]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/helper.c
Merge tag 'pull-target-arm-20240111' of https://git.linaro.org/people/pmaydell/qemu...
[mirror_qemu.git] / target / arm / helper.c
1 /*
2 * ARM generic helpers.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35
36 static void switch_mode(CPUARMState *env, int mode);
37
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40 assert(ri->fieldoffset);
41 if (cpreg_field_is_64bit(ri)) {
42 return CPREG_FIELD64(env, ri);
43 } else {
44 return CPREG_FIELD32(env, ri);
45 }
46 }
47
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50 assert(ri->fieldoffset);
51 if (cpreg_field_is_64bit(ri)) {
52 CPREG_FIELD64(env, ri) = value;
53 } else {
54 CPREG_FIELD32(env, ri) = value;
55 }
56 }
57
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60 return (char *)env + ri->fieldoffset;
61 }
62
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65 /* Raw read of a coprocessor register (as needed for migration, etc). */
66 if (ri->type & ARM_CP_CONST) {
67 return ri->resetvalue;
68 } else if (ri->raw_readfn) {
69 return ri->raw_readfn(env, ri);
70 } else if (ri->readfn) {
71 return ri->readfn(env, ri);
72 } else {
73 return raw_read(env, ri);
74 }
75 }
76
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78 uint64_t v)
79 {
80 /*
81 * Raw write of a coprocessor register (as needed for migration, etc).
82 * Note that constant registers are treated as write-ignored; the
83 * caller should check for success by whether a readback gives the
84 * value written.
85 */
86 if (ri->type & ARM_CP_CONST) {
87 return;
88 } else if (ri->raw_writefn) {
89 ri->raw_writefn(env, ri, v);
90 } else if (ri->writefn) {
91 ri->writefn(env, ri, v);
92 } else {
93 raw_write(env, ri, v);
94 }
95 }
96
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99 /*
100 * Return true if the regdef would cause an assertion if you called
101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102 * program bug for it not to have the NO_RAW flag).
103 * NB that returning false here doesn't necessarily mean that calling
104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105 * read/write access functions which are safe for raw use" from "has
106 * read/write access functions which have side effects but has forgotten
107 * to provide raw access functions".
108 * The tests here line up with the conditions in read/write_raw_cp_reg()
109 * and assertions in raw_read()/raw_write().
110 */
111 if ((ri->type & ARM_CP_CONST) ||
112 ri->fieldoffset ||
113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114 return false;
115 }
116 return true;
117 }
118
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121 /* Write the coprocessor state from cpu->env to the (index,value) list. */
122 int i;
123 bool ok = true;
124
125 for (i = 0; i < cpu->cpreg_array_len; i++) {
126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127 const ARMCPRegInfo *ri;
128 uint64_t newval;
129
130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131 if (!ri) {
132 ok = false;
133 continue;
134 }
135 if (ri->type & ARM_CP_NO_RAW) {
136 continue;
137 }
138
139 newval = read_raw_cp_reg(&cpu->env, ri);
140 if (kvm_sync) {
141 /*
142 * Only sync if the previous list->cpustate sync succeeded.
143 * Rather than tracking the success/failure state for every
144 * item in the list, we just recheck "does the raw write we must
145 * have made in write_list_to_cpustate() read back OK" here.
146 */
147 uint64_t oldval = cpu->cpreg_values[i];
148
149 if (oldval == newval) {
150 continue;
151 }
152
153 write_raw_cp_reg(&cpu->env, ri, oldval);
154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155 continue;
156 }
157
158 write_raw_cp_reg(&cpu->env, ri, newval);
159 }
160 cpu->cpreg_values[i] = newval;
161 }
162 return ok;
163 }
164
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167 int i;
168 bool ok = true;
169
170 for (i = 0; i < cpu->cpreg_array_len; i++) {
171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172 uint64_t v = cpu->cpreg_values[i];
173 const ARMCPRegInfo *ri;
174
175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176 if (!ri) {
177 ok = false;
178 continue;
179 }
180 if (ri->type & ARM_CP_NO_RAW) {
181 continue;
182 }
183 /*
184 * Write value and confirm it reads back as written
185 * (to catch read-only registers and partially read-only
186 * registers where the incoming migration value doesn't match)
187 */
188 write_raw_cp_reg(&cpu->env, ri, v);
189 if (read_raw_cp_reg(&cpu->env, ri) != v) {
190 ok = false;
191 }
192 }
193 return ok;
194 }
195
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198 ARMCPU *cpu = opaque;
199 uint32_t regidx = (uintptr_t)key;
200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201
202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204 /* The value array need not be initialized at this point */
205 cpu->cpreg_array_len++;
206 }
207 }
208
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211 ARMCPU *cpu = opaque;
212 const ARMCPRegInfo *ri;
213
214 ri = g_hash_table_lookup(cpu->cp_regs, key);
215
216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217 cpu->cpreg_array_len++;
218 }
219 }
220
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225
226 if (aidx > bidx) {
227 return 1;
228 }
229 if (aidx < bidx) {
230 return -1;
231 }
232 return 0;
233 }
234
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237 /*
238 * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239 * Note that we require cpreg_tuples[] to be sorted by key ID.
240 */
241 GList *keys;
242 int arraylen;
243
244 keys = g_hash_table_get_keys(cpu->cp_regs);
245 keys = g_list_sort(keys, cpreg_key_compare);
246
247 cpu->cpreg_array_len = 0;
248
249 g_list_foreach(keys, count_cpreg, cpu);
250
251 arraylen = cpu->cpreg_array_len;
252 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253 cpu->cpreg_values = g_new(uint64_t, arraylen);
254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257 cpu->cpreg_array_len = 0;
258
259 g_list_foreach(keys, add_cpreg_to_list, cpu);
260
261 assert(cpu->cpreg_array_len == arraylen);
262
263 g_list_free(keys);
264 }
265
266 static bool arm_pan_enabled(CPUARMState *env)
267 {
268 if (is_a64(env)) {
269 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
270 return false;
271 }
272 return env->pstate & PSTATE_PAN;
273 } else {
274 return env->uncached_cpsr & CPSR_PAN;
275 }
276 }
277
278 /*
279 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
280 */
281 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
282 const ARMCPRegInfo *ri,
283 bool isread)
284 {
285 if (!is_a64(env) && arm_current_el(env) == 3 &&
286 arm_is_secure_below_el3(env)) {
287 return CP_ACCESS_TRAP_UNCATEGORIZED;
288 }
289 return CP_ACCESS_OK;
290 }
291
292 /*
293 * Some secure-only AArch32 registers trap to EL3 if used from
294 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
295 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
296 * We assume that the .access field is set to PL1_RW.
297 */
298 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
299 const ARMCPRegInfo *ri,
300 bool isread)
301 {
302 if (arm_current_el(env) == 3) {
303 return CP_ACCESS_OK;
304 }
305 if (arm_is_secure_below_el3(env)) {
306 if (env->cp15.scr_el3 & SCR_EEL2) {
307 return CP_ACCESS_TRAP_EL2;
308 }
309 return CP_ACCESS_TRAP_EL3;
310 }
311 /* This will be EL1 NS and EL2 NS, which just UNDEF */
312 return CP_ACCESS_TRAP_UNCATEGORIZED;
313 }
314
315 /*
316 * Check for traps to performance monitor registers, which are controlled
317 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
318 */
319 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
320 bool isread)
321 {
322 int el = arm_current_el(env);
323 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
324
325 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
326 return CP_ACCESS_TRAP_EL2;
327 }
328 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
329 return CP_ACCESS_TRAP_EL3;
330 }
331 return CP_ACCESS_OK;
332 }
333
334 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
335 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
337 {
338 if (arm_current_el(env) == 1) {
339 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
340 if (arm_hcr_el2_eff(env) & trap) {
341 return CP_ACCESS_TRAP_EL2;
342 }
343 }
344 return CP_ACCESS_OK;
345 }
346
347 /* Check for traps from EL1 due to HCR_EL2.TSW. */
348 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
349 bool isread)
350 {
351 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
352 return CP_ACCESS_TRAP_EL2;
353 }
354 return CP_ACCESS_OK;
355 }
356
357 /* Check for traps from EL1 due to HCR_EL2.TACR. */
358 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
359 bool isread)
360 {
361 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
362 return CP_ACCESS_TRAP_EL2;
363 }
364 return CP_ACCESS_OK;
365 }
366
367 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
368 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
369 bool isread)
370 {
371 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
372 return CP_ACCESS_TRAP_EL2;
373 }
374 return CP_ACCESS_OK;
375 }
376
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
378 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
379 bool isread)
380 {
381 if (arm_current_el(env) == 1 &&
382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
383 return CP_ACCESS_TRAP_EL2;
384 }
385 return CP_ACCESS_OK;
386 }
387
388 #ifdef TARGET_AARCH64
389 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
390 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
391 bool isread)
392 {
393 if (arm_current_el(env) == 1 &&
394 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
395 return CP_ACCESS_TRAP_EL2;
396 }
397 return CP_ACCESS_OK;
398 }
399 #endif
400
401 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
402 {
403 ARMCPU *cpu = env_archcpu(env);
404
405 raw_write(env, ri, value);
406 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
407 }
408
409 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
410 {
411 ARMCPU *cpu = env_archcpu(env);
412
413 if (raw_read(env, ri) != value) {
414 /*
415 * Unlike real hardware the qemu TLB uses virtual addresses,
416 * not modified virtual addresses, so this causes a TLB flush.
417 */
418 tlb_flush(CPU(cpu));
419 raw_write(env, ri, value);
420 }
421 }
422
423 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
424 uint64_t value)
425 {
426 ARMCPU *cpu = env_archcpu(env);
427
428 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
429 && !extended_addresses_enabled(env)) {
430 /*
431 * For VMSA (when not using the LPAE long descriptor page table
432 * format) this register includes the ASID, so do a TLB flush.
433 * For PMSA it is purely a process ID and no action is needed.
434 */
435 tlb_flush(CPU(cpu));
436 }
437 raw_write(env, ri, value);
438 }
439
440 static int alle1_tlbmask(CPUARMState *env)
441 {
442 /*
443 * Note that the 'ALL' scope must invalidate both stage 1 and
444 * stage 2 translations, whereas most other scopes only invalidate
445 * stage 1 translations.
446 */
447 return (ARMMMUIdxBit_E10_1 |
448 ARMMMUIdxBit_E10_1_PAN |
449 ARMMMUIdxBit_E10_0 |
450 ARMMMUIdxBit_Stage2 |
451 ARMMMUIdxBit_Stage2_S);
452 }
453
454
455 /* IS variants of TLB operations must affect all cores */
456 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
457 uint64_t value)
458 {
459 CPUState *cs = env_cpu(env);
460
461 tlb_flush_all_cpus_synced(cs);
462 }
463
464 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
465 uint64_t value)
466 {
467 CPUState *cs = env_cpu(env);
468
469 tlb_flush_all_cpus_synced(cs);
470 }
471
472 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
473 uint64_t value)
474 {
475 CPUState *cs = env_cpu(env);
476
477 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
478 }
479
480 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 uint64_t value)
482 {
483 CPUState *cs = env_cpu(env);
484
485 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
486 }
487
488 /*
489 * Non-IS variants of TLB operations are upgraded to
490 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
491 * force broadcast of these operations.
492 */
493 static bool tlb_force_broadcast(CPUARMState *env)
494 {
495 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
496 }
497
498 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
500 {
501 /* Invalidate all (TLBIALL) */
502 CPUState *cs = env_cpu(env);
503
504 if (tlb_force_broadcast(env)) {
505 tlb_flush_all_cpus_synced(cs);
506 } else {
507 tlb_flush(cs);
508 }
509 }
510
511 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
512 uint64_t value)
513 {
514 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
515 CPUState *cs = env_cpu(env);
516
517 value &= TARGET_PAGE_MASK;
518 if (tlb_force_broadcast(env)) {
519 tlb_flush_page_all_cpus_synced(cs, value);
520 } else {
521 tlb_flush_page(cs, value);
522 }
523 }
524
525 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
527 {
528 /* Invalidate by ASID (TLBIASID) */
529 CPUState *cs = env_cpu(env);
530
531 if (tlb_force_broadcast(env)) {
532 tlb_flush_all_cpus_synced(cs);
533 } else {
534 tlb_flush(cs);
535 }
536 }
537
538 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
540 {
541 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
542 CPUState *cs = env_cpu(env);
543
544 value &= TARGET_PAGE_MASK;
545 if (tlb_force_broadcast(env)) {
546 tlb_flush_page_all_cpus_synced(cs, value);
547 } else {
548 tlb_flush_page(cs, value);
549 }
550 }
551
552 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
553 uint64_t value)
554 {
555 CPUState *cs = env_cpu(env);
556
557 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
558 }
559
560 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
562 {
563 CPUState *cs = env_cpu(env);
564
565 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
566 }
567
568
569 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
570 uint64_t value)
571 {
572 CPUState *cs = env_cpu(env);
573
574 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
575 }
576
577 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
578 uint64_t value)
579 {
580 CPUState *cs = env_cpu(env);
581
582 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
583 }
584
585 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
587 {
588 CPUState *cs = env_cpu(env);
589 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
590
591 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
592 }
593
594 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value)
596 {
597 CPUState *cs = env_cpu(env);
598 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
599
600 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
601 ARMMMUIdxBit_E2);
602 }
603
604 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
605 uint64_t value)
606 {
607 CPUState *cs = env_cpu(env);
608 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
609
610 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
611 }
612
613 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value)
615 {
616 CPUState *cs = env_cpu(env);
617 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
618
619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
620 }
621
622 static const ARMCPRegInfo cp_reginfo[] = {
623 /*
624 * Define the secure and non-secure FCSE identifier CP registers
625 * separately because there is no secure bank in V8 (no _EL3). This allows
626 * the secure register to be properly reset and migrated. There is also no
627 * v8 EL1 version of the register so the non-secure instance stands alone.
628 */
629 { .name = "FCSEIDR",
630 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
631 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
632 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
633 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
634 { .name = "FCSEIDR_S",
635 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
636 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
637 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
638 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
639 /*
640 * Define the secure and non-secure context identifier CP registers
641 * separately because there is no secure bank in V8 (no _EL3). This allows
642 * the secure register to be properly reset and migrated. In the
643 * non-secure case, the 32-bit register will have reset and migration
644 * disabled during registration as it is handled by the 64-bit instance.
645 */
646 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
647 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
648 .access = PL1_RW, .accessfn = access_tvm_trvm,
649 .fgt = FGT_CONTEXTIDR_EL1,
650 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
651 .secure = ARM_CP_SECSTATE_NS,
652 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
653 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
654 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
655 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
656 .access = PL1_RW, .accessfn = access_tvm_trvm,
657 .secure = ARM_CP_SECSTATE_S,
658 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
659 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
660 };
661
662 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
663 /*
664 * NB: Some of these registers exist in v8 but with more precise
665 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
666 */
667 /* MMU Domain access control / MPU write buffer control */
668 { .name = "DACR",
669 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
670 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
671 .writefn = dacr_write, .raw_writefn = raw_write,
672 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
673 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
674 /*
675 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
676 * For v6 and v5, these mappings are overly broad.
677 */
678 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
679 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
680 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
681 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
682 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
683 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
684 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
685 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
686 /* Cache maintenance ops; some of this space may be overridden later. */
687 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
688 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
689 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
690 };
691
692 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
693 /*
694 * Not all pre-v6 cores implemented this WFI, so this is slightly
695 * over-broad.
696 */
697 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
698 .access = PL1_W, .type = ARM_CP_WFI },
699 };
700
701 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
702 /*
703 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
704 * is UNPREDICTABLE; we choose to NOP as most implementations do).
705 */
706 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
707 .access = PL1_W, .type = ARM_CP_WFI },
708 /*
709 * L1 cache lockdown. Not architectural in v6 and earlier but in practice
710 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
711 * OMAPCP will override this space.
712 */
713 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
714 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
715 .resetvalue = 0 },
716 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
717 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
718 .resetvalue = 0 },
719 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
720 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
721 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
722 .resetvalue = 0 },
723 /*
724 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
725 * implementing it as RAZ means the "debug architecture version" bits
726 * will read as a reserved value, which should cause Linux to not try
727 * to use the debug hardware.
728 */
729 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
730 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
731 /*
732 * MMU TLB control. Note that the wildcarding means we cover not just
733 * the unified TLB ops but also the dside/iside/inner-shareable variants.
734 */
735 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
736 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
737 .type = ARM_CP_NO_RAW },
738 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
739 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
740 .type = ARM_CP_NO_RAW },
741 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
742 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
743 .type = ARM_CP_NO_RAW },
744 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
745 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
746 .type = ARM_CP_NO_RAW },
747 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
748 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
749 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
750 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
751 };
752
753 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
755 {
756 uint32_t mask = 0;
757
758 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
759 if (!arm_feature(env, ARM_FEATURE_V8)) {
760 /*
761 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
762 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
763 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
764 */
765 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
766 /* VFP coprocessor: cp10 & cp11 [23:20] */
767 mask |= R_CPACR_ASEDIS_MASK |
768 R_CPACR_D32DIS_MASK |
769 R_CPACR_CP11_MASK |
770 R_CPACR_CP10_MASK;
771
772 if (!arm_feature(env, ARM_FEATURE_NEON)) {
773 /* ASEDIS [31] bit is RAO/WI */
774 value |= R_CPACR_ASEDIS_MASK;
775 }
776
777 /*
778 * VFPv3 and upwards with NEON implement 32 double precision
779 * registers (D0-D31).
780 */
781 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
782 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
783 value |= R_CPACR_D32DIS_MASK;
784 }
785 }
786 value &= mask;
787 }
788
789 /*
790 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
791 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
792 */
793 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
794 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
795 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
796 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
797 }
798
799 env->cp15.cpacr_el1 = value;
800 }
801
802 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
803 {
804 /*
805 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
806 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
807 */
808 uint64_t value = env->cp15.cpacr_el1;
809
810 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
811 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
812 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
813 }
814 return value;
815 }
816
817
818 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
819 {
820 /*
821 * Call cpacr_write() so that we reset with the correct RAO bits set
822 * for our CPU features.
823 */
824 cpacr_write(env, ri, 0);
825 }
826
827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
828 bool isread)
829 {
830 if (arm_feature(env, ARM_FEATURE_V8)) {
831 /* Check if CPACR accesses are to be trapped to EL2 */
832 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
833 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
834 return CP_ACCESS_TRAP_EL2;
835 /* Check if CPACR accesses are to be trapped to EL3 */
836 } else if (arm_current_el(env) < 3 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
839 }
840 }
841
842 return CP_ACCESS_OK;
843 }
844
845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
846 bool isread)
847 {
848 /* Check if CPTR accesses are set to trap to EL3 */
849 if (arm_current_el(env) == 2 &&
850 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
852 }
853
854 return CP_ACCESS_OK;
855 }
856
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /*
863 * We need to break the TB after ISB to execute self-modifying code
864 * correctly and also to take any pending interrupts immediately.
865 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
866 */
867 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
868 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
869 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
870 .access = PL0_W, .type = ARM_CP_NOP },
871 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
872 .access = PL0_W, .type = ARM_CP_NOP },
873 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
874 .access = PL1_RW, .accessfn = access_tvm_trvm,
875 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
876 offsetof(CPUARMState, cp15.ifar_ns) },
877 .resetvalue = 0, },
878 /*
879 * Watchpoint Fault Address Register : should actually only be present
880 * for 1136, 1176, 11MPCore.
881 */
882 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
883 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
884 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
885 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
886 .fgt = FGT_CPACR_EL1,
887 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
888 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
889 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
890 };
891
892 typedef struct pm_event {
893 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
894 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
895 bool (*supported)(CPUARMState *);
896 /*
897 * Retrieve the current count of the underlying event. The programmed
898 * counters hold a difference from the return value from this function
899 */
900 uint64_t (*get_count)(CPUARMState *);
901 /*
902 * Return how many nanoseconds it will take (at a minimum) for count events
903 * to occur. A negative value indicates the counter will never overflow, or
904 * that the counter has otherwise arranged for the overflow bit to be set
905 * and the PMU interrupt to be raised on overflow.
906 */
907 int64_t (*ns_per_count)(uint64_t);
908 } pm_event;
909
910 static bool event_always_supported(CPUARMState *env)
911 {
912 return true;
913 }
914
915 static uint64_t swinc_get_count(CPUARMState *env)
916 {
917 /*
918 * SW_INCR events are written directly to the pmevcntr's by writes to
919 * PMSWINC, so there is no underlying count maintained by the PMU itself
920 */
921 return 0;
922 }
923
924 static int64_t swinc_ns_per(uint64_t ignored)
925 {
926 return -1;
927 }
928
929 /*
930 * Return the underlying cycle count for the PMU cycle counters. If we're in
931 * usermode, simply return 0.
932 */
933 static uint64_t cycles_get_count(CPUARMState *env)
934 {
935 #ifndef CONFIG_USER_ONLY
936 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
937 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
938 #else
939 return cpu_get_host_ticks();
940 #endif
941 }
942
943 #ifndef CONFIG_USER_ONLY
944 static int64_t cycles_ns_per(uint64_t cycles)
945 {
946 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
947 }
948
949 static bool instructions_supported(CPUARMState *env)
950 {
951 return icount_enabled() == 1; /* Precise instruction counting */
952 }
953
954 static uint64_t instructions_get_count(CPUARMState *env)
955 {
956 return (uint64_t)icount_get_raw();
957 }
958
959 static int64_t instructions_ns_per(uint64_t icount)
960 {
961 return icount_to_ns((int64_t)icount);
962 }
963 #endif
964
965 static bool pmuv3p1_events_supported(CPUARMState *env)
966 {
967 /* For events which are supported in any v8.1 PMU */
968 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
969 }
970
971 static bool pmuv3p4_events_supported(CPUARMState *env)
972 {
973 /* For events which are supported in any v8.1 PMU */
974 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
975 }
976
977 static uint64_t zero_event_get_count(CPUARMState *env)
978 {
979 /* For events which on QEMU never fire, so their count is always zero */
980 return 0;
981 }
982
983 static int64_t zero_event_ns_per(uint64_t cycles)
984 {
985 /* An event which never fires can never overflow */
986 return -1;
987 }
988
989 static const pm_event pm_events[] = {
990 { .number = 0x000, /* SW_INCR */
991 .supported = event_always_supported,
992 .get_count = swinc_get_count,
993 .ns_per_count = swinc_ns_per,
994 },
995 #ifndef CONFIG_USER_ONLY
996 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
997 .supported = instructions_supported,
998 .get_count = instructions_get_count,
999 .ns_per_count = instructions_ns_per,
1000 },
1001 { .number = 0x011, /* CPU_CYCLES, Cycle */
1002 .supported = event_always_supported,
1003 .get_count = cycles_get_count,
1004 .ns_per_count = cycles_ns_per,
1005 },
1006 #endif
1007 { .number = 0x023, /* STALL_FRONTEND */
1008 .supported = pmuv3p1_events_supported,
1009 .get_count = zero_event_get_count,
1010 .ns_per_count = zero_event_ns_per,
1011 },
1012 { .number = 0x024, /* STALL_BACKEND */
1013 .supported = pmuv3p1_events_supported,
1014 .get_count = zero_event_get_count,
1015 .ns_per_count = zero_event_ns_per,
1016 },
1017 { .number = 0x03c, /* STALL */
1018 .supported = pmuv3p4_events_supported,
1019 .get_count = zero_event_get_count,
1020 .ns_per_count = zero_event_ns_per,
1021 },
1022 };
1023
1024 /*
1025 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1026 * events (i.e. the statistical profiling extension), this implementation
1027 * should first be updated to something sparse instead of the current
1028 * supported_event_map[] array.
1029 */
1030 #define MAX_EVENT_ID 0x3c
1031 #define UNSUPPORTED_EVENT UINT16_MAX
1032 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1033
1034 /*
1035 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1036 * of ARM event numbers to indices in our pm_events array.
1037 *
1038 * Note: Events in the 0x40XX range are not currently supported.
1039 */
1040 void pmu_init(ARMCPU *cpu)
1041 {
1042 unsigned int i;
1043
1044 /*
1045 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1046 * events to them
1047 */
1048 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1049 supported_event_map[i] = UNSUPPORTED_EVENT;
1050 }
1051 cpu->pmceid0 = 0;
1052 cpu->pmceid1 = 0;
1053
1054 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1055 const pm_event *cnt = &pm_events[i];
1056 assert(cnt->number <= MAX_EVENT_ID);
1057 /* We do not currently support events in the 0x40xx range */
1058 assert(cnt->number <= 0x3f);
1059
1060 if (cnt->supported(&cpu->env)) {
1061 supported_event_map[cnt->number] = i;
1062 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1063 if (cnt->number & 0x20) {
1064 cpu->pmceid1 |= event_mask;
1065 } else {
1066 cpu->pmceid0 |= event_mask;
1067 }
1068 }
1069 }
1070 }
1071
1072 /*
1073 * Check at runtime whether a PMU event is supported for the current machine
1074 */
1075 static bool event_supported(uint16_t number)
1076 {
1077 if (number > MAX_EVENT_ID) {
1078 return false;
1079 }
1080 return supported_event_map[number] != UNSUPPORTED_EVENT;
1081 }
1082
1083 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1084 bool isread)
1085 {
1086 /*
1087 * Performance monitor registers user accessibility is controlled
1088 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1089 * trapping to EL2 or EL3 for other accesses.
1090 */
1091 int el = arm_current_el(env);
1092 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1093
1094 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1095 return CP_ACCESS_TRAP;
1096 }
1097 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1098 return CP_ACCESS_TRAP_EL2;
1099 }
1100 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1101 return CP_ACCESS_TRAP_EL3;
1102 }
1103
1104 return CP_ACCESS_OK;
1105 }
1106
1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1108 const ARMCPRegInfo *ri,
1109 bool isread)
1110 {
1111 /* ER: event counter read trap control */
1112 if (arm_feature(env, ARM_FEATURE_V8)
1113 && arm_current_el(env) == 0
1114 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1115 && isread) {
1116 return CP_ACCESS_OK;
1117 }
1118
1119 return pmreg_access(env, ri, isread);
1120 }
1121
1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1123 const ARMCPRegInfo *ri,
1124 bool isread)
1125 {
1126 /* SW: software increment write trap control */
1127 if (arm_feature(env, ARM_FEATURE_V8)
1128 && arm_current_el(env) == 0
1129 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1130 && !isread) {
1131 return CP_ACCESS_OK;
1132 }
1133
1134 return pmreg_access(env, ri, isread);
1135 }
1136
1137 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1138 const ARMCPRegInfo *ri,
1139 bool isread)
1140 {
1141 /* ER: event counter read trap control */
1142 if (arm_feature(env, ARM_FEATURE_V8)
1143 && arm_current_el(env) == 0
1144 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1145 return CP_ACCESS_OK;
1146 }
1147
1148 return pmreg_access(env, ri, isread);
1149 }
1150
1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1152 const ARMCPRegInfo *ri,
1153 bool isread)
1154 {
1155 /* CR: cycle counter read trap control */
1156 if (arm_feature(env, ARM_FEATURE_V8)
1157 && arm_current_el(env) == 0
1158 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1159 && isread) {
1160 return CP_ACCESS_OK;
1161 }
1162
1163 return pmreg_access(env, ri, isread);
1164 }
1165
1166 /*
1167 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1168 * We use these to decide whether we need to wrap a write to MDCR_EL2
1169 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1170 */
1171 #define MDCR_EL2_PMU_ENABLE_BITS \
1172 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1173 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1174
1175 /*
1176 * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1177 * the current EL, security state, and register configuration.
1178 */
1179 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1180 {
1181 uint64_t filter;
1182 bool e, p, u, nsk, nsu, nsh, m;
1183 bool enabled, prohibited = false, filtered;
1184 bool secure = arm_is_secure(env);
1185 int el = arm_current_el(env);
1186 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1187 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1188
1189 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1190 return false;
1191 }
1192
1193 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1194 (counter < hpmn || counter == 31)) {
1195 e = env->cp15.c9_pmcr & PMCRE;
1196 } else {
1197 e = mdcr_el2 & MDCR_HPME;
1198 }
1199 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1200
1201 /* Is event counting prohibited? */
1202 if (el == 2 && (counter < hpmn || counter == 31)) {
1203 prohibited = mdcr_el2 & MDCR_HPMD;
1204 }
1205 if (secure) {
1206 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1207 }
1208
1209 if (counter == 31) {
1210 /*
1211 * The cycle counter defaults to running. PMCR.DP says "disable
1212 * the cycle counter when event counting is prohibited".
1213 * Some MDCR bits disable the cycle counter specifically.
1214 */
1215 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1216 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1217 if (secure) {
1218 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1219 }
1220 if (el == 2) {
1221 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1222 }
1223 }
1224 }
1225
1226 if (counter == 31) {
1227 filter = env->cp15.pmccfiltr_el0;
1228 } else {
1229 filter = env->cp15.c14_pmevtyper[counter];
1230 }
1231
1232 p = filter & PMXEVTYPER_P;
1233 u = filter & PMXEVTYPER_U;
1234 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1235 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1236 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1237 m = arm_el_is_aa64(env, 1) &&
1238 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1239
1240 if (el == 0) {
1241 filtered = secure ? u : u != nsu;
1242 } else if (el == 1) {
1243 filtered = secure ? p : p != nsk;
1244 } else if (el == 2) {
1245 filtered = !nsh;
1246 } else { /* EL3 */
1247 filtered = m != p;
1248 }
1249
1250 if (counter != 31) {
1251 /*
1252 * If not checking PMCCNTR, ensure the counter is setup to an event we
1253 * support
1254 */
1255 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1256 if (!event_supported(event)) {
1257 return false;
1258 }
1259 }
1260
1261 return enabled && !prohibited && !filtered;
1262 }
1263
1264 static void pmu_update_irq(CPUARMState *env)
1265 {
1266 ARMCPU *cpu = env_archcpu(env);
1267 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1268 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1269 }
1270
1271 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1272 {
1273 /*
1274 * Return true if the clock divider is enabled and the cycle counter
1275 * is supposed to tick only once every 64 clock cycles. This is
1276 * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1277 * (64-bit) cycle counter PMCR.D has no effect.
1278 */
1279 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1280 }
1281
1282 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1283 {
1284 /* Return true if the specified event counter is configured to be 64 bit */
1285
1286 /* This isn't intended to be used with the cycle counter */
1287 assert(counter < 31);
1288
1289 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1290 return false;
1291 }
1292
1293 if (arm_feature(env, ARM_FEATURE_EL2)) {
1294 /*
1295 * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1296 * current security state, so we don't use arm_mdcr_el2_eff() here.
1297 */
1298 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1299 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1300
1301 if (counter >= hpmn) {
1302 return hlp;
1303 }
1304 }
1305 return env->cp15.c9_pmcr & PMCRLP;
1306 }
1307
1308 /*
1309 * Ensure c15_ccnt is the guest-visible count so that operations such as
1310 * enabling/disabling the counter or filtering, modifying the count itself,
1311 * etc. can be done logically. This is essentially a no-op if the counter is
1312 * not enabled at the time of the call.
1313 */
1314 static void pmccntr_op_start(CPUARMState *env)
1315 {
1316 uint64_t cycles = cycles_get_count(env);
1317
1318 if (pmu_counter_enabled(env, 31)) {
1319 uint64_t eff_cycles = cycles;
1320 if (pmccntr_clockdiv_enabled(env)) {
1321 eff_cycles /= 64;
1322 }
1323
1324 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1325
1326 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1327 1ull << 63 : 1ull << 31;
1328 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1329 env->cp15.c9_pmovsr |= (1ULL << 31);
1330 pmu_update_irq(env);
1331 }
1332
1333 env->cp15.c15_ccnt = new_pmccntr;
1334 }
1335 env->cp15.c15_ccnt_delta = cycles;
1336 }
1337
1338 /*
1339 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1340 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1341 * pmccntr_op_start.
1342 */
1343 static void pmccntr_op_finish(CPUARMState *env)
1344 {
1345 if (pmu_counter_enabled(env, 31)) {
1346 #ifndef CONFIG_USER_ONLY
1347 /* Calculate when the counter will next overflow */
1348 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1349 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1350 remaining_cycles = (uint32_t)remaining_cycles;
1351 }
1352 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1353
1354 if (overflow_in > 0) {
1355 int64_t overflow_at;
1356
1357 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1358 overflow_in, &overflow_at)) {
1359 ARMCPU *cpu = env_archcpu(env);
1360 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1361 }
1362 }
1363 #endif
1364
1365 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1366 if (pmccntr_clockdiv_enabled(env)) {
1367 prev_cycles /= 64;
1368 }
1369 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1370 }
1371 }
1372
1373 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1374 {
1375
1376 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1377 uint64_t count = 0;
1378 if (event_supported(event)) {
1379 uint16_t event_idx = supported_event_map[event];
1380 count = pm_events[event_idx].get_count(env);
1381 }
1382
1383 if (pmu_counter_enabled(env, counter)) {
1384 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1385 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1386 1ULL << 63 : 1ULL << 31;
1387
1388 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1389 env->cp15.c9_pmovsr |= (1 << counter);
1390 pmu_update_irq(env);
1391 }
1392 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1393 }
1394 env->cp15.c14_pmevcntr_delta[counter] = count;
1395 }
1396
1397 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1398 {
1399 if (pmu_counter_enabled(env, counter)) {
1400 #ifndef CONFIG_USER_ONLY
1401 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1402 uint16_t event_idx = supported_event_map[event];
1403 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1404 int64_t overflow_in;
1405
1406 if (!pmevcntr_is_64_bit(env, counter)) {
1407 delta = (uint32_t)delta;
1408 }
1409 overflow_in = pm_events[event_idx].ns_per_count(delta);
1410
1411 if (overflow_in > 0) {
1412 int64_t overflow_at;
1413
1414 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1415 overflow_in, &overflow_at)) {
1416 ARMCPU *cpu = env_archcpu(env);
1417 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1418 }
1419 }
1420 #endif
1421
1422 env->cp15.c14_pmevcntr_delta[counter] -=
1423 env->cp15.c14_pmevcntr[counter];
1424 }
1425 }
1426
1427 void pmu_op_start(CPUARMState *env)
1428 {
1429 unsigned int i;
1430 pmccntr_op_start(env);
1431 for (i = 0; i < pmu_num_counters(env); i++) {
1432 pmevcntr_op_start(env, i);
1433 }
1434 }
1435
1436 void pmu_op_finish(CPUARMState *env)
1437 {
1438 unsigned int i;
1439 pmccntr_op_finish(env);
1440 for (i = 0; i < pmu_num_counters(env); i++) {
1441 pmevcntr_op_finish(env, i);
1442 }
1443 }
1444
1445 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1446 {
1447 pmu_op_start(&cpu->env);
1448 }
1449
1450 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1451 {
1452 pmu_op_finish(&cpu->env);
1453 }
1454
1455 void arm_pmu_timer_cb(void *opaque)
1456 {
1457 ARMCPU *cpu = opaque;
1458
1459 /*
1460 * Update all the counter values based on the current underlying counts,
1461 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1462 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1463 * counter may expire.
1464 */
1465 pmu_op_start(&cpu->env);
1466 pmu_op_finish(&cpu->env);
1467 }
1468
1469 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1470 uint64_t value)
1471 {
1472 pmu_op_start(env);
1473
1474 if (value & PMCRC) {
1475 /* The counter has been reset */
1476 env->cp15.c15_ccnt = 0;
1477 }
1478
1479 if (value & PMCRP) {
1480 unsigned int i;
1481 for (i = 0; i < pmu_num_counters(env); i++) {
1482 env->cp15.c14_pmevcntr[i] = 0;
1483 }
1484 }
1485
1486 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1487 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1488
1489 pmu_op_finish(env);
1490 }
1491
1492 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1493 {
1494 uint64_t pmcr = env->cp15.c9_pmcr;
1495
1496 /*
1497 * If EL2 is implemented and enabled for the current security state, reads
1498 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
1499 */
1500 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
1501 pmcr &= ~PMCRN_MASK;
1502 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
1503 }
1504
1505 return pmcr;
1506 }
1507
1508 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1509 uint64_t value)
1510 {
1511 unsigned int i;
1512 uint64_t overflow_mask, new_pmswinc;
1513
1514 for (i = 0; i < pmu_num_counters(env); i++) {
1515 /* Increment a counter's count iff: */
1516 if ((value & (1 << i)) && /* counter's bit is set */
1517 /* counter is enabled and not filtered */
1518 pmu_counter_enabled(env, i) &&
1519 /* counter is SW_INCR */
1520 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1521 pmevcntr_op_start(env, i);
1522
1523 /*
1524 * Detect if this write causes an overflow since we can't predict
1525 * PMSWINC overflows like we can for other events
1526 */
1527 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1528
1529 overflow_mask = pmevcntr_is_64_bit(env, i) ?
1530 1ULL << 63 : 1ULL << 31;
1531
1532 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1533 env->cp15.c9_pmovsr |= (1 << i);
1534 pmu_update_irq(env);
1535 }
1536
1537 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1538
1539 pmevcntr_op_finish(env, i);
1540 }
1541 }
1542 }
1543
1544 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1545 {
1546 uint64_t ret;
1547 pmccntr_op_start(env);
1548 ret = env->cp15.c15_ccnt;
1549 pmccntr_op_finish(env);
1550 return ret;
1551 }
1552
1553 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1554 uint64_t value)
1555 {
1556 /*
1557 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1558 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1559 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1560 * accessed.
1561 */
1562 env->cp15.c9_pmselr = value & 0x1f;
1563 }
1564
1565 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1566 uint64_t value)
1567 {
1568 pmccntr_op_start(env);
1569 env->cp15.c15_ccnt = value;
1570 pmccntr_op_finish(env);
1571 }
1572
1573 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1574 uint64_t value)
1575 {
1576 uint64_t cur_val = pmccntr_read(env, NULL);
1577
1578 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1579 }
1580
1581 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1582 uint64_t value)
1583 {
1584 pmccntr_op_start(env);
1585 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1586 pmccntr_op_finish(env);
1587 }
1588
1589 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1590 uint64_t value)
1591 {
1592 pmccntr_op_start(env);
1593 /* M is not accessible from AArch32 */
1594 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1595 (value & PMCCFILTR);
1596 pmccntr_op_finish(env);
1597 }
1598
1599 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1600 {
1601 /* M is not visible in AArch32 */
1602 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1603 }
1604
1605 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1607 {
1608 pmu_op_start(env);
1609 value &= pmu_counter_mask(env);
1610 env->cp15.c9_pmcnten |= value;
1611 pmu_op_finish(env);
1612 }
1613
1614 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1615 uint64_t value)
1616 {
1617 pmu_op_start(env);
1618 value &= pmu_counter_mask(env);
1619 env->cp15.c9_pmcnten &= ~value;
1620 pmu_op_finish(env);
1621 }
1622
1623 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624 uint64_t value)
1625 {
1626 value &= pmu_counter_mask(env);
1627 env->cp15.c9_pmovsr &= ~value;
1628 pmu_update_irq(env);
1629 }
1630
1631 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632 uint64_t value)
1633 {
1634 value &= pmu_counter_mask(env);
1635 env->cp15.c9_pmovsr |= value;
1636 pmu_update_irq(env);
1637 }
1638
1639 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1640 uint64_t value, const uint8_t counter)
1641 {
1642 if (counter == 31) {
1643 pmccfiltr_write(env, ri, value);
1644 } else if (counter < pmu_num_counters(env)) {
1645 pmevcntr_op_start(env, counter);
1646
1647 /*
1648 * If this counter's event type is changing, store the current
1649 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1650 * pmevcntr_op_finish has the correct baseline when it converts back to
1651 * a delta.
1652 */
1653 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1654 PMXEVTYPER_EVTCOUNT;
1655 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1656 if (old_event != new_event) {
1657 uint64_t count = 0;
1658 if (event_supported(new_event)) {
1659 uint16_t event_idx = supported_event_map[new_event];
1660 count = pm_events[event_idx].get_count(env);
1661 }
1662 env->cp15.c14_pmevcntr_delta[counter] = count;
1663 }
1664
1665 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1666 pmevcntr_op_finish(env, counter);
1667 }
1668 /*
1669 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1670 * PMSELR value is equal to or greater than the number of implemented
1671 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1672 */
1673 }
1674
1675 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1676 const uint8_t counter)
1677 {
1678 if (counter == 31) {
1679 return env->cp15.pmccfiltr_el0;
1680 } else if (counter < pmu_num_counters(env)) {
1681 return env->cp15.c14_pmevtyper[counter];
1682 } else {
1683 /*
1684 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1685 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1686 */
1687 return 0;
1688 }
1689 }
1690
1691 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1692 uint64_t value)
1693 {
1694 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1695 pmevtyper_write(env, ri, value, counter);
1696 }
1697
1698 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1699 uint64_t value)
1700 {
1701 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1702 env->cp15.c14_pmevtyper[counter] = value;
1703
1704 /*
1705 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1706 * pmu_op_finish calls when loading saved state for a migration. Because
1707 * we're potentially updating the type of event here, the value written to
1708 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1709 * different counter type. Therefore, we need to set this value to the
1710 * current count for the counter type we're writing so that pmu_op_finish
1711 * has the correct count for its calculation.
1712 */
1713 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1714 if (event_supported(event)) {
1715 uint16_t event_idx = supported_event_map[event];
1716 env->cp15.c14_pmevcntr_delta[counter] =
1717 pm_events[event_idx].get_count(env);
1718 }
1719 }
1720
1721 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1722 {
1723 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1724 return pmevtyper_read(env, ri, counter);
1725 }
1726
1727 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728 uint64_t value)
1729 {
1730 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1731 }
1732
1733 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1736 }
1737
1738 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1739 uint64_t value, uint8_t counter)
1740 {
1741 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1742 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1743 value &= MAKE_64BIT_MASK(0, 32);
1744 }
1745 if (counter < pmu_num_counters(env)) {
1746 pmevcntr_op_start(env, counter);
1747 env->cp15.c14_pmevcntr[counter] = value;
1748 pmevcntr_op_finish(env, counter);
1749 }
1750 /*
1751 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1752 * are CONSTRAINED UNPREDICTABLE.
1753 */
1754 }
1755
1756 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1757 uint8_t counter)
1758 {
1759 if (counter < pmu_num_counters(env)) {
1760 uint64_t ret;
1761 pmevcntr_op_start(env, counter);
1762 ret = env->cp15.c14_pmevcntr[counter];
1763 pmevcntr_op_finish(env, counter);
1764 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1765 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1766 ret &= MAKE_64BIT_MASK(0, 32);
1767 }
1768 return ret;
1769 } else {
1770 /*
1771 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1772 * are CONSTRAINED UNPREDICTABLE.
1773 */
1774 return 0;
1775 }
1776 }
1777
1778 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1779 uint64_t value)
1780 {
1781 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1782 pmevcntr_write(env, ri, value, counter);
1783 }
1784
1785 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1786 {
1787 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1788 return pmevcntr_read(env, ri, counter);
1789 }
1790
1791 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1792 uint64_t value)
1793 {
1794 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1795 assert(counter < pmu_num_counters(env));
1796 env->cp15.c14_pmevcntr[counter] = value;
1797 pmevcntr_write(env, ri, value, counter);
1798 }
1799
1800 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803 assert(counter < pmu_num_counters(env));
1804 return env->cp15.c14_pmevcntr[counter];
1805 }
1806
1807 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808 uint64_t value)
1809 {
1810 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1811 }
1812
1813 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1814 {
1815 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1816 }
1817
1818 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819 uint64_t value)
1820 {
1821 if (arm_feature(env, ARM_FEATURE_V8)) {
1822 env->cp15.c9_pmuserenr = value & 0xf;
1823 } else {
1824 env->cp15.c9_pmuserenr = value & 1;
1825 }
1826 }
1827
1828 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829 uint64_t value)
1830 {
1831 /* We have no event counters so only the C bit can be changed */
1832 value &= pmu_counter_mask(env);
1833 env->cp15.c9_pminten |= value;
1834 pmu_update_irq(env);
1835 }
1836
1837 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1838 uint64_t value)
1839 {
1840 value &= pmu_counter_mask(env);
1841 env->cp15.c9_pminten &= ~value;
1842 pmu_update_irq(env);
1843 }
1844
1845 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1846 uint64_t value)
1847 {
1848 /*
1849 * Note that even though the AArch64 view of this register has bits
1850 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1851 * architectural requirements for bits which are RES0 only in some
1852 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1853 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1854 */
1855 raw_write(env, ri, value & ~0x1FULL);
1856 }
1857
1858 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1859 {
1860 /* Begin with base v8.0 state. */
1861 uint64_t valid_mask = 0x3fff;
1862 ARMCPU *cpu = env_archcpu(env);
1863 uint64_t changed;
1864
1865 /*
1866 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1867 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1868 * Instead, choose the format based on the mode of EL3.
