsz_oob,
11518 .ds = ds,
11519 .ha = ha,
11520 .hd = ha && hd,
11521 .gran = gran,
11522 };
11523 }
11524
11525 /*
11526 * Note that signed overflow is undefined in C. The following routines are
11527 * careful to use unsigned types where modulo arithmetic is required.
11528 * Failure to do so _will_ break on newer gcc.
11529 */
11530
11531 /* Signed saturating arithmetic. */
11532
11533 /* Perform 16-bit signed saturating addition. */
11534 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11535 {
11536 uint16_t res;
11537
11538 res = a + b;
11539 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11540 if (a & 0x8000) {
11541 res = 0x8000;
11542 } else {
11543 res = 0x7fff;
11544 }
11545 }
11546 return res;
11547 }
11548
11549 /* Perform 8-bit signed saturating addition. */
11550 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11551 {
11552 uint8_t res;
11553
11554 res = a + b;
11555 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11556 if (a & 0x80) {
11557 res = 0x80;
11558 } else {
11559 res = 0x7f;
11560 }
11561 }
11562 return res;
11563 }
11564
11565 /* Perform 16-bit signed saturating subtraction. */
11566 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11567 {
11568 uint16_t res;
11569
11570 res = a - b;
11571 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11572 if (a & 0x8000) {
11573 res = 0x8000;
11574 } else {
11575 res = 0x7fff;
11576 }
11577 }
11578 return res;
11579 }
11580
11581 /* Perform 8-bit signed saturating subtraction. */
11582 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11583 {
11584 uint8_t res;
11585
11586 res = a - b;
11587 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11588 if (a & 0x80) {
11589 res = 0x80;
11590 } else {
11591 res = 0x7f;
11592 }
11593 }
11594 return res;
11595 }
11596
11597 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11598 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11599 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11600 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11601 #define PFX q
11602
11603 #include "op_addsub.h"
11604
11605 /* Unsigned saturating arithmetic. */
11606 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11607 {
11608 uint16_t res;
11609 res = a + b;
11610 if (res < a) {
11611 res = 0xffff;
11612 }
11613 return res;
11614 }
11615
11616 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11617 {
11618 if (a > b) {
11619 return a - b;
11620 } else {
11621 return 0;
11622 }
11623 }
11624
11625 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11626 {
11627 uint8_t res;
11628 res = a + b;
11629 if (res < a) {
11630 res = 0xff;
11631 }
11632 return res;
11633 }
11634
11635 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11636 {
11637 if (a > b) {
11638 return a - b;
11639 } else {
11640 return 0;
11641 }
11642 }
11643
11644 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11645 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11646 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11647 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11648 #define PFX uq
11649
11650 #include "op_addsub.h"
11651
11652 /* Signed modulo arithmetic. */
11653 #define SARITH16(a, b, n, op) do { \
11654 int32_t sum; \
11655 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11656 RESULT(sum, n, 16); \
11657 if (sum >= 0) \
11658 ge |= 3 << (n * 2); \
11659 } while (0)
11660
11661 #define SARITH8(a, b, n, op) do { \
11662 int32_t sum; \
11663 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11664 RESULT(sum, n, 8); \
11665 if (sum >= 0) \
11666 ge |= 1 << n; \
11667 } while (0)
11668
11669
11670 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11671 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11672 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11673 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11674 #define PFX s
11675 #define ARITH_GE
11676
11677 #include "op_addsub.h"
11678
11679 /* Unsigned modulo arithmetic. */
11680 #define ADD16(a, b, n) do { \
11681 uint32_t sum; \
11682 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11683 RESULT(sum, n, 16); \
11684 if ((sum >> 16) == 1) \
11685 ge |= 3 << (n * 2); \
11686 } while (0)
11687
11688 #define ADD8(a, b, n) do { \
11689 uint32_t sum; \
11690 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11691 RESULT(sum, n, 8); \
