]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/hvf/hvf.c
808c96da8ccbd8d191f5b78ed397d39463aa3809
[mirror_qemu.git] / target / arm / hvf / hvf.c
1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu-common.h"
14 #include "qemu/error-report.h"
15
16 #include "sysemu/runstate.h"
17 #include "sysemu/hvf.h"
18 #include "sysemu/hvf_int.h"
19 #include "sysemu/hw_accel.h"
20 #include "hvf_arm.h"
21
22 #include <mach/mach_time.h>
23
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33
34 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
35 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
36 #define PL1_WRITE_MASK 0x4
37
38 #define SYSREG_OP0_SHIFT 20
39 #define SYSREG_OP0_MASK 0x3
40 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
41 #define SYSREG_OP1_SHIFT 14
42 #define SYSREG_OP1_MASK 0x7
43 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
44 #define SYSREG_CRN_SHIFT 10
45 #define SYSREG_CRN_MASK 0xf
46 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
47 #define SYSREG_CRM_SHIFT 1
48 #define SYSREG_CRM_MASK 0xf
49 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
50 #define SYSREG_OP2_SHIFT 17
51 #define SYSREG_OP2_MASK 0x7
52 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
53
54 #define SYSREG(op0, op1, crn, crm, op2) \
55 ((op0 << SYSREG_OP0_SHIFT) | \
56 (op1 << SYSREG_OP1_SHIFT) | \
57 (crn << SYSREG_CRN_SHIFT) | \
58 (crm << SYSREG_CRM_SHIFT) | \
59 (op2 << SYSREG_OP2_SHIFT))
60 #define SYSREG_MASK \
61 SYSREG(SYSREG_OP0_MASK, \
62 SYSREG_OP1_MASK, \
63 SYSREG_CRN_MASK, \
64 SYSREG_CRM_MASK, \
65 SYSREG_OP2_MASK)
66 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
67 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
68 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
69 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
70 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
71 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
72 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
73 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
74 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
75 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
76 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
77 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
78 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
79 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
80 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
81 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
82
83 #define WFX_IS_WFE (1 << 0)
84
85 #define TMR_CTL_ENABLE (1 << 0)
86 #define TMR_CTL_IMASK (1 << 1)
87 #define TMR_CTL_ISTATUS (1 << 2)
88
89 static void hvf_wfi(CPUState *cpu);
90
91 typedef struct HVFVTimer {
92 /* Vtimer value during migration and paused state */
93 uint64_t vtimer_val;
94 } HVFVTimer;
95
96 static HVFVTimer vtimer;
97
98 typedef struct ARMHostCPUFeatures {
99 ARMISARegisters isar;
100 uint64_t features;
101 uint64_t midr;
102 uint32_t reset_sctlr;
103 const char *dtb_compatible;
104 } ARMHostCPUFeatures;
105
106 static ARMHostCPUFeatures arm_host_cpu_features;
107
108 struct hvf_reg_match {
109 int reg;
110 uint64_t offset;
111 };
112
113 static const struct hvf_reg_match hvf_reg_match[] = {
114 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
115 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
116 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
117 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
118 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
119 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
120 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
121 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
122 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
123 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
124 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
125 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
126 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
127 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
128 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
129 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
130 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
131 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
132 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
133 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
134 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
135 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
136 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
137 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
138 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
139 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
140 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
141 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
142 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
143 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
144 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
145 { HV_REG_PC, offsetof(CPUARMState, pc) },
146 };
147
148 static const struct hvf_reg_match hvf_fpreg_match[] = {
149 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
150 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
151 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
152 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
153 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
154 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
155 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
156 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
157 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
158 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
159 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
160 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
161 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
162 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
163 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
164 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
165 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
166 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
167 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
168 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
169 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
170 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
171 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
172 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
173 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
174 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
175 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
176 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
177 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
178 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
179 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
180 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
181 };
182
183 struct hvf_sreg_match {
184 int reg;
185 uint32_t key;
186 uint32_t cp_idx;
187 };
188
189 static struct hvf_sreg_match hvf_sreg_match[] = {
190 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
191 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
192 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
193 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
194
195 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
196 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
197 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
198 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
199
200 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
201 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
202 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
203 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
204
205 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
206 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
207 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
208 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
209
210 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
211 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
212 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
213 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
214
215 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
216 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
217 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
218 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
219
220 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
221 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
222 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
223 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
224
225 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
226 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
227 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
228 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
229
230 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
231 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
232 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
233 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
234
235 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
236 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
237 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
238 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
239
240 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
241 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
242 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
243 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
244
245 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
246 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
247 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
248 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
249
250 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
251 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
252 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
253 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
254
255 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
256 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
257 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
258 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
259
260 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
261 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
262 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
263 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
264
265 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
266 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
267 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
268 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
269
270 #ifdef SYNC_NO_RAW_REGS
271 /*
272 * The registers below are manually synced on init because they are
273 * marked as NO_RAW. We still list them to make number space sync easier.