1869 */
1870 if (arm_el_is_aa64(env, 3)) {
1871 value |= SCR_FW | SCR_AW; /* RES1 */
1872 valid_mask &= ~SCR_NET; /* RES0 */
1873
1874 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1875 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1876 value |= SCR_RW; /* RAO/WI */
1877 }
1878 if (cpu_isar_feature(aa64_ras, cpu)) {
1879 valid_mask |= SCR_TERR;
1880 }
1881 if (cpu_isar_feature(aa64_lor, cpu)) {
1882 valid_mask |= SCR_TLOR;
1883 }
1884 if (cpu_isar_feature(aa64_pauth, cpu)) {
1885 valid_mask |= SCR_API | SCR_APK;
1886 }
1887 if (cpu_isar_feature(aa64_sel2, cpu)) {
1888 valid_mask |= SCR_EEL2;
1889 } else if (cpu_isar_feature(aa64_rme, cpu)) {
1890 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1891 value |= SCR_NS;
1892 }
1893 if (cpu_isar_feature(aa64_mte, cpu)) {
1894 valid_mask |= SCR_ATA;
1895 }
1896 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1897 valid_mask |= SCR_ENSCXT;
1898 }
1899 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1900 valid_mask |= SCR_EASE | SCR_NMEA;
1901 }
1902 if (cpu_isar_feature(aa64_sme, cpu)) {
1903 valid_mask |= SCR_ENTP2;
1904 }
1905 if (cpu_isar_feature(aa64_hcx, cpu)) {
1906 valid_mask |= SCR_HXEN;
1907 }
1908 if (cpu_isar_feature(aa64_fgt, cpu)) {
1909 valid_mask |= SCR_FGTEN;
1910 }
1911 if (cpu_isar_feature(aa64_rme, cpu)) {
1912 valid_mask |= SCR_NSE | SCR_GPF;
1913 }
1914 } else {
1915 valid_mask &= ~(SCR_RW | SCR_ST);
1916 if (cpu_isar_feature(aa32_ras, cpu)) {
1917 valid_mask |= SCR_TERR;
1918 }
1919 }
1920
1921 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1922 valid_mask &= ~SCR_HCE;
1923
1924 /*
1925 * On ARMv7, SMD (or SCD as it is called in v7) is only
1926 * supported if EL2 exists. The bit is UNK/SBZP when
1927 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1928 * when EL2 is unavailable.
1929 * On ARMv8, this bit is always available.
1930 */
1931 if (arm_feature(env, ARM_FEATURE_V7) &&
1932 !arm_feature(env, ARM_FEATURE_V8)) {
1933 valid_mask &= ~SCR_SMD;
1934 }
1935 }
1936
1937 /* Clear all-context RES0 bits. */
1938 value &= valid_mask;
1939 changed = env->cp15.scr_el3 ^ value;
1940 env->cp15.scr_el3 = value;
1941
1942 /*
1943 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1944 * we must invalidate all TLBs below EL3.
1945 */
1946 if (changed & (SCR_NS | SCR_NSE)) {
1947 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1948 ARMMMUIdxBit_E20_0 |
1949 ARMMMUIdxBit_E10_1 |
1950 ARMMMUIdxBit_E20_2 |
1951 ARMMMUIdxBit_E10_1_PAN |
1952 ARMMMUIdxBit_E20_2_PAN |
1953 ARMMMUIdxBit_E2));
1954 }
1955 }
1956
1957 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1958 {
1959 /*
1960 * scr_write will set the RES1 bits on an AArch64-only CPU.
1961 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1962 */
1963 scr_write(env, ri, 0);
1964 }
1965
1966 static CPAccessResult access_tid4(CPUARMState *env,
1967 const ARMCPRegInfo *ri,
1968 bool isread)
1969 {
1970 if (arm_current_el(env) == 1 &&
1971 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1972 return CP_ACCESS_TRAP_EL2;
1973 }
1974
1975 return CP_ACCESS_OK;
1976 }
1977
1978 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1979 {
1980 ARMCPU *cpu = env_archcpu(env);
1981
1982 /*
1983 * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1984 * bank
1985 */
1986 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1987 ri->secure & ARM_CP_SECSTATE_S);
1988
1989 return cpu->ccsidr[index];
1990 }
1991
1992 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993 uint64_t value)
1994 {
1995 raw_write(env, ri, value & 0xf);
1996 }
1997
1998 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1999 {
2000 CPUState *cs = env_cpu(env);
2001 bool el1 = arm_current_el(env) == 1;
2002 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2003 uint64_t ret = 0;
2004
2005 if (hcr_el2 & HCR_IMO) {
2006 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2007 ret |= CPSR_I;
2008 }
2009 } else {
2010 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2011 ret |= CPSR_I;
2012 }
2013 }
2014
2015 if (hcr_el2 & HCR_FMO) {
2016 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2017 ret |= CPSR_F;
2018 }
2019 } else {
2020 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2021 ret |= CPSR_F;
2022 }
2023 }
2024
2025 if (hcr_el2 & HCR_AMO) {
2026 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
2027 ret |= CPSR_A;
2028 }
2029 }
2030
2031 return ret;
2032 }
2033
2034 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2035 bool isread)
2036 {
2037 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2038 return CP_ACCESS_TRAP_EL2;
2039 }
2040
2041 return CP_ACCESS_OK;
2042 }
2043
2044 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2045 bool isread)
2046 {
2047 if (arm_feature(env, ARM_FEATURE_V8)) {
2048 return access_aa64_tid1(env, ri, isread);
2049 }
2050
2051 return CP_ACCESS_OK;
2052 }
2053
2054 static const ARMCPRegInfo v7_cp_reginfo[] = {
2055 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2056 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2057 .access = PL1_W, .type = ARM_CP_NOP },
2058 /*
2059 * Performance monitors are implementation defined in v7,
2060 * but with an ARM recommended set of registers, which we
2061 * follow.
2062 *
2063 * Performance registers fall into three categories:
2064 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2065 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2066 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2067 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2068 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2069 */
2070 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2071 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2072 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2073 .writefn = pmcntenset_write,
2074 .accessfn = pmreg_access,
2075 .fgt = FGT_PMCNTEN,
2076 .raw_writefn = raw_write },
2077 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2078 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2079 .access = PL0_RW, .accessfn = pmreg_access,
2080 .fgt = FGT_PMCNTEN,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2082 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2083 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2084 .access = PL0_RW,
2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2086 .accessfn = pmreg_access,
2087 .fgt = FGT_PMCNTEN,
2088 .writefn = pmcntenclr_write,
2089 .type = ARM_CP_ALIAS | ARM_CP_IO },
2090 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2092 .access = PL0_RW, .accessfn = pmreg_access,
2093 .fgt = FGT_PMCNTEN,
2094 .type = ARM_CP_ALIAS | ARM_CP_IO,
2095 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2096 .writefn = pmcntenclr_write },
2097 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2098 .access = PL0_RW, .type = ARM_CP_IO,
2099 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2100 .accessfn = pmreg_access,
2101 .fgt = FGT_PMOVS,
2102 .writefn = pmovsr_write,
2103 .raw_writefn = raw_write },
2104 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2105 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2106 .access = PL0_RW, .accessfn = pmreg_access,
2107 .fgt = FGT_PMOVS,
2108 .type = ARM_CP_ALIAS | ARM_CP_IO,
2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2110 .writefn = pmovsr_write,
2111 .raw_writefn = raw_write },
2112 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2113 .access = PL0_W, .accessfn = pmreg_access_swinc,
2114 .fgt = FGT_PMSWINC_EL0,
2115 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2116 .writefn = pmswinc_write },
2117 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2119 .access = PL0_W, .accessfn = pmreg_access_swinc,
2120 .fgt = FGT_PMSWINC_EL0,
2121 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2122 .writefn = pmswinc_write },
2123 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2124 .access = PL0_RW, .type = ARM_CP_ALIAS,
2125 .fgt = FGT_PMSELR_EL0,
2126 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2127 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2128 .raw_writefn = raw_write},
2129 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2130 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2131 .access = PL0_RW, .accessfn = pmreg_access_selr,
2132 .fgt = FGT_PMSELR_EL0,
2133 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2134 .writefn = pmselr_write, .raw_writefn = raw_write, },
2135 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2136 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2137 .fgt = FGT_PMCCNTR_EL0,
2138 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2139 .accessfn = pmreg_access_ccntr },
2140 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2141 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2142 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2143 .fgt = FGT_PMCCNTR_EL0,
2144 .type = ARM_CP_IO,
2145 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2146 .readfn = pmccntr_read, .writefn = pmccntr_write,
2147 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2148 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2149 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2150 .access = PL0_RW, .accessfn = pmreg_access,
2151 .fgt = FGT_PMCCFILTR_EL0,
2152 .type = ARM_CP_ALIAS | ARM_CP_IO,
2153 .resetvalue = 0, },
2154 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2155 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2156 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2157 .access = PL0_RW, .accessfn = pmreg_access,
2158 .fgt = FGT_PMCCFILTR_EL0,
2159 .type = ARM_CP_IO,
2160 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2161 .resetvalue = 0, },
2162 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2163 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2164 .accessfn = pmreg_access,
2165 .fgt = FGT_PMEVTYPERN_EL0,
2166 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2167 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2168 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2169 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2170 .accessfn = pmreg_access,
2171 .fgt = FGT_PMEVTYPERN_EL0,
2172 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2173 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2174 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2175 .accessfn = pmreg_access_xevcntr,
2176 .fgt = FGT_PMEVCNTRN_EL0,
2177 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2178 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2179 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2180 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2181 .accessfn = pmreg_access_xevcntr,
2182 .fgt = FGT_PMEVCNTRN_EL0,
2183 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2184 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2185 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2186 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2187 .resetvalue = 0,
2188 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2189 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2190 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2191 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2192 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2193 .resetvalue = 0,
2194 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2195 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2196 .access = PL1_RW, .accessfn = access_tpm,
2197 .fgt = FGT_PMINTEN,
2198 .type = ARM_CP_ALIAS | ARM_CP_IO,
2199 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2200 .resetvalue = 0,
2201 .writefn = pmintenset_write, .raw_writefn = raw_write },
2202 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2204 .access = PL1_RW, .accessfn = access_tpm,
2205 .fgt = FGT_PMINTEN,
2206 .type = ARM_CP_IO,
2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2208 .writefn = pmintenset_write, .raw_writefn = raw_write,
2209 .resetvalue = 0x0 },
2210 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2211 .access = PL1_RW, .accessfn = access_tpm,
2212 .fgt = FGT_PMINTEN,
2213 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2214 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2215 .writefn = pmintenclr_write, },
2216 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2217 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2218 .access = PL1_RW, .accessfn = access_tpm,
2219 .fgt = FGT_PMINTEN,
2220 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2221 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2222 .writefn = pmintenclr_write },
2223 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2224 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2225 .access = PL1_R,
2226 .accessfn = access_tid4,
2227 .fgt = FGT_CCSIDR_EL1,
2228 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2229 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2230 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2231 .access = PL1_RW,
2232 .accessfn = access_tid4,
2233 .fgt = FGT_CSSELR_EL1,
2234 .writefn = csselr_write, .resetvalue = 0,
2235 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2236 offsetof(CPUARMState, cp15.csselr_ns) } },
2237 /*
2238 * Auxiliary ID register: this actually has an IMPDEF value but for now
2239 * just RAZ for all cores:
2240 */
2241 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2242 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2243 .access = PL1_R, .type = ARM_CP_CONST,
2244 .accessfn = access_aa64_tid1,
2245 .fgt = FGT_AIDR_EL1,
2246 .resetvalue = 0 },
2247 /*
2248 * Auxiliary fault status registers: these also are IMPDEF, and we
2249 * choose to RAZ/WI for all cores.
2250 */
2251 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2252 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2253 .access = PL1_RW, .accessfn = access_tvm_trvm,
2254 .fgt = FGT_AFSR0_EL1,
2255 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
2256 .type = ARM_CP_CONST, .resetvalue = 0 },
2257 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2258 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2259 .access = PL1_RW, .accessfn = access_tvm_trvm,
2260 .fgt = FGT_AFSR1_EL1,
2261 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
2262 .type = ARM_CP_CONST, .resetvalue = 0 },
2263 /*
2264 * MAIR can just read-as-written because we don't implement caches
2265 * and so don't need to care about memory attributes.
2266 */
2267 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2268 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2269 .access = PL1_RW, .accessfn = access_tvm_trvm,
2270 .fgt = FGT_MAIR_EL1,
2271 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
2272 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2273 .resetvalue = 0 },
2274 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2275 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2276 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2277 .resetvalue = 0 },
2278 /*
2279 * For non-long-descriptor page tables these are PRRR and NMRR;
2280 * regardless they still act as reads-as-written for QEMU.
2281 */
2282 /*
2283 * MAIR0/1 are defined separately from their 64-bit counterpart which
2284 * allows them to assign the correct fieldoffset based on the endianness
2285 * handled in the field definitions.
2286 */
2287 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2288 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2289 .access = PL1_RW, .accessfn = access_tvm_trvm,
2290 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2291 offsetof(CPUARMState, cp15.mair0_ns) },
2292 .resetfn = arm_cp_reset_ignore },
2293 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2294 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2295 .access = PL1_RW, .accessfn = access_tvm_trvm,
2296 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2297 offsetof(CPUARMState, cp15.mair1_ns) },
2298 .resetfn = arm_cp_reset_ignore },
2299 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2300 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2301 .fgt = FGT_ISR_EL1,
2302 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2303 /* 32 bit ITLB invalidates */
2304 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2305 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2306 .writefn = tlbiall_write },
2307 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2309 .writefn = tlbimva_write },
2310 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2312 .writefn = tlbiasid_write },
2313 /* 32 bit DTLB invalidates */
2314 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2315 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2316 .writefn = tlbiall_write },
2317 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2318 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2319 .writefn = tlbimva_write },
2320 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2321 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2322 .writefn = tlbiasid_write },
2323 /* 32 bit TLB invalidates */
2324 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2325 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2326 .writefn = tlbiall_write },
2327 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2328 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2329 .writefn = tlbimva_write },
2330 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2331 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2332 .writefn = tlbiasid_write },
2333 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2334 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2335 .writefn = tlbimvaa_write },
2336 };
2337
2338 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2339 /* 32 bit TLB invalidates, Inner Shareable */
2340 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2341 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2342 .writefn = tlbiall_is_write },
2343 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2344 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2345 .writefn = tlbimva_is_write },
2346 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2347 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2348 .writefn = tlbiasid_is_write },
2349 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2350 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2351 .writefn = tlbimvaa_is_write },
2352 };
2353
2354 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2355 /* PMOVSSET is not implemented in v7 before v7ve */
2356 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2357 .access = PL0_RW, .accessfn = pmreg_access,
2358 .fgt = FGT_PMOVS,
2359 .type = ARM_CP_ALIAS | ARM_CP_IO,
2360 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2361 .writefn = pmovsset_write,
2362 .raw_writefn = raw_write },
2363 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2364 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2365 .access = PL0_RW, .accessfn = pmreg_access,
2366 .fgt = FGT_PMOVS,
2367 .type = ARM_CP_ALIAS | ARM_CP_IO,
2368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2369 .writefn = pmovsset_write,
2370 .raw_writefn = raw_write },
2371 };
2372
2373 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2374 uint64_t value)
2375 {
2376 value &= 1;
2377 env->teecr = value;
2378 }
2379
2380 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2381 bool isread)
2382 {
2383 /*
2384 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2385 * at all, so we don't need to check whether we're v8A.
2386 */
2387 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2388 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2389 return CP_ACCESS_TRAP_EL2;
2390 }
2391 return CP_ACCESS_OK;
2392 }
2393
2394 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2395 bool isread)
2396 {
2397 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2398 return CP_ACCESS_TRAP;
2399 }
2400 return teecr_access(env, ri, isread);
2401 }
2402
2403 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2404 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2405 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2406 .resetvalue = 0,
2407 .writefn = teecr_write, .accessfn = teecr_access },
2408 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2409 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2410 .accessfn = teehbr_access, .resetvalue = 0 },
2411 };
2412
2413 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2414 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2415 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2416 .access = PL0_RW,
2417 .fgt = FGT_TPIDR_EL0,
2418 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2419 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2420 .access = PL0_RW,
2421 .fgt = FGT_TPIDR_EL0,
2422 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2423 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2424 .resetfn = arm_cp_reset_ignore },
2425 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2426 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2427 .access = PL0_R | PL1_W,
2428 .fgt = FGT_TPIDRRO_EL0,
2429 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2430 .resetvalue = 0},
2431 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2432 .access = PL0_R | PL1_W,
2433 .fgt = FGT_TPIDRRO_EL0,
2434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2435 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2436 .resetfn = arm_cp_reset_ignore },
2437 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2438 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2439 .access = PL1_RW,
2440 .fgt = FGT_TPIDR_EL1,
2441 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2442 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2443 .access = PL1_RW,
2444 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2445 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2446 .resetvalue = 0 },
2447 };
2448
2449 #ifndef CONFIG_USER_ONLY
2450
2451 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2452 bool isread)
2453 {
2454 /*
2455 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2456 * Writable only at the highest implemented exception level.
2457 */
2458 int el = arm_current_el(env);
2459 uint64_t hcr;
2460 uint32_t cntkctl;
2461
2462 switch (el) {
2463 case 0:
2464 hcr = arm_hcr_el2_eff(env);
2465 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2466 cntkctl = env->cp15.cnthctl_el2;
2467 } else {
2468 cntkctl = env->cp15.c14_cntkctl;
2469 }
2470 if (!extract32(cntkctl, 0, 2)) {
2471 return CP_ACCESS_TRAP;
2472 }
2473 break;
2474 case 1:
2475 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2476 arm_is_secure_below_el3(env)) {
2477 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2478 return CP_ACCESS_TRAP_UNCATEGORIZED;
2479 }
2480 break;
2481 case 2:
2482 case 3:
2483 break;
2484 }
2485
2486 if (!isread && el < arm_highest_el(env)) {
2487 return CP_ACCESS_TRAP_UNCATEGORIZED;
2488 }
2489
2490 return CP_ACCESS_OK;
2491 }
2492
2493 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2494 bool isread)
2495 {
2496 unsigned int cur_el = arm_current_el(env);
2497 bool has_el2 = arm_is_el2_enabled(env);
2498 uint64_t hcr = arm_hcr_el2_eff(env);
2499
2500 switch (cur_el) {
2501 case 0:
2502 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2503 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2504 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2505 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2506 }
2507
2508 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2509 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2510 return CP_ACCESS_TRAP;
2511 }
2512 /* fall through */
2513 case 1:
2514 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2515 if (has_el2 && timeridx == GTIMER_PHYS &&
2516 (hcr & HCR_E2H
2517 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2518 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2519 return CP_ACCESS_TRAP_EL2;
2520 }
2521 break;
2522 }
2523 return CP_ACCESS_OK;
2524 }
2525
2526 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2527 bool isread)
2528 {
2529 unsigned int cur_el = arm_current_el(env);
2530 bool has_el2 = arm_is_el2_enabled(env);
2531 uint64_t hcr = arm_hcr_el2_eff(env);
2532
2533 switch (cur_el) {
2534 case 0:
2535 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2536 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2537 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2538 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2539 }
2540
2541 /*
2542 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2543 * EL0 if EL0[PV]TEN is zero.
2544 */
2545 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2546 return CP_ACCESS_TRAP;
2547 }
2548 /* fall through */
2549
2550 case 1:
2551 if (has_el2 && timeridx == GTIMER_PHYS) {
2552 if (hcr & HCR_E2H) {
2553 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2554 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2555 return CP_ACCESS_TRAP_EL2;
2556 }
2557 } else {
2558 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2559 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2560 return CP_ACCESS_TRAP_EL2;
2561 }
2562 }
2563 }
2564 break;
2565 }
2566 return CP_ACCESS_OK;
2567 }
2568
2569 static CPAccessResult gt_pct_access(CPUARMState *env,
2570 const ARMCPRegInfo *ri,
2571 bool isread)
2572 {
2573 return gt_counter_access(env, GTIMER_PHYS, isread);
2574 }
2575
2576 static CPAccessResult gt_vct_access(CPUARMState *env,
2577 const ARMCPRegInfo *ri,
2578 bool isread)
2579 {
2580 return gt_counter_access(env, GTIMER_VIRT, isread);
2581 }
2582
2583 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2584 bool isread)
2585 {
2586 return gt_timer_access(env, GTIMER_PHYS, isread);
2587 }
2588
2589 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2590 bool isread)
2591 {
2592 return gt_timer_access(env, GTIMER_VIRT, isread);
2593 }
2594
2595 static CPAccessResult gt_stimer_access(CPUARMState *env,
2596 const ARMCPRegInfo *ri,
2597 bool isread)
2598 {
2599 /*
2600 * The AArch64 register view of the secure physical timer is
2601 * always accessible from EL3, and configurably accessible from
2602 * Secure EL1.
2603 */
2604 switch (arm_current_el(env)) {
2605 case 1:
2606 if (!arm_is_secure(env)) {
2607 return CP_ACCESS_TRAP;
2608 }
2609 if (!(env->cp15.scr_el3 & SCR_ST)) {
2610 return CP_ACCESS_TRAP_EL3;
2611 }
2612 return CP_ACCESS_OK;
2613 case 0:
2614 case 2:
2615 return CP_ACCESS_TRAP;
2616 case 3:
2617 return CP_ACCESS_OK;
2618 default:
2619 g_assert_not_reached();
2620 }
2621 }
2622
2623 static uint64_t gt_get_countervalue(CPUARMState *env)
2624 {
2625 ARMCPU *cpu = env_archcpu(env);
2626
2627 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2628 }
2629
2630 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2631 {
2632 CPUARMState *env = &cpu->env;
2633 uint64_t cnthctl = env->cp15.cnthctl_el2;
2634 ARMSecuritySpace ss = arm_security_space(env);
2635 /* ISTATUS && !IMASK */
2636 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2637
2638 /*
2639 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2640 * It is RES0 in Secure and NonSecure state.
2641 */
2642 if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2643 ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2644 (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2645 irqstate = 0;
2646 }
2647
2648 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2649 trace_arm_gt_update_irq(timeridx, irqstate);
2650 }
2651
2652 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2653 {
2654 /*
2655 * Changing security state between Root and Secure/NonSecure, which may
2656 * happen when switching EL, can change the effective value of CNTHCTL_EL2
2657 * mask bits. Update the IRQ state accordingly.
2658 */
2659 gt_update_irq(cpu, GTIMER_VIRT);
2660 gt_update_irq(cpu, GTIMER_PHYS);
2661 }
2662
2663 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2664 {
2665 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2666
2667 if (gt->ctl & 1) {
2668 /*
2669 * Timer enabled: calculate and set current ISTATUS, irq, and
2670 * reset timer to when ISTATUS next has to change
2671 */
2672 uint64_t offset = timeridx == GTIMER_VIRT ?
2673 cpu->env.cp15.cntvoff_el2 : 0;
2674 uint64_t count = gt_get_countervalue(&cpu->env);
2675 /* Note that this must be unsigned 64 bit arithmetic: */
2676 int istatus = count - offset >= gt->cval;
2677 uint64_t nexttick;
2678
2679 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2680
2681 if (istatus) {
2682 /*
2683 * Next transition is when (count - offset) rolls back over to 0.
2684 * If offset > count then this is when count == offset;
2685 * if offset <= count then this is when count == offset + 2^64
2686 * For the latter case we set nexttick to an "as far in future
2687 * as possible" value and let the code below handle it.
2688 */
2689 if (offset > count) {
2690 nexttick = offset;
2691 } else {
2692 nexttick = UINT64_MAX;
2693 }
2694 } else {
2695 /*
2696 * Next transition is when (count - offset) == cval, i.e.
2697 * when count == (cval + offset).
2698 * If that would overflow, then again we set up the next interrupt
2699 * for "as far in the future as possible" for the code below.
2700 */
2701 if (uadd64_overflow(gt->cval, offset, &nexttick)) {
2702 nexttick = UINT64_MAX;
2703 }
2704 }
2705 /*
2706 * Note that the desired next expiry time might be beyond the
2707 * signed-64-bit range of a QEMUTimer -- in this case we just
2708 * set the timer for as far in the future as possible. When the
2709 * timer expires we will reset the timer for any remaining period.
2710 */
2711 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2712 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2713 } else {
2714 timer_mod(cpu->gt_timer[timeridx], nexttick);
2715 }
2716 trace_arm_gt_recalc(timeridx, nexttick);
2717 } else {
2718 /* Timer disabled: ISTATUS and timer output always clear */
2719 gt->ctl &= ~4;
2720 timer_del(cpu->gt_timer[timeridx]);
2721 trace_arm_gt_recalc_disabled(timeridx);
2722 }
2723 gt_update_irq(cpu, timeridx);
2724 }
2725
2726 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2727 int timeridx)
2728 {
2729 ARMCPU *cpu = env_archcpu(env);
2730
2731 timer_del(cpu->gt_timer[timeridx]);
2732 }
2733
2734 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2735 {
2736 return gt_get_countervalue(env);
2737 }
2738
2739 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2740 {
2741 uint64_t hcr;
2742
2743 switch (arm_current_el(env)) {
2744 case 2:
2745 hcr = arm_hcr_el2_eff(env);
2746 if (hcr & HCR_E2H) {
2747 return 0;
2748 }
2749 break;
2750 case 0:
2751 hcr = arm_hcr_el2_eff(env);
2752 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2753 return 0;
2754 }
2755 break;
2756 }
2757
2758 return env->cp15.cntvoff_el2;
2759 }
2760
2761 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2762 {
2763 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2764 }
2765
2766 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2767 int timeridx,
2768 uint64_t value)
2769 {
2770 trace_arm_gt_cval_write(timeridx, value);
2771 env->cp15.c14_timer[timeridx].cval = value;
2772 gt_recalc_timer(env_archcpu(env), timeridx);
2773 }
2774
2775 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2776 int timeridx)
2777 {
2778 uint64_t offset = 0;
2779
2780 switch (timeridx) {
2781 case GTIMER_VIRT:
2782 case GTIMER_HYPVIRT:
2783 offset = gt_virt_cnt_offset(env);
2784 break;
2785 }
2786
2787 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2788 (gt_get_countervalue(env) - offset));
2789 }
2790
2791 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792 int timeridx,
2793 uint64_t value)
2794 {
2795 uint64_t offset = 0;
2796
2797 switch (timeridx) {
2798 case GTIMER_VIRT:
2799 case GTIMER_HYPVIRT:
2800 offset = gt_virt_cnt_offset(env);
2801 break;
2802 }
2803
2804 trace_arm_gt_tval_write(timeridx, value);
2805 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2806 sextract64(value, 0, 32);
2807 gt_recalc_timer(env_archcpu(env), timeridx);
2808 }
2809
2810 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2811 int timeridx,
2812 uint64_t value)
2813 {
2814 ARMCPU *cpu = env_archcpu(env);
2815 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2816
2817 trace_arm_gt_ctl_write(timeridx, value);
2818 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2819 if ((oldval ^ value) & 1) {
2820 /* Enable toggled */
2821 gt_recalc_timer(cpu, timeridx);
2822 } else if ((oldval ^ value) & 2) {
2823 /*
2824 * IMASK toggled: don't need to recalculate,
2825 * just set the interrupt line based on ISTATUS
2826 */
2827 trace_arm_gt_imask_toggle(timeridx);
2828 gt_update_irq(cpu, timeridx);
2829 }
2830 }
2831
2832 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2833 {
2834 gt_timer_reset(env, ri, GTIMER_PHYS);
2835 }
2836
2837 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838 uint64_t value)
2839 {
2840 gt_cval_write(env, ri, GTIMER_PHYS, value);
2841 }
2842
2843 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2844 {
2845 return gt_tval_read(env, ri, GTIMER_PHYS);
2846 }
2847
2848 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849 uint64_t value)
2850 {
2851 gt_tval_write(env, ri, GTIMER_PHYS, value);
2852 }
2853
2854 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855 uint64_t value)
2856 {
2857 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2858 }
2859
2860 static int gt_phys_redir_timeridx(CPUARMState *env)
2861 {
2862 switch (arm_mmu_idx(env)) {
2863 case ARMMMUIdx_E20_0:
2864 case ARMMMUIdx_E20_2:
2865 case ARMMMUIdx_E20_2_PAN:
2866 return GTIMER_HYP;
2867 default:
2868 return GTIMER_PHYS;
2869 }
2870 }
2871
2872 static int gt_virt_redir_timeridx(CPUARMState *env)
2873 {
2874 switch (arm_mmu_idx(env)) {
2875 case ARMMMUIdx_E20_0:
2876 case ARMMMUIdx_E20_2:
2877 case ARMMMUIdx_E20_2_PAN:
2878 return GTIMER_HYPVIRT;
2879 default:
2880 return GTIMER_VIRT;
2881 }
2882 }
2883
2884 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2885 const ARMCPRegInfo *ri)
2886 {
2887 int timeridx = gt_phys_redir_timeridx(env);
2888 return env->cp15.c14_timer[timeridx].cval;
2889 }
2890
2891 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892 uint64_t value)
2893 {
2894 int timeridx = gt_phys_redir_timeridx(env);
2895 gt_cval_write(env, ri, timeridx, value);
2896 }
2897
2898 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2899 const ARMCPRegInfo *ri)
2900 {
2901 int timeridx = gt_phys_redir_timeridx(env);
2902 return gt_tval_read(env, ri, timeridx);
2903 }
2904
2905 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2906 uint64_t value)
2907 {
2908 int timeridx = gt_phys_redir_timeridx(env);
2909 gt_tval_write(env, ri, timeridx, value);
2910 }
2911
2912 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2913 const ARMCPRegInfo *ri)
2914 {
2915 int timeridx = gt_phys_redir_timeridx(env);
2916 return env->cp15.c14_timer[timeridx].ctl;
2917 }
2918
2919 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2920 uint64_t value)
2921 {
2922 int timeridx = gt_phys_redir_timeridx(env);
2923 gt_ctl_write(env, ri, timeridx, value);
2924 }
2925
2926 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2927 {
2928 gt_timer_reset(env, ri, GTIMER_VIRT);
2929 }
2930
2931 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2932 uint64_t value)
2933 {
2934 gt_cval_write(env, ri, GTIMER_VIRT, value);
2935 }
2936
2937 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2938 {
2939 return gt_tval_read(env, ri, GTIMER_VIRT);
2940 }
2941
2942 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943 uint64_t value)
2944 {
2945 gt_tval_write(env, ri, GTIMER_VIRT, value);
2946 }
2947
2948 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949 uint64_t value)
2950 {
2951 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2952 }
2953
2954 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955 uint64_t value)
2956 {
2957 ARMCPU *cpu = env_archcpu(env);
2958 uint32_t oldval = env->cp15.cnthctl_el2;
2959
2960 raw_write(env, ri, value);
2961
2962 if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2963 gt_update_irq(cpu, GTIMER_VIRT);
2964 } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2965 gt_update_irq(cpu, GTIMER_PHYS);
2966 }
2967 }
2968
2969 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2971 {
2972 ARMCPU *cpu = env_archcpu(env);
2973
2974 trace_arm_gt_cntvoff_write(value);
2975 raw_write(env, ri, value);
2976 gt_recalc_timer(cpu, GTIMER_VIRT);
2977 }
2978
2979 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2980 const ARMCPRegInfo *ri)
2981 {
2982 int timeridx = gt_virt_redir_timeridx(env);
2983 return env->cp15.c14_timer[timeridx].cval;
2984 }
2985
2986 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2987 uint64_t value)
2988 {
2989 int timeridx = gt_virt_redir_timeridx(env);
2990 gt_cval_write(env, ri, timeridx, value);
2991 }
2992
2993 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2994 const ARMCPRegInfo *ri)
2995 {
2996 int timeridx = gt_virt_redir_timeridx(env);
2997 return gt_tval_read(env, ri, timeridx);
2998 }
2999
3000 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3001 uint64_t value)
3002 {
3003 int timeridx = gt_virt_redir_timeridx(env);
3004 gt_tval_write(env, ri, timeridx, value);
3005 }
3006
3007 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3008 const ARMCPRegInfo *ri)
3009 {
3010 int timeridx = gt_virt_redir_timeridx(env);
3011 return env->cp15.c14_timer[timeridx].ctl;
3012 }
3013
3014 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015 uint64_t value)
3016 {
3017 int timeridx = gt_virt_redir_timeridx(env);
3018 gt_ctl_write(env, ri, timeridx, value);
3019 }
3020
3021 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3022 {
3023 gt_timer_reset(env, ri, GTIMER_HYP);
3024 }
3025
3026 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027 uint64_t value)
3028 {
3029 gt_cval_write(env, ri, GTIMER_HYP, value);
3030 }
3031
3032 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3033 {
3034 return gt_tval_read(env, ri, GTIMER_HYP);
3035 }
3036
3037 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038 uint64_t value)
3039 {
3040 gt_tval_write(env, ri, GTIMER_HYP, value);
3041 }
3042
3043 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3044 uint64_t value)
3045 {
3046 gt_ctl_write(env, ri, GTIMER_HYP, value);
3047 }
3048
3049 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3050 {
3051 gt_timer_reset(env, ri, GTIMER_SEC);
3052 }
3053
3054 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055 uint64_t value)
3056 {
3057 gt_cval_write(env, ri, GTIMER_SEC, value);
3058 }
3059
3060 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3061 {
3062 return gt_tval_read(env, ri, GTIMER_SEC);
3063 }
3064
3065 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066 uint64_t value)
3067 {
3068 gt_tval_write(env, ri, GTIMER_SEC, value);
3069 }
3070
3071 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072 uint64_t value)
3073 {
3074 gt_ctl_write(env, ri, GTIMER_SEC, value);
3075 }
3076
3077 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3078 {
3079 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3080 }
3081
3082 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083 uint64_t value)
3084 {
3085 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3086 }
3087
3088 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3089 {
3090 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3091 }
3092
3093 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3094 uint64_t value)
3095 {
3096 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3097 }
3098
3099 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3100 uint64_t value)
3101 {
3102 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3103 }
3104
3105 void arm_gt_ptimer_cb(void *opaque)
3106 {
3107 ARMCPU *cpu = opaque;
3108
3109 gt_recalc_timer(cpu, GTIMER_PHYS);
3110 }
3111
3112 void arm_gt_vtimer_cb(void *opaque)
3113 {
3114 ARMCPU *cpu = opaque;
3115
3116 gt_recalc_timer(cpu, GTIMER_VIRT);
3117 }
3118
3119 void arm_gt_htimer_cb(void *opaque)
3120 {
3121 ARMCPU *cpu = opaque;
3122
3123 gt_recalc_timer(cpu, GTIMER_HYP);
3124 }
3125
3126 void arm_gt_stimer_cb(void *opaque)
3127 {
3128 ARMCPU *cpu = opaque;
3129
3130 gt_recalc_timer(cpu, GTIMER_SEC);
3131 }
3132
3133 void arm_gt_hvtimer_cb(void *opaque)
3134 {
3135 ARMCPU *cpu = opaque;
3136
3137 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3138 }
3139
3140 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3141 {
3142 ARMCPU *cpu = env_archcpu(env);
3143
3144 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3145 }
3146
3147 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3148 /*
3149 * Note that CNTFRQ is purely reads-as-written for the benefit
3150 * of software; writing it doesn't actually change the timer frequency.
3151 * Our reset value matches the fixed frequency we implement the timer at.
3152 */
3153 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3154 .type = ARM_CP_ALIAS,
3155 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3156 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3157 },
3158 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3159 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3160 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3161 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3162 .resetfn = arm_gt_cntfrq_reset,
3163 },
3164 /* overall control: mostly access permissions */
3165 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3166 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3167 .access = PL1_RW,
3168 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3169 .resetvalue = 0,
3170 },
3171 /* per-timer control */
3172 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3173 .secure = ARM_CP_SECSTATE_NS,
3174 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3175 .accessfn = gt_ptimer_access,
3176 .fieldoffset = offsetoflow32(CPUARMState,
3177 cp15.c14_timer[GTIMER_PHYS].ctl),
3178 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3179 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3180 },
3181 { .name = "CNTP_CTL_S",
3182 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3183 .secure = ARM_CP_SECSTATE_S,
3184 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3185 .accessfn = gt_ptimer_access,
3186 .fieldoffset = offsetoflow32(CPUARMState,
3187 cp15.c14_timer[GTIMER_SEC].ctl),
3188 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3189 },
3190 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3191 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3192 .type = ARM_CP_IO, .access = PL0_RW,
3193 .accessfn = gt_ptimer_access,
3194 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
3195 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3196 .resetvalue = 0,
3197 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3198 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3199 },
3200 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3201 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3202 .accessfn = gt_vtimer_access,
3203 .fieldoffset = offsetoflow32(CPUARMState,
3204 cp15.c14_timer[GTIMER_VIRT].ctl),
3205 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3206 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3207 },
3208 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3209 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3210 .type = ARM_CP_IO, .access = PL0_RW,
3211 .accessfn = gt_vtimer_access,
3212 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
3213 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3214 .resetvalue = 0,
3215 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3216 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3217 },
3218 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3219 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3220 .secure = ARM_CP_SECSTATE_NS,
3221 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3222 .accessfn = gt_ptimer_access,
3223 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3224 },
3225 { .name = "CNTP_TVAL_S",
3226 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3227 .secure = ARM_CP_SECSTATE_S,
3228 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3229 .accessfn = gt_ptimer_access,
3230 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3231 },
3232 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3233 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3234 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3236 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3237 },
3238 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3239 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3240 .accessfn = gt_vtimer_access,
3241 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3242 },
3243 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3244 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3245 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3247 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248 },
3249 /* The counter itself */
3250 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3251 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3252 .accessfn = gt_pct_access,
3253 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3254 },
3255 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3257 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3258 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3259 },
3260 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3261 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3262 .accessfn = gt_vct_access,
3263 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3264 },
3265 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3266 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3267 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3268 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3269 },
3270 /* Comparison value, indicating when the timer goes off */
3271 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3272 .secure = ARM_CP_SECSTATE_NS,
3273 .access = PL0_RW,
3274 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3275 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3276 .accessfn = gt_ptimer_access,
3277 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3278 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3279 },
3280 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3281 .secure = ARM_CP_SECSTATE_S,
3282 .access = PL0_RW,
3283 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3284 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3285 .accessfn = gt_ptimer_access,
3286 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3287 },
3288 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3289 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3290 .access = PL0_RW,
3291 .type = ARM_CP_IO,
3292 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
3293 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3294 .resetvalue = 0, .accessfn = gt_ptimer_access,
3295 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3296 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3297 },
3298 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3299 .access = PL0_RW,
3300 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3301 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3302 .accessfn = gt_vtimer_access,
3303 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3304 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3305 },
3306 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3308 .access = PL0_RW,
3309 .type = ARM_CP_IO,
3310 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
3311 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3312 .resetvalue = 0, .accessfn = gt_vtimer_access,
3313 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3314 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3315 },
3316 /*
3317 * Secure timer -- this is actually restricted to only EL3
3318 * and configurably Secure-EL1 via the accessfn.
3319 */
3320 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3321 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3322 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3323 .accessfn = gt_stimer_access,
3324 .readfn = gt_sec_tval_read,
3325 .writefn = gt_sec_tval_write,
3326 .resetfn = gt_sec_timer_reset,
3327 },
3328 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3329 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3330 .type = ARM_CP_IO, .access = PL1_RW,
3331 .accessfn = gt_stimer_access,
3332 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3333 .resetvalue = 0,
3334 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3335 },
3336 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3338 .type = ARM_CP_IO, .access = PL1_RW,
3339 .accessfn = gt_stimer_access,
3340 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3341 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3342 },
3343 };
3344
3345 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3346 bool isread)
3347 {
3348 if (arm_current_el(env) == 1) {
3349 /* This must be a FEAT_NV access */
3350 /* TODO: FEAT_ECV will need to check CNTHCTL_EL2 here */
3351 return CP_ACCESS_OK;
3352 }
3353 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3354 return CP_ACCESS_TRAP;
3355 }
3356 return CP_ACCESS_OK;
3357 }
3358
3359 #else
3360
3361 /*
3362 * In user-mode most of the generic timer registers are inaccessible
3363 * however modern kernels (4.12+) allow access to cntvct_el0
3364 */
3365
3366 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3367 {
3368 ARMCPU *cpu = env_archcpu(env);
3369
3370 /*
3371 * Currently we have no support for QEMUTimer in linux-user so we
3372 * can't call gt_get_countervalue(env), instead we directly
3373 * call the lower level functions.
3374 */
3375 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3376 }
3377
3378 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3379 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3381 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3382 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3383 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3384 },
3385 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3386 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3387 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3388 .readfn = gt_virt_cnt_read,
3389 },
3390 };
3391
3392 #endif
3393
3394 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3395 {
3396 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3397 raw_write(env, ri, value);
3398 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3399 raw_write(env, ri, value & 0xfffff6ff);
3400 } else {
3401 raw_write(env, ri, value & 0xfffff1ff);
3402 }
3403 }
3404
3405 #ifndef CONFIG_USER_ONLY
3406 /* get_phys_addr() isn't present for user-mode-only targets */
3407
3408 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3409 bool isread)
3410 {
3411 if (ri->opc2 & 4) {
3412 /*
3413 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3414 * Secure EL1 (which can only happen if EL3 is AArch64).
3415 * They are simply UNDEF if executed from NS EL1.
3416 * They function normally from EL2 or EL3.
3417 */
3418 if (arm_current_el(env) == 1) {
3419 if (arm_is_secure_below_el3(env)) {
3420 if (env->cp15.scr_el3 & SCR_EEL2) {
3421 return CP_ACCESS_TRAP_EL2;
3422 }
3423 return CP_ACCESS_TRAP_EL3;
3424 }
3425 return CP_ACCESS_TRAP_UNCATEGORIZED;
3426 }
3427 }
3428 return CP_ACCESS_OK;
3429 }
3430
3431 #ifdef CONFIG_TCG
3432 static int par_el1_shareability(GetPhysAddrResult *res)
3433 {
3434 /*
3435 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3436 * memory -- see pseudocode PAREncodeShareability().
3437 */
3438 if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3439 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3440 return 2;
3441 }
3442 return res->cacheattrs.shareability;
3443 }
3444
3445 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3446 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3447 ARMSecuritySpace ss)
3448 {
3449 bool ret;
3450 uint64_t par64;
3451 bool format64 = false;
3452 ARMMMUFaultInfo fi = {};
3453 GetPhysAddrResult res = {};
3454
3455 /*
3456 * I_MXTJT: Granule protection checks are not performed on the final address
3457 * of a successful translation.
3458 */
3459 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3460 &res, &fi);
3461
3462 /*
3463 * ATS operations only do S1 or S1+S2 translations, so we never
3464 * have to deal with the ARMCacheAttrs format for S2 only.
3465 */
3466 assert(!res.cacheattrs.is_s2_format);
3467
3468 if (ret) {
3469 /*
3470 * Some kinds of translation fault must cause exceptions rather
3471 * than being reported in the PAR.
