]> git.proxmox.com Git - mirror_qemu.git/blob - target/arm/hvf/hvf.c
Merge tag 'pull-shadow-2023-09-29' of https://repo.or.cz/qemu/armbru into staging
[mirror_qemu.git] / target / arm / hvf / hvf.c
1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21
22 #include <mach/mach_time.h>
23
24 #include "exec/address-spaces.h"
25 #include "hw/irq.h"
26 #include "qemu/main-loop.h"
27 #include "sysemu/cpus.h"
28 #include "arm-powerctl.h"
29 #include "target/arm/cpu.h"
30 #include "target/arm/internals.h"
31 #include "trace/trace-target_arm_hvf.h"
32 #include "migration/vmstate.h"
33
34 #include "exec/gdbstub.h"
35
36 #define MDSCR_EL1_SS_SHIFT 0
37 #define MDSCR_EL1_MDE_SHIFT 15
38
39 static uint16_t dbgbcr_regs[] = {
40 HV_SYS_REG_DBGBCR0_EL1,
41 HV_SYS_REG_DBGBCR1_EL1,
42 HV_SYS_REG_DBGBCR2_EL1,
43 HV_SYS_REG_DBGBCR3_EL1,
44 HV_SYS_REG_DBGBCR4_EL1,
45 HV_SYS_REG_DBGBCR5_EL1,
46 HV_SYS_REG_DBGBCR6_EL1,
47 HV_SYS_REG_DBGBCR7_EL1,
48 HV_SYS_REG_DBGBCR8_EL1,
49 HV_SYS_REG_DBGBCR9_EL1,
50 HV_SYS_REG_DBGBCR10_EL1,
51 HV_SYS_REG_DBGBCR11_EL1,
52 HV_SYS_REG_DBGBCR12_EL1,
53 HV_SYS_REG_DBGBCR13_EL1,
54 HV_SYS_REG_DBGBCR14_EL1,
55 HV_SYS_REG_DBGBCR15_EL1,
56 };
57 static uint16_t dbgbvr_regs[] = {
58 HV_SYS_REG_DBGBVR0_EL1,
59 HV_SYS_REG_DBGBVR1_EL1,
60 HV_SYS_REG_DBGBVR2_EL1,
61 HV_SYS_REG_DBGBVR3_EL1,
62 HV_SYS_REG_DBGBVR4_EL1,
63 HV_SYS_REG_DBGBVR5_EL1,
64 HV_SYS_REG_DBGBVR6_EL1,
65 HV_SYS_REG_DBGBVR7_EL1,
66 HV_SYS_REG_DBGBVR8_EL1,
67 HV_SYS_REG_DBGBVR9_EL1,
68 HV_SYS_REG_DBGBVR10_EL1,
69 HV_SYS_REG_DBGBVR11_EL1,
70 HV_SYS_REG_DBGBVR12_EL1,
71 HV_SYS_REG_DBGBVR13_EL1,
72 HV_SYS_REG_DBGBVR14_EL1,
73 HV_SYS_REG_DBGBVR15_EL1,
74 };
75 static uint16_t dbgwcr_regs[] = {
76 HV_SYS_REG_DBGWCR0_EL1,
77 HV_SYS_REG_DBGWCR1_EL1,
78 HV_SYS_REG_DBGWCR2_EL1,
79 HV_SYS_REG_DBGWCR3_EL1,
80 HV_SYS_REG_DBGWCR4_EL1,
81 HV_SYS_REG_DBGWCR5_EL1,
82 HV_SYS_REG_DBGWCR6_EL1,
83 HV_SYS_REG_DBGWCR7_EL1,
84 HV_SYS_REG_DBGWCR8_EL1,
85 HV_SYS_REG_DBGWCR9_EL1,
86 HV_SYS_REG_DBGWCR10_EL1,
87 HV_SYS_REG_DBGWCR11_EL1,
88 HV_SYS_REG_DBGWCR12_EL1,
89 HV_SYS_REG_DBGWCR13_EL1,
90 HV_SYS_REG_DBGWCR14_EL1,
91 HV_SYS_REG_DBGWCR15_EL1,
92 };
93 static uint16_t dbgwvr_regs[] = {
94 HV_SYS_REG_DBGWVR0_EL1,
95 HV_SYS_REG_DBGWVR1_EL1,
96 HV_SYS_REG_DBGWVR2_EL1,
97 HV_SYS_REG_DBGWVR3_EL1,
98 HV_SYS_REG_DBGWVR4_EL1,
99 HV_SYS_REG_DBGWVR5_EL1,
100 HV_SYS_REG_DBGWVR6_EL1,
101 HV_SYS_REG_DBGWVR7_EL1,
102 HV_SYS_REG_DBGWVR8_EL1,
103 HV_SYS_REG_DBGWVR9_EL1,
104 HV_SYS_REG_DBGWVR10_EL1,
105 HV_SYS_REG_DBGWVR11_EL1,
106 HV_SYS_REG_DBGWVR12_EL1,
107 HV_SYS_REG_DBGWVR13_EL1,
108 HV_SYS_REG_DBGWVR14_EL1,
109 HV_SYS_REG_DBGWVR15_EL1,
110 };
111
112 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
113 {
114 uint64_t val;
115 hv_return_t ret;
116 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
117 &val);
118 assert_hvf_ok(ret);
119 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
120 }
121
122 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
123 {
124 uint64_t val;
125 hv_return_t ret;
126 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
127 &val);
128 assert_hvf_ok(ret);
129 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
130 }
131
132 void hvf_arm_init_debug(void)
133 {
134 hv_vcpu_config_t config;
135 config = hv_vcpu_config_create();
136
137 max_hw_bps = hvf_arm_num_brps(config);
138 hw_breakpoints =
139 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
140
141 max_hw_wps = hvf_arm_num_wrps(config);
142 hw_watchpoints =
143 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
144 }
145
146 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
147 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
148 #define PL1_WRITE_MASK 0x4
149
150 #define SYSREG_OP0_SHIFT 20
151 #define SYSREG_OP0_MASK 0x3
152 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
153 #define SYSREG_OP1_SHIFT 14
154 #define SYSREG_OP1_MASK 0x7
155 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
156 #define SYSREG_CRN_SHIFT 10
157 #define SYSREG_CRN_MASK 0xf
158 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
159 #define SYSREG_CRM_SHIFT 1
160 #define SYSREG_CRM_MASK 0xf
161 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
162 #define SYSREG_OP2_SHIFT 17
163 #define SYSREG_OP2_MASK 0x7
164 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
165
166 #define SYSREG(op0, op1, crn, crm, op2) \
167 ((op0 << SYSREG_OP0_SHIFT) | \
168 (op1 << SYSREG_OP1_SHIFT) | \
169 (crn << SYSREG_CRN_SHIFT) | \
170 (crm << SYSREG_CRM_SHIFT) | \
171 (op2 << SYSREG_OP2_SHIFT))
172 #define SYSREG_MASK \
173 SYSREG(SYSREG_OP0_MASK, \
174 SYSREG_OP1_MASK, \
175 SYSREG_CRN_MASK, \
176 SYSREG_CRM_MASK, \
177 SYSREG_OP2_MASK)
178 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
179 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
180 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
181 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
182 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
183 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
184 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
185 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
186 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
187 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
188 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
189 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
190 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
191 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
192 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
193 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
194
195 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4)
196 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5)
197 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6)
198 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7)
199 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0)
200 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1)
201 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2)
202 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3)
203 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6)
204 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3)
205 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3)
206 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4)
207 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1)
208 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1)
209 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1)
210 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2)
211 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2)
212 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0)
213 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0)
214 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6)
215 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7)
216 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0)
217 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3)
218 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7)
219 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5)
220 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5)
221
222 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2)
223 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4)
224 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5)
225 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6)
226 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7)
227 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4)
228 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5)
229 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6)
230 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7)
231 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4)
232 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5)
233 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6)
234 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7)
235 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4)
236 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5)
237 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6)
238 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7)
239 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4)
240 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5)
241 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6)
242 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7)
243 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4)
244 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5)
245 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6)
246 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7)
247 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4)
248 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5)
249 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6)
250 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7)
251 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4)
252 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5)
253 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6)
254 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7)
255 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4)
256 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5)
257 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6)
258 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7)
259 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4)
260 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5)
261 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6)
262 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7)
263 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4)
264 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5)
265 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6)
266 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7)
267 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4)
268 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5)
269 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6)
270 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7)
271 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4)
272 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5)
273 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6)
274 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7)
275 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4)
276 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5)
277 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6)
278 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7)
279 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4)
280 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5)
281 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6)
282 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7)
283 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4)
284 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5)
285 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6)
286 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7)
287
288 #define WFX_IS_WFE (1 << 0)
289
290 #define TMR_CTL_ENABLE (1 << 0)
291 #define TMR_CTL_IMASK (1 << 1)
292 #define TMR_CTL_ISTATUS (1 << 2)
293
294 static void hvf_wfi(CPUState *cpu);
295
296 typedef struct HVFVTimer {
297 /* Vtimer value during migration and paused state */
298 uint64_t vtimer_val;
299 } HVFVTimer;
300
301 static HVFVTimer vtimer;
302
303 typedef struct ARMHostCPUFeatures {
304 ARMISARegisters isar;
305 uint64_t features;
306 uint64_t midr;
307 uint32_t reset_sctlr;
308 const char *dtb_compatible;
309 } ARMHostCPUFeatures;
310
311 static ARMHostCPUFeatures arm_host_cpu_features;
312
313 struct hvf_reg_match {
314 int reg;
315 uint64_t offset;
316 };
317
318 static const struct hvf_reg_match hvf_reg_match[] = {
319 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
320 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
321 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
322 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
323 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
324 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
325 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
326 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
327 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
328 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
329 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
330 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
331 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
332 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
333 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
334 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
335 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
336 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
337 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
338 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
339 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
340 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
341 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
342 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