274 */
275 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
276 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
277 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
278 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
279 #endif
280 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
281 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
282 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
283 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
284 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
285 #ifdef SYNC_NO_MMFR0
286 /* We keep the hardware MMFR0 around. HW limits are there anyway */
287 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
288 #endif
289 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
290 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
291
292 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
293 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
294 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
295 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
296 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
297 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
298
299 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
300 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
301 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
302 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
303 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
304 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
305 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
306 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
307 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
308 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
309
310 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
311 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
312 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
313 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
314 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
315 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
316 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
317 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
318 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
319 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
320 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
321 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
322 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
323 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
324 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
325 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
326 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
327 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
328 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
329 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
330 };
331
332 int hvf_get_registers(CPUState *cpu)
333 {
334 ARMCPU *arm_cpu = ARM_CPU(cpu);
335 CPUARMState *env = &arm_cpu->env;
336 hv_return_t ret;
337 uint64_t val;
338 hv_simd_fp_uchar16_t fpval;
339 int i;
340
341 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
342 ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
343 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
344 assert_hvf_ok(ret);
345 }
346
347 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
348 ret = hv_vcpu_get_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
349 &fpval);
350 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
351 assert_hvf_ok(ret);
352 }
353
354 val = 0;
355 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
356 assert_hvf_ok(ret);
357 vfp_set_fpcr(env, val);
358
359 val = 0;
360 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
361 assert_hvf_ok(ret);
362 vfp_set_fpsr(env, val);
363
364 ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
365 assert_hvf_ok(ret);
366 pstate_write(env, val);
367
368 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
369 if (hvf_sreg_match[i].cp_idx == -1) {
370 continue;
371 }
372
373 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
374 assert_hvf_ok(ret);
375
376 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
377 }
378 assert(write_list_to_cpustate(arm_cpu));
379
380 aarch64_restore_sp(env, arm_current_el(env));
381
382 return 0;
383 }
384
385 int hvf_put_registers(CPUState *cpu)
386 {
387 ARMCPU *arm_cpu = ARM_CPU(cpu);
388 CPUARMState *env = &arm_cpu->env;
389 hv_return_t ret;
390 uint64_t val;
391 hv_simd_fp_uchar16_t fpval;
392 int i;
393
394 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
395 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
396 ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);
397 assert_hvf_ok(ret);
398 }
399
400 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
401 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
402 ret = hv_vcpu_set_simd_fp_reg(cpu->hvf->fd, hvf_fpreg_match[i].reg,
403 fpval);
404 assert_hvf_ok(ret);
405 }
406
407 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
408 assert_hvf_ok(ret);
409
410 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
411 assert_hvf_ok(ret);
412
413 ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
414 assert_hvf_ok(ret);
415
416 aarch64_save_sp(env, arm_current_el(env));
417
418 assert(write_cpustate_to_list(arm_cpu, false));
419 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
420 if (hvf_sreg_match[i].cp_idx == -1) {
421 continue;
422 }
423
424 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
425 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
426 assert_hvf_ok(ret);
427 }
428
429 ret = hv_vcpu_set_vtimer_offset(cpu->hvf->fd, hvf_state->vtimer_offset);
430 assert_hvf_ok(ret);
431
432 return 0;
433 }
434
435 static void flush_cpu_state(CPUState *cpu)
436 {
437 if (cpu->vcpu_dirty) {
438 hvf_put_registers(cpu);
439 cpu->vcpu_dirty = false;
440 }
441 }
442
443 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