3472 */
3473 int current_el = arm_current_el(env);
3474 int target_el;
3475 uint32_t syn, fsr, fsc;
3476 bool take_exc = false;
3477
3478 if (fi.s1ptw && current_el == 1
3479 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3480 /*
3481 * Synchronous stage 2 fault on an access made as part of the
3482 * translation table walk for AT S1E0* or AT S1E1* insn
3483 * executed from NS EL1. If this is a synchronous external abort
3484 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3485 * to EL3. Otherwise the fault is taken as an exception to EL2,
3486 * and HPFAR_EL2 holds the faulting IPA.
3487 */
3488 if (fi.type == ARMFault_SyncExternalOnWalk &&
3489 (env->cp15.scr_el3 & SCR_EA)) {
3490 target_el = 3;
3491 } else {
3492 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3493 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3494 env->cp15.hpfar_el2 |= HPFAR_NS;
3495 }
3496 target_el = 2;
3497 }
3498 take_exc = true;
3499 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3500 /*
3501 * Synchronous external aborts during a translation table walk
3502 * are taken as Data Abort exceptions.
3503 */
3504 if (fi.stage2) {
3505 if (current_el == 3) {
3506 target_el = 3;
3507 } else {
3508 target_el = 2;
3509 }
3510 } else {
3511 target_el = exception_target_el(env);
3512 }
3513 take_exc = true;
3514 }
3515
3516 if (take_exc) {
3517 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3518 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3519 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3520 fsr = arm_fi_to_lfsc(&fi);
3521 fsc = extract32(fsr, 0, 6);
3522 } else {
3523 fsr = arm_fi_to_sfsc(&fi);
3524 fsc = 0x3f;
3525 }
3526 /*
3527 * Report exception with ESR indicating a fault due to a
3528 * translation table walk for a cache maintenance instruction.
3529 */
3530 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3531 fi.ea, 1, fi.s1ptw, 1, fsc);
3532 env->exception.vaddress = value;
3533 env->exception.fsr = fsr;
3534 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3535 }
3536 }
3537
3538 if (is_a64(env)) {
3539 format64 = true;
3540 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3541 /*
3542 * ATS1Cxx:
3543 * * TTBCR.EAE determines whether the result is returned using the
3544 * 32-bit or the 64-bit PAR format
3545 * * Instructions executed in Hyp mode always use the 64bit format
3546 *
3547 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3548 * * The Non-secure TTBCR.EAE bit is set to 1
3549 * * The implementation includes EL2, and the value of HCR.VM is 1
3550 *
3551 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3552 *
3553 * ATS1Hx always uses the 64bit format.
3554 */
3555 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3556
3557 if (arm_feature(env, ARM_FEATURE_EL2)) {
3558 if (mmu_idx == ARMMMUIdx_E10_0 ||
3559 mmu_idx == ARMMMUIdx_E10_1 ||
3560 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3561 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3562 } else {
3563 format64 |= arm_current_el(env) == 2;
3564 }
3565 }
3566 }
3567
3568 if (format64) {
3569 /* Create a 64-bit PAR */
3570 par64 = (1 << 11); /* LPAE bit always set */
3571 if (!ret) {
3572 par64 |= res.f.phys_addr & ~0xfffULL;
3573 if (!res.f.attrs.secure) {
3574 par64 |= (1 << 9); /* NS */
3575 }
3576 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3577 par64 |= par_el1_shareability(&res) << 7; /* SH */
3578 } else {
3579 uint32_t fsr = arm_fi_to_lfsc(&fi);
3580
3581 par64 |= 1; /* F */
3582 par64 |= (fsr & 0x3f) << 1; /* FS */
3583 if (fi.stage2) {
3584 par64 |= (1 << 9); /* S */
3585 }
3586 if (fi.s1ptw) {
3587 par64 |= (1 << 8); /* PTW */
3588 }
3589 }
3590 } else {
3591 /*
3592 * fsr is a DFSR/IFSR value for the short descriptor
3593 * translation table format (with WnR always clear).
3594 * Convert it to a 32-bit PAR.
3595 */
3596 if (!ret) {
3597 /* We do not set any attribute bits in the PAR */
3598 if (res.f.lg_page_size == 24
3599 && arm_feature(env, ARM_FEATURE_V7)) {
3600 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3601 } else {
3602 par64 = res.f.phys_addr & 0xfffff000;
3603 }
3604 if (!res.f.attrs.secure) {
3605 par64 |= (1 << 9); /* NS */
3606 }
3607 } else {
3608 uint32_t fsr = arm_fi_to_sfsc(&fi);
3609
3610 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3611 ((fsr & 0xf) << 1) | 1;
3612 }
3613 }
3614 return par64;
3615 }
3616 #endif /* CONFIG_TCG */
3617
3618 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3619 {
3620 #ifdef CONFIG_TCG
3621 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3622 uint64_t par64;
3623 ARMMMUIdx mmu_idx;
3624 int el = arm_current_el(env);
3625 ARMSecuritySpace ss = arm_security_space(env);
3626
3627 switch (ri->opc2 & 6) {
3628 case 0:
3629 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3630 switch (el) {
3631 case 3:
3632 mmu_idx = ARMMMUIdx_E3;
3633 break;
3634 case 2:
3635 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3636 /* fall through */
3637 case 1:
3638 if (ri->crm == 9 && arm_pan_enabled(env)) {
3639 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3640 } else {
3641 mmu_idx = ARMMMUIdx_Stage1_E1;
3642 }
3643 break;
3644 default:
3645 g_assert_not_reached();
3646 }
3647 break;
3648 case 2:
3649 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3650 switch (el) {
3651 case 3:
3652 mmu_idx = ARMMMUIdx_E10_0;
3653 break;
3654 case 2:
3655 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
3656 mmu_idx = ARMMMUIdx_Stage1_E0;
3657 break;
3658 case 1:
3659 mmu_idx = ARMMMUIdx_Stage1_E0;
3660 break;
3661 default:
3662 g_assert_not_reached();
3663 }
3664 break;
3665 case 4:
3666 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3667 mmu_idx = ARMMMUIdx_E10_1;
3668 ss = ARMSS_NonSecure;
3669 break;
3670 case 6:
3671 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3672 mmu_idx = ARMMMUIdx_E10_0;
3673 ss = ARMSS_NonSecure;
3674 break;
3675 default:
3676 g_assert_not_reached();
3677 }
3678
3679 par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3680
3681 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3682 #else
3683 /* Handled by hardware accelerator. */
3684 g_assert_not_reached();
3685 #endif /* CONFIG_TCG */
3686 }
3687
3688 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3689 uint64_t value)
3690 {
3691 #ifdef CONFIG_TCG
3692 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3693 uint64_t par64;
3694
3695 /* There is no SecureEL2 for AArch32. */
3696 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3697 ARMSS_NonSecure);
3698
3699 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3700 #else
3701 /* Handled by hardware accelerator. */
3702 g_assert_not_reached();
3703 #endif /* CONFIG_TCG */
3704 }
3705
3706 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3707 bool isread)
3708 {
3709 /*
3710 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3711 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3712 * only happen when executing at EL3 because that combination also causes an
3713 * illegal exception return. We don't need to check FEAT_RME either, because
3714 * scr_write() ensures that the NSE bit is not set otherwise.
3715 */
3716 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3717 return CP_ACCESS_TRAP;
3718 }
3719 return CP_ACCESS_OK;
3720 }
3721
3722 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3723 bool isread)
3724 {
3725 if (arm_current_el(env) == 3 &&
3726 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3727 return CP_ACCESS_TRAP;
3728 }
3729 return at_e012_access(env, ri, isread);
3730 }
3731
3732 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
3733 bool isread)
3734 {
3735 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
3736 return CP_ACCESS_TRAP_EL2;
3737 }
3738 return at_e012_access(env, ri, isread);
3739 }
3740
3741 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3742 uint64_t value)
3743 {
3744 #ifdef CONFIG_TCG
3745 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3746 ARMMMUIdx mmu_idx;
3747 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3748 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3749
3750 switch (ri->opc2 & 6) {
3751 case 0:
3752 switch (ri->opc1) {
3753 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3754 if (ri->crm == 9 && arm_pan_enabled(env)) {
3755 mmu_idx = regime_e20 ?
3756 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3757 } else {
3758 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3759 }
3760 break;
3761 case 4: /* AT S1E2R, AT S1E2W */
3762 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3763 break;
3764 case 6: /* AT S1E3R, AT S1E3W */
3765 mmu_idx = ARMMMUIdx_E3;
3766 break;
3767 default:
3768 g_assert_not_reached();
3769 }
3770 break;
3771 case 2: /* AT S1E0R, AT S1E0W */
3772 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3773 break;
3774 case 4: /* AT S12E1R, AT S12E1W */
3775 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3776 break;
3777 case 6: /* AT S12E0R, AT S12E0W */
3778 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3779 break;
3780 default:
3781 g_assert_not_reached();
3782 }
3783
3784 env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3785 mmu_idx, arm_security_space(env));
3786 #else
3787 /* Handled by hardware accelerator. */
3788 g_assert_not_reached();
3789 #endif /* CONFIG_TCG */
3790 }
3791 #endif
3792
3793 /* Return basic MPU access permission bits. */
3794 static uint32_t simple_mpu_ap_bits(uint32_t val)
3795 {
3796 uint32_t ret;
3797 uint32_t mask;
3798 int i;
3799 ret = 0;
3800 mask = 3;
3801 for (i = 0; i < 16; i += 2) {
3802 ret |= (val >> i) & mask;
3803 mask <<= 2;
3804 }
3805 return ret;
3806 }
3807
3808 /* Pad basic MPU access permission bits to extended format. */
3809 static uint32_t extended_mpu_ap_bits(uint32_t val)
3810 {
3811 uint32_t ret;
3812 uint32_t mask;
3813 int i;
3814 ret = 0;
3815 mask = 3;
3816 for (i = 0; i < 16; i += 2) {
3817 ret |= (val & mask) << i;
3818 mask <<= 2;
3819 }
3820 return ret;
3821 }
3822
3823 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3824 uint64_t value)
3825 {
3826 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3827 }
3828
3829 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3832 }
3833
3834 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835 uint64_t value)
3836 {
3837 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3838 }
3839
3840 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3841 {
3842 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3843 }
3844
3845 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3846 {
3847 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3848
3849 if (!u32p) {
3850 return 0;
3851 }
3852
3853 u32p += env->pmsav7.rnr[M_REG_NS];
3854 return *u32p;
3855 }
3856
3857 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3858 uint64_t value)
3859 {
3860 ARMCPU *cpu = env_archcpu(env);
3861 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3862
3863 if (!u32p) {
3864 return;
3865 }
3866
3867 u32p += env->pmsav7.rnr[M_REG_NS];
3868 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3869 *u32p = value;
3870 }
3871
3872 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3873 uint64_t value)
3874 {
3875 ARMCPU *cpu = env_archcpu(env);
3876 uint32_t nrgs = cpu->pmsav7_dregion;
3877
3878 if (value >= nrgs) {
3879 qemu_log_mask(LOG_GUEST_ERROR,
3880 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3881 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3882 return;
3883 }
3884
3885 raw_write(env, ri, value);
3886 }
3887
3888 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3889 uint64_t value)
3890 {
3891 ARMCPU *cpu = env_archcpu(env);
3892
3893 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3894 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3895 }
3896
3897 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3898 {
3899 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3900 }
3901
3902 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903 uint64_t value)
3904 {
3905 ARMCPU *cpu = env_archcpu(env);
3906
3907 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3908 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3909 }
3910
3911 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3912 {
3913 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3914 }
3915
3916 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3917 uint64_t value)
3918 {
3919 ARMCPU *cpu = env_archcpu(env);
3920
3921 /*
3922 * Ignore writes that would select not implemented region.
3923 * This is architecturally UNPREDICTABLE.
3924 */
3925 if (value >= cpu->pmsav7_dregion) {
3926 return;
3927 }
3928
3929 env->pmsav7.rnr[M_REG_NS] = value;
3930 }
3931
3932 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3933 uint64_t value)
3934 {
3935 ARMCPU *cpu = env_archcpu(env);
3936
3937 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3938 env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3939 }
3940
3941 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3942 {
3943 return env->pmsav8.hprbar[env->pmsav8.hprselr];
3944 }
3945
3946 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947 uint64_t value)
3948 {
3949 ARMCPU *cpu = env_archcpu(env);
3950
3951 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3952 env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3953 }
3954
3955 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3956 {
3957 return env->pmsav8.hprlar[env->pmsav8.hprselr];
3958 }
3959
3960 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3961 uint64_t value)
3962 {
3963 uint32_t n;
3964 uint32_t bit;
3965 ARMCPU *cpu = env_archcpu(env);
3966
3967 /* Ignore writes to unimplemented regions */
3968 int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3969 value &= MAKE_64BIT_MASK(0, rmax);
3970
3971 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3972
3973 /* Register alias is only valid for first 32 indexes */
3974 for (n = 0; n < rmax; ++n) {
3975 bit = extract32(value, n, 1);
3976 env->pmsav8.hprlar[n] = deposit32(
3977 env->pmsav8.hprlar[n], 0, 1, bit);
3978 }
3979 }
3980
3981 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3982 {
3983 uint32_t n;
3984 uint32_t result = 0x0;
3985 ARMCPU *cpu = env_archcpu(env);
3986
3987 /* Register alias is only valid for first 32 indexes */
3988 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3989 if (env->pmsav8.hprlar[n] & 0x1) {
3990 result |= (0x1 << n);
3991 }
3992 }
3993 return result;
3994 }
3995
3996 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3997 uint64_t value)
3998 {
3999 ARMCPU *cpu = env_archcpu(env);
4000
4001 /*
4002 * Ignore writes that would select not implemented region.
4003 * This is architecturally UNPREDICTABLE.
4004 */
4005 if (value >= cpu->pmsav8r_hdregion) {
4006 return;
4007 }
4008
4009 env->pmsav8.hprselr = value;
4010 }
4011
4012 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
4013 uint64_t value)
4014 {
4015 ARMCPU *cpu = env_archcpu(env);
4016 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4017 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4018
4019 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
4020
4021 if (ri->opc1 & 4) {
4022 if (index >= cpu->pmsav8r_hdregion) {
4023 return;
4024 }
4025 if (ri->opc2 & 0x1) {
4026 env->pmsav8.hprlar[index] = value;
4027 } else {
4028 env->pmsav8.hprbar[index] = value;
4029 }
4030 } else {
4031 if (index >= cpu->pmsav7_dregion) {
4032 return;
4033 }
4034 if (ri->opc2 & 0x1) {
4035 env->pmsav8.rlar[M_REG_NS][index] = value;
4036 } else {
4037 env->pmsav8.rbar[M_REG_NS][index] = value;
4038 }
4039 }
4040 }
4041
4042 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
4043 {
4044 ARMCPU *cpu = env_archcpu(env);
4045 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
4046 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
4047
4048 if (ri->opc1 & 4) {
4049 if (index >= cpu->pmsav8r_hdregion) {
4050 return 0x0;
4051 }
4052 if (ri->opc2 & 0x1) {
4053 return env->pmsav8.hprlar[index];
4054 } else {
4055 return env->pmsav8.hprbar[index];
4056 }
4057 } else {
4058 if (index >= cpu->pmsav7_dregion) {
4059 return 0x0;
4060 }
4061 if (ri->opc2 & 0x1) {
4062 return env->pmsav8.rlar[M_REG_NS][index];
4063 } else {
4064 return env->pmsav8.rbar[M_REG_NS][index];
4065 }
4066 }
4067 }
4068
4069 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4070 { .name = "PRBAR",
4071 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4072 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4073 .accessfn = access_tvm_trvm,
4074 .readfn = prbar_read, .writefn = prbar_write },
4075 { .name = "PRLAR",
4076 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4077 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4078 .accessfn = access_tvm_trvm,
4079 .readfn = prlar_read, .writefn = prlar_write },
4080 { .name = "PRSELR", .resetvalue = 0,
4081 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4082 .access = PL1_RW, .accessfn = access_tvm_trvm,
4083 .writefn = prselr_write,
4084 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4085 { .name = "HPRBAR", .resetvalue = 0,
4086 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4087 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4088 .readfn = hprbar_read, .writefn = hprbar_write },
4089 { .name = "HPRLAR",
4090 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4091 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4092 .readfn = hprlar_read, .writefn = hprlar_write },
4093 { .name = "HPRSELR", .resetvalue = 0,
4094 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4095 .access = PL2_RW,
4096 .writefn = hprselr_write,
4097 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4098 { .name = "HPRENR",
4099 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4100 .access = PL2_RW, .type = ARM_CP_NO_RAW,
4101 .readfn = hprenr_read, .writefn = hprenr_write },
4102 };
4103
4104 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4105 /*
4106 * Reset for all these registers is handled in arm_cpu_reset(),
4107 * because the PMSAv7 is also used by M-profile CPUs, which do
4108 * not register cpregs but still need the state to be reset.
4109 */
4110 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4111 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4112 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4113 .readfn = pmsav7_read, .writefn = pmsav7_write,
4114 .resetfn = arm_cp_reset_ignore },
4115 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4116 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4117 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4118 .readfn = pmsav7_read, .writefn = pmsav7_write,
4119 .resetfn = arm_cp_reset_ignore },
4120 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4121 .access = PL1_RW, .type = ARM_CP_NO_RAW,
4122 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4123 .readfn = pmsav7_read, .writefn = pmsav7_write,
4124 .resetfn = arm_cp_reset_ignore },
4125 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4126 .access = PL1_RW,
4127 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4128 .writefn = pmsav7_rgnr_write,
4129 .resetfn = arm_cp_reset_ignore },
4130 };
4131
4132 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4133 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4134 .access = PL1_RW, .type = ARM_CP_ALIAS,
4135 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4136 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4137 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4138 .access = PL1_RW, .type = ARM_CP_ALIAS,
4139 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4140 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4141 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4142 .access = PL1_RW,
4143 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4144 .resetvalue = 0, },
4145 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4146 .access = PL1_RW,
4147 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4148 .resetvalue = 0, },
4149 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4150 .access = PL1_RW,
4151 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4152 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4153 .access = PL1_RW,
4154 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4155 /* Protection region base and size registers */
4156 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4157 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4158 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4159 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4160 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4161 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4162 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4163 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4164 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4165 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4166 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4167 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4168 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4169 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4170 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4171 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4172 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4173 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4174 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4175 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4176 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4177 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4178 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4179 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4180 };
4181
4182 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4183 uint64_t value)
4184 {
4185 ARMCPU *cpu = env_archcpu(env);
4186
4187 if (!arm_feature(env, ARM_FEATURE_V8)) {
4188 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4189 /*
4190 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4191 * using Long-descriptor translation table format
4192 */
4193 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4194 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4195 /*
4196 * In an implementation that includes the Security Extensions
4197 * TTBCR has additional fields PD0 [4] and PD1 [5] for
4198 * Short-descriptor translation table format.
4199 */
4200 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4201 } else {
4202 value &= TTBCR_N;
4203 }
4204 }
4205
4206 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4207 /*
4208 * With LPAE the TTBCR could result in a change of ASID
4209 * via the TTBCR.A1 bit, so do a TLB flush.
4210 */
4211 tlb_flush(CPU(cpu));
4212 }
4213 raw_write(env, ri, value);
4214 }
4215
4216 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4217 uint64_t value)
4218 {
4219 ARMCPU *cpu = env_archcpu(env);
4220
4221 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4222 tlb_flush(CPU(cpu));
4223 raw_write(env, ri, value);
4224 }
4225
4226 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227 uint64_t value)
4228 {
4229 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
4230 if (cpreg_field_is_64bit(ri) &&
4231 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4232 ARMCPU *cpu = env_archcpu(env);
4233 tlb_flush(CPU(cpu));
4234 }
4235 raw_write(env, ri, value);
4236 }
4237
4238 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4239 uint64_t value)
4240 {
4241 /*
4242 * If we are running with E2&0 regime, then an ASID is active.
4243 * Flush if that might be changing. Note we're not checking
4244 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4245 * holds the active ASID, only checking the field that might.
4246 */
4247 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4248 (arm_hcr_el2_eff(env) & HCR_E2H)) {
4249 uint16_t mask = ARMMMUIdxBit_E20_2 |
4250 ARMMMUIdxBit_E20_2_PAN |
4251 ARMMMUIdxBit_E20_0;
4252 tlb_flush_by_mmuidx(env_cpu(env), mask);
4253 }
4254 raw_write(env, ri, value);
4255 }
4256
4257 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4258 uint64_t value)
4259 {
4260 ARMCPU *cpu = env_archcpu(env);
4261 CPUState *cs = CPU(cpu);
4262
4263 /*
4264 * A change in VMID to the stage2 page table (Stage2) invalidates
4265 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4266 */
4267 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4268 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4269 }
4270 raw_write(env, ri, value);
4271 }
4272
4273 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4274 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4275 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4276 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4277 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4278 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4279 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4280 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4281 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4282 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4283 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4284 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4285 offsetof(CPUARMState, cp15.dfar_ns) } },
4286 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4287 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4288 .access = PL1_RW, .accessfn = access_tvm_trvm,
4289 .fgt = FGT_FAR_EL1,
4290 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
4291 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4292 .resetvalue = 0, },
4293 };
4294
4295 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4296 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4297 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4298 .access = PL1_RW, .accessfn = access_tvm_trvm,
4299 .fgt = FGT_ESR_EL1,
4300 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
4301 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4302 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4303 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4304 .access = PL1_RW, .accessfn = access_tvm_trvm,
4305 .fgt = FGT_TTBR0_EL1,
4306 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
4307 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4309 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4310 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4311 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4312 .access = PL1_RW, .accessfn = access_tvm_trvm,
4313 .fgt = FGT_TTBR1_EL1,
4314 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
4315 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4316 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4317 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4318 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4319 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4320 .access = PL1_RW, .accessfn = access_tvm_trvm,
4321 .fgt = FGT_TCR_EL1,
4322 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
4323 .writefn = vmsa_tcr_el12_write,
4324 .raw_writefn = raw_write,
4325 .resetvalue = 0,
4326 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4327 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4328 .access = PL1_RW, .accessfn = access_tvm_trvm,
4329 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4330 .raw_writefn = raw_write,
4331 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4332 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4333 };
4334
4335 /*
4336 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4337 * qemu tlbs nor adjusting cached masks.
4338 */
4339 static const ARMCPRegInfo ttbcr2_reginfo = {
4340 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4341 .access = PL1_RW, .accessfn = access_tvm_trvm,
4342 .type = ARM_CP_ALIAS,
4343 .bank_fieldoffsets = {
4344 offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4345 offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4346 },
4347 };
4348
4349 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4350 uint64_t value)
4351 {
4352 env->cp15.c15_ticonfig = value & 0xe7;
4353 /* The OS_TYPE bit in this register changes the reported CPUID! */
4354 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4355 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4356 }
4357
4358 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4359 uint64_t value)
4360 {
4361 env->cp15.c15_threadid = value & 0xffff;
4362 }
4363
4364 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4365 uint64_t value)
4366 {
4367 /* Wait-for-interrupt (deprecated) */
4368 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4369 }
4370
4371 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4372 uint64_t value)
4373 {
4374 /*
4375 * On OMAP there are registers indicating the max/min index of dcache lines
4376 * containing a dirty line; cache flush operations have to reset these.
4377 */
4378 env->cp15.c15_i_max = 0x000;
4379 env->cp15.c15_i_min = 0xff0;
4380 }
4381
4382 static const ARMCPRegInfo omap_cp_reginfo[] = {
4383 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4384 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4385 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4386 .resetvalue = 0, },
4387 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4388 .access = PL1_RW, .type = ARM_CP_NOP },
4389 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4390 .access = PL1_RW,
4391 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4392 .writefn = omap_ticonfig_write },
4393 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4394 .access = PL1_RW,
4395 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4396 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4397 .access = PL1_RW, .resetvalue = 0xff0,
4398 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4399 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4400 .access = PL1_RW,
4401 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4402 .writefn = omap_threadid_write },
4403 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4404 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4405 .type = ARM_CP_NO_RAW,
4406 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4407 /*
4408 * TODO: Peripheral port remap register:
4409 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4410 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4411 * when MMU is off.
4412 */
4413 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4414 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4415 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4416 .writefn = omap_cachemaint_write },
4417 { .name = "C9", .cp = 15, .crn = 9,
4418 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4419 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4420 };
4421
4422 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423 uint64_t value)
4424 {
4425 env->cp15.c15_cpar = value & 0x3fff;
4426 }
4427
4428 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4429 { .name = "XSCALE_CPAR",
4430 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4431 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4432 .writefn = xscale_cpar_write, },
4433 { .name = "XSCALE_AUXCR",
4434 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4435 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4436 .resetvalue = 0, },
4437 /*
4438 * XScale specific cache-lockdown: since we have no cache we NOP these
4439 * and hope the guest does not really rely on cache behaviour.
4440 */
4441 { .name = "XSCALE_LOCK_ICACHE_LINE",
4442 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4443 .access = PL1_W, .type = ARM_CP_NOP },
4444 { .name = "XSCALE_UNLOCK_ICACHE",
4445 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4446 .access = PL1_W, .type = ARM_CP_NOP },
4447 { .name = "XSCALE_DCACHE_LOCK",
4448 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4449 .access = PL1_RW, .type = ARM_CP_NOP },
4450 { .name = "XSCALE_UNLOCK_DCACHE",
4451 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4452 .access = PL1_W, .type = ARM_CP_NOP },
4453 };
4454
4455 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4456 /*
4457 * RAZ/WI the whole crn=15 space, when we don't have a more specific
4458 * implementation of this implementation-defined space.
4459 * Ideally this should eventually disappear in favour of actually
4460 * implementing the correct behaviour for all cores.
4461 */
4462 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4463 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4464 .access = PL1_RW,
4465 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4466 .resetvalue = 0 },
4467 };
4468
4469 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4470 /* Cache status: RAZ because we have no cache so it's always clean */
4471 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4472 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4473 .resetvalue = 0 },
4474 };
4475
4476 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4477 /* We never have a block transfer operation in progress */
4478 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4479 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4480 .resetvalue = 0 },
4481 /* The cache ops themselves: these all NOP for QEMU */
4482 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4483 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4484 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4485 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4486 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4487 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4488 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4489 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4490 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4491 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4492 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4493 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4494 };
4495
4496 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4497 /*
4498 * The cache test-and-clean instructions always return (1 << 30)
4499 * to indicate that there are no dirty cache lines.
4500 */
4501 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4502 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4503 .resetvalue = (1 << 30) },
4504 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4505 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4506 .resetvalue = (1 << 30) },
4507 };
4508
4509 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4510 /* Ignore ReadBuffer accesses */
4511 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4512 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4513 .access = PL1_RW, .resetvalue = 0,
4514 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4515 };
4516
4517 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518 {
4519 unsigned int cur_el = arm_current_el(env);
4520
4521 if (arm_is_el2_enabled(env) && cur_el == 1) {
4522 return env->cp15.vpidr_el2;
4523 }
4524 return raw_read(env, ri);
4525 }
4526
4527 static uint64_t mpidr_read_val(CPUARMState *env)
4528 {
4529 ARMCPU *cpu = env_archcpu(env);
4530 uint64_t mpidr = cpu->mp_affinity;
4531
4532 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4533 mpidr |= (1U << 31);
4534 /*
4535 * Cores which are uniprocessor (non-coherent)
4536 * but still implement the MP extensions set
4537 * bit 30. (For instance, Cortex-R5).
4538 */
4539 if (cpu->mp_is_up) {
4540 mpidr |= (1u << 30);
4541 }
4542 }
4543 return mpidr;
4544 }
4545
4546 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4547 {
4548 unsigned int cur_el = arm_current_el(env);
4549
4550 if (arm_is_el2_enabled(env) && cur_el == 1) {
4551 return env->cp15.vmpidr_el2;
4552 }
4553 return mpidr_read_val(env);
4554 }
4555
4556 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4557 /* NOP AMAIR0/1 */
4558 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4560 .access = PL1_RW, .accessfn = access_tvm_trvm,
4561 .fgt = FGT_AMAIR_EL1,
4562 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
4563 .type = ARM_CP_CONST, .resetvalue = 0 },
4564 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4565 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4566 .access = PL1_RW, .accessfn = access_tvm_trvm,
4567 .type = ARM_CP_CONST, .resetvalue = 0 },
4568 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4569 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4570 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4571 offsetof(CPUARMState, cp15.par_ns)} },
4572 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4573 .access = PL1_RW, .accessfn = access_tvm_trvm,
4574 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4575 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4576 offsetof(CPUARMState, cp15.ttbr0_ns) },
4577 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4578 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4579 .access = PL1_RW, .accessfn = access_tvm_trvm,
4580 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4581 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4582 offsetof(CPUARMState, cp15.ttbr1_ns) },
4583 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4584 };
4585
4586 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4587 {
4588 return vfp_get_fpcr(env);
4589 }
4590
4591 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4592 uint64_t value)
4593 {
4594 vfp_set_fpcr(env, value);
4595 }
4596
4597 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4598 {
4599 return vfp_get_fpsr(env);
4600 }
4601
4602 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4603 uint64_t value)
4604 {
4605 vfp_set_fpsr(env, value);
4606 }
4607
4608 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4609 bool isread)
4610 {
4611 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4612 return CP_ACCESS_TRAP;
4613 }
4614 return CP_ACCESS_OK;
4615 }
4616
4617 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4618 uint64_t value)
4619 {
4620 env->daif = value & PSTATE_DAIF;
4621 }
4622
4623 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4624 {
4625 return env->pstate & PSTATE_PAN;
4626 }
4627
4628 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4629 uint64_t value)
4630 {
4631 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4632 }
4633
4634 static const ARMCPRegInfo pan_reginfo = {
4635 .name = "PAN", .state = ARM_CP_STATE_AA64,
4636 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4637 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4638 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4639 };
4640
4641 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4642 {
4643 return env->pstate & PSTATE_UAO;
4644 }
4645
4646 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4647 uint64_t value)
4648 {
4649 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4650 }
4651
4652 static const ARMCPRegInfo uao_reginfo = {
4653 .name = "UAO", .state = ARM_CP_STATE_AA64,
4654 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4655 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4656 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4657 };
4658
4659 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4660 {
4661 return env->pstate & PSTATE_DIT;
4662 }
4663
4664 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4665 uint64_t value)
4666 {
4667 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4668 }
4669
4670 static const ARMCPRegInfo dit_reginfo = {
4671 .name = "DIT", .state = ARM_CP_STATE_AA64,
4672 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4673 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4674 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4675 };
4676
4677 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4678 {
4679 return env->pstate & PSTATE_SSBS;
4680 }
4681
4682 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683 uint64_t value)
4684 {
4685 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4686 }
4687
4688 static const ARMCPRegInfo ssbs_reginfo = {
4689 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4690 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4691 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4692 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4693 };
4694
4695 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4696 const ARMCPRegInfo *ri,
4697 bool isread)
4698 {
4699 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4700 switch (arm_current_el(env)) {
4701 case 0:
4702 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4703 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4704 return CP_ACCESS_TRAP;
4705 }
4706 /* fall through */
4707 case 1:
4708 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4709 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4710 return CP_ACCESS_TRAP_EL2;
4711 }
4712 break;
4713 }
4714 return CP_ACCESS_OK;
4715 }
4716
4717 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4718 {
4719 /* Cache invalidate/clean to Point of Unification... */
4720 switch (arm_current_el(env)) {
4721 case 0:
4722 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4723 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4724 return CP_ACCESS_TRAP;
4725 }
4726 /* fall through */
4727 case 1:
4728 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
4729 if (arm_hcr_el2_eff(env) & hcrflags) {
4730 return CP_ACCESS_TRAP_EL2;
4731 }
4732 break;
4733 }
4734 return CP_ACCESS_OK;
4735 }
4736
4737 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4738 bool isread)
4739 {
4740 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4741 }
4742
4743 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4744 bool isread)
4745 {
4746 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4747 }
4748
4749 /*
4750 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4751 * Page D4-1736 (DDI0487A.b)
4752 */
4753
4754 static int vae1_tlbmask(CPUARMState *env)
4755 {
4756 uint64_t hcr = arm_hcr_el2_eff(env);
4757 uint16_t mask;
4758
4759 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4760 mask = ARMMMUIdxBit_E20_2 |
4761 ARMMMUIdxBit_E20_2_PAN |
4762 ARMMMUIdxBit_E20_0;
4763 } else {
4764 mask = ARMMMUIdxBit_E10_1 |
4765 ARMMMUIdxBit_E10_1_PAN |
4766 ARMMMUIdxBit_E10_0;
4767 }
4768 return mask;
4769 }
4770
4771 static int vae2_tlbmask(CPUARMState *env)
4772 {
4773 uint64_t hcr = arm_hcr_el2_eff(env);
4774 uint16_t mask;
4775
4776 if (hcr & HCR_E2H) {
4777 mask = ARMMMUIdxBit_E20_2 |
4778 ARMMMUIdxBit_E20_2_PAN |
4779 ARMMMUIdxBit_E20_0;
4780 } else {
4781 mask = ARMMMUIdxBit_E2;
4782 }
4783 return mask;
4784 }
4785
4786 /* Return 56 if TBI is enabled, 64 otherwise. */
4787 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4788 uint64_t addr)
4789 {
4790 uint64_t tcr = regime_tcr(env, mmu_idx);
4791 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4792 int select = extract64(addr, 55, 1);
4793
4794 return (tbi >> select) & 1 ? 56 : 64;
4795 }
4796
4797 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4798 {
4799 uint64_t hcr = arm_hcr_el2_eff(env);
4800 ARMMMUIdx mmu_idx;
4801
4802 /* Only the regime of the mmu_idx below is significant. */
4803 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4804 mmu_idx = ARMMMUIdx_E20_0;
4805 } else {
4806 mmu_idx = ARMMMUIdx_E10_0;
4807 }
4808
4809 return tlbbits_for_regime(env, mmu_idx, addr);
4810 }
4811
4812 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4813 {
4814 uint64_t hcr = arm_hcr_el2_eff(env);
4815 ARMMMUIdx mmu_idx;
4816
4817 /*
4818 * Only the regime of the mmu_idx below is significant.
4819 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4820 * only has one.
4821 */
4822 if (hcr & HCR_E2H) {
4823 mmu_idx = ARMMMUIdx_E20_2;
4824 } else {
4825 mmu_idx = ARMMMUIdx_E2;
4826 }
4827
4828 return tlbbits_for_regime(env, mmu_idx, addr);
4829 }
4830
4831 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4832 uint64_t value)
4833 {
4834 CPUState *cs = env_cpu(env);
4835 int mask = vae1_tlbmask(env);
4836
4837 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4838 }
4839
4840 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841 uint64_t value)
4842 {
4843 CPUState *cs = env_cpu(env);
4844 int mask = vae1_tlbmask(env);
4845
4846 if (tlb_force_broadcast(env)) {
4847 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4848 } else {
4849 tlb_flush_by_mmuidx(cs, mask);
4850 }
4851 }
4852
4853 static int e2_tlbmask(CPUARMState *env)
4854 {
4855 return (ARMMMUIdxBit_E20_0 |
4856 ARMMMUIdxBit_E20_2 |
4857 ARMMMUIdxBit_E20_2_PAN |
4858 ARMMMUIdxBit_E2);
4859 }
4860
4861 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4862 uint64_t value)
4863 {
4864 CPUState *cs = env_cpu(env);
4865 int mask = alle1_tlbmask(env);
4866
4867 tlb_flush_by_mmuidx(cs, mask);
4868 }
4869
4870 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4871 uint64_t value)
4872 {
4873 CPUState *cs = env_cpu(env);
4874 int mask = e2_tlbmask(env);
4875
4876 tlb_flush_by_mmuidx(cs, mask);
4877 }
4878
4879 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4880 uint64_t value)
4881 {
4882 ARMCPU *cpu = env_archcpu(env);
4883 CPUState *cs = CPU(cpu);
4884
4885 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4886 }
4887
4888 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4889 uint64_t value)
4890 {
4891 CPUState *cs = env_cpu(env);
4892 int mask = alle1_tlbmask(env);
4893
4894 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4895 }
4896
4897 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4898 uint64_t value)
4899 {
4900 CPUState *cs = env_cpu(env);
4901 int mask = e2_tlbmask(env);
4902
4903 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4904 }
4905
4906 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4907 uint64_t value)
4908 {
4909 CPUState *cs = env_cpu(env);
4910
4911 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4912 }
4913
4914 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4915 uint64_t value)
4916 {
4917 /*
4918 * Invalidate by VA, EL2
4919 * Currently handles both VAE2 and VALE2, since we don't support
4920 * flush-last-level-only.
4921 */
4922 CPUState *cs = env_cpu(env);
4923 int mask = vae2_tlbmask(env);
4924 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4925 int bits = vae2_tlbbits(env, pageaddr);
4926
4927 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4928 }
4929
4930 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4931 uint64_t value)
4932 {
4933 /*
4934 * Invalidate by VA, EL3
4935 * Currently handles both VAE3 and VALE3, since we don't support
4936 * flush-last-level-only.
4937 */
4938 ARMCPU *cpu = env_archcpu(env);
4939 CPUState *cs = CPU(cpu);
4940 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4941
4942 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4943 }
4944
4945 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4946 uint64_t value)
4947 {
4948 CPUState *cs = env_cpu(env);
4949 int mask = vae1_tlbmask(env);
4950 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4951 int bits = vae1_tlbbits(env, pageaddr);
4952
4953 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4954 }
4955
4956 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4957 uint64_t value)
4958 {
4959 /*
4960 * Invalidate by VA, EL1&0 (AArch64 version).
4961 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4962 * since we don't support flush-for-specific-ASID-only or
4963 * flush-last-level-only.
4964 */
4965 CPUState *cs = env_cpu(env);
4966 int mask = vae1_tlbmask(env);
4967 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4968 int bits = vae1_tlbbits(env, pageaddr);
4969
4970 if (tlb_force_broadcast(env)) {
4971 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4972 } else {
4973 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4974 }
4975 }
4976
4977 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4978 uint64_t value)
4979 {
4980 CPUState *cs = env_cpu(env);
4981 int mask = vae2_tlbmask(env);
4982 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4983 int bits = vae2_tlbbits(env, pageaddr);
4984
4985 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4986 }
4987
4988 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4989 uint64_t value)
4990 {
4991 CPUState *cs = env_cpu(env);
4992 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4993 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4994
4995 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4996 ARMMMUIdxBit_E3, bits);
4997 }
4998
4999 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
5000 {
5001 /*
5002 * The MSB of value is the NS field, which only applies if SEL2
5003 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
5004 */
5005 return (value >= 0
5006 && cpu_isar_feature(aa64_sel2, env_archcpu(env))
5007 && arm_is_secure_below_el3(env)
5008 ? ARMMMUIdxBit_Stage2_S
5009 : ARMMMUIdxBit_Stage2);
5010 }
5011
5012 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5013 uint64_t value)
5014 {
5015 CPUState *cs = env_cpu(env);
5016 int mask = ipas2e1_tlbmask(env, value);
5017 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5018
5019 if (tlb_force_broadcast(env)) {
5020 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5021 } else {
5022 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
5023 }
5024 }
5025
5026 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
5027 uint64_t value)
5028 {
5029 CPUState *cs = env_cpu(env);
5030 int mask = ipas2e1_tlbmask(env, value);
5031 uint64_t pageaddr = sextract64(value << 12, 0, 56);
5032
5033 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
5034 }
5035
5036 #ifdef TARGET_AARCH64
5037 typedef struct {
5038 uint64_t base;
5039 uint64_t length;
5040 } TLBIRange;
5041
5042 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
5043 {
5044 /*
5045 * Note that the TLBI range TG field encoding differs from both
5046 * TG0 and TG1 encodings.
5047 */
5048 switch (tg) {
5049 case 1:
5050 return Gran4K;
5051 case 2:
5052 return Gran16K;
5053 case 3:
5054 return Gran64K;
5055 default:
5056 return GranInvalid;
5057 }
5058 }
5059
5060 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
5061 uint64_t value)
5062 {
5063 unsigned int page_size_granule, page_shift, num, scale, exponent;
5064 /* Extract one bit to represent the va selector in use. */
5065 uint64_t select = sextract64(value, 36, 1);
5066 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
5067 TLBIRange ret = { };
5068 ARMGranuleSize gran;
5069
5070 page_size_granule = extract64(value, 46, 2);
5071 gran = tlbi_range_tg_to_gran_size(page_size_granule);
5072
5073 /* The granule encoded in value must match the granule in use. */
5074 if (gran != param.gran) {
5075 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5076 page_size_granule);
5077 return ret;
5078 }
5079
5080 page_shift = arm_granule_bits(gran);
5081 num = extract64(value, 39, 5);
5082 scale = extract64(value, 44, 2);
5083 exponent = (5 * scale) + 1;
5084
5085 ret.length = (num + 1) << (exponent + page_shift);
5086
5087 if (param.select) {
5088 ret.base = sextract64(value, 0, 37);
5089 } else {
5090 ret.base = extract64(value, 0, 37);
5091 }
5092 if (param.ds) {
5093 /*
5094 * With DS=1, BaseADDR is always shifted 16 so that it is able
5095 * to address all 52 va bits. The input address is perforce
5096 * aligned on a 64k boundary regardless of translation granule.
5097 */
5098 page_shift = 16;
5099 }
5100 ret.base <<= page_shift;
5101
5102 return ret;
5103 }
5104
5105 static void do_rvae_write(CPUARMState *env, uint64_t value,
5106 int idxmap, bool synced)
5107 {
5108 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5109 TLBIRange range;
5110 int bits;
5111
5112 range = tlbi_aa64_get_range(env, one_idx, value);
5113 bits = tlbbits_for_regime(env, one_idx, range.base);
5114
5115 if (synced) {
5116 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5117 range.base,
5118 range.length,
5119 idxmap,
5120 bits);
5121 } else {
5122 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5123 range.length, idxmap, bits);
5124 }
5125 }
5126
5127 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5128 const ARMCPRegInfo *ri,
5129 uint64_t value)
5130 {
5131 /*
5132 * Invalidate by VA range, EL1&0.
5133 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5134 * since we don't support flush-for-specific-ASID-only or
5135 * flush-last-level-only.
5136 */
5137
5138 do_rvae_write(env, value, vae1_tlbmask(env),
5139 tlb_force_broadcast(env));
5140 }
5141
5142 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5143 const ARMCPRegInfo *ri,
5144 uint64_t value)
5145 {
5146 /*
5147 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5148 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5149 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5150 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5151 * shareable specific flushes.
5152 */
5153
5154 do_rvae_write(env, value, vae1_tlbmask(env), true);
5155 }
5156
5157 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5158 const ARMCPRegInfo *ri,
5159 uint64_t value)
5160 {
5161 /*
5162 * Invalidate by VA range, EL2.
5163 * Currently handles all of RVAE2 and RVALE2,
5164 * since we don't support flush-for-specific-ASID-only or
5165 * flush-last-level-only.
5166 */
5167
5168 do_rvae_write(env, value, vae2_tlbmask(env),
5169 tlb_force_broadcast(env));
5170
5171
5172 }
5173
5174 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5175 const ARMCPRegInfo *ri,
5176 uint64_t value)
5177 {
5178 /*
5179 * Invalidate by VA range, Inner/Outer Shareable, EL2.
5180 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5181 * since we don't support flush-for-specific-ASID-only,
5182 * flush-last-level-only or inner/outer shareable specific flushes.
5183 */
5184
5185 do_rvae_write(env, value, vae2_tlbmask(env), true);
5186
5187 }
5188
5189 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5190 const ARMCPRegInfo *ri,
5191 uint64_t value)
5192 {
5193 /*
5194 * Invalidate by VA range, EL3.
5195 * Currently handles all of RVAE3 and RVALE3,
5196 * since we don't support flush-for-specific-ASID-only or
5197 * flush-last-level-only.
5198 */
5199
5200 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5201 }
5202
5203 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5204 const ARMCPRegInfo *ri,
5205 uint64_t value)
5206 {
5207 /*
5208 * Invalidate by VA range, EL3, Inner/Outer Shareable.