343 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
344 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
345 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
346 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
347 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
348 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
349 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
350 { HV_REG_PC, offsetof(CPUARMState, pc) },
351 };
352
353 static const struct hvf_reg_match hvf_fpreg_match[] = {
354 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
355 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
356 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
357 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
358 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
359 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
360 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
361 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
362 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
363 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
364 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
365 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
366 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
367 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
368 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
369 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
370 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
371 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
372 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
373 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
374 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
375 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
376 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
377 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
378 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
379 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
380 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
381 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
382 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
383 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
384 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
385 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
386 };
387
388 struct hvf_sreg_match {
389 int reg;
390 uint32_t key;
391 uint32_t cp_idx;
392 };
393
394 static struct hvf_sreg_match hvf_sreg_match[] = {
395 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
396 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
397 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
398 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },
399
400 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
401 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
402 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
403 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },
404
405 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
406 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
407 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
408 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },
409
410 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
411 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
412 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
413 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },
414
415 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
416 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
417 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
418 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },
419
420 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
421 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
422 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
423 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },
424
425 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
426 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
427 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
428 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },
429
430 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
431 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
432 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
433 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },
434
435 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
436 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
437 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
438 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },
439
440 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
441 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
442 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
443 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },
444
445 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
446 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
447 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
448 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },
449
450 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
451 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
452 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
453 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },
454
455 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
456 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
457 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
458 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },
459
460 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
461 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
462 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
463 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },
464
465 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
466 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
467 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
468 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },
469
470 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
471 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
472 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
473 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },
474
475 #ifdef SYNC_NO_RAW_REGS
476 /*
477 * The registers below are manually synced on init because they are
478 * marked as NO_RAW. We still list them to make number space sync easier.
479 */
480 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
481 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
482 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
483 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
484 #endif
485 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
486 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
487 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
488 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
489 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
490 #ifdef SYNC_NO_MMFR0
491 /* We keep the hardware MMFR0 around. HW limits are there anyway */
492 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
493 #endif
494 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
495 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
496
497 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
498 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
499 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
500 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
501 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
502 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
503
504 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
505 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
506 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
507 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
508 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
509 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
510 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
511 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
512 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
513 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
514
515 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
516 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
517 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
518 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
519 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
520 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
521 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
522 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
523 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
524 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
525 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
526 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
527 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
528 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
529 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
530 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
531 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
532 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
533 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
534 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
535 };
536
537 int hvf_get_registers(CPUState *cpu)
538 {
539 ARMCPU *arm_cpu = ARM_CPU(cpu);
540 CPUARMState *env = &arm_cpu->env;
541 hv_return_t ret;
542 uint64_t val;
543 hv_simd_fp_uchar16_t fpval;
544 int i;
545
546 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
547 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
548 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
549 assert_hvf_ok(ret);
550 }
551
552 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
553 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
554 &fpval);
555 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
556 assert_hvf_ok(ret);
557 }
558
559 val = 0;
560 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
561 assert_hvf_ok(ret);
562 vfp_set_fpcr(env, val);
563
564 val = 0;
565 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
566 assert_hvf_ok(ret);
567 vfp_set_fpsr(env, val);
568
569 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
570 assert_hvf_ok(ret);
571 pstate_write(env, val);
572
573 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
574 if (hvf_sreg_match[i].cp_idx == -1) {
575 continue;
576 }
577
578 if (cpu->accel->guest_debug_enabled) {
579 /* Handle debug registers */
580 switch (hvf_sreg_match[i].reg) {
581 case HV_SYS_REG_DBGBVR0_EL1:
582 case HV_SYS_REG_DBGBCR0_EL1:
583 case HV_SYS_REG_DBGWVR0_EL1:
584 case HV_SYS_REG_DBGWCR0_EL1:
585 case HV_SYS_REG_DBGBVR1_EL1:
586 case HV_SYS_REG_DBGBCR1_EL1:
587 case HV_SYS_REG_DBGWVR1_EL1:
588 case HV_SYS_REG_DBGWCR1_EL1:
589 case HV_SYS_REG_DBGBVR2_EL1:
590 case HV_SYS_REG_DBGBCR2_EL1:
591 case HV_SYS_REG_DBGWVR2_EL1:
592 case HV_SYS_REG_DBGWCR2_EL1:
593 case HV_SYS_REG_DBGBVR3_EL1:
594 case HV_SYS_REG_DBGBCR3_EL1:
595 case HV_SYS_REG_DBGWVR3_EL1:
596 case HV_SYS_REG_DBGWCR3_EL1:
597 case HV_SYS_REG_DBGBVR4_EL1:
598 case HV_SYS_REG_DBGBCR4_EL1:
599 case HV_SYS_REG_DBGWVR4_EL1:
600 case HV_SYS_REG_DBGWCR4_EL1:
601 case HV_SYS_REG_DBGBVR5_EL1:
602 case HV_SYS_REG_DBGBCR5_EL1:
603 case HV_SYS_REG_DBGWVR5_EL1:
604 case HV_SYS_REG_DBGWCR5_EL1:
605 case HV_SYS_REG_DBGBVR6_EL1:
606 case HV_SYS_REG_DBGBCR6_EL1:
607 case HV_SYS_REG_DBGWVR6_EL1:
608 case HV_SYS_REG_DBGWCR6_EL1:
609 case HV_SYS_REG_DBGBVR7_EL1:
610 case HV_SYS_REG_DBGBCR7_EL1:
611 case HV_SYS_REG_DBGWVR7_EL1:
612 case HV_SYS_REG_DBGWCR7_EL1:
613 case HV_SYS_REG_DBGBVR8_EL1:
614 case HV_SYS_REG_DBGBCR8_EL1:
615 case HV_SYS_REG_DBGWVR8_EL1:
616 case HV_SYS_REG_DBGWCR8_EL1:
617 case HV_SYS_REG_DBGBVR9_EL1:
618 case HV_SYS_REG_DBGBCR9_EL1:
619 case HV_SYS_REG_DBGWVR9_EL1:
620 case HV_SYS_REG_DBGWCR9_EL1:
621 case HV_SYS_REG_DBGBVR10_EL1:
622 case HV_SYS_REG_DBGBCR10_EL1:
623 case HV_SYS_REG_DBGWVR10_EL1:
624 case HV_SYS_REG_DBGWCR10_EL1:
625 case HV_SYS_REG_DBGBVR11_EL1:
626 case HV_SYS_REG_DBGBCR11_EL1:
627 case HV_SYS_REG_DBGWVR11_EL1:
628 case HV_SYS_REG_DBGWCR11_EL1:
629 case HV_SYS_REG_DBGBVR12_EL1:
630 case HV_SYS_REG_DBGBCR12_EL1:
631 case HV_SYS_REG_DBGWVR12_EL1:
632 case HV_SYS_REG_DBGWCR12_EL1:
633 case HV_SYS_REG_DBGBVR13_EL1:
634 case HV_SYS_REG_DBGBCR13_EL1:
635 case HV_SYS_REG_DBGWVR13_EL1:
636 case HV_SYS_REG_DBGWCR13_EL1:
637 case HV_SYS_REG_DBGBVR14_EL1:
638 case HV_SYS_REG_DBGBCR14_EL1:
639 case HV_SYS_REG_DBGWVR14_EL1:
640 case HV_SYS_REG_DBGWCR14_EL1:
641 case HV_SYS_REG_DBGBVR15_EL1:
642 case HV_SYS_REG_DBGBCR15_EL1:
643 case HV_SYS_REG_DBGWVR15_EL1:
644 case HV_SYS_REG_DBGWCR15_EL1: {
645 /*
646 * If the guest is being debugged, the vCPU's debug registers
647 * are holding the gdbstub's view of the registers (set in
648 * hvf_arch_update_guest_debug()).
649 * Since the environment is used to store only the guest's view
650 * of the registers, don't update it with the values from the
651 * vCPU but simply keep the values from the previous
652 * environment.