11692 if ((sum >> 8) == 1) \
11693 ge |= 1 << n; \
11694 } while (0)
11695
11696 #define SUB16(a, b, n) do { \
11697 uint32_t sum; \
11698 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11699 RESULT(sum, n, 16); \
11700 if ((sum >> 16) == 0) \
11701 ge |= 3 << (n * 2); \
11702 } while (0)
11703
11704 #define SUB8(a, b, n) do { \
11705 uint32_t sum; \
11706 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11707 RESULT(sum, n, 8); \
11708 if ((sum >> 8) == 0) \
11709 ge |= 1 << n; \
11710 } while (0)
11711
11712 #define PFX u
11713 #define ARITH_GE
11714
11715 #include "op_addsub.h"
11716
11717 /* Halved signed arithmetic. */
11718 #define ADD16(a, b, n) \
11719 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11720 #define SUB16(a, b, n) \
11721 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11722 #define ADD8(a, b, n) \
11723 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11724 #define SUB8(a, b, n) \
11725 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11726 #define PFX sh
11727
11728 #include "op_addsub.h"
11729
11730 /* Halved unsigned arithmetic. */
11731 #define ADD16(a, b, n) \
11732 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11733 #define SUB16(a, b, n) \
11734 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11735 #define ADD8(a, b, n) \
11736 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11737 #define SUB8(a, b, n) \
11738 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11739 #define PFX uh
11740
11741 #include "op_addsub.h"
11742
11743 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11744 {
11745 if (a > b) {
11746 return a - b;
11747 } else {
11748 return b - a;
11749 }
11750 }
11751
11752 /* Unsigned sum of absolute byte differences. */
11753 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11754 {
11755 uint32_t sum;
11756 sum = do_usad(a, b);
11757 sum += do_usad(a >> 8, b >> 8);
11758 sum += do_usad(a >> 16, b >> 16);
11759 sum += do_usad(a >> 24, b >> 24);
11760 return sum;
11761 }
11762
11763 /* For ARMv6 SEL instruction. */
11764 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11765 {
11766 uint32_t mask;
11767
11768 mask = 0;
11769 if (flags & 1) {
11770 mask |= 0xff;
11771 }
11772 if (flags & 2) {
11773 mask |= 0xff00;
11774 }
11775 if (flags & 4) {
11776 mask |= 0xff0000;
11777 }
11778 if (flags & 8) {
11779 mask |= 0xff000000;
11780 }
11781 return (a & mask) | (b & ~mask);
11782 }
11783
11784 /*
11785 * CRC helpers.
11786 * The upper bytes of val (above the number specified by 'bytes') must have
11787 * been zeroed out by the caller.
11788 */
11789 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11790 {
11791 uint8_t buf[4];
11792
11793 stl_le_p(buf, val);
11794
11795 /* zlib crc32 converts the accumulator and output to one's complement. */
11796 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11797 }
11798
11799 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11800 {
11801 uint8_t buf[4];
11802
11803 stl_le_p(buf, val);
11804
11805 /* Linux crc32c converts the output to one's complement. */
11806 return crc32c(acc, buf, bytes) ^ 0xffffffff;
11807 }
11808
11809 /*
11810 * Return the exception level to which FP-disabled exceptions should
11811 * be taken, or 0 if FP is enabled.
11812 */
11813 int fp_exception_el(CPUARMState *env, int cur_el)
11814 {
11815 #ifndef CONFIG_USER_ONLY
11816 uint64_t hcr_el2;
11817
11818 /*
11819 * CPACR and the CPTR registers don't exist before v6, so FP is
11820 * always accessible
11821 */
11822 if (!arm_feature(env, ARM_FEATURE_V6)) {
11823 return 0;
11824 }
11825
11826 if (arm_feature(env, ARM_FEATURE_M)) {
11827 /* CPACR can cause a NOCP UsageFault taken to current security state */
11828 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11829 return 1;
11830 }
11831
11832 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11833 if (!extract32(env->v7m.nsacr, 10, 1)) {
11834 /* FP insns cause a NOCP UsageFault taken to Secure */
11835 return 3;
11836 }
11837 }
11838
11839 return 0;
11840 }
11841
11842 hcr_el2 = arm_hcr_el2_eff(env);
11843
11844 /*
11845 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11846 * 0, 2 : trap EL0 and EL1/PL1 accesses
11847 * 1 : trap only EL0 accesses
11848 * 3 : trap no accesses
11849 * This register is ignored if E2H+TGE are both set.