5209 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5210 * since we don't support flush-for-specific-ASID-only,
5211 * flush-last-level-only or inner/outer specific flushes.
5212 */
5213
5214 do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5215 }
5216
5217 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5218 uint64_t value)
5219 {
5220 do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5221 tlb_force_broadcast(env));
5222 }
5223
5224 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5225 const ARMCPRegInfo *ri,
5226 uint64_t value)
5227 {
5228 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5229 }
5230 #endif
5231
5232 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5233 bool isread)
5234 {
5235 int cur_el = arm_current_el(env);
5236
5237 if (cur_el < 2) {
5238 uint64_t hcr = arm_hcr_el2_eff(env);
5239
5240 if (cur_el == 0) {
5241 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5242 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5243 return CP_ACCESS_TRAP_EL2;
5244 }
5245 } else {
5246 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5247 return CP_ACCESS_TRAP;
5248 }
5249 if (hcr & HCR_TDZ) {
5250 return CP_ACCESS_TRAP_EL2;
5251 }
5252 }
5253 } else if (hcr & HCR_TDZ) {
5254 return CP_ACCESS_TRAP_EL2;
5255 }
5256 }
5257 return CP_ACCESS_OK;
5258 }
5259
5260 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5261 {
5262 ARMCPU *cpu = env_archcpu(env);
5263 int dzp_bit = 1 << 4;
5264
5265 /* DZP indicates whether DC ZVA access is allowed */
5266 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5267 dzp_bit = 0;
5268 }
5269 return cpu->dcz_blocksize | dzp_bit;
5270 }
5271
5272 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5273 bool isread)
5274 {
5275 if (!(env->pstate & PSTATE_SP)) {
5276 /*
5277 * Access to SP_EL0 is undefined if it's being used as
5278 * the stack pointer.
5279 */
5280 return CP_ACCESS_TRAP_UNCATEGORIZED;
5281 }
5282 return CP_ACCESS_OK;
5283 }
5284
5285 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5286 {
5287 return env->pstate & PSTATE_SP;
5288 }
5289
5290 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5291 {
5292 update_spsel(env, val);
5293 }
5294
5295 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5296 uint64_t value)
5297 {
5298 ARMCPU *cpu = env_archcpu(env);
5299
5300 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5301 /* M bit is RAZ/WI for PMSA with no MPU implemented */
5302 value &= ~SCTLR_M;
5303 }
5304
5305 /* ??? Lots of these bits are not implemented. */
5306
5307 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5308 if (ri->opc1 == 6) { /* SCTLR_EL3 */
5309 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5310 } else {
5311 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5312 SCTLR_ATA0 | SCTLR_ATA);
5313 }
5314 }
5315
5316 if (raw_read(env, ri) == value) {
5317 /*
5318 * Skip the TLB flush if nothing actually changed; Linux likes
5319 * to do a lot of pointless SCTLR writes.
5320 */
5321 return;
5322 }
5323
5324 raw_write(env, ri, value);
5325
5326 /* This may enable/disable the MMU, so do a TLB flush. */
5327 tlb_flush(CPU(cpu));
5328
5329 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5330 /*
5331 * Normally we would always end the TB on an SCTLR write; see the
5332 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5333 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5334 * of hflags from the translator, so do it here.
5335 */
5336 arm_rebuild_hflags(env);
5337 }
5338 }
5339
5340 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5341 uint64_t value)
5342 {
5343 /*
5344 * Some MDCR_EL3 bits affect whether PMU counters are running:
5345 * if we are trying to change any of those then we must
5346 * bracket this update with PMU start/finish calls.
5347 */
5348 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5349
5350 if (pmu_op) {
5351 pmu_op_start(env);
5352 }
5353 env->cp15.mdcr_el3 = value;
5354 if (pmu_op) {
5355 pmu_op_finish(env);
5356 }
5357 }
5358
5359 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5360 uint64_t value)
5361 {
5362 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5363 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5364 }
5365
5366 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5367 uint64_t value)
5368 {
5369 /*
5370 * Some MDCR_EL2 bits affect whether PMU counters are running:
5371 * if we are trying to change any of those then we must
5372 * bracket this update with PMU start/finish calls.
5373 */
5374 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5375
5376 if (pmu_op) {
5377 pmu_op_start(env);
5378 }
5379 env->cp15.mdcr_el2 = value;
5380 if (pmu_op) {
5381 pmu_op_finish(env);
5382 }
5383 }
5384
5385 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
5386 bool isread)
5387 {
5388 if (arm_current_el(env) == 1) {
5389 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
5390
5391 if (hcr_nv == (HCR_NV | HCR_NV1)) {
5392 return CP_ACCESS_TRAP_EL2;
5393 }
5394 }
5395 return CP_ACCESS_OK;
5396 }
5397
5398 #ifdef CONFIG_USER_ONLY
5399 /*
5400 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5401 * code to get around W^X restrictions, where one region is writable and the
5402 * other is executable.
5403 *
5404 * Since the executable region is never written to we cannot detect code
5405 * changes when running in user mode, and rely on the emulated JIT telling us
5406 * that the code has changed by executing this instruction.
5407 */
5408 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5409 uint64_t value)
5410 {
5411 uint64_t icache_line_mask, start_address, end_address;
5412 const ARMCPU *cpu;
5413
5414 cpu = env_archcpu(env);
5415
5416 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5417 start_address = value & ~icache_line_mask;
5418 end_address = value | icache_line_mask;
5419
5420 mmap_lock();
5421
5422 tb_invalidate_phys_range(start_address, end_address);
5423
5424 mmap_unlock();
5425 }
5426 #endif
5427
5428 static const ARMCPRegInfo v8_cp_reginfo[] = {
5429 /*
5430 * Minimal set of EL0-visible registers. This will need to be expanded
5431 * significantly for system emulation of AArch64 CPUs.
5432 */
5433 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5435 .access = PL0_RW, .type = ARM_CP_NZCV },
5436 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5437 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5438 .type = ARM_CP_NO_RAW,
5439 .access = PL0_RW, .accessfn = aa64_daif_access,
5440 .fieldoffset = offsetof(CPUARMState, daif),
5441 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5442 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5443 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5444 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5445 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5446 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5447 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5448 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5449 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5450 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5451 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5452 .access = PL0_R, .type = ARM_CP_NO_RAW,
5453 .fgt = FGT_DCZID_EL0,
5454 .readfn = aa64_dczid_read },
5455 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5456 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5457 .access = PL0_W, .type = ARM_CP_DC_ZVA,
5458 #ifndef CONFIG_USER_ONLY
5459 /* Avoid overhead of an access check that always passes in user-mode */
5460 .accessfn = aa64_zva_access,
5461 .fgt = FGT_DCZVA,
5462 #endif
5463 },
5464 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5465 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5466 .access = PL1_R, .type = ARM_CP_CURRENTEL },
5467 /*
5468 * Instruction cache ops. All of these except `IC IVAU` NOP because we
5469 * don't emulate caches.
5470 */
5471 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5472 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5473 .access = PL1_W, .type = ARM_CP_NOP,
5474 .fgt = FGT_ICIALLUIS,
5475 .accessfn = access_ticab },
5476 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5477 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5478 .access = PL1_W, .type = ARM_CP_NOP,
5479 .fgt = FGT_ICIALLU,
5480 .accessfn = access_tocu },
5481 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5482 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5483 .access = PL0_W,
5484 .fgt = FGT_ICIVAU,
5485 .accessfn = access_tocu,
5486 #ifdef CONFIG_USER_ONLY
5487 .type = ARM_CP_NO_RAW,
5488 .writefn = ic_ivau_write
5489 #else
5490 .type = ARM_CP_NOP
5491 #endif
5492 },
5493 /* Cache ops: all NOPs since we don't emulate caches */
5494 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5495 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5496 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5497 .fgt = FGT_DCIVAC,
5498 .type = ARM_CP_NOP },
5499 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5500 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5501 .fgt = FGT_DCISW,
5502 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5503 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5504 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5505 .access = PL0_W, .type = ARM_CP_NOP,
5506 .fgt = FGT_DCCVAC,
5507 .accessfn = aa64_cacheop_poc_access },
5508 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5509 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5510 .fgt = FGT_DCCSW,
5511 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5512 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5513 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5514 .access = PL0_W, .type = ARM_CP_NOP,
5515 .fgt = FGT_DCCVAU,
5516 .accessfn = access_tocu },
5517 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5518 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5519 .access = PL0_W, .type = ARM_CP_NOP,
5520 .fgt = FGT_DCCIVAC,
5521 .accessfn = aa64_cacheop_poc_access },
5522 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5524 .fgt = FGT_DCCISW,
5525 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5526 /* TLBI operations */
5527 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5528 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5529 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5530 .fgt = FGT_TLBIVMALLE1IS,
5531 .writefn = tlbi_aa64_vmalle1is_write },
5532 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5534 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5535 .fgt = FGT_TLBIVAE1IS,
5536 .writefn = tlbi_aa64_vae1is_write },
5537 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5539 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5540 .fgt = FGT_TLBIASIDE1IS,
5541 .writefn = tlbi_aa64_vmalle1is_write },
5542 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5543 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5544 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5545 .fgt = FGT_TLBIVAAE1IS,
5546 .writefn = tlbi_aa64_vae1is_write },
5547 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5548 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5549 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5550 .fgt = FGT_TLBIVALE1IS,
5551 .writefn = tlbi_aa64_vae1is_write },
5552 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5553 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5554 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5555 .fgt = FGT_TLBIVAALE1IS,
5556 .writefn = tlbi_aa64_vae1is_write },
5557 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5558 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5559 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5560 .fgt = FGT_TLBIVMALLE1,
5561 .writefn = tlbi_aa64_vmalle1_write },
5562 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5564 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5565 .fgt = FGT_TLBIVAE1,
5566 .writefn = tlbi_aa64_vae1_write },
5567 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5568 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5569 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5570 .fgt = FGT_TLBIASIDE1,
5571 .writefn = tlbi_aa64_vmalle1_write },
5572 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5573 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5574 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5575 .fgt = FGT_TLBIVAAE1,
5576 .writefn = tlbi_aa64_vae1_write },
5577 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5578 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5579 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5580 .fgt = FGT_TLBIVALE1,
5581 .writefn = tlbi_aa64_vae1_write },
5582 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5583 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5584 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5585 .fgt = FGT_TLBIVAALE1,
5586 .writefn = tlbi_aa64_vae1_write },
5587 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5588 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5589 .access = PL2_W, .type = ARM_CP_NO_RAW,
5590 .writefn = tlbi_aa64_ipas2e1is_write },
5591 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5592 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5593 .access = PL2_W, .type = ARM_CP_NO_RAW,
5594 .writefn = tlbi_aa64_ipas2e1is_write },
5595 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5596 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5597 .access = PL2_W, .type = ARM_CP_NO_RAW,
5598 .writefn = tlbi_aa64_alle1is_write },
5599 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5600 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5601 .access = PL2_W, .type = ARM_CP_NO_RAW,
5602 .writefn = tlbi_aa64_alle1is_write },
5603 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5604 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5605 .access = PL2_W, .type = ARM_CP_NO_RAW,
5606 .writefn = tlbi_aa64_ipas2e1_write },
5607 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5608 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5609 .access = PL2_W, .type = ARM_CP_NO_RAW,
5610 .writefn = tlbi_aa64_ipas2e1_write },
5611 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5612 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5613 .access = PL2_W, .type = ARM_CP_NO_RAW,
5614 .writefn = tlbi_aa64_alle1_write },
5615 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5616 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5617 .access = PL2_W, .type = ARM_CP_NO_RAW,
5618 .writefn = tlbi_aa64_alle1is_write },
5619 #ifndef CONFIG_USER_ONLY
5620 /* 64 bit address translation operations */
5621 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5622 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5623 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5624 .fgt = FGT_ATS1E1R,
5625 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5626 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5627 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5628 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5629 .fgt = FGT_ATS1E1W,
5630 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5631 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5632 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5633 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5634 .fgt = FGT_ATS1E0R,
5635 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5636 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5637 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5638 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5639 .fgt = FGT_ATS1E0W,
5640 .accessfn = at_s1e01_access, .writefn = ats_write64 },
5641 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5642 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5643 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5644 .accessfn = at_e012_access, .writefn = ats_write64 },
5645 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5646 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5647 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5648 .accessfn = at_e012_access, .writefn = ats_write64 },
5649 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5650 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5651 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5652 .accessfn = at_e012_access, .writefn = ats_write64 },
5653 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5654 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5655 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5656 .accessfn = at_e012_access, .writefn = ats_write64 },
5657 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5658 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5659 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5660 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5661 .writefn = ats_write64 },
5662 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5663 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5664 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5665 .writefn = ats_write64 },
5666 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5667 .type = ARM_CP_ALIAS,
5668 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5669 .access = PL1_RW, .resetvalue = 0,
5670 .fgt = FGT_PAR_EL1,
5671 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5672 .writefn = par_write },
5673 #endif
5674 /* TLB invalidate last level of translation table walk */
5675 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5676 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5677 .writefn = tlbimva_is_write },
5678 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5679 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5680 .writefn = tlbimvaa_is_write },
5681 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5682 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5683 .writefn = tlbimva_write },
5684 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5685 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5686 .writefn = tlbimvaa_write },
5687 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5688 .type = ARM_CP_NO_RAW, .access = PL2_W,
5689 .writefn = tlbimva_hyp_write },
5690 { .name = "TLBIMVALHIS",
5691 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5692 .type = ARM_CP_NO_RAW, .access = PL2_W,
5693 .writefn = tlbimva_hyp_is_write },
5694 { .name = "TLBIIPAS2",
5695 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5696 .type = ARM_CP_NO_RAW, .access = PL2_W,
5697 .writefn = tlbiipas2_hyp_write },
5698 { .name = "TLBIIPAS2IS",
5699 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5700 .type = ARM_CP_NO_RAW, .access = PL2_W,
5701 .writefn = tlbiipas2is_hyp_write },
5702 { .name = "TLBIIPAS2L",
5703 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5704 .type = ARM_CP_NO_RAW, .access = PL2_W,
5705 .writefn = tlbiipas2_hyp_write },
5706 { .name = "TLBIIPAS2LIS",
5707 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5708 .type = ARM_CP_NO_RAW, .access = PL2_W,
5709 .writefn = tlbiipas2is_hyp_write },
5710 /* 32 bit cache operations */
5711 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5712 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5713 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5714 .type = ARM_CP_NOP, .access = PL1_W },
5715 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5716 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5717 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5718 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5719 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5720 .type = ARM_CP_NOP, .access = PL1_W },
5721 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5722 .type = ARM_CP_NOP, .access = PL1_W },
5723 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5724 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5725 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5726 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5727 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5728 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5729 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5730 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5731 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5732 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5733 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5734 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5735 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5736 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5737 /* MMU Domain access control / MPU write buffer control */
5738 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5739 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5740 .writefn = dacr_write, .raw_writefn = raw_write,
5741 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5742 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5743 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5744 .type = ARM_CP_ALIAS,
5745 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5746 .access = PL1_RW, .accessfn = access_nv1,
5747 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
5748 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5749 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5750 .type = ARM_CP_ALIAS,
5751 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5752 .access = PL1_RW, .accessfn = access_nv1,
5753 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
5754 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5755 /*
5756 * We rely on the access checks not allowing the guest to write to the
5757 * state field when SPSel indicates that it's being used as the stack
5758 * pointer.
5759 */
5760 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5761 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5762 .access = PL1_RW, .accessfn = sp_el0_access,
5763 .type = ARM_CP_ALIAS,
5764 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5765 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5766 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5767 .nv2_redirect_offset = 0x240,
5768 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5769 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5770 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5771 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5772 .type = ARM_CP_NO_RAW,
5773 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5774 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5775 .type = ARM_CP_ALIAS,
5776 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5777 .access = PL2_RW,
5778 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5779 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5780 .type = ARM_CP_ALIAS,
5781 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5782 .access = PL2_RW,
5783 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5784 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5785 .type = ARM_CP_ALIAS,
5786 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5787 .access = PL2_RW,
5788 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5789 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5790 .type = ARM_CP_ALIAS,
5791 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5792 .access = PL2_RW,
5793 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5794 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5795 .type = ARM_CP_IO,
5796 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5797 .resetvalue = 0,
5798 .access = PL3_RW,
5799 .writefn = mdcr_el3_write,
5800 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5801 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5802 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5803 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5804 .writefn = sdcr_write,
5805 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5806 };
5807
5808 /* These are present only when EL1 supports AArch32 */
5809 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
5810 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5811 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5812 .access = PL2_RW,
5813 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5814 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5815 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5817 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5818 .writefn = dacr_write, .raw_writefn = raw_write,
5819 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5820 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5821 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5822 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5823 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5824 };
5825
5826 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5827 {
5828 ARMCPU *cpu = env_archcpu(env);
5829
5830 if (arm_feature(env, ARM_FEATURE_V8)) {
5831 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5832 } else {
5833 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5834 }
5835
5836 if (arm_feature(env, ARM_FEATURE_EL3)) {
5837 valid_mask &= ~HCR_HCD;
5838 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5839 /*
5840 * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5841 * However, if we're using the SMC PSCI conduit then QEMU is
5842 * effectively acting like EL3 firmware and so the guest at
5843 * EL2 should retain the ability to prevent EL1 from being
5844 * able to make SMC calls into the ersatz firmware, so in
5845 * that case HCR.TSC should be read/write.
5846 */
5847 valid_mask &= ~HCR_TSC;
5848 }
5849
5850 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5851 if (cpu_isar_feature(aa64_vh, cpu)) {
5852 valid_mask |= HCR_E2H;
5853 }
5854 if (cpu_isar_feature(aa64_ras, cpu)) {
5855 valid_mask |= HCR_TERR | HCR_TEA;
5856 }
5857 if (cpu_isar_feature(aa64_lor, cpu)) {
5858 valid_mask |= HCR_TLOR;
5859 }
5860 if (cpu_isar_feature(aa64_pauth, cpu)) {
5861 valid_mask |= HCR_API | HCR_APK;
5862 }
5863 if (cpu_isar_feature(aa64_mte, cpu)) {
5864 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5865 }
5866 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5867 valid_mask |= HCR_ENSCXT;
5868 }
5869 if (cpu_isar_feature(aa64_fwb, cpu)) {
5870 valid_mask |= HCR_FWB;
5871 }
5872 if (cpu_isar_feature(aa64_rme, cpu)) {
5873 valid_mask |= HCR_GPF;
5874 }
5875 if (cpu_isar_feature(aa64_nv, cpu)) {
5876 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
5877 }
5878 if (cpu_isar_feature(aa64_nv2, cpu)) {
5879 valid_mask |= HCR_NV2;
5880 }
5881 }
5882
5883 if (cpu_isar_feature(any_evt, cpu)) {
5884 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5885 } else if (cpu_isar_feature(any_half_evt, cpu)) {
5886 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5887 }
5888
5889 /* Clear RES0 bits. */
5890 value &= valid_mask;
5891
5892 /*
5893 * These bits change the MMU setup:
5894 * HCR_VM enables stage 2 translation
5895 * HCR_PTW forbids certain page-table setups
5896 * HCR_DC disables stage1 and enables stage2 translation
5897 * HCR_DCT enables tagging on (disabled) stage1 translation
5898 * HCR_FWB changes the interpretation of stage2 descriptor bits
5899 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits
5900 */
5901 if ((env->cp15.hcr_el2 ^ value) &
5902 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
5903 tlb_flush(CPU(cpu));
5904 }
5905 env->cp15.hcr_el2 = value;
5906
5907 /*
5908 * Updates to VI and VF require us to update the status of
5909 * virtual interrupts, which are the logical OR of these bits
5910 * and the state of the input lines from the GIC. (This requires
5911 * that we have the BQL, which is done by marking the
5912 * reginfo structs as ARM_CP_IO.)
5913 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5914 * possible for it to be taken immediately, because VIRQ and
5915 * VFIQ are masked unless running at EL0 or EL1, and HCR
5916 * can only be written at EL2.
5917 */
5918 g_assert(bql_locked());
5919 arm_cpu_update_virq(cpu);
5920 arm_cpu_update_vfiq(cpu);
5921 arm_cpu_update_vserr(cpu);
5922 }
5923
5924 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5925 {
5926 do_hcr_write(env, value, 0);
5927 }
5928
5929 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5930 uint64_t value)
5931 {
5932 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5933 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5934 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5935 }
5936
5937 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5938 uint64_t value)
5939 {
5940 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5941 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5942 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5943 }
5944
5945 /*
5946 * Return the effective value of HCR_EL2, at the given security state.
5947 * Bits that are not included here:
5948 * RW (read from SCR_EL3.RW as needed)
5949 */
5950 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5951 {
5952 uint64_t ret = env->cp15.hcr_el2;
5953
5954 assert(space != ARMSS_Root);
5955
5956 if (!arm_is_el2_enabled_secstate(env, space)) {
5957 /*
5958 * "This register has no effect if EL2 is not enabled in the
5959 * current Security state". This is ARMv8.4-SecEL2 speak for
5960 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5961 *
5962 * Prior to that, the language was "In an implementation that
5963 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5964 * as if this field is 0 for all purposes other than a direct
5965 * read or write access of HCR_EL2". With lots of enumeration
5966 * on a per-field basis. In current QEMU, this is condition
5967 * is arm_is_secure_below_el3.
5968 *
5969 * Since the v8.4 language applies to the entire register, and
5970 * appears to be backward compatible, use that.
5971 */
5972 return 0;
5973 }
5974
5975 /*
5976 * For a cpu that supports both aarch64 and aarch32, we can set bits
5977 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5978 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5979 */
5980 if (!arm_el_is_aa64(env, 2)) {
5981 uint64_t aa32_valid;
5982
5983 /*
5984 * These bits are up-to-date as of ARMv8.6.
5985 * For HCR, it's easiest to list just the 2 bits that are invalid.
5986 * For HCR2, list those that are valid.
5987 */
5988 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5989 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5990 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5991 ret &= aa32_valid;
5992 }
5993
5994 if (ret & HCR_TGE) {
5995 /* These bits are up-to-date as of ARMv8.6. */
5996 if (ret & HCR_E2H) {
5997 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5998 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5999 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
6000 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
6001 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
6002 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
6003 } else {
6004 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
6005 }
6006 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
6007 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
6008 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
6009 HCR_TLOR);
6010 }
6011
6012 return ret;
6013 }
6014
6015 uint64_t arm_hcr_el2_eff(CPUARMState *env)
6016 {
6017 if (arm_feature(env, ARM_FEATURE_M)) {
6018 return 0;
6019 }
6020 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
6021 }
6022
6023 /*
6024 * Corresponds to ARM pseudocode function ELIsInHost().
6025 */
6026 bool el_is_in_host(CPUARMState *env, int el)
6027 {
6028 uint64_t mask;
6029
6030 /*
6031 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
6032 * Perform the simplest bit tests first, and validate EL2 afterward.
6033 */
6034 if (el & 1) {
6035 return false; /* EL1 or EL3 */
6036 }
6037
6038 /*
6039 * Note that hcr_write() checks isar_feature_aa64_vh(),
6040 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
6041 */
6042 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
6043 if ((env->cp15.hcr_el2 & mask) != mask) {
6044 return false;
6045 }
6046
6047 /* TGE and/or E2H set: double check those bits are currently legal. */
6048 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
6049 }
6050
6051 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
6052 uint64_t value)
6053 {
6054 uint64_t valid_mask = 0;
6055
6056 /* FEAT_MOPS adds MSCEn and MCE2 */
6057 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6058 valid_mask |= HCRX_MSCEN | HCRX_MCE2;
6059 }
6060
6061 /* Clear RES0 bits. */
6062 env->cp15.hcrx_el2 = value & valid_mask;
6063 }
6064
6065 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
6066 bool isread)
6067 {
6068 if (arm_current_el(env) == 2
6069 && arm_feature(env, ARM_FEATURE_EL3)
6070 && !(env->cp15.scr_el3 & SCR_HXEN)) {
6071 return CP_ACCESS_TRAP_EL3;
6072 }
6073 return CP_ACCESS_OK;
6074 }
6075
6076 static const ARMCPRegInfo hcrx_el2_reginfo = {
6077 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
6078 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
6079 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
6080 .nv2_redirect_offset = 0xa0,
6081 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
6082 };
6083
6084 /* Return the effective value of HCRX_EL2. */
6085 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
6086 {
6087 /*
6088 * The bits in this register behave as 0 for all purposes other than
6089 * direct reads of the register if SCR_EL3.HXEn is 0.
6090 * If EL2 is not enabled in the current security state, then the
6091 * bit may behave as if 0, or as if 1, depending on the bit.
6092 * For the moment, we treat the EL2-disabled case as taking
6093 * priority over the HXEn-disabled case. This is true for the only
6094 * bit for a feature which we implement where the answer is different
6095 * for the two cases (MSCEn for FEAT_MOPS).
6096 * This may need to be revisited for future bits.
6097 */
6098 if (!arm_is_el2_enabled(env)) {
6099 uint64_t hcrx = 0;
6100 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
6101 /* MSCEn behaves as 1 if EL2 is not enabled */
6102 hcrx |= HCRX_MSCEN;
6103 }
6104 return hcrx;
6105 }
6106 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6107 return 0;
6108 }
6109 return env->cp15.hcrx_el2;
6110 }
6111
6112 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6113 uint64_t value)
6114 {
6115 /*
6116 * For A-profile AArch32 EL3, if NSACR.CP10
6117 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6118 */
6119 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6120 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6121 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6122 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6123 }
6124 env->cp15.cptr_el[2] = value;
6125 }
6126
6127 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6128 {
6129 /*
6130 * For A-profile AArch32 EL3, if NSACR.CP10
6131 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6132 */
6133 uint64_t value = env->cp15.cptr_el[2];
6134
6135 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6136 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6137 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6138 }
6139 return value;
6140 }
6141
6142 static const ARMCPRegInfo el2_cp_reginfo[] = {
6143 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6144 .type = ARM_CP_IO,
6145 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6146 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6147 .nv2_redirect_offset = 0x78,
6148 .writefn = hcr_write, .raw_writefn = raw_write },
6149 { .name = "HCR", .state = ARM_CP_STATE_AA32,
6150 .type = ARM_CP_ALIAS | ARM_CP_IO,
6151 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6152 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6153 .writefn = hcr_writelow },
6154 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6155 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6156 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6157 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6158 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6159 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6160 .access = PL2_RW,
6161 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6162 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6163 .type = ARM_CP_NV2_REDIRECT,
6164 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6165 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6166 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6167 .type = ARM_CP_NV2_REDIRECT,
6168 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6169 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6170 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6171 .type = ARM_CP_ALIAS,
6172 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6173 .access = PL2_RW,
6174 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6175 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6176 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
6177 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6178 .access = PL2_RW,
6179 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6180 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6181 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6182 .access = PL2_RW, .writefn = vbar_write,
6183 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6184 .resetvalue = 0 },
6185 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6186 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6187 .access = PL3_RW, .type = ARM_CP_ALIAS,
6188 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6189 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6190 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6191 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6192 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6193 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6194 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6195 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6196 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6197 .resetvalue = 0 },
6198 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6199 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6200 .access = PL2_RW, .type = ARM_CP_ALIAS,
6201 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6202 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6203 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6204 .access = PL2_RW, .type = ARM_CP_CONST,
6205 .resetvalue = 0 },
6206 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6207 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6208 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6209 .access = PL2_RW, .type = ARM_CP_CONST,
6210 .resetvalue = 0 },
6211 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6212 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6213 .access = PL2_RW, .type = ARM_CP_CONST,
6214 .resetvalue = 0 },
6215 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6216 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6217 .access = PL2_RW, .type = ARM_CP_CONST,
6218 .resetvalue = 0 },
6219 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6221 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6222 .raw_writefn = raw_write,
6223 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6224 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6225 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6226 .type = ARM_CP_ALIAS,
6227 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6228 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6229 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6230 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6231 .access = PL2_RW,
6232 .nv2_redirect_offset = 0x40,
6233 /* no .writefn needed as this can't cause an ASID change */
6234 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6235 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6236 .cp = 15, .opc1 = 6, .crm = 2,
6237 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6238 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6239 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6240 .writefn = vttbr_write, .raw_writefn = raw_write },
6241 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6242 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6243 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6244 .nv2_redirect_offset = 0x20,
6245 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6246 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6247 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6248 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6249 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6250 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6251 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6252 .access = PL2_RW, .resetvalue = 0,
6253 .nv2_redirect_offset = 0x90,
6254 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6255 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6256 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6257 .access = PL2_RW, .resetvalue = 0,
6258 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6259 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6260 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6261 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6262 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6263 { .name = "TLBIALLNSNH",
6264 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6265 .type = ARM_CP_NO_RAW, .access = PL2_W,
6266 .writefn = tlbiall_nsnh_write },
6267 { .name = "TLBIALLNSNHIS",
6268 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6269 .type = ARM_CP_NO_RAW, .access = PL2_W,
6270 .writefn = tlbiall_nsnh_is_write },
6271 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6272 .type = ARM_CP_NO_RAW, .access = PL2_W,
6273 .writefn = tlbiall_hyp_write },
6274 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6275 .type = ARM_CP_NO_RAW, .access = PL2_W,
6276 .writefn = tlbiall_hyp_is_write },
6277 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6278 .type = ARM_CP_NO_RAW, .access = PL2_W,
6279 .writefn = tlbimva_hyp_write },
6280 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6281 .type = ARM_CP_NO_RAW, .access = PL2_W,
6282 .writefn = tlbimva_hyp_is_write },
6283 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6284 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6285 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6286 .writefn = tlbi_aa64_alle2_write },
6287 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6288 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6289 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6290 .writefn = tlbi_aa64_vae2_write },
6291 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6292 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6293 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6294 .writefn = tlbi_aa64_vae2_write },
6295 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6296 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6297 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6298 .writefn = tlbi_aa64_alle2is_write },
6299 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6300 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6301 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6302 .writefn = tlbi_aa64_vae2is_write },
6303 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6304 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6305 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6306 .writefn = tlbi_aa64_vae2is_write },
6307 #ifndef CONFIG_USER_ONLY
6308 /*
6309 * Unlike the other EL2-related AT operations, these must
6310 * UNDEF from EL3 if EL2 is not implemented, which is why we
6311 * define them here rather than with the rest of the AT ops.
6312 */
6313 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6314 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6315 .access = PL2_W, .accessfn = at_s1e2_access,
6316 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6317 .writefn = ats_write64 },
6318 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6319 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6320 .access = PL2_W, .accessfn = at_s1e2_access,
6321 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6322 .writefn = ats_write64 },
6323 /*
6324 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6325 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6326 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6327 * to behave as if SCR.NS was 1.
6328 */
6329 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6330 .access = PL2_W,
6331 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6332 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6333 .access = PL2_W,
6334 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6335 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6336 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6337 /*
6338 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6339 * reset values as IMPDEF. We choose to reset to 3 to comply with
6340 * both ARMv7 and ARMv8.
6341 */
6342 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6343 .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6344 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6345 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6346 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6347 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6348 .writefn = gt_cntvoff_write,
6349 .nv2_redirect_offset = 0x60,
6350 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6351 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6352 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6353 .writefn = gt_cntvoff_write,
6354 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6355 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6356 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6357 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6358 .type = ARM_CP_IO, .access = PL2_RW,
6359 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6360 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6361 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6362 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6363 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6364 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6365 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6366 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6367 .resetfn = gt_hyp_timer_reset,
6368 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6369 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6370 .type = ARM_CP_IO,
6371 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6372 .access = PL2_RW,
6373 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6374 .resetvalue = 0,
6375 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6376 #endif
6377 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6378 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6379 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6380 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6381 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6382 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6383 .access = PL2_RW,
6384 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6385 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6386 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6387 .access = PL2_RW,
6388 .nv2_redirect_offset = 0x80,
6389 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6390 };
6391
6392 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6393 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6394 .type = ARM_CP_ALIAS | ARM_CP_IO,
6395 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6396 .access = PL2_RW,
6397 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6398 .writefn = hcr_writehigh },
6399 };
6400
6401 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6402 bool isread)
6403 {
6404 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6405 return CP_ACCESS_OK;
6406 }
6407 return CP_ACCESS_TRAP_UNCATEGORIZED;
6408 }
6409
6410 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6411 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6412 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6413 .access = PL2_RW, .accessfn = sel2_access,
6414 .nv2_redirect_offset = 0x30,
6415 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6416 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6417 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6418 .access = PL2_RW, .accessfn = sel2_access,
6419 .nv2_redirect_offset = 0x48,
6420 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6421 };
6422
6423 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6424 bool isread)
6425 {
6426 /*
6427 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6428 * At Secure EL1 it traps to EL3 or EL2.
6429 */
6430 if (arm_current_el(env) == 3) {
6431 return CP_ACCESS_OK;
6432 }
6433 if (arm_is_secure_below_el3(env)) {
6434 if (env->cp15.scr_el3 & SCR_EEL2) {
6435 return CP_ACCESS_TRAP_EL2;
6436 }
6437 return CP_ACCESS_TRAP_EL3;
6438 }
6439 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6440 if (isread) {
6441 return CP_ACCESS_OK;
6442 }
6443 return CP_ACCESS_TRAP_UNCATEGORIZED;
6444 }
6445
6446 static const ARMCPRegInfo el3_cp_reginfo[] = {
6447 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6448 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6449 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6450 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6451 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6452 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6453 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6454 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6455 .writefn = scr_write, .raw_writefn = raw_write },
6456 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6457 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6458 .access = PL3_RW, .resetvalue = 0,
6459 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6460 { .name = "SDER",
6461 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6462 .access = PL3_RW, .resetvalue = 0,
6463 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6464 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6465 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6466 .writefn = vbar_write, .resetvalue = 0,
6467 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6468 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6469 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6470 .access = PL3_RW, .resetvalue = 0,
6471 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6472 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6473 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6474 .access = PL3_RW,
6475 /* no .writefn needed as this can't cause an ASID change */
6476 .resetvalue = 0,
6477 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6478 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6479 .type = ARM_CP_ALIAS,
6480 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6481 .access = PL3_RW,
6482 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6483 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6484 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6485 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6486 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6487 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6488 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6489 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6490 .type = ARM_CP_ALIAS,
6491 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6492 .access = PL3_RW,
6493 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6494 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6495 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6496 .access = PL3_RW, .writefn = vbar_write,
6497 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6498 .resetvalue = 0 },
6499 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6500 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6501 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6502 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6503 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6504 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6505 .access = PL3_RW, .resetvalue = 0,
6506 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6507 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6508 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6509 .access = PL3_RW, .type = ARM_CP_CONST,
6510 .resetvalue = 0 },
6511 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6512 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6513 .access = PL3_RW, .type = ARM_CP_CONST,
6514 .resetvalue = 0 },
6515 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6516 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6517 .access = PL3_RW, .type = ARM_CP_CONST,
6518 .resetvalue = 0 },
6519 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6520 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6521 .access = PL3_W, .type = ARM_CP_NO_RAW,
6522 .writefn = tlbi_aa64_alle3is_write },
6523 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6524 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6525 .access = PL3_W, .type = ARM_CP_NO_RAW,
6526 .writefn = tlbi_aa64_vae3is_write },
6527 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6528 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6529 .access = PL3_W, .type = ARM_CP_NO_RAW,
6530 .writefn = tlbi_aa64_vae3is_write },
6531 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6532 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6533 .access = PL3_W, .type = ARM_CP_NO_RAW,
6534 .writefn = tlbi_aa64_alle3_write },
6535 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6536 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6537 .access = PL3_W, .type = ARM_CP_NO_RAW,
6538 .writefn = tlbi_aa64_vae3_write },
6539 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6540 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6541 .access = PL3_W, .type = ARM_CP_NO_RAW,
6542 .writefn = tlbi_aa64_vae3_write },
6543 };
6544
6545 #ifndef CONFIG_USER_ONLY
6546 /* Test if system register redirection is to occur in the current state. */
6547 static bool redirect_for_e2h(CPUARMState *env)
6548 {
6549 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6550 }
6551
6552 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6553 {
6554 CPReadFn *readfn;
6555
6556 if (redirect_for_e2h(env)) {
6557 /* Switch to the saved EL2 version of the register. */
6558 ri = ri->opaque;
6559 readfn = ri->readfn;
6560 } else {
6561 readfn = ri->orig_readfn;
6562 }
6563 if (readfn == NULL) {
6564 readfn = raw_read;
6565 }
6566 return readfn(env, ri);
6567 }
6568
6569 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6570 uint64_t value)
6571 {
6572 CPWriteFn *writefn;
6573
6574 if (redirect_for_e2h(env)) {
6575 /* Switch to the saved EL2 version of the register. */
6576 ri = ri->opaque;
6577 writefn = ri->writefn;
6578 } else {
6579 writefn = ri->orig_writefn;
6580 }
6581 if (writefn == NULL) {
6582 writefn = raw_write;
6583 }
6584 writefn(env, ri, value);
6585 }
6586
6587 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
6588 {
6589 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6590 return ri->orig_readfn(env, ri->opaque);
6591 }
6592
6593 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
6594 uint64_t value)
6595 {
6596 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */
6597 return ri->orig_writefn(env, ri->opaque, value);
6598 }
6599
6600 static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
6601 const ARMCPRegInfo *ri,
6602 bool isread)
6603 {
6604 if (arm_current_el(env) == 1) {
6605 /*
6606 * This must be a FEAT_NV access (will either trap or redirect
6607 * to memory). None of the registers with _EL12 aliases want to
6608 * apply their trap controls for this kind of access, so don't
6609 * call the orig_accessfn or do the "UNDEF when E2H is 0" check.
6610 */
6611 return CP_ACCESS_OK;
6612 }
6613 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
6614 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
6615 return CP_ACCESS_TRAP_UNCATEGORIZED;
6616 }
6617 if (ri->orig_accessfn) {
6618 return ri->orig_accessfn(env, ri->opaque, isread);
6619 }
6620 return CP_ACCESS_OK;
6621 }
6622
6623 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6624 {
6625 struct E2HAlias {
6626 uint32_t src_key, dst_key, new_key;
6627 const char *src_name, *dst_name, *new_name;
6628 bool (*feature)(const ARMISARegisters *id);
6629 };
6630
6631 #define K(op0, op1, crn, crm, op2) \
6632 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6633
6634 static const struct E2HAlias aliases[] = {
6635 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
6636 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6637 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
6638 "CPACR", "CPTR_EL2", "CPACR_EL12" },
6639 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
6640 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6641 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
6642 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6643 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
6644 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6645 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
6646 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6647 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
6648 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6649 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
6650 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6651 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
6652 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6653 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
6654 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6655 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
6656 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6657 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6658 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6659 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6660 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6661 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6662 "VBAR", "VBAR_EL2", "VBAR_EL12" },
6663 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6664 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6665 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6666 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6667
6668 /*
6669 * Note that redirection of ZCR is mentioned in the description
6670 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6671 * not in the summary table.
6672 */
6673 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
6674 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6675 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
6676 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6677
6678 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
6679 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6680
6681 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6682 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6683 isar_feature_aa64_scxtnum },
6684
6685 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6686 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6687 };
6688 #undef K
6689
6690 size_t i;
6691
6692 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6693 const struct E2HAlias *a = &aliases[i];
6694 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6695 bool ok;
6696
6697 if (a->feature && !a->feature(&cpu->isar)) {
6698 continue;
6699 }
6700
6701 src_reg = g_hash_table_lookup(cpu->cp_regs,
6702 (gpointer)(uintptr_t)a->src_key);
6703 dst_reg = g_hash_table_lookup(cpu->cp_regs,
6704 (gpointer)(uintptr_t)a->dst_key);
6705 g_assert(src_reg != NULL);
6706 g_assert(dst_reg != NULL);
6707
6708 /* Cross-compare names to detect typos in the keys. */
6709 g_assert(strcmp(src_reg->name, a->src_name) == 0);
6710 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6711
6712 /* None of the core system registers use opaque; we will. */
6713 g_assert(src_reg->opaque == NULL);
6714
6715 /* Create alias before redirection so we dup the right data. */
6716 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6717
6718 new_reg->name = a->new_name;
6719 new_reg->type |= ARM_CP_ALIAS;
6720 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
6721 new_reg->access &= PL2_RW | PL3_RW;
6722 /* The new_reg op fields are as per new_key, not the target reg */
6723 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
6724 >> CP_REG_ARM64_SYSREG_CRN_SHIFT;
6725 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
6726 >> CP_REG_ARM64_SYSREG_CRM_SHIFT;
6727 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
6728 >> CP_REG_ARM64_SYSREG_OP0_SHIFT;
6729 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
6730 >> CP_REG_ARM64_SYSREG_OP1_SHIFT;
6731 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
6732 >> CP_REG_ARM64_SYSREG_OP2_SHIFT;
6733 new_reg->opaque = src_reg;
6734 new_reg->orig_readfn = src_reg->readfn ?: raw_read;
6735 new_reg->orig_writefn = src_reg->writefn ?: raw_write;
6736 new_reg->orig_accessfn = src_reg->accessfn;
6737 if (!new_reg->raw_readfn) {
6738 new_reg->raw_readfn = raw_read;
6739 }
6740 if (!new_reg->raw_writefn) {
6741 new_reg->raw_writefn = raw_write;
6742 }
6743 new_reg->readfn = el2_e2h_e12_read;
6744 new_reg->writefn = el2_e2h_e12_write;
6745 new_reg->accessfn = el2_e2h_e12_access;
6746
6747 /*
6748 * If the _EL1 register is redirected to memory by FEAT_NV2,
6749 * then it shares the offset with the _EL12 register,
6750 * and which one is redirected depends on HCR_EL2.NV1.
6751 */
6752 if (new_reg->nv2_redirect_offset) {
6753 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
6754 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
6755 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
6756 }
6757
6758 ok = g_hash_table_insert(cpu->cp_regs,
6759 (gpointer)(uintptr_t)a->new_key, new_reg);
6760 g_assert(ok);
6761
6762 src_reg->opaque = dst_reg;
6763 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6764 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6765 if (!src_reg->raw_readfn) {
6766 src_reg->raw_readfn = raw_read;
6767 }
6768 if (!src_reg->raw_writefn) {
6769 src_reg->raw_writefn = raw_write;
6770 }
6771 src_reg->readfn = el2_e2h_read;
6772 src_reg->writefn = el2_e2h_write;
6773 }
6774 }
6775 #endif
6776
6777 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6778 bool isread)
6779 {
6780 int cur_el = arm_current_el(env);
6781
6782 if (cur_el < 2) {
6783 uint64_t hcr = arm_hcr_el2_eff(env);
6784
6785 if (cur_el == 0) {
6786 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6787 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6788 return CP_ACCESS_TRAP_EL2;
6789 }
6790 } else {
6791 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6792 return CP_ACCESS_TRAP;
6793 }
6794 if (hcr & HCR_TID2) {
6795 return CP_ACCESS_TRAP_EL2;
6796 }
6797 }
6798 } else if (hcr & HCR_TID2) {
6799 return CP_ACCESS_TRAP_EL2;
6800 }
6801 }
6802
6803 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6804 return CP_ACCESS_TRAP_EL2;
6805 }
6806
6807 return CP_ACCESS_OK;
6808 }
6809
6810 /*
6811 * Check for traps to RAS registers, which are controlled
6812 * by HCR_EL2.TERR and SCR_EL3.TERR.
6813 */
6814 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6815 bool isread)
6816 {
6817 int el = arm_current_el(env);
6818
6819 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6820 return CP_ACCESS_TRAP_EL2;
6821 }
6822 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6823 return CP_ACCESS_TRAP_EL3;
6824 }
6825 return CP_ACCESS_OK;
6826 }
6827
6828 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6829 {
6830 int el = arm_current_el(env);
6831
6832 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6833 return env->cp15.vdisr_el2;
6834 }
6835 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6836 return 0; /* RAZ/WI */
6837 }
6838 return env->cp15.disr_el1;
6839 }
6840
6841 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6842 {
6843 int el = arm_current_el(env);
6844
6845 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6846 env->cp15.vdisr_el2 = val;
6847 return;
6848 }
6849 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6850 return; /* RAZ/WI */
6851 }
6852 env->cp15.disr_el1 = val;
6853 }
6854
6855 /*
6856 * Minimal RAS implementation with no Error Records.