653 */
654 const ARMCPRegInfo *ri;
655 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
656 val = read_raw_cp_reg(env, ri);
657
658 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
659 continue;
660 }
661 }
662 }
663
664 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
665 assert_hvf_ok(ret);
666
667 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
668 }
669 assert(write_list_to_cpustate(arm_cpu));
670
671 aarch64_restore_sp(env, arm_current_el(env));
672
673 return 0;
674 }
675
676 int hvf_put_registers(CPUState *cpu)
677 {
678 ARMCPU *arm_cpu = ARM_CPU(cpu);
679 CPUARMState *env = &arm_cpu->env;
680 hv_return_t ret;
681 uint64_t val;
682 hv_simd_fp_uchar16_t fpval;
683 int i;
684
685 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
686 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
687 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
688 assert_hvf_ok(ret);
689 }
690
691 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
692 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
693 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
694 fpval);
695 assert_hvf_ok(ret);
696 }
697
698 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
699 assert_hvf_ok(ret);
700
701 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
702 assert_hvf_ok(ret);
703
704 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
705 assert_hvf_ok(ret);
706
707 aarch64_save_sp(env, arm_current_el(env));
708
709 assert(write_cpustate_to_list(arm_cpu, false));
710 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
711 if (hvf_sreg_match[i].cp_idx == -1) {
712 continue;
713 }
714
715 if (cpu->accel->guest_debug_enabled) {
716 /* Handle debug registers */
717 switch (hvf_sreg_match[i].reg) {
718 case HV_SYS_REG_DBGBVR0_EL1:
719 case HV_SYS_REG_DBGBCR0_EL1:
720 case HV_SYS_REG_DBGWVR0_EL1:
721 case HV_SYS_REG_DBGWCR0_EL1:
722 case HV_SYS_REG_DBGBVR1_EL1:
723 case HV_SYS_REG_DBGBCR1_EL1:
724 case HV_SYS_REG_DBGWVR1_EL1:
725 case HV_SYS_REG_DBGWCR1_EL1:
726 case HV_SYS_REG_DBGBVR2_EL1:
727 case HV_SYS_REG_DBGBCR2_EL1:
728 case HV_SYS_REG_DBGWVR2_EL1:
729 case HV_SYS_REG_DBGWCR2_EL1:
730 case HV_SYS_REG_DBGBVR3_EL1:
731 case HV_SYS_REG_DBGBCR3_EL1:
732 case HV_SYS_REG_DBGWVR3_EL1:
733 case HV_SYS_REG_DBGWCR3_EL1:
734 case HV_SYS_REG_DBGBVR4_EL1:
735 case HV_SYS_REG_DBGBCR4_EL1:
736 case HV_SYS_REG_DBGWVR4_EL1:
737 case HV_SYS_REG_DBGWCR4_EL1:
738 case HV_SYS_REG_DBGBVR5_EL1:
739 case HV_SYS_REG_DBGBCR5_EL1:
740 case HV_SYS_REG_DBGWVR5_EL1:
741 case HV_SYS_REG_DBGWCR5_EL1:
742 case HV_SYS_REG_DBGBVR6_EL1:
743 case HV_SYS_REG_DBGBCR6_EL1:
744 case HV_SYS_REG_DBGWVR6_EL1:
745 case HV_SYS_REG_DBGWCR6_EL1:
746 case HV_SYS_REG_DBGBVR7_EL1:
747 case HV_SYS_REG_DBGBCR7_EL1:
748 case HV_SYS_REG_DBGWVR7_EL1:
749 case HV_SYS_REG_DBGWCR7_EL1:
750 case HV_SYS_REG_DBGBVR8_EL1:
751 case HV_SYS_REG_DBGBCR8_EL1:
752 case HV_SYS_REG_DBGWVR8_EL1:
753 case HV_SYS_REG_DBGWCR8_EL1:
754 case HV_SYS_REG_DBGBVR9_EL1:
755 case HV_SYS_REG_DBGBCR9_EL1:
756 case HV_SYS_REG_DBGWVR9_EL1:
757 case HV_SYS_REG_DBGWCR9_EL1:
758 case HV_SYS_REG_DBGBVR10_EL1:
759 case HV_SYS_REG_DBGBCR10_EL1:
760 case HV_SYS_REG_DBGWVR10_EL1:
761 case HV_SYS_REG_DBGWCR10_EL1:
762 case HV_SYS_REG_DBGBVR11_EL1:
763 case HV_SYS_REG_DBGBCR11_EL1:
764 case HV_SYS_REG_DBGWVR11_EL1:
765 case HV_SYS_REG_DBGWCR11_EL1:
766 case HV_SYS_REG_DBGBVR12_EL1:
767 case HV_SYS_REG_DBGBCR12_EL1:
768 case HV_SYS_REG_DBGWVR12_EL1:
769 case HV_SYS_REG_DBGWCR12_EL1:
770 case HV_SYS_REG_DBGBVR13_EL1:
771 case HV_SYS_REG_DBGBCR13_EL1:
772 case HV_SYS_REG_DBGWVR13_EL1:
773 case HV_SYS_REG_DBGWCR13_EL1:
774 case HV_SYS_REG_DBGBVR14_EL1:
775 case HV_SYS_REG_DBGBCR14_EL1:
776 case HV_SYS_REG_DBGWVR14_EL1:
777 case HV_SYS_REG_DBGWCR14_EL1:
778 case HV_SYS_REG_DBGBVR15_EL1:
779 case HV_SYS_REG_DBGBCR15_EL1:
780 case HV_SYS_REG_DBGWVR15_EL1:
781 case HV_SYS_REG_DBGWCR15_EL1:
782 /*
783 * If the guest is being debugged, the vCPU's debug registers
784 * are already holding the gdbstub's view of the registers (set
785 * in hvf_arch_update_guest_debug()).
786 */
787 continue;
788 }
789 }
790
791 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
792 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
793 assert_hvf_ok(ret);
794 }
795
796 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
797 assert_hvf_ok(ret);
798
799 return 0;
800 }
801
802 static void flush_cpu_state(CPUState *cpu)
803 {
804 if (cpu->vcpu_dirty) {
805 hvf_put_registers(cpu);
806 cpu->vcpu_dirty = false;
807 }
808 }
809
810 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
811 {
812 hv_return_t r;
813
814 flush_cpu_state(cpu);
815
816 if (rt < 31) {
817 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
818 assert_hvf_ok(r);
819 }
820 }
821
822 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
823 {
824 uint64_t val = 0;
825 hv_return_t r;
826
827 flush_cpu_state(cpu);
828
829 if (rt < 31) {
830 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
831 assert_hvf_ok(r);
832 }
833
834 return val;
835 }
836
837 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
838 {
839 ARMISARegisters host_isar = {};
840 const struct isar_regs {
841 int reg;
842 uint64_t *val;
843 } regs[] = {
844 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
845 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
846 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
847 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
848 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
849 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
850 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
851 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
852 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
853 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
854 };
855 hv_vcpu_t fd;
856 hv_return_t r = HV_SUCCESS;
857 hv_vcpu_exit_t *exit;
858 int i;
859
860 ahcf->dtb_compatible = "arm,arm-v8";
861 ahcf->features = (1ULL << ARM_FEATURE_V8) |
862 (1ULL << ARM_FEATURE_NEON) |
863 (1ULL << ARM_FEATURE_AARCH64) |
864 (1ULL << ARM_FEATURE_PMU) |
865 (1ULL << ARM_FEATURE_GENERIC_TIMER);
866
867 /* We set up a small vcpu to extract host registers */
868
869 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
870 return false;
871 }
872
873 for (i = 0; i < ARRAY_SIZE(regs); i++) {
874 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
875 }
876 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
877 r |= hv_vcpu_destroy(fd);
878
879 ahcf->isar = host_isar;
880
881 /*
882 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
883 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
884 */
885 ahcf->reset_sctlr = 0x30100180;
886 /*
887 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
888 * let's disable it on boot and then allow guest software to turn it on by
889 * setting it to 0.
890 */
891 ahcf->reset_sctlr |= 0x00800000;
892
893 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
894 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
895 return false;
896 }
897
898 return r == HV_SUCCESS;
899 }
900
901 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
902 {
903 if (!arm_host_cpu_features.dtb_compatible) {
904 if (!hvf_enabled() ||
905 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
906 /*
907 * We can't report this error yet, so flag that we need to
908 * in arm_cpu_realizefn().