444 {
445 hv_return_t r;
446
447 flush_cpu_state(cpu);
448
449 if (rt < 31) {
450 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
451 assert_hvf_ok(r);
452 }
453 }
454
455 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
456 {
457 uint64_t val = 0;
458 hv_return_t r;
459
460 flush_cpu_state(cpu);
461
462 if (rt < 31) {
463 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
464 assert_hvf_ok(r);
465 }
466
467 return val;
468 }
469
470 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
471 {
472 ARMISARegisters host_isar = {};
473 const struct isar_regs {
474 int reg;
475 uint64_t *val;
476 } regs[] = {
477 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
478 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
479 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
480 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
481 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
482 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
483 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
484 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
485 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
486 };
487 hv_vcpu_t fd;
488 hv_return_t r = HV_SUCCESS;
489 hv_vcpu_exit_t *exit;
490 int i;
491
492 ahcf->dtb_compatible = "arm,arm-v8";
493 ahcf->features = (1ULL << ARM_FEATURE_V8) |
494 (1ULL << ARM_FEATURE_NEON) |
495 (1ULL << ARM_FEATURE_AARCH64) |
496 (1ULL << ARM_FEATURE_PMU) |
497 (1ULL << ARM_FEATURE_GENERIC_TIMER);
498
499 /* We set up a small vcpu to extract host registers */
500
501 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
502 return false;
503 }
504
505 for (i = 0; i < ARRAY_SIZE(regs); i++) {
506 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
507 }
508 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
509 r |= hv_vcpu_destroy(fd);
510
511 ahcf->isar = host_isar;
512
513 /*
514 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
515 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
516 */
517 ahcf->reset_sctlr = 0x30100180;
518 /*
519 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
520 * let's disable it on boot and then allow guest software to turn it on by
521 * setting it to 0.
522 */
523 ahcf->reset_sctlr |= 0x00800000;
524
525 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
526 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
527 return false;
528 }
529
530 return r == HV_SUCCESS;
531 }
532
533 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
534 {
535 if (!arm_host_cpu_features.dtb_compatible) {
536 if (!hvf_enabled() ||
537 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
538 /*
539 * We can't report this error yet, so flag that we need to
540 * in arm_cpu_realizefn().
541 */
542 cpu->host_cpu_probe_failed = true;
543 return;
544 }
545 }
546
547 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
548 cpu->isar = arm_host_cpu_features.isar;
549 cpu->env.features = arm_host_cpu_features.features;
550 cpu->midr = arm_host_cpu_features.midr;
551 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
552 }
553
554 void hvf_arch_vcpu_destroy(CPUState *cpu)
555 {
556 }
557
558 int hvf_arch_init_vcpu(CPUState *cpu)
559 {
560 ARMCPU *arm_cpu = ARM_CPU(cpu);
561 CPUARMState *env = &arm_cpu->env;
562 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
563 uint32_t sregs_cnt = 0;
564 uint64_t pfr;
565 hv_return_t ret;
566 int i;
567
568 env->aarch64 = 1;
569 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
570
571 /* Allocate enough space for our sysreg sync */
572 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
573 sregs_match_len);
574 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
575 sregs_match_len);
576 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
577 arm_cpu->cpreg_vmstate_indexes,
578 sregs_match_len);
579 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
580 arm_cpu->cpreg_vmstate_values,
581 sregs_match_len);
582
583 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
584
585 /* Populate cp list for all known sysregs */
586 for (i = 0; i < sregs_match_len; i++) {
587 const ARMCPRegInfo *ri;
588 uint32_t key = hvf_sreg_match[i].key;
589
590 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
591 if (ri) {
592 assert(!(ri->type & ARM_CP_NO_RAW));
593 hvf_sreg_match[i].cp_idx = sregs_cnt;
594 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
595 } else {
596 hvf_sreg_match[i].cp_idx = -1;
597 }
598 }
599 arm_cpu->cpreg_array_len = sregs_cnt;
600 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
601
602 assert(write_cpustate_to_list(arm_cpu, false));
603
604 /* Set CP_NO_RAW system registers on init */
605 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
606 arm_cpu->midr);
607 assert_hvf_ok(ret);
608
609 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
610 arm_cpu->mp_affinity);
611 assert_hvf_ok(ret);
612
613 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
614 assert_hvf_ok(ret);
615 pfr |= env->gicv3state ? (1 << 24) : 0;
616 ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
617 assert_hvf_ok(ret);
618
619 /* We're limited to underlying hardware caps, override internal versions */
620 ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
621 &arm_cpu->isar.id_aa64mmfr0);
622 assert_hvf_ok(ret);
623
624 return 0;
625 }
626
627 void hvf_kick_vcpu_thread(CPUState *cpu)
628 {
629 cpus_kick_thread(cpu);
630 hv_vcpus_exit(&cpu->hvf->fd, 1);
631 }
632
633 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
634 uint32_t syndrome)
635 {
636 ARMCPU *arm_cpu = ARM_CPU(cpu);
637 CPUARMState *env = &arm_cpu->env;
638
639 cpu->exception_index = excp;
640 env->exception.target_el = 1;
641 env->exception.syndrome = syndrome;
642
643 arm_cpu_do_interrupt(cpu);
644 }
645
646 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
647 {
648 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
649 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
650 }
651
652 /*
653 * Handle a PSCI call.