6857 * Which means that all of the Error Record registers:
6858 * ERXADDR_EL1
6859 * ERXCTLR_EL1
6860 * ERXFR_EL1
6861 * ERXMISC0_EL1
6862 * ERXMISC1_EL1
6863 * ERXMISC2_EL1
6864 * ERXMISC3_EL1
6865 * ERXPFGCDN_EL1 (RASv1p1)
6866 * ERXPFGCTL_EL1 (RASv1p1)
6867 * ERXPFGF_EL1 (RASv1p1)
6868 * ERXSTATUS_EL1
6869 * and
6870 * ERRSELR_EL1
6871 * may generate UNDEFINED, which is the effect we get by not
6872 * listing them at all.
6873 *
6874 * These registers have fine-grained trap bits, but UNDEF-to-EL1
6875 * is higher priority than FGT-to-EL2 so we do not need to list them
6876 * in order to check for an FGT.
6877 */
6878 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6879 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6880 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6881 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6882 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6883 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6884 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6885 .access = PL1_R, .accessfn = access_terr,
6886 .fgt = FGT_ERRIDR_EL1,
6887 .type = ARM_CP_CONST, .resetvalue = 0 },
6888 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6889 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6890 .nv2_redirect_offset = 0x500,
6891 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6892 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6893 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6894 .nv2_redirect_offset = 0x508,
6895 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6896 };
6897
6898 /*
6899 * Return the exception level to which exceptions should be taken
6900 * via SVEAccessTrap. This excludes the check for whether the exception
6901 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6902 * be found by testing 0 < fp_exception_el < sve_exception_el.
6903 *
6904 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6905 * pseudocode does *not* separate out the FP trap checks, but has them
6906 * all in one function.
6907 */
6908 int sve_exception_el(CPUARMState *env, int el)
6909 {
6910 #ifndef CONFIG_USER_ONLY
6911 if (el <= 1 && !el_is_in_host(env, el)) {
6912 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6913 case 1:
6914 if (el != 0) {
6915 break;
6916 }
6917 /* fall through */
6918 case 0:
6919 case 2:
6920 return 1;
6921 }
6922 }
6923
6924 if (el <= 2 && arm_is_el2_enabled(env)) {
6925 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6926 if (env->cp15.hcr_el2 & HCR_E2H) {
6927 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6928 case 1:
6929 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6930 break;
6931 }
6932 /* fall through */
6933 case 0:
6934 case 2:
6935 return 2;
6936 }
6937 } else {
6938 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6939 return 2;
6940 }
6941 }
6942 }
6943
6944 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6945 if (arm_feature(env, ARM_FEATURE_EL3)
6946 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6947 return 3;
6948 }
6949 #endif
6950 return 0;
6951 }
6952
6953 /*
6954 * Return the exception level to which exceptions should be taken for SME.
6955 * C.f. the ARM pseudocode function CheckSMEAccess.
6956 */
6957 int sme_exception_el(CPUARMState *env, int el)
6958 {
6959 #ifndef CONFIG_USER_ONLY
6960 if (el <= 1 && !el_is_in_host(env, el)) {
6961 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6962 case 1:
6963 if (el != 0) {
6964 break;
6965 }
6966 /* fall through */
6967 case 0:
6968 case 2:
6969 return 1;
6970 }
6971 }
6972
6973 if (el <= 2 && arm_is_el2_enabled(env)) {
6974 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6975 if (env->cp15.hcr_el2 & HCR_E2H) {
6976 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6977 case 1:
6978 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6979 break;
6980 }
6981 /* fall through */
6982 case 0:
6983 case 2:
6984 return 2;
6985 }
6986 } else {
6987 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6988 return 2;
6989 }
6990 }
6991 }
6992
6993 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6994 if (arm_feature(env, ARM_FEATURE_EL3)
6995 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6996 return 3;
6997 }
6998 #endif
6999 return 0;
7000 }
7001
7002 /*
7003 * Given that SVE is enabled, return the vector length for EL.
7004 */
7005 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
7006 {
7007 ARMCPU *cpu = env_archcpu(env);
7008 uint64_t *cr = env->vfp.zcr_el;
7009 uint32_t map = cpu->sve_vq.map;
7010 uint32_t len = ARM_MAX_VQ - 1;
7011
7012 if (sm) {
7013 cr = env->vfp.smcr_el;
7014 map = cpu->sme_vq.map;
7015 }
7016
7017 if (el <= 1 && !el_is_in_host(env, el)) {
7018 len = MIN(len, 0xf & (uint32_t)cr[1]);
7019 }
7020 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7021 len = MIN(len, 0xf & (uint32_t)cr[2]);
7022 }
7023 if (arm_feature(env, ARM_FEATURE_EL3)) {
7024 len = MIN(len, 0xf & (uint32_t)cr[3]);
7025 }
7026
7027 map &= MAKE_64BIT_MASK(0, len + 1);
7028 if (map != 0) {
7029 return 31 - clz32(map);
7030 }
7031
7032 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
7033 assert(sm);
7034 return ctz32(cpu->sme_vq.map);
7035 }
7036
7037 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
7038 {
7039 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
7040 }
7041
7042 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7043 uint64_t value)
7044 {
7045 int cur_el = arm_current_el(env);
7046 int old_len = sve_vqm1_for_el(env, cur_el);
7047 int new_len;
7048
7049 /* Bits other than [3:0] are RAZ/WI. */
7050 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
7051 raw_write(env, ri, value & 0xf);
7052
7053 /*
7054 * Because we arrived here, we know both FP and SVE are enabled;
7055 * otherwise we would have trapped access to the ZCR_ELn register.
7056 */
7057 new_len = sve_vqm1_for_el(env, cur_el);
7058 if (new_len < old_len) {
7059 aarch64_sve_narrow_vq(env, new_len + 1);
7060 }
7061 }
7062
7063 static const ARMCPRegInfo zcr_reginfo[] = {
7064 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
7065 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
7066 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
7067 .access = PL1_RW, .type = ARM_CP_SVE,
7068 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
7069 .writefn = zcr_write, .raw_writefn = raw_write },
7070 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
7071 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
7072 .access = PL2_RW, .type = ARM_CP_SVE,
7073 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
7074 .writefn = zcr_write, .raw_writefn = raw_write },
7075 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
7076 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
7077 .access = PL3_RW, .type = ARM_CP_SVE,
7078 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
7079 .writefn = zcr_write, .raw_writefn = raw_write },
7080 };
7081
7082 #ifdef TARGET_AARCH64
7083 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
7084 bool isread)
7085 {
7086 int el = arm_current_el(env);
7087
7088 if (el == 0) {
7089 uint64_t sctlr = arm_sctlr(env, el);
7090 if (!(sctlr & SCTLR_EnTP2)) {
7091 return CP_ACCESS_TRAP;
7092 }
7093 }
7094 /* TODO: FEAT_FGT */
7095 if (el < 3
7096 && arm_feature(env, ARM_FEATURE_EL3)
7097 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
7098 return CP_ACCESS_TRAP_EL3;
7099 }
7100 return CP_ACCESS_OK;
7101 }
7102
7103 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
7104 bool isread)
7105 {
7106 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
7107 if (arm_current_el(env) == 2
7108 && arm_feature(env, ARM_FEATURE_EL3)
7109 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7110 return CP_ACCESS_TRAP_EL3;
7111 }
7112 return CP_ACCESS_OK;
7113 }
7114
7115 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
7116 bool isread)
7117 {
7118 if (arm_current_el(env) < 3
7119 && arm_feature(env, ARM_FEATURE_EL3)
7120 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
7121 return CP_ACCESS_TRAP_EL3;
7122 }
7123 return CP_ACCESS_OK;
7124 }
7125
7126 /* ResetSVEState */
7127 static void arm_reset_sve_state(CPUARMState *env)
7128 {
7129 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
7130 /* Recall that FFR is stored as pregs[16]. */
7131 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
7132 vfp_set_fpcr(env, 0x0800009f);
7133 }
7134
7135 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
7136 {
7137 uint64_t change = (env->svcr ^ new) & mask;
7138
7139 if (change == 0) {
7140 return;
7141 }
7142 env->svcr ^= change;
7143
7144 if (change & R_SVCR_SM_MASK) {
7145 arm_reset_sve_state(env);
7146 }
7147
7148 /*
7149 * ResetSMEState.
7150 *
7151 * SetPSTATE_ZA zeros on enable and disable. We can zero this only
7152 * on enable: while disabled, the storage is inaccessible and the
7153 * value does not matter. We're not saving the storage in vmstate
7154 * when disabled either.
7155 */
7156 if (change & new & R_SVCR_ZA_MASK) {
7157 memset(env->zarray, 0, sizeof(env->zarray));
7158 }
7159
7160 if (tcg_enabled()) {
7161 arm_rebuild_hflags(env);
7162 }
7163 }
7164
7165 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7166 uint64_t value)
7167 {
7168 aarch64_set_svcr(env, value, -1);
7169 }
7170
7171 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7172 uint64_t value)
7173 {
7174 int cur_el = arm_current_el(env);
7175 int old_len = sve_vqm1_for_el(env, cur_el);
7176 int new_len;
7177
7178 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
7179 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
7180 raw_write(env, ri, value);
7181
7182 /*
7183 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
7184 * when SVL is widened (old values kept, or zeros). Choose to keep the
7185 * current values for simplicity. But for QEMU internals, we must still
7186 * apply the narrower SVL to the Zregs and Pregs -- see the comment
7187 * above aarch64_sve_narrow_vq.
7188 */
7189 new_len = sve_vqm1_for_el(env, cur_el);
7190 if (new_len < old_len) {
7191 aarch64_sve_narrow_vq(env, new_len + 1);
7192 }
7193 }
7194
7195 static const ARMCPRegInfo sme_reginfo[] = {
7196 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7197 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7198 .access = PL0_RW, .accessfn = access_tpidr2,
7199 .fgt = FGT_NTPIDR2_EL0,
7200 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7201 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7202 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7203 .access = PL0_RW, .type = ARM_CP_SME,
7204 .fieldoffset = offsetof(CPUARMState, svcr),
7205 .writefn = svcr_write, .raw_writefn = raw_write },
7206 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7207 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7208 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
7209 .access = PL1_RW, .type = ARM_CP_SME,
7210 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7211 .writefn = smcr_write, .raw_writefn = raw_write },
7212 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7213 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7214 .access = PL2_RW, .type = ARM_CP_SME,
7215 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7216 .writefn = smcr_write, .raw_writefn = raw_write },
7217 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7218 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7219 .access = PL3_RW, .type = ARM_CP_SME,
7220 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7221 .writefn = smcr_write, .raw_writefn = raw_write },
7222 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7223 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7224 .access = PL1_R, .accessfn = access_aa64_tid1,
7225 /*
7226 * IMPLEMENTOR = 0 (software)
7227 * REVISION = 0 (implementation defined)
7228 * SMPS = 0 (no streaming execution priority in QEMU)
7229 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
7230 */
7231 .type = ARM_CP_CONST, .resetvalue = 0, },
7232 /*
7233 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7234 */
7235 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7237 .access = PL1_RW, .accessfn = access_smpri,
7238 .fgt = FGT_NSMPRI_EL1,
7239 .type = ARM_CP_CONST, .resetvalue = 0 },
7240 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7241 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7242 .nv2_redirect_offset = 0x1f8,
7243 .access = PL2_RW, .accessfn = access_smprimap,
7244 .type = ARM_CP_CONST, .resetvalue = 0 },
7245 };
7246
7247 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7248 uint64_t value)
7249 {
7250 CPUState *cs = env_cpu(env);
7251
7252 tlb_flush(cs);
7253 }
7254
7255 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7256 uint64_t value)
7257 {
7258 /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7259 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7260 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7261 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7262
7263 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7264 }
7265
7266 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7267 {
7268 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7269 env_archcpu(env)->reset_l0gptsz);
7270 }
7271
7272 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7273 uint64_t value)
7274 {
7275 CPUState *cs = env_cpu(env);
7276
7277 tlb_flush_all_cpus_synced(cs);
7278 }
7279
7280 static const ARMCPRegInfo rme_reginfo[] = {
7281 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7282 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7283 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7284 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7285 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7286 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7287 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7288 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7289 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7290 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7291 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7292 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7293 .access = PL3_W, .type = ARM_CP_NO_RAW,
7294 .writefn = tlbi_aa64_paall_write },
7295 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7296 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7297 .access = PL3_W, .type = ARM_CP_NO_RAW,
7298 .writefn = tlbi_aa64_paallos_write },
7299 /*
7300 * QEMU does not have a way to invalidate by physical address, thus
7301 * invalidating a range of physical addresses is accomplished by
7302 * flushing all tlb entries in the outer shareable domain,
7303 * just like PAALLOS.
7304 */
7305 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7306 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7307 .access = PL3_W, .type = ARM_CP_NO_RAW,
7308 .writefn = tlbi_aa64_paallos_write },
7309 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7310 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7311 .access = PL3_W, .type = ARM_CP_NO_RAW,
7312 .writefn = tlbi_aa64_paallos_write },
7313 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7314 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7315 .access = PL3_W, .type = ARM_CP_NOP },
7316 };
7317
7318 static const ARMCPRegInfo rme_mte_reginfo[] = {
7319 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7320 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7321 .access = PL3_W, .type = ARM_CP_NOP },
7322 };
7323 #endif /* TARGET_AARCH64 */
7324
7325 static void define_pmu_regs(ARMCPU *cpu)
7326 {
7327 /*
7328 * v7 performance monitor control register: same implementor
7329 * field as main ID register, and we implement four counters in
7330 * addition to the cycle count register.
7331 */
7332 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7333 ARMCPRegInfo pmcr = {
7334 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7335 .access = PL0_RW,
7336 .fgt = FGT_PMCR_EL0,
7337 .type = ARM_CP_IO | ARM_CP_ALIAS,
7338 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7339 .accessfn = pmreg_access,
7340 .readfn = pmcr_read, .raw_readfn = raw_read,
7341 .writefn = pmcr_write, .raw_writefn = raw_write,
7342 };
7343 ARMCPRegInfo pmcr64 = {
7344 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7345 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7346 .access = PL0_RW, .accessfn = pmreg_access,
7347 .fgt = FGT_PMCR_EL0,
7348 .type = ARM_CP_IO,
7349 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7350 .resetvalue = cpu->isar.reset_pmcr_el0,
7351 .readfn = pmcr_read, .raw_readfn = raw_read,
7352 .writefn = pmcr_write, .raw_writefn = raw_write,
7353 };
7354
7355 define_one_arm_cp_reg(cpu, &pmcr);
7356 define_one_arm_cp_reg(cpu, &pmcr64);
7357 for (i = 0; i < pmcrn; i++) {
7358 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7359 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7360 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7361 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7362 ARMCPRegInfo pmev_regs[] = {
7363 { .name = pmevcntr_name, .cp = 15, .crn = 14,
7364 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7365 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7366 .fgt = FGT_PMEVCNTRN_EL0,
7367 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7368 .accessfn = pmreg_access_xevcntr },
7369 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7370 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7371 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7372 .type = ARM_CP_IO,
7373 .fgt = FGT_PMEVCNTRN_EL0,
7374 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7375 .raw_readfn = pmevcntr_rawread,
7376 .raw_writefn = pmevcntr_rawwrite },
7377 { .name = pmevtyper_name, .cp = 15, .crn = 14,
7378 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7379 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7380 .fgt = FGT_PMEVTYPERN_EL0,
7381 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7382 .accessfn = pmreg_access },
7383 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7385 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7386 .fgt = FGT_PMEVTYPERN_EL0,
7387 .type = ARM_CP_IO,
7388 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7389 .raw_writefn = pmevtyper_rawwrite },
7390 };
7391 define_arm_cp_regs(cpu, pmev_regs);
7392 g_free(pmevcntr_name);
7393 g_free(pmevcntr_el0_name);
7394 g_free(pmevtyper_name);
7395 g_free(pmevtyper_el0_name);
7396 }
7397 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7398 ARMCPRegInfo v81_pmu_regs[] = {
7399 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7400 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7401 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7402 .fgt = FGT_PMCEIDN_EL0,
7403 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7404 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7405 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7406 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7407 .fgt = FGT_PMCEIDN_EL0,
7408 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7409 };
7410 define_arm_cp_regs(cpu, v81_pmu_regs);
7411 }
7412 if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7413 static const ARMCPRegInfo v84_pmmir = {
7414 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7415 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7416 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7417 .fgt = FGT_PMMIR_EL1,
7418 .resetvalue = 0
7419 };
7420 define_one_arm_cp_reg(cpu, &v84_pmmir);
7421 }
7422 }
7423
7424 #ifndef CONFIG_USER_ONLY
7425 /*
7426 * We don't know until after realize whether there's a GICv3
7427 * attached, and that is what registers the gicv3 sysregs.
7428 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7429 * at runtime.
7430 */
7431 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7432 {
7433 ARMCPU *cpu = env_archcpu(env);
7434 uint64_t pfr1 = cpu->isar.id_pfr1;
7435
7436 if (env->gicv3state) {
7437 pfr1 |= 1 << 28;
7438 }
7439 return pfr1;
7440 }
7441
7442 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7443 {
7444 ARMCPU *cpu = env_archcpu(env);
7445 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7446
7447 if (env->gicv3state) {
7448 pfr0 |= 1 << 24;
7449 }
7450 return pfr0;
7451 }
7452 #endif
7453
7454 /*
7455 * Shared logic between LORID and the rest of the LOR* registers.
7456 * Secure state exclusion has already been dealt with.
7457 */
7458 static CPAccessResult access_lor_ns(CPUARMState *env,
7459 const ARMCPRegInfo *ri, bool isread)
7460 {
7461 int el = arm_current_el(env);
7462
7463 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7464 return CP_ACCESS_TRAP_EL2;
7465 }
7466 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7467 return CP_ACCESS_TRAP_EL3;
7468 }
7469 return CP_ACCESS_OK;
7470 }
7471
7472 static CPAccessResult access_lor_other(CPUARMState *env,
7473 const ARMCPRegInfo *ri, bool isread)
7474 {
7475 if (arm_is_secure_below_el3(env)) {
7476 /* Access denied in secure mode. */
7477 return CP_ACCESS_TRAP;
7478 }
7479 return access_lor_ns(env, ri, isread);
7480 }
7481
7482 /*
7483 * A trivial implementation of ARMv8.1-LOR leaves all of these
7484 * registers fixed at 0, which indicates that there are zero
7485 * supported Limited Ordering regions.
7486 */
7487 static const ARMCPRegInfo lor_reginfo[] = {
7488 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7489 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7490 .access = PL1_RW, .accessfn = access_lor_other,
7491 .fgt = FGT_LORSA_EL1,
7492 .type = ARM_CP_CONST, .resetvalue = 0 },
7493 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7494 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7495 .access = PL1_RW, .accessfn = access_lor_other,
7496 .fgt = FGT_LOREA_EL1,
7497 .type = ARM_CP_CONST, .resetvalue = 0 },
7498 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7499 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7500 .access = PL1_RW, .accessfn = access_lor_other,
7501 .fgt = FGT_LORN_EL1,
7502 .type = ARM_CP_CONST, .resetvalue = 0 },
7503 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7505 .access = PL1_RW, .accessfn = access_lor_other,
7506 .fgt = FGT_LORC_EL1,
7507 .type = ARM_CP_CONST, .resetvalue = 0 },
7508 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7510 .access = PL1_R, .accessfn = access_lor_ns,
7511 .fgt = FGT_LORID_EL1,
7512 .type = ARM_CP_CONST, .resetvalue = 0 },
7513 };
7514
7515 #ifdef TARGET_AARCH64
7516 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7517 bool isread)
7518 {
7519 int el = arm_current_el(env);
7520
7521 if (el < 2 &&
7522 arm_is_el2_enabled(env) &&
7523 !(arm_hcr_el2_eff(env) & HCR_APK)) {
7524 return CP_ACCESS_TRAP_EL2;
7525 }
7526 if (el < 3 &&
7527 arm_feature(env, ARM_FEATURE_EL3) &&
7528 !(env->cp15.scr_el3 & SCR_APK)) {
7529 return CP_ACCESS_TRAP_EL3;
7530 }
7531 return CP_ACCESS_OK;
7532 }
7533
7534 static const ARMCPRegInfo pauth_reginfo[] = {
7535 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7537 .access = PL1_RW, .accessfn = access_pauth,
7538 .fgt = FGT_APDAKEY,
7539 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7540 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7542 .access = PL1_RW, .accessfn = access_pauth,
7543 .fgt = FGT_APDAKEY,
7544 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7545 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7547 .access = PL1_RW, .accessfn = access_pauth,
7548 .fgt = FGT_APDBKEY,
7549 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7550 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7552 .access = PL1_RW, .accessfn = access_pauth,
7553 .fgt = FGT_APDBKEY,
7554 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7555 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7557 .access = PL1_RW, .accessfn = access_pauth,
7558 .fgt = FGT_APGAKEY,
7559 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7560 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7562 .access = PL1_RW, .accessfn = access_pauth,
7563 .fgt = FGT_APGAKEY,
7564 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7565 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7567 .access = PL1_RW, .accessfn = access_pauth,
7568 .fgt = FGT_APIAKEY,
7569 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7570 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7572 .access = PL1_RW, .accessfn = access_pauth,
7573 .fgt = FGT_APIAKEY,
7574 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7575 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7576 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7577 .access = PL1_RW, .accessfn = access_pauth,
7578 .fgt = FGT_APIBKEY,
7579 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7580 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7582 .access = PL1_RW, .accessfn = access_pauth,
7583 .fgt = FGT_APIBKEY,
7584 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7585 };
7586
7587 static const ARMCPRegInfo tlbirange_reginfo[] = {
7588 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7590 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7591 .fgt = FGT_TLBIRVAE1IS,
7592 .writefn = tlbi_aa64_rvae1is_write },
7593 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7595 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7596 .fgt = FGT_TLBIRVAAE1IS,
7597 .writefn = tlbi_aa64_rvae1is_write },
7598 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7600 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7601 .fgt = FGT_TLBIRVALE1IS,
7602 .writefn = tlbi_aa64_rvae1is_write },
7603 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7604 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7605 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7606 .fgt = FGT_TLBIRVAALE1IS,
7607 .writefn = tlbi_aa64_rvae1is_write },
7608 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7610 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7611 .fgt = FGT_TLBIRVAE1OS,
7612 .writefn = tlbi_aa64_rvae1is_write },
7613 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7614 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7615 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7616 .fgt = FGT_TLBIRVAAE1OS,
7617 .writefn = tlbi_aa64_rvae1is_write },
7618 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7619 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7620 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7621 .fgt = FGT_TLBIRVALE1OS,
7622 .writefn = tlbi_aa64_rvae1is_write },
7623 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7624 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7625 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7626 .fgt = FGT_TLBIRVAALE1OS,
7627 .writefn = tlbi_aa64_rvae1is_write },
7628 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7629 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7630 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7631 .fgt = FGT_TLBIRVAE1,
7632 .writefn = tlbi_aa64_rvae1_write },
7633 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7634 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7635 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7636 .fgt = FGT_TLBIRVAAE1,
7637 .writefn = tlbi_aa64_rvae1_write },
7638 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7639 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7640 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7641 .fgt = FGT_TLBIRVALE1,
7642 .writefn = tlbi_aa64_rvae1_write },
7643 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7644 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7645 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7646 .fgt = FGT_TLBIRVAALE1,
7647 .writefn = tlbi_aa64_rvae1_write },
7648 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7649 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7650 .access = PL2_W, .type = ARM_CP_NO_RAW,
7651 .writefn = tlbi_aa64_ripas2e1is_write },
7652 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7653 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7654 .access = PL2_W, .type = ARM_CP_NO_RAW,
7655 .writefn = tlbi_aa64_ripas2e1is_write },
7656 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7657 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7658 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7659 .writefn = tlbi_aa64_rvae2is_write },
7660 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7661 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7662 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7663 .writefn = tlbi_aa64_rvae2is_write },
7664 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7665 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7666 .access = PL2_W, .type = ARM_CP_NO_RAW,
7667 .writefn = tlbi_aa64_ripas2e1_write },
7668 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7669 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7670 .access = PL2_W, .type = ARM_CP_NO_RAW,
7671 .writefn = tlbi_aa64_ripas2e1_write },
7672 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7673 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7674 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7675 .writefn = tlbi_aa64_rvae2is_write },
7676 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7678 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7679 .writefn = tlbi_aa64_rvae2is_write },
7680 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7681 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7682 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7683 .writefn = tlbi_aa64_rvae2_write },
7684 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7685 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7686 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7687 .writefn = tlbi_aa64_rvae2_write },
7688 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7689 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7690 .access = PL3_W, .type = ARM_CP_NO_RAW,
7691 .writefn = tlbi_aa64_rvae3is_write },
7692 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7693 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7694 .access = PL3_W, .type = ARM_CP_NO_RAW,
7695 .writefn = tlbi_aa64_rvae3is_write },
7696 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7697 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7698 .access = PL3_W, .type = ARM_CP_NO_RAW,
7699 .writefn = tlbi_aa64_rvae3is_write },
7700 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7701 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7702 .access = PL3_W, .type = ARM_CP_NO_RAW,
7703 .writefn = tlbi_aa64_rvae3is_write },
7704 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7705 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7706 .access = PL3_W, .type = ARM_CP_NO_RAW,
7707 .writefn = tlbi_aa64_rvae3_write },
7708 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7710 .access = PL3_W, .type = ARM_CP_NO_RAW,
7711 .writefn = tlbi_aa64_rvae3_write },
7712 };
7713
7714 static const ARMCPRegInfo tlbios_reginfo[] = {
7715 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7716 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7717 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7718 .fgt = FGT_TLBIVMALLE1OS,
7719 .writefn = tlbi_aa64_vmalle1is_write },
7720 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7721 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7722 .fgt = FGT_TLBIVAE1OS,
7723 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7724 .writefn = tlbi_aa64_vae1is_write },
7725 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7726 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7727 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7728 .fgt = FGT_TLBIASIDE1OS,
7729 .writefn = tlbi_aa64_vmalle1is_write },
7730 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7732 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7733 .fgt = FGT_TLBIVAAE1OS,
7734 .writefn = tlbi_aa64_vae1is_write },
7735 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7736 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7737 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7738 .fgt = FGT_TLBIVALE1OS,
7739 .writefn = tlbi_aa64_vae1is_write },
7740 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7741 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7742 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7743 .fgt = FGT_TLBIVAALE1OS,
7744 .writefn = tlbi_aa64_vae1is_write },
7745 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7746 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7747 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7748 .writefn = tlbi_aa64_alle2is_write },
7749 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7750 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7751 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7752 .writefn = tlbi_aa64_vae2is_write },
7753 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7754 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7755 .access = PL2_W, .type = ARM_CP_NO_RAW,
7756 .writefn = tlbi_aa64_alle1is_write },
7757 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7758 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7759 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7760 .writefn = tlbi_aa64_vae2is_write },
7761 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7762 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7763 .access = PL2_W, .type = ARM_CP_NO_RAW,
7764 .writefn = tlbi_aa64_alle1is_write },
7765 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7766 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7767 .access = PL2_W, .type = ARM_CP_NOP },
7768 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7769 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7770 .access = PL2_W, .type = ARM_CP_NOP },
7771 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7773 .access = PL2_W, .type = ARM_CP_NOP },
7774 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7775 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7776 .access = PL2_W, .type = ARM_CP_NOP },
7777 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7778 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7779 .access = PL3_W, .type = ARM_CP_NO_RAW,
7780 .writefn = tlbi_aa64_alle3is_write },
7781 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7783 .access = PL3_W, .type = ARM_CP_NO_RAW,
7784 .writefn = tlbi_aa64_vae3is_write },
7785 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7786 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7787 .access = PL3_W, .type = ARM_CP_NO_RAW,
7788 .writefn = tlbi_aa64_vae3is_write },
7789 };
7790
7791 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7792 {
7793 Error *err = NULL;
7794 uint64_t ret;
7795
7796 /* Success sets NZCV = 0000. */
7797 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7798
7799 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7800 /*
7801 * ??? Failed, for unknown reasons in the crypto subsystem.
7802 * The best we can do is log the reason and return the
7803 * timed-out indication to the guest. There is no reason
7804 * we know to expect this failure to be transitory, so the
7805 * guest may well hang retrying the operation.
7806 */
7807 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7808 ri->name, error_get_pretty(err));
7809 error_free(err);
7810
7811 env->ZF = 0; /* NZCF = 0100 */
7812 return 0;
7813 }
7814 return ret;
7815 }
7816
7817 /* We do not support re-seeding, so the two registers operate the same. */
7818 static const ARMCPRegInfo rndr_reginfo[] = {
7819 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7820 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7821 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7822 .access = PL0_R, .readfn = rndr_readfn },
7823 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7824 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7825 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7826 .access = PL0_R, .readfn = rndr_readfn },
7827 };
7828
7829 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7830 uint64_t value)
7831 {
7832 #ifdef CONFIG_TCG
7833 ARMCPU *cpu = env_archcpu(env);
7834 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7835 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7836 uint64_t vaddr_in = (uint64_t) value;
7837 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7838 void *haddr;
7839 int mem_idx = cpu_mmu_index(env, false);
7840
7841 /* This won't be crossing page boundaries */
7842 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7843 if (haddr) {
7844 #ifndef CONFIG_USER_ONLY
7845
7846 ram_addr_t offset;
7847 MemoryRegion *mr;
7848
7849 /* RCU lock is already being held */
7850 mr = memory_region_from_host(haddr, &offset);
7851
7852 if (mr) {
7853 memory_region_writeback(mr, offset, dline_size);
7854 }
7855 #endif /*CONFIG_USER_ONLY*/
7856 }
7857 #else
7858 /* Handled by hardware accelerator. */
7859 g_assert_not_reached();
7860 #endif /* CONFIG_TCG */
7861 }
7862
7863 static const ARMCPRegInfo dcpop_reg[] = {
7864 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7866 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7867 .fgt = FGT_DCCVAP,
7868 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7869 };
7870
7871 static const ARMCPRegInfo dcpodp_reg[] = {
7872 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7873 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7874 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7875 .fgt = FGT_DCCVADP,
7876 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7877 };
7878
7879 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7880 bool isread)
7881 {
7882 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7883 return CP_ACCESS_TRAP_EL2;
7884 }
7885
7886 return CP_ACCESS_OK;
7887 }
7888
7889 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7890 bool isread)
7891 {
7892 int el = arm_current_el(env);
7893 if (el < 2 && arm_is_el2_enabled(env)) {
7894 uint64_t hcr = arm_hcr_el2_eff(env);
7895 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7896 return CP_ACCESS_TRAP_EL2;
7897 }
7898 }
7899 if (el < 3 &&
7900 arm_feature(env, ARM_FEATURE_EL3) &&
7901 !(env->cp15.scr_el3 & SCR_ATA)) {
7902 return CP_ACCESS_TRAP_EL3;
7903 }
7904 return CP_ACCESS_OK;
7905 }
7906
7907 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
7908 bool isread)
7909 {
7910 CPAccessResult nv1 = access_nv1(env, ri, isread);
7911
7912 if (nv1 != CP_ACCESS_OK) {
7913 return nv1;
7914 }
7915 return access_mte(env, ri, isread);
7916 }
7917
7918 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
7919 bool isread)
7920 {
7921 /*
7922 * TFSR_EL2: similar to generic access_mte(), but we need to
7923 * account for FEAT_NV. At EL1 this must be a FEAT_NV access;
7924 * if NV2 is enabled then we will redirect this to TFSR_EL1
7925 * after doing the HCR and SCR ATA traps; otherwise this will
7926 * be a trap to EL2 and the HCR/SCR traps do not apply.
7927 */
7928 int el = arm_current_el(env);
7929
7930 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
7931 return CP_ACCESS_OK;
7932 }
7933 if (el < 2 && arm_is_el2_enabled(env)) {
7934 uint64_t hcr = arm_hcr_el2_eff(env);
7935 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7936 return CP_ACCESS_TRAP_EL2;
7937 }
7938 }
7939 if (el < 3 &&
7940 arm_feature(env, ARM_FEATURE_EL3) &&
7941 !(env->cp15.scr_el3 & SCR_ATA)) {
7942 return CP_ACCESS_TRAP_EL3;
7943 }
7944 return CP_ACCESS_OK;
7945 }
7946
7947 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7948 {
7949 return env->pstate & PSTATE_TCO;
7950 }
7951
7952 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7953 {
7954 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7955 }
7956
7957 static const ARMCPRegInfo mte_reginfo[] = {
7958 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7959 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7960 .access = PL1_RW, .accessfn = access_mte,
7961 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7962 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7963 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7964 .access = PL1_RW, .accessfn = access_tfsr_el1,
7965 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
7966 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7967 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7968 .type = ARM_CP_NV2_REDIRECT,
7969 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7970 .access = PL2_RW, .accessfn = access_tfsr_el2,
7971 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7972 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7973 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7974 .access = PL3_RW,
7975 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7976 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7977 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7978 .access = PL1_RW, .accessfn = access_mte,
7979 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7980 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7981 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7982 .access = PL1_RW, .accessfn = access_mte,
7983 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7984 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7985 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7986 .type = ARM_CP_NO_RAW,
7987 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7988 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7989 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7990 .type = ARM_CP_NOP, .access = PL1_W,
7991 .fgt = FGT_DCIVAC,
7992 .accessfn = aa64_cacheop_poc_access },
7993 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7994 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7995 .fgt = FGT_DCISW,
7996 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7997 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7998 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7999 .type = ARM_CP_NOP, .access = PL1_W,
8000 .fgt = FGT_DCIVAC,
8001 .accessfn = aa64_cacheop_poc_access },
8002 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
8003 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
8004 .fgt = FGT_DCISW,
8005 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8006 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
8007 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
8008 .fgt = FGT_DCCSW,
8009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8010 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
8011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
8012 .fgt = FGT_DCCSW,
8013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8014 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
8015 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
8016 .fgt = FGT_DCCISW,
8017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8018 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
8019 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
8020 .fgt = FGT_DCCISW,
8021 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
8022 };
8023
8024 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
8025 { .name = "TCO", .state = ARM_CP_STATE_AA64,
8026 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
8027 .type = ARM_CP_CONST, .access = PL0_RW, },
8028 };
8029
8030 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
8031 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
8032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
8033 .type = ARM_CP_NOP, .access = PL0_W,
8034 .fgt = FGT_DCCVAC,
8035 .accessfn = aa64_cacheop_poc_access },
8036 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
8037 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
8038 .type = ARM_CP_NOP, .access = PL0_W,
8039 .fgt = FGT_DCCVAC,
8040 .accessfn = aa64_cacheop_poc_access },
8041 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
8042 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
8043 .type = ARM_CP_NOP, .access = PL0_W,
8044 .fgt = FGT_DCCVAP,
8045 .accessfn = aa64_cacheop_poc_access },
8046 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
8047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
8048 .type = ARM_CP_NOP, .access = PL0_W,
8049 .fgt = FGT_DCCVAP,
8050 .accessfn = aa64_cacheop_poc_access },
8051 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
8052 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
8053 .type = ARM_CP_NOP, .access = PL0_W,
8054 .fgt = FGT_DCCVADP,
8055 .accessfn = aa64_cacheop_poc_access },
8056 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
8057 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
8058 .type = ARM_CP_NOP, .access = PL0_W,
8059 .fgt = FGT_DCCVADP,
8060 .accessfn = aa64_cacheop_poc_access },
8061 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
8062 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
8063 .type = ARM_CP_NOP, .access = PL0_W,
8064 .fgt = FGT_DCCIVAC,
8065 .accessfn = aa64_cacheop_poc_access },
8066 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
8067 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
8068 .type = ARM_CP_NOP, .access = PL0_W,
8069 .fgt = FGT_DCCIVAC,
8070 .accessfn = aa64_cacheop_poc_access },
8071 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
8072 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
8073 .access = PL0_W, .type = ARM_CP_DC_GVA,
8074 #ifndef CONFIG_USER_ONLY
8075 /* Avoid overhead of an access check that always passes in user-mode */
8076 .accessfn = aa64_zva_access,
8077 .fgt = FGT_DCZVA,
8078 #endif
8079 },
8080 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
8081 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
8082 .access = PL0_W, .type = ARM_CP_DC_GZVA,
8083 #ifndef CONFIG_USER_ONLY
8084 /* Avoid overhead of an access check that always passes in user-mode */
8085 .accessfn = aa64_zva_access,
8086 .fgt = FGT_DCZVA,
8087 #endif
8088 },
8089 };
8090
8091 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
8092 bool isread)
8093 {
8094 uint64_t hcr = arm_hcr_el2_eff(env);
8095 int el = arm_current_el(env);
8096
8097 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
8098 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
8099 if (hcr & HCR_TGE) {
8100 return CP_ACCESS_TRAP_EL2;
8101 }
8102 return CP_ACCESS_TRAP;
8103 }
8104 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
8105 return CP_ACCESS_TRAP_EL2;
8106 }
8107 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
8108 return CP_ACCESS_TRAP_EL2;
8109 }
8110 if (el < 3
8111 && arm_feature(env, ARM_FEATURE_EL3)
8112 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
8113 return CP_ACCESS_TRAP_EL3;
8114 }
8115 return CP_ACCESS_OK;
8116 }
8117
8118 static CPAccessResult access_scxtnum_el1(CPUARMState *env,
8119 const ARMCPRegInfo *ri,
8120 bool isread)
8121 {
8122 CPAccessResult nv1 = access_nv1(env, ri, isread);
8123
8124 if (nv1 != CP_ACCESS_OK) {
8125 return nv1;
8126 }
8127 return access_scxtnum(env, ri, isread);
8128 }
8129
8130 static const ARMCPRegInfo scxtnum_reginfo[] = {
8131 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
8132 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
8133 .access = PL0_RW, .accessfn = access_scxtnum,
8134 .fgt = FGT_SCXTNUM_EL0,
8135 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
8136 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
8137 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
8138 .access = PL1_RW, .accessfn = access_scxtnum_el1,
8139 .fgt = FGT_SCXTNUM_EL1,
8140 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
8141 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
8142 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
8143 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
8144 .access = PL2_RW, .accessfn = access_scxtnum,
8145 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
8146 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
8147 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
8148 .access = PL3_RW,
8149 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
8150 };
8151
8152 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
8153 bool isread)
8154 {
8155 if (arm_current_el(env) == 2 &&
8156 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
8157 return CP_ACCESS_TRAP_EL3;
8158 }
8159 return CP_ACCESS_OK;
8160 }
8161
8162 static const ARMCPRegInfo fgt_reginfo[] = {
8163 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8164 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
8165 .nv2_redirect_offset = 0x1b8,
8166 .access = PL2_RW, .accessfn = access_fgt,
8167 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
8168 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8169 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
8170 .nv2_redirect_offset = 0x1c0,
8171 .access = PL2_RW, .accessfn = access_fgt,
8172 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
8173 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
8174 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
8175 .nv2_redirect_offset = 0x1d0,
8176 .access = PL2_RW, .accessfn = access_fgt,
8177 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
8178 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
8179 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
8180 .nv2_redirect_offset = 0x1d8,
8181 .access = PL2_RW, .accessfn = access_fgt,
8182 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
8183 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
8184 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
8185 .nv2_redirect_offset = 0x1c8,
8186 .access = PL2_RW, .accessfn = access_fgt,
8187 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
8188 };
8189
8190 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
8191 uint64_t value)
8192 {
8193 /*
8194 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
8195 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
8196 * about the RESS bits at the top -- we choose the "generate an EL2
8197 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
8198 * the ptw.c code detect the resulting invalid address).
8199 */
8200 env->cp15.vncr_el2 = value & ~0xfffULL;
8201 }
8202
8203 static const ARMCPRegInfo nv2_reginfo[] = {
8204 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
8205 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
8206 .access = PL2_RW,
8207 .writefn = vncr_write,
8208 .nv2_redirect_offset = 0xb0,
8209 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
8210 };
8211
8212 #endif /* TARGET_AARCH64 */
8213
8214 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
8215 bool isread)
8216 {
8217 int el = arm_current_el(env);
8218
8219 if (el == 0) {
8220 uint64_t sctlr = arm_sctlr(env, el);
8221 if (!(sctlr & SCTLR_EnRCTX)) {
8222 return CP_ACCESS_TRAP;
8223 }
8224 } else if (el == 1) {
8225 uint64_t hcr = arm_hcr_el2_eff(env);
8226 if (hcr & HCR_NV) {
8227 return CP_ACCESS_TRAP_EL2;
8228 }
8229 }
8230 return CP_ACCESS_OK;
8231 }
8232
8233 static const ARMCPRegInfo predinv_reginfo[] = {
8234 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
8235 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
8236 .fgt = FGT_CFPRCTX,
8237 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8238 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
8239 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
8240 .fgt = FGT_DVPRCTX,
8241 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8242 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
8243 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
8244 .fgt = FGT_CPPRCTX,
8245 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8246 /*
8247 * Note the AArch32 opcodes have a different OPC1.
8248 */
8249 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
8250 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
8251 .fgt = FGT_CFPRCTX,
8252 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8253 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
8254 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
8255 .fgt = FGT_DVPRCTX,
8256 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8257 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
8258 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
8259 .fgt = FGT_CPPRCTX,
8260 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
8261 };
8262
8263 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
8264 {
8265 /* Read the high 32 bits of the current CCSIDR */
8266 return extract64(ccsidr_read(env, ri), 32, 32);
8267 }
8268
8269 static const ARMCPRegInfo ccsidr2_reginfo[] = {
8270 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
8271 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
8272 .access = PL1_R,
8273 .accessfn = access_tid4,
8274 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
8275 };
8276
8277 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8278 bool isread)
8279 {
8280 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
8281 return CP_ACCESS_TRAP_EL2;
8282 }
8283
8284 return CP_ACCESS_OK;
8285 }
8286
8287 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8288 bool isread)
8289 {
8290 if (arm_feature(env, ARM_FEATURE_V8)) {
8291 return access_aa64_tid3(env, ri, isread);
8292 }
8293
8294 return CP_ACCESS_OK;
8295 }
8296
8297 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8298 bool isread)
8299 {
8300 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8301 return CP_ACCESS_TRAP_EL2;
8302 }
8303
8304 return CP_ACCESS_OK;
8305 }
8306
8307 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8308 const ARMCPRegInfo *ri, bool isread)
8309 {
8310 /*
8311 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8312 * in v7A, not in v8A.