909 */
910 cpu->host_cpu_probe_failed = true;
911 return;
912 }
913 }
914
915 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
916 cpu->isar = arm_host_cpu_features.isar;
917 cpu->env.features = arm_host_cpu_features.features;
918 cpu->midr = arm_host_cpu_features.midr;
919 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
920 }
921
922 void hvf_arch_vcpu_destroy(CPUState *cpu)
923 {
924 }
925
926 int hvf_arch_init_vcpu(CPUState *cpu)
927 {
928 ARMCPU *arm_cpu = ARM_CPU(cpu);
929 CPUARMState *env = &arm_cpu->env;
930 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
931 uint32_t sregs_cnt = 0;
932 uint64_t pfr;
933 hv_return_t ret;
934 int i;
935
936 env->aarch64 = true;
937 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
938
939 /* Allocate enough space for our sysreg sync */
940 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
941 sregs_match_len);
942 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
943 sregs_match_len);
944 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
945 arm_cpu->cpreg_vmstate_indexes,
946 sregs_match_len);
947 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
948 arm_cpu->cpreg_vmstate_values,
949 sregs_match_len);
950
951 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
952
953 /* Populate cp list for all known sysregs */
954 for (i = 0; i < sregs_match_len; i++) {
955 const ARMCPRegInfo *ri;
956 uint32_t key = hvf_sreg_match[i].key;
957
958 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
959 if (ri) {
960 assert(!(ri->type & ARM_CP_NO_RAW));
961 hvf_sreg_match[i].cp_idx = sregs_cnt;
962 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
963 } else {
964 hvf_sreg_match[i].cp_idx = -1;
965 }
966 }
967 arm_cpu->cpreg_array_len = sregs_cnt;
968 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
969
970 assert(write_cpustate_to_list(arm_cpu, false));
971
972 /* Set CP_NO_RAW system registers on init */
973 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
974 arm_cpu->midr);
975 assert_hvf_ok(ret);
976
977 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
978 arm_cpu->mp_affinity);
979 assert_hvf_ok(ret);
980
981 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
982 assert_hvf_ok(ret);
983 pfr |= env->gicv3state ? (1 << 24) : 0;
984 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
985 assert_hvf_ok(ret);
986
987 /* We're limited to underlying hardware caps, override internal versions */
988 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
989 &arm_cpu->isar.id_aa64mmfr0);
990 assert_hvf_ok(ret);
991
992 return 0;
993 }
994
995 void hvf_kick_vcpu_thread(CPUState *cpu)
996 {
997 cpus_kick_thread(cpu);
998 hv_vcpus_exit(&cpu->accel->fd, 1);
999 }
1000
1001 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1002 uint32_t syndrome)
1003 {
1004 ARMCPU *arm_cpu = ARM_CPU(cpu);
1005 CPUARMState *env = &arm_cpu->env;
1006
1007 cpu->exception_index = excp;
1008 env->exception.target_el = 1;
1009 env->exception.syndrome = syndrome;
1010
1011 arm_cpu_do_interrupt(cpu);
1012 }
1013
1014 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1015 {
1016 int32_t ret = arm_set_cpu_off(arm_cpu->mp_affinity);
1017 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1018 }
1019
1020 /*
1021 * Handle a PSCI call.
1022 *
1023 * Returns 0 on success
1024 * -1 when the PSCI call is unknown,
1025 */
1026 static bool hvf_handle_psci_call(CPUState *cpu)
1027 {
1028 ARMCPU *arm_cpu = ARM_CPU(cpu);
1029 CPUARMState *env = &arm_cpu->env;
1030 uint64_t param[4] = {
1031 env->xregs[0],
1032 env->xregs[1],
1033 env->xregs[2],
1034 env->xregs[3]
1035 };
1036 uint64_t context_id, mpidr;
1037 bool target_aarch64 = true;
1038 CPUState *target_cpu_state;
1039 ARMCPU *target_cpu;
1040 target_ulong entry;
1041 int target_el = 1;
1042 int32_t ret = 0;
1043
1044 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1045 arm_cpu->mp_affinity);
1046
1047 switch (param[0]) {
1048 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1049 ret = QEMU_PSCI_VERSION_1_1;
1050 break;
1051 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1052 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1053 break;
1054 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1055 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1056 mpidr = param[1];
1057
1058 switch (param[2]) {
1059 case 0:
1060 target_cpu_state = arm_get_cpu_by_id(mpidr);
1061 if (!target_cpu_state) {
1062 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1063 break;
1064 }
1065 target_cpu = ARM_CPU(target_cpu_state);
1066
1067 ret = target_cpu->power_state;
1068 break;
1069 default:
1070 /* Everything above affinity level 0 is always on. */
1071 ret = 0;
1072 }
1073 break;
1074 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1075 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1076 /*
1077 * QEMU reset and shutdown are async requests, but PSCI
1078 * mandates that we never return from the reset/shutdown
1079 * call, so power the CPU off now so it doesn't execute
1080 * anything further.
1081 */
1082 hvf_psci_cpu_off(arm_cpu);
1083 break;
1084 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1085 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1086 hvf_psci_cpu_off(arm_cpu);
1087 break;
1088 case QEMU_PSCI_0_1_FN_CPU_ON:
1089 case QEMU_PSCI_0_2_FN_CPU_ON:
1090 case QEMU_PSCI_0_2_FN64_CPU_ON:
1091 mpidr = param[1];
1092 entry = param[2];
1093 context_id = param[3];
1094 ret = arm_set_cpu_on(mpidr, entry, context_id,
1095 target_el, target_aarch64);
1096 break;
1097 case QEMU_PSCI_0_1_FN_CPU_OFF:
1098 case QEMU_PSCI_0_2_FN_CPU_OFF:
1099 hvf_psci_cpu_off(arm_cpu);
1100 break;
1101 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1102 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1103 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1104 /* Affinity levels are not supported in QEMU */
1105 if (param[1] & 0xfffe0000) {
1106 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1107 break;
1108 }
1109 /* Powerdown is not supported, we always go into WFI */
1110 env->xregs[0] = 0;
1111 hvf_wfi(cpu);
1112 break;
1113 case QEMU_PSCI_0_1_FN_MIGRATE:
1114 case QEMU_PSCI_0_2_FN_MIGRATE:
1115 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1116 break;
1117 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1118 switch (param[1]) {
1119 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1120 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1121 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1122 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1123 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1124 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1125 case QEMU_PSCI_0_1_FN_CPU_ON:
1126 case QEMU_PSCI_0_2_FN_CPU_ON:
1127 case QEMU_PSCI_0_2_FN64_CPU_ON:
1128 case QEMU_PSCI_0_1_FN_CPU_OFF:
1129 case QEMU_PSCI_0_2_FN_CPU_OFF:
1130 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1131 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1132 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1133 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1134 ret = 0;
1135 break;
1136 case QEMU_PSCI_0_1_FN_MIGRATE:
1137 case QEMU_PSCI_0_2_FN_MIGRATE:
1138 default:
1139 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1140 }
1141 break;
1142 default:
1143 return false;
1144 }
1145
1146 env->xregs[0] = ret;
1147 return true;
1148 }
1149
1150 static bool is_id_sysreg(uint32_t reg)
1151 {
1152 return SYSREG_OP0(reg) == 3 &&
1153 SYSREG_OP1(reg) == 0 &&
1154 SYSREG_CRN(reg) == 0 &&
1155 SYSREG_CRM(reg) >= 1 &&
1156 SYSREG_CRM(reg) < 8;
1157 }
1158
1159 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1160 {
1161 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1162 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1163 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1164 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1165 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1166 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1167 }
1168
1169 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1170 {
1171 ARMCPU *arm_cpu = ARM_CPU(cpu);
1172 CPUARMState *env = &arm_cpu->env;
1173 const ARMCPRegInfo *ri;
1174
1175 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1176 if (ri) {
1177 if (ri->accessfn) {
1178 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1179 return false;
1180 }
1181 }
1182 if (ri->type & ARM_CP_CONST) {
1183 *val = ri->resetvalue;
1184 } else if (ri->readfn) {
1185 *val = ri->readfn(env, ri);
1186 } else {
1187 *val = CPREG_FIELD64(env, ri);
1188 }
1189 trace_hvf_vgic_read(ri->name, *val);
1190 return true;
1191 }
1192
1193 return false;
1194 }
1195
1196 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint32_t rt)
1197 {
1198 ARMCPU *arm_cpu = ARM_CPU(cpu);
1199 CPUARMState *env = &arm_cpu->env;
1200 uint64_t val = 0;
1201
1202 switch (reg) {
1203 case SYSREG_CNTPCT_EL0:
1204 val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1205 gt_cntfrq_period_ns(arm_cpu);
1206 break;
1207 case SYSREG_PMCR_EL0:
1208 val = env->cp15.c9_pmcr;
1209 break;
1210 case SYSREG_PMCCNTR_EL0:
1211 pmu_op_start(env);
1212 val = env->cp15.c15_ccnt;
1213 pmu_op_finish(env);
1214 break;
1215 case SYSREG_PMCNTENCLR_EL0:
1216 val = env->cp15.c9_pmcnten;
1217 break;
1218 case SYSREG_PMOVSCLR_EL0:
1219 val = env->cp15.c9_pmovsr;
1220 break;
1221 case SYSREG_PMSELR_EL0:
1222 val = env->cp15.c9_pmselr;
1223 break;
1224 case SYSREG_PMINTENCLR_EL1:
1225 val = env->cp15.c9_pminten;
1226 break;
1227 case SYSREG_PMCCFILTR_EL0:
1228 val = env->cp15.pmccfiltr_el0;
1229 break;
1230 case SYSREG_PMCNTENSET_EL0:
1231 val = env->cp15.c9_pmcnten;
1232 break;
1233 case SYSREG_PMUSERENR_EL0:
1234 val = env->cp15.c9_pmuserenr;
1235 break;
1236 case SYSREG_PMCEID0_EL0:
1237 case SYSREG_PMCEID1_EL0:
1238 /* We can't really count anything yet, declare all events invalid */
1239 val = 0;
1240 break;
1241 case SYSREG_OSLSR_EL1:
1242 val = env->cp15.oslsr_el1;
1243 break;
1244 case SYSREG_OSDLR_EL1:
1245 /* Dummy register */
1246 break;
1247 case SYSREG_ICC_AP0R0_EL1:
1248 case SYSREG_ICC_AP0R1_EL1:
1249 case SYSREG_ICC_AP0R2_EL1:
1250 case SYSREG_ICC_AP0R3_EL1:
1251 case SYSREG_ICC_AP1R0_EL1:
1252 case SYSREG_ICC_AP1R1_EL1:
1253 case SYSREG_ICC_AP1R2_EL1:
1254 case SYSREG_ICC_AP1R3_EL1:
1255 case SYSREG_ICC_ASGI1R_EL1:
1256 case SYSREG_ICC_BPR0_EL1:
1257 case SYSREG_ICC_BPR1_EL1:
1258 case SYSREG_ICC_DIR_EL1:
1259 case SYSREG_ICC_EOIR0_EL1:
1260 case SYSREG_ICC_EOIR1_EL1:
1261 case SYSREG_ICC_HPPIR0_EL1:
1262 case SYSREG_ICC_HPPIR1_EL1:
1263 case SYSREG_ICC_IAR0_EL1:
1264 case SYSREG_ICC_IAR1_EL1:
1265 case SYSREG_ICC_IGRPEN0_EL1:
1266 case SYSREG_ICC_IGRPEN1_EL1:
1267 case SYSREG_ICC_PMR_EL1:
1268 case SYSREG_ICC_SGI0R_EL1:
1269 case SYSREG_ICC_SGI1R_EL1:
1270 case SYSREG_ICC_SRE_EL1:
1271 case SYSREG_ICC_CTLR_EL1:
1272 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1273 if (!hvf_sysreg_read_cp(cpu, reg, &val)) {
1274 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1275 }
1276 break;
1277 case SYSREG_DBGBVR0_EL1:
1278 case SYSREG_DBGBVR1_EL1:
1279 case SYSREG_DBGBVR2_EL1:
1280 case SYSREG_DBGBVR3_EL1:
1281 case SYSREG_DBGBVR4_EL1:
1282 case SYSREG_DBGBVR5_EL1:
1283 case SYSREG_DBGBVR6_EL1:
1284 case SYSREG_DBGBVR7_EL1:
1285 case SYSREG_DBGBVR8_EL1:
1286 case SYSREG_DBGBVR9_EL1:
1287 case SYSREG_DBGBVR10_EL1:
1288 case SYSREG_DBGBVR11_EL1:
1289 case SYSREG_DBGBVR12_EL1:
1290 case SYSREG_DBGBVR13_EL1:
1291 case SYSREG_DBGBVR14_EL1:
1292 case SYSREG_DBGBVR15_EL1:
1293 val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1294 break;
1295 case SYSREG_DBGBCR0_EL1:
1296 case SYSREG_DBGBCR1_EL1:
1297 case SYSREG_DBGBCR2_EL1:
1298 case SYSREG_DBGBCR3_EL1:
1299 case SYSREG_DBGBCR4_EL1:
1300 case SYSREG_DBGBCR5_EL1:
1301 case SYSREG_DBGBCR6_EL1:
1302 case SYSREG_DBGBCR7_EL1:
1303 case SYSREG_DBGBCR8_EL1:
1304 case SYSREG_DBGBCR9_EL1:
1305 case SYSREG_DBGBCR10_EL1:
1306 case SYSREG_DBGBCR11_EL1:
1307 case SYSREG_DBGBCR12_EL1:
1308 case SYSREG_DBGBCR13_EL1:
1309 case SYSREG_DBGBCR14_EL1:
1310 case SYSREG_DBGBCR15_EL1:
1311 val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1312 break;
1313 case SYSREG_DBGWVR0_EL1:
1314 case SYSREG_DBGWVR1_EL1:
1315 case SYSREG_DBGWVR2_EL1:
1316 case SYSREG_DBGWVR3_EL1:
1317 case SYSREG_DBGWVR4_EL1:
1318 case SYSREG_DBGWVR5_EL1:
1319 case SYSREG_DBGWVR6_EL1:
1320 case SYSREG_DBGWVR7_EL1:
1321 case SYSREG_DBGWVR8_EL1:
1322 case SYSREG_DBGWVR9_EL1:
1323 case SYSREG_DBGWVR10_EL1:
1324 case SYSREG_DBGWVR11_EL1:
1325 case SYSREG_DBGWVR12_EL1:
1326 case SYSREG_DBGWVR13_EL1:
1327 case SYSREG_DBGWVR14_EL1:
1328 case SYSREG_DBGWVR15_EL1:
1329 val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1330 break;
1331 case SYSREG_DBGWCR0_EL1:
1332 case SYSREG_DBGWCR1_EL1:
1333 case SYSREG_DBGWCR2_EL1:
1334 case SYSREG_DBGWCR3_EL1:
1335 case SYSREG_DBGWCR4_EL1:
1336 case SYSREG_DBGWCR5_EL1:
1337 case SYSREG_DBGWCR6_EL1:
1338 case SYSREG_DBGWCR7_EL1:
1339 case SYSREG_DBGWCR8_EL1:
1340 case SYSREG_DBGWCR9_EL1:
1341 case SYSREG_DBGWCR10_EL1:
1342 case SYSREG_DBGWCR11_EL1:
1343 case SYSREG_DBGWCR12_EL1:
1344 case SYSREG_DBGWCR13_EL1:
1345 case SYSREG_DBGWCR14_EL1:
1346 case SYSREG_DBGWCR15_EL1:
1347 val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1348 break;
1349 default:
1350 if (is_id_sysreg(reg)) {
1351 /* ID system registers read as RES0 */
1352 val = 0;
1353 break;
1354 }
1355 cpu_synchronize_state(cpu);
1356 trace_hvf_unhandled_sysreg_read(env->pc, reg,
1357 SYSREG_OP0(reg),
1358 SYSREG_OP1(reg),
1359 SYSREG_CRN(reg),
1360 SYSREG_CRM(reg),
1361 SYSREG_OP2(reg));
1362 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1363 return 1;
1364 }
1365
1366 trace_hvf_sysreg_read(reg,
1367 SYSREG_OP0(reg),
1368 SYSREG_OP1(reg),
1369 SYSREG_CRN(reg),
1370 SYSREG_CRM(reg),
1371 SYSREG_OP2(reg),
1372 val);
1373 hvf_set_reg(cpu, rt, val);
1374
1375 return 0;
1376 }
1377
1378 static void pmu_update_irq(CPUARMState *env)
1379 {
1380 ARMCPU *cpu = env_archcpu(env);
1381 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1382 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1383 }
1384
1385 static bool pmu_event_supported(uint16_t number)
1386 {
1387 return false;
1388 }
1389
1390 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1391 * the current EL, security state, and register configuration.