11850 */
11851 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11852 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11853
11854 switch (fpen) {
11855 case 1:
11856 if (cur_el != 0) {
11857 break;
11858 }
11859 /* fall through */
11860 case 0:
11861 case 2:
11862 /* Trap from Secure PL0 or PL1 to Secure PL1. */
11863 if (!arm_el_is_aa64(env, 3)
11864 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11865 return 3;
11866 }
11867 if (cur_el <= 1) {
11868 return 1;
11869 }
11870 break;
11871 }
11872 }
11873
11874 /*
11875 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11876 * to control non-secure access to the FPU. It doesn't have any
11877 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11878 */
11879 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11880 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11881 if (!extract32(env->cp15.nsacr, 10, 1)) {
11882 /* FP insns act as UNDEF */
11883 return cur_el == 2 ? 2 : 1;
11884 }
11885 }
11886
11887 /*
11888 * CPTR_EL2 is present in v7VE or v8, and changes format
11889 * with HCR_EL2.E2H (regardless of TGE).
11890 */
11891 if (cur_el <= 2) {
11892 if (hcr_el2 & HCR_E2H) {
11893 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11894 case 1:
11895 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11896 break;
11897 }
11898 /* fall through */
11899 case 0:
11900 case 2:
11901 return 2;
11902 }
11903 } else if (arm_is_el2_enabled(env)) {
11904 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11905 return 2;
11906 }
11907 }
11908 }
11909
11910 /* CPTR_EL3 : present in v8 */
11911 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11912 /* Trap all FP ops to EL3 */
11913 return 3;
11914 }
11915 #endif
11916 return 0;
11917 }
11918
11919 /* Return the exception level we're running at if this is our mmu_idx */
11920 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11921 {
11922 if (mmu_idx & ARM_MMU_IDX_M) {
11923 return mmu_idx & ARM_MMU_IDX_M_PRIV;
11924 }
11925
11926 switch (mmu_idx) {
11927 case ARMMMUIdx_E10_0:
11928 case ARMMMUIdx_E20_0:
11929 return 0;
11930 case ARMMMUIdx_E10_1:
11931 case ARMMMUIdx_E10_1_PAN:
11932 return 1;
11933 case ARMMMUIdx_E2:
11934 case ARMMMUIdx_E20_2:
11935 case ARMMMUIdx_E20_2_PAN:
11936 return 2;
11937 case ARMMMUIdx_E3:
11938 return 3;
11939 default:
11940 g_assert_not_reached();
11941 }
11942 }
11943
11944 #ifndef CONFIG_TCG
11945 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11946 {
11947 g_assert_not_reached();
11948 }
11949 #endif
11950
11951 static bool arm_pan_enabled(CPUARMState *env)
11952 {
11953 if (is_a64(env)) {
11954 return env->pstate & PSTATE_PAN;
11955 } else {
11956 return env->uncached_cpsr & CPSR_PAN;
11957 }
11958 }
11959
11960 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11961 {
11962 ARMMMUIdx idx;
11963 uint64_t hcr;
11964
11965 if (arm_feature(env, ARM_FEATURE_M)) {
11966 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11967 }
11968
11969 /* See ARM pseudo-function ELIsInHost. */
11970 switch (el) {
11971 case 0:
11972 hcr = arm_hcr_el2_eff(env);
11973 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11974 idx = ARMMMUIdx_E20_0;
11975 } else {
11976 idx = ARMMMUIdx_E10_0;
11977 }
11978 break;
11979 case 1:
11980 if (arm_pan_enabled(env)) {
11981 idx = ARMMMUIdx_E10_1_PAN;
11982 } else {
11983 idx = ARMMMUIdx_E10_1;
11984 }
11985 break;
11986 case 2:
11987 /* Note that TGE does not apply at EL2. */
11988 if (arm_hcr_el2_eff(env) & HCR_E2H) {
11989 if (arm_pan_enabled(env)) {
11990 idx = ARMMMUIdx_E20_2_PAN;
11991 } else {
11992 idx = ARMMMUIdx_E20_2;
11993 }
11994 } else {
11995 idx = ARMMMUIdx_E2;
11996 }
11997 break;
11998 case 3:
11999 return ARMMMUIdx_E3;
12000 default:
12001 g_assert_not_reached();
12002 }
12003
12004 return idx;
12005 }
12006
12007 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12008 {
12009 return arm_mmu_idx_el(env, arm_current_el(env));
12010 }
12011
12012 static bool mve_no_pred(CPUARMState *env)
12013 {
12014 /*
12015 * Return true if there is definitely no predication of MVE
12016 * instructions by VPR or LTPSIZE. (Returning false even if there
12017 * isn't any predication is OK; generated code will just be
12018 * a little worse.)