654 *
655 * Returns 0 on success
656 * -1 when the PSCI call is unknown,
657 */
658 static bool hvf_handle_psci_call(CPUState *cpu)
659 {
660 ARMCPU *arm_cpu = ARM_CPU(cpu);
661 CPUARMState *env = &arm_cpu->env;
662 uint64_t param[4] = {
663 env->xregs[0],
664 env->xregs[1],
665 env->xregs[2],
666 env->xregs[3]
667 };
668 uint64_t context_id, mpidr;
669 bool target_aarch64 = true;
670 CPUState *target_cpu_state;
671 ARMCPU *target_cpu;
672 target_ulong entry;
673 int target_el = 1;
674 int32_t ret = 0;
675
676 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
677 arm_cpu->mp_affinity);
678
679 switch (param[0]) {
680 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
681 ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
682 break;
683 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
684 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
685 break;
686 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
687 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
688 mpidr = param[1];
689
690 switch (param[2]) {
691 case 0:
692 target_cpu_state = arm_get_cpu_by_id(mpidr);
693 if (!target_cpu_state) {
694 ret = QEMU_PSCI_RET_INVALID_PARAMS;
695 break;
696 }
697 target_cpu = ARM_CPU(target_cpu_state);
698
699 ret = target_cpu->power_state;
700 break;
701 default:
702 /* Everything above affinity level 0 is always on. */
703 ret = 0;
704 }
705 break;
706 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
707 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
708 /*
709 * QEMU reset and shutdown are async requests, but PSCI
710 * mandates that we never return from the reset/shutdown
711 * call, so power the CPU off now so it doesn't execute
712 * anything further.
713 */
714 hvf_psci_cpu_off(arm_cpu);
715 break;
716 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
717 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
718 hvf_psci_cpu_off(arm_cpu);
719 break;
720 case QEMU_PSCI_0_1_FN_CPU_ON:
721 case QEMU_PSCI_0_2_FN_CPU_ON:
722 case QEMU_PSCI_0_2_FN64_CPU_ON:
723 mpidr = param[1];
724 entry = param[2];
725 context_id = param[3];
726 ret = arm_set_cpu_on(mpidr, entry, context_id,
727 target_el, target_aarch64);
728 break;
729 case QEMU_PSCI_0_1_FN_CPU_OFF:
730 case QEMU_PSCI_0_2_FN_CPU_OFF:
731 hvf_psci_cpu_off(arm_cpu);
732 break;
733 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
734 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
735 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
736 /* Affinity levels are not supported in QEMU */
737 if (param[1] & 0xfffe0000) {
738 ret = QEMU_PSCI_RET_INVALID_PARAMS;
739 break;
740 }
741 /* Powerdown is not supported, we always go into WFI */
742 env->xregs[0] = 0;
743 hvf_wfi(cpu);
744 break;
745 case QEMU_PSCI_0_1_FN_MIGRATE:
746 case QEMU_PSCI_0_2_FN_MIGRATE:
747 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
748 break;
749 default:
750 return false;
751 }
752
753 env->xregs[0] = ret;
754 return true;
755 }
756
757 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
758 {
759 ARMCPU *arm_cpu = ARM_CPU(cpu);
760 CPUARMState *env = &arm_cpu->env;
761 uint64_t val = 0;
762
763 switch (reg) {
764 case SYSREG_CNTPCT_EL0:
765 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
766 gt_cntfrq_period_ns(arm_cpu);
767 break;
768 case SYSREG_PMCR_EL0:
769 val = env->cp15.c9_pmcr;
770 break;
771 case SYSREG_PMCCNTR_EL0:
772 pmu_op_start(env);
773 val = env->cp15.c15_ccnt;
774 pmu_op_finish(env);
775 break;
776 case SYSREG_PMCNTENCLR_EL0:
777 val = env->cp15.c9_pmcnten;
778 break;
779 case SYSREG_PMOVSCLR_EL0:
780 val = env->cp15.c9_pmovsr;
781 break;
782 case SYSREG_PMSELR_EL0:
783 val = env->cp15.c9_pmselr;
784 break;
785 case SYSREG_PMINTENCLR_EL1:
786 val = env->cp15.c9_pminten;
787 break;
788 case SYSREG_PMCCFILTR_EL0:
789 val = env->cp15.pmccfiltr_el0;
790 break;
791 case SYSREG_PMCNTENSET_EL0:
792 val = env->cp15.c9_pmcnten;
793 break;
794 case SYSREG_PMUSERENR_EL0:
795 val = env->cp15.c9_pmuserenr;
796 break;
797 case SYSREG_PMCEID0_EL0:
798 case SYSREG_PMCEID1_EL0:
799 /* We can't really count anything yet, declare all events invalid */
800 val = 0;
801 break;
802 case SYSREG_OSLSR_EL1:
803 val = env->cp15.oslsr_el1;
804 break;
805 case SYSREG_OSDLR_EL1:
806 /* Dummy register */
807 break;
808 default:
809 cpu_synchronize_state(cpu);
810 trace_hvf_unhandled_sysreg_read(env->pc, reg,
811 SYSREG_OP0(reg),
812 SYSREG_OP1(reg),
813 SYSREG_CRN(reg),
814 SYSREG_CRM(reg),
815 SYSREG_OP2(reg));
816 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
817 return 1;
818 }
819
820 trace_hvf_sysreg_read(reg,
821 SYSREG_OP0(reg),
822 SYSREG_OP1(reg),
823 SYSREG_CRN(reg),
824 SYSREG_CRM(reg),
825 SYSREG_OP2(reg),
826 val);
827 hvf_set_reg(cpu, rt, val);
828
829 return 0;
830 }
831
832 static void pmu_update_irq(CPUARMState *env)
833 {
834 ARMCPU *cpu = env_archcpu(env);
835 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
836 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
837 }
838
839 static bool pmu_event_supported(uint16_t number)
840 {
841 return false;
842 }
843
844 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
845 * the current EL, security state, and register configuration.
846 */
847 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
848 {
849 uint64_t filter;
850 bool enabled, filtered = true;
851 int el = arm_current_el(env);
852
853 enabled = (env->cp15.c9_pmcr & PMCRE) &&
854 (env->cp15.c9_pmcnten & (1 << counter));
855
856 if (counter == 31) {
857 filter = env->cp15.pmccfiltr_el0;
858 } else {
859 filter = env->cp15.c14_pmevtyper[counter];
860 }
861
862 if (el == 0) {
863 filtered = filter & PMXEVTYPER_U;
864 } else if (el == 1) {
865 filtered = filter & PMXEVTYPER_P;
866 }
867
868 if (counter != 31) {
869 /*
870 * If not checking PMCCNTR, ensure the counter is setup to an event we
871 * support
872 */
873 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
874 if (!pmu_event_supported(event)) {
875 return false;
876 }
877 }
878
879 return enabled && !filtered;
880 }
881
882 static void pmswinc_write(CPUARMState *env, uint64_t value)
883 {
884 unsigned int i;
885 for (i = 0; i < pmu_num_counters(env); i++) {
886 /* Increment a counter's count iff: */
887 if ((value & (1 << i)) && /* counter's bit is set */
888 /* counter is enabled and not filtered */
889 pmu_counter_enabled(env, i) &&
890 /* counter is SW_INCR */
891 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
892 /*
893 * Detect if this write causes an overflow since we can't predict
894 * PMSWINC overflows like we can for other events
895 */
896 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
897
898 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
899 env->cp15.c9_pmovsr |= (1 << i);
900 pmu_update_irq(env);