1392 */
1393 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1394 {
1395 uint64_t filter;
1396 bool enabled, filtered = true;
1397 int el = arm_current_el(env);
1398
1399 enabled = (env->cp15.c9_pmcr & PMCRE) &&
1400 (env->cp15.c9_pmcnten & (1 << counter));
1401
1402 if (counter == 31) {
1403 filter = env->cp15.pmccfiltr_el0;
1404 } else {
1405 filter = env->cp15.c14_pmevtyper[counter];
1406 }
1407
1408 if (el == 0) {
1409 filtered = filter & PMXEVTYPER_U;
1410 } else if (el == 1) {
1411 filtered = filter & PMXEVTYPER_P;
1412 }
1413
1414 if (counter != 31) {
1415 /*
1416 * If not checking PMCCNTR, ensure the counter is setup to an event we
1417 * support
1418 */
1419 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1420 if (!pmu_event_supported(event)) {
1421 return false;
1422 }
1423 }
1424
1425 return enabled && !filtered;
1426 }
1427
1428 static void pmswinc_write(CPUARMState *env, uint64_t value)
1429 {
1430 unsigned int i;
1431 for (i = 0; i < pmu_num_counters(env); i++) {
1432 /* Increment a counter's count iff: */
1433 if ((value & (1 << i)) && /* counter's bit is set */
1434 /* counter is enabled and not filtered */
1435 pmu_counter_enabled(env, i) &&
1436 /* counter is SW_INCR */
1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1438 /*
1439 * Detect if this write causes an overflow since we can't predict
1440 * PMSWINC overflows like we can for other events
1441 */
1442 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1443
1444 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1445 env->cp15.c9_pmovsr |= (1 << i);
1446 pmu_update_irq(env);
1447 }
1448
1449 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1450 }
1451 }
1452 }
1453
1454 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1455 {
1456 ARMCPU *arm_cpu = ARM_CPU(cpu);
1457 CPUARMState *env = &arm_cpu->env;
1458 const ARMCPRegInfo *ri;
1459
1460 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1461
1462 if (ri) {
1463 if (ri->accessfn) {
1464 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1465 return false;
1466 }
1467 }
1468 if (ri->writefn) {
1469 ri->writefn(env, ri, val);
1470 } else {
1471 CPREG_FIELD64(env, ri) = val;
1472 }
1473
1474 trace_hvf_vgic_write(ri->name, val);
1475 return true;
1476 }
1477
1478 return false;
1479 }
1480
1481 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1482 {
1483 ARMCPU *arm_cpu = ARM_CPU(cpu);
1484 CPUARMState *env = &arm_cpu->env;
1485
1486 trace_hvf_sysreg_write(reg,
1487 SYSREG_OP0(reg),
1488 SYSREG_OP1(reg),
1489 SYSREG_CRN(reg),
1490 SYSREG_CRM(reg),
1491 SYSREG_OP2(reg),
1492 val);
1493
1494 switch (reg) {
1495 case SYSREG_PMCCNTR_EL0:
1496 pmu_op_start(env);
1497 env->cp15.c15_ccnt = val;
1498 pmu_op_finish(env);
1499 break;
1500 case SYSREG_PMCR_EL0:
1501 pmu_op_start(env);
1502
1503 if (val & PMCRC) {
1504 /* The counter has been reset */
1505 env->cp15.c15_ccnt = 0;
1506 }
1507
1508 if (val & PMCRP) {
1509 unsigned int i;
1510 for (i = 0; i < pmu_num_counters(env); i++) {
1511 env->cp15.c14_pmevcntr[i] = 0;
1512 }
1513 }
1514
1515 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1516 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1517
1518 pmu_op_finish(env);
1519 break;
1520 case SYSREG_PMUSERENR_EL0:
1521 env->cp15.c9_pmuserenr = val & 0xf;
1522 break;
1523 case SYSREG_PMCNTENSET_EL0:
1524 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1525 break;
1526 case SYSREG_PMCNTENCLR_EL0:
1527 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1528 break;
1529 case SYSREG_PMINTENCLR_EL1:
1530 pmu_op_start(env);
1531 env->cp15.c9_pminten |= val;
1532 pmu_op_finish(env);
1533 break;
1534 case SYSREG_PMOVSCLR_EL0:
1535 pmu_op_start(env);
1536 env->cp15.c9_pmovsr &= ~val;
1537 pmu_op_finish(env);
1538 break;
1539 case SYSREG_PMSWINC_EL0:
1540 pmu_op_start(env);
1541 pmswinc_write(env, val);
1542 pmu_op_finish(env);
1543 break;
1544 case SYSREG_PMSELR_EL0:
1545 env->cp15.c9_pmselr = val & 0x1f;
1546 break;
1547 case SYSREG_PMCCFILTR_EL0:
1548 pmu_op_start(env);
1549 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1550 pmu_op_finish(env);
1551 break;
1552 case SYSREG_OSLAR_EL1:
1553 env->cp15.oslsr_el1 = val & 1;
1554 break;
1555 case SYSREG_OSDLR_EL1:
1556 /* Dummy register */
1557 break;
1558 case SYSREG_ICC_AP0R0_EL1:
1559 case SYSREG_ICC_AP0R1_EL1:
1560 case SYSREG_ICC_AP0R2_EL1:
1561 case SYSREG_ICC_AP0R3_EL1:
1562 case SYSREG_ICC_AP1R0_EL1:
1563 case SYSREG_ICC_AP1R1_EL1:
1564 case SYSREG_ICC_AP1R2_EL1:
1565 case SYSREG_ICC_AP1R3_EL1:
1566 case SYSREG_ICC_ASGI1R_EL1:
1567 case SYSREG_ICC_BPR0_EL1:
1568 case SYSREG_ICC_BPR1_EL1:
1569 case SYSREG_ICC_CTLR_EL1:
1570 case SYSREG_ICC_DIR_EL1:
1571 case SYSREG_ICC_EOIR0_EL1:
1572 case SYSREG_ICC_EOIR1_EL1:
1573 case SYSREG_ICC_HPPIR0_EL1:
1574 case SYSREG_ICC_HPPIR1_EL1:
1575 case SYSREG_ICC_IAR0_EL1:
1576 case SYSREG_ICC_IAR1_EL1:
1577 case SYSREG_ICC_IGRPEN0_EL1:
1578 case SYSREG_ICC_IGRPEN1_EL1:
1579 case SYSREG_ICC_PMR_EL1:
1580 case SYSREG_ICC_SGI0R_EL1:
1581 case SYSREG_ICC_SGI1R_EL1:
1582 case SYSREG_ICC_SRE_EL1:
1583 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1584 if (!hvf_sysreg_write_cp(cpu, reg, val)) {
1585 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1586 }
1587 break;
1588 case SYSREG_MDSCR_EL1:
1589 env->cp15.mdscr_el1 = val;
1590 break;
1591 case SYSREG_DBGBVR0_EL1:
1592 case SYSREG_DBGBVR1_EL1:
1593 case SYSREG_DBGBVR2_EL1:
1594 case SYSREG_DBGBVR3_EL1:
1595 case SYSREG_DBGBVR4_EL1:
1596 case SYSREG_DBGBVR5_EL1:
1597 case SYSREG_DBGBVR6_EL1:
1598 case SYSREG_DBGBVR7_EL1:
1599 case SYSREG_DBGBVR8_EL1:
1600 case SYSREG_DBGBVR9_EL1:
1601 case SYSREG_DBGBVR10_EL1:
1602 case SYSREG_DBGBVR11_EL1:
1603 case SYSREG_DBGBVR12_EL1:
1604 case SYSREG_DBGBVR13_EL1:
1605 case SYSREG_DBGBVR14_EL1:
1606 case SYSREG_DBGBVR15_EL1:
1607 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1608 break;
1609 case SYSREG_DBGBCR0_EL1:
1610 case SYSREG_DBGBCR1_EL1:
1611 case SYSREG_DBGBCR2_EL1:
1612 case SYSREG_DBGBCR3_EL1:
1613 case SYSREG_DBGBCR4_EL1:
1614 case SYSREG_DBGBCR5_EL1:
1615 case SYSREG_DBGBCR6_EL1:
1616 case SYSREG_DBGBCR7_EL1:
1617 case SYSREG_DBGBCR8_EL1:
1618 case SYSREG_DBGBCR9_EL1:
1619 case SYSREG_DBGBCR10_EL1:
1620 case SYSREG_DBGBCR11_EL1:
1621 case SYSREG_DBGBCR12_EL1:
1622 case SYSREG_DBGBCR13_EL1:
1623 case SYSREG_DBGBCR14_EL1:
1624 case SYSREG_DBGBCR15_EL1:
1625 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1626 break;
1627 case SYSREG_DBGWVR0_EL1:
1628 case SYSREG_DBGWVR1_EL1:
1629 case SYSREG_DBGWVR2_EL1:
1630 case SYSREG_DBGWVR3_EL1:
1631 case SYSREG_DBGWVR4_EL1:
1632 case SYSREG_DBGWVR5_EL1:
1633 case SYSREG_DBGWVR6_EL1:
1634 case SYSREG_DBGWVR7_EL1:
1635 case SYSREG_DBGWVR8_EL1:
1636 case SYSREG_DBGWVR9_EL1:
1637 case SYSREG_DBGWVR10_EL1:
1638 case SYSREG_DBGWVR11_EL1:
1639 case SYSREG_DBGWVR12_EL1:
1640 case SYSREG_DBGWVR13_EL1:
1641 case SYSREG_DBGWVR14_EL1:
1642 case SYSREG_DBGWVR15_EL1:
1643 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1644 break;
1645 case SYSREG_DBGWCR0_EL1:
1646 case SYSREG_DBGWCR1_EL1:
1647 case SYSREG_DBGWCR2_EL1:
1648 case SYSREG_DBGWCR3_EL1:
1649 case SYSREG_DBGWCR4_EL1:
1650 case SYSREG_DBGWCR5_EL1:
1651 case SYSREG_DBGWCR6_EL1:
1652 case SYSREG_DBGWCR7_EL1:
1653 case SYSREG_DBGWCR8_EL1:
1654 case SYSREG_DBGWCR9_EL1:
1655 case SYSREG_DBGWCR10_EL1:
1656 case SYSREG_DBGWCR11_EL1:
1657 case SYSREG_DBGWCR12_EL1:
1658 case SYSREG_DBGWCR13_EL1:
1659 case SYSREG_DBGWCR14_EL1:
1660 case SYSREG_DBGWCR15_EL1:
1661 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1662 break;
1663 default:
1664 cpu_synchronize_state(cpu);
1665 trace_hvf_unhandled_sysreg_write(env->pc, reg,
1666 SYSREG_OP0(reg),
1667 SYSREG_OP1(reg),
1668 SYSREG_CRN(reg),
1669 SYSREG_CRM(reg),
1670 SYSREG_OP2(reg));
1671 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1672 return 1;
1673 }
1674
1675 return 0;
1676 }
1677
1678 static int hvf_inject_interrupts(CPUState *cpu)
1679 {
1680 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1681 trace_hvf_inject_fiq();
1682 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1683 true);
1684 }
1685
1686 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1687 trace_hvf_inject_irq();
1688 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1689 true);
1690 }
1691
1692 return 0;
1693 }
1694
1695 static uint64_t hvf_vtimer_val_raw(void)
1696 {
1697 /*
1698 * mach_absolute_time() returns the vtimer value without the VM
1699 * offset that we define. Add our own offset on top.