8313 */
8314 if (!arm_feature(env, ARM_FEATURE_V8) &&
8315 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8316 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8317 return CP_ACCESS_TRAP_EL2;
8318 }
8319 return CP_ACCESS_OK;
8320 }
8321
8322 static const ARMCPRegInfo jazelle_regs[] = {
8323 { .name = "JIDR",
8324 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8325 .access = PL1_R, .accessfn = access_jazelle,
8326 .type = ARM_CP_CONST, .resetvalue = 0 },
8327 { .name = "JOSCR",
8328 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8329 .accessfn = access_joscr_jmcr,
8330 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8331 { .name = "JMCR",
8332 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8333 .accessfn = access_joscr_jmcr,
8334 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8335 };
8336
8337 static const ARMCPRegInfo contextidr_el2 = {
8338 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8339 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8340 .access = PL2_RW,
8341 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8342 };
8343
8344 static const ARMCPRegInfo vhe_reginfo[] = {
8345 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8346 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8347 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8348 .raw_writefn = raw_write,
8349 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8350 #ifndef CONFIG_USER_ONLY
8351 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8352 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8353 .fieldoffset =
8354 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8355 .type = ARM_CP_IO, .access = PL2_RW,
8356 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8357 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8358 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8359 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8360 .resetfn = gt_hv_timer_reset,
8361 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8362 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8363 .type = ARM_CP_IO,
8364 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8365 .access = PL2_RW,
8366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8367 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8368 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8369 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8370 .type = ARM_CP_IO | ARM_CP_ALIAS,
8371 .access = PL2_RW, .accessfn = e2h_access,
8372 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
8373 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8374 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8375 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8376 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8377 .type = ARM_CP_IO | ARM_CP_ALIAS,
8378 .access = PL2_RW, .accessfn = e2h_access,
8379 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
8380 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8381 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8382 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8383 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8384 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8385 .access = PL2_RW, .accessfn = e2h_access,
8386 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8387 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8388 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8389 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8390 .access = PL2_RW, .accessfn = e2h_access,
8391 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8392 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8393 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8394 .type = ARM_CP_IO | ARM_CP_ALIAS,
8395 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8396 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
8397 .access = PL2_RW, .accessfn = e2h_access,
8398 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8399 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8400 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8401 .type = ARM_CP_IO | ARM_CP_ALIAS,
8402 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
8403 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8404 .access = PL2_RW, .accessfn = e2h_access,
8405 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8406 #endif
8407 };
8408
8409 #ifndef CONFIG_USER_ONLY
8410 static const ARMCPRegInfo ats1e1_reginfo[] = {
8411 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8412 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8413 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8414 .fgt = FGT_ATS1E1RP,
8415 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8416 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8417 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8418 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8419 .fgt = FGT_ATS1E1WP,
8420 .accessfn = at_s1e01_access, .writefn = ats_write64 },
8421 };
8422
8423 static const ARMCPRegInfo ats1cp_reginfo[] = {
8424 { .name = "ATS1CPRP",
8425 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8427 .writefn = ats_write },
8428 { .name = "ATS1CPWP",
8429 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8430 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8431 .writefn = ats_write },
8432 };
8433 #endif
8434
8435 /*
8436 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8437 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8438 * is non-zero, which is never for ARMv7, optionally in ARMv8
8439 * and mandatorily for ARMv8.2 and up.
8440 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8441 * implementation is RAZ/WI we can ignore this detail, as we
8442 * do for ACTLR.
8443 */
8444 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8445 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8446 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8447 .access = PL1_RW, .accessfn = access_tacr,
8448 .type = ARM_CP_CONST, .resetvalue = 0 },
8449 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8450 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8451 .access = PL2_RW, .type = ARM_CP_CONST,
8452 .resetvalue = 0 },
8453 };
8454
8455 void register_cp_regs_for_features(ARMCPU *cpu)
8456 {
8457 /* Register all the coprocessor registers based on feature bits */
8458 CPUARMState *env = &cpu->env;
8459 if (arm_feature(env, ARM_FEATURE_M)) {
8460 /* M profile has no coprocessor registers */
8461 return;
8462 }
8463
8464 define_arm_cp_regs(cpu, cp_reginfo);
8465 if (!arm_feature(env, ARM_FEATURE_V8)) {
8466 /*
8467 * Must go early as it is full of wildcards that may be
8468 * overridden by later definitions.
8469 */
8470 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8471 }
8472
8473 if (arm_feature(env, ARM_FEATURE_V6)) {
8474 /* The ID registers all have impdef reset values */
8475 ARMCPRegInfo v6_idregs[] = {
8476 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8477 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8478 .access = PL1_R, .type = ARM_CP_CONST,
8479 .accessfn = access_aa32_tid3,
8480 .resetvalue = cpu->isar.id_pfr0 },
8481 /*
8482 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8483 * the value of the GIC field until after we define these regs.
8484 */
8485 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8487 .access = PL1_R, .type = ARM_CP_NO_RAW,
8488 .accessfn = access_aa32_tid3,
8489 #ifdef CONFIG_USER_ONLY
8490 .type = ARM_CP_CONST,
8491 .resetvalue = cpu->isar.id_pfr1,
8492 #else
8493 .type = ARM_CP_NO_RAW,
8494 .accessfn = access_aa32_tid3,
8495 .readfn = id_pfr1_read,
8496 .writefn = arm_cp_write_ignore
8497 #endif
8498 },
8499 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8501 .access = PL1_R, .type = ARM_CP_CONST,
8502 .accessfn = access_aa32_tid3,
8503 .resetvalue = cpu->isar.id_dfr0 },
8504 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8506 .access = PL1_R, .type = ARM_CP_CONST,
8507 .accessfn = access_aa32_tid3,
8508 .resetvalue = cpu->id_afr0 },
8509 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8511 .access = PL1_R, .type = ARM_CP_CONST,
8512 .accessfn = access_aa32_tid3,
8513 .resetvalue = cpu->isar.id_mmfr0 },
8514 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8516 .access = PL1_R, .type = ARM_CP_CONST,
8517 .accessfn = access_aa32_tid3,
8518 .resetvalue = cpu->isar.id_mmfr1 },
8519 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8521 .access = PL1_R, .type = ARM_CP_CONST,
8522 .accessfn = access_aa32_tid3,
8523 .resetvalue = cpu->isar.id_mmfr2 },
8524 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8526 .access = PL1_R, .type = ARM_CP_CONST,
8527 .accessfn = access_aa32_tid3,
8528 .resetvalue = cpu->isar.id_mmfr3 },
8529 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8531 .access = PL1_R, .type = ARM_CP_CONST,
8532 .accessfn = access_aa32_tid3,
8533 .resetvalue = cpu->isar.id_isar0 },
8534 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8536 .access = PL1_R, .type = ARM_CP_CONST,
8537 .accessfn = access_aa32_tid3,
8538 .resetvalue = cpu->isar.id_isar1 },
8539 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8541 .access = PL1_R, .type = ARM_CP_CONST,
8542 .accessfn = access_aa32_tid3,
8543 .resetvalue = cpu->isar.id_isar2 },
8544 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8546 .access = PL1_R, .type = ARM_CP_CONST,
8547 .accessfn = access_aa32_tid3,
8548 .resetvalue = cpu->isar.id_isar3 },
8549 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8551 .access = PL1_R, .type = ARM_CP_CONST,
8552 .accessfn = access_aa32_tid3,
8553 .resetvalue = cpu->isar.id_isar4 },
8554 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8556 .access = PL1_R, .type = ARM_CP_CONST,
8557 .accessfn = access_aa32_tid3,
8558 .resetvalue = cpu->isar.id_isar5 },
8559 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8561 .access = PL1_R, .type = ARM_CP_CONST,
8562 .accessfn = access_aa32_tid3,
8563 .resetvalue = cpu->isar.id_mmfr4 },
8564 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8566 .access = PL1_R, .type = ARM_CP_CONST,
8567 .accessfn = access_aa32_tid3,
8568 .resetvalue = cpu->isar.id_isar6 },
8569 };
8570 define_arm_cp_regs(cpu, v6_idregs);
8571 define_arm_cp_regs(cpu, v6_cp_reginfo);
8572 } else {
8573 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8574 }
8575 if (arm_feature(env, ARM_FEATURE_V6K)) {
8576 define_arm_cp_regs(cpu, v6k_cp_reginfo);
8577 }
8578 if (arm_feature(env, ARM_FEATURE_V7MP) &&
8579 !arm_feature(env, ARM_FEATURE_PMSA)) {
8580 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8581 }
8582 if (arm_feature(env, ARM_FEATURE_V7VE)) {
8583 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8584 }
8585 if (arm_feature(env, ARM_FEATURE_V7)) {
8586 ARMCPRegInfo clidr = {
8587 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8588 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8589 .access = PL1_R, .type = ARM_CP_CONST,
8590 .accessfn = access_tid4,
8591 .fgt = FGT_CLIDR_EL1,
8592 .resetvalue = cpu->clidr
8593 };
8594 define_one_arm_cp_reg(cpu, &clidr);
8595 define_arm_cp_regs(cpu, v7_cp_reginfo);
8596 define_debug_regs(cpu);
8597 define_pmu_regs(cpu);
8598 } else {
8599 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8600 }
8601 if (arm_feature(env, ARM_FEATURE_V8)) {
8602 /*
8603 * v8 ID registers, which all have impdef reset values.
8604 * Note that within the ID register ranges the unused slots
8605 * must all RAZ, not UNDEF; future architecture versions may
8606 * define new registers here.
8607 * ID registers which are AArch64 views of the AArch32 ID registers
8608 * which already existed in v6 and v7 are handled elsewhere,
8609 * in v6_idregs[].
8610 */
8611 int i;
8612 ARMCPRegInfo v8_idregs[] = {
8613 /*
8614 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8615 * emulation because we don't know the right value for the
8616 * GIC field until after we define these regs.
8617 */
8618 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8620 .access = PL1_R,
8621 #ifdef CONFIG_USER_ONLY
8622 .type = ARM_CP_CONST,
8623 .resetvalue = cpu->isar.id_aa64pfr0
8624 #else
8625 .type = ARM_CP_NO_RAW,
8626 .accessfn = access_aa64_tid3,
8627 .readfn = id_aa64pfr0_read,
8628 .writefn = arm_cp_write_ignore
8629 #endif
8630 },
8631 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8633 .access = PL1_R, .type = ARM_CP_CONST,
8634 .accessfn = access_aa64_tid3,
8635 .resetvalue = cpu->isar.id_aa64pfr1},
8636 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8638 .access = PL1_R, .type = ARM_CP_CONST,
8639 .accessfn = access_aa64_tid3,
8640 .resetvalue = 0 },
8641 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8643 .access = PL1_R, .type = ARM_CP_CONST,
8644 .accessfn = access_aa64_tid3,
8645 .resetvalue = 0 },
8646 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8648 .access = PL1_R, .type = ARM_CP_CONST,
8649 .accessfn = access_aa64_tid3,
8650 .resetvalue = cpu->isar.id_aa64zfr0 },
8651 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8653 .access = PL1_R, .type = ARM_CP_CONST,
8654 .accessfn = access_aa64_tid3,
8655 .resetvalue = cpu->isar.id_aa64smfr0 },
8656 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8658 .access = PL1_R, .type = ARM_CP_CONST,
8659 .accessfn = access_aa64_tid3,
8660 .resetvalue = 0 },
8661 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8663 .access = PL1_R, .type = ARM_CP_CONST,
8664 .accessfn = access_aa64_tid3,
8665 .resetvalue = 0 },
8666 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8668 .access = PL1_R, .type = ARM_CP_CONST,
8669 .accessfn = access_aa64_tid3,
8670 .resetvalue = cpu->isar.id_aa64dfr0 },
8671 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8673 .access = PL1_R, .type = ARM_CP_CONST,
8674 .accessfn = access_aa64_tid3,
8675 .resetvalue = cpu->isar.id_aa64dfr1 },
8676 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8678 .access = PL1_R, .type = ARM_CP_CONST,
8679 .accessfn = access_aa64_tid3,
8680 .resetvalue = 0 },
8681 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8683 .access = PL1_R, .type = ARM_CP_CONST,
8684 .accessfn = access_aa64_tid3,
8685 .resetvalue = 0 },
8686 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8688 .access = PL1_R, .type = ARM_CP_CONST,
8689 .accessfn = access_aa64_tid3,
8690 .resetvalue = cpu->id_aa64afr0 },
8691 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8693 .access = PL1_R, .type = ARM_CP_CONST,
8694 .accessfn = access_aa64_tid3,
8695 .resetvalue = cpu->id_aa64afr1 },
8696 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8698 .access = PL1_R, .type = ARM_CP_CONST,
8699 .accessfn = access_aa64_tid3,
8700 .resetvalue = 0 },
8701 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8703 .access = PL1_R, .type = ARM_CP_CONST,
8704 .accessfn = access_aa64_tid3,
8705 .resetvalue = 0 },
8706 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8708 .access = PL1_R, .type = ARM_CP_CONST,
8709 .accessfn = access_aa64_tid3,
8710 .resetvalue = cpu->isar.id_aa64isar0 },
8711 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8713 .access = PL1_R, .type = ARM_CP_CONST,
8714 .accessfn = access_aa64_tid3,
8715 .resetvalue = cpu->isar.id_aa64isar1 },
8716 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8718 .access = PL1_R, .type = ARM_CP_CONST,
8719 .accessfn = access_aa64_tid3,
8720 .resetvalue = cpu->isar.id_aa64isar2 },
8721 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8723 .access = PL1_R, .type = ARM_CP_CONST,
8724 .accessfn = access_aa64_tid3,
8725 .resetvalue = 0 },
8726 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8728 .access = PL1_R, .type = ARM_CP_CONST,
8729 .accessfn = access_aa64_tid3,
8730 .resetvalue = 0 },
8731 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8733 .access = PL1_R, .type = ARM_CP_CONST,
8734 .accessfn = access_aa64_tid3,
8735 .resetvalue = 0 },
8736 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8738 .access = PL1_R, .type = ARM_CP_CONST,
8739 .accessfn = access_aa64_tid3,
8740 .resetvalue = 0 },
8741 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8743 .access = PL1_R, .type = ARM_CP_CONST,
8744 .accessfn = access_aa64_tid3,
8745 .resetvalue = 0 },
8746 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8748 .access = PL1_R, .type = ARM_CP_CONST,
8749 .accessfn = access_aa64_tid3,
8750 .resetvalue = cpu->isar.id_aa64mmfr0 },
8751 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8753 .access = PL1_R, .type = ARM_CP_CONST,
8754 .accessfn = access_aa64_tid3,
8755 .resetvalue = cpu->isar.id_aa64mmfr1 },
8756 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8758 .access = PL1_R, .type = ARM_CP_CONST,
8759 .accessfn = access_aa64_tid3,
8760 .resetvalue = cpu->isar.id_aa64mmfr2 },
8761 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8763 .access = PL1_R, .type = ARM_CP_CONST,
8764 .accessfn = access_aa64_tid3,
8765 .resetvalue = 0 },
8766 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8768 .access = PL1_R, .type = ARM_CP_CONST,
8769 .accessfn = access_aa64_tid3,
8770 .resetvalue = 0 },
8771 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8773 .access = PL1_R, .type = ARM_CP_CONST,
8774 .accessfn = access_aa64_tid3,
8775 .resetvalue = 0 },
8776 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8778 .access = PL1_R, .type = ARM_CP_CONST,
8779 .accessfn = access_aa64_tid3,
8780 .resetvalue = 0 },
8781 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8783 .access = PL1_R, .type = ARM_CP_CONST,
8784 .accessfn = access_aa64_tid3,
8785 .resetvalue = 0 },
8786 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8788 .access = PL1_R, .type = ARM_CP_CONST,
8789 .accessfn = access_aa64_tid3,
8790 .resetvalue = cpu->isar.mvfr0 },
8791 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8793 .access = PL1_R, .type = ARM_CP_CONST,
8794 .accessfn = access_aa64_tid3,
8795 .resetvalue = cpu->isar.mvfr1 },
8796 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8798 .access = PL1_R, .type = ARM_CP_CONST,
8799 .accessfn = access_aa64_tid3,
8800 .resetvalue = cpu->isar.mvfr2 },
8801 /*
8802 * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8803 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8804 * as RAZ, since it is in the "reserved for future ID
8805 * registers, RAZ" part of the AArch32 encoding space.
8806 */
8807 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8808 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8809 .access = PL1_R, .type = ARM_CP_CONST,
8810 .accessfn = access_aa64_tid3,
8811 .resetvalue = 0 },
8812 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8813 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8814 .access = PL1_R, .type = ARM_CP_CONST,
8815 .accessfn = access_aa64_tid3,
8816 .resetvalue = 0 },
8817 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8818 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8819 .access = PL1_R, .type = ARM_CP_CONST,
8820 .accessfn = access_aa64_tid3,
8821 .resetvalue = 0 },
8822 /*
8823 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8824 * they're also RAZ for AArch64, and in v8 are gradually
8825 * being filled with AArch64-view-of-AArch32-ID-register
8826 * for new ID registers.
8827 */
8828 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8830 .access = PL1_R, .type = ARM_CP_CONST,
8831 .accessfn = access_aa64_tid3,
8832 .resetvalue = 0 },
8833 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8835 .access = PL1_R, .type = ARM_CP_CONST,
8836 .accessfn = access_aa64_tid3,
8837 .resetvalue = cpu->isar.id_pfr2 },
8838 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8840 .access = PL1_R, .type = ARM_CP_CONST,
8841 .accessfn = access_aa64_tid3,
8842 .resetvalue = cpu->isar.id_dfr1 },
8843 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8845 .access = PL1_R, .type = ARM_CP_CONST,
8846 .accessfn = access_aa64_tid3,
8847 .resetvalue = cpu->isar.id_mmfr5 },
8848 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8850 .access = PL1_R, .type = ARM_CP_CONST,
8851 .accessfn = access_aa64_tid3,
8852 .resetvalue = 0 },
8853 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8854 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8855 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8856 .fgt = FGT_PMCEIDN_EL0,
8857 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8858 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8859 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8860 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8861 .fgt = FGT_PMCEIDN_EL0,
8862 .resetvalue = cpu->pmceid0 },
8863 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8864 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8865 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8866 .fgt = FGT_PMCEIDN_EL0,
8867 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8868 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8869 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8870 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8871 .fgt = FGT_PMCEIDN_EL0,
8872 .resetvalue = cpu->pmceid1 },
8873 };
8874 #ifdef CONFIG_USER_ONLY
8875 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8876 { .name = "ID_AA64PFR0_EL1",
8877 .exported_bits = R_ID_AA64PFR0_FP_MASK |
8878 R_ID_AA64PFR0_ADVSIMD_MASK |
8879 R_ID_AA64PFR0_SVE_MASK |
8880 R_ID_AA64PFR0_DIT_MASK,
8881 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8882 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8883 { .name = "ID_AA64PFR1_EL1",
8884 .exported_bits = R_ID_AA64PFR1_BT_MASK |
8885 R_ID_AA64PFR1_SSBS_MASK |
8886 R_ID_AA64PFR1_MTE_MASK |
8887 R_ID_AA64PFR1_SME_MASK },
8888 { .name = "ID_AA64PFR*_EL1_RESERVED",
8889 .is_glob = true },
8890 { .name = "ID_AA64ZFR0_EL1",
8891 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8892 R_ID_AA64ZFR0_AES_MASK |
8893 R_ID_AA64ZFR0_BITPERM_MASK |
8894 R_ID_AA64ZFR0_BFLOAT16_MASK |
8895 R_ID_AA64ZFR0_SHA3_MASK |
8896 R_ID_AA64ZFR0_SM4_MASK |
8897 R_ID_AA64ZFR0_I8MM_MASK |
8898 R_ID_AA64ZFR0_F32MM_MASK |
8899 R_ID_AA64ZFR0_F64MM_MASK },
8900 { .name = "ID_AA64SMFR0_EL1",
8901 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8902 R_ID_AA64SMFR0_BI32I32_MASK |
8903 R_ID_AA64SMFR0_B16F32_MASK |
8904 R_ID_AA64SMFR0_F16F32_MASK |
8905 R_ID_AA64SMFR0_I8I32_MASK |
8906 R_ID_AA64SMFR0_F16F16_MASK |
8907 R_ID_AA64SMFR0_B16B16_MASK |
8908 R_ID_AA64SMFR0_I16I32_MASK |
8909 R_ID_AA64SMFR0_F64F64_MASK |
8910 R_ID_AA64SMFR0_I16I64_MASK |
8911 R_ID_AA64SMFR0_SMEVER_MASK |
8912 R_ID_AA64SMFR0_FA64_MASK },
8913 { .name = "ID_AA64MMFR0_EL1",
8914 .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8915 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8916 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8917 { .name = "ID_AA64MMFR1_EL1",
8918 .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8919 { .name = "ID_AA64MMFR2_EL1",
8920 .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8921 { .name = "ID_AA64MMFR*_EL1_RESERVED",
8922 .is_glob = true },
8923 { .name = "ID_AA64DFR0_EL1",
8924 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8925 { .name = "ID_AA64DFR1_EL1" },
8926 { .name = "ID_AA64DFR*_EL1_RESERVED",
8927 .is_glob = true },
8928 { .name = "ID_AA64AFR*",
8929 .is_glob = true },
8930 { .name = "ID_AA64ISAR0_EL1",
8931 .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8932 R_ID_AA64ISAR0_SHA1_MASK |
8933 R_ID_AA64ISAR0_SHA2_MASK |
8934 R_ID_AA64ISAR0_CRC32_MASK |
8935 R_ID_AA64ISAR0_ATOMIC_MASK |
8936 R_ID_AA64ISAR0_RDM_MASK |
8937 R_ID_AA64ISAR0_SHA3_MASK |
8938 R_ID_AA64ISAR0_SM3_MASK |
8939 R_ID_AA64ISAR0_SM4_MASK |
8940 R_ID_AA64ISAR0_DP_MASK |
8941 R_ID_AA64ISAR0_FHM_MASK |
8942 R_ID_AA64ISAR0_TS_MASK |
8943 R_ID_AA64ISAR0_RNDR_MASK },
8944 { .name = "ID_AA64ISAR1_EL1",
8945 .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8946 R_ID_AA64ISAR1_APA_MASK |
8947 R_ID_AA64ISAR1_API_MASK |
8948 R_ID_AA64ISAR1_JSCVT_MASK |
8949 R_ID_AA64ISAR1_FCMA_MASK |
8950 R_ID_AA64ISAR1_LRCPC_MASK |
8951 R_ID_AA64ISAR1_GPA_MASK |
8952 R_ID_AA64ISAR1_GPI_MASK |
8953 R_ID_AA64ISAR1_FRINTTS_MASK |
8954 R_ID_AA64ISAR1_SB_MASK |
8955 R_ID_AA64ISAR1_BF16_MASK |
8956 R_ID_AA64ISAR1_DGH_MASK |
8957 R_ID_AA64ISAR1_I8MM_MASK },
8958 { .name = "ID_AA64ISAR2_EL1",
8959 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8960 R_ID_AA64ISAR2_RPRES_MASK |
8961 R_ID_AA64ISAR2_GPA3_MASK |
8962 R_ID_AA64ISAR2_APA3_MASK |
8963 R_ID_AA64ISAR2_MOPS_MASK |
8964 R_ID_AA64ISAR2_BC_MASK |
8965 R_ID_AA64ISAR2_RPRFM_MASK |
8966 R_ID_AA64ISAR2_CSSC_MASK },
8967 { .name = "ID_AA64ISAR*_EL1_RESERVED",
8968 .is_glob = true },
8969 };
8970 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8971 #endif
8972 /*
8973 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8974 * TODO: For RMR, a write with bit 1 set should do something with
8975 * cpu_reset(). In the meantime, "the bit is strictly a request",
8976 * so we are in spec just ignoring writes.
8977 */
8978 if (!arm_feature(env, ARM_FEATURE_EL3) &&
8979 !arm_feature(env, ARM_FEATURE_EL2)) {
8980 ARMCPRegInfo el1_reset_regs[] = {
8981 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8982 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8983 .access = PL1_R,
8984 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8985 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8986 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8987 .access = PL1_RW, .type = ARM_CP_CONST,
8988 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8989 };
8990 define_arm_cp_regs(cpu, el1_reset_regs);
8991 }
8992 define_arm_cp_regs(cpu, v8_idregs);
8993 define_arm_cp_regs(cpu, v8_cp_reginfo);
8994 if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
8995 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
8996 }
8997
8998 for (i = 4; i < 16; i++) {
8999 /*
9000 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
9001 * For pre-v8 cores there are RAZ patterns for these in
9002 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
9003 * v8 extends the "must RAZ" part of the ID register space
9004 * to also cover c0, 0, c{8-15}, {0-7}.
9005 * These are STATE_AA32 because in the AArch64 sysreg space
9006 * c4-c7 is where the AArch64 ID registers live (and we've
9007 * already defined those in v8_idregs[]), and c8-c15 are not
9008 * "must RAZ" for AArch64.
9009 */
9010 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
9011 ARMCPRegInfo v8_aa32_raz_idregs = {
9012 .name = name,
9013 .state = ARM_CP_STATE_AA32,
9014 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
9015 .access = PL1_R, .type = ARM_CP_CONST,
9016 .accessfn = access_aa64_tid3,
9017 .resetvalue = 0 };
9018 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
9019 }
9020 }
9021
9022 /*
9023 * Register the base EL2 cpregs.
9024 * Pre v8, these registers are implemented only as part of the
9025 * Virtualization Extensions (EL2 present). Beginning with v8,
9026 * if EL2 is missing but EL3 is enabled, mostly these become
9027 * RES0 from EL3, with some specific exceptions.
9028 */
9029 if (arm_feature(env, ARM_FEATURE_EL2)
9030 || (arm_feature(env, ARM_FEATURE_EL3)
9031 && arm_feature(env, ARM_FEATURE_V8))) {
9032 uint64_t vmpidr_def = mpidr_read_val(env);
9033 ARMCPRegInfo vpidr_regs[] = {
9034 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
9035 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9036 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9037 .resetvalue = cpu->midr,
9038 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9039 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
9040 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
9041 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
9042 .access = PL2_RW, .resetvalue = cpu->midr,
9043 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9044 .nv2_redirect_offset = 0x88,
9045 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
9046 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
9047 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9048 .access = PL2_RW, .accessfn = access_el3_aa32ns,
9049 .resetvalue = vmpidr_def,
9050 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
9051 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
9052 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
9053 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
9054 .access = PL2_RW, .resetvalue = vmpidr_def,
9055 .type = ARM_CP_EL3_NO_EL2_C_NZ,
9056 .nv2_redirect_offset = 0x50,
9057 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
9058 };
9059 /*
9060 * The only field of MDCR_EL2 that has a defined architectural reset
9061 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
9062 */
9063 ARMCPRegInfo mdcr_el2 = {
9064 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
9065 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
9066 .writefn = mdcr_el2_write,
9067 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
9068 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
9069 };
9070 define_one_arm_cp_reg(cpu, &mdcr_el2);
9071 define_arm_cp_regs(cpu, vpidr_regs);
9072 define_arm_cp_regs(cpu, el2_cp_reginfo);
9073 if (arm_feature(env, ARM_FEATURE_V8)) {
9074 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
9075 }
9076 if (cpu_isar_feature(aa64_sel2, cpu)) {
9077 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
9078 }
9079 /*
9080 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
9081 * See commentary near RMR_EL1.
9082 */
9083 if (!arm_feature(env, ARM_FEATURE_EL3)) {
9084 static const ARMCPRegInfo el2_reset_regs[] = {
9085 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
9086 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
9087 .access = PL2_R,
9088 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9089 { .name = "RVBAR", .type = ARM_CP_ALIAS,
9090 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
9091 .access = PL2_R,
9092 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
9093 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
9094 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
9095 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9096 };
9097 define_arm_cp_regs(cpu, el2_reset_regs);
9098 }
9099 }
9100
9101 /* Register the base EL3 cpregs. */
9102 if (arm_feature(env, ARM_FEATURE_EL3)) {
9103 define_arm_cp_regs(cpu, el3_cp_reginfo);
9104 ARMCPRegInfo el3_regs[] = {
9105 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
9106 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
9107 .access = PL3_R,
9108 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
9109 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
9110 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
9111 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
9112 { .name = "RMR", .state = ARM_CP_STATE_AA32,
9113 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
9114 .access = PL3_RW, .type = ARM_CP_CONST,
9115 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
9116 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
9117 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
9118 .access = PL3_RW,
9119 .raw_writefn = raw_write, .writefn = sctlr_write,
9120 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
9121 .resetvalue = cpu->reset_sctlr },
9122 };
9123
9124 define_arm_cp_regs(cpu, el3_regs);
9125 }
9126 /*
9127 * The behaviour of NSACR is sufficiently various that we don't
9128 * try to describe it in a single reginfo:
9129 * if EL3 is 64 bit, then trap to EL3 from S EL1,
9130 * reads as constant 0xc00 from NS EL1 and NS EL2
9131 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
9132 * if v7 without EL3, register doesn't exist
9133 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
9134 */
9135 if (arm_feature(env, ARM_FEATURE_EL3)) {
9136 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9137 static const ARMCPRegInfo nsacr = {
9138 .name = "NSACR", .type = ARM_CP_CONST,
9139 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9140 .access = PL1_RW, .accessfn = nsacr_access,
9141 .resetvalue = 0xc00
9142 };
9143 define_one_arm_cp_reg(cpu, &nsacr);
9144 } else {
9145 static const ARMCPRegInfo nsacr = {
9146 .name = "NSACR",
9147 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9148 .access = PL3_RW | PL1_R,
9149 .resetvalue = 0,
9150 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
9151 };
9152 define_one_arm_cp_reg(cpu, &nsacr);
9153 }
9154 } else {
9155 if (arm_feature(env, ARM_FEATURE_V8)) {
9156 static const ARMCPRegInfo nsacr = {
9157 .name = "NSACR", .type = ARM_CP_CONST,
9158 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
9159 .access = PL1_R,
9160 .resetvalue = 0xc00
9161 };
9162 define_one_arm_cp_reg(cpu, &nsacr);
9163 }
9164 }
9165
9166 if (arm_feature(env, ARM_FEATURE_PMSA)) {
9167 if (arm_feature(env, ARM_FEATURE_V6)) {
9168 /* PMSAv6 not implemented */
9169 assert(arm_feature(env, ARM_FEATURE_V7));
9170 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9171 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
9172 } else {
9173 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
9174 }
9175 } else {
9176 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
9177 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
9178 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
9179 if (cpu_isar_feature(aa32_hpd, cpu)) {
9180 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
9181 }
9182 }
9183 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
9184 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
9185 }
9186 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
9187 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
9188 }
9189 if (arm_feature(env, ARM_FEATURE_VAPA)) {
9190 ARMCPRegInfo vapa_cp_reginfo[] = {
9191 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
9192 .access = PL1_RW, .resetvalue = 0,
9193 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
9194 offsetoflow32(CPUARMState, cp15.par_ns) },
9195 .writefn = par_write},
9196 #ifndef CONFIG_USER_ONLY
9197 /* This underdecoding is safe because the reginfo is NO_RAW. */
9198 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
9199 .access = PL1_W, .accessfn = ats_access,
9200 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
9201 #endif
9202 };
9203
9204 /*
9205 * When LPAE exists this 32-bit PAR register is an alias of the
9206 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
9207 */
9208 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9209 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
9210 }
9211 define_arm_cp_regs(cpu, vapa_cp_reginfo);
9212 }
9213 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
9214 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
9215 }
9216 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
9217 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
9218 }
9219 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
9220 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
9221 }
9222 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
9223 define_arm_cp_regs(cpu, omap_cp_reginfo);
9224 }
9225 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
9226 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
9227 }
9228 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9229 define_arm_cp_regs(cpu, xscale_cp_reginfo);
9230 }
9231 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
9232 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
9233 }
9234 if (arm_feature(env, ARM_FEATURE_LPAE)) {
9235 define_arm_cp_regs(cpu, lpae_cp_reginfo);
9236 }
9237 if (cpu_isar_feature(aa32_jazelle, cpu)) {
9238 define_arm_cp_regs(cpu, jazelle_regs);
9239 }
9240 /*
9241 * Slightly awkwardly, the OMAP and StrongARM cores need all of
9242 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
9243 * be read-only (ie write causes UNDEF exception).
9244 */
9245 {
9246 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
9247 /*
9248 * Pre-v8 MIDR space.
9249 * Note that the MIDR isn't a simple constant register because
9250 * of the TI925 behaviour where writes to another register can
9251 * cause the MIDR value to change.
9252 *
9253 * Unimplemented registers in the c15 0 0 0 space default to
9254 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
9255 * and friends override accordingly.
9256 */
9257 { .name = "MIDR",
9258 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
9259 .access = PL1_R, .resetvalue = cpu->midr,
9260 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
9261 .readfn = midr_read,
9262 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9263 .type = ARM_CP_OVERRIDE },
9264 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
9265 { .name = "DUMMY",
9266 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
9267 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9268 { .name = "DUMMY",
9269 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
9270 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9271 { .name = "DUMMY",
9272 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
9273 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9274 { .name = "DUMMY",
9275 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
9276 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9277 { .name = "DUMMY",
9278 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
9279 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
9280 };
9281 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
9282 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
9283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
9284 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
9285 .fgt = FGT_MIDR_EL1,
9286 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
9287 .readfn = midr_read },
9288 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
9289 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
9290 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
9291 .access = PL1_R, .resetvalue = cpu->midr },
9292 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
9293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
9294 .access = PL1_R,
9295 .accessfn = access_aa64_tid1,
9296 .fgt = FGT_REVIDR_EL1,
9297 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9298 };
9299 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9300 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9301 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9302 .access = PL1_R, .resetvalue = cpu->midr
9303 };
9304 ARMCPRegInfo id_cp_reginfo[] = {
9305 /* These are common to v8 and pre-v8 */
9306 { .name = "CTR",
9307 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9308 .access = PL1_R, .accessfn = ctr_el0_access,
9309 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9310 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9311 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9312 .access = PL0_R, .accessfn = ctr_el0_access,
9313 .fgt = FGT_CTR_EL0,
9314 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9315 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9316 { .name = "TCMTR",
9317 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9318 .access = PL1_R,
9319 .accessfn = access_aa32_tid1,
9320 .type = ARM_CP_CONST, .resetvalue = 0 },
9321 };
9322 /* TLBTR is specific to VMSA */
9323 ARMCPRegInfo id_tlbtr_reginfo = {
9324 .name = "TLBTR",
9325 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9326 .access = PL1_R,
9327 .accessfn = access_aa32_tid1,
9328 .type = ARM_CP_CONST, .resetvalue = 0,
9329 };
9330 /* MPUIR is specific to PMSA V6+ */
9331 ARMCPRegInfo id_mpuir_reginfo = {
9332 .name = "MPUIR",
9333 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9334 .access = PL1_R, .type = ARM_CP_CONST,
9335 .resetvalue = cpu->pmsav7_dregion << 8
9336 };
9337 /* HMPUIR is specific to PMSA V8 */
9338 ARMCPRegInfo id_hmpuir_reginfo = {
9339 .name = "HMPUIR",
9340 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9341 .access = PL2_R, .type = ARM_CP_CONST,
9342 .resetvalue = cpu->pmsav8r_hdregion
9343 };
9344 static const ARMCPRegInfo crn0_wi_reginfo = {
9345 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9346 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9347 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9348 };
9349 #ifdef CONFIG_USER_ONLY
9350 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9351 { .name = "MIDR_EL1",
9352 .exported_bits = R_MIDR_EL1_REVISION_MASK |
9353 R_MIDR_EL1_PARTNUM_MASK |
9354 R_MIDR_EL1_ARCHITECTURE_MASK |
9355 R_MIDR_EL1_VARIANT_MASK |
9356 R_MIDR_EL1_IMPLEMENTER_MASK },
9357 { .name = "REVIDR_EL1" },
9358 };
9359 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9360 #endif
9361 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9362 arm_feature(env, ARM_FEATURE_STRONGARM)) {
9363 size_t i;
9364 /*
9365 * Register the blanket "writes ignored" value first to cover the
9366 * whole space. Then update the specific ID registers to allow write
9367 * access, so that they ignore writes rather than causing them to
9368 * UNDEF.
9369 */
9370 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9371 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9372 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9373 }
9374 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9375 id_cp_reginfo[i].access = PL1_RW;
9376 }
9377 id_mpuir_reginfo.access = PL1_RW;
9378 id_tlbtr_reginfo.access = PL1_RW;
9379 }
9380 if (arm_feature(env, ARM_FEATURE_V8)) {
9381 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9382 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9383 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9384 }
9385 } else {
9386 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9387 }
9388 define_arm_cp_regs(cpu, id_cp_reginfo);
9389 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9390 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9391 } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9392 arm_feature(env, ARM_FEATURE_V8)) {
9393 uint32_t i = 0;
9394 char *tmp_string;
9395
9396 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9397 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9398 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9399
9400 /* Register alias is only valid for first 32 indexes */
9401 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9402 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9403 uint8_t opc1 = extract32(i, 4, 1);
9404 uint8_t opc2 = extract32(i, 0, 1) << 2;
9405
9406 tmp_string = g_strdup_printf("PRBAR%u", i);
9407 ARMCPRegInfo tmp_prbarn_reginfo = {
9408 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9409 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9410 .access = PL1_RW, .resetvalue = 0,
9411 .accessfn = access_tvm_trvm,
9412 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9413 };
9414 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9415 g_free(tmp_string);
9416
9417 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9418 tmp_string = g_strdup_printf("PRLAR%u", i);
9419 ARMCPRegInfo tmp_prlarn_reginfo = {
9420 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9421 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9422 .access = PL1_RW, .resetvalue = 0,
9423 .accessfn = access_tvm_trvm,
9424 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9425 };
9426 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9427 g_free(tmp_string);
9428 }
9429
9430 /* Register alias is only valid for first 32 indexes */
9431 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9432 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9433 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9434 uint8_t opc2 = extract32(i, 0, 1) << 2;
9435
9436 tmp_string = g_strdup_printf("HPRBAR%u", i);
9437 ARMCPRegInfo tmp_hprbarn_reginfo = {
9438 .name = tmp_string,
9439 .type = ARM_CP_NO_RAW,
9440 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9441 .access = PL2_RW, .resetvalue = 0,
9442 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9443 };
9444 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9445 g_free(tmp_string);
9446
9447 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9448 tmp_string = g_strdup_printf("HPRLAR%u", i);
9449 ARMCPRegInfo tmp_hprlarn_reginfo = {
9450 .name = tmp_string,
9451 .type = ARM_CP_NO_RAW,
9452 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9453 .access = PL2_RW, .resetvalue = 0,
9454 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9455 };
9456 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9457 g_free(tmp_string);
9458 }
9459 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9460 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9461 }
9462 }
9463
9464 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9465 ARMCPRegInfo mpidr_cp_reginfo[] = {
9466 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9467 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9468 .fgt = FGT_MPIDR_EL1,
9469 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9470 };
9471 #ifdef CONFIG_USER_ONLY
9472 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9473 { .name = "MPIDR_EL1",
9474 .fixed_bits = 0x0000000080000000 },
9475 };
9476 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9477 #endif
9478 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9479 }
9480
9481 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9482 ARMCPRegInfo auxcr_reginfo[] = {
9483 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9484 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9485 .access = PL1_RW, .accessfn = access_tacr,
9486 .nv2_redirect_offset = 0x118,
9487 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9488 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9490 .access = PL2_RW, .type = ARM_CP_CONST,
9491 .resetvalue = 0 },
9492 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9493 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9494 .access = PL3_RW, .type = ARM_CP_CONST,
9495 .resetvalue = 0 },
9496 };
9497 define_arm_cp_regs(cpu, auxcr_reginfo);
9498 if (cpu_isar_feature(aa32_ac2, cpu)) {
9499 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9500 }
9501 }
9502
9503 if (arm_feature(env, ARM_FEATURE_CBAR)) {
9504 /*
9505 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9506 * There are two flavours:
9507 * (1) older 32-bit only cores have a simple 32-bit CBAR
9508 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9509 * 32-bit register visible to AArch32 at a different encoding
9510 * to the "flavour 1" register and with the bits rearranged to
9511 * be able to squash a 64-bit address into the 32-bit view.
9512 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9513 * in future if we support AArch32-only configs of some of the
9514 * AArch64 cores we might need to add a specific feature flag
9515 * to indicate cores with "flavour 2" CBAR.
9516 */
9517 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9518 /* 32 bit view is [31:18] 0...0 [43:32]. */
9519 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9520 | extract64(cpu->reset_cbar, 32, 12);
9521 ARMCPRegInfo cbar_reginfo[] = {
9522 { .name = "CBAR",
9523 .type = ARM_CP_CONST,
9524 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9525 .access = PL1_R, .resetvalue = cbar32 },
9526 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9527 .type = ARM_CP_CONST,
9528 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9529 .access = PL1_R, .resetvalue = cpu->reset_cbar },
9530 };
9531 /* We don't implement a r/w 64 bit CBAR currently */
9532 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9533 define_arm_cp_regs(cpu, cbar_reginfo);
9534 } else {
9535 ARMCPRegInfo cbar = {
9536 .name = "CBAR",
9537 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9538 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9539 .fieldoffset = offsetof(CPUARMState,
9540 cp15.c15_config_base_address)
9541 };
9542 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9543 cbar.access = PL1_R;
9544 cbar.fieldoffset = 0;
9545 cbar.type = ARM_CP_CONST;
9546 }
9547 define_one_arm_cp_reg(cpu, &cbar);
9548 }
9549 }
9550
9551 if (arm_feature(env, ARM_FEATURE_VBAR)) {
9552 static const ARMCPRegInfo vbar_cp_reginfo[] = {
9553 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9554 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9555 .access = PL1_RW, .writefn = vbar_write,
9556 .accessfn = access_nv1,
9557 .fgt = FGT_VBAR_EL1,
9558 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
9559 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9560 offsetof(CPUARMState, cp15.vbar_ns) },
9561 .resetvalue = 0 },
9562 };
9563 define_arm_cp_regs(cpu, vbar_cp_reginfo);
9564 }
9565
9566 /* Generic registers whose values depend on the implementation */
9567 {
9568 ARMCPRegInfo sctlr = {
9569 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9570 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9571 .access = PL1_RW, .accessfn = access_tvm_trvm,
9572 .fgt = FGT_SCTLR_EL1,
9573 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
9574 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9575 offsetof(CPUARMState, cp15.sctlr_ns) },
9576 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9577 .raw_writefn = raw_write,
9578 };
9579 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9580 /*
9581 * Normally we would always end the TB on an SCTLR write, but Linux
9582 * arch/arm/mach-pxa/sleep.S expects two instructions following
9583 * an MMU enable to execute from cache. Imitate this behaviour.
9584 */
9585 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9586 }
9587 define_one_arm_cp_reg(cpu, &sctlr);
9588
9589 if (arm_feature(env, ARM_FEATURE_PMSA) &&
9590 arm_feature(env, ARM_FEATURE_V8)) {
9591 ARMCPRegInfo vsctlr = {
9592 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9593 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9594 .access = PL2_RW, .resetvalue = 0x0,
9595 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9596 };
9597 define_one_arm_cp_reg(cpu, &vsctlr);
9598 }
9599 }
9600
9601 if (cpu_isar_feature(aa64_lor, cpu)) {
9602 define_arm_cp_regs(cpu, lor_reginfo);
9603 }
9604 if (cpu_isar_feature(aa64_pan, cpu)) {
9605 define_one_arm_cp_reg(cpu, &pan_reginfo);
9606 }
9607 #ifndef CONFIG_USER_ONLY
9608 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9609 define_arm_cp_regs(cpu, ats1e1_reginfo);
9610 }
9611 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9612 define_arm_cp_regs(cpu, ats1cp_reginfo);
9613 }
9614 #endif
9615 if (cpu_isar_feature(aa64_uao, cpu)) {
9616 define_one_arm_cp_reg(cpu, &uao_reginfo);
9617 }
9618
9619 if (cpu_isar_feature(aa64_dit, cpu)) {
9620 define_one_arm_cp_reg(cpu, &dit_reginfo);
9621 }
9622 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9623 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9624 }
9625 if (cpu_isar_feature(any_ras, cpu)) {
9626 define_arm_cp_regs(cpu, minimal_ras_reginfo);
9627 }
9628
9629 if (cpu_isar_feature(aa64_vh, cpu) ||
9630 cpu_isar_feature(aa64_debugv8p2, cpu)) {
9631 define_one_arm_cp_reg(cpu, &contextidr_el2);
9632 }
9633 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9634 define_arm_cp_regs(cpu, vhe_reginfo);
9635 }
9636
9637 if (cpu_isar_feature(aa64_sve, cpu)) {
9638 define_arm_cp_regs(cpu, zcr_reginfo);
9639 }
9640
9641 if (cpu_isar_feature(aa64_hcx, cpu)) {
9642 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9643 }
9644
9645 #ifdef TARGET_AARCH64
9646 if (cpu_isar_feature(aa64_sme, cpu)) {
9647 define_arm_cp_regs(cpu, sme_reginfo);
9648 }
9649 if (cpu_isar_feature(aa64_pauth, cpu)) {
9650 define_arm_cp_regs(cpu, pauth_reginfo);
9651 }
9652 if (cpu_isar_feature(aa64_rndr, cpu)) {
9653 define_arm_cp_regs(cpu, rndr_reginfo);
9654 }
9655 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9656 define_arm_cp_regs(cpu, tlbirange_reginfo);
9657 }
9658 if (cpu_isar_feature(aa64_tlbios, cpu)) {
9659 define_arm_cp_regs(cpu, tlbios_reginfo);
9660 }
9661 /* Data Cache clean instructions up to PoP */
9662 if (cpu_isar_feature(aa64_dcpop, cpu)) {
9663 define_one_arm_cp_reg(cpu, dcpop_reg);
9664
9665 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9666 define_one_arm_cp_reg(cpu, dcpodp_reg);
9667 }
9668 }
9669
9670 /*
9671 * If full MTE is enabled, add all of the system registers.