12019 * If the CPU does not implement MVE then this TB flag is always 0.
12020 *
12021 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12022 * logic in gen_update_fp_context() needs to be updated to match.
12023 *
12024 * We do not include the effect of the ECI bits here -- they are
12025 * tracked in other TB flags. This simplifies the logic for
12026 * "when did we emit code that changes the MVE_NO_PRED TB flag
12027 * and thus need to end the TB?".
12028 */
12029 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12030 return false;
12031 }
12032 if (env->v7m.vpr) {
12033 return false;
12034 }
12035 if (env->v7m.ltpsize < 4) {
12036 return false;
12037 }
12038 return true;
12039 }
12040
12041 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12042 uint64_t *cs_base, uint32_t *pflags)
12043 {
12044 CPUARMTBFlags flags;
12045
12046 assert_hflags_rebuild_correctly(env);
12047 flags = env->hflags;
12048
12049 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12050 *pc = env->pc;
12051 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12052 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12053 }
12054 } else {
12055 *pc = env->regs[15];
12056
12057 if (arm_feature(env, ARM_FEATURE_M)) {
12058 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12059 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12060 != env->v7m.secure) {
12061 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12062 }
12063
12064 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12065 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12066 (env->v7m.secure &&
12067 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12068 /*
12069 * ASPEN is set, but FPCA/SFPA indicate that there is no
12070 * active FP context; we must create a new FP context before
12071 * executing any FP insn.
12072 */
12073 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12074 }
12075
12076 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12077 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12078 DP_TBFLAG_M32(flags, LSPACT, 1);
12079 }
12080
12081 if (mve_no_pred(env)) {
12082 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12083 }
12084 } else {
12085 /*
12086 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12087 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12088 */
12089 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12090 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12091 } else {
12092 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12093 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12094 }
12095 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12096 DP_TBFLAG_A32(flags, VFPEN, 1);
12097 }
12098 }
12099
12100 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12101 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12102 }
12103
12104 /*
12105 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12106 * states defined in the ARM ARM for software singlestep:
12107 * SS_ACTIVE PSTATE.SS State
12108 * 0 x Inactive (the TB flag for SS is always 0)
12109 * 1 0 Active-pending
12110 * 1 1 Active-not-pending
12111 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12112 */
12113 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12114 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12115 }
12116
12117 *pflags = flags.flags;
12118 *cs_base = flags.flags2;
12119 }
12120
12121 #ifdef TARGET_AARCH64
12122 /*
12123 * The manual says that when SVE is enabled and VQ is widened the
12124 * implementation is allowed to zero the previously inaccessible
12125 * portion of the registers. The corollary to that is that when
12126 * SVE is enabled and VQ is narrowed we are also allowed to zero
12127 * the now inaccessible portion of the registers.
12128 *
12129 * The intent of this is that no predicate bit beyond VQ is ever set.
12130 * Which means that some operations on predicate registers themselves
12131 * may operate on full uint64_t or even unrolled across the maximum
12132 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12133 * may well be cheaper than conditionals to restrict the operation
12134 * to the relevant portion of a uint16_t[16].