1700 */
1701 return mach_absolute_time() - hvf_state->vtimer_offset;
1702 }
1703
1704 static uint64_t hvf_vtimer_val(void)
1705 {
1706 if (!runstate_is_running()) {
1707 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1708 return vtimer.vtimer_val;
1709 }
1710
1711 return hvf_vtimer_val_raw();
1712 }
1713
1714 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1715 {
1716 /*
1717 * Use pselect to sleep so that other threads can IPI us while we're
1718 * sleeping.
1719 */
1720 qatomic_set_mb(&cpu->thread_kicked, false);
1721 qemu_mutex_unlock_iothread();
1722 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1723 qemu_mutex_lock_iothread();
1724 }
1725
1726 static void hvf_wfi(CPUState *cpu)
1727 {
1728 ARMCPU *arm_cpu = ARM_CPU(cpu);
1729 struct timespec ts;
1730 hv_return_t r;
1731 uint64_t ctl;
1732 uint64_t cval;
1733 int64_t ticks_to_sleep;
1734 uint64_t seconds;
1735 uint64_t nanos;
1736 uint32_t cntfrq;
1737
1738 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1739 /* Interrupt pending, no need to wait */
1740 return;
1741 }
1742
1743 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1744 assert_hvf_ok(r);
1745
1746 if (!(ctl & 1) || (ctl & 2)) {
1747 /* Timer disabled or masked, just wait for an IPI. */
1748 hvf_wait_for_ipi(cpu, NULL);
1749 return;
1750 }
1751
1752 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1753 assert_hvf_ok(r);
1754
1755 ticks_to_sleep = cval - hvf_vtimer_val();
1756 if (ticks_to_sleep < 0) {
1757 return;
1758 }
1759
1760 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1761 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1762 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1763 nanos = ticks_to_sleep * cntfrq;
1764
1765 /*
1766 * Don't sleep for less than the time a context switch would take,
1767 * so that we can satisfy fast timer requests on the same CPU.
1768 * Measurements on M1 show the sweet spot to be ~2ms.
1769 */
1770 if (!seconds && nanos < (2 * SCALE_MS)) {
1771 return;
1772 }
1773
1774 ts = (struct timespec) { seconds, nanos };
1775 hvf_wait_for_ipi(cpu, &ts);
1776 }
1777
1778 static void hvf_sync_vtimer(CPUState *cpu)
1779 {
1780 ARMCPU *arm_cpu = ARM_CPU(cpu);
1781 hv_return_t r;
1782 uint64_t ctl;
1783 bool irq_state;
1784
1785 if (!cpu->accel->vtimer_masked) {
1786 /* We will get notified on vtimer changes by hvf, nothing to do */
1787 return;
1788 }
1789
1790 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1791 assert_hvf_ok(r);
1792
1793 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1794 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1795 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1796
1797 if (!irq_state) {
1798 /* Timer no longer asserting, we can unmask it */
1799 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1800 cpu->accel->vtimer_masked = false;
1801 }
1802 }
1803
1804 int hvf_vcpu_exec(CPUState *cpu)
1805 {
1806 ARMCPU *arm_cpu = ARM_CPU(cpu);
1807 CPUARMState *env = &arm_cpu->env;
1808 int ret;
1809 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1810 hv_return_t r;
1811 bool advance_pc = false;
1812
1813 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1814 hvf_inject_interrupts(cpu)) {
1815 return EXCP_INTERRUPT;
1816 }
1817
1818 if (cpu->halted) {
1819 return EXCP_HLT;
1820 }
1821
1822 flush_cpu_state(cpu);
1823
1824 qemu_mutex_unlock_iothread();
1825 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1826
1827 /* handle VMEXIT */
1828 uint64_t exit_reason = hvf_exit->reason;
1829 uint64_t syndrome = hvf_exit->exception.syndrome;
1830 uint32_t ec = syn_get_ec(syndrome);
1831
1832 ret = 0;
1833 qemu_mutex_lock_iothread();
1834 switch (exit_reason) {
1835 case HV_EXIT_REASON_EXCEPTION:
1836 /* This is the main one, handle below. */
1837 break;
1838 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1839 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1840 cpu->accel->vtimer_masked = true;
1841 return 0;
1842 case HV_EXIT_REASON_CANCELED:
1843 /* we got kicked, no exit to process */
1844 return 0;
1845 default:
1846 g_assert_not_reached();
1847 }
1848
1849 hvf_sync_vtimer(cpu);
1850
1851 switch (ec) {
1852 case EC_SOFTWARESTEP: {
1853 ret = EXCP_DEBUG;
1854
1855 if (!cpu->singlestep_enabled) {
1856 error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1857 }
1858 break;
1859 }
1860 case EC_AA64_BKPT: {
1861 ret = EXCP_DEBUG;
1862
1863 cpu_synchronize_state(cpu);
1864
1865 if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1866 /* Re-inject into the guest */
1867 ret = 0;
1868 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1869 }
1870 break;
1871 }
1872 case EC_BREAKPOINT: {
1873 ret = EXCP_DEBUG;
1874
1875 cpu_synchronize_state(cpu);
1876
1877 if (!find_hw_breakpoint(cpu, env->pc)) {
1878 error_report("EC_BREAKPOINT but unknown hw breakpoint");
1879 }
1880 break;
1881 }
1882 case EC_WATCHPOINT: {
1883 ret = EXCP_DEBUG;
1884
1885 cpu_synchronize_state(cpu);
1886
1887 CPUWatchpoint *wp =
1888 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1889 if (!wp) {
1890 error_report("EXCP_DEBUG but unknown hw watchpoint");
1891 }
1892 cpu->watchpoint_hit = wp;
1893 break;
1894 }
1895 case EC_DATAABORT: {
1896 bool isv = syndrome & ARM_EL_ISV;
1897 bool iswrite = (syndrome >> 6) & 1;
1898 bool s1ptw = (syndrome >> 7) & 1;
1899 uint32_t sas = (syndrome >> 22) & 3;
1900 uint32_t len = 1 << sas;
1901 uint32_t srt = (syndrome >> 16) & 0x1f;
1902 uint32_t cm = (syndrome >> 8) & 0x1;
1903 uint64_t val = 0;
1904
1905 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1906 hvf_exit->exception.physical_address, isv,
1907 iswrite, s1ptw, len, srt);
1908
1909 if (cm) {
1910 /* We don't cache MMIO regions */
1911 advance_pc = true;
1912 break;
1913 }
1914
1915 assert(isv);
1916
1917 if (iswrite) {
1918 val = hvf_get_reg(cpu, srt);
1919 address_space_write(&address_space_memory,
1920 hvf_exit->exception.physical_address,
1921 MEMTXATTRS_UNSPECIFIED, &val, len);
1922 } else {
1923 address_space_read(&address_space_memory,
1924 hvf_exit->exception.physical_address,
1925 MEMTXATTRS_UNSPECIFIED, &val, len);
1926 hvf_set_reg(cpu, srt, val);
1927 }
1928
1929 advance_pc = true;
1930 break;
1931 }
1932 case EC_SYSTEMREGISTERTRAP: {
1933 bool isread = (syndrome >> 0) & 1;
1934 uint32_t rt = (syndrome >> 5) & 0x1f;
1935 uint32_t reg = syndrome & SYSREG_MASK;
1936 uint64_t val;
1937 int sysreg_ret = 0;
1938
1939 if (isread) {
1940 sysreg_ret = hvf_sysreg_read(cpu, reg, rt);
1941 } else {
1942 val = hvf_get_reg(cpu, rt);
1943 sysreg_ret = hvf_sysreg_write(cpu, reg, val);
1944 }
1945
1946 advance_pc = !sysreg_ret;
1947 break;
1948 }
1949 case EC_WFX_TRAP:
1950 advance_pc = true;
1951 if (!(syndrome & WFX_IS_WFE)) {
1952 hvf_wfi(cpu);
1953 }
1954 break;
1955 case EC_AA64_HVC:
1956 cpu_synchronize_state(cpu);
1957 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
1958 if (!hvf_handle_psci_call(cpu)) {
1959 trace_hvf_unknown_hvc(env->xregs[0]);
1960 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1961 env->xregs[0] = -1;
1962 }
1963 } else {
1964 trace_hvf_unknown_hvc(env->xregs[0]);
1965 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1966 }
1967 break;
1968 case EC_AA64_SMC:
1969 cpu_synchronize_state(cpu);
1970 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
1971 advance_pc = true;
1972
1973 if (!hvf_handle_psci_call(cpu)) {
1974 trace_hvf_unknown_smc(env->xregs[0]);
1975 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
1976 env->xregs[0] = -1;
1977 }
1978 } else {
1979 trace_hvf_unknown_smc(env->xregs[0]);