9672 * If only "instructions available at EL0" are enabled,
9673 * then define only a RAZ/WI version of PSTATE.TCO.
9674 */
9675 if (cpu_isar_feature(aa64_mte, cpu)) {
9676 ARMCPRegInfo gmid_reginfo = {
9677 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9678 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9679 .access = PL1_R, .accessfn = access_aa64_tid5,
9680 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9681 };
9682 define_one_arm_cp_reg(cpu, &gmid_reginfo);
9683 define_arm_cp_regs(cpu, mte_reginfo);
9684 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9685 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9686 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9687 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9688 }
9689
9690 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9691 define_arm_cp_regs(cpu, scxtnum_reginfo);
9692 }
9693
9694 if (cpu_isar_feature(aa64_fgt, cpu)) {
9695 define_arm_cp_regs(cpu, fgt_reginfo);
9696 }
9697
9698 if (cpu_isar_feature(aa64_rme, cpu)) {
9699 define_arm_cp_regs(cpu, rme_reginfo);
9700 if (cpu_isar_feature(aa64_mte, cpu)) {
9701 define_arm_cp_regs(cpu, rme_mte_reginfo);
9702 }
9703 }
9704
9705 if (cpu_isar_feature(aa64_nv2, cpu)) {
9706 define_arm_cp_regs(cpu, nv2_reginfo);
9707 }
9708 #endif
9709
9710 if (cpu_isar_feature(any_predinv, cpu)) {
9711 define_arm_cp_regs(cpu, predinv_reginfo);
9712 }
9713
9714 if (cpu_isar_feature(any_ccidx, cpu)) {
9715 define_arm_cp_regs(cpu, ccsidr2_reginfo);
9716 }
9717
9718 #ifndef CONFIG_USER_ONLY
9719 /*
9720 * Register redirections and aliases must be done last,
9721 * after the registers from the other extensions have been defined.
9722 */
9723 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9724 define_arm_vh_e2h_redirects_aliases(cpu);
9725 }
9726 #endif
9727 }
9728
9729 /*
9730 * Private utility function for define_one_arm_cp_reg_with_opaque():
9731 * add a single reginfo struct to the hash table.
9732 */
9733 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9734 void *opaque, CPState state,
9735 CPSecureState secstate,
9736 int crm, int opc1, int opc2,
9737 const char *name)
9738 {
9739 CPUARMState *env = &cpu->env;
9740 uint32_t key;
9741 ARMCPRegInfo *r2;
9742 bool is64 = r->type & ARM_CP_64BIT;
9743 bool ns = secstate & ARM_CP_SECSTATE_NS;
9744 int cp = r->cp;
9745 size_t name_len;
9746 bool make_const;
9747
9748 switch (state) {
9749 case ARM_CP_STATE_AA32:
9750 /* We assume it is a cp15 register if the .cp field is left unset. */
9751 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9752 cp = 15;
9753 }
9754 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9755 break;
9756 case ARM_CP_STATE_AA64:
9757 /*
9758 * To allow abbreviation of ARMCPRegInfo definitions, we treat
9759 * cp == 0 as equivalent to the value for "standard guest-visible
9760 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
9761 * in their AArch64 view (the .cp value may be non-zero for the
9762 * benefit of the AArch32 view).
9763 */
9764 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9765 cp = CP_REG_ARM64_SYSREG_CP;
9766 }
9767 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9768 break;
9769 default:
9770 g_assert_not_reached();
9771 }
9772
9773 /* Overriding of an existing definition must be explicitly requested. */
9774 if (!(r->type & ARM_CP_OVERRIDE)) {
9775 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9776 if (oldreg) {
9777 assert(oldreg->type & ARM_CP_OVERRIDE);
9778 }
9779 }
9780
9781 /*
9782 * Eliminate registers that are not present because the EL is missing.
9783 * Doing this here makes it easier to put all registers for a given
9784 * feature into the same ARMCPRegInfo array and define them all at once.
9785 */
9786 make_const = false;
9787 if (arm_feature(env, ARM_FEATURE_EL3)) {
9788 /*
9789 * An EL2 register without EL2 but with EL3 is (usually) RES0.
9790 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9791 */
9792 int min_el = ctz32(r->access) / 2;
9793 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9794 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9795 return;
9796 }
9797 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9798 }
9799 } else {
9800 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9801 ? PL2_RW : PL1_RW);
9802 if ((r->access & max_el) == 0) {
9803 return;
9804 }
9805 }
9806
9807 /* Combine cpreg and name into one allocation. */
9808 name_len = strlen(name) + 1;
9809 r2 = g_malloc(sizeof(*r2) + name_len);
9810 *r2 = *r;
9811 r2->name = memcpy(r2 + 1, name, name_len);
9812
9813 /*
9814 * Update fields to match the instantiation, overwiting wildcards
9815 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9816 */
9817 r2->cp = cp;
9818 r2->crm = crm;
9819 r2->opc1 = opc1;
9820 r2->opc2 = opc2;
9821 r2->state = state;
9822 r2->secure = secstate;
9823 if (opaque) {
9824 r2->opaque = opaque;
9825 }
9826
9827 if (make_const) {
9828 /* This should not have been a very special register to begin. */
9829 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9830 assert(old_special == 0 || old_special == ARM_CP_NOP);
9831 /*
9832 * Set the special function to CONST, retaining the other flags.
9833 * This is important for e.g. ARM_CP_SVE so that we still
9834 * take the SVE trap if CPTR_EL3.EZ == 0.
9835 */
9836 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9837 /*
9838 * Usually, these registers become RES0, but there are a few
9839 * special cases like VPIDR_EL2 which have a constant non-zero
9840 * value with writes ignored.
9841 */
9842 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9843 r2->resetvalue = 0;
9844 }
9845 /*
9846 * ARM_CP_CONST has precedence, so removing the callbacks and
9847 * offsets are not strictly necessary, but it is potentially
9848 * less confusing to debug later.
9849 */
9850 r2->readfn = NULL;
9851 r2->writefn = NULL;
9852 r2->raw_readfn = NULL;
9853 r2->raw_writefn = NULL;
9854 r2->resetfn = NULL;
9855 r2->fieldoffset = 0;
9856 r2->bank_fieldoffsets[0] = 0;
9857 r2->bank_fieldoffsets[1] = 0;
9858 } else {
9859 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9860
9861 if (isbanked) {
9862 /*
9863 * Register is banked (using both entries in array).
9864 * Overwriting fieldoffset as the array is only used to define
9865 * banked registers but later only fieldoffset is used.
9866 */
9867 r2->fieldoffset = r->bank_fieldoffsets[ns];
9868 }
9869 if (state == ARM_CP_STATE_AA32) {
9870 if (isbanked) {
9871 /*
9872 * If the register is banked then we don't need to migrate or
9873 * reset the 32-bit instance in certain cases:
9874 *
9875 * 1) If the register has both 32-bit and 64-bit instances
9876 * then we can count on the 64-bit instance taking care
9877 * of the non-secure bank.
9878 * 2) If ARMv8 is enabled then we can count on a 64-bit
9879 * version taking care of the secure bank. This requires
9880 * that separate 32 and 64-bit definitions are provided.
9881 */
9882 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9883 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9884 r2->type |= ARM_CP_ALIAS;
9885 }
9886 } else if ((secstate != r->secure) && !ns) {
9887 /*
9888 * The register is not banked so we only want to allow
9889 * migration of the non-secure instance.
9890 */
9891 r2->type |= ARM_CP_ALIAS;
9892 }
9893
9894 if (HOST_BIG_ENDIAN &&
9895 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9896 r2->fieldoffset += sizeof(uint32_t);
9897 }
9898 }
9899 }
9900
9901 /*
9902 * By convention, for wildcarded registers only the first
9903 * entry is used for migration; the others are marked as
9904 * ALIAS so we don't try to transfer the register
9905 * multiple times. Special registers (ie NOP/WFI) are
9906 * never migratable and not even raw-accessible.
9907 */
9908 if (r2->type & ARM_CP_SPECIAL_MASK) {
9909 r2->type |= ARM_CP_NO_RAW;
9910 }
9911 if (((r->crm == CP_ANY) && crm != 0) ||
9912 ((r->opc1 == CP_ANY) && opc1 != 0) ||
9913 ((r->opc2 == CP_ANY) && opc2 != 0)) {
9914 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9915 }
9916
9917 /*
9918 * Check that raw accesses are either forbidden or handled. Note that
9919 * we can't assert this earlier because the setup of fieldoffset for
9920 * banked registers has to be done first.
9921 */
9922 if (!(r2->type & ARM_CP_NO_RAW)) {
9923 assert(!raw_accessors_invalid(r2));
9924 }
9925
9926 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9927 }
9928
9929
9930 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9931 const ARMCPRegInfo *r, void *opaque)
9932 {
9933 /*
9934 * Define implementations of coprocessor registers.
9935 * We store these in a hashtable because typically
9936 * there are less than 150 registers in a space which
9937 * is 16*16*16*8*8 = 262144 in size.
9938 * Wildcarding is supported for the crm, opc1 and opc2 fields.
9939 * If a register is defined twice then the second definition is
9940 * used, so this can be used to define some generic registers and
9941 * then override them with implementation specific variations.
9942 * At least one of the original and the second definition should
9943 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9944 * against accidental use.
9945 *
9946 * The state field defines whether the register is to be
9947 * visible in the AArch32 or AArch64 execution state. If the
9948 * state is set to ARM_CP_STATE_BOTH then we synthesise a
9949 * reginfo structure for the AArch32 view, which sees the lower
9950 * 32 bits of the 64 bit register.
9951 *
9952 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9953 * be wildcarded. AArch64 registers are always considered to be 64
9954 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9955 * the register, if any.
9956 */
9957 int crm, opc1, opc2;
9958 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9959 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9960 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9961 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9962 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9963 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9964 CPState state;
9965
9966 /* 64 bit registers have only CRm and Opc1 fields */
9967 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9968 /* op0 only exists in the AArch64 encodings */
9969 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9970 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9971 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9972 /*
9973 * This API is only for Arm's system coprocessors (14 and 15) or
9974 * (M-profile or v7A-and-earlier only) for implementation defined
9975 * coprocessors in the range 0..7. Our decode assumes this, since
9976 * 8..13 can be used for other insns including VFP and Neon. See
9977 * valid_cp() in translate.c. Assert here that we haven't tried
9978 * to use an invalid coprocessor number.
9979 */
9980 switch (r->state) {
9981 case ARM_CP_STATE_BOTH:
9982 /* 0 has a special meaning, but otherwise the same rules as AA32. */
9983 if (r->cp == 0) {
9984 break;
9985 }
9986 /* fall through */
9987 case ARM_CP_STATE_AA32:
9988 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9989 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9990 assert(r->cp >= 14 && r->cp <= 15);
9991 } else {
9992 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9993 }
9994 break;
9995 case ARM_CP_STATE_AA64:
9996 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9997 break;
9998 default:
9999 g_assert_not_reached();
10000 }
10001 /*
10002 * The AArch64 pseudocode CheckSystemAccess() specifies that op1
10003 * encodes a minimum access level for the register. We roll this
10004 * runtime check into our general permission check code, so check
10005 * here that the reginfo's specified permissions are strict enough
10006 * to encompass the generic architectural permission check.
10007 */
10008 if (r->state != ARM_CP_STATE_AA32) {
10009 CPAccessRights mask;
10010 switch (r->opc1) {
10011 case 0:
10012 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
10013 mask = PL0U_R | PL1_RW;
10014 break;
10015 case 1: case 2:
10016 /* min_EL EL1 */
10017 mask = PL1_RW;
10018 break;
10019 case 3:
10020 /* min_EL EL0 */
10021 mask = PL0_RW;
10022 break;
10023 case 4:
10024 case 5:
10025 /* min_EL EL2 */
10026 mask = PL2_RW;
10027 break;
10028 case 6:
10029 /* min_EL EL3 */
10030 mask = PL3_RW;
10031 break;
10032 case 7:
10033 /* min_EL EL1, secure mode only (we don't check the latter) */
10034 mask = PL1_RW;
10035 break;
10036 default:
10037 /* broken reginfo with out-of-range opc1 */
10038 g_assert_not_reached();
10039 }
10040 /* assert our permissions are not too lax (stricter is fine) */
10041 assert((r->access & ~mask) == 0);
10042 }
10043
10044 /*
10045 * Check that the register definition has enough info to handle
10046 * reads and writes if they are permitted.
10047 */
10048 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
10049 if (r->access & PL3_R) {
10050 assert((r->fieldoffset ||
10051 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10052 r->readfn);
10053 }
10054 if (r->access & PL3_W) {
10055 assert((r->fieldoffset ||
10056 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
10057 r->writefn);
10058 }
10059 }
10060
10061 for (crm = crmmin; crm <= crmmax; crm++) {
10062 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
10063 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
10064 for (state = ARM_CP_STATE_AA32;
10065 state <= ARM_CP_STATE_AA64; state++) {
10066 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
10067 continue;
10068 }
10069 if (state == ARM_CP_STATE_AA32) {
10070 /*
10071 * Under AArch32 CP registers can be common
10072 * (same for secure and non-secure world) or banked.
10073 */
10074 char *name;
10075
10076 switch (r->secure) {
10077 case ARM_CP_SECSTATE_S:
10078 case ARM_CP_SECSTATE_NS:
10079 add_cpreg_to_hashtable(cpu, r, opaque, state,
10080 r->secure, crm, opc1, opc2,
10081 r->name);
10082 break;
10083 case ARM_CP_SECSTATE_BOTH:
10084 name = g_strdup_printf("%s_S", r->name);
10085 add_cpreg_to_hashtable(cpu, r, opaque, state,
10086 ARM_CP_SECSTATE_S,
10087 crm, opc1, opc2, name);
10088 g_free(name);
10089 add_cpreg_to_hashtable(cpu, r, opaque, state,
10090 ARM_CP_SECSTATE_NS,
10091 crm, opc1, opc2, r->name);
10092 break;
10093 default:
10094 g_assert_not_reached();
10095 }
10096 } else {
10097 /*
10098 * AArch64 registers get mapped to non-secure instance
10099 * of AArch32
10100 */
10101 add_cpreg_to_hashtable(cpu, r, opaque, state,
10102 ARM_CP_SECSTATE_NS,
10103 crm, opc1, opc2, r->name);
10104 }
10105 }
10106 }
10107 }
10108 }
10109 }
10110
10111 /* Define a whole list of registers */
10112 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
10113 void *opaque, size_t len)
10114 {
10115 size_t i;
10116 for (i = 0; i < len; ++i) {
10117 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
10118 }
10119 }
10120
10121 /*
10122 * Modify ARMCPRegInfo for access from userspace.
10123 *
10124 * This is a data driven modification directed by
10125 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
10126 * user-space cannot alter any values and dynamic values pertaining to
10127 * execution state are hidden from user space view anyway.
10128 */
10129 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
10130 const ARMCPRegUserSpaceInfo *mods,
10131 size_t mods_len)
10132 {
10133 for (size_t mi = 0; mi < mods_len; ++mi) {
10134 const ARMCPRegUserSpaceInfo *m = mods + mi;
10135 GPatternSpec *pat = NULL;
10136
10137 if (m->is_glob) {
10138 pat = g_pattern_spec_new(m->name);
10139 }
10140 for (size_t ri = 0; ri < regs_len; ++ri) {
10141 ARMCPRegInfo *r = regs + ri;
10142
10143 if (pat && g_pattern_match_string(pat, r->name)) {
10144 r->type = ARM_CP_CONST;
10145 r->access = PL0U_R;
10146 r->resetvalue = 0;
10147 /* continue */
10148 } else if (strcmp(r->name, m->name) == 0) {
10149 r->type = ARM_CP_CONST;
10150 r->access = PL0U_R;
10151 r->resetvalue &= m->exported_bits;
10152 r->resetvalue |= m->fixed_bits;
10153 break;
10154 }
10155 }
10156 if (pat) {
10157 g_pattern_spec_free(pat);
10158 }
10159 }
10160 }
10161
10162 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
10163 {
10164 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
10165 }
10166
10167 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
10168 uint64_t value)
10169 {
10170 /* Helper coprocessor write function for write-ignore registers */
10171 }
10172
10173 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
10174 {
10175 /* Helper coprocessor write function for read-as-zero registers */
10176 return 0;
10177 }
10178
10179 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
10180 {
10181 /* Helper coprocessor reset function for do-nothing-on-reset registers */
10182 }
10183
10184 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
10185 {
10186 /*
10187 * Return true if it is not valid for us to switch to
10188 * this CPU mode (ie all the UNPREDICTABLE cases in
10189 * the ARM ARM CPSRWriteByInstr pseudocode).
10190 */
10191
10192 /* Changes to or from Hyp via MSR and CPS are illegal. */
10193 if (write_type == CPSRWriteByInstr &&
10194 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
10195 mode == ARM_CPU_MODE_HYP)) {
10196 return 1;
10197 }
10198
10199 switch (mode) {
10200 case ARM_CPU_MODE_USR:
10201 return 0;
10202 case ARM_CPU_MODE_SYS:
10203 case ARM_CPU_MODE_SVC:
10204 case ARM_CPU_MODE_ABT:
10205 case ARM_CPU_MODE_UND:
10206 case ARM_CPU_MODE_IRQ:
10207 case ARM_CPU_MODE_FIQ:
10208 /*
10209 * Note that we don't implement the IMPDEF NSACR.RFR which in v7
10210 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
10211 */
10212 /*
10213 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
10214 * and CPS are treated as illegal mode changes.
10215 */
10216 if (write_type == CPSRWriteByInstr &&
10217 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
10218 (arm_hcr_el2_eff(env) & HCR_TGE)) {
10219 return 1;
10220 }
10221 return 0;
10222 case ARM_CPU_MODE_HYP:
10223 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
10224 case ARM_CPU_MODE_MON:
10225 return arm_current_el(env) < 3;
10226 default:
10227 return 1;
10228 }
10229 }
10230
10231 uint32_t cpsr_read(CPUARMState *env)
10232 {
10233 int ZF;
10234 ZF = (env->ZF == 0);
10235 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
10236 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
10237 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
10238 | ((env->condexec_bits & 0xfc) << 8)
10239 | (env->GE << 16) | (env->daif & CPSR_AIF);
10240 }
10241
10242 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
10243 CPSRWriteType write_type)
10244 {
10245 uint32_t changed_daif;
10246 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
10247 (mask & (CPSR_M | CPSR_E | CPSR_IL));
10248
10249 if (mask & CPSR_NZCV) {
10250 env->ZF = (~val) & CPSR_Z;
10251 env->NF = val;
10252 env->CF = (val >> 29) & 1;
10253 env->VF = (val << 3) & 0x80000000;
10254 }
10255 if (mask & CPSR_Q) {
10256 env->QF = ((val & CPSR_Q) != 0);
10257 }
10258 if (mask & CPSR_T) {
10259 env->thumb = ((val & CPSR_T) != 0);
10260 }
10261 if (mask & CPSR_IT_0_1) {
10262 env->condexec_bits &= ~3;
10263 env->condexec_bits |= (val >> 25) & 3;
10264 }
10265 if (mask & CPSR_IT_2_7) {
10266 env->condexec_bits &= 3;
10267 env->condexec_bits |= (val >> 8) & 0xfc;
10268 }
10269 if (mask & CPSR_GE) {
10270 env->GE = (val >> 16) & 0xf;
10271 }
10272
10273 /*
10274 * In a V7 implementation that includes the security extensions but does
10275 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10276 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10277 * bits respectively.
10278 *
10279 * In a V8 implementation, it is permitted for privileged software to
10280 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10281 */
10282 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10283 arm_feature(env, ARM_FEATURE_EL3) &&
10284 !arm_feature(env, ARM_FEATURE_EL2) &&
10285 !arm_is_secure(env)) {
10286
10287 changed_daif = (env->daif ^ val) & mask;
10288
10289 if (changed_daif & CPSR_A) {
10290 /*
10291 * Check to see if we are allowed to change the masking of async
10292 * abort exceptions from a non-secure state.
10293 */
10294 if (!(env->cp15.scr_el3 & SCR_AW)) {
10295 qemu_log_mask(LOG_GUEST_ERROR,
10296 "Ignoring attempt to switch CPSR_A flag from "
10297 "non-secure world with SCR.AW bit clear\n");
10298 mask &= ~CPSR_A;
10299 }
10300 }
10301
10302 if (changed_daif & CPSR_F) {
10303 /*
10304 * Check to see if we are allowed to change the masking of FIQ
10305 * exceptions from a non-secure state.
10306 */
10307 if (!(env->cp15.scr_el3 & SCR_FW)) {
10308 qemu_log_mask(LOG_GUEST_ERROR,
10309 "Ignoring attempt to switch CPSR_F flag from "
10310 "non-secure world with SCR.FW bit clear\n");
10311 mask &= ~CPSR_F;
10312 }
10313
10314 /*
10315 * Check whether non-maskable FIQ (NMFI) support is enabled.
10316 * If this bit is set software is not allowed to mask
10317 * FIQs, but is allowed to set CPSR_F to 0.
10318 */
10319 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10320 (val & CPSR_F)) {
10321 qemu_log_mask(LOG_GUEST_ERROR,
10322 "Ignoring attempt to enable CPSR_F flag "
10323 "(non-maskable FIQ [NMFI] support enabled)\n");
10324 mask &= ~CPSR_F;
10325 }
10326 }
10327 }
10328
10329 env->daif &= ~(CPSR_AIF & mask);
10330 env->daif |= val & CPSR_AIF & mask;
10331
10332 if (write_type != CPSRWriteRaw &&
10333 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10334 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10335 /*
10336 * Note that we can only get here in USR mode if this is a
10337 * gdb stub write; for this case we follow the architectural
10338 * behaviour for guest writes in USR mode of ignoring an attempt
10339 * to switch mode. (Those are caught by translate.c for writes
10340 * triggered by guest instructions.)
10341 */
10342 mask &= ~CPSR_M;
10343 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10344 /*
10345 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10346 * v7, and has defined behaviour in v8:
10347 * + leave CPSR.M untouched
10348 * + allow changes to the other CPSR fields
10349 * + set PSTATE.IL
10350 * For user changes via the GDB stub, we don't set PSTATE.IL,
10351 * as this would be unnecessarily harsh for a user error.
10352 */
10353 mask &= ~CPSR_M;
10354 if (write_type != CPSRWriteByGDBStub &&
10355 arm_feature(env, ARM_FEATURE_V8)) {
10356 mask |= CPSR_IL;
10357 val |= CPSR_IL;
10358 }
10359 qemu_log_mask(LOG_GUEST_ERROR,
10360 "Illegal AArch32 mode switch attempt from %s to %s\n",
10361 aarch32_mode_name(env->uncached_cpsr),
10362 aarch32_mode_name(val));
10363 } else {
10364 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10365 write_type == CPSRWriteExceptionReturn ?
10366 "Exception return from AArch32" :
10367 "AArch32 mode switch from",
10368 aarch32_mode_name(env->uncached_cpsr),
10369 aarch32_mode_name(val), env->regs[15]);
10370 switch_mode(env, val & CPSR_M);
10371 }
10372 }
10373 mask &= ~CACHED_CPSR_BITS;
10374 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10375 if (tcg_enabled() && rebuild_hflags) {
10376 arm_rebuild_hflags(env);
10377 }
10378 }
10379
10380 #ifdef CONFIG_USER_ONLY
10381
10382 static void switch_mode(CPUARMState *env, int mode)
10383 {
10384 ARMCPU *cpu = env_archcpu(env);
10385
10386 if (mode != ARM_CPU_MODE_USR) {
10387 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10388 }
10389 }
10390
10391 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10392 uint32_t cur_el, bool secure)
10393 {
10394 return 1;
10395 }
10396
10397 void aarch64_sync_64_to_32(CPUARMState *env)
10398 {
10399 g_assert_not_reached();
10400 }
10401
10402 #else
10403
10404 static void switch_mode(CPUARMState *env, int mode)
10405 {
10406 int old_mode;
10407 int i;
10408
10409 old_mode = env->uncached_cpsr & CPSR_M;
10410 if (mode == old_mode) {
10411 return;
10412 }
10413
10414 if (old_mode == ARM_CPU_MODE_FIQ) {
10415 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10416 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10417 } else if (mode == ARM_CPU_MODE_FIQ) {
10418 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10419 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10420 }
10421
10422 i = bank_number(old_mode);
10423 env->banked_r13[i] = env->regs[13];
10424 env->banked_spsr[i] = env->spsr;
10425
10426 i = bank_number(mode);
10427 env->regs[13] = env->banked_r13[i];
10428 env->spsr = env->banked_spsr[i];
10429
10430 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10431 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10432 }
10433
10434 /*
10435 * Physical Interrupt Target EL Lookup Table
10436 *
10437 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10438 *
10439 * The below multi-dimensional table is used for looking up the target
10440 * exception level given numerous condition criteria. Specifically, the
10441 * target EL is based on SCR and HCR routing controls as well as the
10442 * currently executing EL and secure state.
10443 *
10444 * Dimensions:
10445 * target_el_table[2][2][2][2][2][4]
10446 * | | | | | +--- Current EL
10447 * | | | | +------ Non-secure(0)/Secure(1)
10448 * | | | +--------- HCR mask override
10449 * | | +------------ SCR exec state control
10450 * | +--------------- SCR mask override
10451 * +------------------ 32-bit(0)/64-bit(1) EL3
10452 *
10453 * The table values are as such:
10454 * 0-3 = EL0-EL3
10455 * -1 = Cannot occur
10456 *
10457 * The ARM ARM target EL table includes entries indicating that an "exception
10458 * is not taken". The two cases where this is applicable are:
10459 * 1) An exception is taken from EL3 but the SCR does not have the exception
10460 * routed to EL3.
10461 * 2) An exception is taken from EL2 but the HCR does not have the exception
10462 * routed to EL2.
10463 * In these two cases, the below table contain a target of EL1. This value is
10464 * returned as it is expected that the consumer of the table data will check
10465 * for "target EL >= current EL" to ensure the exception is not taken.
10466 *
10467 * SCR HCR
10468 * 64 EA AMO From
10469 * BIT IRQ IMO Non-secure Secure
10470 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
10471 */
10472 static const int8_t target_el_table[2][2][2][2][2][4] = {
10473 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10474 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
10475 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
10476 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
10477 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10478 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
10479 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
10480 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
10481 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
10482 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
10483 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
10484 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
10485 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
10486 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
10487 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
10488 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
10489 };
10490
10491 /*
10492 * Determine the target EL for physical exceptions
10493 */
10494 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10495 uint32_t cur_el, bool secure)
10496 {
10497 CPUARMState *env = cpu_env(cs);
10498 bool rw;
10499 bool scr;
10500 bool hcr;
10501 int target_el;
10502 /* Is the highest EL AArch64? */
10503 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10504 uint64_t hcr_el2;
10505
10506 if (arm_feature(env, ARM_FEATURE_EL3)) {
10507 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10508 } else {
10509 /*
10510 * Either EL2 is the highest EL (and so the EL2 register width
10511 * is given by is64); or there is no EL2 or EL3, in which case
10512 * the value of 'rw' does not affect the table lookup anyway.
10513 */
10514 rw = is64;
10515 }
10516
10517 hcr_el2 = arm_hcr_el2_eff(env);
10518 switch (excp_idx) {
10519 case EXCP_IRQ:
10520 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10521 hcr = hcr_el2 & HCR_IMO;
10522 break;
10523 case EXCP_FIQ:
10524 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10525 hcr = hcr_el2 & HCR_FMO;
10526 break;
10527 default:
10528 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10529 hcr = hcr_el2 & HCR_AMO;
10530 break;
10531 };
10532
10533 /*
10534 * For these purposes, TGE and AMO/IMO/FMO both force the
10535 * interrupt to EL2. Fold TGE into the bit extracted above.
10536 */
10537 hcr |= (hcr_el2 & HCR_TGE) != 0;
10538
10539 /* Perform a table-lookup for the target EL given the current state */
10540 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10541
10542 assert(target_el > 0);
10543
10544 return target_el;
10545 }
10546
10547 void arm_log_exception(CPUState *cs)
10548 {
10549 int idx = cs->exception_index;
10550
10551 if (qemu_loglevel_mask(CPU_LOG_INT)) {
10552 const char *exc = NULL;
10553 static const char * const excnames[] = {
10554 [EXCP_UDEF] = "Undefined Instruction",
10555 [EXCP_SWI] = "SVC",
10556 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10557 [EXCP_DATA_ABORT] = "Data Abort",
10558 [EXCP_IRQ] = "IRQ",
10559 [EXCP_FIQ] = "FIQ",
10560 [EXCP_BKPT] = "Breakpoint",
10561 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10562 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10563 [EXCP_HVC] = "Hypervisor Call",
10564 [EXCP_HYP_TRAP] = "Hypervisor Trap",
10565 [EXCP_SMC] = "Secure Monitor Call",
10566 [EXCP_VIRQ] = "Virtual IRQ",
10567 [EXCP_VFIQ] = "Virtual FIQ",
10568 [EXCP_SEMIHOST] = "Semihosting call",
10569 [EXCP_NOCP] = "v7M NOCP UsageFault",
10570 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10571 [EXCP_STKOF] = "v8M STKOF UsageFault",
10572 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10573 [EXCP_LSERR] = "v8M LSERR UsageFault",
10574 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10575 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10576 [EXCP_VSERR] = "Virtual SERR",
10577 [EXCP_GPC] = "Granule Protection Check",
10578 };
10579
10580 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10581 exc = excnames[idx];
10582 }
10583 if (!exc) {
10584 exc = "unknown";
10585 }
10586 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10587 idx, exc, cs->cpu_index);
10588 }
10589 }
10590
10591 /*
10592 * Function used to synchronize QEMU's AArch64 register set with AArch32
10593 * register set. This is necessary when switching between AArch32 and AArch64
10594 * execution state.
10595 */
10596 void aarch64_sync_32_to_64(CPUARMState *env)
10597 {
10598 int i;
10599 uint32_t mode = env->uncached_cpsr & CPSR_M;
10600
10601 /* We can blanket copy R[0:7] to X[0:7] */
10602 for (i = 0; i < 8; i++) {
10603 env->xregs[i] = env->regs[i];
10604 }
10605
10606 /*
10607 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10608 * Otherwise, they come from the banked user regs.
10609 */
10610 if (mode == ARM_CPU_MODE_FIQ) {
10611 for (i = 8; i < 13; i++) {
10612 env->xregs[i] = env->usr_regs[i - 8];
10613 }
10614 } else {
10615 for (i = 8; i < 13; i++) {
10616 env->xregs[i] = env->regs[i];
10617 }
10618 }
10619
10620 /*
10621 * Registers x13-x23 are the various mode SP and FP registers. Registers
10622 * r13 and r14 are only copied if we are in that mode, otherwise we copy
10623 * from the mode banked register.
10624 */
10625 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10626 env->xregs[13] = env->regs[13];
10627 env->xregs[14] = env->regs[14];
10628 } else {
10629 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10630 /* HYP is an exception in that it is copied from r14 */
10631 if (mode == ARM_CPU_MODE_HYP) {
10632 env->xregs[14] = env->regs[14];
10633 } else {
10634 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10635 }
10636 }
10637
10638 if (mode == ARM_CPU_MODE_HYP) {
10639 env->xregs[15] = env->regs[13];
10640 } else {
10641 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10642 }
10643
10644 if (mode == ARM_CPU_MODE_IRQ) {
10645 env->xregs[16] = env->regs[14];
10646 env->xregs[17] = env->regs[13];
10647 } else {
10648 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10649 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10650 }
10651
10652 if (mode == ARM_CPU_MODE_SVC) {
10653 env->xregs[18] = env->regs[14];
10654 env->xregs[19] = env->regs[13];
10655 } else {
10656 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10657 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10658 }
10659
10660 if (mode == ARM_CPU_MODE_ABT) {
10661 env->xregs[20] = env->regs[14];
10662 env->xregs[21] = env->regs[13];
10663 } else {
10664 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10665 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10666 }
10667
10668 if (mode == ARM_CPU_MODE_UND) {
10669 env->xregs[22] = env->regs[14];
10670 env->xregs[23] = env->regs[13];
10671 } else {
10672 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10673 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10674 }
10675
10676 /*
10677 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10678 * mode, then we can copy from r8-r14. Otherwise, we copy from the
10679 * FIQ bank for r8-r14.
10680 */
10681 if (mode == ARM_CPU_MODE_FIQ) {
10682 for (i = 24; i < 31; i++) {
10683 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
10684 }
10685 } else {
10686 for (i = 24; i < 29; i++) {
10687 env->xregs[i] = env->fiq_regs[i - 24];
10688 }
10689 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10690 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10691 }
10692
10693 env->pc = env->regs[15];
10694 }
10695
10696 /*
10697 * Function used to synchronize QEMU's AArch32 register set with AArch64
10698 * register set. This is necessary when switching between AArch32 and AArch64
10699 * execution state.
10700 */
10701 void aarch64_sync_64_to_32(CPUARMState *env)
10702 {
10703 int i;
10704 uint32_t mode = env->uncached_cpsr & CPSR_M;
10705
10706 /* We can blanket copy X[0:7] to R[0:7] */
10707 for (i = 0; i < 8; i++) {
10708 env->regs[i] = env->xregs[i];
10709 }
10710
10711 /*
10712 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10713 * Otherwise, we copy x8-x12 into the banked user regs.
10714 */
10715 if (mode == ARM_CPU_MODE_FIQ) {
10716 for (i = 8; i < 13; i++) {
10717 env->usr_regs[i - 8] = env->xregs[i];
10718 }
10719 } else {
10720 for (i = 8; i < 13; i++) {
10721 env->regs[i] = env->xregs[i];
10722 }
10723 }
10724
10725 /*
10726 * Registers r13 & r14 depend on the current mode.
10727 * If we are in a given mode, we copy the corresponding x registers to r13
10728 * and r14. Otherwise, we copy the x register to the banked r13 and r14
10729 * for the mode.
10730 */
10731 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10732 env->regs[13] = env->xregs[13];
10733 env->regs[14] = env->xregs[14];
10734 } else {
10735 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10736
10737 /*
10738 * HYP is an exception in that it does not have its own banked r14 but
10739 * shares the USR r14
10740 */
10741 if (mode == ARM_CPU_MODE_HYP) {
10742 env->regs[14] = env->xregs[14];
10743 } else {
10744 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10745 }
10746 }
10747
10748 if (mode == ARM_CPU_MODE_HYP) {
10749 env->regs[13] = env->xregs[15];
10750 } else {
10751 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10752 }
10753
10754 if (mode == ARM_CPU_MODE_IRQ) {
10755 env->regs[14] = env->xregs[16];
10756 env->regs[13] = env->xregs[17];
10757 } else {
10758 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10759 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10760 }
10761
10762 if (mode == ARM_CPU_MODE_SVC) {
10763 env->regs[14] = env->xregs[18];
10764 env->regs[13] = env->xregs[19];
10765 } else {
10766 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10767 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10768 }
10769
10770 if (mode == ARM_CPU_MODE_ABT) {
10771 env->regs[14] = env->xregs[20];
10772 env->regs[13] = env->xregs[21];
10773 } else {
10774 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10775 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10776 }
10777
10778 if (mode == ARM_CPU_MODE_UND) {
10779 env->regs[14] = env->xregs[22];
10780 env->regs[13] = env->xregs[23];
10781 } else {
10782 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10783 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10784 }
10785
10786 /*
10787 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
10788 * mode, then we can copy to r8-r14. Otherwise, we copy to the
10789 * FIQ bank for r8-r14.
10790 */
10791 if (mode == ARM_CPU_MODE_FIQ) {
10792 for (i = 24; i < 31; i++) {
10793 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
10794 }
10795 } else {
10796 for (i = 24; i < 29; i++) {
10797 env->fiq_regs[i - 24] = env->xregs[i];
10798 }
10799 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10800 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10801 }
10802
10803 env->regs[15] = env->pc;
10804 }
10805
10806 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10807 uint32_t mask, uint32_t offset,
10808 uint32_t newpc)
10809 {
10810 int new_el;
10811
10812 /* Change the CPU state so as to actually take the exception. */
10813 switch_mode(env, new_mode);
10814
10815 /*
10816 * For exceptions taken to AArch32 we must clear the SS bit in both
10817 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10818 */
10819 env->pstate &= ~PSTATE_SS;
10820 env->spsr = cpsr_read(env);
10821 /* Clear IT bits. */
10822 env->condexec_bits = 0;
10823 /* Switch to the new mode, and to the correct instruction set. */
10824 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10825
10826 /* This must be after mode switching. */
10827 new_el = arm_current_el(env);
10828
10829 /* Set new mode endianness */
10830 env->uncached_cpsr &= ~CPSR_E;
10831 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10832 env->uncached_cpsr |= CPSR_E;
10833 }
10834 /* J and IL must always be cleared for exception entry */
10835 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10836 env->daif |= mask;
10837
10838 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10839 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10840 env->uncached_cpsr |= CPSR_SSBS;
10841 } else {
10842 env->uncached_cpsr &= ~CPSR_SSBS;
10843 }
10844 }
10845
10846 if (new_mode == ARM_CPU_MODE_HYP) {
10847 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10848 env->elr_el[2] = env->regs[15];
10849 } else {
10850 /* CPSR.PAN is normally preserved preserved unless... */
10851 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10852 switch (new_el) {
10853 case 3:
10854 if (!arm_is_secure_below_el3(env)) {
10855 /* ... the target is EL3, from non-secure state. */
10856 env->uncached_cpsr &= ~CPSR_PAN;
10857 break;
10858 }
10859 /* ... the target is EL3, from secure state ... */
10860 /* fall through */
10861 case 1:
10862 /* ... the target is EL1 and SCTLR.SPAN is 0. */
10863 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10864 env->uncached_cpsr |= CPSR_PAN;
10865 }
10866 break;
10867 }
10868 }
10869 /*
10870 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10871 * and we should just guard the thumb mode on V4
10872 */
10873 if (arm_feature(env, ARM_FEATURE_V4T)) {
10874 env->thumb =
10875 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10876 }
10877 env->regs[14] = env->regs[15] + offset;
10878 }
10879 env->regs[15] = newpc;
10880
10881 if (tcg_enabled()) {
10882 arm_rebuild_hflags(env);
10883 }
10884 }
10885
10886 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10887 {
10888 /*
10889 * Handle exception entry to Hyp mode; this is sufficiently
10890 * different to entry to other AArch32 modes that we handle it
10891 * separately here.
10892 *
10893 * The vector table entry used is always the 0x14 Hyp mode entry point,
10894 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10895 * The offset applied to the preferred return address is always zero
10896 * (see DDI0487C.a section G1.12.3).
10897 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10898 */
10899 uint32_t addr, mask;
10900 ARMCPU *cpu = ARM_CPU(cs);
10901 CPUARMState *env = &cpu->env;
10902
10903 switch (cs->exception_index) {
10904 case EXCP_UDEF:
10905 addr = 0x04;
10906 break;
10907 case EXCP_SWI:
10908 addr = 0x08;
10909 break;
10910 case EXCP_BKPT:
10911 /* Fall through to prefetch abort. */
10912 case EXCP_PREFETCH_ABORT:
10913 env->cp15.ifar_s = env->exception.vaddress;
10914 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10915 (uint32_t)env->exception.vaddress);
10916 addr = 0x0c;
10917 break;
10918 case EXCP_DATA_ABORT:
10919 env->cp15.dfar_s = env->exception.vaddress;
10920 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10921 (uint32_t)env->exception.vaddress);
10922 addr = 0x10;
10923 break;
10924 case EXCP_IRQ:
10925 addr = 0x18;
10926 break;
10927 case EXCP_FIQ:
10928 addr = 0x1c;
10929 break;
10930 case EXCP_HVC:
10931 addr = 0x08;
10932 break;
10933 case EXCP_HYP_TRAP:
10934 addr = 0x14;
10935 break;
10936 default:
10937 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10938 }
10939
10940 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10941 if (!arm_feature(env, ARM_FEATURE_V8)) {
10942 /*
10943 * QEMU syndrome values are v8-style. v7 has the IL bit
10944 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10945 * If this is a v7 CPU, squash the IL bit in those cases.
10946 */
10947 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10948 (cs->exception_index == EXCP_DATA_ABORT &&
10949 !(env->exception.syndrome & ARM_EL_ISV)) ||
10950 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10951 env->exception.syndrome &= ~ARM_EL_IL;
10952 }
10953 }
10954 env->cp15.esr_el[2] = env->exception.syndrome;
10955 }
10956
10957 if (arm_current_el(env) != 2 && addr < 0x14) {
10958 addr = 0x14;
10959 }
10960
10961 mask = 0;
10962 if (!(env->cp15.scr_el3 & SCR_EA)) {
10963 mask |= CPSR_A;
10964 }
10965 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10966 mask |= CPSR_I;
10967 }
10968 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10969 mask |= CPSR_F;
10970 }
10971
10972 addr += env->cp15.hvbar;
10973
10974 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10975 }
10976
10977 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10978 {
10979 ARMCPU *cpu = ARM_CPU(cs);
10980 CPUARMState *env = &cpu->env;
10981 uint32_t addr;
10982 uint32_t mask;
10983 int new_mode;
10984 uint32_t offset;
10985 uint32_t moe;
10986
10987 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10988 switch (syn_get_ec(env->exception.syndrome)) {
10989 case EC_BREAKPOINT:
10990 case EC_BREAKPOINT_SAME_EL:
10991 moe = 1;
10992 break;
10993 case EC_WATCHPOINT:
10994 case EC_WATCHPOINT_SAME_EL:
10995 moe = 10;
10996 break;
10997 case EC_AA32_BKPT:
10998 moe = 3;
10999 break;
11000 case EC_VECTORCATCH:
11001 moe = 5;
11002 break;
11003 default:
11004 moe = 0;
11005 break;
11006 }
11007
11008 if (moe) {
11009 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
11010 }
11011
11012 if (env->exception.target_el == 2) {
11013 arm_cpu_do_interrupt_aarch32_hyp(cs);
11014 return;
11015 }
11016
11017 switch (cs->exception_index) {
11018 case EXCP_UDEF:
11019 new_mode = ARM_CPU_MODE_UND;
11020 addr = 0x04;
11021 mask = CPSR_I;
11022 if (env->thumb) {
11023 offset = 2;
11024 } else {
11025 offset = 4;
11026 }
11027 break;
11028 case EXCP_SWI:
11029 new_mode = ARM_CPU_MODE_SVC;
11030 addr = 0x08;
11031 mask = CPSR_I;
11032 /* The PC already points to the next instruction. */
11033 offset = 0;
11034 break;
11035 case EXCP_BKPT:
11036 /* Fall through to prefetch abort. */
11037 case EXCP_PREFETCH_ABORT:
11038 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
11039 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
11040 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
11041 env->exception.fsr, (uint32_t)env->exception.vaddress);
11042 new_mode = ARM_CPU_MODE_ABT;
11043 addr = 0x0c;
11044 mask = CPSR_A | CPSR_I;
11045 offset = 4;
11046 break;
11047 case EXCP_DATA_ABORT:
11048 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11049 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
11050 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
11051 env->exception.fsr,
11052 (uint32_t)env->exception.vaddress);
11053 new_mode = ARM_CPU_MODE_ABT;
11054 addr = 0x10;
11055 mask = CPSR_A | CPSR_I;
11056 offset = 8;
11057 break;
11058 case EXCP_IRQ:
11059 new_mode = ARM_CPU_MODE_IRQ;
11060 addr = 0x18;
11061 /* Disable IRQ and imprecise data aborts. */
11062 mask = CPSR_A | CPSR_I;
11063 offset = 4;
11064 if (env->cp15.scr_el3 & SCR_IRQ) {
11065 /* IRQ routed to monitor mode */
11066 new_mode = ARM_CPU_MODE_MON;
11067 mask |= CPSR_F;
11068 }
11069 break;
11070 case EXCP_FIQ:
11071 new_mode = ARM_CPU_MODE_FIQ;
11072 addr = 0x1c;
11073 /* Disable FIQ, IRQ and imprecise data aborts. */
11074 mask = CPSR_A | CPSR_I | CPSR_F;
11075 if (env->cp15.scr_el3 & SCR_FIQ) {
11076 /* FIQ routed to monitor mode */
11077 new_mode = ARM_CPU_MODE_MON;
11078 }
11079 offset = 4;
11080 break;
11081 case EXCP_VIRQ:
11082 new_mode = ARM_CPU_MODE_IRQ;
11083 addr = 0x18;
11084 /* Disable IRQ and imprecise data aborts. */
11085 mask = CPSR_A | CPSR_I;
11086 offset = 4;
11087 break;
11088 case EXCP_VFIQ:
11089 new_mode = ARM_CPU_MODE_FIQ;
11090 addr = 0x1c;
11091 /* Disable FIQ, IRQ and imprecise data aborts. */
11092 mask = CPSR_A | CPSR_I | CPSR_F;
11093 offset = 4;
11094 break;
11095 case EXCP_VSERR:
11096 {
11097 /*
11098 * Note that this is reported as a data abort, but the DFAR
11099 * has an UNKNOWN value. Construct the SError syndrome from
11100 * AET and ExT fields.