901 }
902
903 env->cp15.c14_pmevcntr[i] = new_pmswinc;
904 }
905 }
906 }
907
908 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
909 {
910 ARMCPU *arm_cpu = ARM_CPU(cpu);
911 CPUARMState *env = &arm_cpu->env;
912
913 trace_hvf_sysreg_write(reg,
914 SYSREG_OP0(reg),
915 SYSREG_OP1(reg),
916 SYSREG_CRN(reg),
917 SYSREG_CRM(reg),
918 SYSREG_OP2(reg),
919 val);
920
921 switch (reg) {
922 case SYSREG_PMCCNTR_EL0:
923 pmu_op_start(env);
924 env->cp15.c15_ccnt = val;
925 pmu_op_finish(env);
926 break;
927 case SYSREG_PMCR_EL0:
928 pmu_op_start(env);
929
930 if (val & PMCRC) {
931 /* The counter has been reset */
932 env->cp15.c15_ccnt = 0;
933 }
934
935 if (val & PMCRP) {
936 unsigned int i;
937 for (i = 0; i < pmu_num_counters(env); i++) {
938 env->cp15.c14_pmevcntr[i] = 0;
939 }
940 }
941
942 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
943 env->cp15.c9_pmcr |= (val & PMCR_WRITEABLE_MASK);
944
945 pmu_op_finish(env);
946 break;
947 case SYSREG_PMUSERENR_EL0:
948 env->cp15.c9_pmuserenr = val & 0xf;
949 break;
950 case SYSREG_PMCNTENSET_EL0:
951 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
952 break;
953 case SYSREG_PMCNTENCLR_EL0:
954 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
955 break;
956 case SYSREG_PMINTENCLR_EL1:
957 pmu_op_start(env);
958 env->cp15.c9_pminten |= val;
959 pmu_op_finish(env);
960 break;
961 case SYSREG_PMOVSCLR_EL0:
962 pmu_op_start(env);
963 env->cp15.c9_pmovsr &= ~val;
964 pmu_op_finish(env);
965 break;
966 case SYSREG_PMSWINC_EL0:
967 pmu_op_start(env);
968 pmswinc_write(env, val);
969 pmu_op_finish(env);
970 break;
971 case SYSREG_PMSELR_EL0:
972 env->cp15.c9_pmselr = val & 0x1f;
973 break;
974 case SYSREG_PMCCFILTR_EL0:
975 pmu_op_start(env);
976 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
977 pmu_op_finish(env);
978 break;
979 case SYSREG_OSLAR_EL1:
980 env->cp15.oslsr_el1 = val & 1;
981 break;
982 case SYSREG_OSDLR_EL1:
983 /* Dummy register */
984 break;
985 default:
986 cpu_synchronize_state(cpu);
987 trace_hvf_unhandled_sysreg_write(env->pc, reg,
988 SYSREG_OP0(reg),
989 SYSREG_OP1(reg),
990 SYSREG_CRN(reg),
991 SYSREG_CRM(reg),
992 SYSREG_OP2(reg));
993 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
994 return 1;
995 }
996
997 return 0;
998 }
999
1000 static int hvf_inject_interrupts(CPUState *cpu)
1001 {
1002 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1003 trace_hvf_inject_fiq();
1004 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ,
1005 true);
1006 }
1007
1008 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1009 trace_hvf_inject_irq();
1010 hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ,
1011 true);
1012 }
1013
1014 return 0;
1015 }
1016
1017 static uint64_t hvf_vtimer_val_raw(void)
1018 {
1019 /*
1020 * mach_absolute_time() returns the vtimer value without the VM
1021 * offset that we define. Add our own offset on top.
1022 */
1023 return mach_absolute_time() - hvf_state->vtimer_offset;
1024 }
1025
1026 static uint64_t hvf_vtimer_val(void)
1027 {
1028 if (!runstate_is_running()) {
1029 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1030 return vtimer.vtimer_val;
1031 }
1032
1033 return hvf_vtimer_val_raw();
1034 }
1035
1036 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1037 {
1038 /*
1039 * Use pselect to sleep so that other threads can IPI us while we're
1040 * sleeping.