1980 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1981 }
1982 break;
1983 default:
1984 cpu_synchronize_state(cpu);
1985 trace_hvf_exit(syndrome, ec, env->pc);
1986 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
1987 }
1988
1989 if (advance_pc) {
1990 uint64_t pc;
1991
1992 flush_cpu_state(cpu);
1993
1994 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
1995 assert_hvf_ok(r);
1996 pc += 4;
1997 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
1998 assert_hvf_ok(r);
1999
2000 /* Handle single-stepping over instructions which trigger a VM exit */
2001 if (cpu->singlestep_enabled) {
2002 ret = EXCP_DEBUG;
2003 }
2004 }
2005
2006 return ret;
2007 }
2008
2009 static const VMStateDescription vmstate_hvf_vtimer = {
2010 .name = "hvf-vtimer",
2011 .version_id = 1,
2012 .minimum_version_id = 1,
2013 .fields = (VMStateField[]) {
2014 VMSTATE_UINT64(vtimer_val, HVFVTimer),
2015 VMSTATE_END_OF_LIST()
2016 },
2017 };
2018
2019 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2020 {
2021 HVFVTimer *s = opaque;
2022
2023 if (running) {
2024 /* Update vtimer offset on all CPUs */
2025 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2026 cpu_synchronize_all_states();
2027 } else {
2028 /* Remember vtimer value on every pause */
2029 s->vtimer_val = hvf_vtimer_val_raw();
2030 }
2031 }
2032
2033 int hvf_arch_init(void)
2034 {
2035 hvf_state->vtimer_offset = mach_absolute_time();
2036 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2037 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2038
2039 hvf_arm_init_debug();
2040
2041 return 0;
2042 }
2043
2044 static const uint32_t brk_insn = 0xd4200000;
2045
2046 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2047 {
2048 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2049 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2050 return -EINVAL;
2051 }
2052 return 0;
2053 }
2054
2055 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2056 {
2057 static uint32_t brk;
2058
2059 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2060 brk != brk_insn ||
2061 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2062 return -EINVAL;
2063 }
2064 return 0;
2065 }
2066
2067 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2068 {
2069 switch (type) {
2070 case GDB_BREAKPOINT_HW:
2071 return insert_hw_breakpoint(addr);
2072 case GDB_WATCHPOINT_READ:
2073 case GDB_WATCHPOINT_WRITE:
2074 case GDB_WATCHPOINT_ACCESS:
2075 return insert_hw_watchpoint(addr, len, type);
2076 default:
2077 return -ENOSYS;
2078 }
2079 }
2080
2081 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2082 {
2083 switch (type) {
2084 case GDB_BREAKPOINT_HW:
2085 return delete_hw_breakpoint(addr);
2086 case GDB_WATCHPOINT_READ:
2087 case GDB_WATCHPOINT_WRITE:
2088 case GDB_WATCHPOINT_ACCESS:
2089 return delete_hw_watchpoint(addr, len, type);
2090 default:
2091 return -ENOSYS;
2092 }
2093 }
2094
2095 void hvf_arch_remove_all_hw_breakpoints(void)
2096 {
2097 if (cur_hw_wps > 0) {
2098 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2099 }
2100 if (cur_hw_bps > 0) {
2101 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2102 }
2103 }
2104
2105 /*
2106 * Update the vCPU with the gdbstub's view of debug registers. This view
2107 * consists of all hardware breakpoints and watchpoints inserted so far while
2108 * debugging the guest.
2109 */
2110 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2111 {
2112 hv_return_t r = HV_SUCCESS;
2113 int i;
2114
2115 for (i = 0; i < cur_hw_bps; i++) {
2116 HWBreakpoint *bp = get_hw_bp(i);
2117 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2118 assert_hvf_ok(r);
2119 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2120 assert_hvf_ok(r);
2121 }
2122 for (i = cur_hw_bps; i < max_hw_bps; i++) {
2123 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2124 assert_hvf_ok(r);
2125 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2126 assert_hvf_ok(r);
2127 }
2128
2129 for (i = 0; i < cur_hw_wps; i++) {
2130 HWWatchpoint *wp = get_hw_wp(i);
2131 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2132 assert_hvf_ok(r);
2133 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2134 assert_hvf_ok(r);
2135 }
2136 for (i = cur_hw_wps; i < max_hw_wps; i++) {
2137 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2138 assert_hvf_ok(r);
2139 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2140 assert_hvf_ok(r);
2141 }
2142 }
2143
2144 /*
2145 * Update the vCPU with the guest's view of debug registers. This view is kept
2146 * in the environment at all times.
2147 */
2148 static void hvf_put_guest_debug_registers(CPUState *cpu)
2149 {
2150 ARMCPU *arm_cpu = ARM_CPU(cpu);
2151 CPUARMState *env = &arm_cpu->env;
2152 hv_return_t r = HV_SUCCESS;
2153 int i;
2154
2155 for (i = 0; i < max_hw_bps; i++) {
2156 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2157 env->cp15.dbgbcr[i]);
2158 assert_hvf_ok(r);
2159 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2160 env->cp15.dbgbvr[i]);
2161 assert_hvf_ok(r);
2162 }
2163
2164 for (i = 0; i < max_hw_wps; i++) {
2165 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2166 env->cp15.dbgwcr[i]);
2167 assert_hvf_ok(r);
2168 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2169 env->cp15.dbgwvr[i]);
2170 assert_hvf_ok(r);
2171 }
2172 }
2173
2174 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2175 {
2176 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2177 }
2178
2179 static void hvf_arch_set_traps(void)
2180 {
2181 CPUState *cpu;
2182 bool should_enable_traps = false;
2183 hv_return_t r = HV_SUCCESS;
2184
2185 /* Check whether guest debugging is enabled for at least one vCPU; if it
2186 * is, enable exiting the guest on all vCPUs */
2187 CPU_FOREACH(cpu) {
2188 should_enable_traps |= cpu->accel->guest_debug_enabled;
2189 }
2190 CPU_FOREACH(cpu) {
2191 /* Set whether debug exceptions exit the guest */
2192 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2193 should_enable_traps);
2194 assert_hvf_ok(r);
2195
2196 /* Set whether accesses to debug registers exit the guest */
2197 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2198 should_enable_traps);
2199 assert_hvf_ok(r);
2200 }
2201 }
2202
2203 void hvf_arch_update_guest_debug(CPUState *cpu)
2204 {
2205 ARMCPU *arm_cpu = ARM_CPU(cpu);
2206 CPUARMState *env = &arm_cpu->env;
2207
2208 /* Check whether guest debugging is enabled */
2209 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2210 hvf_sw_breakpoints_active(cpu) ||
2211 hvf_arm_hw_debug_active(cpu);
2212
2213 /* Update debug registers */
2214 if (cpu->accel->guest_debug_enabled) {
2215 hvf_put_gdbstub_debug_registers(cpu);
2216 } else {
2217 hvf_put_guest_debug_registers(cpu);
2218 }
2219
2220 cpu_synchronize_state(cpu);
2221
2222 /* Enable/disable single-stepping */
2223 if (cpu->singlestep_enabled) {
2224 env->cp15.mdscr_el1 =
2225 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2226 pstate_write(env, pstate_read(env) | PSTATE_SS);
2227 } else {
2228 env->cp15.mdscr_el1 =
2229 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2230 }
2231
2232 /* Enable/disable Breakpoint exceptions */
2233 if (hvf_arm_hw_debug_active(cpu)) {
2234 env->cp15.mdscr_el1 =
2235 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2236 } else {
2237 env->cp15.mdscr_el1 =
2238 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2239 }
2240
2241 hvf_arch_set_traps();
2242 }
2243
2244 inline bool hvf_arch_supports_guest_debug(void)
2245 {
2246 return true;
2247 }