11101 */
11102 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
11103
11104 if (extended_addresses_enabled(env)) {
11105 env->exception.fsr = arm_fi_to_lfsc(&fi);
11106 } else {
11107 env->exception.fsr = arm_fi_to_sfsc(&fi);
11108 }
11109 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
11110 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
11111 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
11112 env->exception.fsr);
11113
11114 new_mode = ARM_CPU_MODE_ABT;
11115 addr = 0x10;
11116 mask = CPSR_A | CPSR_I;
11117 offset = 8;
11118 }
11119 break;
11120 case EXCP_SMC:
11121 new_mode = ARM_CPU_MODE_MON;
11122 addr = 0x08;
11123 mask = CPSR_A | CPSR_I | CPSR_F;
11124 offset = 0;
11125 break;
11126 default:
11127 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11128 return; /* Never happens. Keep compiler happy. */
11129 }
11130
11131 if (new_mode == ARM_CPU_MODE_MON) {
11132 addr += env->cp15.mvbar;
11133 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
11134 /* High vectors. When enabled, base address cannot be remapped. */
11135 addr += 0xffff0000;
11136 } else {
11137 /*
11138 * ARM v7 architectures provide a vector base address register to remap
11139 * the interrupt vector table.
11140 * This register is only followed in non-monitor mode, and is banked.
11141 * Note: only bits 31:5 are valid.
11142 */
11143 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
11144 }
11145
11146 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
11147 env->cp15.scr_el3 &= ~SCR_NS;
11148 }
11149
11150 take_aarch32_exception(env, new_mode, mask, offset, addr);
11151 }
11152
11153 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
11154 {
11155 /*
11156 * Return the register number of the AArch64 view of the AArch32
11157 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
11158 * be that of the AArch32 mode the exception came from.
11159 */
11160 int mode = env->uncached_cpsr & CPSR_M;
11161
11162 switch (aarch32_reg) {
11163 case 0 ... 7:
11164 return aarch32_reg;
11165 case 8 ... 12:
11166 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
11167 case 13:
11168 switch (mode) {
11169 case ARM_CPU_MODE_USR:
11170 case ARM_CPU_MODE_SYS:
11171 return 13;
11172 case ARM_CPU_MODE_HYP:
11173 return 15;
11174 case ARM_CPU_MODE_IRQ:
11175 return 17;
11176 case ARM_CPU_MODE_SVC:
11177 return 19;
11178 case ARM_CPU_MODE_ABT:
11179 return 21;
11180 case ARM_CPU_MODE_UND:
11181 return 23;
11182 case ARM_CPU_MODE_FIQ:
11183 return 29;
11184 default:
11185 g_assert_not_reached();
11186 }
11187 case 14:
11188 switch (mode) {
11189 case ARM_CPU_MODE_USR:
11190 case ARM_CPU_MODE_SYS:
11191 case ARM_CPU_MODE_HYP:
11192 return 14;
11193 case ARM_CPU_MODE_IRQ:
11194 return 16;
11195 case ARM_CPU_MODE_SVC:
11196 return 18;
11197 case ARM_CPU_MODE_ABT:
11198 return 20;
11199 case ARM_CPU_MODE_UND:
11200 return 22;
11201 case ARM_CPU_MODE_FIQ:
11202 return 30;
11203 default:
11204 g_assert_not_reached();
11205 }
11206 case 15:
11207 return 31;
11208 default:
11209 g_assert_not_reached();
11210 }
11211 }
11212
11213 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11214 {
11215 uint32_t ret = cpsr_read(env);
11216
11217 /* Move DIT to the correct location for SPSR_ELx */
11218 if (ret & CPSR_DIT) {
11219 ret &= ~CPSR_DIT;
11220 ret |= PSTATE_DIT;
11221 }
11222 /* Merge PSTATE.SS into SPSR_ELx */
11223 ret |= env->pstate & PSTATE_SS;
11224
11225 return ret;
11226 }
11227
11228 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11229 {
11230 /* Return true if this syndrome value is a synchronous external abort */
11231 switch (syn_get_ec(syndrome)) {
11232 case EC_INSNABORT:
11233 case EC_INSNABORT_SAME_EL:
11234 case EC_DATAABORT:
11235 case EC_DATAABORT_SAME_EL:
11236 /* Look at fault status code for all the synchronous ext abort cases */
11237 switch (syndrome & 0x3f) {
11238 case 0x10:
11239 case 0x13:
11240 case 0x14:
11241 case 0x15:
11242 case 0x16:
11243 case 0x17:
11244 return true;
11245 default:
11246 return false;
11247 }
11248 default:
11249 return false;
11250 }
11251 }
11252
11253 /* Handle exception entry to a target EL which is using AArch64 */
11254 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11255 {
11256 ARMCPU *cpu = ARM_CPU(cs);
11257 CPUARMState *env = &cpu->env;
11258 unsigned int new_el = env->exception.target_el;
11259 target_ulong addr = env->cp15.vbar_el[new_el];
11260 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11261 unsigned int old_mode;
11262 unsigned int cur_el = arm_current_el(env);
11263 int rt;
11264
11265 if (tcg_enabled()) {
11266 /*
11267 * Note that new_el can never be 0. If cur_el is 0, then
11268 * el0_a64 is is_a64(), else el0_a64 is ignored.
11269 */
11270 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11271 }
11272
11273 if (cur_el < new_el) {
11274 /*
11275 * Entry vector offset depends on whether the implemented EL
11276 * immediately lower than the target level is using AArch32 or AArch64
11277 */
11278 bool is_aa64;
11279 uint64_t hcr;
11280
11281 switch (new_el) {
11282 case 3:
11283 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11284 break;
11285 case 2:
11286 hcr = arm_hcr_el2_eff(env);
11287 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11288 is_aa64 = (hcr & HCR_RW) != 0;
11289 break;
11290 }
11291 /* fall through */
11292 case 1:
11293 is_aa64 = is_a64(env);
11294 break;
11295 default:
11296 g_assert_not_reached();
11297 }
11298
11299 if (is_aa64) {
11300 addr += 0x400;
11301 } else {
11302 addr += 0x600;
11303 }
11304 } else if (pstate_read(env) & PSTATE_SP) {
11305 addr += 0x200;
11306 }
11307
11308 switch (cs->exception_index) {
11309 case EXCP_GPC:
11310 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11311 env->cp15.mfar_el3);
11312 /* fall through */
11313 case EXCP_PREFETCH_ABORT:
11314 case EXCP_DATA_ABORT:
11315 /*
11316 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11317 * to be taken to the SError vector entrypoint.
11318 */
11319 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11320 syndrome_is_sync_extabt(env->exception.syndrome)) {
11321 addr += 0x180;
11322 }
11323 env->cp15.far_el[new_el] = env->exception.vaddress;
11324 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11325 env->cp15.far_el[new_el]);
11326 /* fall through */
11327 case EXCP_BKPT:
11328 case EXCP_UDEF:
11329 case EXCP_SWI:
11330 case EXCP_HVC:
11331 case EXCP_HYP_TRAP:
11332 case EXCP_SMC:
11333 switch (syn_get_ec(env->exception.syndrome)) {
11334 case EC_ADVSIMDFPACCESSTRAP:
11335 /*
11336 * QEMU internal FP/SIMD syndromes from AArch32 include the
11337 * TA and coproc fields which are only exposed if the exception
11338 * is taken to AArch32 Hyp mode. Mask them out to get a valid
11339 * AArch64 format syndrome.
11340 */
11341 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11342 break;
11343 case EC_CP14RTTRAP:
11344 case EC_CP15RTTRAP:
11345 case EC_CP14DTTRAP:
11346 /*
11347 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11348 * the raw register field from the insn; when taking this to
11349 * AArch64 we must convert it to the AArch64 view of the register
11350 * number. Notice that we read a 4-bit AArch32 register number and
11351 * write back a 5-bit AArch64 one.
11352 */
11353 rt = extract32(env->exception.syndrome, 5, 4);
11354 rt = aarch64_regnum(env, rt);
11355 env->exception.syndrome = deposit32(env->exception.syndrome,
11356 5, 5, rt);
11357 break;
11358 case EC_CP15RRTTRAP:
11359 case EC_CP14RRTTRAP:
11360 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11361 rt = extract32(env->exception.syndrome, 5, 4);
11362 rt = aarch64_regnum(env, rt);
11363 env->exception.syndrome = deposit32(env->exception.syndrome,
11364 5, 5, rt);
11365 rt = extract32(env->exception.syndrome, 10, 4);
11366 rt = aarch64_regnum(env, rt);
11367 env->exception.syndrome = deposit32(env->exception.syndrome,
11368 10, 5, rt);
11369 break;
11370 }
11371 env->cp15.esr_el[new_el] = env->exception.syndrome;
11372 break;
11373 case EXCP_IRQ:
11374 case EXCP_VIRQ:
11375 addr += 0x80;
11376 break;
11377 case EXCP_FIQ:
11378 case EXCP_VFIQ:
11379 addr += 0x100;
11380 break;
11381 case EXCP_VSERR:
11382 addr += 0x180;
11383 /* Construct the SError syndrome from IDS and ISS fields. */
11384 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11385 env->cp15.esr_el[new_el] = env->exception.syndrome;
11386 break;
11387 default:
11388 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11389 }
11390
11391 if (is_a64(env)) {
11392 old_mode = pstate_read(env);
11393 aarch64_save_sp(env, arm_current_el(env));
11394 env->elr_el[new_el] = env->pc;
11395
11396 if (cur_el == 1 && new_el == 1) {
11397 uint64_t hcr = arm_hcr_el2_eff(env);
11398 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
11399 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
11400 /*
11401 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
11402 * by setting M[3:2] to 0b10.
11403 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
11404 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
11405 */
11406 old_mode = deposit32(old_mode, 2, 2, 2);
11407 }
11408 }
11409 } else {
11410 old_mode = cpsr_read_for_spsr_elx(env);
11411 env->elr_el[new_el] = env->regs[15];
11412
11413 aarch64_sync_32_to_64(env);
11414
11415 env->condexec_bits = 0;
11416 }
11417 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11418
11419 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
11420 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11421 env->elr_el[new_el]);
11422
11423 if (cpu_isar_feature(aa64_pan, cpu)) {
11424 /* The value of PSTATE.PAN is normally preserved, except when ... */
11425 new_mode |= old_mode & PSTATE_PAN;
11426 switch (new_el) {
11427 case 2:
11428 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
11429 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11430 != (HCR_E2H | HCR_TGE)) {
11431 break;
11432 }
11433 /* fall through */
11434 case 1:
11435 /* ... the target is EL1 ... */
11436 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
11437 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11438 new_mode |= PSTATE_PAN;
11439 }
11440 break;
11441 }
11442 }
11443 if (cpu_isar_feature(aa64_mte, cpu)) {
11444 new_mode |= PSTATE_TCO;
11445 }
11446
11447 if (cpu_isar_feature(aa64_ssbs, cpu)) {
11448 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11449 new_mode |= PSTATE_SSBS;
11450 } else {
11451 new_mode &= ~PSTATE_SSBS;
11452 }
11453 }
11454
11455 pstate_write(env, PSTATE_DAIF | new_mode);
11456 env->aarch64 = true;
11457 aarch64_restore_sp(env, new_el);
11458
11459 if (tcg_enabled()) {
11460 helper_rebuild_hflags_a64(env, new_el);
11461 }
11462
11463 env->pc = addr;
11464
11465 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11466 new_el, env->pc, pstate_read(env));
11467 }
11468
11469 /*
11470 * Do semihosting call and set the appropriate return value. All the
11471 * permission and validity checks have been done at translate time.
11472 *
11473 * We only see semihosting exceptions in TCG only as they are not
11474 * trapped to the hypervisor in KVM.
11475 */
11476 #ifdef CONFIG_TCG
11477 static void tcg_handle_semihosting(CPUState *cs)
11478 {
11479 ARMCPU *cpu = ARM_CPU(cs);
11480 CPUARMState *env = &cpu->env;
11481
11482 if (is_a64(env)) {
11483 qemu_log_mask(CPU_LOG_INT,
11484 "...handling as semihosting call 0x%" PRIx64 "\n",
11485 env->xregs[0]);
11486 do_common_semihosting(cs);
11487 env->pc += 4;
11488 } else {
11489 qemu_log_mask(CPU_LOG_INT,
11490 "...handling as semihosting call 0x%x\n",
11491 env->regs[0]);
11492 do_common_semihosting(cs);
11493 env->regs[15] += env->thumb ? 2 : 4;
11494 }
11495 }
11496 #endif
11497
11498 /*
11499 * Handle a CPU exception for A and R profile CPUs.
11500 * Do any appropriate logging, handle PSCI calls, and then hand off
11501 * to the AArch64-entry or AArch32-entry function depending on the
11502 * target exception level's register width.
11503 *
11504 * Note: this is used for both TCG (as the do_interrupt tcg op),
11505 * and KVM to re-inject guest debug exceptions, and to
11506 * inject a Synchronous-External-Abort.
11507 */
11508 void arm_cpu_do_interrupt(CPUState *cs)
11509 {
11510 ARMCPU *cpu = ARM_CPU(cs);
11511 CPUARMState *env = &cpu->env;
11512 unsigned int new_el = env->exception.target_el;
11513
11514 assert(!arm_feature(env, ARM_FEATURE_M));
11515
11516 arm_log_exception(cs);
11517 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11518 new_el);
11519 if (qemu_loglevel_mask(CPU_LOG_INT)
11520 && !excp_is_internal(cs->exception_index)) {
11521 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11522 syn_get_ec(env->exception.syndrome),
11523 env->exception.syndrome);
11524 }
11525
11526 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11527 arm_handle_psci_call(cpu);
11528 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11529 return;
11530 }
11531
11532 /*
11533 * Semihosting semantics depend on the register width of the code
11534 * that caused the exception, not the target exception level, so
11535 * must be handled here.
11536 */
11537 #ifdef CONFIG_TCG
11538 if (cs->exception_index == EXCP_SEMIHOST) {
11539 tcg_handle_semihosting(cs);
11540 return;
11541 }
11542 #endif
11543
11544 /*
11545 * Hooks may change global state so BQL should be held, also the
11546 * BQL needs to be held for any modification of
11547 * cs->interrupt_request.
11548 */
11549 g_assert(bql_locked());
11550
11551 arm_call_pre_el_change_hook(cpu);
11552
11553 assert(!excp_is_internal(cs->exception_index));
11554 if (arm_el_is_aa64(env, new_el)) {
11555 arm_cpu_do_interrupt_aarch64(cs);
11556 } else {
11557 arm_cpu_do_interrupt_aarch32(cs);
11558 }
11559
11560 arm_call_el_change_hook(cpu);
11561
11562 if (!kvm_enabled()) {
11563 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11564 }
11565 }
11566 #endif /* !CONFIG_USER_ONLY */
11567
11568 uint64_t arm_sctlr(CPUARMState *env, int el)
11569 {
11570 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11571 if (el == 0) {
11572 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11573 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11574 }
11575 return env->cp15.sctlr_el[el];
11576 }
11577
11578 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11579 {
11580 if (regime_has_2_ranges(mmu_idx)) {
11581 return extract64(tcr, 37, 2);
11582 } else if (regime_is_stage2(mmu_idx)) {
11583 return 0; /* VTCR_EL2 */
11584 } else {
11585 /* Replicate the single TBI bit so we always have 2 bits. */
11586 return extract32(tcr, 20, 1) * 3;
11587 }
11588 }
11589
11590 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11591 {
11592 if (regime_has_2_ranges(mmu_idx)) {
11593 return extract64(tcr, 51, 2);
11594 } else if (regime_is_stage2(mmu_idx)) {
11595 return 0; /* VTCR_EL2 */
11596 } else {
11597 /* Replicate the single TBID bit so we always have 2 bits. */
11598 return extract32(tcr, 29, 1) * 3;
11599 }
11600 }
11601
11602 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11603 {
11604 if (regime_has_2_ranges(mmu_idx)) {
11605 return extract64(tcr, 57, 2);
11606 } else {
11607 /* Replicate the single TCMA bit so we always have 2 bits. */
11608 return extract32(tcr, 30, 1) * 3;
11609 }
11610 }
11611
11612 static ARMGranuleSize tg0_to_gran_size(int tg)
11613 {
11614 switch (tg) {
11615 case 0:
11616 return Gran4K;
11617 case 1:
11618 return Gran64K;
11619 case 2:
11620 return Gran16K;
11621 default:
11622 return GranInvalid;
11623 }
11624 }
11625
11626 static ARMGranuleSize tg1_to_gran_size(int tg)
11627 {
11628 switch (tg) {
11629 case 1:
11630 return Gran16K;
11631 case 2:
11632 return Gran4K;
11633 case 3:
11634 return Gran64K;
11635 default:
11636 return GranInvalid;
11637 }
11638 }
11639
11640 static inline bool have4k(ARMCPU *cpu, bool stage2)
11641 {
11642 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11643 : cpu_isar_feature(aa64_tgran4, cpu);
11644 }
11645
11646 static inline bool have16k(ARMCPU *cpu, bool stage2)
11647 {
11648 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11649 : cpu_isar_feature(aa64_tgran16, cpu);
11650 }
11651
11652 static inline bool have64k(ARMCPU *cpu, bool stage2)
11653 {
11654 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11655 : cpu_isar_feature(aa64_tgran64, cpu);
11656 }
11657
11658 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11659 bool stage2)
11660 {
11661 switch (gran) {
11662 case Gran4K:
11663 if (have4k(cpu, stage2)) {
11664 return gran;
11665 }
11666 break;
11667 case Gran16K:
11668 if (have16k(cpu, stage2)) {
11669 return gran;
11670 }
11671 break;
11672 case Gran64K:
11673 if (have64k(cpu, stage2)) {
11674 return gran;
11675 }
11676 break;
11677 case GranInvalid:
11678 break;
11679 }
11680 /*
11681 * If the guest selects a granule size that isn't implemented,
11682 * the architecture requires that we behave as if it selected one
11683 * that is (with an IMPDEF choice of which one to pick). We choose
11684 * to implement the smallest supported granule size.
11685 */
11686 if (have4k(cpu, stage2)) {
11687 return Gran4K;
11688 }
11689 if (have16k(cpu, stage2)) {
11690 return Gran16K;
11691 }
11692 assert(have64k(cpu, stage2));
11693 return Gran64K;
11694 }
11695
11696 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11697 ARMMMUIdx mmu_idx, bool data,
11698 bool el1_is_aa32)
11699 {
11700 uint64_t tcr = regime_tcr(env, mmu_idx);
11701 bool epd, hpd, tsz_oob, ds, ha, hd;
11702 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11703 ARMGranuleSize gran;
11704 ARMCPU *cpu = env_archcpu(env);
11705 bool stage2 = regime_is_stage2(mmu_idx);
11706
11707 if (!regime_has_2_ranges(mmu_idx)) {
11708 select = 0;
11709 tsz = extract32(tcr, 0, 6);
11710 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11711 if (stage2) {
11712 /* VTCR_EL2 */
11713 hpd = false;
11714 } else {
11715 hpd = extract32(tcr, 24, 1);
11716 }
11717 epd = false;
11718 sh = extract32(tcr, 12, 2);
11719 ps = extract32(tcr, 16, 3);
11720 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11721 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11722 ds = extract64(tcr, 32, 1);
11723 } else {
11724 bool e0pd;
11725
11726 /*
11727 * Bit 55 is always between the two regions, and is canonical for
11728 * determining if address tagging is enabled.
11729 */
11730 select = extract64(va, 55, 1);
11731 if (!select) {
11732 tsz = extract32(tcr, 0, 6);
11733 gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11734 epd = extract32(tcr, 7, 1);
11735 sh = extract32(tcr, 12, 2);
11736 hpd = extract64(tcr, 41, 1);
11737 e0pd = extract64(tcr, 55, 1);
11738 } else {
11739 tsz = extract32(tcr, 16, 6);
11740 gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11741 epd = extract32(tcr, 23, 1);
11742 sh = extract32(tcr, 28, 2);
11743 hpd = extract64(tcr, 42, 1);
11744 e0pd = extract64(tcr, 56, 1);
11745 }
11746 ps = extract64(tcr, 32, 3);
11747 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11748 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11749 ds = extract64(tcr, 59, 1);
11750
11751 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11752 regime_is_user(env, mmu_idx)) {
11753 epd = true;
11754 }
11755 }
11756
11757 gran = sanitize_gran_size(cpu, gran, stage2);
11758
11759 if (cpu_isar_feature(aa64_st, cpu)) {
11760 max_tsz = 48 - (gran == Gran64K);
11761 } else {
11762 max_tsz = 39;
11763 }
11764
11765 /*
11766 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11767 * adjust the effective value of DS, as documented.
11768 */
11769 min_tsz = 16;
11770 if (gran == Gran64K) {
11771 if (cpu_isar_feature(aa64_lva, cpu)) {
11772 min_tsz = 12;
11773 }
11774 ds = false;
11775 } else if (ds) {
11776 if (regime_is_stage2(mmu_idx)) {
11777 if (gran == Gran16K) {
11778 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11779 } else {
11780 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11781 }
11782 } else {
11783 if (gran == Gran16K) {
11784 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11785 } else {
11786 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11787 }
11788 }
11789 if (ds) {
11790 min_tsz = 12;
11791 }
11792 }
11793
11794 if (stage2 && el1_is_aa32) {
11795 /*
11796 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11797 * are loosened: a configured IPA of 40 bits is permitted even if
11798 * the implemented PA is less than that (and so a 40 bit IPA would
11799 * fault for an AArch64 EL1). See R_DTLMN.
11800 */
11801 min_tsz = MIN(min_tsz, 24);
11802 }
11803
11804 if (tsz > max_tsz) {
11805 tsz = max_tsz;
11806 tsz_oob = true;
11807 } else if (tsz < min_tsz) {
11808 tsz = min_tsz;
11809 tsz_oob = true;
11810 } else {
11811 tsz_oob = false;
11812 }
11813
11814 /* Present TBI as a composite with TBID. */
11815 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11816 if (!data) {
11817 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11818 }
11819 tbi = (tbi >> select) & 1;
11820
11821 return (ARMVAParameters) {
11822 .tsz = tsz,
11823 .ps = ps,
11824 .sh = sh,
11825 .select = select,
11826 .tbi = tbi,
11827 .epd = epd,
11828 .hpd = hpd,
11829 .tsz_oob = tsz_oob,
11830 .ds = ds,
11831 .ha = ha,
11832 .hd = ha && hd,
11833 .gran = gran,
11834 };
11835 }
11836
11837 /*
11838 * Note that signed overflow is undefined in C. The following routines are
11839 * careful to use unsigned types where modulo arithmetic is required.
11840 * Failure to do so _will_ break on newer gcc.
11841 */
11842
11843 /* Signed saturating arithmetic. */
11844
11845 /* Perform 16-bit signed saturating addition. */
11846 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11847 {
11848 uint16_t res;
11849
11850 res = a + b;
11851 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11852 if (a & 0x8000) {
11853 res = 0x8000;
11854 } else {
11855 res = 0x7fff;
11856 }
11857 }
11858 return res;
11859 }
11860
11861 /* Perform 8-bit signed saturating addition. */
11862 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11863 {
11864 uint8_t res;
11865
11866 res = a + b;
11867 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11868 if (a & 0x80) {
11869 res = 0x80;
11870 } else {
11871 res = 0x7f;
11872 }
11873 }
11874 return res;
11875 }
11876
11877 /* Perform 16-bit signed saturating subtraction. */
11878 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11879 {
11880 uint16_t res;
11881
11882 res = a - b;
11883 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11884 if (a & 0x8000) {
11885 res = 0x8000;
11886 } else {
11887 res = 0x7fff;
11888 }
11889 }
11890 return res;
11891 }
11892
11893 /* Perform 8-bit signed saturating subtraction. */
11894 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11895 {
11896 uint8_t res;
11897
11898 res = a - b;
11899 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11900 if (a & 0x80) {
11901 res = 0x80;
11902 } else {
11903 res = 0x7f;
11904 }
11905 }
11906 return res;
11907 }
11908
11909 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11910 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11911 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11912 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11913 #define PFX q
11914
11915 #include "op_addsub.h"
11916
11917 /* Unsigned saturating arithmetic. */
11918 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11919 {
11920 uint16_t res;
11921 res = a + b;
11922 if (res < a) {
11923 res = 0xffff;
11924 }
11925 return res;
11926 }
11927
11928 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11929 {
11930 if (a > b) {
11931 return a - b;
11932 } else {
11933 return 0;
11934 }
11935 }
11936
11937 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11938 {
11939 uint8_t res;
11940 res = a + b;
11941 if (res < a) {
11942 res = 0xff;
11943 }
11944 return res;
11945 }
11946
11947 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11948 {
11949 if (a > b) {
11950 return a - b;
11951 } else {
11952 return 0;
11953 }
11954 }
11955
11956 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11957 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11958 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11959 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11960 #define PFX uq
11961
11962 #include "op_addsub.h"
11963
11964 /* Signed modulo arithmetic. */
11965 #define SARITH16(a, b, n, op) do { \
11966 int32_t sum; \
11967 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11968 RESULT(sum, n, 16); \
11969 if (sum >= 0) \
11970 ge |= 3 << (n * 2); \
11971 } while (0)
11972
11973 #define SARITH8(a, b, n, op) do { \
11974 int32_t sum; \
11975 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11976 RESULT(sum, n, 8); \
11977 if (sum >= 0) \
11978 ge |= 1 << n; \
11979 } while (0)
11980
11981
11982 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11983 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11984 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11985 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11986 #define PFX s
11987 #define ARITH_GE
11988
11989 #include "op_addsub.h"
11990
11991 /* Unsigned modulo arithmetic. */
11992 #define ADD16(a, b, n) do { \
11993 uint32_t sum; \
11994 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11995 RESULT(sum, n, 16); \
11996 if ((sum >> 16) == 1) \
11997 ge |= 3 << (n * 2); \
11998 } while (0)
11999
12000 #define ADD8(a, b, n) do { \
12001 uint32_t sum; \
12002 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12003 RESULT(sum, n, 8); \
12004 if ((sum >> 8) == 1) \
12005 ge |= 1 << n; \
12006 } while (0)
12007
12008 #define SUB16(a, b, n) do { \
12009 uint32_t sum; \
12010 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12011 RESULT(sum, n, 16); \
12012 if ((sum >> 16) == 0) \
12013 ge |= 3 << (n * 2); \
12014 } while (0)
12015
12016 #define SUB8(a, b, n) do { \
12017 uint32_t sum; \
12018 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12019 RESULT(sum, n, 8); \
12020 if ((sum >> 8) == 0) \
12021 ge |= 1 << n; \
12022 } while (0)
12023
12024 #define PFX u
12025 #define ARITH_GE
12026
12027 #include "op_addsub.h"
12028
12029 /* Halved signed arithmetic. */
12030 #define ADD16(a, b, n) \
12031 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12032 #define SUB16(a, b, n) \
12033 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12034 #define ADD8(a, b, n) \
12035 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12036 #define SUB8(a, b, n) \
12037 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12038 #define PFX sh
12039
12040 #include "op_addsub.h"
12041
12042 /* Halved unsigned arithmetic. */
12043 #define ADD16(a, b, n) \
12044 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12045 #define SUB16(a, b, n) \
12046 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12047 #define ADD8(a, b, n) \
12048 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12049 #define SUB8(a, b, n) \
12050 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12051 #define PFX uh
12052
12053 #include "op_addsub.h"
12054
12055 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12056 {
12057 if (a > b) {
12058 return a - b;
12059 } else {
12060 return b - a;
12061 }
12062 }
12063
12064 /* Unsigned sum of absolute byte differences. */
12065 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12066 {
12067 uint32_t sum;
12068 sum = do_usad(a, b);
12069 sum += do_usad(a >> 8, b >> 8);
12070 sum += do_usad(a >> 16, b >> 16);
12071 sum += do_usad(a >> 24, b >> 24);
12072 return sum;
12073 }
12074
12075 /* For ARMv6 SEL instruction. */
12076 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12077 {
12078 uint32_t mask;
12079
12080 mask = 0;
12081 if (flags & 1) {
12082 mask |= 0xff;
12083 }
12084 if (flags & 2) {
12085 mask |= 0xff00;
12086 }
12087 if (flags & 4) {
12088 mask |= 0xff0000;
12089 }
12090 if (flags & 8) {
12091 mask |= 0xff000000;
12092 }
12093 return (a & mask) | (b & ~mask);
12094 }
12095
12096 /*
12097 * CRC helpers.
12098 * The upper bytes of val (above the number specified by 'bytes') must have
12099 * been zeroed out by the caller.
12100 */
12101 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12102 {
12103 uint8_t buf[4];
12104
12105 stl_le_p(buf, val);
12106
12107 /* zlib crc32 converts the accumulator and output to one's complement. */
12108 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12109 }
12110
12111 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12112 {
12113 uint8_t buf[4];
12114
12115 stl_le_p(buf, val);
12116
12117 /* Linux crc32c converts the output to one's complement. */
12118 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12119 }
12120
12121 /*
12122 * Return the exception level to which FP-disabled exceptions should
12123 * be taken, or 0 if FP is enabled.
12124 */
12125 int fp_exception_el(CPUARMState *env, int cur_el)
12126 {
12127 #ifndef CONFIG_USER_ONLY
12128 uint64_t hcr_el2;
12129
12130 /*
12131 * CPACR and the CPTR registers don't exist before v6, so FP is
12132 * always accessible
12133 */
12134 if (!arm_feature(env, ARM_FEATURE_V6)) {
12135 return 0;
12136 }
12137
12138 if (arm_feature(env, ARM_FEATURE_M)) {
12139 /* CPACR can cause a NOCP UsageFault taken to current security state */
12140 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12141 return 1;
12142 }
12143
12144 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12145 if (!extract32(env->v7m.nsacr, 10, 1)) {
12146 /* FP insns cause a NOCP UsageFault taken to Secure */
12147 return 3;
12148 }
12149 }
12150
12151 return 0;
12152 }
12153
12154 hcr_el2 = arm_hcr_el2_eff(env);
12155
12156 /*
12157 * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12158 * 0, 2 : trap EL0 and EL1/PL1 accesses
12159 * 1 : trap only EL0 accesses
12160 * 3 : trap no accesses
12161 * This register is ignored if E2H+TGE are both set.
12162 */
12163 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12164 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12165
12166 switch (fpen) {
12167 case 1:
12168 if (cur_el != 0) {
12169 break;
12170 }
12171 /* fall through */
12172 case 0:
12173 case 2:
12174 /* Trap from Secure PL0 or PL1 to Secure PL1. */
12175 if (!arm_el_is_aa64(env, 3)
12176 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
12177 return 3;
12178 }
12179 if (cur_el <= 1) {
12180 return 1;
12181 }
12182 break;
12183 }
12184 }
12185
12186 /*
12187 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12188 * to control non-secure access to the FPU. It doesn't have any
12189 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12190 */
12191 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12192 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12193 if (!extract32(env->cp15.nsacr, 10, 1)) {
12194 /* FP insns act as UNDEF */
12195 return cur_el == 2 ? 2 : 1;
12196 }
12197 }
12198
12199 /*
12200 * CPTR_EL2 is present in v7VE or v8, and changes format
12201 * with HCR_EL2.E2H (regardless of TGE).
12202 */
12203 if (cur_el <= 2) {
12204 if (hcr_el2 & HCR_E2H) {
12205 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12206 case 1:
12207 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12208 break;
12209 }
12210 /* fall through */
12211 case 0:
12212 case 2:
12213 return 2;
12214 }
12215 } else if (arm_is_el2_enabled(env)) {
12216 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12217 return 2;
12218 }
12219 }
12220 }
12221
12222 /* CPTR_EL3 : present in v8 */
12223 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12224 /* Trap all FP ops to EL3 */
12225 return 3;
12226 }
12227 #endif
12228 return 0;
12229 }
12230
12231 /* Return the exception level we're running at if this is our mmu_idx */
12232 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12233 {
12234 if (mmu_idx & ARM_MMU_IDX_M) {
12235 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12236 }
12237
12238 switch (mmu_idx) {
12239 case ARMMMUIdx_E10_0:
12240 case ARMMMUIdx_E20_0:
12241 return 0;
12242 case ARMMMUIdx_E10_1:
12243 case ARMMMUIdx_E10_1_PAN:
12244 return 1;
12245 case ARMMMUIdx_E2:
12246 case ARMMMUIdx_E20_2:
12247 case ARMMMUIdx_E20_2_PAN:
12248 return 2;
12249 case ARMMMUIdx_E3:
12250 return 3;
12251 default:
12252 g_assert_not_reached();
12253 }
12254 }
12255
12256 #ifndef CONFIG_TCG
12257 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12258 {
12259 g_assert_not_reached();
12260 }
12261 #endif
12262
12263 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12264 {
12265 ARMMMUIdx idx;
12266 uint64_t hcr;
12267
12268 if (arm_feature(env, ARM_FEATURE_M)) {
12269 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12270 }
12271
12272 /* See ARM pseudo-function ELIsInHost. */
12273 switch (el) {
12274 case 0:
12275 hcr = arm_hcr_el2_eff(env);
12276 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12277 idx = ARMMMUIdx_E20_0;
12278 } else {
12279 idx = ARMMMUIdx_E10_0;
12280 }
12281 break;
12282 case 1:
12283 if (arm_pan_enabled(env)) {
12284 idx = ARMMMUIdx_E10_1_PAN;
12285 } else {
12286 idx = ARMMMUIdx_E10_1;
12287 }
12288 break;
12289 case 2:
12290 /* Note that TGE does not apply at EL2. */
12291 if (arm_hcr_el2_eff(env) & HCR_E2H) {
12292 if (arm_pan_enabled(env)) {
12293 idx = ARMMMUIdx_E20_2_PAN;
12294 } else {
12295 idx = ARMMMUIdx_E20_2;
12296 }
12297 } else {
12298 idx = ARMMMUIdx_E2;
12299 }
12300 break;
12301 case 3:
12302 return ARMMMUIdx_E3;
12303 default:
12304 g_assert_not_reached();
12305 }
12306
12307 return idx;
12308 }
12309
12310 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12311 {
12312 return arm_mmu_idx_el(env, arm_current_el(env));
12313 }
12314
12315 static bool mve_no_pred(CPUARMState *env)
12316 {
12317 /*
12318 * Return true if there is definitely no predication of MVE
12319 * instructions by VPR or LTPSIZE. (Returning false even if there
12320 * isn't any predication is OK; generated code will just be
12321 * a little worse.)
12322 * If the CPU does not implement MVE then this TB flag is always 0.
12323 *
12324 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12325 * logic in gen_update_fp_context() needs to be updated to match.
12326 *
12327 * We do not include the effect of the ECI bits here -- they are
12328 * tracked in other TB flags. This simplifies the logic for
12329 * "when did we emit code that changes the MVE_NO_PRED TB flag
12330 * and thus need to end the TB?".
12331 */
12332 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12333 return false;
12334 }
12335 if (env->v7m.vpr) {
12336 return false;
12337 }
12338 if (env->v7m.ltpsize < 4) {
12339 return false;
12340 }
12341 return true;
12342 }
12343
12344 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12345 uint64_t *cs_base, uint32_t *pflags)
12346 {
12347 CPUARMTBFlags flags;
12348
12349 assert_hflags_rebuild_correctly(env);
12350 flags = env->hflags;
12351
12352 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12353 *pc = env->pc;
12354 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12355 DP_TBFLAG_A64(flags, BTYPE, env->btype);
12356 }
12357 } else {
12358 *pc = env->regs[15];
12359
12360 if (arm_feature(env, ARM_FEATURE_M)) {
12361 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12362 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12363 != env->v7m.secure) {
12364 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12365 }
12366
12367 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12368 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12369 (env->v7m.secure &&
12370 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12371 /*
12372 * ASPEN is set, but FPCA/SFPA indicate that there is no
12373 * active FP context; we must create a new FP context before
12374 * executing any FP insn.
12375 */
12376 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12377 }
12378
12379 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12380 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12381 DP_TBFLAG_M32(flags, LSPACT, 1);
12382 }
12383
12384 if (mve_no_pred(env)) {
12385 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12386 }
12387 } else {
12388 /*
12389 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12390 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12391 */
12392 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12393 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12394 } else {
12395 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12396 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12397 }
12398 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12399 DP_TBFLAG_A32(flags, VFPEN, 1);
12400 }
12401 }
12402
12403 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12404 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12405 }
12406
12407 /*
12408 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12409 * states defined in the ARM ARM for software singlestep:
12410 * SS_ACTIVE PSTATE.SS State
12411 * 0 x Inactive (the TB flag for SS is always 0)
12412 * 1 0 Active-pending
12413 * 1 1 Active-not-pending
12414 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12415 */
12416 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12417 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12418 }
12419
12420 *pflags = flags.flags;
12421 *cs_base = flags.flags2;
12422 }
12423
12424 #ifdef TARGET_AARCH64
12425 /*
12426 * The manual says that when SVE is enabled and VQ is widened the
12427 * implementation is allowed to zero the previously inaccessible
12428 * portion of the registers. The corollary to that is that when
12429 * SVE is enabled and VQ is narrowed we are also allowed to zero
12430 * the now inaccessible portion of the registers.
12431 *
12432 * The intent of this is that no predicate bit beyond VQ is ever set.
12433 * Which means that some operations on predicate registers themselves
12434 * may operate on full uint64_t or even unrolled across the maximum
12435 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12436 * may well be cheaper than conditionals to restrict the operation
12437 * to the relevant portion of a uint16_t[16].
12438 */
12439 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12440 {
12441 int i, j;
12442 uint64_t pmask;
12443
12444 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12445 assert(vq <= env_archcpu(env)->sve_max_vq);
12446
12447 /* Zap the high bits of the zregs. */
12448 for (i = 0; i < 32; i++) {
12449 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12450 }
12451
12452 /* Zap the high bits of the pregs and ffr. */
12453 pmask = 0;
12454 if (vq & 3) {
12455 pmask = ~(-1ULL << (16 * (vq & 3)));
12456 }
12457 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12458 for (i = 0; i < 17; ++i) {
12459 env->vfp.pregs[i].p[j] &= pmask;
12460 }
12461 pmask = 0;
12462 }
12463 }
12464
12465 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12466 {
12467 int exc_el;
12468
12469 if (sm) {
12470 exc_el = sme_exception_el(env, el);
12471 } else {
12472 exc_el = sve_exception_el(env, el);
12473 }
12474 if (exc_el) {
12475 return 0; /* disabled */
12476 }
12477 return sve_vqm1_for_el_sm(env, el, sm);
12478 }
12479
12480 /*
12481 * Notice a change in SVE vector size when changing EL.
12482 */
12483 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12484 int new_el, bool el0_a64)
12485 {
12486 ARMCPU *cpu = env_archcpu(env);
12487 int old_len, new_len;
12488 bool old_a64, new_a64, sm;
12489
12490 /* Nothing to do if no SVE. */
12491 if (!cpu_isar_feature(aa64_sve, cpu)) {
12492 return;
12493 }
12494
12495 /* Nothing to do if FP is disabled in either EL. */
12496 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12497 return;
12498 }
12499
12500 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12501 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12502
12503 /*
12504 * Both AArch64.TakeException and AArch64.ExceptionReturn
12505 * invoke ResetSVEState when taking an exception from, or
12506 * returning to, AArch32 state when PSTATE.SM is enabled.
12507 */
12508 sm = FIELD_EX64(env->svcr, SVCR, SM);
12509 if (old_a64 != new_a64 && sm) {
12510 arm_reset_sve_state(env);
12511 return;
12512 }
12513
12514 /*
12515 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12516 * at ELx, or not available because the EL is in AArch32 state, then
12517 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12518 * has an effective value of 0".
12519 *
12520 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12521 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12522 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12523 * we already have the correct register contents when encountering the
12524 * vq0->vq0 transition between EL0->EL1.
12525 */
12526 old_len = new_len = 0;
12527 if (old_a64) {
12528 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12529 }
12530 if (new_a64) {
12531 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12532 }
12533
12534 /* When changing vector length, clear inaccessible state. */
12535 if (new_len < old_len) {
12536 aarch64_sve_narrow_vq(env, new_len + 1);
12537 }
12538 }
12539 #endif
12540
12541 #ifndef CONFIG_USER_ONLY
12542 ARMSecuritySpace arm_security_space(CPUARMState *env)
12543 {
12544 if (arm_feature(env, ARM_FEATURE_M)) {
12545 return arm_secure_to_space(env->v7m.secure);
12546 }
12547
12548 /*
12549 * If EL3 is not supported then the secure state is implementation
12550 * defined, in which case QEMU defaults to non-secure.
12551 */
12552 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12553 return ARMSS_NonSecure;
12554 }
12555
12556 /* Check for AArch64 EL3 or AArch32 Mon. */
12557 if (is_a64(env)) {
12558 if (extract32(env->pstate, 2, 2) == 3) {
12559 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12560 return ARMSS_Root;
12561 } else {
12562 return ARMSS_Secure;
12563 }
12564 }
12565 } else {
12566 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12567 return ARMSS_Secure;
12568 }
12569 }
12570
12571 return arm_security_space_below_el3(env);
12572 }
12573
12574 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12575 {
12576 assert(!arm_feature(env, ARM_FEATURE_M));
12577
12578 /*
12579 * If EL3 is not supported then the secure state is implementation
12580 * defined, in which case QEMU defaults to non-secure.
12581 */
12582 if (!arm_feature(env, ARM_FEATURE_EL3)) {
12583 return ARMSS_NonSecure;
12584 }
12585
12586 /*
12587 * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12588 * Ignoring NSE when !NS retains consistency without having to
12589 * modify other predicates.
12590 */
12591 if (!(env->cp15.scr_el3 & SCR_NS)) {
12592 return ARMSS_Secure;
12593 } else if (env->cp15.scr_el3 & SCR_NSE) {
12594 return ARMSS_Realm;
12595 } else {
12596 return ARMSS_NonSecure;
12597 }
12598 }
12599 #endif /* !CONFIG_USER_ONLY */