1041 */
1042 qatomic_mb_set(&cpu->thread_kicked, false);
1043 qemu_mutex_unlock_iothread();
1044 pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
1045 qemu_mutex_lock_iothread();
1046 }
1047
1048 static void hvf_wfi(CPUState *cpu)
1049 {
1050 ARMCPU *arm_cpu = ARM_CPU(cpu);
1051 struct timespec ts;
1052 hv_return_t r;
1053 uint64_t ctl;
1054 uint64_t cval;
1055 int64_t ticks_to_sleep;
1056 uint64_t seconds;
1057 uint64_t nanos;
1058 uint32_t cntfrq;
1059
1060 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1061 /* Interrupt pending, no need to wait */
1062 return;
1063 }
1064
1065 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1066 assert_hvf_ok(r);
1067
1068 if (!(ctl & 1) || (ctl & 2)) {
1069 /* Timer disabled or masked, just wait for an IPI. */
1070 hvf_wait_for_ipi(cpu, NULL);
1071 return;
1072 }
1073
1074 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1075 assert_hvf_ok(r);
1076
1077 ticks_to_sleep = cval - hvf_vtimer_val();
1078 if (ticks_to_sleep < 0) {
1079 return;
1080 }
1081
1082 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1083 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1084 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1085 nanos = ticks_to_sleep * cntfrq;
1086
1087 /*
1088 * Don't sleep for less than the time a context switch would take,
1089 * so that we can satisfy fast timer requests on the same CPU.
1090 * Measurements on M1 show the sweet spot to be ~2ms.
1091 */
1092 if (!seconds && nanos < (2 * SCALE_MS)) {
1093 return;
1094 }
1095
1096 ts = (struct timespec) { seconds, nanos };
1097 hvf_wait_for_ipi(cpu, &ts);
1098 }
1099
1100 static void hvf_sync_vtimer(CPUState *cpu)
1101 {
1102 ARMCPU *arm_cpu = ARM_CPU(cpu);
1103 hv_return_t r;
1104 uint64_t ctl;
1105 bool irq_state;
1106
1107 if (!cpu->hvf->vtimer_masked) {
1108 /* We will get notified on vtimer changes by hvf, nothing to do */
1109 return;
1110 }
1111
1112 r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1113 assert_hvf_ok(r);
1114
1115 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1116 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1117 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1118
1119 if (!irq_state) {
1120 /* Timer no longer asserting, we can unmask it */
1121 hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
1122 cpu->hvf->vtimer_masked = false;
1123 }
1124 }
1125
1126 int hvf_vcpu_exec(CPUState *cpu)
1127 {
1128 ARMCPU *arm_cpu = ARM_CPU(cpu);
1129 CPUARMState *env = &arm_cpu->env;
1130 hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
1131 hv_return_t r;
1132 bool advance_pc = false;
1133
1134 if (hvf_inject_interrupts(cpu)) {
1135 return EXCP_INTERRUPT;
1136 }
1137
1138 if (cpu->halted) {
1139 return EXCP_HLT;
1140 }
1141
1142 flush_cpu_state(cpu);
1143
1144 qemu_mutex_unlock_iothread();
1145 assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));
1146
1147 /* handle VMEXIT */
1148 uint64_t exit_reason = hvf_exit->reason;
1149 uint64_t syndrome = hvf_exit->exception.syndrome;
1150 uint32_t ec = syn_get_ec(syndrome);
1151
1152 qemu_mutex_lock_iothread();
1153 switch (exit_reason) {
1154 case HV_EXIT_REASON_EXCEPTION:
1155 /* This is the main one, handle below. */
1156 break;
1157 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1158 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1159 cpu->hvf->vtimer_masked = true;
1160 return 0;
1161 case HV_EXIT_REASON_CANCELED:
1162 /* we got kicked, no exit to process */
1163 return 0;
1164 default:
1165 assert(0);
1166 }
1167
1168 hvf_sync_vtimer(cpu);
1169
1170 switch (ec) {
1171 case EC_DATAABORT: {
1172 bool isv = syndrome & ARM_EL_ISV;
1173 bool iswrite = (syndrome >> 6) & 1;