12135 */
12136 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12137 {
12138 int i, j;
12139 uint64_t pmask;
12140
12141 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12142 assert(vq <= env_archcpu(env)->sve_max_vq);
12143
12144 /* Zap the high bits of the zregs. */
12145 for (i = 0; i < 32; i++) {
12146 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12147 }
12148
12149 /* Zap the high bits of the pregs and ffr. */
12150 pmask = 0;
12151 if (vq & 3) {
12152 pmask = ~(-1ULL << (16 * (vq & 3)));
12153 }
12154 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12155 for (i = 0; i < 17; ++i) {
12156 env->vfp.pregs[i].p[j] &= pmask;
12157 }
12158 pmask = 0;
12159 }
12160 }
12161
12162 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12163 {
12164 int exc_el;
12165
12166 if (sm) {
12167 exc_el = sme_exception_el(env, el);
12168 } else {
12169 exc_el = sve_exception_el(env, el);
12170 }
12171 if (exc_el) {
12172 return 0; /* disabled */
12173 }
12174 return sve_vqm1_for_el_sm(env, el, sm);
12175 }
12176
12177 /*
12178 * Notice a change in SVE vector size when changing EL.
12179 */
12180 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12181 int new_el, bool el0_a64)
12182 {
12183 ARMCPU *cpu = env_archcpu(env);
12184 int old_len, new_len;
12185 bool old_a64, new_a64, sm;
12186
12187 /* Nothing to do if no SVE. */
12188 if (!cpu_isar_feature(aa64_sve, cpu)) {
12189 return;
12190 }
12191
12192 /* Nothing to do if FP is disabled in either EL. */
12193 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12194 return;
12195 }
12196
12197 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12198 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12199
12200 /*
12201 * Both AArch64.TakeException and AArch64.ExceptionReturn
12202 * invoke ResetSVEState when taking an exception from, or
12203 * returning to, AArch32 state when PSTATE.SM is enabled.
12204 */
12205 sm = FIELD_EX64(env->svcr, SVCR, SM);
12206 if (old_a64 != new_a64 && sm) {
12207 arm_reset_sve_state(env);
12208 return;
12209 }
12210
12211 /*
12212 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12213 * at ELx, or not available because the EL is in AArch32 state, then
12214 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12215 * has an effective value of 0".
12216 *
12217 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12218 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12219 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12220 * we already have the correct register contents when encountering the
12221 * vq0->vq0 transition between EL0->EL1.
12222 */
12223 old_len = new_len = 0;
12224 if (old_a64) {
12225 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12226 }
12227 if (new_a64) {
12228 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12229 }
12230
12231 /* When changing vector length, clear inaccessible state. */
12232 if (new_len < old_len) {
12233 aarch64_sve_narrow_vq(env, new_len + 1);
12234 }
12235 }
12236 #endif
12237
12238 #ifndef CONFIG_USER_ONLY
12239 ARMSecuritySpace arm_security_space(CPUARMState *env)
12240 {
12241 if (arm_feature(env, ARM_FEATURE_M)) {
12242 return arm_secure_to_space(env->v7m.secure);
12243 }
12244
12245 /*
12246 * If EL3 is not supported then the secure state is implementation
12247 * defined, in which case QEMU defaults to non-secure.
12248 */
12249 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12250 return ARMSS_NonSecure;
12251 }
12252
12253 /* Check for AArch64 EL3 or AArch32 Mon. */
12254 if (is_a64(env)) {
12255 if (extract32(env->pstate, 2, 2) == 3) {
12256 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12257 return ARMSS_Root;
12258 } else {
12259 return ARMSS_Secure;
12260 }
12261 }
12262 } else {
12263 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12264 return ARMSS_Secure;
12265 }
12266 }
12267
12268 return arm_security_space_below_el3(env);
12269 }
12270
12271 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12272 {
12273 assert(!arm_feature(env, ARM_FEATURE_M));
12274
12275 /*
12276 * If EL3 is not supported then the secure state is implementation
12277 * defined, in which case QEMU defaults to non-secure.
12278 */
12279 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12280 return ARMSS_NonSecure;
12281 }
12282
12283 /*
12284 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12285 * Ignoring NSE when !NS retains consistency without having to
12286 * modify other predicates.
12287 */
12288 if (!(env->cp15.scr_el3 & SCR_NS)) {
12289 return ARMSS_Secure;
12290 } else if (env->cp15.scr_el3 & SCR_NSE) {
12291 return ARMSS_Realm;
12292 } else {
12293 return ARMSS_NonSecure;
12294 }
12295 }
12296 #endif /* !CONFIG_USER_ONLY */