1174 bool s1ptw = (syndrome >> 7) & 1;
1175 uint32_t sas = (syndrome >> 22) & 3;
1176 uint32_t len = 1 << sas;
1177 uint32_t srt = (syndrome >> 16) & 0x1f;
1178 uint32_t cm = (syndrome >> 8) & 0x1;
1179 uint64_t val = 0;
1180
1181 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1182 hvf_exit->exception.physical_address, isv,
1183 iswrite, s1ptw, len, srt);
1184
1185 if (cm) {
1186 /* We don't cache MMIO regions */
1187 advance_pc = true;
1188 break;
1189 }
1190
1191 assert(isv);
1192
1193 if (iswrite) {
1194 val = hvf_get_reg(cpu, srt);
1195 address_space_write(&address_space_memory,
1196 hvf_exit->exception.physical_address,
1197 MEMTXATTRS_UNSPECIFIED, &val, len);
1198 } else {
1199 address_space_read(&address_space_memory,
1200 hvf_exit->exception.physical_address,
1201 MEMTXATTRS_UNSPECIFIED, &val, len);
1202 hvf_set_reg(cpu, srt, val);
1203 }
1204
1205 advance_pc = true;
1206 break;
1207 }
1208 case EC_SYSTEMREGISTERTRAP: {
1209 bool isread = (syndrome >> 0) & 1;
1210 uint32_t rt = (syndrome >> 5) & 0x1f;
1211 uint32_t reg = syndrome & SYSREG_MASK;
1212 uint64_t val;
1213 int ret = 0;
1214
1215 if (isread) {
1216 ret = hvf_sysreg_read(cpu, reg, rt);
1217 } else {
1218 val = hvf_get_reg(cpu, rt);
1219 ret = hvf_sysreg_write(cpu, reg, val);
1220 }
1221
1222 advance_pc = !ret;
1223 break;
1224 }
1225 case EC_WFX_TRAP:
1226 advance_pc = true;
1227 if (!(syndrome & WFX_IS_WFE)) {
1228 hvf_wfi(cpu);
1229 }
1230 break;
1231 case EC_AA64_HVC:
1232 cpu_synchronize_state(cpu);
1233 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1234 if (!hvf_handle_psci_call(cpu)) {
1235 trace_hvf_unknown_hvc(env->xregs[0]);
1236 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1237 env->xregs[0] = -1;
1238 }
1239 } else {
1240 trace_hvf_unknown_hvc(env->xregs[0]);
1241 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1242 }
1243 break;
1244 case EC_AA64_SMC:
1245 cpu_synchronize_state(cpu);
1246 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1247 advance_pc = true;
1248
1249 if (!hvf_handle_psci_call(cpu)) {
1250 trace_hvf_unknown_smc(env->xregs[0]);
1251 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1252 env->xregs[0] = -1;
1253 }
1254 } else {
1255 trace_hvf_unknown_smc(env->xregs[0]);
1256 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1257 }
1258 break;
1259 default:
1260 cpu_synchronize_state(cpu);
1261 trace_hvf_exit(syndrome, ec, env->pc);
1262 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1263 }
1264
1265 if (advance_pc) {
1266 uint64_t pc;
1267
1268 flush_cpu_state(cpu);
1269
1270 r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
1271 assert_hvf_ok(r);
1272 pc += 4;
1273 r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
1274 assert_hvf_ok(r);
1275 }
1276
1277 return 0;
1278 }
1279
1280 static const VMStateDescription vmstate_hvf_vtimer = {
1281 .name = "hvf-vtimer",
1282 .version_id = 1,
1283 .minimum_version_id = 1,
1284 .fields = (VMStateField[]) {
1285 VMSTATE_UINT64(vtimer_val, HVFVTimer),
1286 VMSTATE_END_OF_LIST()
1287 },
1288 };
1289
1290 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
1291 {
1292 HVFVTimer *s = opaque;
1293
1294 if (running) {
1295 /* Update vtimer offset on all CPUs */
1296 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
1297 cpu_synchronize_all_states();
1298 } else {
1299 /* Remember vtimer value on every pause */
1300 s->vtimer_val = hvf_vtimer_val_raw();
1301 }
1302 }
1303
1304 int hvf_arch_init(void)
1305 {
1306 hvf_state->vtimer_offset = mach_absolute_time();
1307 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
1308 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
1309 return 0;
1310 }